<]
TUDelft

Delft University of Technology

Visual Analytics for High-Dimensional Images via Dimensionality Reduction

Vieth, A.

DOI
10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46

Publication date
2026

Document Version
Final published version

Citation (APA)
Vieth, A. (2026). Visual Analytics for High-Dimensional Images via Dimensionality Reduction. [Dissertation

(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-
7710a03e2b46

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46
https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46
https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46

ISV
A A

FOR HIGH-DIMENSIONAL IMAGES
VIA DIMENSIONALITY REDUCTION

Alexander Vieth

Analyzing high-dimensional images is a complex task. Unlike regular color images, they are not
straightforward to visualize. Their additional information content increases the complexity of
interpretation, both in terms of computational processing and human comprehension. Visual
analytics — the combination of visualization, interaction, and automated analysis methods —
has proven useful to gain insights into such large, difficult-to-handle data.

In this thesis, we investigate non-linear dimensionality-reduction methods for the exploration
of high-dimensional images. Specifically, we address the problem that current dimensionality-
reduction methods are image-agnostic: they treat spatially resolved data without considering

their spatial layout. We present algorithmic solutions that yield image-informed embeddings,
and interactions techniques that connect images and embedding representations. Further, we
present an open-source visual analytics software framework for rapid prototyping and extensible
workflow.

Visual Analytics for High-Dimensional Images
via Dimensionality Reduction

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus prof. dr. ir. TH.].J. van der Hagen
chair of the Board for Doctorates
to be defended publicly on
Monday, 12 January 2026 at 17:30 o’clock

by

Alexander VIETH

Master of Science in
Electrical Engineering, Information Technology and Computer Engineering,
RWTH Aachen University, Germany
born in Miinster, Germany.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. A. Vilanova, Delft & Eindhoven University of Technology, promotor
Prof. dr. ir. B.PF. Lelieveldt, Leiden University Medical Center &

Delft University of Technology, promotor
Prof. dr. E. Eisemann, Delft University of Technology, promotor
Asst. Prof. dr. T. Hollt, Delft University of Technology, copromotor
Independent members:
Prof. dr. M.J.T. Reinders, Delft University of Technology
Assoc. Prof. dr. N. Gehlenborg, Harvard Medical School, USA
Assoc. Prof. dr. E.V. Paulovich, Eindhoven University of Technology
Assoc. Prof. dr. R. Raidou, TU Wien, Austria

] ~
TUDelft i €Y

Keywords: Visual Analytics, High-Dimensional Images,
Dimensionality Reduction, Software Framework

Printed by: Ridderprint

Cover by: Linda Hoogendam

Copyright © 2026 by Alexander Vieth

An electronic version of this dissertation is available at https://repository.tudelft.nl/.
This document was typeset with the help of IATEX using the kaobook class.

https://repository.tudelft.nl/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/

The act of writing
Brings frustration, insight, joy
Right in that order

—based on academic haiku by Sally Wyatt
from Letters in Lockdown

https://web.archive.org/web/20250530112629/https://www.maastrichtuniversity.nl/sites/default/files/2023-03/1675_gedichtenbundel-a5-2021-def.pdf

Summary

Analyzing high-dimensional images is a complex task. Unlike regular color images, they are not straightforward
to visualize. Their additional information content increases the complexity of interpretation, both in terms of
computational processing and human comprehension. Visual analytics — the combination of visualization,
interaction, and automated analysis methods — has proven useful to gain insights into such large, difficult-to-
handle data. For example, non-linear dimensionality reduction is a commonly employed technique in visual
analytics for exposing interesting patterns through lower-dimensional representations of high-dimensional
data.

In this thesis, we investigate non-linear dimensionality-reduction methods for the exploration of high-
dimensional images. Specifically, we address the problem that current dimensionality-reduction methods
are image-agnostic: they treat spatially resolved data without considering their spatial layout. We present
algorithmic solutions that yield image-informed embeddings and interactions techniques that connect images
and embedding representations. To a large extend, we utilize hierarchical approaches to handle the image
data. We show how these techniques enable more insightful exploration of high-dimensional images.

Further, we present an open-source visual analytics software framework for rapid prototyping and extensible
workflow development for high-dimensional data analysis. All algorithms and techniques described in this
thesis are made available in or fully implemented as plugins for this framework.

Samenvatting

Het analyseren van hoogdimensionale beelden is een complexe taak. In tegenstelling tot gewone kleuraf-
beeldingen zijn ze moeilijker te visualiseren. Hun hogere informatiedichtheid verhoogt de complexiteit van
de interpretatie, zowel wat betreft de computationele verwerking als het menselijk begripsvermogen. Visual
analytics — de combinatie van visualisatie, interactie en geautomatiseerde analysemethoden — is nuttig
gebleken om inzicht te verkrijgen in dergelijke grote, moeilijk te verwerken data. Niet-lineaire dimensiereductie
is bijvoorbeeld een veelgebruikte techniek in visual analytics om interessante patronen bloot te leggen met
behulp van lagerdimensionale representaties van hoogdimensionale gegevens.

In dit proefschrift onderzoeken we niet-lineaire dimensiereductiemethoden voor het verkennen van hoogdi-
mensionale beelden. We richten ons met name op het probleem dat de huidige dimensiereductiemethoden
beeldagnostisch zijn: ze behandelen ruimtelijk gestructureerde gegevens zonder rekening te houden met hun
ruimtelijke structuur. We presenteren algoritmische oplossingen die beeldgestuurde inbeddingen opleveren
en interactietechnieken die beelden en inbeddingsrepresentaties met elkaar verbinden. We maken grotendeels
gebruik van hiérarchische benaderingen om de beeldgegevens te verwerken. We laten zien hoe deze technieken
een meer inzichtelijke verkenning van hoogdimensionale beelden mogelijk maken.

Verder presenteren we een open-source softwareframework voor visual analytics, bedoeld voor snelle
prototyping en uitbreidbare workflowontwikkeling bij de analyse van hoogdimensionale gegevens. Alle
algoritmen en technieken die in dit proefschrift worden beschreven, zijn beschikbaar binnen of volledig
geimplementeerd als plugins voor dit framework.

Contents

Summary

Samenvatting

Contents

Lists of Figures and Tables

Lists of Symbols and Abbreviations

1.

Introduction

L1 Visual Analytics
1.2. Dimensionality Reduction
13. Contributionand Outline

. Background

2.1. High-dimensionalImageData
2.2. Dimensionality Reduction Methods
2.3. Neighborhood Definition
2.4. t-distributed Stochastic Neighbor Embedding (t-SNE)

Related Work

3.1. Exploratory Analysis of High-Dimensional Images
3.2. Dimensionality Reduction for High-Dimensional Images
3.3. Hierarchical Dimensionality Reduction
3.4. Multivariate Graph Visualization and Node Embeddings

Spatial Information in Dimensionality Reduction for High-Dimensional Images

41 Introduction
42, Related Work
4.3. Texture-Aware Dimensionality Reduction
4.4. Applicationon SyntheticData
4.5. Implementation
4.6, USECaSES v i
47. Conclusion

Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

51 Introduction
52. Related Work
5.3. Tasksand Requirements
5.4. Coupling Image Navigation and Embedding Space
5.5. Exemplary Use Case: Hyperspectral Image Exploration
5.6. Limitations
57. Conclusion

. Manifold-Preserving Superpixel Hierarchies

6.1. Introduction
6.2. Related Work
6.3. Superpixel Hierarchy
6.4. Preliminary Considerations
6.5. Method
6.6. Validation.

vii

ix

xi

xiii

6.7. DIScussion 52

6.8. Conclusion 53
7. ManiVault: A Visual Analytics Framework for High-Dimensional Data 55
71 Introduction 55
72, Related Work L 56
7.3. Design Considerations 58
7.4. Framework Architecture L 59
7.5. Implementation 66
7.6. Application Examples 68
77. Conclusion 72
8. Conclusion 73
8.1. Contributions 73
8.2. Challengesand Outlook 74
8.3. ClosingWords 75
References 77
APPENDIX 89
A. Supplement: Spidr 91
B. Supplement: Interactive Image HSNE 99
C. Supplement: Superpixels 101
D. Supplement: ManiVault 107
Publications 109
Curriculum Vitae 111

Acknowledgments 113

List of Figures and Tables

Figures

11. TheDatasaurusdozen
1.2. Dimensionality reductiononimages
2.1. Multi-dimensional data and two projections L oL
4.1. Texture-aware dimensionality reduction L.
4.2. Synthetic image dataset with varying texture
4.3. Incorporating image texture information into dimensionality reduction
4.4. Comparison of several spatially informed embeddings
4.5. Comparison of texture-aware and standard t-SNE embeddings
4.6. Texture-aware embedding of Imaging mass cytometrydata
5.1. Coupling image and embedding views L Lo L
5.2. Interaction with images and hierarchical embeddings
5.3. Comparing several landmark mapping schemes
5.4. Example for a coupled image and embedding exploration
6.1. Different types of image hierarchies o L
6.2. Manifold-preserving superpixels and embedding of an RGBimage
6.3. Superpixel method overview L
6.4. Superpixels witht-SNEand UMAP,
6.5. Hyperspectral image exploration with superpixels and embeddings
6.6. Non-exact refinement of the superpixel hierarchy
6.7. CyCIF image exploration with superpixels and embeddings
6.8. Explained Variation and Undersegmentation Error
6.9. Indian Pines ground truth segmentation oL
7.1. Example screenshotof ManiVault 0 oL oL
7.2, ManiVault’s system architecture. L L o
7.3. Parameter sharinginManiVault L L
7.4. Example of the plugin GUI configurationeditor
7.5. Thedatahierarchy view
7.6. A selection of viewer pluginsin ManiVault
7.7. Spidr analysis and parallel coordinatesplot L
7.8. Bareboneanalytics pluginsetup L L
7.9. Bareboneviewer pluginsetup L
7.10. A typical exploration workflow with ManiVault
7.11. Screenshot of a re-implementation of a Cytosplore Viewer
Al. Comparison of spatially informed and standard embeddings
A.2. Neighbor hit comparison of several embedding methods
A.3. Spatially informed using different point cloud distances
A.4. Spatially informed embeddings: 3x3 neighbourhood with Gaussian weighting
A.5. Spatially informed embeddings: 5x5 neighbourhood
A.6. Spatially informed embeddings: 5x5 neighbourhood with Gaussian weighting
A7. Spatially informed embeddings: 7x7 neighbourhood,
A.8. Spatially informed embeddings: 7x7 neighbourhood and Gaussian weighting
A.9. Neighbor hit analysis for several spatially informed embeddings

A10. Computation time of the distance computation for varying neighborhood sizes
A1l. Computation time of the distance computation for channel numbers
A12. Various modified embeddings of the Indian Pinesdata

A13. Annotated ground truth of Indian Pines Site 3. 0 0L 97

A15. Comparison of spatially-aware and standard t-SNE embeddings for Indian Pines data 97
B.2. Summary statistic of several clusters in an embedding of Indian Pinesdata 100
B.3. Embedding refinement initialization types o oL oL 100
B.4. Image exploration with regular HSNE embeddings 100
C.1. Superpixel hierarchy of the larger Indian Pines dataset 103
C.2. CyCIFFocusRegion 104
C.3. Superpixel Hierarchy of a CyCIFimage 104
C.4. Superpixel hierarchy of aRGBimages 105
C.5. Superpixel hierarchy of a hyperspectralimage 105
Tables

7.1. Comparison of ManiVault with other visual analysis tools 57
B.1. Durations of embedding update steps with automatic hierarchy traversal 99
C.1. Undersegmentation error (UE) for superpixel evaluation 102
C.2. Explained variation (EV) for superixel evaluation 102
D.1. Duration of t-SNE embedding computations in ManiVault 107
D.2. Memory consumption of loaded data sets in ManiVault 107

Lists of Symbols and Abbreviations

Symbols

Definitions are provided at first use in the text, and listed here for reference. Unless otherwise specified, when
a letter is reused, a bold style indicates vectors while regular style indicates scalars.

s« = o °

QR

—~

—~)

High-dimensional attribute vector
Low-dimensional projection vector
Specific attribute dimension/channel
Number of attribute dimensions
Number of embedding dimensions
Context indices

Standard distance function (attribute space)
Spatial distance function
Embedding view data indices

Image view data indices

An edge between vertices i and j
Edges

High-dimensional image function
Focus indices

Graph

Histogram feature (vector, bold font)
Histogram feature (scalar)

Data index (flattened)

Image position (x and y coordinates)
Area of influence

Normalized area of influence

Image Graph

Selection indices on a level in image

Selection focus indices in image

Landmark i on level k
Hierarchy levels

Number of hierarchy levels

n

Vo

Vit

4

>

N 8 R =
~

N

Total image/data size
Total size of neighborhood

Neighborhood in attribute space, set of k
indices, abbreviated as N

Neighborhood in image space, set of 71 in-
dices

Superpixel segmentation, ground truth
Component in ground truth segmentation
Number of superpixels

Individual superpixel

Superpixel segmentation, set of superpixels
Transition probability matrix

Visual budget

Visual target

A specific vertex

Vertices

Spatial neighborhood weights vector
Spatial neighborhood weights scalar
Image position x

Image domain x direction/set

Image position y

Image domain y direction

Selection focus indices in embedding
Feature matrix

Feature vector

Feature extraction function

Threshold level upwards

Threshold level downwards

Size of spatial neighborhood

A Length of a random walk

u Mean vector (bold font)
U Mean scalar
Abbreviations

AE autoenconder. 7

API application programming interface. 4
CyCIF cyclic immunofluorescence. 29, 49, 50

DM diffusion maps. 7
DR dimensionality reduction. 2, 6-8, 15, 29, 39

EV explained variation. 51
GUI graphical user interface. 56

IMC imaging mass cytometry. 25, 26
IS isomap. 7

kNN k-nearest neighbor. 8, 42
LoD level of detail. 39

MDS metric multidimensional scaling. 7, 8, 11, 13,
15

o Covariance
X Covariance matrix
[} Number of random walks

PCA principal component analysis. 2, 6

PCP parallel coordinates plot. 5

QF quadratic form. 19, 22, 23

ROI region of interest. 29, 39

SPLOM scatterplot matrix. 5

t-SNE t-distributed Stochastic Neighbor Embedding.
2,7,8,15

UE undersegmentation error. 51
UMAP Uniform Manifold Approximation and Projec-
tion. 2,7, 8,15

VA Visual Analytics. 2, 55, 56, 59

Introduction

A molecular biologist assesses highly multiplexed images of tumor tissues to
classify cancerous cells which potentially leads to advanced treatment plans.
An agricultural planner inspects hyperspectral images of crops for large scale
monitoring of irrigation and pesticide dissemination systems. An art conservator
examines scans of old paintings to document their condition and possibly restore
them to closer versions of their original state. An astrophysicist studies near-
infrared images of the night sky, aiming to improve our understanding of the
evolution of the universe.

Each of these examples are set in widely varying applications, yet in all of them a
domain expert is working with a specific type of data: high-dimensional images.
These types of images do not just contain three color channels (red, green,
and blue) like a common photograph does; they generalize the typical three-
dimensional color feature of each pixel to any number of numerical attributes —
from the intensity of reflected light in multiple spectral ranges to the relative
abundance of specific proteins. High-dimensional images typically have dozens
or hundreds of such channels. This increased amount of information goes along
with increased difficulties to handle the data — both computationally and for
human understanding.

Domain experts regularly engage with data of unknown content. A novel
acquisition device produces new types of images, an object or specimen of
interest is recorded for the first time, or the image captures a yet unrecorded event.
After acquiring new images, each above domain expert seeks to understand
their content. The data analysis begins with exploration. Among the main goals
during this stage are the identification of general characteristics, novel patterns
and the generation of hypotheses for their underlying causes. Statistical methods
are powerful tools for validating theoretical models and can also help uncover
patterns, but often do not suffice in gaining insight into unknown data. Merely
plotting data can reveal patterns in the data that many summary statistics fail
to capture, e.g., a dinosaur emerging from a large collection of observations,
as in Figure 1.1. But visualizing high-dimensional images effectively is not
straight-forward at all.

1.1. Visual Analytics

Processing large amounts of data effectively is challenging for both humans and
computers. Especially when aiming to obtain actionable insights from novel
data, neither purely algorithmic approaches nor human interpretation of static
visualizations suffice:

The credo of [...] visual analytics is therefore to use a combination of
visualization, interaction, and automated analysis methods to explore huge
amounts of data and to obtain solid insights.

How does that apply to our situation? High-dimensional images qualify as large
data twofold, both in terms of their number of data points, as images typically
contain hundreds of thousands or millions of pixels, and with regard to the
number of attribute dimensions attached to each pixel. With grayscale or RGB
color images, all information can be mapped to the three RGB channels of modern
displays, allowing for immediate visualization and human interpretation of all
their content. In contrast, the many channels of high-dimensional images cannot
be displayed simultaneously in the same manner. Indeed, we face multiple
difficulties: Which (combination of) image channel(s) best reveals underlying
structures? What are effective strategies for mapping high-dimensional pixel
attributes onto the two-dimensional image space? And, in general, how can

(
1.1 Visual Analytics. . . . 1
1.2 Dimensionality Re-
duction 2
1.3 Contribution and
Outline 3

"Exploratory data analysis is de-
tective work — numerical detective
work, counting detective work or
graphical detective work."

John W. Tukey in Exploratory Data
Analysis, page 1[1]

From the foreword by Jarke van Wijk
to Interactive Visual Data Analysis [2]

2

80
60
40

20 -

1. Introduction

Bullseye (I) Dino (II) Slant up (III)
[T Jeeeds,. T] 100 10F e R Summary statistics
| ; . Lesa, . . . J.;-' -’_. ,ux Hy Oy Oy
o * i 50 Lo . I 54.27 4783 1677 26.94
["_-__ O 50 _,""'ﬁ Y 1T 54.27 47.83 16.77 26.94
Lo & A M 5427 4783 1677 2694
| ." oo ’ | 0 L “ A u: mean, o: standard deviation
20 40 60 80 20 40 60 80 100 20 40 60 80 100
x x x

Figure 1.1. Three datasets from the Datasaurus dozen collection [6], a recent take on Anscombe’s Quartet [7]: even though each data set is characterized by the same
summary statistics (up to several digits of precision), the differences in distribution show immediately when visualized.

A . .
Dimension 2

Dimension 1
>
>

Principle component 1

-0—00—000-@IP®—O0—0O-

patterns in the high-dimensional attribute space be related to their spatial
embedding in the image domain?

There is seldomly a single representation of complex data that shows all
interesting aspects simultaneously. One major aim of Visual Analytics (VA) is
to facilitate data exploration by coupling automated analysis with multiple
interactive visual representations, steering users towards potentially interesting
views on or parts of their data. For high-dimensional images this could manifest
in several coordinated views [3] on the data. For example, one view focusing
on the spatial layout, displaying a false color image of a user-selectable set of
channels. Another view solely concerned with the data attributes, e.g. a parallel-
coordinates plot [4] that automatically applies edge bundling [5] to highlight
clusters. And finally, a plot of a derived data representation that distills specific
data properties. In fact, lower-dimensional representations of high-dimensional
data have proven remarkably successful at displaying interesting patterns.

1.2. Dimensionality Reduction

Embedding points from a high-dimensional space into a lower dimensional
space aims to preserve intrinsic structure of the data while enabling interpretable
visualization and reducing computational complexity, e.g., to facilitate clustering.
Both linear and non-linear projections techniques have been well explored for
these purposes [8].

While the mathematical foundation of these dimensionality reduction (DR)
techniques vary, they generally assume that the data lies in a subspace of the
original high-dimensional space. For example, principal component analysis
(PCA) keeps the linear subspace with the largest variance. In recent years, non-
linear, neighborhood-based techniques like t-distributed Stochastic Neighbor
Embedding (t-SNE) and Uniform Manifold Approximation and Projection
(UMAP) have become widely adapted methods for exploring and presenting
data structure.

Applying dimensionality reduction methods to high-dimensional images re-
mains challenging. Figure 1.2 illustrates the correspondence of embedded data
points and image pixels. The large number of pixels, i.e., the data points, leads
to dense and cluttered embeddings, and ignores the image layout. Views on the
data via channel-wise image representations and static embeddings separates
the exploration of image layout and attribute space. Fundamentally, most di-
mensionality reduction methods are not designed to take both the image layout
and attribute space into account, rendering them unable to capture important
image structure.

1.3. Contribution and Outline 3

Figure 1.2. Embeddings of (left) a col-
lection of images, MNIST [9], and
(right) a single high-dimensional im-
ages, the Indian Pines data [10]. The
Attributes s embedding points represent whole im-
ages and individual pixels respectively.
In this thesis, we focus on the latter set-

Channel ting.

QAEOHRER
ol w

1.3. Contribution and Outline

Two decades ago, Illuminating the Path [11] set forth an ambitious research agenda
for visual analytics that remains largely applicable today. Among their goals,
several stand out as particularly pertinent to our discussion of high-dimensional

images:
-1s Excerpt from the recommended vi-
Facilitate the understanding of massive and continually growing data; sual }faradigms that support ana-
facilitate knowledge discovery through information synthesis, which is the lytical reasoning in llluminating the

integration of data based on their meaning rather than the original data Path, page 8 [11]

type; support multiple levels of data and information abstraction; provide
frameworks for analysis of spatial data.

This thesis presents three methods and a novel visual analytics framework
which contribute to making progress toward these goals with a particular
focus on exploring high-dimensional images with dimensionality reduction
techniques.

We present algorithms that yield image-informed embeddings and interaction
techniques connecting images with their embedding representations. Each thesis
chapter addresses different aspects of the relationship between the attribute
space and pixel layout of high-dimensional images: texture integration in DR,
interaction paradigms, scalability in the spatial domain, and analysis software
architecture. Specifically, this thesis presents a method to incorporate spatial
neighborhood information into dimensionality reduction techniques (Chapter 4),
amethod to couple the exploration of high-dimensional images and hierarchical
embeddings (Chapter 5), a method to compute manifold-preserving superpixel
hierarchies of high-dimensional images (Chapter 6), and finally, a flexible
and extensible visual analytics software framework for high-dimensional data
(Chapter 7).

Chapter 4 Visual exploration of high-dimensional data is commonly facili-
tated by dimensionality reduction. However, common dimensionality reduction
methods do not include spatial information present in images, such as local
texture features, into the construction of low-dimensional embeddings. Conse-
quently, exploration of such data is typically split into a step focusing on the (
attribute space followed by a step focusing on spatial information, or vice versa.

In this chapter, we present a method for incorporating spatial neighborhood in-

Layout

Standard Texture-informed

formation into distance-based dimensionality reduction methods, such as t-SNE. 02082
We achieve this by modifying the distance measure between high-dimensional o5 cod
attribute vectors associated with each pixel such that it takes the pixel’s spatial o8%%e’

neighborhood into account. Based on a classification of different methods for
comparing image patches, we explore a number of different approaches. We
compare these approaches from a theoretical and experimental point of view.
Finally, we illustrate the value of the proposed methods by qualitative and
quantitative evaluation on synthetic data and two real-world use cases.

Chapter5 The spatial and attribute information of high-dimensional images
are typically explored separately, e.g., by using coordinated views of an image
representation and a low-dimensional embedding of the high-dimensional
attribute data. Facing ever-growing image data sets, hierarchical dimensionality

4 1. Introduction

Image View

700

Coupled Embedding View

Superpixel Superpixel
hierarchy embeddings

o

;g

coo
o0
o
0%

o
0050
8980

reduction techniques lend themselves to overcome scalability issues. However,
current embedding methods do not provide suitable interactions to reflect image
space exploration. Specifically, it is not possible to adjust the level of detail in the
embedding hierarchy to reflect changing level of detail in image space stemming
from navigation such as zooming and panning. In this chapter, we propose such
a mapping from image navigation interactions to embedding space adjustments.
We show how our mapping applies the "overview first, details-on-demand"
characteristic inherent to image exploration in the high-dimensional attribute
space. We compare our strategy with regular hierarchical embedding technique
interactions and demonstrate the advantages of linking image and embedding
interactions through a representative use case.

Chapter 6 The above linking strategy between image space interactions and
the level-of-detail shown in hierarchical embedding views facilitates intuitive
exploration. However, available data hierarchies for hierarchical dimensionality
reduction methods ignore the spatial layout of pixels in the images. This impedes
the exploration of regions of interest in the image space, since there is no congru-
ence between a region of interest in image space and an associated embedding
of the high-dimensional attributes. In this chapter, we present a superpixel
hierarchy for high-dimensional images. In contrast to classical superpixel meth-
ods, our agglomerative superpixels construction takes the high-dimensional
attribute manifold into account. Based on the same considerations, we show
how to use this hierarchy for hierarchical dimensionality reduction, facilitating
an "overview first, details-on-demand" exploration of high-dimensional images.
Finally, we compare our image-guided hierarchy with classical hierarchical
embedding-based image exploration in two use cases.

Chapter7 Commonly, tailor-made visual analytics software is developed for
a given exploration and analysis setting. This limits their applicability in other
scenarios or fields. However, as diverse as these settings are, their characteristics
and requirements for data analysis are conceptually similar. Many applications
share abstract tasks and data types and are often constructed with similar build-
ing blocks. Developing such applications, even when based mostly on existing
building blocks, requires significant engineering efforts. This chapter presents
ManiVault, a flexible and extensible open-source visual analytics framework
for analyzing high-dimensional data. The primary objective of ManiVault is to
facilitate rapid prototyping of visual analytics workflows for visualization soft-
ware developers and practitioners alike. ManiVault is built using a plugin-based
architecture that offers easy extensibility. While our architecture deliberately
keeps plugins self-contained, to guarantee maximum flexibility and re-usability,
we have designed and implemented a messaging application programming
interface (API) for tight integration and linking of modules to support common
visual analytics design patterns. ManiVault provides several visualization and
analytics plugins, and ManiVault’s API makes the integration of new plugins
easy for developers. ManiVault facilitates the distribution of visualization and
analysis pipelines and results for practitioners through saving and reproducing
complete application states. As such, ManiVault can be used as a communication
tool among researchers to discuss workflows and results.

Background

This chapter introduces the key concepts underlying the methods presented
later in this thesis. We will define high-dimensional image data and spatial
neighborhoods more rigorously in Sections 2.1 and 2.3 respectively. Then,
in Sections 2.2 and 2.4, we briefly review the field of dimensionality reduction
methods and introduce t-SNE in more detail, as an representative example of
non-linear projection methods.

2.1. High-dimensional Image Data

While, in general, dimensionality reduction methods can be applied on other
high-dimensional datasets as well, we focus on high-dimensional, digital 2D
images. Each pixel is an image element at a unique location with an associated
attribute vector. We can formalize such a high-dimensional image as a discrete
function f : X X Y — RC from the spatial domain X x Y c N2 to the attribute
range RC. X and Y are the sets of pixel coordinates that span the image
domain along its two dimensions while C is the number of attributes, or image
channels. The i-th pixel is indexed with the tuple i = (x,y); where 1 <i <n
and the number of pixels n = |X X Y|. For easy of notation, we will refer to
the x-coordinate of the i-th pixel as x;, and handle the y-coordinate likewise.
Now, f (i) = a; yields the pixel’s high-dimensional attribute vector at location i
with aj = [ai1, ..., aic]. In this work we focus on 2D images, but the above
definitions are straightforward to extend to 3D images consisting of voxels.
We can also interpret such a high-dimensional image as a combination of several
scalar images, each representing one channel of the high-dimensional image.
Therefore, we refer to the c-th channel of the image with f., where1 <c¢ <C,
such that f; = [a1c, . .., Anc] denotes the values of the c-th channel for all pixels
in the image.

In chapters 4 and 6, it will be beneficial to interpret images as four- or eight-
connected graphs. The spatial image domain X X Y, a rectangular grid, then is a
graph .F = (7, €) where each vertexv; € 7 is animage pixel with edges e;; € €
between neighboring pixels. The image remains a discrete function, we merely
conceptualize it as a mapping f : % — RC from the spatial domain of the
image ¥ to the attribute space RC. In a four-connected graph, all pixels sharing
an edge are neighbors. Section 2.3 provides an generalized definition for square
neighborhood, e.g., eight-connected graphs.

2.2. Dimensionality Reduction Methods

High-dimensional data can be difficult to visualize and analyze, particularly
when datasets contain not only many dimensions (hundreds or thousands)
but also numerous observations (millions). In the first instance, visualizing
the entire breadth of the data, e.g., using tables-based visualizations like
heatmaps [12], scatterplot matrixs (SPLOMs) [13] or parallel coordinates plots
(PCPs) [4] faces significant scalability challenges due to cluttering, screen space
constraints and increased cognitive load. In the second instance, analyzing data
in high-dimensional spaces is burdensome due to high computational costs and
potentially limited results, resulting from the curse of dimensionality. This curse
of dimensionality is a lose umbrella term for various undesired characteristics of
high-dimensional data which exacerbate their handling. As the dimensionality
of the data space increases, the data tends to populate this space more and more
sparsely, leading to counterintuitive behaviors such as norm concentration,
where distances between data points become increasingly uniform [14]. In
practice, many high-dimensional datasets have a lower intrinsic dimensionality
than the number of dimensions of the data space itself. Le., it is possible to

1 (x=1,y=1)
2 (x=2,y=1)
Zl% (x=2,'y=3)
9 (x=3,y=3)

3 7 8 9

\
Attributes /

of this pixel

Value I I I I

Channel

6 2. Background

3 Parallel Coordinates Plot PCA t-SNE
Species
) 2 Adelie
. .
Chinstrap
i ® Gentoo

Normalized data values
- o

'
()

-3

PC2 (19.5%)
(=}

0 1 2
Dimension

3 2 0 2 4
PC1 (68.6%)

Figure 2.1. The Palmer penguins data [15] describes four physical attributes of three penguin species, shown in a PCP (left). The dimension 1-4 correspond to bill
length, bill depth, flipper length and body mass measurements. The first two principal components (center) explain 88.1% of the total variance of the data, yet the
Adelie and Chinstrap species and are not well-distinguishable in the PCA plot. The t-SNE embedding (right) clearly reveals the three clusters in the data, (largely)
corresponding to the three penguin species. The plot intentionally does not show axis descriptors or scale indication, as neither the axis orientation nor the absolute
coordinates of the embedded points provide insight into the data.

Projection traits:

. Linearity

. Input type (point vs. distance)

. Neighborhood (local vs. global)
Ease of use

Computational complexity
Out-of-sample

. Inverse transform

. Determinism

©N U WN

See [17] for a more comprehensive
description of these traits.

represent the data with minimal loss of information in a lower-dimensional
space. The lower-dimensional representation — the embedding — can then be
used for downstream analysis and visualization.

To obtain a lower-dimensional representation of the data, we can either focus on
a subset of dimensions or project the high-dimensional data faithfully into fewer
dimensions. Since selecting a subset of dimensions rarely suffices to preserve
the essential structure of complex data, we are primarily interested in projection
methods which are also capable of capturing structure that isn’t aligned with
the original feature axes. Such a dimensionality reduction (DR) method now
maps a high-dimensional data point a € R to a low-dimensional embedding
point b € RE with typically E < C:

DR:R¢ - RE; DR@a)=b 2.1

The map DR aims to preserve the intrinsic structure of the data. In general,
there are various ways of quantifying the quality of this structure preservation.
Typically though, they compare the distances between the high-dimensional
points and corresponding distances between the respective embedding points.
However, any projection to lower dimensionality incurs some loss of information,
i.e., the distribution of points in the embedding does not perfectly represent
the original data. Different priorities regarding which aspects of data structure
to preserve, and other trade-offs with respect to, e.g., computational speed
and memory consumption, have motivated the development of numerous
DR methods. There has been plenty of writing about these methods in both
literature reviews [8, 16-18] and topical books [19-21]; here, we will focus on a
selection of pertinent methods.

DR methods are commonly distinguished based on several traits. Among the
most important of these characteristics are their linearity, input type and neigh-
borhood scope. Whereas linear projections apply the same transformation across
the entire data space, non-linear DR maps can behave differently in different data
space regions. Next, some projections methods take high-dimensional points as
their input, i.e. attribute vectors a, others work with distances or dissimilarities
between points. Any method working with distances can naturally also handle
points by computing distances between them. Finally, a global DR map focuses
on preserving all point-to-point distances whereas a local DR map only aims to
preserve distance between points that are closely neighboring each other.
Principal component analysis (PCA) [22] is one of the most widely-used DR
methods. PCA performs a linear, global transformation: it projects the data
into a new coordinate system, such that the first new coordinate explains the
greatest variance in the data and following coordinates explain the next-greatest

2.2. Dimensionality Reduction Methods | 7

variance in descending order. The first two such principal coordinates are used
for visualizing data as in Figure 2.1. Often, the first n principal coordinates that
explain a large percentage (e.g. 90 — 95%) of the total variance of the data are
used as a pre-processing step for denoising.

Metric multidimensional scaling (MDS) [23] takes a different approach by
attempting to preserve pairwise distances between data points. Multidimen-
sional scaling (MDS) is a nonlinear, global method that iteratively updates a
low-dimensional embedding by minimizing a loss function which measures
the discrepancy between the pairwise distances of all high-dimensional data
points and the respective low-dimensional representations. Notably, when the
loss function is defined as the sum of squared differences between pairwise
distances, MDS is equivalent to PCA [8] and referred to as classical MDS or
Torgerson scaling. Other specialization, like Sammon mapping [24] adapts

classical scaling by weighting each difference by the inverse of the pairwise Method Type Input Scope
distance in the high-dimensional space, thereby retaining more detail in local PCA [22] Lin Atr Glo
data structure. Throughout this manuscript, we refer to metric multidimensional MDS [23] NL Dist Glo

; ; AE [25] NL Atr Glo
scaling (MDS) simply as MDS: - . 4 1S126] NI Dist Gl
An Autoenconder (AE) [25] is a multi-layer neural network that is trained DM [27] NL Dist Glo
to reconstruct its input data. The network consists of an encoder that maps UMAP[28] 1 it 1 oc

N
high-dimensional data points to a low-dimensional latent representation and a SNE [29, 30]
Abbreviations:

decoder that reconstructs the original data from this representation. Crucially, Lin = Linear, NI Nonlinear,
the middle hidden layer (the bottleneck) has far fewer dimensions than the input Attr = Attributes, Dist = Distances,
data, forcing the network to learn a compressed representation that captures Glo =Global, Loc = Local.
the most salient features of the data.

Many DR methods aim to capture the structure of high-dimensional data by
representing them as graphs, where each vertex corresponds to a data point
and each edge describes the (Euclidean) distance between two data points.
The underlying intuition behind this approach is the hypothesis that the high-
dimensional data lies on a lower-dimensional manifold — a topological space
where each local neighborhood resembles Euclidean space — embedded in
the high-dimensional space. The graph structure then helps approximate the
geometry of this underlying manifold. Isomap (IS) [26] exemplifies this idea
by first constructing a nearest-neighbor graph of the data (see Section 2.3)
and then computing geodesic distances between points on this graph (shortest
path lengths along the edges). These geodesic distances better approximate
distances along the underlying manifold than straight-line Euclidean distances.
isomap (IS) then applies MDS using these geodesic distances to compute a
low-dimensional embedding.

The Diffusion maps (DM) [27] framework also operates on graph representations
but aims to capture the manifold geometry more robustly than geodesic distances
by considering multiple paths between points. Specifically, diffusion maps (DM)
defines diffusion distances between two points based on random walks on
the graph: this distance reflects the probability of transitioning between the
points in a Markov process on the nearest neighbor graph. A low-dimensional
embedding is then obtained by solving an eigenvalue problem on the graph’s
transition matrix. This approach is more robust shortcuts in the graph compared
to geodesic distances because it averages over many paths rather than relying
on a single shortest path, but like isomap (IS) it focuses more on preserving
distance between very dissimilar points instead of the often more interesting
local data structure [8].

Over recent years, non-linear, local methods like t-distributed Stochastic Neigh-
bor Embedding (t-SNE) [29, 30] and Uniform Manifold Approximation and
Projection (UMAP) [28] have established themselves as the go-to DR meth-
ods for visualizing high-dimensional data. These DR methods also define
point-to-point distance using nearest neighbor graph structures but prioritize
preserving local neighborhood structure instead of all point-to-point distances.
Both methods optimize their embeddings by minimizing a loss function that
compares probability distributions over pairwise similarities, keeping similar
points close together while allowing dissimilar points to spread apart. Appro-

8 2. Background

priate initialization schemes (such as PCA-based initialization) can further help
preserve global structure to a certain extent [31]. Below, Section 2.4 discusses
t-SNE in more detail.

In contrast to linear, global embedding techniques like PCA, nonlinear, local
methods generally yield better cluster separability but are harder to interpret:
directions in the embedding space are not linear combinations of the original
features, and the axes do not correspond to any meaningful data attributes.
Consequently, while these embeddings effectively reveal clustering structure,
they do not provide insight into which original variables drive the observed
patterns. As such, the t-SNE embedding in Figure 2.1 intentionally does not label
any axis. Further, current best practices suggest to use multiple DR methods, as
each can highlight different aspects of the data, and incorporate meta data into
their visualization, e.g., via re-coloring to help explain patterns [18].

In this dissertation we focus mainly on nonlinear, local DR methods and their
hierarchical variants (see Section 3.3). However, the techniques proposed in
chapter 4, 5 and 6 mainly focus on incorporating image information into

Supplemental Material SA3 applies
the ideas form chapter 4 to UMAP

N ¥
Attribute
distance d

v

Symmetrized &
connected
KNN-graph €

WK Attribute
neighborhood of 1}
for k=3

and MDs. DR methods by integrating image-layout and and high-dimensional attribute
information into the definition of (dis)similarities between pixels. They do not
further adjust the loss function or optimization procedure of the embedding
methods used. Thusly, these proposed techniques may be extended to any
distance based DR method.
Local DR methods focus on preserving distance between a data point and its
close neighbors. But in an image, a data point has neighbors in two spaces:
the image layout, i.e. neighboring pixels, and the attribute space, i.e. similar
attribute vectors. This duality invites a more thorough discussion of the term
neighborhood.
./Vis'" Spatial -
neighborhood of (1}
forn=1 2.3. Neighborhood Definition
Image graph ¥
(4-connected)

The notion of neighborhood is twofold for high-dimensional image data: one
can distinguish between neighbors in the spatial and the attribute domain. We
refer to the attribute neighborhood JViC’k of pixel i as the set of indices of the k
pixels with the smallest distances d to the attributes of pixel i:

/Vic’k = k-argmin d(aj, aj). (2.2)
j:(x,y)j, 1<j<n

k-arg min performs a selection of the k arguments in {j = (x,y); : 1 <j <n}
that yield the k smallest distances.

Typically, the squared Euclidean distance is chosen as the distance measure
d(aj, aj) = [laj — aj ||§, but other distances like cosine or Hamming distance are
popular choices as well. It is useful to represent the k nearest neighbors of
each pixel in a k-nearest neighbor (kNN) graph €. This sparse graph is often
symmetrized. At times (e.g., in chapter 6) it is also advantageous to connect
disconnected components in this graph.

Next, we define the spatial neighborhood J\fis/n. In chapter 4 we assume an 8-
connected graph for which the spatial neighborhood is a square of ny = (2 17 + 1)

pixels centered at i and with 1 = 1. More generally, the set of spatially-
neighboring indices for a square neighborhood is given by:

Nf’” ={(xi+7r, yi+s): -n<r,s<) (2.3)
For a 4-connected graph the spatial neighborhood is not square-shaped and we
omit an algebraic definition here. Later, in chapter 6 we are mainly interested in
directly neighboring pixels/superpixels and refer to the set of pixels/superpixels
immediately connected by an edge as the spatial neighborhood.

2.4. t-distributed Stochastic Neighbor Embedding (t-SNE)

We focus on two-dimensional, rectilinear spatial layouts for the sake of simplicity,
but in principle our method is trivially extendable for data resolved in three
spatial dimensions, i.e., multivariate volumetric data.

2.4. t-distributed Stochastic Neighbor Embedding
(t-SNE)

Many non-linear, local, distance-based dimensionality reduction methods like
LargeVis [32], UMAP [28] and t-distributed stochastic neighbor embedding
(t-SNE) [29, 30] share a similar basic structure. First, based on a distance measure
in the attribute space, they construct a neighborhood graph that captures local
neighborhoods. Then, a low dimensional layout is produced, with the aim to
represent these neighborhoods as faithfully as possible; this process is guided
by optimizing a specific cost function. We will discuss the methods presented
in this dissertation using the example of t-SNE. While the same concepts are
applicable to all distance-based dimensionality reduction methods, we deem it
easiest to follow one specific example.

To create a low dimensional embedding as described above, t-SNE uses a
symmetric joint probability distribution P to describe similarities between
high-dimensional points. Likewise, a joint probability distribution Q encodes
the similarity of the corresponding low-dimensional points in the embedding
space. Starting with a random initialization of Q, the embedding points are
iteratively moved such that the distribution Q matches P well. This optimization
process is guided by the Kullback-Leibler (KL) divergence that measures the
divergence of P and Q as cost function Cost(P, Q)

Cost(P,Q) = KL(P,Q) = 31 3 pyiIn (%) (2.4)
ij

ijj#

where the probability pjj represents the similarity of two high-dimensional
data points a; and aj, and gj; represent the similarity of the two corresponding
low-dimensional data points in the embedding. pjj is symmetric and computed
as
_ P TPl

Py = =%,
where pj; can be interpreted as the probability that the point a; is in the
neighborhood of the point a; in the attribute space. pj; is calculated using the
distance measure d(a;, aj) between the high-dimensional points:

(25

exp (7d(ai,ai)/(2(712))

— ifje Jvic'k
Pii = { Zyegok o (dlai a0/ 2a?) (2.6)
0 otherwise.

The number of nearest neighbors |/Vic’k| = 3¢ can be steered with a user-defined
perplexity ¢. The bandwidth o;, in turn, is determined based on the given
perplexity value such that

- EiEJ\}c,k Pjji loga Pjji

p=2 2.7)

9

10 2. Background

Related Work

All work in this thesis treats high-dimensional images and thus shares a large
portion of its related literature. Here, we gather relevant literature to Chapters 4
to 6 about the exploration of high-dimension images with dimensionality
reduction methods. Additionally, each chapter will cover related work specific
to the topics discussed therein individually. While high-dimension image
exploration is also essential to Chapter 7, it shifts focus from methodology to
software frameworks and therefore covers it related work separately.

While dimensionality reduction methods have been extensively studied across
various domains, their effective application to high-dimensional image data
specifically remains relatively under-explored, a gap that this thesis seeks to
address.

3.1. Exploratory Analysis of High-Dimensional Images

Exploration of high-dimensional images is a two-fold issue: exploring the
high-dimensional data attribute space and exploring the spatial layout.

There is a multitude of approaches for visual exploration of high-dimensional
data [33-36]. A challenge when facing high-dimensional data that is additionally
spatially resolved, is to effectively visualize spatial and attribute characteristics
in an integrated fashion. MulteeSum [37] compares spatio-temporal gene
expression data from fruit fly embryos by segmenting cells in the image
and providing multiple attribute summaries per cell. Another approach is to
characterize the data attributes in terms of specific features and represent them
as glyphs at their respective regions in space [38]. For multivariate volume data,
high-dimensional transfer functions have been employed in combination with
standard volume rendering techniques [39].

Generally, regarding both high-dimensional and color or grayscale images,
visualization and interaction systems for large images use image tiles of various
resolutions taken from image pyramids [40-42]. Image exploration might be
performed solely based on zoom and pan operations in the image pyramid
as presented by Jeong et al. [43], or can be supplemented with additional
information. Molin et al. [44], e.g., propagate low-level features to the current
zoom level. These examples deal specifically with grayscale or color images, but
high-dimensional images cannot be displayed or explored following the same
approaches: they do not trivially extend to more than three image channels.

3.2. Dimensionality Reduction for High-Dimensional
Images

Extensive reviews on dimensionality reduction and multidimensional projection
techniques can be found [16-18]. Non-linear dimensionality reduction techniques
such as t-SNE [29] and UMAP [28] have become popular techniques to visualize
and explore high-dimensional data. However, these techniques have been
applied to high-dimensional imaging data without considering image-specific
characteristics like texture information. Abdelmoula et al. [45] use t-SNE in
a segmentation pipeline for high-dimensional images. They embed pixels
according to their high-dimensional attribute values to a three-dimensional
space, followed by coloring the pixels by using the 3D embedding coordinates
as coordinates in the L*a*b color space. The resulting color images are then used
to aid the segmentation with the goal of identifying tissue segments with similar
properties, according to the original attribute space. Recently, Evers et al. [46]
followed a similar approach to identify regional correlations in spatio-temporal
weather ensemble simulations with the main difference of using MDS instead
of +-SNE.

3.1 Exploring HD Images 11
3.2 DRin HD Images . . . 11
3.3 Hierarchical DR 12
3.4 Multivariate Graph
Visualization and
Node Embeddings . . 13

In Chapter 4 we use DR techniques
for image exploration.

Chapter 5 couples DR techniques
with image interaction techniques.

Chapter 4 introduces the notion of
spatial layout in DR methods.

12 3. Related Work

Chapter 5 connects interactions
with hierarchical DR methods and
image interactions.

Chapter 6 introduces image infor-
mation into the hierarchy creation
for hierarchical DR methods.

Other approaches combine dimensionality reduction with segmented image
data. Facetto [47] combines un- and semi-supervised learning to aid in the
visual analysis of high-dimensional imaging data in the field of structural
biology. After segmenting cells and aggregating their corresponding attributes
to features, they use UMAP to display the cells according to their similarities.
ImaCytE [48] is a visual analysis tool for similar data that focuses on the analysis
of cell neighborhoods. Again, cells are segmented and the attributes of pixels
within the cells aggregated. Cells are laid out according to their similarity in
the attribute space using t-SNE and the resulting information is used to analyze
spatial neighborhoods. All of these applications and tools make use of standard
dimensionality reduction methods that do not incorporate spatial information
and instead follow a two-step approach using the results of either dimensionality
reduction or spatial analysis as input to the other. Instead, in Chapter 4, we
directly include spatial information in the dimensionality reduction process
to reduce the number of steps and potential points of failure in interactive
analysis.

3.3. Hierarchical Dimensionality Reduction

Many image acquisition methods yield images containing many million pixels.
Even though UMAP [28] and modern implementations of t-SNE [49] enable
efficient embedding computation of data sets the size of single digit million
data points, these DR techniques reach their limits when being applied to
mega- or gigapixel images. The embeddings insufficiently display detailed data
characteristics like intra-cluster dissimilarities, and thus small-scale structures
will not be visible anymore, or larger structure is lost. Hierarchical DR techniques
tackle this issue and come with a lower computational cost [16]. Recently, several
methods that extend existing single-level techniques have emerged. For example,
Glimmer [50] (i.e., a hierarchical version of classical multidimensional scaling)
and HiPP [51] perform recursively subsampling and hierarchical clustering
respectively to create data hierarchies. The more recent HSNE [52] (i.e., a
hierarchical version of t-SNE [29]), and HUMAP [53] (i.e. a hierarchical version
of UMAP [28]) both select landmarks from lower hierarchy levels as points
in higher levels and use random walks to define similarities between them.
Multiscale PHATE [54] (i.e., a hierarchical version of PHATE [55]) simulates
a diffusion process using random walks to "smoothen" the data and coarse-
grain the k-nearest-neighbor data graph repeatedly. These methods all share
hierarchical aggregation to represent data points on various levels of abstraction
and aim to facilitate exploration of high-dimensional data, but are based on
different DR methods. In Chapter 5, we propose a direct coupling between the
interactions with an image, i.e., zooming and panning, and representations of
hierarchical dimensionality reduction methods.

While it is possible to apply these methods to high-dimensional images, none
of them takes the spatial information of the data into account when creating
their hierarchies or defining similarities between landmarks or sample points.
To combine both spatial layout and attribute information into the hierarchy
construction we use a recurring motive from the above techniques: random
walks. They are typically employed on nearest-neighbor graphs of the attribute
data as a means to capture high-dimensional similarities. Diffusion Maps [56]
describes a unified framework of random walk based dimensionality reduction
methods and shows their equivalence to an eigenvector problem. In Chapter 6
we propose a superpixel algorithm in image space based on similarities in pixel
attribute space.

3.4. Multivariate Graph Visualization and Node Embeddings | 13

3.4. Multivariate Graph Visualization and
Node Embeddings

Graph-based techniques are commonly applied to pattern recognition and
computer vision problems on imaging data [57]. For that, images are interpreted
as graphs: each pixel is interpreted as a node and neighboring pixels are
connected by a link. Several techniques for graph drawing aim to incorporate
network structure and node attributes [58] and are closely related to dimensionality
reduction techniques as they also embed complex data into low-dimensional
space while preserving certain structure.

GraphTPP [59] focuses on a visual combination of node attributes and connec-
tions in a 2D graph layout. First, principal component analysis (PCA) is applied
to the data using only the attributes. Then links between nodes are overlaid on
the resulting scatterplot. The user can then manually reposition points according
to their interpretation, and compute a new linear projection that best fits the
modified layout. GraphTSNE [60] aims to preserve graph connectivity and
node attribute similarity. It does so by training a graph convolutional network
on a modified t-SNE loss that combines the squared Euclidean distance be-
tween node attributes and the shortest-path distance between the nodes on the
graph. Their design seeks to position two points close in the embedding either
when their attributes are similar or they are connected by an edge. Similarly,
MVN-Reduce [61] defines a distance measure between two nodes as the sum
of anode’s attribute distance and their weighted shortest path distance on the
graph. The resulting distances are used as input to distance-based dimension-
ality reduction methods like MDS. The Heterogeneous Network Embedding
(HNE) framework [62] aims to create embeddings that position data points with
links closer and those without further away from each other. Therein, a neural
network is trained with a loss function that builds on a similarity term between
point attributes that is weighted depending on their respective node linkage.
Embedding nodes from a graph structure is a problem closely related to
dimensionality reduction methods. Khosla et al. [63] compare several such node
embedding methods, which compute a low-dimensional feature vector for each
node in a graph; in contrast to the above discussed dimensionality reduction
techniques, these methods are typically designed for the downstream tasks of
multi-label classification and link prediction. Variations of random walks are
often used to define node features, e.g. the frequency of node visits, here as
well. In node2vec [64], for example, random walks are biased by adjusting the
transition probability for walking backwards and walking to a node that is not
connected to the previous node. tsNET [65] follows a different approach: they
take geodesic distances between nodes in graphs as input for the similarities as
defined in t-SNE and map them to 2D based on a modified cost function. Earlier,
Isomap [26] introduced the idea of using geodesic distances into DR methods
that build on multidimensional scaling. However, both Lee and Verleysen [66]
as well as Lafon and Lee [56] discuss that using shortest-path-based similarities
(i.e., using geodesic distances) can be susceptible to creating shortcuts that
jeopardize the representation of the underlying data manifold whereas random-
walk-based similarities seem to be more robust. In fact, random walks have
been used to estimate geodesic distances in various settings [67, 68].

Chapter 4 embeds pixels while con-
sidering their image-space neigh-
bors.

Chapter 6 uses random walk based
similarities for computing superpix-
els.

14 3. Related Work

Spatial Information in Dimensionality
Reduction for High-Dimensional Images

We have seen in our discussion on DR techniques for high-dimensional images
that these methods are applied to image data, but do not incorporate image
layout information, see Section 3.2. Specifically, spatial patterns (texture) are
completely lost in resulting embeddings. In this chapter, we propose an extension
to existing distance based DR techniques which informs them with texture
information.

4.1. Introduction

High-dimensional data is commonly acquired and analyzed in various appli-
cation domains, from systems biology [70] to insurance fraud detection [71].
Typically, high-dimensional data are tabular data with many columns (or
attributes), corresponding to the dimensionality per item, but there are no con-
nections between items. Dimensionality reduction techniques like t-SNE [29]
or UMAP [28] are well-established tools used for exploratory visual analysis
of such high-dimensional data [72]. Advances in imaging techniques have
introduced an increasing number of imaging data modalities producing high-
dimensional images (every pixel represents a high-dimensional attribute-vector).
Current state-of-the-art dimensionality reduction methods are commonly used
for the exploratory analysis of such imaging data, for example in cultural
heritage [73], biology [74], or geospatial applications [75]. However, they rely
only on attribute data of pixels and do not take additional spatial information,
such as texture, present in such imaging data into account. Thus, in the resulting
low-dimensional embeddings, the pixels are only arranged according to their
individual attributes (Figure 4.1b), but do not provide any insight into texture,
neighborhoods or other spatial relations common in image analysis.

The spatial configuration is, however, commonly of interest when analyzing
high-dimensional image data. For example, taking spatial neighborhood in-
formation into account, in addition to high-dimensional attributes, has led to
new discoveries in single-cell biology [76]. Typical approaches to combine high-
dimensional attributes and spatial information, however, rely on a two-stage
process: first, high-dimensional attributes are aggregated, for example to classify
pixels, then standard image analysis is performed on the aggregate images, see
Section 3.2. Decoupling the high-dimensional and spatial analysis in such a way
has several downsides: Most importantly, boundaries between clusters in an
embedding are often not well-defined, and as such classification is ambiguous
and has a level of arbitrariness. Issues with inaccurate classification might
appear undetected and lead to wrong conclusions. Furthermore, if problems
with the classification become apparent in the spatial analysis, one has to go
back to the high-dimensional analysis and potentially loses all progress in the
spatial analysis. Moreover, the necessary aggregation in the first step limits what
is discoverable in the spatial analysis step. Therefore, we deem the integration
of spatial information directly into the dimensionality reduction desirable for
exploratory analysis.

We present an approach to integrate spatial information directly into the
dimensionality reduction process with the goal to combine attribute and spatial
information in a single embedding (Figure 4.1c). Specifically, we propose to adapt
the similarity computation, used in distance-based dimensionality reduction,
such as t-SNE, UMAP, or MDS, to incorporate different spatial neighborhood
features. We exemplarily present different similarity computation methods for
such neighborhood comparisons by extending an existing classification [77] to
high-dimensional images.

The main contributions of this chapter are:

This chapter is based on the pa-
per “Incorporating Texture Informa-
tion into Dimensionality Reduction
for High-Dimensional Images” pub-
lished at the 15th IEEE Pacific Vi-
sualization Symposium (PacificVis
2022) [69].

4.1 Introduction 15
4.2 Related Work 16
4.3 Texture-Aware DR . . 17
4.4 Toy data example . . . 21
4.5 Implementation 23
4.6 Usecases 24
4.7 Conclusion 27

16 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Figure 4.1. Texture-aware dimen-
sionality reduction. An image (a)
with black and white pixels forms mul-
tiple textures. Standard distance-based
dimensionality reduction produces one
cluster of black and one cluster of
white pixels (b), a texture-aware version
should create clusters for the different
textures (c).

Relevant work on dimensionality
reduction on images is discussed in
Chapter 3.

(b) white pixels (¢) homogeneous
00 0o WhlteO black
000 o P
Qo0 003° %e %e
00 0 ®
2 6d 2% 2 00
e @ 5* O e &0
% g Gy 0& Og ®
% @ @40 2
black pixels checkerboard pixels

» incorporating texture information into distance-based dimensionality reduc-
tion for exploratory analysis of high-dimensional images through distance
measures including image neighborhoods.

» the exemplary extension of t-SNE using different classes of neighborhood
distance measures and their analysis.

4.2. Related Work

In the following, We aim to report the work most relevant to this chapter, namely,
texture and feature extraction in high-dimensional images, and dimensionality
reduction in hyperspectral imaging.

Often, high-dimensional image data is visualized indirectly by first extract-
ing features that capture interesting data characteristics and then displaying
those [34, 35]. One such feature is texture. We follow Haidekker’s definition
of texture as "any systematic local variation of the image values" [78] since it
emphasises that texture encodes spatially local relationships of pixel values.
Texture feature extraction is a broad, well-established field [79] but the extension
of single-channel texture features to multi-channel images is not trivial. Typically,
single-channel texture features are extracted for each channel and concatenated
to a feature vector. Multi-channel texture features such as color co-occurrence
matrices proposed by Palm [80] are less common and engineering such features
is an ongoing process in the image processing community [81].
Dimensionality reduction has been used to create texture features [82] and explore
texture databases [83], but such approaches are generally out of the scope of
this work.

In the analysis of hyperspectral images, dimensionality reduction is an important
step for pixel classification. A common approach to include spatial information
relies on computing the first couple of principal components of the high-
dimensional data and then continuing with classic image processing methods
that work on scalar or color data to extract spatial neighborhood information [84,
85]. For example, morphological image processing techniques are used to
capture spatial structure in high-dimensional images [86]. Spatial-spectral local
discriminant projection [87] takes a more direct way of combining spatial
and spectral information into dimensionality reduction by incorporating a
weighting factor into the neighborhood preserving embedding that represents
the spectral similarity between spatially neighboring pixels. However, this
and similar hyperspectral image analysis methods [88] rely on training with
ground truth data, which is typically not available in exploratory data analysis.
Recently, Halladin-Dabrowska et al. [75] proposed a workflow using t-SNE for
cleaning ground truth data. However, they do not include spatial neighborhood
information in their embeddings.

A straightforward way to inform dimensionality reduction techniques of images
about their spatial domain is to consider each data point’s spatial location in the
point similarity measure used during the embedding. Spherical SNE [89] devises
a similarity function between data points in the style of bilateral filtering that
weights attribute distance with pixel location distance. This approach, however,

4.3. Texture-Aware Dimensionality Reduction | 17

(b) o (©)
| £ . .
N i . | % L g
H E |
=]
2]
=
Q
channel 1)

does not capture the similarity of the local structure around the compared
points, which we aim for.

Applied to an image (interpreted as a 4- or 8-connected graph), all the approaches
mentioned in Section 3.4 essentially combine the pixel location distance (geodesic
distances on the graph) with the attribute distance, not dissimilar to what is
described for the Spherical SNE [89]. In contrast, the goal of our proposed
approach is to compare local texture structures rather than absolute distances.
Two pixels are compared by taking into account the structure of the high-
dimensional values in the spatial neighborhoods of the two pixels.

4.3. Texture-Aware Dimensionality Reduction

Figure 4.2 shows a synthetic toy-example of a ‘high-dimensional” image with
two attribute channels (i.e., C = 2). The spatial layout is displayed in Figure 4.2a
with each pixel color coded according its two attribute values using a 2D
colormap (Figure 4.2b). Figure 4.2c shows a scatterplot of all attribute values.
Four groups are clearly distinguishable based on the attributes. In image space
the four groups form eight visually distinct regions, four group-homogeneous
and four consisting of checkered patches. We use this image to showcase the
characteristics of our proposed approaches and compare it to a standard t-SNE
embedding.

To incorporate spatial neighborhood information into low-dimensional embed-
dings, we propose a set of distance measures that take the spatial neighborhood
N57 of pixels in high-dimensional images into account. The distance between
the attributes of two attribute vectors d(a;, aj) is thus replaced by a new texture-
informed distance d(i, j, f, 1) and the k nearest neighbors in Equation 2.6 will
be based on this new measure as well. Since we aim to compare the spatial
neighborhood of two pixels, it does not suffice to include their image coordinates
or spatial distance; rather, it is necessary to involve each pixel’s spatial local
neighborhood. Essentially, we are comparing image patches instead of single
pixel values. All other steps of the embedding process remain as they were.

4.3.1. Comparing image patches

In the following, we will present a number of texture-aware distance measures
ds. As the space of potential measures is vast, we will focus on a few exemplary
measures, following the classification of distance measures for image patches
introduced by Zitova and Flusser [77]. In particular, they distinguish image
patch comparison into area-based methods (ABM) and feature-based methods
(FBM).

ABM and FBM for image patch comparison differ in their approach to compute
similarity scores. ABM directly work with the pixel’s attribute values of the
two image patches to compare. They are sometimes called intensity-based
instead, which might reflect the immediate usage of the attribute values more
aptly. In contrast, FBM follow a two-step approach of first computing features

Figure 4.2. Synthetic test image
dataset with X X Y = 32 X 32 and
C = 2. The distribution in attribute
space (c) reveals four groups. We use a
2D colormap (b) to color pixels in image
space (a) according to their attribute in-
formation.

18 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Texture-aware
embedding

< — ey,

One histogram
C | [Emn]

per channel

Channels

N Standard

embedding : : .
o ¢ %‘ One covariance matrix
2
X o°°§% \ = and mean vector
ooﬁ for all channels

<

Standard distance between
attributes (e.g. Euclidean)

Area-based approach: Feature-based approaches:
Point cloud distance Specific distances for a feature

il d/m(gﬁ%%)cémmlm)
o ‘ "= @ Sde(Zpl, [Za])

Figure 4.3. Incorporating image texture information into dimensionality reduction by adapting the distance measure that defines pixel similarity.
High-dimensional image data is depicted in a data cube. Standard t-SNE compares pixels based on their attribute vectors only, e.g., using Euclidean distance (left).

We propose to also consider the spatial neighborhood .Nis'q of the pixels (right) and present different approaches. Feature-based methods (FBM) derive texture
features per channel (e.g., local histogram) or across channels (e.g, covariance matrix) and compare those, while area-based method (ABM) (e.g., point cloud distance)
compare sets of original attribute vectors directly.

for each patch and then comparing those. ABM can be further categorized
into correlation-like methods (for example point cloud distances), Fourier
methods, mutual information methods, optimization methods [77]. We refer
to Goshtasby [90] for an extensive overview and discussion of area-based
similarity and dissimilarity measures. Likewise, there exists a rich body of
literature discussing image patch descriptors and appropriate feature matching
methods used in FBM [91, 92]. To note, most FBM extract various salient features
per image with the goal of matching the whole images. Such methods do not
necessarily produce one feature value per pixel which is desired for computing
the pairwise distance between pixels as in our case. More extensive and general
discussions of ABM and FBM can be found in [77, 93]. Here, we will present
how to structurally extend image patch comparison to high-dimensional images,
and will showcase t-SNE with exemplary methods for each category.

4.3.2. Application to high-dimensional images

Classically, both FBM and ABM are applied to grayscale or color images,
but we work with high-dimensional images instead. Typical ABM involve
direct comparison of individual points and thus can be applied to multi-
channel data, by directly comparing the multi-dimensional points with any
applicable metric. For FBM, a direct extension of a single-channel feature
to multi-channel data does not always exist or a straightforward extension
to multiple dimensions suffers from problems. Consider, for example, local
histograms. They work well to summarize single-channel data, but as the
number of dimensions of the histogram reflects the number of channels in the
data, a local histogram for high-dimensional data would typically be sparse
due to the curse of dimensionality [94]. Therefore, in addition to creating multi-
dimensional features, we also consider computing traditional one-dimensional
features per channel and then compute the distance between the resulting
feature vectors.

In the following, we will present a point cloud distance, namely the Chamfer
distance, to showcase an area-based method. We use channel-wise histograms as
single-channel features and the more general covariance matrix of the neighbor-
hood values as a multi-channel feature to provide examples for FBM. Figure 4.3
illustrates the concept behind the three approaches. An example of these
methods on synthetic data will be discussed in more detail in Section 4.4.1.

4.3. Texture-Aware Dimensionality Reduction

4.3.3. Feature-based methods

A wide range of image features exist and an adequate choice depends on the
application as well as the goal of the analysis [79]. It is out of the scope of this
paper to cover all possibilities. We focus on spatial heterogeneity which has
been successfully applied, for example, in biomedical tumor analysis [95] or
geospatial data analysis [96].

We investigate two texture features that capture local heterogeneity in scalar
images. As a single-channel feature example, we capture heterogeneity with
local histograms per pixel and channel. Histograms have been successfully used
for texture synthesis [97] and lend them-self well as texture features. But since
local histograms do not adapt well to high-dimensional data, we use the covari-
ance matrix X and channel-wise means i, roughly generalizing the histogram
measure of dispersion, as a multi-channel feature. Covariance information
has as well been shown to be useful texture information for texture synthesis
in generative adversarial networks [98]. For FBM, the neighborhood distance

becomes d,(i,j, f,n) = d{"’”’(zr, (f, 1), %, (f,j)) with £, being the chosen
feature extraction operator that will depend on the use case and neighborhood
size parameter 7).

It is worth noting that the approach of computing the features separately per
channel assumes independence between all channels f., which is typically not
the case. This means that in some cases certain combinations of attribute values
and texture features cannot be distinguished. The covariance matrix feature
(Section 4.3.3), and point cloud distance-based, (Section 4.3.4), approaches do
not have this limitation since they use the full attribute space to measure the
distances.

Local histograms features Local histograms are a common way to characterize
texture in scalar image processing. We compute one feature, i.e., the normalized
local histogram, per pixel and channel (confer the right side of Figure 4.3).
The histogram of attribute values of channel ¢ in the spatial neighborhood

/Vis’r’ is referred to as the vector hj. = [hjc1, ..., hicgl, where B is the total
number of bins. All entries are normalized by the total amount of pixels in the
neighborhood. As the histogram is represented as a vector, rather than a single
scalar, this yields a feature matrix per pixel:

Fnist(f,1) = [hi1, - .., hic]- (4.1)

This means, to compute the distance between two pixels, we now need to
compare two vectors of histograms. We can interpret a histogram as an estimate
of a probability density function. As such, we can choose one of the many
distance functions defined between probability distributions. One such distance
is the quadratic form (QF) distance [99], defined as

d9F (hic, hic) = (hic — hje)T A (hic — hjc) (4.2)
B
= > apk(hicy — hjcp) (hick — hjck). (4.3)
b, k=1

Here, A = {apr} with 0 < ap; <1 and ap;, = 1, enables attributing a weight be-
tweenbinindices, e.g., to take distance into account. Weuse ayr =1 — (| b — k [)/B
as proposed by Equitz et al. [99].

With the distance per channel in place, we can define a distance dsf ! for all
channels as the sum of all channel-wise feature distances:

_ c
AN Enist (£, 1), Fnise () = 25 d2F (hic, jc). (4.4)

c=1

19

20 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

R . i 7 Covariance \ -
(a) Standard t-SNE (b) Local histogram) (c) matrix and means. (d) Point cloud

Figure 4.4. Comparison of different embeddings of the synthetic image data shown in Figure 4.2 using standard t-SNE (a) and the three presented texture-aware
approaches (b-d). We use the re-coloring approach introduced in Figure 4.2 to indicate embedding structure in image space. Here, we use the 2D embedding
coordinates to index the colormap shown in (a). As a result, pixels that are close in the embedding space have similar colors in image space.

Covariance matrix and means A more general dispersion feature for multi-
channel data are covariance matrices. We will use these in combination with
channel-wise mean values as an example for multi-channel features .o, (f, i) =
[Ei, uil. Each entry in X; = {0, } represents the variance between the attribute

values within the spatial neighborhood J\/is’n of the channels f; and f;; the
vector yj holds the mean values within the same neighborhood per channel.
One measure that is suited for comparing our covariance matrix feature is the
Bhattacharyya distance [100]:

detX) 5)

y/detX; det X
Li+L,

withL = —; I and det(X) denoting the determinant of a matrix .

dB (F 0 (£,1), Feoo(f) = é(”i - #j)Tz—l(Hi —)+ % 1n(

4.3.4. Area-based methods

A straightforward example ABM is to interpret the attribute vectors of pixels in

the spatial neighborhood ./Vis’n as a high-dimensional point cloud, see Figure 4.3.
Instead of comparing explicit texture features, we are now computing distances
in the high-dimensional space defined by the data attributes directly. Point
cloud distances have been used to compare single-channel images [101] and
many naturally extend to higher dimensions since they are based around norms
of differences between attribute vectors. To stay consistent with the previously-
established notation, one can think of it as simply defining the feature as the data
values in the spatial neighborhood without any transformation, £pc(f,1i) =
Zi={aj:je Nis’n }, leading to a point cloud distance d”C(Z;, Z;).

Multiple distance measures between point clouds exist [38]. The choice, which
one to use, depends on the application that needs to be addressed. A commonly
used point cloud distance is the Chamfer (Cpseudo-) distance [102]. Conceptually,
to calculate this point cloud distance 4 between the spatial neighborhoods

of two pixels i and j, for each point in the spatial neighborhood J\fis’" we find

the closest point in the other neighborhood /Vjs'n with respect to a metric (e.g.,

squared Euclidean distance in our implementation) and average these closest
point distances. This yields:

1 .
4702, 7)) == 3 min llag — apl +

aen P

1 (4.6)

Z : 2
min |[ag —a
ny S ej\/s’ ” ! PHZ

pes;” A<

4.4. Application on Synthetic Data

In comparison with other point cloud distances, like the closely related Haus-
dorff distance, the Chamfer distance is more robust against outliers in the
neighborhoods. Unlike the max-min Hausdorff distance, here, we take the
average of all point-wise minima instead of their maximum. Supplemental
Material SA4 compares several Hausdorff family distances for the previously
introduced toy-example image discussed in Section 4.4.

4.3.5. Computational complexity

The computational complexity for the presented approaches can be split into
two parts: first the feature extraction and second the actual distance functions.
The histogram feature computation in our implementation scales linearly with
the number of spatial neighbors. For a single pixel and channel, this yields the
complexity for the local histogram feature extraction: O(n,y), scaling linearly,
only with the number of pixels in the neighborhood ny = (21 + 1) The
covariance matrix feature calculation is dominated by the computational
complexity of a matrix multiplication between two matrices of size ny x C,
namely ®(Cn3\,).

The distance calculation is the more time-consuming step for the presented
methods. For the local histogram feature approach the QF distance computation
scales quadratically with the number of bins B, which dominates its complexity
in O(C B?). Covariance matrices and mean comparison with the Bhattacharyya
distance is more expensive. Its computation involves matrix-vector multipli-
cation and determinant calculation. Using LU decomposition for the latter
yields 6(C3).

Finally, the point cloud distance requires the computation of all pairwise
distances between the two neighborhoods. As a result, it’s complexity scales
quadratically with the neighborhood size 6(C nfv). Note, that neighborhood-
based dimensionality reduction methods, like t-SNE and UMAP, use the point
distances to construct k-nearest neighbor (kNN) graph, which requires the
computation of all pairwise distances for the whole dataset. Naively, the KNN-
graph graph construction would scale quadratically with the number of pixels
rather than the neighborhood. However, most modern implementations of
t-SNE, and UMAP avoid quadratic complexity by using approximated kNN
algorithms [28, 103], as do we, see Section 4.5.

We have also experimentally verified this analysis, showing that the local
histogram approach is the fastest and the Bhattacharyya distance the slowest.
The full data can be found in the Supplemental Material SA6.

4.3.6. Spatial weighting

So far, we treated all pixels in the spatial neighborhood uniformly. In order to
define specific patterns of interest within the neighborhood, for example by
assigning pixels further away from the center a lower importance, we introduce
a spatial weighting w. Weights are consistent with respect to the center i of
a neighborhood, which implies that a pixel position p receives the weight:
w(i-p).

For the histogram features, spatial weights with 3>} w = 1 can be included in the
histogram construction by scaling pixel attributes by the weight. Weights can
be introduced into the covariance matrix and mean computation as detailed in
the Supplemental Material SA2, where we also cover the integration into the
Chamfer point cloud distance. A two-dimensional Gaussian kernel is a natural
weighting choice as it assigns smoothly decreasing importance to pixels further
away from the neighborhood center.

4.4. Application on Synthetic Data

To illustrate some of the properties of the different approaches, presented
in Section 4.3.3 and Section 4.3.4, we created a simple synthetic image data set,

21

22

4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

shown in Figure 4.2. The image consists of 32 x 32 pixels, with two attribute
channels, separating the pixels into four groups (Figure 4.2c). As seen in
Figure 4.2a the spatial layout includes four homogeneous regions in the center
and checkered patches around them, each constructed by alternating 2 x 2 pixel
blocks of two different classes.

Figure 4.4 shows a standard t-SNE embedding of the synthetic data set as well
as embeddings using the three described methods. All four embeddings were
computed using a perplexity of 20 and 1,000 gradient descent iterations. For
the three texture-aware approaches we considered a uniformly weighted 3 x 3
neighborhood. To indicate structure derived from the t-SNE embedding in
image-space without clustering, we use a simple re-coloring previously shown
by Hollt et al. [104]. In short, 2D coordinates derived from the embedding
are added to each pixel. The pixel is then assigned a color by using these
coordinates as a lookup into a 2D colormap. As a result, pixels that are close
in the embedding space, and thus are similar according to the used distance
metric, will have a similar color in the image representation. We use t-SNE as an
example throughout the chapter, similar embeddings using UMAP and MDS
can be found in Supplemental Material SA3.

Standard t-SNE (Figure 4.4a) separates the pixels into four groups, one per
class, with some small scale structure within each class, introduced by noise in
the data. However, the embedding does not give any insight into the spatial
layout of the four classes. In particular, the pixels of each class positioned in the
checkerboard pattern cannot be distinguished from pixels of the same class in
the central homogeneous regions.

Figure 4.4b, shows the embedding and re-coloring using the Local histograms
and QF distance. We defined the number of histogram bins using the Rice rule:
B = [24/M] = 5, with the neighborhood size M = 3 x 3 = 9. The resulting
embedding is somewhat less clear than the standard t-SNE one, consisting of
only three major clusters, however, with more structure within those clusters.
The four homogeneous areas in the center show up in separated areas in the
embedding (arrows), indicated by their individual colors. These regions are
loosely connected to larger regions in the embedding containing the pixels
from the checkerboard regions. Notably, the individual two classes forming
a checkerboard region do form separate regions within the larger clusters to
some degree. However, pixels of the same class in two different checkerboard
regions, for example, pixels of with small values in both channels (Figure 4.2),
which are present in both checkerboards on the left image half, are separated,
as indicated by the blue-ish and orange-ish colors.

The result of our approach using the covariance matrix and means feature
can be seen in Figure 4.4c. We can clearly identify nine separate clusters in
the embedding. The four homogeneous regions correspond to the four small
clusters on the bottom of the embedding, while the four larger clusters represent
the four checkerboard regions, as indicated by the recolored image. The ninth
cluster corresponds to the boundaries between the checkered regions. Again, the
homogeneous areas are separated from the checkered but with much sharper
boundaries. Different from the previously described approaches, however, each
checkered area is recognized as a single cluster in the embedding, meaning that
the checkerboard pattern is not visible anymore in the re-colored image. In an
exploratory visual analysis setting, this would facilitate the selection and further
analysis of regions with specific spatial neighbourhood characteristics.

The Point cloud distance approach, here specifically using the Chamfer distance,
yields a similarly straightforward partitioned embedding in Figure 4.4d. Again,
all four homogeneous image patches are separately clustered as well as the
checkered regions. The borders between the different regions now also created
individual clusters in the middle of the embedding.

To quantitatively analyse the approaches, we compute the k-nearest neighbor
hit, as described by Espadoto et al. [17]. The average neighbor hits for 63-
nearest neighbors in embedding space are 77.9% (point cloud distance), 79.4%
(Bhattacharyya distance) and 80.4% (QF distance) whereas the standard t-SNE

embedding yields 35.1%. While the point cloud and Bhattacharyya distance re-
sult in a higher neighbor hit for small neighbor numbers, their quality decreases
slightly faster for larger numbers than the QF distances hit. See Supplemental
Material SA1 and Figure A.2b in Supplemental Material SA3 for full details.

4.4.1. Discussion

All three presented texture-aware approaches are able to distinguish between
several spatial arrangements of the high-dimensional image.

A drawback of local histogram features is the number of bins as an additional
hyperparameter. Since there is no obvious choice for a good setting, the user
has to fall back to heuristically setting this value. Further, in the scope of this
work, we only discuss the QF distance for comparing histograms. Other distance
measures are available and would likely produce different results. As a per-
channel feature-based approach the local histograms implicitly assume channel
independence. Thus, they cannot capture multidimensional texture patterns.
Using multidimensional histograms instead of a 1D histogram per channel might
be able to capture such patterns. However, such an approach would drastically
increase computational complexity. The histogram size grows exponentially with
the number of dimensions, quickly making storing histograms and computing
distances infeasible. Further, such histograms are in danger of quickly becoming
very sparse and as such would not provide a useful basis for comparison
anymore.

The covariance matrix feature can capture multiple attribute dimensions with-
out requiring channel independence with the same goal of comparing the
distribution of values within the defined neighborhood. However, instead of
comparing all individual values, they are represented in an approximate way
based on the assumption that the values are Gaussian distributed. The point
cloud distance does not make this assumption and compares all attribute vectors
to each other. If we compare the covariance matrix feature with the point cloud
distance results, the most prominent difference between the embeddings is
how they treat the borders between cluster regions. When data has a bi-modal
distribution in a channel, the Gaussian assumption in the covariance feature
does not reveal this case, whereas the point cloud distance would.

An advantage of the FBM methods is that they produce features that can aid
the interpretation of structure in the resulting embeddings. Visualizing those
features in combination with the embeddings is an interesting avenue for future
work.

The spatial weights as introduced in Section 4.3.6 and spatial neighborhood
size 1) affect the approaches to different degrees. See the Supplemental Material
SAS5 for a brief overview of different neighborhood sizes and spatial weights. For
example, the Chamfer point cloud distance produces very similarly clustered
embeddings for several neighborhood sizes and is — with respect to the
synthetic data set — not much affected by radially decreasing spatial weights
for this example. Meanwhile, using the histogram feature, the checkered pixels
are clustered differently when weights are applied.

4.5. Implementation

We implemented the described distance measures as an extension for the open-
source t-SNE implementation in HDI [103, 105], where we use HNSW [106] with
our custom distance functions to create the approximated k-nearest neighbor
graph. The framework is implemented in C++ and OpenGL for GPU-based
calculations; a Python wrapper is provided as well. Our library is available as
open-source on GitHub [107].

4.5. Implementation | 23

Code available on GitHub in the
repository biovault/Spidr

https://github.com/biovault/Spidr

24 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

4.6. Use cases

Here, we illustrate the application of the presented approaches for visual data
exploration using two use cases. The first use case (Section 4.6.1) describes the
exploration of hyperspectral images, commonly used in geospatial analysis. For
the second use case (Section 4.6.2), we applied our method to imaging mass
cytometry data, a method that is recently gaining attention in systems biology.
We use the Chamfer point cloud distance as an example for an area-based method
and the covariance matrix feature exemplarily as a multi-channel feature-based
method. The Bhattacharyya distance comes with a high computational cost for
high large channel numbers, hence the usage of the point cloud distance for the
hyperspectral image example and the covariance matrix feature for the systems
biology use case.

4.6.1. Hyperspectral imaging

Similar to digital photography, hyperspectral imaging captures bands of the
electromagnetic spectrum. Instead of only three channels for red, green, and
blue in digital photography, hyperspectral imaging captures hundreds of narrow
spectral bands at the same time, each corresponding to a channel in the output
image. This spectral signature can be used to recognize materials or objects
in the image. To fully exploit the information in hyperspectral images, spatial
relations between the high-dimensional pixels need to be considered [85].

Here, we present a use case, based on the Indian Pines data set [10]. The
data set is an established reference hyperspectral image obtained by airborne
visible/infrared imaging spectrometry, covering 220 adjacent spectral bands,
of which 200 are typically used (after discarding 20 water absorption bands
that do not contain useful information). We consider a 145 x 145 pixel cutout of
the data set, known as Sife 3. This subset of the data is one of three ‘intensive’
test sites and thus has been well documented. A ground truth (Figure 4.5e),

100% — Standard t-SNE

Gaussian Filter
== Point Cloud

75%

=
2 50%
=l
o
z k
25%
o
1 10 20 30 40 50 60 70 80 90100
) K
Figure 4.5. Indian Pines: Comparison of texture-aware and standard t-SNE embeddings. Embeddings using dard t-SNE (a), standard t-SNE applied
after bilateral filtering (b), and our point cloud based t-SNE (c). A manually annotated map and ¢ ground truth labels are shown in (d) and (e), respectively. Points in

Loddi

the embeddings are colored, according to ground truth labels for a qualitative comparison of g structure. Finally, we show the ration of k-nearest neighbors
in embedding space with the same ground truth label for different kin (f). Note, that for an exploratory use-case no ground truth is available and we only show it
here to illustrate the properties of the embeddings.

providing labels indicating ground usage, such as fields, grassland, or houses
for all pixels is available for the data set. We use this ground truth data to verify
that the structure in our embeddings is meaningful; however, it must be noted
that in explorative analysis such a ground truth is not available and information
would need to be derived from the embedding structure. Each pixel in the data
set maps to a 20 X 20 meter area on the ground. The 200 channels of this cutout
cover wavelengths range from to 400-1300 nm in roughly 9-10 nm steps.

We computed embeddings using standard t-SNE (Figure 4.5a) and our texture-
aware t-SNE using the Chamfer point cloud distance with a 5 x 5 neighborhood
(Figure 4.5¢). To provide a better baseline than standard t-SNE, we applied
bilateral filtering to each channel of the original image data and derived a
standard t-SNE embedding from the filtered image (Figure 4.5b). A bilateral
filter applies edge-preserving smoothing to an image. Thus, in the resulting
image every pixel is a combination of a small neighborhood, providing a
straightforward way of incorporating some spatial neighborhood information.
We computed all embeddings using a perplexity of 30 and 5,000 gradient
descent iterations. In Figure 4.5, we color-code the ground truth labels on each
embedding to indicate how well the structure in the embedding corresponds to
structure in the images.

The embedding based on the Chamfer point cloud distance shows more structure
than the other two embeddings. Notably, the colored points, corresponding
to the labels of the ground truth, form more clearly distinguished clusters
(see, for example, the orange points in the insets of Figure 4.5). The other
two embeddings show many clusters containing points belonging to multiple
regions. Most notably is the weak separation of the background, unlabeled
points (light gray) in Figs. 4.5a and 4.5b, compared to the coherent, strongly
separated groups in the point cloud-based embedding (Figure 4.5c).

This visual impression is reinforced by a quantitative analysis using the neigh-
borhood hit [17], the average ratio of k-nearest neighbors in embedding space
with the same ground truth label. Figure 4.5f shows the neighborhood hit for
the first 100 nearest neighbors. The point cloud distance approach yields a
significantly higher hit for all k-nearest neighbors than both standard t-SNE
and the bilateral filtering approach.

Figure 4.5d shows the original hand-drawn annotations overlaid on the indi-
vidual fields taken from the ground-truth data. The arrow points at an aisle
dividing two parts of a field that was given in the manual annotation but was
lost in the ground truth. In our point cloud-based embedding, we could identify
a cluster (arrow in Figure 4.5¢) corresponding to this aisle and an unlabeled
area next to it. The yellow area in Figure 4.5d indicates the pixels corresponding
to that cluster, which illustrates the ability to distinguish structure, even beyond
the ground truth, in the case of the embedding using the point cloud distance.
Hereby, we illustrate the usefulness of combining spatial information with the
full attribute space for exploration purposes. While there exist clusters in the
other two embeddings that partially correspond to the aisle, they also contain
pixels from areas in different regions (see Figure A.14a in Supplemental Material
SA7 for an example).

In summary, our point-cloud embedding outperforms the other two with respect
to the exploration of spatially continuous, meaningful regions. More examples
for similar behaviour, for instance that a specific field is well captured in a single
cluster of the point-cloud embedding but divided between multiple clusters
in the other embeddings, are shown in Figure A.15 in Supplemental Material
SA7.

4.6.2. Imaging mass cytometry

Imaging mass cytometry (IMC) [108] is a recent imaging modality used to
study cellular biology. IMC simultaneously captures the expression of up to 50
different proteins in tissue by ablating tissue sections spot-by-spot. Combining
the resulting measurements in a regular grid results in a high-dimensional

4.6. Use cases

25

26 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Granuloma

Figure 4.6. Imaging mass cytometry. A false coloring image of a lung tissue sample gives an idea of the tissue structure in (a) with the granuloma enclosed by
the dashed line. Embeddings derived using standard t-SNE (b), and texture-informed embeddings using the covariance matrix and Gaussian weighting witha 3 X 3
(c) and 7 X 7-sized (d) neighborhood are shown in combination with recolored images to indicate embedding structure in image space.

image, where the pixel position corresponds to the position in the tissue and the
channels to the different measured proteins. Visual analytics and exploratory
analysis based on dimensionality reduction is used in practice for the analysis
of IMC data, as for example presented by Somarakis et al. [48]. They present
a multi-step approach where cells are segmented, followed by aggregating
high-dimensional profiles per cell. These are then used to identify cell types
using dimensionality reduction and the resulting classification is the basis for
exploration of local neighborhoods of cells.

For this use case, we consider a tissue sample from a mammalian lung provided
by collaborating researchers. The image measures 272 X 374 pixels, each pixel
represents a 1 pm area, and we consider ten attribute channels, corresponding
to ten different proteins describing immune cells and structural properties.
Figure 4.6 shows an RGB re-coloring of the sample, mapping red, green, and
blue channels to one of three structural proteins each, to give an impression of
the tissue layout.

Figure 4.6b shows a standard t-SNE embedding and re-colored following the
same re-coloring scheme as in Figure 4.4. Figs. 4.6c and 4.6d show texture-aware
embeddings based on the covariance matrix feature and Bhattacharyya distance.
We used two different neighborhood sizes, 3 X 3 in Figure 4.6¢c and 7 X 7 in
Figure 4.6d to show structures on different scales in the image. For both, we
make use of a Gaussian spatial weighting. All embeddings were computed with
a perplexity of 30 and 5, 000 gradient descent iterations to ensure convergence.
Our collaborators are interested in the composition of cell structures called
granuloma, indicated in Figure 4.6, and their surrounding cells. A granuloma
is an agglomeration of immune cells, typically to isolate irritants or foreign
objects. Current analysis pipelines separate the analysis of the high-dimensional
attribute data and spatial layout of the cell data [48]. Our collaborators stated
that it would be useful to combine these two steps for early data exploration.
In the re-colored image in Figure 4.6b we can see that the granuloma as a
whole is already differentiated from the rest of the image, indicated by a bright
orange area with mint green, purple, and blue inclusions. The bright orange
indicates a combination of proteins, characteristic for a specific set of immune
cells (macrophages) which are expected in the center of the granuloma. It
is known that the area around a granuloma is made up of layers consisting
of said macrophages and different combinations of other immune cells. The
structure of these cell layers and interaction of cells within and between adjacent
layers is subject of current research. Hints of this changing composition can be
seen in Figure 4.6b where the center largely consists of mint-green inclusions
which slowly change to purple and blue inclusions towards the outside. A first
hypothesis when analysing the given tissue was that these layers are similar all
around the granuloma.

Comparing the small-scale texture-aware embedding and re-colored image in
Figure 4.6c, we get a similar impression with a bright-purple colored area with

some inclusions defining the granuloma. Note, that the colors are not directly
comparable due to the heuristic nature of t-SNE and the different structures of
the embeddings. However, we already see some hints at larger scale structure.
The central area of the granuloma (consisting of many blue (mint in Figure 4.6b)
inclusions) and the outer layers are now separately colored in a deep pink and
orange, respectively, indicating separation in the embedding. Individual cells
can still roughly be identified, for example the blue and purple patches within
and around the structure.

Finally, using a larger neighborhood as in Figure 4.6d clearly creates areas of
similar color, corresponding to higher-level structures. This is expected as the
neighbourhood is enlarged. Here, no individual cells are recognizable anymore.
The granuloma as a whole is clearly recognizable by a pink to orange area,
but in addition a clear layering structure is visible. The granuloma center is a
relatively homogeneous dark pink area. Around the granuloma, we can see the
layering of structures in different shades of orange to a greenish tone on the
far outside, following the colormap applied to the embedding from bottom to
top on the left side (arrow Figure 4.6d). Upon inspection of this texture-aware
embedding our collaborators were very interested in these layers surrounding
the granuloma center and how clearly they were identifiable in Figure 4.6d,
hereby eliminating the need for a multi-step approach which was typical for
their work flow. They also noted that the layer structure was more varied than
they expected which they intend to study further and verify that this is indeed
consistent across biological replicates.

4.7. Conclusion

In this chapter, we have presented a framework of texture-aware dimensionality
reduction for visual exploration of high-dimensional images and illustrated its
potential through examples based on t-SNE and three different texture-aware
distance metrics. The generated embeddings combine attribute similarity with
spatial context, and, thereby, support the exploration of high-dimensional
images. Our method adapts the point similarity calculation of distance-based
dimensionality reduction methods by taking the spatial nature of images into
account. We presented two classes of approaches for comparing spatial pixel
neighborhoods and extended them to high-dimensional images: Feature-based
methods (FBM), extracting and comparing features of neighborhoods, and
area-based methods (ABM), applying distance measures between the sets of
attributes within the neighborhoods directly. We have shown strengths and
weaknesses of the different approaches, illustrated them in a synthetic example
and presented their applicability via two use cases.

The presented method opens several avenues for future work. We focused on
images, i.e., structured, rectangular grids. Extensions to unstructured grids,
common in geographic information systems, or graphs are thinkable. While we
show several examples of different neighborhood sizes, we did not investigate
this parameter in-depth. Using varying neighborhood sizes might reveal spatial
structures that are only present at a specific scale. Another interesting avenue
might be to investigate the potential of other feature extraction methods,
like Markov random field texture models or neural network approaches to
capture domain-specific texture characteristics when training data is available.
Additionally, visualizing the extracted features alongside the embeddings is an
interesting idea in itself.

We have shown that texture-aware dimensionality reduction methods can
provide insights into high-dimensional images that cannot be captured with
standard dimensionality reduction methods alone. Yet, algorithmic enhance-
ments alone cannot fully support the demands of high-dimensional image
exploration. In the next chapter, we will discuss how image interactions like
zooming and panning can steer with level-of-detail changes in hierarchical
embeddings.

4.7. Conclusion

27

28 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Coupled Exploration of
High-Dimensional Images and
Hierarchical Embeddings

In the previous chapter we explored an algorithmic modification to inform DR
techniques about image information. In this chapter we shift our focus to inter-
action mechanism with high-dimensional images and hierarchical embedding
representations.

5.1. Introduction

A common exploration setup of high-dimensional images consists of multiple
coordinated views showing an image representation and a low-dimensional
embedding of the attribute data side-by-side. The image space is explored
mainly by navigation, i.e., panning and zooming interactions to focus on a
region of interest (ROI), since large images typically exhibit a higher resolution
than a screen is able to display physically. Therefore, navigation in image
space is commonly supported with image pyramids: Each attribute channel is
repeatedly downsampled to yield smaller images at multiple scales of detail.
Exploration starts at a lower resolution, matching the viewport pixels closely,
from where a user can then zoom into ROIs, which will automatically move
down the pyramid into higher level-of-detail views.

Whereas scalar or three-dimensional data can be easily mapped to colors, high-
dimensional attribute data cannot be directly shown in screen space without a
mapping from the high-dimensional to a color space. This mapping is often
achieved through a selection of attributes, clustering, or coloring of 2D/3D-
projections of the attribute data. Typically, the attribute space exploration of
high-dimensional images still cannot be performed well in image space alone
but is augmented with views on the attribute data. Attribute vectors are often
embedded with DR techniques like UMAP [28] or t-SNE [110] and subsequently
explored in the resulting low-dimensional embedding spaces, e.g., in single-cell
analysis with cyclic immunofluorescence (CyCIF) images [47], hyperspectral
images of artworks [111], or remote sensing [112]. While image sizes in the
order of a million pixels are common, data set sizes of over 100,000 points
are considered very large for DR techniques like t-SNE [113]: the resulting
embeddings usually cannot capture all desired detail and come with increased
computational cost.

Hierarchical DR techniques, such as HiPP [51], HSNE [52] or HUMAP [53], have
been developed to tackle issues that emerge from large amounts of data points.
They decrease the embedding size by using landmarks to create a hierarchical
data structure, in which each level represents the original data set at a different
level of abstraction. Hierarchical DR techniques follow the “overview first, zoom,
filter, details-on-demand” approach [114] for interactive data exploration. They
start out presenting the user an overview embedding, which shows dominant
data structures. From there, the user can request more refined embeddings
by selecting clusters, which will show a subset of the data at a more detailed
hierarchy level. This refinement interaction can be seen as analogous to zooming
in image space, based on an image-pyramid, to achieve higher levels of detail.

Existing (hierarchical) DR methods largely target abstract high-dimensional data
and thus lack interactions specific to exploration of high-dimensional images.
Most importantly, there is no coupling between user interactions in image space
and embedding space. E.g., zooming into a part of the image, i.e., requesting
more detail for this part of the data, has no effect on the level-of-detail of the
embedding view. This requires a set of interactions (i.e., selection and zoom)
in the embedding space to achieve the desired detail. Ideally, navigation in
image space comes with a desired adaptation of the view of the hierarchical
embedding space. Figure 5.1 shows an abstract example of such coupled image

This chapter is based on the pa-
per “Interactions for Seamlessly
Coupled Exploration of High-
Dimensional Images and Hierar-
chical Embeddings” published at
the 28th Symposium on Vision,
Modeling, and Visualization (VMV
2023) [109].

5.1 Introduction 29

5.2 Related Work 30

5.3 Tasks and Require-
ments 31

5.4 Coupling Image Nav-
igation and Embed-
ding Space 32

5.5 Exemplary Use Case:
Hyperspectral Image

Exploration 36
5.6 Limitations 37
5.7 Conclusion 38

30 5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

Figure 5.1. Coupling concept: (a)
Image interactions with a high-
dimensional image showing mostly
man-made object (top) and nature (bot-
tom) specifically zooming (I) and pan-
ning (1) to focus on mode detailed views.
(b) Coupled view of a hierarchical em-
bedding corresponding to the overview
(O), zoom (I) and pan (II) image views.
Interacting with the image view trig-
gers a corresponding change of detail
level in the embedding, from hierarchy
level 2 to 1.

Relevant work on visual anal-
ysis and exploration of high-
dimensional data is discussed in
Chapter 3.

Image View Coupled Embedding View

] L .
EE | : [~*High-dimensional Top level of
O [E(°e attribut vector hierarchical

per pixel embedding

and embedding views: Zooming into an image region Figure 5.1a triggers an
update of the embedding view Figure 5.1b, which is set to display a higher detail
embedding level, e.g., the roads that were not visible previously. A coupling
between the image scale space and hierarchical embedding space interactions
would thus enable a fully image-aware high-dimensional data exploration and
analysis.

The main contribution of this chapter is an interaction paradigm that couples
interactions in image space to hierarchical-embedding actions, including

» a mapping from image navigation interactions to embedding space actions,

» an optimization strategy for level-of-detail adjustment based on ROIs in
image space, and

» its implementation as an extension of HSNE, and an evaluation on a repre-
sentative data set.

5.2. Related Work

In the following, we aim to report the work most relevant to this chapter,
namely, interaction paradigms for the exploration of and interaction with
high-dimensional images.

To adequately explore high-dimensional images, both the high-dimensional
attribute space and the image layout have to be taken into account. Ellsworth
et al. [115] discuss a holistic approach of showing multiple channels side by
side using a wall of monitors. Toolboxes like PySpacell [116] provide various
spatial statistics functions to analysis pre-segmented high-dimensional images.
SquidPy [117] is a framework that brings together high-dimensional image
viewers and image analysis tools.

State-of-the-art high-dimensional image analysis toolkits stress the importance
of region-of-interest based exploration of large images. Scope2Screen [118] is a
Focus+Context oriented application, which provides lens views on ROIs and lets
the user define false RGB recolorings of the viewport, based on manually selected
attribute channels. They mention the need for DR techniques and suitable visual
representations of found features in image space in order to couple image
and feature space more closely. Others, like histoCAT [119], ImaCytE [48], or
Facetto [47] offer multiple coordinated views to analyze high-dimensional image
data, including image viewers, parallel coordinate plots, and DR plots. Our
interaction coupling between hierarchical embedding and high-dimensional
image data allows for embedding the entire image data and recoloring of image
ROIs based on the entire high-dimensional attribute space.

Interacting is essential for the exploration of dimensionality-reduced data. There
exist various classification approaches, e.g., Liu et al. [36] who divide these
interactions into computation-centric, exploratory, and model manipulating.
Sacha et al. [120] described common user interactions with DR methods more

5.3. Tasks and Requirements

thoroughly. Past discussions of interactions with visualization techniques for
high-dimensional data by Yang et al. [121] and Sifer et al. [122] focused on
parallel coordinates and table-based approaches. Recently, Hollt et al. [104]
proposed Focus+Context-based interaction techniques specifically for the ex-
ploration of hierarchical embeddings. Marcilio-]r. et al. [123] similarly specified
an interaction technique for single-level embeddings. These prior works, how-
ever, focus on interactions solely with embeddings. In this chapter, we discuss
how a hierarchical embedding should react to user interaction with an image
representation of the data.

Elmgqvist and Fekete [124] propose a generalized model for interactions with
visualizations of hierarchically aggregated data. Their model, though, assumes
a single view of the data, whereas we tackle the problem of interacting with
two separate views: a spatial data layout (image view) and an embedding
hierarchy (embedding view), coupled to the image view. We aim to specify
suitable interactions with the image view and corresponding actions of the
embedding view.

5.3. Tasks and Requirements

The main purpose of coupling image-space interactions to embedding-space
actions is to enable a user to navigate in image space (T1), while simultaneously
exploring the attribute space of the currently visible image region (T2). Two-
dimensional embeddings are a useful modality for exploring similarities in the
attribute space. Albeit not a direct interaction with the image space, the user
should still be able to coarsen and refine the level of detail in the embedding
directly (T3), as it is already possible in traditional approaches.
In summary, the user should be able to

T1 navigate (zoom or pan) in image space,

T2 explore the attribute space of an image ROI, and

T3 request more or less detail for a ROl in attribute space.
A typical image exploration starts with the entire image in view (overview),
followed by zoom and pan operations to different ROIs for detail inspection.
The embedding space exploration should mirror this “overview first, details-
on-demand” characteristic of the image navigation (R1) with the intention of
providing analogous reactions in the attribute-space depiction to a single image-
space interaction. This entails that, as the user focuses on a spatial region of
interest, the embedding should be limited to a set of points which represents
the ROI (R2, R4). This contrasts other conceivable approaches that might follow
Focus+Context paradigms and would represent image areas outside a ROI as
well. Instead, R1 ensures a maximal appropriate detail level for a given ROI
and reduces computational costs by restricting both view and computation to a
subset of all data point. Additionally, to minimize cognitive load on the user,
the embedding should preserve coherence between updates when changing
ROIs (R3). In order to allow for an interactive data exploring, the embedding
has to update fast, that is, any additional computational effort on top of the
embedding procedure should be minimal (R4). Further, to enable linking
of image and attribute spaces, e.g., through highlighting of representative
embedding points and their represented pixels, a data mapping between
arbitrary selections in either space has to be supported (R5).
Thus, to successfully accomplish the user tasks, the image-to-embedding cou-
pling should:

R1 follow the “overview first, details-on-demand” approach,

R2 represent the ROI,

R3 provide stable transitions between embeddings,

R4 update at interactive exploration speeds, and

R5 link selections between image and embedding space.

31

32

5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

age View

Zoom

Zoom

(a)

Coupled Embedding View Standard HSNE Landmarks in Hierarchy

© o°

Layout
consistence

No
consistency

0 [>tmbedd1ng
L landmarks

Trees A & B L L =

s ! drill-down / / ' L

| / *['0,0 0 010 0 O]
(‘ru[la A 'A'i B L:” q (— F 4 F I 1< 0

Visible landmarks in viewport

(c) (d)

Figure 5.2. Interaction overview: Image interactions and embedding hierarchy reactions: (a) exemplary image space depicting a region of mostly man-made
object (top) and mostly nature (bottom) with three viewports (I zoom from overview, Il pan, III pan and zoom). (b) depicts the embeddings as shown after each
interaction. The data points that are currently in the viewport and landmarks that are shown in the corresponding embedding views are shown in (d). In contrast to
standard HSNE interactions, where a refinement of the landmarks that represent ROI I, marked with Dblue @, leads to inconsistent cluster placement, our method
keeps a consistent layout, (b, I) and (c, top). The scattered placement of those top-level landmarks renders manual selection practically impossible. Changing the level
of detail for a given ROI (e.g., drilling down) can lead to embeddings containing invisible landmarks as seen in (c, bottom).

5.4. Coupling Image Navigation and Embedding Space

An intuitive way of coupling image-space navigation and high-dimensional
attribute-space exploration is to create a new embedding for each new ROI
in image space. However, this approach does not fulfill all our embedding-
view requirements and user tasks. First and foremost, neighborhood-based DR
techniques would have to recompute neighborhood graphs over and over, which
severely limits interactivity, thus breaking R4. Gigapixel or larger images are
not uncommon and already the first top-level embedding, which encompasses
all data points, can be infeasible to compute in reasonable time. With such
large images, even ROIs that cover only a small part of the image space can
contain hundreds of thousands or even millions of data points. Further, the large
number of points leads to indistinguishable similarity structures within clusters,
which might obscure interesting data characteristics. Finally, this approach only
enables a single level of detail per ROI since it is not possible to refine or coarsen
a standard embedding, thus breaking T3.

Hierarchical DR techniques overcome these issues. They are better suited for
embedding large data sets and do not require neighborhood re-computations
for data subsets (R4). Their hierarchical structure also allows a user to coarsen
or refine the level of detail shown for the attributes of an image ROI (T3). An
additional benefit to exploring image patches using hierarchical embeddings is
that the resulting data representations are informed by the entire data manifold
and not just a subset of the data.

5.4.1. Interactions: Zoom and Pan, Drill-Down and Roll-Up

Large images are most commonly navigated by zooming and panning operations.
These operations change the size (zooming) and position (panning) of a viewport
over the image and determine the ROI shown to the user. We generally follow
the mathematical notations for hierarchical embeddings and interactions with
hierarchical data structures as used in the literature [104], and fully laid out
in Supplemental Material SB1. This notation does not support the concept of
linking two spaces, which motivates the introduction of two new symbols: We
denote the set of all data points within an image viewport as @; and the set of
all corresponding landmarks shown in the embedding view used to represent
this viewport as 9.

Zooming and panning focus exclusively on the spatial data layout. Both oper-
ations modify 9 by adding visible or removing invisible data points. In our
coupled image and embedding setting, we want zooming and panning in the
image view to update the embedding (T1, T2). Thus, we need a mapping of the
image interactions to possible actions in the embedding. Whenever <; changes,
we have to recompute Pf so that every landmark L;‘ € @D on embedding

5.4. Coupling Image Navigation and Embedding Space

hierarchy level k represents at least one data point L? € P and all data points
in @ are represented by a landmark in 9 (R2). Given a single level of detail
in the image viewport we define all landmarks in the embedding to be from
a single hierarchy level as well. The selection of the hierarchy level will be
discussed in Section 5.4.2.

Figure 5.2a showcases zoom and pan actions in an abstracted high-dimensional
image and indicates which set of data landmarks %0 are currently in 9
(Figure 5.2d). Each viewport change triggers an update of @g (Figure 5.2b).
The updated embeddings aim to be consistent with their predecessors, i.e.,
clusters that represent similar data points remain in nearby embedding positions.
Standard hierarchical embedding refinement do not feature such coherence
(Figure 5.2c).

Starting an exploration, the viewport encompasses the entire image and thereby
all £° landmarks. The corresponding top-level embedding contains all top-level
landmarks. Zooming-in only ever removes elements from &; and, in line with
this, the updated embedding will either only contain a subset of the previous
landmarks from the same abstraction level or landmarks from a finer abstraction
level that are represented by the previous landmarks. Panning and zooming-out,
however, may add previously unseen data points into the viewport and thereby
might require the inclusion of previously unrepresented landmarks into the
embedding. The pan, labeled II in Figure 5.2a, shows such an update of 9.
The set of data points in the viewport & corresponds to a selection #° of
landmarks from the data level: %0 = @; € £°. To find a set of landmarks @F on
a level k that represents %°, we need a general mapping of landmark selections
between levels from KX to F*+1.

5.4.2. Landmark Mapping

The importance of landmark mapping is twofold: defining which embedding
landmarks {L;C } € D best represent @; (R2), as well as linking selections

between image and embedding views (R5).

Standard approaches use top-down mappings since users define selections in
embedding space: starting at the top-level, refinement actions should represent
all landmarks contained in the selection; but in our image-driven scenario this
yields many landmarks outside the image RO, see Figure 5.2c (bottom). We use
a bottom-up mapping approach to map ° to ¥ := Dg, which represent the
image ROI (R2). For rolling-up one level we define a set #**? that represents a
set XX as the union of all parents of the landmarks in %¥. To avoid traversing
the hierarchy when rolling-up several levels, we can cache the representative
landmark on each level for every data point when computing the embedding
hierarchy in the first place. We use the same approach when drilling-down
into the hierarchy, based on a given viewport ;. Instead of computing all
children %*~1 that are represented by %¥ we use the bottom-up mapping to
find the minimal set %’ € ¥, that contains only the landmarks needed to
represent &;. This means any set % ¥, representative for the data points #° in
the viewport, can immediately be computed as the union of the representative
landmarks on level k.

For linking selections between a subset of the image viewport to the embedding
we follow the same bottom-up approach, the only difference being that instead
of rolling-up the entire viewport we start with the selected subset X% C &;.
Vice versa, for linking selections from the embedding to the image, we traverse
the hierarchy downwards for all selected embedding landmarks ¥ € D to
find the corresponding data point selection %° ¢ £°.

At this point, we need to define how to couple the zoom factor in the image,
i.e., the ROI’s fraction of the full image space, to the selection of the hierarchy
level k in the embedding, according to the underlying goals and requirements.
We define such a heuristic with the aim to keep the number of landmarks in
the embedding space within a pre-defined budget, similar to the visual entity

33

34 5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

Top-level

EZ EZ embdding £2 N
Same
[: 1 Our [: | Mg}gpll\}\g [: | landmark
Mapping SNE
o r o
Viewport Pan

(a) (b)

(@)

Figure 5.3. Mapping comparisons:. (a) shows the D in O resulting from our mapping. (b) depicts the HSNE landmarks in . resulting from the top-down
approach. Colors indicates data level indices. (d) shows how a pan action updates landmarks in the coupled bottom-up approach whereas the top-down approach
might not display any change at all and (c) depicts HSNE'’s bottom-up, landmarks-in-viewport-only mapping.

budget introduced by Elmqvist et al. [124]. Different from their approach, we
propose to find the level with the number of landmarks closest to a target
number v¢, instead of applying a hard maximum to accommodate hierarchies
with large differences in the number of data points between neighboring levels.
In our framework, the budget is user defined. According to our requirements,
the budget should be chosen small enough to allow for interactive computation
of the embedding (R4) but could, e.g., also be defined as to not overload the
visual capacity of the linked embedding view. Given a budget v;, we determine
the hierarchy level k by calculating the set #* that represents %° for all hierarchy
levels. We pick the level k for which |#*| is closest to v;.

We also enable refining or coarsening the level of detail of the representative
landmarks % in the embedding view for a given viewport selection @;
(T3). Knowing the current hierarchy level k and @;, we can immediately
compute F*~1 or H**! with our bottom-up mapping. In contrast, simply
rolling-up or drilling-down the current landmarks in the embedding hierarchy
view without considering the viewport does not yield a satisfying result.
As exemplified by Figure 5.2¢ (bottom), e.g., requesting more detail for an
embedding by drilling-down all landmarks can yield landmarks outside the
viewport (breaking R2).

5.4.3. Implementation using HSNE

Our landmark and interaction mapping is suitable for any tree-based hierarchical
embedding method. As proof of concept, we implement our interactions with
Code available on GitHub in the HSNE [52] in the visual analytics framework ManiVault [125]. To do so, we had
repository ManiVaultStudio/Im- to adjust HSNE in some aspects. Most importantly, HSNE defines representation
ageEmbeddingCoupling L s . k
between levels probabilistically. HSNE defines an area of influence I} k1 (L}) that
i

indicates the probability that a landmark L;."l € 2% is well represented by

Lf € £k, The resulting data structure is not a proper tree since each landmark
in Z¥ can be represented by multiple landmarks in £%*!. In order to convert this
structure into a tree, we compute for every data point the landmark in each scale
with the maximum influence exercised on the respective data point. Notably,
HSNE landmarks are not aggregates but each landmark Lf corresponds directly
to an actual data point LY.

In contrast to our method, regular HSNE employs a top-down mapping for
selection linking. It only applies this mapping from embedding to the data
level (image) and does not use a reverse mapping from image to embedding
view. Particularly, when linking from a lower to a higher hierarchy level,
selections are linked based on the landmarks that are contained in both levels
only, but not their parents. That means, rolling-up some %° in the image
will result in K = {Lf | Lf € %% and Lf € ‘iﬁk}. Figure 5.3 shows a simplified
HSNE hierarchy with three levels, where each landmark is connected to its
most representative landmark in the next abstract level. Figure 5.3a indicates
embedding landmarks resulting from our mapping for the three data points in

https://github.com/ManiVaultStudio/ImageEmbeddingCoupling
https://github.com/ManiVaultStudio/ImageEmbeddingCoupling

5.4. Coupling Image Navigation and Embedding Space | 35

Layout
consistency

' mostly

- Landmark random

initialization

(e)
Embedding-

based

recoloring |

VA)
18
No
_, consistency

b [

Figure 5.4. Indian Pines: (a) Recolored image based on top-level embedding as shown in (e), with three ROI viewports as obtained after a zoom (I) and pan (II,

I1I). The top row (b, c, d) shows corresponding coupled embeddings as well as the current re-colored viewports. When changing the viewport to a region which
is represented by a similar set of landmarks, e.g., spatially neighboring regions, to embedding layout stays consi: The initialization mode of each landmark
is indicated in a second scatterplot as based on previous @, interpolated ®, and random @ positions. Standard HSNE refi ts of landmark sets that are

representative of a current viewport, in (f) and (g), do not enable consistent embedding exploration and contain more landmarks for the same level of detail.

view. In contrast, as regular HSNE is top-down-oriented, it coarsens all top-level
landmarks (or those representing the viewport), resulting in an embedding that
contains all level 1landmarks, of which some do not represent the viewport at
all (Figure 5.3b). Using a visual budget target of 2, HSNE would also not refine
the top-level at all in this example. Selecting the data points O and @ in the
image viewport (Figure 5.3d), would only highlight @ in ¢! and none in £2,
since neither point is a landmark in that level.

In the standard HSNE exploration this mapping is sensible. Typically, in-
teractions with an HSNE embedding, like refining a selection, build on the
assumption that the selection is continuous in the embedding space [104]. The
likelihood that %° N 2* contains all relevant landmarks is thus high. But
when interacting with the image space, that is, selecting a spatially connected
region in the image, the linked embedding landmarks usually do not corre-
spond to similarly confined regions in the hierarchy or the embedding layout.
Rather, representative landmarks will be scattered throughout the embedding,
since neighboring image pixels might depict data points with vastly dissimilar
attribute vectors (Figs. 5.2b and 5.2¢).

5.4.4. Initialization of Embedding Updates

When drilling-down or rolling-up in a hierarchical embedding a new em-
bedding needs to be created. Initialization is a crucial step when calculating
neighborhood-based embeddings. In the default implementations of HSNE
these new embeddings are initialized randomly. In order to preserve the analysis
coherence, we want to re-use landmark positions from the current embedding
for the initialization of the updated embedding (R3). Similar to [104], we ini-
tialize all landmarks in @f that were preserved during drill-down or roll-up
with their previous positions from before the interaction Landmarks that were
added during a drill-down are initialized with the position of their respective
parents. When moving horizontally in the hierarchy, newly added landmarks
are initialized based on their neighborhood in the hierarchy. Therefore, we query
the existing neighborhood graph of the scale and interpolate the position using
the three closest neighbors that were present in the corresponding embedding

36

5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

before the interaction. In cases, where @r changes strongly, it might not always
be possible to find a neighbor for a given added landmark. In this case, the new
landmark is initialized at a random position.

As a result, upon panning to a region that remains similar with respect to the
attributes of the shown data points, the embedding is not expected to change
strongly; our initialization ensures that there is consistency between embedding
updates (R3). Nevertheless, when panning to a region containing points with
rather different attribute vectors, there will be little overlap between the previous
Current @ and the embedding will essentially be initialized randomly.
Initializing t-SNE embeddings (or derivatives that follow the same optimization
procedure) with small values is important for their convergence [113]. During
the optimization process, the embedding’s extends grow due to the repulsing
forces that are responsible for creating space between dissimilar points. To
re-enable proper convergence behaviour, we utilize the embedding extents
at a given moment of the first optimization and re-scale all points into this
frame (shrink the embedding) during re-initialization of the embedding for
each update.

5.5. Exemplary Use Case: Hyperspectral Image
Exploration

Here, we show the application of our approach to a representative hyperspectral
data set. We indicate the performance in comparison to exploration of the same
data using standard HSNE and focus on embedding transitions and visual
stability.

The Indian Pines Test Site 3 [10] data sets contain a 614 X 2,678 =~ 1.6M pixel
large image with 200 dimensions attached to each pixel that depict the light
spectrum reflected by the objects in view, specifically fields (e.g., corn and
soy), forests, roads, rivers and houses (more information on the data set in
Supplemental Material SB3). A typical workflow during the exploration of
such data using DR techniques starts with an overview of the image layout and
attribute data, in our scenario given by the top-level HSNE embedding.

In the following, we use image re-colorings to indicate embedding structure —
we map the 2D embedding positions to color using a 2D colormap by Bernard et
al. [126], as shown in previous work [69]. This color-coding allows connecting the
embedding and image space while minimizing imposing additional structure
that comes with choosing a specific clustering algorithm. We computed a 5-level
HSNE hierarchy by picking the 25% most important landmarks (with respect to
their area of influence) at every level to go to the next abstraction level [104],
leading to a top-level embedding with 4,205 landmarks (Figs. 5.4a and 5.4e).
This embedding is laid out over 2000 iterations. For better reproducibility and to
improve global structure we initialize the top-level embedding with the first two
PCA components of the top-level landmark attribute data [113]. Each following
embedding is laid out over 500 iterations with otherwise default parameters as
introduced by Pezzotti et al. [52]. Fewer iterations are sufficient due to the initial
embedding structure given by our re-initialization scheme; additional iterations
can be run on demand. The visual budget target is set to 10,000 landmarks
to provide an appropriate balance between detail and performance, aiming
for total update times of less than one second between changing the viewport
and finished embedding. The embedding view is constantly updated during
the gradient descent iterations starting about 300 ms after the user interaction,
providing visual feedback and thus visual coherence. For detailed timings,
we refer to Supplemental Material SB2. The highlighted ROIs mostly depict
three spectrally distinct top-level clusters (Figure B.3) with blue and violet hues
corresponding to woods, and reddish and yellow-green hues corresponding to
different types of fields.

Starting with the top-level embedding and image in full view, we will first
focus on an area in the lower part of the image (T1) which is predominantly

covered by pixels from two regions in the top-level embedding, woods and
various fields (T2). We zoom-in to ROI (I) to focus on a subset of 57,424 pixels
(Figure 5.4b). Driven by the image-space zoom, we automatically drill down
the HSNE hierarchy in a single interaction step to level 2 with a representative
landmark count of 9,738, closest to our visual budget target of 10,000 (R1, R2).
The entire embedding update took a little under a second of which our hierarchy
traversal only contributed 50 ms (R4). Compared to the overview recoloring
Figure 5.4b, we see that the recolored patch in the new embedding shows a
more detailed structure, within the forest areas and also between (sub)types of
fields, due to the more detailed hierarchy level. Notably, since we initialize most
of the landmarks in the updated embedding, based on the previous landmark
positions (indicated in Figure 5.4b lower right), their general global positions
and thus corresponding colors are preserved (R3). E.g., the forest region is
still represented by landmarks in blue and violet hues, preserving a user’s
mental frame. In contrast, following standard HSNE interactions we start with
a selection of top-level landmarks that are representative for the ROI (obtained
using our bottom-up mapping, since standard HSNE does not provide such
correspondence) and drill-down twice to obtain the same level of detail. The
resulting embedding contains 50,116 landmarks — almost as many as pixel
in the viewport. This embedding represents larger image regions outside the
current ROI than our embedding and fails at preserving coherent landmark
positions between embedding updates. Our approach requires fewer interaction
to yield a more detailed and ROI-specific embedding.

As a next exploration step, we are interested if the observed patterns can also
be found in close vicinity of the current ROL In Figure 5.4c we show the result
of a pan to the partially overlapping ROI (@) . Using our coupled interaction, we
stay on the same abstraction level 2, now with 9,533 representative landmarks.
Since the data points covered by the current ROI overlap substantially with
the previous one, many representative landmarks remain the same during
the embedding update. Landmark clusters that are representing the same
image regions also remain in similar embedding regions, preserving coherence
between the updates. In contrast, standard HSNE interactions would require
drill-down recomputations, leading to inconsistencies between embedding
updates (Figure 5.4g).

To see how the method behaves when moving to an unrelated region, we pan
to ROI @) (Figure 5.4d). The pan triggers with a roll-up in the embedding
hierarchy to level 3 with 3,979 representative landmarks (level 2 had 16,404
landmarks for this viewport). Covering a very different set of data points, the
new ROl is represented by many landmarks that have not been in the previous
embedding, as visible by the abundance of randomly initialized landmarks.
Since the number of representative landmarks in level 2 and 3 are almost
equally distant to the visual target, a user might decide to request more detail
by manually drilling down the entire ROI (T3). Figure 5 in Supplement 52
shows the result of this operation. We can observe that the refined level-3
embedding follows the layout of the level-2 embedding, indicating that the
level 3 embedding was already capturing most of the variation.

5.6. Limitations

Our method currently restricts all embedding landmarks g to be from the
same hierarchy level k. For scenarios in which a ROI contains regions of varying
homogeneity, an embedding view that reflects this with multiple levels of detail
could be helpful. To address this, and further following the terminology of
Elmqvist [124], our set of image interactions might be extended with a new
local-aggregation interaction. For this Focus+Context inspired action the user

would define a focus selection 365)(C K0, a subset of the current viewport. We

would then need to find sets of focus & = K1 and context landmarks € = #*
such that the embedding & = € U F represents the current ROI well. However,

5.6. Limitations

37

38

5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

even though Hollt et al. [104] already proposed such a Focus+Context framework
for hierarchical embeddings, it is not straightforward to extend to our setting.
Contiguous selections in the embedding space ensure that the represented data
points on lower levels are well-connected. As discussed in Section 5.4.3, these
selections can be assumed when interacting with the embedding rather than the
image. Selections of spatially connected regions in image space typically do not
correspond to similarly confined regions in the embedding hierarchy since data
points with vastly different neighbours might be spatially close. Rather, linked
landmarks might be scattered throughout the embedding. Landmarks with few
HSNE transition matrix connections experience lower attracting forces during
the embedding optimization and are pushed to the periphery by dominating
repulsive forces.

Further, our re-initialization scheme in Section 5.4.4 does not guarantee con-
sistency between embeddings when moving back and forth between two ROI
without any overlap in their corresponding &g. We consider approaching these
limitations future work.

5.7. Conclusion

In this chapter we have presented an interaction strategy for the coupled
exploration of high-dimensional images with hierarchical embeddings. Our
method couples image navigation interactions (zooming and panning) with
an embedding space that represents the attribute data. We showed how an
“overview-first, details-on-demand” approach is well-suited for driving embedding
detail based on user interactions with the image space.

Future lines of research may focus on extending the embedding view from a
single to multiple levels of detail by showing landmarks from several hierarchy
levels Another possible direction would be exploring ways of providing a user
with guidance on where to zoom and pan to.

We showed the potential benefits of coupling image navigation with simulta-
neously updating embeddings for exploration analysis workflows. However,
so far the construction of the embedding hierarchy has been agnostic of the
image itself. In the next chapter we will explore superpixels as a way of includ-
ing information about the image layout into data hierarchies for hierarchical
embeddings.

Manifold-Preserving
Superpixel Hierarchies

In the previous chapters, we discussed the coupling image interactions and of
hierarchical DR and incorporated spatial arrangement of image data into DR
techniques. In this chapter we further examine how hierarchical data structures
may support the exploration of high-dimension images. Specifically, we build
on an image hierarchy compatible with existing DR techniques that maintains
fidelity to both the spatial layout of the images and the high-dimensional
attribute space.

6.1. Introduction

Hierarchical DR techniques [51-53] tackle the scaling problem of single-level
embedding methods. They reduce the number of embedded points by creating
hierarchical data structures. Upper levels in these hierarchies represent the
original data at increased rates of abstractions. Now, instead of projecting the
original data, hierarchical DR techniques embed (subsets of) the abstracted
points on a given hierarchy level. With each added abstraction level the DR tech-
niques embed fewer points, thus reducing scaling issues. However, abstracted
points often represent a wide spread of pixels, i.e., they do not necessarily
correspond to connected spatial regions. Figure 6.1 illustrates this shortcoming
of data-space-based hierarchical DR techniques applied to images: Without a
structural link between data hierarchy and image, exploring ROl in the image
space using the embedding becomes complicated. Points in the embedding
correspond to widely spread pixels and pixels might be represented by several
embedding points at the same time.

Previous approaches tackle the lacking awareness of spatial arrangement in
embeddings of images by incorporating spatial neighborhood information into
the similarity measure which is used for DR, see chapter 5. Even so, if one were
to use a spatially-informed distance measure in a standard hierarchical DR
techniques, the problem of non-spatially-continuous abstractions would remain.
Other approaches link the image and data space exploration by coupling the
level of detail (LoD) in a hierarchical embedding based on the LoD presented in
image space, guided by zooming and panning [109]. Still, each image-coupled
LoD embedding tends to represent large regions outside the ROI. To fully enable
a coupled exploration of image and attribute space, we need a hierarchical data
representation that couples these spaces both in its creation and respects their
link during interaction.

Our approach for such an image hierarchy comprises superpixels, i.e., non-
uniform, continuous pixel groups which segment the image. In this context, a
superpixel hierarchy is a sequence of superpixel segmentations with increasingly
large and consequently fewer superpixels. Segments in higher hierarchy levels
result from merging lower-level segments. When dealing with classic color
images, superpixel segmentation is typically based on a similarity measure
between perceptual features like distances in perceptually uniform color spaces.
We propose to merge segments using similarity measures based on the high-
dimensional manifold structure of the attribute data that is associated with
each pixel. Thereby, and in contrast to the data hierarchies used in other
hierarchical DR techniques, our superpixel hierarchy is informed not only by
the high-dimensional attributes but also the spatial component of image data.
In this chapter, we connect the exploration of image and attribute space of high-
dimensional images by incorporating spatial information into a hierarchical
embedding. To accomplish this, we propose:

» a superpixel hierarchy for high-dimensional images, based on
» a manifold-aware similarity measure between superpixels, and
» integrating this similarity in dimensionality reduction methods.

This chapter is based on the pa-
per “Manifold-Preserving Super-
pixel Hierarchies for Exploration of
High-Dimensional Images” [under
review].

6.1 Introduction 39
6.2 Related Work 40
6.3 Superpixel Hierarchy 42
6.4 Preliminary Consider-

ations 42
6.5 Method 43
6.6 Validation 47
6.7 Discussion 52
6.8 Conclusion 53

40 6. Manifold-Preserving Superpixel Hierarchies

Image-space-based

Pyramid

Blur and
subsample

Level 2

Blur and
subsample

(

Level 1

Data-space-based Combined (ours)

hlerarchy

Flower Surrounding

Manifold-informed
smnrarmes

Landmarks map

Landmark similarity to widespread
jelds embeddin pixels
v 9 | @ o .
O

®
\ic@a*‘

3 Landmark &%, o
2 represent attribute ©% [e)
K neighbors O
-
e a HSNE hierarchy HSNE embedding
Figure 6.1. Image Hierarchies: Classical image-space-based hierarchies, like image p ids, progressively blur and subsample the image (left). Data-space-based

hierarchies, as used in hierarchical DR methods (center), ignore the image space entirely and only aim to preserve manifold structure of the attribute space. A pixel,
as highlighted in the hierarchy, might actually be represented by multiple landmarks in abstraction levels. And, in turn, a landmark can represent scattered pixels.
Combined, this complicates an image-based exploration of the high-dimensional space. Our superpixel hierarchy (right) combines both image layout and attribute

space manifold structure.

Relevant work on hierarchical di-
mensionality reduction is discussed
in Chapter 3.

6.2. Related Work

In the following, we aim to report the work most relevant to this chapter, namely,
superpixels and node embedding methods.

6.2.1. Superpixels

There exist a wide range of superpixel methods and their full discussion is
out of scope of this chapter; instead, we refer to more extensive reviews [127—
129]. Typically, superpixel methods work with three-dimensional color images,
though here we will focus on methods most pertinent to our work, which are
those specific to high-dimensional images.

Hyperspectral imaging (HSI) is the main high-dimensional image domain
which uses superpixel methods, usually aimed at downstream tasks like pixel
classification, endmember detection and hyperspectral unmixing. Using the
Felzenszwalb and Huttenlocher’s [130] image segmentation method Thompson
etal. [131] describe a superpixel segmentation methods for hyperspectral images
with the goal of endmember detection. They perform agglomerative clustering
to define superpixels and merge clusters based on spectral distances of pixels
within and between superpixels. While this approach does create a superpixel
hierarchy, it does not fully preserve the manifold structure of the underlying
spectral data. Also, while one technically could use their inter-superpixel
distance as a basis for an embedding of a hierarchy level, it does not capture the
similarity of all pixels contained in the respective superpixels well, since it only
incorporates distances of pixels along superpixel boundaries. Similarly adapting
an originally color-focused method, Xu et al. [132] follow the k-means based
SLIC [133] and substitute the color distance for a spectral distance. Barbato et
al. [134] also adapt SLIC, augmenting it with both hyperspectral distance and
an additional spectral clustering preprocessing step.

Another popular superpixel method in HSI are entropy rate superpixel [135].
They employ an entropy-based objective function for superpixel segmentation
that combines the entropy rate of a random walk on a graph with a balancing
term to promote compact, homogeneous, and similarly sized clusters. The
method constructs a graph in image space by iteratively adding edges between
pixels that maximize random walk entropy within the new superpixel. Several
authors extend this method to HSI: whereas Tang et al. [136] advocate using
spectral distances to set up the random walk transition probabilities, others use
the first or first three principal components to create a false-color image and
apply color distances [137]. The entropy rate superpixel method also creates
a superpixel hierarchy, but does not explicitly define distances or similarities
between superpixels, which we aim to do in order to embed each hierarchy
level.

6.2. Related Work 41

Grady [138] describes another method that uses random walks in image space
to define merge criteria for superpixels. Given specific seed pixels, a pixel is
assigned to a superpixel based on which seed pixel is visited most often by
random walks started on the pixel itself. Follow-up papers introduce additional
shape constraints and allow self-loops in their walks, as well as data-based seed
selection techniques [139, 140]. However, these methods require a fixed number
of seed points, and thereby superpixels, and do not define similarities between
superpixels either.

Agglomerative methods all implicitly create superpixel hierarchies but usually
chose a single hierarchy level as the resulting image segmentation. In contrast,
Wei et al. [141] explicitly compute all levels of a superpixel hierarchy based on
the Bortvka’s algorithm for finding a hierarchy of minimum spanning trees
applied to images. Yan et al. [142] extend this method for asymmetrical distance
measures between pixels. We base our superpixel hierarchy on the adaption of
the Bortivka’s algorithm presented by Wei et al. [141]. However, they ignore the
manifold structure of high-dimensional input data. To inform the superpixel
distance and superpixel merging with the data manifold structure we also
employ random walks, but use them in the pixel attribute space instead of the
image space as all methods above.

6.2.2. Node embedding methods

Embedding nodes (vertices) from a graph structure is a problem related to
dimensionality reduction methods, which are often used for visualizing and
exploring data. Khosla et al. [63] compare several such node embedding methods,
which compute a low-dimensional feature vector for each vertex in a graph; in
contrast to the above dimensionality reduction techniques, these methods are
typically designed for the downstream tasks of multi-label classification and link
prediction. Variations of random walks are often used to define vertex features,
e.g. the frequency of vertex visits, here as well. In node2vec [64], for example,
random walks are biased by adjusting the transition probability for walking
backwards and walking to a vertex that is not connected to the previous vertex.
tsNET [65] follows a different approach: they take geodesic distances between
vertices in graphs as input for the similarities as defined in t-SNE and map them
to 2D based on a modified cost function. Earlier, Isomap [26] introduced the idea
of using geodesic distances into DR methods that build on multidimensional
scaling. In fact, random walks have been used to estimate geodesic distances
in various settings [67, 68]. However, both Lee and Verleysen [66] as well as
Lafon and Lee [56] discuss that using shortest-path-based similarities (i.e. using
geodesic distances) can be susceptible to creating shortcuts that jeopardize the

Figure 6.2. RGB image (top left) and 2
levels of abstraction (3and 5). Superpix-
els are recolored with the average color
of all pixels they contain. Numbers of
components: 15300 (150x102 pixels),
271, 14.

Level 0 (data) Level 3 - Level 5

42 6. Manifold-Preserving Superpixel Hierarchies

See chapter 2 for our image indexing
notation.

Merging might not always be pos-
sible, see the merging criterion in
Section 6.5.

Image graph .¥

Attribute
distance &

v

Symmetrized &
connected
kNN-graph €

representation of the underlying data manifold whereas random-walk-based
similarities seem to be more robust.

Embeddings are certainly not the only way of visualizing and exploring high-
dimensional image data in a hierarchical manner. For example, Jalba et al. [143]
use watershed based supervoxels for exploration of diffusion tensor images
(DTI). They set up a linked view of the segmented DTI and the watershed
tree that represents the multidimensional data hierarchically. Their method is
similar to ours in that it also creates a hierarchical superpixel representation
but uses domain specific superpixel merging criteria that involve computing
means in the data space, which is both difficult to generalize for non-DTI data
and ignores the data manifold structure.

6.3. Superpixel Hierarchy

Superpixels segment the image domain irregularly. We define a superpixel
segmentation § as a partition of .¥ with s = |§| disjoint components. Each
superpixel s, € § is associated with a connected subgraph of .7. A superpixel
hierarchy of L levels is an ordered set of superpixel segmentations {8 O, ...,S L}
with §° containing all vertices from .¥ as individual components and the
property that each superpixel of §*! is obtained by merging one or more
superpixels from S!. We read o; as the p-th superpixel on level I. Each superpixel
in this hierarchy can be seen as a set of superpixels from a lower level, down
to image pixels in the lowest level. The number of image pixels contained in a
superpixel is notated as |o£7|

Such a superpixel hierarchy can be constructed by merging components in
the image graph .7 following Bortivka’s algorithm for finding a minimum
spanning tree (MST) [141]. Starting with each pixel as a component/tree,
spatially neighboring trees are iteratively merged based on a distance criterion.
We use the Bortivka method similarly but where Bortivka’s algorithm connects
trees, we merge superpixels.

6.4. Preliminary Considerations

A superpixel hierarchy is a hierarchy both in image space and pixel attribute
space: spatially adjacent pixels are merged based on similarities of their attributes
or features, e.g., color intensity or texture respectively. Rather than color
images, we are interested in high-dimensional images. High-dimensional data
often exhibits an underlying manifold structure which is of high interest for
data exploration. Using Euclidean distance or measures defined for color
images would ignore this manifold structure. Therefore, geodesic distances,
approximations thereof, or local measures are preferred. We will construct the
superpixel hierarchy with a manifold-aware similarity measure. To explore the
high-dimensional image both in image and pixel attribute space consistently,
we later use the same measure to embed each superpixel on a given hierarchy
level.

For capturing local manifold structure in high-dimensional data a k-nearest
neighbor (kNN) graph in R€ is commonly used. We can compute a kNN-graph
based on distances between the high-dimensional attributes, e.g., using squared
Euclidean distances 6(i, j) = [laj — ajllé A kNN-graph is not guaranteed to be
made up of a single connected component, but we want to enforce the graph to
be connected, since it allows us to define geodesic distances between all vertex
pairs. Later in Section 6.5, we require connectedness as it ensures the existence
and uniqueness of a stationary distribution of random walks. We convert
the directed KNN-graph into a symmetrized and connected kNN-graph 6
following the scheme laid out in Supplemental Material SC2. We index vertices
in this attribute-based graph ¢ with i, like in the distinct image graph .¥, since
the i-th vertex (associated with a;) in ¢ and v in .¥ refer to the same data
point, albeit with respect to the different spaces. The set of vertices that are

directly connected to a vertex i via one edge was previously referred to as its

attribute neighborhood JViC’k but for notational simplicity we will use A (i) in
this chapter.

Once the symmetrized and connected kNN-graph € has been build, a straight-
forward manifold-preserving distance dy(i, j) between two data points is
their geodesic distance, i.e., the accumulated distance along the shortest-paths
between their vertices in €. Since on the data level every component 4 € 8° is a
single pixel and corresponds directly to a single data point we can immediately
apply the geodesic distance to compare them. On higher levels though, we need
to broaden the definition of this measure since there we are associating sets of
pixels/data points. One successfully applied measure used for comparing sets
of points is the Hausdorff distance:

dy(sp,aq) = max{max (min d(i,j)) , max (r_nin d(j,i))} (6.1)

i€sp \j€sg j€sg \i€sp

with d(i, j) = dg(i, j)- That is, we capture the worst-case mismatch between the
sets by finding the maximum distance from any pixel in one superpixel to any
pixel in the other. When both superpixel just contain a single pixel, di simplifies
to the geodesic distance dg between them.

While this approach can yield reasonable results with respect to both the su-
perpixel hierarchy and respective embeddings (see Figure 6.2), its intrinsically
expensive computation renders it undesirable in practice. For high abstraction
levels it would involve computing all geodesic distance combinations between
sets of thousands of pixels, which becomes computationally taxing fast. One
way to address this could be taking a number, e.g., 100, sample pixels from
each superpixel and compute the Hausdorff distance between these represen-
tative subsets. However, geodesic distance based approaches like this may be
jeopardizing manifold representation by over-valuing shortcuts in the graph
which are not necessarily essential for the graph structure [56, 66]. Instead, we
propose a more robust similarity measure based on features obtained from
random walks on the data graph.

6.5. Method

Previous work on creating manifold-preserving hierarchies of high-dimensional
data [52, 53] used random walks to compute features for each data point,
and employed a distance between those features as a proxy for exact geodesic
distances to define manifold-preserving similarities between landmarks, i.e.,
vertices of the graph that represents a neighborhood on a more detailed level
of the hierarchy. We follow a similar approach, but do not use landmarks for
data-abstraction. Instead, we want to define a similarity between superpixels
that can be used both as a merging criterion during the superpixel hierarchy
creation with Bortivka's algorithm as discussed above, and as the basis for the
embedding at each hierarchy level.

6.5.1. Constructing the image hierarchy

To compute embeddings of superpixels on each hierarchy levels we need to
define transition matrices T on each level I. We propose to define the data level
transitions T” based on random walks in attribute space and compute T' for
abstraction levels [> 0 by merging rows and columns of lower level transition
matrices.

Asin the geodesic approach before, we begin on the data level with an undirected
and connected graph 6. For each vertex in G, we start @ walks with A steps
governed by the edge weights of €. On the data level | = 0, we use a Gaussian

6.5. Method 43

See Section 2.4 for breakdown of
t-SNE.

44 6. Manifold-Preserving Superpixel Hierarchies

Original image

3 Superpixel image segmentation
:
E @ ﬁ [
§ \
Channel @ @ SRS
Similarities
4 from overlap
Similarities
from point
distances
Data level embedding Abstraction level embedding

Figure 6.3. Method overview: Each image pixel is associated with a high-dimensional attribute vector (top left). (1) We compute a nearest neighbor graph G,
whose vertices correspond to pixels and edges are based on attribute similarities. The data level embedding is computed from this neighbor graph, like in, e.g.,
t-SNE. (2) We compute a feature vector per vertex, describing the local graph structure, using random walks. (3) For the next abstraction level, vertices in the
attribute graph G are merged with the spatially (in the image layout, i.e., F) neighboring vertex of largest feature similarity. (4) The new vertex retains all outgoing
connections of the merged vertices. All vertex features are added and re-normalized. (5) This is repeated for each vertex. (6) Similarities between merged vertices are
used for creating embeddings where each point corresponds to one superpixel (right).

kernel to transform the edge weight (data distances) into transition probabilities
for the walks:

0 exp (=6(i,j)/oi) I .

= o thj, keN 6.2

it ™ Srep oG /oy I REND ¢

oj is chosen such that the conditional probability P; equals the perplexity
u = |N(i)|/3 as in t-SNE [110]. Small data distances are assigned a high transition
probability and large distances a small one. Notably, a random walk is confined
to the edges of the data graph €. The self-step probability p?li is zero, since we do

not include a vertex into its own neighborhood. A walk may return to its starting
point. We adjust the perplexity (and thereby the number of nearest neighbors)
on a level following Kobak et al. [113] to # = max (10, min(n/100, 100)).

The random walks populate a sparse matrix T. A random walk starting at
vertex i in the attribute graph € populates the matrix row T(i, —), an unnor-
malized feature for the vertex. At each step we increase the feature T(i, j) by a
weight, where j is the vertex the current step landed on. The weight decreases
exponentially with the number of already taken steps starting with a weight of
1. Finally, we normalize each row T'(i, —) such that all entries sum to 1yielding a
valid transition matrix. Figure 6.3 illustrates the coverage of the random walks,
i.e., the vertex feature, for two vertices in green and blue.

The transition probability vector T(i, —) is a descriptor (feature) of the high-
dimensional neighborhood of vertex i in the attribute graph . Now, to quantify
the similarity between two vertices, and later superpixels, we measure the simi-
larities of their features, which are probability distributions after normalization.
Such a measure is given by the Bhattacharyya coefficient BC which measures
the overlap of two distributions, in our case:

BC'(ol,al) = D7 T, al) TI(E, o) (6.3)
aieSl

The Bhattacharyya coefficient always lies within [0, 1] where 0 indicates no
overlap/similarity and 1identical distributions. Note that on the data level | =
0, a superpixel A? corresponds to a pixel at i = (x, y);, yielding BC(i,j) =

Zkegﬂ VTO(ir k) TO(]', k)

Iterating over all superpixels, the Bortivka superpixel algorithm merges each
superpixel with their spatially neighboring superpixel in .¥ with the smallest
distance in 6. Pixels are either 4- or 8-connected in .7, but on higher abstraction
levels superpixel neighbor-relation in .¥ can be less regular. We can use the
Bhattacharyya distance dpj .t = —In BC as a distance measure between the su-
perpixel features. However, instead, we can skip the double inversion (negation
and In of a number smaller than 1) and use the largest BC as a merge criteria
directly, which is equivalent to merging with the smallest dpj, ¢ due to their
strictly monotonic-inverse relation. In contrast to the distance measures pre-
sented for color image superpixel hierarchy from [141] or the geodesic approach
from Section 6.4, the BC similarity from Equation 6.3 may result in all-zero
similarities between a superpixel and its spatial neighbors. This is because the
random walks purposefully do not cover the entire data. In this case, we do
not merge this superpixel with any neighbor. (Unlike the Bortivka superpixel
hierarchy algorithm [141] which we generally follow for superpixel merging.)
However, the superpixel may still be merged later with newly-formed neighbors
on higher levels.

While we have a general superpixel merging criterion in Equation 6.3, we still
need a method to generate a transition matrix T! on an abstraction level I. On
each level, we want the superpixel descriptors to preserve the data manifold.
Therefore, to obtain T on hierarchy level [, we merge corresponding rows and
columns of the transition matrix T'~!, following the same merging-pattern
of superpixel components from §'~! to §/ and re-normalize. Figure 6.3 (3-5)
illustrates the vertex and feature merging. The merged features of the meta
vertices now describe the local graph structure of all pixels contained in the
corresponding superpixel.

6.5.2. Computing embeddings on each abstraction level

On the data level, we use p?Ij directly for embedding, as they are equivalent to

the high-dimensional similarities used in t-SNE. On higher abstraction levels,
we convert the superpixel similarity measure BC into analogous probability
distributions pis by by applying a Gaussian kernel to the Bhattacharyya dis-

tance dpj,;. For better readability we omit superscripts [for the remainder of
this section, all equations are defined per level [:

exp (_chut (3r,95)/ 0)
Zkexp (_chut(Arr 3k)/0115)

Paslsy = with 45, 3 € N (3) (6.4)

where 4, and 45 refer to superpixels on level I and N (s;) is the set of superpixel
directly connected to 4,. 0, is determined as in Equation 6.2.

Level 2

1 |Level 0 (data) e Level 2

Figure 6.4. Indian Pines: Embeddings and image space recolorings (see Figure 6.5f) for (a) t-SNE and (b) UMAP probabilities. The full hierarchy is shown in

Figure C.5 in the Supplemental Material SC6.

6.5. Method

45

\ |Level 4

Level 4

46 6. Manifold-Preserving Superpixel Hierarchies

b 6.248 superpixels d 326 superpixels f 1261 superpixels
Refine selegtion '
LA
Level 4 Level 3
Superpixel embeddin
perp 9 ROl selection Refined embeddings Recol_ored ROl bas_ed on
HSNE refined embedding

c 4.009 landmarks e 1.402 landmarks g 3.294 landmarks i

Sl e
Level 3 L» ~800.000 pixels \n’\mage)

3
Level 4

Figure 6.5. Indian Pines Exploration: (a) a false color image based on data channels 20 (587 nm, red), 76 (1090 nm, green) and 130 (1591 nm, blue) with a ROI
marked in red. (b) and (c) show the 4th abstraction level embedding of our superpixel embedding and HSNE, respectively; (d) and (e) highlight the superpixels and
landmarks which correspond to the ROL. (f) and (g) show refined embeddings of the highlighted subsets on a lower abstraction level. (h) and (i) recolor the a cutout of
the image based on the refined embeddings using an overlaid 2D colormap Finally, (k) indicates the pixels in the full images which are represented by the HSNE
refinement, whereas our superpixel refinement extends only slightly around the ROIL

The Bhattacharyya coefficient BC in dpj,q¢ (37, 45) is equivalent to the dot product
of two rows from T after taking the square-root of each element. Further, the
random-walk generated superpixel features T are a very sparse matrix which
allows for efficient computation of a dissimilarity matrix D = [dpp; (37, 45)] on
each level instead of computing each entry individually, as:

D=-In (\/T VTT) (6.5)

where VT = [\/T(or, A[)] takes the element-wise square root of T and In takes

the element-wise natural log. D is inherently symmetric since the Bhattacharyya
coefficient is symmetric as well, reducing the computational complexity fur-
ther.

For the embedding layout computation we use the symmetrized conditional

probabilities P = {pij} with py = (pyjj + pjji)/2 as in t-SNE [110].

Embedding with UMAP. Above, we used t-SNE as our basis for defining joint
probabilities pj; but neither the hierarchy creation nor embedding layout are
limited to this choice. For example, we might choose the probability definition

from UMAP:
0(,j) — pi
Pl = exp (—%) with j € ¥ (i) (6.6)
1

where pj is the distance of i to its closest neighbor and oj is set such that ; pjj; =
log, k as in [28]. On the abstraction levels, the probability distributions p,,, are
defined analogously to Equation 6.5 using the Bhattacharyya distance. Here, we
perform the conditional probability symmetrization with pij = pyj; +pjji — PijPjli-
The rest of the described algorithm remains unchanged. Figs. 6.4a and 6.4b
shows two abstraction levels and embeddings for the Indian Pines dataset [10]
with t-SNE and UMAP probabilities respectively.

6.5.3. Subset embedding refinement

To support the exploration of ROIs in image space, it is essential to be able
to request more detail, i.e., an embedding on lower abstraction level. Such a
refinement operation starts with a selection of superpixels 8! onlevel I, e.g., by
manually selecting points in the embedding, or more pertinently, superpixels in
the image. We find the set of superpixels 81 which represents the same data

points as S!. Aseach superpixel ol € §! was obtained by merging superpixels
from level [-1, the refined superpixels can be looked up directly in the hierarchy.
From there, we calculate a new probability matrix P! from the symmetrized
conditional probabilities P/~! by extracting the submatrix for which all rows
and columns correspond to the refined superpixels. The rows in P!=1 are then
normalized to sum to 1.

Superpixel selections in the image space can easily lead to situations in which
superpixels without any connections in the transition matrix are selected. The
force-directed layout in t-SNE will not be able to place these superpixels close
to any other, leading to isolated points occupying large peripheral parts of
the embedding space. For such cases, we can relax the selection criteria of
lower-level superpixels in order to obtain a better connected superpixel. To
introduce additional, non-selected superpixels from level / — 1 we define a

threshold y € [0, 1]. Any superpixel ./Jj-_l that is connected to a selected §i1—1

with a transition value pilj_l > 7 is also added to the refined superpixels.

6.5.4. Implementation

As the computation of the kNN-graph on the data level tends to be increasingly
expensive for large data sets, we instead approximate the k-nearest neighbors
with HNSW [106] using Faiss [144]. Using an approximated kNN-graph is com-
mon practice in virtually all contemporary neighborhood-based dimensionality
reduction methods since its first introduction in A-tSNE [103] as this practice
comes with small to negligible loss of embedding quality.

The random walks on the data graph with A steps are a Markov Chain Monte
Carlo technique to approximate P*. While it is possible to perform the sparse
matrix multiplication explicitly, we chose to approximate it with the random
walks. This allows us to tweak the number of repeated walks w and step length A
to adjust the tradeoff between computation speed, and approximation accuracy
and memory consumption.

We use the GPGPU approximation [103] of the t-SNE embedding layout and
employ the stochastic gradient descent implemented by umappp for the UMAP
embedding layout.

An implementation of our method as a standalone library and an interactive
tool with coordinated views between image and embedding representation in
the ManiVault framework [125] are available on GitHub.

6.6. Validation

In this section, we first present two use cases with real-world data to illustrate
the application of our method and, secondly, evaluate the superpixel hierarchy
quantitatively.

6.6.1. Use Case: Exploring Hyperspectral Images

Hyperspectral images contain information about a large spectrum of light, in
contrast to three color channels in RGB images. Here, we present an example
based on the Indian Pines Test Site 3 [10] dataset. The image depicts fields (e.g.,
corn and soy), forests, roads, rivers and houses from an aerial perspective. It
measures 614 X 2,678 =~ 1.6M pixels with 200 channels. The pixel resolution
is roughly 20m X 20m and the channels contain electromagnetic spectral
information from 400 nm to 2400 nm sampled at 10 nm. (We exclude 20 of the
original 220 channels due to their low information, as suggested by Gualtieri
and Cromp [145].)

When exploring large hyperspectral images, one typically searches for interest-
ing spatial-spectral regions, i.e., a combination of high-dimensional attribute
and image layout characteristics. We start from a zoomed-out overview repre-
sentation of the image and want to focus on a ROl in the lower part of the image

6.6. Validation 47

Code available on GitHub in the
repository biovault/HDILib

Code available on GitHub in the
repository libscran/umappp

SpatialHierarchyLibrary and
SpatialHierarchyPlugin available
on GitHub in the repositories
alxvth/SpatialHierarchyLibrary

and alxvth/SpatialHierarchyPlugin

https://github.com/biovault/HDILib
https://github.com/libscran/umappp
https://github.com/alxvth/SpatialHierarchyLibrary
https://github.com/alxvth/SpatialHierarchyPlugin

48 6. Manifold-Preserving Superpixel Hierarchies

Figure 6.6. Non-exact refinement:
Instead of refining to the minimal su-
perpixel cover of the pixel ROI in a
lower abstraction level we may addi-
tional include all superpixels with a

transition probability pil]fl >y to
a superpixel j from the cover above a
threshold, here y = 0.01.

#6.108 superpixels|

Level 3 (non-exact refinement)

as indicated in Figure 6.5a. We compute our superpixel hierarchy with @ = 50
random walks with A = 25 steps each. The seven superpixel levels alongside
their embeddings are shown in Figure C.1in .

We compare our superpixel embedding exploration with an image-coupled
HSNE exploration [109] which proposes to drive the refinement of a hierarchical
image embedding from ROIs in image space, but uses a conventional image-
agnostic hierarchical data representation. Figs. 6.5b and 6.5¢ show the fourth
abstraction level embedding of our superpixel hierarchy and the HSNE hierarchy
respectively. The ROI encompasses ~100, 000 pixels. These are covered by 326
superpixels on the fourth abstraction level and 1, 402 landmarks in the respective
HSNE level, see Figs. 6.5d and 6.5e. As the HSNE hierarchy has no notion of
the spatial data layout, high-level landmarks likely correspond to data points
scattered across the entire image, whereas all pixels in a superpixel are located
close together by design. Hence, far fewer points in the superpixel embedding
are used to cover the ROL

Focusing on the ROI, we refine the selected embedding points to explore data
similarities on a lower level of abstraction. To connect the embedding with the
image representation we use an image recoloring based on the embedding: the
embedding positions are converted to colors using a 2D colormap by Bernard et
al. [126]; then, the corresponding superpixels are colored accordingly (Figs. 6.5h
and 6.51). An interactive application would not solely rely on color here, but
provide a coupled selection mechanism, as in our reference implementation,
see Section 6.5.4. The 1, 261 refined superpixels on level 3 cover the same image
region as the selected superpixels in level 4 — slightly extending over the
ROI due to the superpixels irregular shapes. By contrast, the 3,294 refined
landmarks cover a much larger area, and with ~800, 000 pixels almost half the
image (see Figure 6.5j).

Notably, the refined superpixel embedding shows better distinguishable clusters
in the center, where the bulk of embedded superpixels are located, but also
shows more isolated superpixels in its periphery than the ROI-refined HSNE
embedding. This follows from the matrix cutting scheme in Section 6.5.3 to
obtain the transition matrix of the refined superpixel subset: the most similar
superpixels to those isolated, peripheral superpixel are located outside the
ROI and therefore not included in the refined embedding. As a result, some
embedding points have few, if any, non-zero transition probabilities within the
refined group and are pushed to the outside during the layout optimization.
One possible remedy to this issue is to perform a non-exact refinement. In
Figure 6.6 we included additional superpixels with a transition probabil-
ity pilj’l > 0.01 to a superpixel j already contained in the exact refinement.

The resulting set of superpixels still covers only half as many image pixels as the
refined HSNE landmarks. The superpixels clearly delineate borders of relevant
image regions like fields, roads and rivers. Since our superpixel embedding
projects a smaller cover of the total image it is able to show more detail than the
HSNE embedding at the same abstraction level.

6.6. Validation 49

Multi-channel
exploration

Single-channel
exploration

Level 0 (data, t-SNE) Level 4

Level 2 Level 6

Figure 6.7. CyCIF Exploration: (a) Image recolored with two structural markers and DNA. Highlighted in white are two separate selections, corresponding to two
clusters in the fourth abstraction level superpixel embedding (b, d). (c) Recoloring based on three markers of interest, indicating a region with high intensity in
multiple markers. (e-h) Embeddings on several levels of abstraction and corresponding recolored images, using the colormapping from Figure 6.5f. (i, j) Zoom in on a
ROI as highlighted in (f), both recolored according to the embedding and with random gray values to better distinguish between superpixels.

6.6.2. Use Case: Exploring CyCIF Images

Analyzing the function of and interplay between cells in tissue is of major interest
in systems biology, e.g., for researching cancer. There exists a range of spatially For techniques like CyCIF, multiplex-

resolved, multiplexed imaging methods that are commonly used in the domain. ing means the technique can detect
and image many different proteins

For this use case, we focus on cyclic immunofluorescence (CyCIF) [146], an or biomarkers within the same tis-
imaging technique that enables the detection of numerous molecules in a piece sue sample or cell population dur-
of tissue. CyCIF generates high-dimensional images, each channel representing ing a single experimental workflow.

the abundance of a specific protein with a spatial resolution in the micrometer
range. The characteristic profile of protein expression is used to characterize
cells, and the spatial distribution of cells provides cues on interactions between
cells as well as between cells and other tissue structures. Both this segmentation
of cells and the subsequent analysis of their spatial neighborhood are key
concerns in current research.

Here, we apply our superpixel hierarchy embedding exploration to a CyCIF data
set on cancerous skin tissue published by Yapp et al. [147] which is also used

50 6. Manifold-Preserving Superpixel Hierarchies

Data available via
biovis.net/2025/biovisChallenge

in the Bio+MedVis Challenge at IEEE VIS 2025. While the original 54-channel
3D CyCIF data contains 10,908 x 5,508 x 194 voxels at a resolution of 0.14 ym,
we focus on a downsampled, maximum-projected subset of 2,000 X 1,500 with
a pixel resolution of 1.12 pm. Figure C.2 in the Supplemental Material SC4
indicates the location of the cutout. Figure 6.7a shows a false-color image using
markers indicative of tissue structure and general DNA abundance.

We use 27 log-normalized channels (as suggested by the original authors,
and listed in the Supplemental Material SC4) as input for our superpixel
hierarchy. For more memory efficient computation we use w = 30 random
walks with A = 10 steps and set the number of nearest neighbors in the data
kNN-graph to k = 90. Figure 6.7b shows the fourth abstraction level embedding
with 4, 104 superpixels. Many superpixels on this level partially or fully match
the outline of cells in the image.

In a first, straightforward exploration step, a practitioner might consider a
single marker/channel, as cells with a large abundance of this specific marker
indicate a certain role in the immune system. Figure 6.7d maps the average
FOXP3 expression of all pixels in a superpixel on the embedding. FOXP3 indicates
regulatory T cells which play a role in the immune response to cancer cells.
One cluster in the embedding stands out with all superpixels showing bright
pink color indicating high expression of FOXP3. The superpixels correspond to
multiple cells scattered along the diagonal of the image, indicated as white in
Figure 6.7a.

In a second exploration step, a practitioner can search for embedding clusters
and image regions with high expression across multiple channels, e.g., lamin,
panCK and pMLC2. Figure 6.7c again recolors the image, but now based on the
superpixels using the average marker expression of all pixels covered by a
superpixel are mapped to RGB color channels. A distinct group of superpixels
in the embedding shows high expression of all three markers — and these
superpixels in turn correspond largely to cells located in an upper-left stratum
of the tissue.

To show the merge sequence of several superpixels across hierarchy levels,
Figure 6.7i and Figure 6.7j focus on a small cutout, as indicated in Figure 6.7f.
This comparison requires a degree of alignment of embeddings in several
hierarchy levels. Kobak et al. [113] argue that initializing t-SNE embeddings
of single-cell transcriptomics data with their first two PCA components is
beneficial for preserving global structure and reproducibility. We apply this
approach to the superpixel embeddings by computing the first two principal
components based on the average expression of proteins within the superpixels.
Figs. 6.7e, 6.7f, 6.7g and 6.7h show multiple abstraction levels, following the
same embedding-based recoloring as in Figure 6.5h.

To better visually distinguish individual superpixels, Figure 6.7j assigns random
shades of gray to each. On lower abstraction levels, like 1 and 2, superpixels still
subdivide meaningful structures in the data. On higher abstraction levels, like 4
and 5, superpixels clearly highlight cell structure.

Anin-depth analysis of the segmentation quality of the superpixel hierarchy goes
beyond the scope of this work. However, these initial findings are a promising
indication of a potential joint segmentation and exploration of single-cell data,
which are typically two completely separate workflows.

6.6.3. Quantitative Hierarchy Evaluation

Numerous quantitative metrics for the evaluation of superpixel algorithms
exist; Stutz et al. [128] give a comprehensive overview of commonly used
metrics. Classical superpixel algorithms are developed for color images and
aim to group perceptually similar pixels together. Most algorithms are not
straightforward extensible to high-dimensional data sets, as concepts like color,
texture or edges do not always have a trivial equivalent in high-dimensional
images. This renders a direct comparison between color-superpixel methods
and our high-dimensional-superpixel method not directly meaningful. We

https://biovis.net/2025/biovisChallenges_vis/

Higher is better Lower is better

08 o 08
2
> s
) =
]
S 06 c 06
£ 2
2 g
> 7]
T 04 £ 04
£ Q
K bl
& == Barbato 3
w <
02 Euclid. (no kNN, ours) =} 02
- Geodesic (kNN, ours) -
== Random walks (ours)
0.0 0.0
5 50 500 5000 5 50 500 5000
Superpixels Superpixels

compare our method with the work by Barbato et al. [134]. It is the only method
— to our knowledge — that works directly in the high-dimensional space,
does not first project to three channels, and is also open-source, and, thereby,
reproducible. Additionally, we compare our random-walk based method to two
variations. First, the geodesic distance variation discussed in Section 6.4 that
similarly tries to preserve the manifold-structure. Secondly, to a variation using
the Euclidean distance between attributes instead of a distance based on the
data kNN graph, ignoring the manifold structure, to contrast our approach with
one that follows the same superpixel strategy but explicitly does not preserve
manifold structure.

A small region of the Indian Pines data set [10] comes with ground truth labels,
shown in Figure 6.9a, which we use as a ground truth segmentation for this
quantitative evaluation. This region comprises 145 x 145 ~ 21, 000 pixels with
the same channels as described in Section 6.6.1 and contains 16 labels (exclusive
background).

For our main method, we use @ = 50 random walks with A = 25 steps. For
the geodesic variant we do not compute the exact Hausdorff distance from
Equation 6.1, but take 100 sample pixels from each superpixel as discussed in
Section 6.4. We set the number of nearest neighbors in the data kNN-graph
to k = 300 for each of our methods variants.

Our methods do not have a direct input parameter that steers the number of
output superpixels. Nonetheless, both our main method and its two variations
yield a segmentation of around 5000 superpixels at the first abstraction level.
Barbato’s method steers the number of computed superpixels using an input pa-
rameter, n_clusters. We evaluate Barbato’s method over a range of n_clusters
that yields superpixel segmentations with similar numbers of superpixels as
our abstraction levels. (See Table C.1in Supplemental Material SC5 for a list of
all settings.) We use m_clust = 0.8 as proposed by the authors as the suggested
optimal setting. Additionally, we set the input parameter m to 0, as any non-zero
value enforced box-shaped superpixels and resulted in worse metrics.

We measured undersegmentation error (UE) and explained variation (EV)
for this analysis. UE measures how much a superpixel extends outside an
overlapping ground truth segment. If all superpixels completely lie within
ground truth segments, the UE is zero. Consequently, larger superpixels on
higher abstraction levels will cause an increasing UE. Given a ground-truth
segmentation @ and a superpixel segmentation §, we use:

1

UE@,S) = 5

>3 > min{lsy Ngil, b \ gil}, 6.7)
q€EQ sr€S
3N q; #0

As before, level indices are omitted for readability, i.e. § may be from any
abstraction level [.

EV measures the superpixel quality without reference to a ground truth. It tries
to capture how much of the original image’s pixel variation is preserved by the

6.6. Validation 51

Figure 6.8. Explained Variation and
Undersegmentation Error: Numeri-
cal results are listed in Supplemental
Material SC5.

52 6. Manifold-Preserving Superpixel Hierarchies

Figure 6.9. Indian Pines Ground
Truth: (a) Ground Truth segmentation
and labels with map overlay. (b) and
(c) Superpixels from two segmentations
using Barbato’s method do not merge
bottom-up, i.e. borders shift.

Grass-Pasture-mowed
Hay-windrowed
Stone-steel-towers

Oats

Wheat

I Soybean-clean
Soybean-mintill

I Soybean-notill
Corn

B conrin
Corn-notil
Bidgs-Grass-Tress-Drives
GrassTrees

I Grass-Pasture
Grass-pasture-mowed

Background

superpixel representation. We define the mean attribute value for a channel c of
a superpixel 4, denoted p.(4r), as the average of the channel attributes of all
image pixels contained in the superpixel. The global channel mean is referred
to as y‘g . As such, we use:

2ce[1,C] Zisres larl(ptc (ar) = #27 ?

EV(S) =
2eel1,C Zie[l,n](“ic - Ff)z

6.8)

where a;. is the attribute value in image channel ¢ for data point i.

Figure 6.8 shows the EV and UE for superpixel segmentations for all four
compared methods. Additionally, all numerical results are listed in Tables C.1
and C.2 in Supplemental Material SC5. Over the entire range of superpixel
segmentation, our random-walks based method shows a slightly better EV
than the others. At low abstraction levels, i.e., with many small superpixels,
all methods show very similar results, which is expected as they all heavily
oversegment the image. Similarly, observing the UE results, the random walks
method scores several percentage points better than the others across a wide
range of abstraction levels. The UE measurement becomes a bit noisy for
low numbers of superpixels as here the ground truth will become strongly
undersegmented. Surprisingly, the Euclidean variant consistently outperforms
the Geodesic variant by a small margin with respect to both EV and UE.
Notably, Barbato’s method does not create a superpixel hierarchy but rather
compute each segmentation stand-alone. Hence, superpixels on a higher ab-
straction level do not precisely comprise superpixels from lower abstraction
levels, see Figs. 6.9b and 6.9c.

We do not explicitly evaluate the embedding layout here. Other hierarchical
embedding methods like HUMAP [53] or Multiscale PHATE [54] use Denoised
embedding manifold preservation (DEMaP) [55] which calculates the Spearman
correlation between geodesic distances in the high-dimensional input data and
Euclidean distances in the low-dimensional embedding. But, as we do not aim
to solely capture distances between high-dimensional points but also include
the image layout, measuring how well geodesic distances are preserved in the
embedding would not be a relevant indicator for the quality of our method.
Moreover, we do not modify the embedding layout algorithms after defining
high-dimensional transition probabilities in Equations 6.5 and 6.6, as we use
the same gradient descent optimization as t-SNE and UMAP respectively.

6.7. Discussion

The length A and number w of random walks on the data kNN graph are
free parameters in our methods. The ability of those random walks to create
features that are representative of a local graph neighborhood is inherently
tied to the graph structure, which is different per data set. We empirically
found A € [10,50] and w € [20, 50] to yield good results, with smaller settings

requiring less compute time and memory. Other random-walk based embedding
methods reason similarly, leaving these parameters free while providing defaults
that work well for various scenarios: Node2vec [64] uses walks of length 80
with 10 walks from each vertex in their experiments, and the DeepWalk [148]
implementation defaults to 10 walks of length 40. Other methods propose data-
driven setting selections: PHATE [55] uses a heuristic measure to set the walk
length, derived from the decrease in entropy of the eigenvalues of a diffusion
affinity matrix based on random walk results. Kim et al. [149] establishes a
connection between the recommended walk length to the concept of "cover time"
— the number of steps it takes to visit all vertices of a graph. In general, since
random walks on graphs have been thoroughly analyzed in prior research [150],
future work might consider how these findings can inform robust data-driven
choices for random walk settings.

As visible in the image recolorings in Figs. 6.4a and 6.4b, the global position
of merged superpixels in the embedding is not stable across hierarchy level.
This happens due to the currently implemented default behavior for initializing
embeddings on each level, i.e. random placement of all points. An initialization
scheme similar to the one presented in Section 5.4.4 could provide a remedy: An
embedding point could be initialized at the average position of all corresponding
merged points from the final lower-level embedding.

We compute random walks only on the data kNN graph and essentially coarse-
grain the data graph on each abstraction level while merging the random walk
vertex features. This is similar to the diffusion and coarse-graining of Multiscale
PHATE [54]. Other methods like HSNE [52] and UMAP [53] start new random
walks on each new abstraction level for selecting new landmarks and defining
new similarities between them. One reason for new walks on each scale is that
they might yield better global data structure representation: While a walk on
an abstraction level graph might cover a similar portion as a walk on the data
level graph, the abstraction vertices now represent a larger percentage of the
data graph vertices. We did experiment with new random walks, but did not
observe improved results.

The Superpixel Hierarchy method by Wei et al. [141], which we build upon,
guarantees that the algorithm stops after O(logn) abstraction levels, as any
given superpixel is always merged with at least one other. In contrast, our
method is allowed to not merge a superpixel, if all Bhattacharyya coefficients BC
between a superpixel’s feature and its spatial neighbors (see Equation 6.3) is 0,
such that the logarithm based dpj,; is undefined. In fact, it is worth considering
introducing a threshold here, ensuring that superpixels are only merged if
they are considered similar enough. If the random walk length is set high, a
superpixel might be merged even though their attribute vertices are located
very far apart in the data kNN graph. However, defining such a threshold is not
trivial and would need to depend on the data structure.

In this work, we focus on high-dimensional image data, but cutting-edge
acquisition methods as showcased in Section 6.6.2 already produce high-
dimensional volumetric data. In principle, an extension of our method to
volumetric data is straightforward: instead of 2D pixel neighborhoods, one
would need to consider 3D voxel neighborhoods, but the general random walk
and supervoxel merging procedures remain unchanged.

6.8. Conclusion

We established a superpixel hierarchy for high-dimensional images which
preserves the manifold structure of the high-dimensional data. Each level, and
subsets thereof, can be embedded using dimensionality reduction methods to
facilitate exploration. We inform the hierarchy about high-dimensional manifold
using random walks on the data kNN graph, utilizing them in a modified version
of Bortivka’s algorithm. Our image-informed hierarchy improved on previous
“overview-first, details-on-demand” approaches for requesting embedding detail
based on ROIs in the image space.

6.8. Conclusion

53

54 6. Manifold-Preserving Superpixel Hierarchies

An interesting extension of our method is the introduction of multiple levels of
abstraction in a single embedding. While such a Focus+Context approach for
hierarchical embedding has been applied to exploration in attribute space [104],
utilizing it for ROIs in the image space could further aid image exploration.
Our method shows good potential for combining segmentation and exploration
steps. Our initial showcase of single cell data exploration in Section 6.6.2
indicates that the superpixel cell structures could be used in subsequent cell-
neighborhood analysis steps.

Allin all, we propose a superpixel method that we demonstrate to aid with the
effective exploration of high-dimensional images.

ManiVault:
A Visual Analytics Framework
for High-Dimensional Data

So far, we focused our discussion of Visual Analytics (VA) of high-dimensional
images on methodological approaches. In this chapter, we shift the focus on
how such methods can be made accessible for domain experts. We present a
software framework for the exploration of high-dimensional data, ManiVault.
The design of the framework emphasizes extensibility, allowing it to support a
broad range of high-dimensional data types. However, in line with the central
theme of this thesis, we primarily focus on high-dimensional images. Each
of the previously presented methods are implemented as extensions in this
framework. It is important to note that ManiVault is the result of a collaborative
effort, developed jointly with several contributors whose input shaped both its
design and implementation.

7.1. Introduction

Combinations of automated analysis and interactive visualizations, i.e., VA [11,
151], have proven to assist well in gaining insight for high-dimensional data. A
variety of visual encodings and processing algorithms for high-dimensional
data exist. At the same time, specialized application domains require specialized
workflows for handling their data and often need to adapt established methods
to their use case. Even though these domains encounter different domain-specific
questions, they often deal with similar abstract data set types. Additionally,
abstracting different domain-specific workflows regularly yields similar goals
and user tasks [152, 153] which might be tackled with recurring visual encod-
ing components like heatmaps or analytics methods such as dimensionality
reduction. It is time-consuming and wastes development resources to reinvent
the wheel by re-implementing, e.g., a linked selection mechanism for multiple
coordinated views every time a domain-specific VA solution is needed [47,
154-157]. We developed a visual analytics framework, ManiVault, as a flexible
solution for VA software developers, application designers, and practitioners to
implement algorithms and visual encodings, prototype workflow-specific tool
sets, and perform their data exploration and analysis respectively.

Existing VA systems for exploring general multivariate data do not meet all of
these goals. Commercial products like Visplore [158, 159] or Spotfire [160, 161]
come with wide feature ranges but are closed-source and not easily extensible.
Older open-source frameworks like XmdvTool [162] and GGobi [163] are mostly
limited to visual analysis and lack analytics functions. ParaView [164] and
Inviwo [165] are capable of displaying multivariate data as well but focus on
field data and the representation of spatial structures. Business intelligence
solutions like Tableau [166, 167] mostly focus on dashboard creation and chart
recommendations. Other fast dashboard prototyping tools, like Keshif [168],
provide infrastructure like linked selections of various data visualizations
but lack analytics capability. With ManiVault we propose a visual analytics
framework for general high-dimensional data that is easily extendable and lets
both developers and practitioners re-use algorithmic and visualization building
blocks for prototyping and reusing visual analytics systems.

Growing data sizes, both in the number of items and dimensions, increasingly
complicate interactive analysis. Progressive visual analytics [169] intends to
overcome this issue by continuously providing intermediate results of the cur-
rent data analysis step. The ability to control the analysis based on continuous
feedback is crucial for progressive VA systems [170]. In ManiVault we implement
a data-centric and modular framework that facilitates continuous data updates
and algorithm steering out of the box. The ManiVault core application manages
data sets and plugins, which provide both analysis and visualization func-
tionality. This architecture allows for fast data changes, selection updates, and

7.

This chapter is based on the paper

“ManiVault: A Flexible and Exten-

sible Visual Analytics Framework
for High-Dimensional Data” pub-
lished in IEEE Transactions on Vi-
sualization and Computer Graphics
(TVCG) [125].

7.1 Introduction 55
7.2 Related Work 56
7.3 Design Considera-
tions 58
7.4 Framework Architec-
ture............ 59
7.5 Implementation 66

7.6 Application Examples 68
7.7 Conclusion 72

56 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

r
1 sho . e [1) roe
HSNE -
top level Reflectance Spectrum Spectral viewer
) Neme info 5
| v @ Wathingten
m © imsges G0n120) | Derived
I ~ @ HSNE Embedding
v 8 HSNESale
 HNE Scale
88 Clusters (manual)
= Data Hierarchy
¥ |) [<
HSNE =oan
refinement &
linked |
colormap ‘
v e e
Scatterplot Data properties
ooy <][8] O e s - a o

Figure 7.1. Example screenshot of ManiVault used for the exploration of a hyperspectral imaging data set.

Relevant work on visual analysis
of high- and multidimensional is
discussed in Chapter 3.

overall flexible data exploration. Additionally, since each plugin is agnostic of
any other, the system is easy to extend with new data types, visualizations, and
analysis algorithms. ManiVault is written in C++, using the Qt framework [171]
for cross-platform graphical user interface (GUI) development. OpenGL is
used for high-performance rendering (e.g., our scatterplot plugin) but viewer
plugins based on lower threshold JavaScript libraries like D3 [172] and Vega-
Lite [173] are also possible. ManiVault is open source and can be found at
github.com/ManiVaultStudio.

To summarize, in this chapter we describe:

» ManiVault, amodular and extensible visual analytics framework designed
for high-dimensional data,

» several functionality extensions in the form of basic data-, viewer-, and
analytics plugins, and

» three use cases ranging from plugin development to a practitioner’s
workflow.

7.2. Related Work

In the following, we aim to report the work most relevant to this chapter, namely,
Visual Analytics (VA) systems for multidimensional data and visualization
design environments with respect to our framework.

7.2.1. Visual Analysis and Analytics Systems

VA systems for the exploration and analysis of high-dimensional data are well
established both in academia and industry [176, 177]. Table 7.1 gives an overview
comparison between ManiVault and visual analysis tools that we deem most
similar. Most VA systems employ coordinated multiple views [3] with linked
selections for data exploration, and we follow this approach with ManiVault as
well. Chen et al. [178] discuss common practices and guidelines for the layout of
multiple views.

Pioneering visual analysis frameworks for multidimensional data include Xmd-
vTool [162], Spotfire [160], GGobi [163] and the InfoVis toolkit [179]. These
frameworks mostly focused on displaying data with a variety of visual idioms
and enabled exploration with brushing tools and linked selections. XmdvTool

https://github.com/ManiVaultStudio

7.2. Related Work 57

Table 7.1. Comparison with other visual analysis tools that are most similar to ManiVault, both open-source and closed-source (commercial, Comm.).

ManiVault XmdvTool GGobi Visplore Tableau ParaView Inviwo

[162] [163] [174] [167] [164] [165]

Focus on high-dim. data J o . . . — —
Focus on field data — — — — — o .
Extensible . o . _ _ . .
Visual Analytics . . ob . . oC _d
Progressive Analytics . — ob . — _d _d
VA system authoring . — — — od oc —
Active development . — — D . o .
License LGPL-3 PD EPL Comm. Comm. BSD-3 BSD-2

2 No dynamic extension loading b When used with its API, e.g., in combination with R © Via Trame [175] d The systems can be extended with
Visual Analytics functionality by plugins or Python integration, but the focus is on interactive field visualization € Focus on dashboards with
pre-populated data

was extended with several dimensionality reduction and clustering meth-
ods [121, 180, 181]. GGobi [163] integrates with the R language which enables
users to apply analysis algorithms via scripting. Spotfire grew into a commercial,
closed-source product with extensive analytics capabilities, while the others
are open-source, albeit unmaintained. All of these tools predate Progressive
VA and are not optimized for the specific needs of continuous updates and
steering of analytics processes. ManiVault is designed around the principles of
progressive VA from the start using a data-centric architecture. Data-producing
and -transforming plugins can continuously update the data managed by the
core, while data consumers get automatically notified about these changes.
Tableau [167], building on the Polaris system [166], might be the most prominent
and representative universal VA system. Marketing itself as a business intelli-
gence tool, Tableau focuses on flexible visualization of various data types and
more general analytics functions can be added via Python or R scripts. Similarly,
Visplore [158, 159] implements a suit of statistical analysis and visualization
methods for tabular data and aims at providing quick visual feedback for visual
interactions and data queries. Its commercial offspring [174] offers a more direct
integration of scripting languages to supplement built-in analysis functions.
The open-source ParaView [164], like many other analysis frameworks for spatial
field data, e.g., volume data, [182-185] is based on the VIK library [186], and
provides a wide range of visualization and analysis functions in an extensible
framework. ParaView follows VTK’s visualization pipeline and is designed
around the flow of data through various transformations to their final visual
presentation. Similarly, the commercial Amira Software [187, 188] offers a range
of analysis functions for multidimensional volumetric data, but it is not freely
extensible. Many visual analysis systems traditionally target either geometric
or abstract tabular data. However, in recent years, the analysis of spatial and
non-spatial data has become increasingly integrated [189]. With ManiVault we
create a system for general high-dimensional data that can be extended to handle
arbitrary spatial or abstract data types. Our data-centric system design enables
flexible exploration workflows instead of having practitioners concerned about
data flow through each step of the visualization pipeline.

7.2.2. Visualization Design Environments

Visualization design environments or similarly visualization prototyping sys-
tems are tools for creating visualizations that provide a graphical user interface
for specifying visual encodings of data and interaction dynamics. Many such
systems exist, and here we provide an overview of the tools most similar to
ManiVault.

Lyra [190] offers fine-grained design options for single plots through handles,
drop-zones, and other interaction mechanisms for graphical setup of re-usable

58

7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Vega or Vega-Lite [173] specifications. Lyra 2 [191] extends this framework by
letting users define interactions like brushing and selection linkage between
multiple plots. iVisDesigner [192] follows similar principles but places emphasis
on collections of data visualizations in a dashboard format. Keshif [168] focuses
on a novice user audience by automatically aggregating data and selecting
visual representations based on pre-defined mappings for various data types. In
contrast to the above design environments for single or multiple visualizations,
ManiVault is a design environment for complete visual analytics systems
including automated analysis methods. While the above systems are focused
on abstract data, Inviwo [165] presents a visualization prototyping system for
spatial field data. Its design allows users to specify visualizations on various
abstraction levels, from visual (connecting functional boxes) to conventional
programming. Compared to Inviwo’s data-flow model, ManiVault is data-centric
and focused on providing several visualizations and analytics tool building
blocks. ManiVault’s core system coordinates views on the data and enables
linked selections between views out-of-the-box.

From a plugin-in developer’s perspective, ManiVault resembles the prefuse [193]
and ComVis [194] toolkits. They provide development environments and
software components for building dynamic visualizations. Both focus on non-
spatial data and target graph and tabular data set types. Scripting-based solutions
like Dash [195] for creating dashboard applications or Voila [196] for converting
Jupyter notebooks into standalone web pages provide a GUI front-end to the
wide offer of analysis libraries in the Python, R or Julia ecosystems. ManiVault
is specifically laid out for progressive and high-dimensional data analysis. Our
C++ implementation supports high-performance computations and interactions
necessary for visual analytics.

7.3. Design Considerations

We designed ManiVault as a VA framework with multiple user groups in
mind. While these groups can overlap, their requirements for the effective and
convenient use of ManiVault are varied.

7.3.1. General Setting

High-dimensional data has become ubiquitous in many domains and the
analysis of such data plays a pivotal role in acquiring insights into complex
systems. Analytics software in different domains targeted at such data generally
utilizes comparable sets of analytical and visual tools, such as dimensionality
reduction, clustering algorithms, scatterplots, or parallel coordinates plots.
These generic tools are then combined with data-, user-, and domain-specific
tools and customizations to create a specific application. The primary motivation
for developing ManiVault is to facilitate rapid construction of visual analytics
applications for high-dimensional data without the need to re-implement
common functionality. Modularity is a key aspect for creating reusable tools,
both on a code and a user-facing abstraction level. The second main motivation
for ManiVault is a need for flexible exploratory analysis, but also subsequent
sharing of results, as well as the means to recreate the corresponding workflows.
We learned of the target user characteristics and design requirements during
multiple collaborations with practitioners in various fields [197-200] spanning
several years.

7.3.2. Target Users
We identified three target user groups, each with specific requirements:

Ul Developers use ManiVault to implement new ideas and methods. These
users, e.g., visualization researchers, interact with the system via code in order
to create customized modules. Developers need the framework to provide a

7.4. Framework Architecture

stable API that allows for the integration of their methods with little overhead.
Further, they need existing modules to focus on their specific contribution; e.g.,
a developer of a dimensionality reduction method might want to visualize
results in an existing scatterplot module without having to implement their
own.

U2 Application designers combine and adapt existing modules to create stand-
alone applications for specific use-cases. Not all options of a view (e.g., the point
size in a scatterplot) might be necessary for a specific workflow, and providing
all options in the GUI can be distracting. In these scenarios, ManiVault needs to
support flexible GUI customization. To minimize the burden, the framework
should support such customization directly in the GUI without programming.
U3 Practitioners and domain experts use the software to analyze their high-
dimensional data. Practitioners need ManiVault to allow for a flexible data
exploration process, to provide responsive user interfaces, and to offer domain-
specific visualization and analysis modules. Once their analysis is finished,
practitioners need the ability to easily share and reproduce the results and their
workflow in ManiVault. Given a well-defined workflow, they also need easy
access to specified presets of visualization and analysis layouts.

The boundaries between these user groups are fluid. E.g., a skilled practitioner
might want to extend a pre-bundled application with a module or develop a
module themselves.

7.3.3. System Requirements

Based on the general usage setting and needs of our target users, we define
the following high-level requirements for a visual analytics platform such as
ManiVault. The framework must be:

R1 Extensible: ManiVault has to provide an interface for adding new function-
alities. It must be possible to create modules for new

a data types,

b visualizations,

¢ analytics methods,

d data transformations,

e loading/writing data.
R2 Flexible: ManiVault must allow for workflows in multiple domains and
specifically enable straightforward workflow adaption during use.
R3 Linkable: ManiVault must provide modules with an API to easily link data
selections and synchronize parameters, such that no dependencies between
modules are created.
R4 Configurable: ManiVault must provide options for GUI configuration
during runtime through the user interface.
R5 Distributable: ManiVault must be able to save its current state, including
layout, data sets, and settings and reproduce a saved state.
R6 Performant: ManiVault must be performant when handling large data, stay
responsive and provide interfaces to interact with processes during calculation
to support progressive VA.

7.4. Framework Architecture

In order to ensure easy extensibility (R1), ManiVault is implemented as a modu-
lar system, see Figure 7.2a. The core application is a lightweight set of managers
and any user-facing functionality is dynamically loaded from self-contained
libraries, i.e., plugins, respectively discussed in Sections 7.4.1 and 7.4.2 (R6). This
compartmentalization into a core and extensions provides easier maintainability,
better scalability, and faster development. Together with a data-centric system
structure (Section 7.4.3), this enables flexible workflows (R2) with various ana-
lytics and visualization techniques. ManiVault features an intricate notification
and parameter sharing system to allow for communicating between plugins,

59

60 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Linked parameters

fTees RAEmE T T reaeneneanaes . Plugins Analysis
DecimalAction
Data Loader Writer Transform Analysis View TriggerAction
I N
T T T T T Data :
Core events "
]] (] (Lo o

Data
manager

+DecimalAction
ColormapAction

2U0IoUAS

Workspace Plugin
manager manager

Publish

Event
Core manager

Shared parameters
DecimalAction

} [ctons } [s } oe)
Sends events to all plugins

(a) ManiVault system (b) Core events (c) Parameter linking

Figure 7.2. ManiVault’s system architecture. The core manages data and events, provides GUI management (actions), etc. Green ® borders indicate plugins, a
light-grey background the core. Data flow from the core to data consumer plugins and from data producer plugins to the core is indicated with .~ arrows. (b)
View A listens to notifyDatasetDataChanged emitted by View B. View B does not listen to the notifyDatasetSelectionChanged event triggered by View

A, but any plugin could. (c) a view plugin published a Decimal Action, moving the action in a shared parameters space and i

it

subscribes to it. Now, an

analytics plugin can connect to the shared action, enabling synchronization across plugins.

see Section 7.4.4 (R3). GUI management objects, called actions (Section 7.4.5),
implement a part of the communication system and the configuration and
serialization system, see Sections 7.4.6 and 7.4.7 (R4, R5).

7.4.1. Core Application

ManiVault’s core is modularized into a set of managers, actions, and utilities as
shown in Figure 7.2a. ManiVault comprises a data-centric architecture: a data
manager stores and administers access to data sets. All data sets are organized
hierarchically, such that derived data sets like clusterings, embeddings, or proper
subsets are marked as children of their respective source data. This enables
simple access to properties of the parent data set and propagation of selections
from derived to source data sets. Analysis, transformation, visualization, and
loading /writing functionality as well as the definition of data types themselves
are separated into plugins. A plugin manager loads plugins into the core and
makes them available to the user. Each plugin can consume data, i.e., process
existing data in the core and/or produce data, i.e., store a new or alter an existing
data set in the core. While each plugin is self-contained, communication between
plugins is made possible using two messaging systems (Section 7.4.4). An event
manager in the core administers globally defines notifications while actions are
used for run-time configurable notifications (see Figs. 7.2b and 7.2c¢).

The general application layout is handled by a workspace manager which takes
care of the arrangement of all GUI widgets provided by view plugins. The
core contains two main system view plugins, a data hierarchy, and a data
properties viewer. The former displays the internal hierarchical data structure,
while the latter shows properties of the data (number of data points, dimensions,
active selections) and gives users access to the settings of analytics plugins, as
discussed in more detail in Section 7.5. ManiVault provides a number of actions,
GUI management objects, and administers any user-defined linking between
them, see Section 7.4.5. Further, a project manager is responsible for saving and
loading the current state of the application, including loaded data sets, the GUI
layout, opened plugins, and linked parameters. Global settings applicable to,
e.g., all plugins or the general application layout are handled by a dedicated
settings manager.

Additionally, ManiVault’s core supplies a set of utilities like dedicated renderers,
shaders, color maps, mathematical helper classes, such as vectors and matrices,
as well as common algorithms like mean shift clustering. These tools can be
used to create a more coherent visualization and analysis setup across plugins.
E.g., developers can rely on the availability of a standard set of color map types
in every view plugin, while maintaining the ability to introduce custom ones.

7.4. Framework Architecture

7.4.2. Plugin Types

ManiVault works with six distinct plugin types that bundle various types of
functionality. The system can be easily extended with new functionality by
writing a new plugin that will automatically be loaded on start-up (R1). In
combination with the data-centric core architecture, this enables a user to
perform flexible workflow changes (R2).

Data plugins enable extending the types of data the system can handle.
ManiVault provides a base data plugin class that developers can extend to
define a custom data format. E.g., we provide an image data type that extends
our basic point data type with image dimensions and thus a mapping of points
to image coordinates. The system can generally be extended with arbitrary data
formats.

View plugins provide a view on the data and allow interaction, such as
selection of data elements. Views can be fully-fledged visualizations or simpler
views such as lists. View plugins are primarily data consumers, i.e., they take a
data set as input for visualization, but can also function as data producers, e.g., by
providing means for annotating data. We provide example plugins with diverse
backends, like OpenGL and D3.

Analytics plugins allow for the implementation of data analytics modules
such as dimensionality reduction. As such, they are primarily data producers
but also follow the data consumer API to receive the input data on which they
perform calculations.

Transformation plugins resemble analytics plugins in code but are semanti-
cally different. They are also primarily data producers, but while analytics plugins
derive new properties, e.g., an embedding, that can have an arbitrary shape,
transformation plugins produce data of the same shape, i.e., with identical
items and attributes. An example of such a transformation is a normalization of
the original data.

Loader/Writer plugins respectively load specific types of data into the system
(data producer) or write it back to file (data consumer).

7.4.3. Data Handling

The data handling in ManiVault follows a model-view pattern. Internally, the
core’s data manager keeps a list of raw data models, data set views, and selection
views. A data plugin has to define both a raw data model and data set view
— the selection view is simply another instance of the same data set view on
the raw data. The raw data model holds the physical data values of a set and
is never exposed directly to non-data plugins. Therefore, for most intents and
purposes, the data set views can be regarded as the actual data sets present
in the system. They define access to the raw data for all non-data plugins by
providing, e.g., views on or copies of it. Each raw data object is associated with
exactly one selection object to ensure straightforward selection sharing across
all plugins that access a data set. Selection and set views can be separately
requested and adjusted. This model-view pattern allows for a simple API and
to create and use subsets with minimal overhead.

New data sets can be marked as derived from existing ones, e.g., when a new
data set is created by an analytics plugin. The derived data also functions as the
user-facing entry point through which the analytics settings can be accessed.
This operation will create new data set and raw data objects but no new selection
view. Instead, selection views are shared between parent and derived data sets.
This simplifies the propagation of selections between views, e.g., a derived
embedding shown in a scatterplot and the original data in a parallel coordinates
plot. To enable selection sharing between arbitrary data sets, ManiVault lets
users group data sets in the hierarchy view. Selections of any data sets within
a group and with the same number of data points are then automatically
synchronized.

61

62 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Exemplary events:

» notifyDatasetAdded
» notifyDatasetDataChanged
» notifyDatasetRemoved

We implemented a set of base data plugins in ManiVault, including plugins for
point data, multichannel images, clusters, color, and text data. The development
of ManiVault so far primarily targeted the point data type, which can store
various high-dimensional integer and floating point formats. Our image data
plugin shows the versatility of ManiVault’s data handling and the point data
type. When loading an image, two data sets are created: a point data set whose
raw data object stores the actual pixel values and a child image data set whose
raw data object stores metadata like image size. The image data set view provides
access to the parent’s raw data. This configuration ensures compatibility with
analytics, transformation, and view plugins that expect point data to process
multichannel images.

The implemented data handling system is lightweight. Besides the basic
ManiVault core (< 90 MB), the data manager and hierarchy require < 8 MB
of memory (on Windows). Each loaded data set produces less than 1.5 MB
overhead in addition to its binary size, stemming from the plugin instance and
core integration. More details can be found in Supplemental Material SD1.

7.4.4. Plugin Communication

Coordinated Multiple Views (CMVs) [3] are the basis for virtually any visual
analytics application. While the individual views in a CMV system naturally
map to modules in a modular architecture, an essential part of CMV systems
is the integration of those views. This enables techniques like brushing and
linking [201], where selections on the data are propagated to all views in
the system, or the synchronization of parameters, like the viewport in an
Overview+Detail system [202]. Enabling such linking of views, without breaking
the system’s modularity (R3) is no trivial task. A plugin should be self-contained
with respect to its functionality. Yet, at the same time, plugins need to be able
to communicate, such that they can inform other plugins about data changes
and that their parameters can be linked and synchronized throughout the
application.

We have designed and implemented two interfaces to solve the issue of inter-
plugin communication. First, an event-based communication API to cover
common system-wide types of events related to data set changes (Core Events)
and second a parameter-sharing API (Shared Parameters) as part of our GUI
building blocks (Section 7.4.5).

Core Events The ManiVault core API provides an event-based system for
inter-plugin communication using the publish-subscriber pattern. Plugins
send predefined events to the core, which distributes them, and all subscribers
(typically plugins) can digest these events as depicted in Figure 7.2b. To efficiently
support linking and brushing (R3), we have implemented such events for any
changes of data values like addition, updates, removal, changes to data selections
and several other data related changes. A plugin can choose to listen to all
events of a certain type or subscribe only to certain events concerning a specific
data set.

An example of a linked selection is shown in Figure 7.3. The figure shows a
screenshot with three views, a scatterplot and a density plot on the left, and the
properties of a clustering analysis on the right. Clicking any cluster in the clusters
list (Figure 7.3a) will update the selection set attached to the data set and notify
the core of these changes with the notifyDatasetDataSelectionChanged event.
The core will then emit the dataSelectionChanged event with the changed data
as an argument and subscribed plugins will receive a notification that triggers a
refresh of the view with the updated selection (red points in Figure 7.3b).

Shared Parameters We designed a complementary API to share parameters
between modules (R3) using GUI actions (Section 7.4.5). With this system, a
plugin parameter is exposed to other plugins by placing it in a public shared
parameter pool, i.e., the parameter is published (Figure 7.2c). From there, other

https://en.wikipedia.org/wiki/Publish-subscribe_pattern

7.4. Framework Architecture 63

I == Dataproperties1 = X + -

[Q Fiter by name g [

SICHRINRIGIDID .

Clusters

Nu..s: |6

0 MName
cluster 1 17139
cluster 2 5997
cluster 3 18115

Clost |10 clusterd 6952

.
.

.

.

.

.

.

.

.

.

. cluster 5 > (V5797

.

W cluster 6 @Dﬂ

: (a)
.

.

.

.

-

.

Points

[Focus selection a Y. b |02 @ | T

e

Y Scatterplot View1 = X+

g B |/ L @ @ : *

hd Settinas

Dimension 1: | Dim 0

[Mme@ 2: | Dim1

= s)P Sigma: |

; &" Color by: | Color map ~
- Color map: [T ~|[=,

Random seed: |0 -

@ O Update colors manually

Apply colors

Color map: |1 =, [Focus select | @ &,

plugins can subscribe to published parameters (provided that the parameter
types match). Any change to a published parameter will be synchronized with
all subscribed parameters. We provide common GUI elements with ManiVault,
that developers can integrate into their plugins such that the user can publish
a parameter or subscribe to any published parameter at run-time through the
GUI (R4).

Figure 7.3 presents an example in the form of the kernel bandwidth (sigma)
parameter used in kernel density estimation (KDE) employed in density plot
visualizations (Figure 7.3c) but also mean-shift clustering. We have implemented
plugins for both that allow real-time changes of the sigma parameter, based on
Lampe and Hausers real-time KDE [203]. Linking this parameter between the
density plot and the clustering module enables visually finding a suitable density
estimation while the clustering is updated on-the-fly. To link the parameters the
user simply clicks on the underlined label in the GUI (Figure 7.3d), e.g., in the
density plot view, and chooses "publish". After defining a suitable name for the
parameter, the user can then click on the corresponding label in the settings
widget of the mean shift clustering plugin (Figure 7.3e) and click subscribe to
be presented with a list of suitable parameters, including the just defined one.
After subscribing, the connection is indicated by the italic font of the Sigma

label.

7.4.5. Actions

To support sharing of parameters as described above, but also to make it easy
to capture the state of a plugin, configure the GUI and unify the look and feel
between plugins, we have devised and implemented a number of building
blocks we call actions on top of the standard Qt GUI widgets. These include
simple actions for decimal and integral values as well as strings but also

Figure 7.3. Parameter sharing by
connecting two actions of the same type
in the GUI. Both, the Mean-Shift plu-
gin and Scatterplot plugin use a Dec-
imalAction to steer their computation
and view respectively.

64

7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

more complex elements such as colors, color maps, file-pickers, etc.. In
addition to those standard GUI elements we implemented a number of custom
actions targeting typical VA applications. These include a general-purpose
selection action, that supports different modalities (brushing, rectangle, lasso,
etc.) and Boolean combinations (replace, add, remove), and a dimension picker
action that provides a consistent way to select one or multiple dimensions of a
data set, e.g., to limit the input to a dimensionality reduction plugin. Although
we believe that we provide large coverage of commonly required tasks with the
built-in actions, we also provide an API for plugin developers to create custom
actions.

By using our actions API, sharing of parameters as described in Section 7.4.4 is
automatically available through the GUI. In addition, actions can also be attached
to data objects, to expose their functionality to other plugins. A data producer
plugin can, e.g., attach an action to trigger a calculation within the plugin. Other
plugins can query these attached actions and provide the corresponding GUI
elements within their scope. We showcase this in our Hierarchical Stochastic
Neighbor Embedding (HSNE) [52] analytics plugin. The plugin creates a
hierarchical embedding structure that can be refined interactively. We attach an
action for triggering the refinement to the produced embedding data set. When
viewing the embedding in a scatterplot, the scatterplot view plugin exposes the
refine action and other attached actions through the context menu. The user
can then trigger the refinement directly from the scatterplot visualization, even
though the actual calculation is carried out by the HSNE plugin.

Besides serving as GUI building blocks, we have also implemented support for
serialization in the action system. Each action can be serialized into a QvVariant
object, including its complete current state, consisting of whether it is active,
visible, writable, and the parameter itself. All actions that belong to a plugin
form a hierarchy that can again be serialized into a QVariant object and from
there into a JSON object in memory or file on disk. As such, a plugin that
has consistently been implemented with the actions API supports saving and
loading of the state out-of-the-box. Currently, we use this to create presets of
a plugin’s configuration and to save the complete state of the application to a
project file. In the future, we intend to extend this to a complete provenance
mechanism.

An example of a simple decimal action is the implementation of the Sigma
parameter discussed above and shown in Figure 7.3d. The GUI for this parameter
consists of the label, a spinbox, and a slider. Rather than manually creating the
GUI elements, the desired elements can be specified when creating the action.
An example of a customization that we integrated in the decimal action is to
show a spinbox or slider individually or both, as in this example. The action then
creates the GUI elements on-the-fly and also makes sure they are synchronized
by creating them as linked views on the parameter itself. The underlined label
indicates that the parameter is publishable and/or ready to subscribe, while
the italics font indicates that it is already linked. Clicking the label opens a GUI
interface for setting up parameter linking.

7.4.6. Projects and Workspaces

To save the entire state of the application and fully restore it at a later point in
time ManiVault uses projects (R5). Projects extend the serialization of actions,
described in Section 7.4.5, to the core framework, capturing settings and the
layout of the CMV system. In addition, a project contains a complete snapshot
of the data hierarchy. We implemented projects as self-contained, compressed
archives that are a combination of human-readable JSON files and binary
files. Two JSON files are used to save the entire state of the application. A
workspace. json contains the CMV layout and actions state and aproject.json
saves the data hierarchy and additional project metadata. The actual data sets are
saved as raw binary blobs, with unique identifiers referenced in project. json,
to minimize load and save times. As such, a project is completely self-contained

https://doc.qt.io/qt-6/qvariant.html

7.4. Framework Architecture 65

| Q, Search for action by name Y, | %|[2| & | DO
I Name @ "~
Halo @o$ R I
||~ O Pt eLsfRr
v Point @adR I
I Point size @adR
Point opacity [+ WL I
I Focus selection @od 8
I [Density oadr I
Miscellaneous @adR I
{ Background color @BH R v
Maycese @_ ________
May float I
May move I
ID Layout locked .
||Scatterplot View 1 |I
= = =& &= & &= &= &= o = = /= = = —

and can be easily distributed to share findings or simply used to come back to
an analysis at a later point in time.

We split the description of the project into project. json and workspace. json
to add an additional feature, i.e., the definition of user-defined workspaces. As
described above, the workspace contains the complete spatial arrangement of
views (layout configuration) and their complete state. A workspace is used to
set up a complete tailor-made CMV VA application, including customized GUI
elements, but without preset data, as a project would. To enable easy tailoring of
layouts and cross-plugin connections directly in the application, even without
programming, we designed the Studio Mode for ManiVault.

7.4.7. Studio Mode

For the configuration of actions, workspaces, and complete projects, ManiVault
can be put into Studio Mode. This mode of operation allows application designers
to create complete tailor-made applications and data viewers from within the
GUI of ManiVault itself.

A plugin editor, shown in Figure 7.4, enables fine-grained control over the
user interface. It lists an overview of all actions that are currently available for
opened plugins (Figure 7.4a). Therein each action can be enabled or disabled
as a whole M, but also customized with respect to its visibility @ or whether
it can be published &, connected & , or disconnected R Additionally, the
editor lets a user configure general options like the name of a plugin instance,
shown in its title bar, or whether the GUI of the plugin may be moved or closed
(Figure 7.4b).

The plugin editor is an essential tool for application designers, to create a
completely customized user experience for a specific application. At the same
time, it provides the possibility for advanced users of the system to create
presets of views. Besides saving a complete project, users can adjust the interface
of an individual plugin to their needs and save the resulting configuration as a
template for future instances of that plugin. Using the serialization described
above, these templates can be saved to disk, providing persistent access across
sessions.

For a user-definable flexible layout of the application, we incorporate the Qt
advanced docking system [204] into ManiVault. The system allows users and
application designers to re-arrange the entire layout according to their needs
and preferences.

Figure 7.4. Example of the plugin GUI
configuration editor which allows ap-
plication designers to edit the proper-
ties of the plugin actions hierarchy from
within the application.

66 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Code available on GitHub in the
repository ManiVaultStudio/core

Figure 7.5. Data hierarchy (a)
and data properties view (b) in
ManiVault. Data sets can easily be
shown in views via drag and drop (c).

7.5. Implementation

The ManiVault core is implemented in C++ and the Qt [171] cross-platform
application development framework. ManiVault provides a plugin API for data
types, view, analytics, transformation, and writer/loader modules. For each of
these types we provide template implementations to lower the entry barrier for
developers. In addition, we have already implemented a number of plugins for
various use cases, including some of the core functionality of ManiVault such as
the basic data types, and the data hierarchy and data properties view plugins.
The data hierarchy view (Figure 7.5a) functions as the central access point to
any data loaded or created in ManiVault. It displays the data hierarchy in a
searchable tree widget where derived data, such as a clustering, are added as
children to the original data. A data set can be loaded into a viewer plugin by
simply dragging it from the hierarchy onto the view (Figure 7.5c). Alternatively,
the user can also interact with each data set through a context menu providing
access to all compatible data consumer plugins. For a fast setup of plugins
that expect more than a single input, users can select multiple data sets in
the hierarchy and open them through the same menu. The info panel shows
additional information like an analytics progress bar, status messages from
plugins or data group affiliation. If a data set is associated with an analytics
plugin, selecting the hierarchy entry will open the analytics settings in the
properties view.

The data properties view (Figure 7.5b) provides information for a data set
selected in the data hierarchy. For a loaded data set this can be additional
metadata created by the loader, e.g., the extents of an image data set. More
importantly, the data properties view also functions as the user interface for
analytics and transformation plugins. These plugins are instantiated through
the context menu of a data set, which then functions as their input; their output
data sets are then created as children of the input. Selecting an output data
set provides access to the parameters of the analytics or transformation plugin.
Figure 7.5b shows the data properties view of an embedding data set, created
with our t-SNE plugin. From here, the user can at any time interact with the
t-SNE algorithm, e.g., to pause the calculation, change parameters or compute
more iterations.

The data hierarchy and data properties views are integral parts of the system.
More specific functionality is implemented in a number of further plugins. Di-
mensionality reduction, integral to high-dimensional data analysis, is provided
by Principal Component Analysis (PCA), t-distributed Stochastic Neighbor
Embedding (t-SNE) [29], and Hierarchical Stochastic Neighbor Embedding
(HSNE) [52] plugins. The t-SNE and HSNE plugins wrap the high-performance
HDI library [205] and as such scale to millions of data points using its GPU-based

+ @

x
8= |7 Y ® u m ok Q searchfordat.. || ¥, [%[&[N | /M, &

B Scatterplot View1 = X+ ~ || & Data hierarchy 1 =

Name Info
~ & mnist_train
v & t-SNE embedding
- B8 Clusters (mean-shift)
& tSHEembedding [y = pea
~ & Washington DC HYDICE

© D Images (307x1280)

e it = Dataproperties 1| = X+ @
Visualize 1-SNE embedding as points or density/contour map ‘
’ Q, Filter by name... I[=][2
- Info ~
Storage type: |Owner
Proxy datasets: |0 =
Points
5 Dimensions: 2

[Focus selection e & v

https://github.com/ManiVaultStudio/core

(a) Scatterplot (b) Parallel Coordinates (c) Cluster Heatmap (d) Image View

Figure 7.6. A selection of viewer plugins in ManiVault.

implementations [105]. For clustering, we provide an interactive mean-shift
clustering plugin, based on real-time kernel density estimation [203].

For visualization, we provide a number of plugins for common plots, including
a scatterplot (Figure 7.6a), parallel coordinates plot (Figure 7.6b), and cluster
heatmap (Figure 7.6¢). If performance is not a major concern, developers can
use web views in combination with Qt’s webchannel API for communicating
between the C++ back-end and web-technology-based front-end. This allows
for easily integrating the vast amount of available visualizations in languages
like D3 [172] and Vega-lite [173]. Our heatmap and parallel coordinates plot are
based on this technology. While the webchannel introduces some overhead, such
plugins are generally limited by the performance of the JavaScript rendering
libraries. If the scalability of a visualization is of high priority, developers can
implement custom high-performance views, e.g., using OpenGL. We have done
so with our scatterplot and image view (Section 7.5.1) plugins. The scatterplot
enables visualization and interaction with millions of points in real-time. In the
default point rendering mode, the different visual channels (point size, color,
opacity, etc.) are fully configurable either using fixed values or based on any
fitting data available. Additionally, we implemented a density representation,
to provide more visual scalability.

Finally, for data loading and writing, we currently provide support for basic
formats in the form of a comma-separated value (CSV) loader/writer and a
binary loader/writer.

7.5.1. High-Dimensional Imaging

Besides traditional abstract high-dimensional data analytics, we target a number
of applications related to high-dimensional imaging (e.g., the workflow pre-
sented in Section 7.6.2). As such, we developed a number of plugins targeting
such image data.

Central to these efforts is the image data type plugin. The image data type
extends the point data type by the extent of the image. Consequently, the image
data type is compatible with all data consumer plugins that take point data as
input; e.g., this allows to calculate a t-SNE using the pixels of a high-dimensional
image as input.

We implemented a sophisticated image view plugin (Figure 7.6d). Inspired
by widely used image editors, we opted for a layer-based approach. Users can
simply drag multiple data sets into the view, where they are added as layers.
From here, users can define the transparency, as well as the position of each
layer, e.g., to stack multiple properties of a single data set as semi-transparent
layers or arrange complementing data sets next to each other. These interactions
are possible through standard navigation tools for zooming and panning, while
selection is implemented using the action described in Section 7.4.5. The actual
visualization of the image is fully configurable: One or two attributes can be
displayed by using 1D and 2D color mapping, and three attributes by directly
mapping them to the three channels of RGB, HSL, or CIELAB color spaces.

7.5. Implementation

(e) Spectral View

67

https://doc.qt.io/qt-6/qtwebchannel-javascript.html

68 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Figure 7.7. The Spidr analysis and
parallel coordinates plot as imple-
mented with the plugin setups from
Figs. 7.8 and 7.9.

Next to the image viewer, we also provide a spectral view plugin (Figure 7.6e),
specifically for hyperspectral images. The viewer is based on a simple D3 line
plot and shows spectra of individual pixels or, in the case of groups (e.g.,
selections or clusters), a mean spectrum and a variation as a band around it.
To load image data into ManiVault, we currently provide two options. The first
one is a versatile general image loader plugin. Hyperspectral image data is
commonly available as a stack of grayscale images, where each image represents
a specific wavelength, also interpreted as a dimension of a high-dimensional
space. Our image loader detects such stack in a folder containing common
image formats (including .png, .jpg, .tiff), and also allows direct loading of
other common image formats (grayscale, RGB, ARGB). Dimensions can be
interactively included or excluded from the data set in the loading menu. We
also support re-sampling of the data before loading and the creation of image
pyramids to enable analysis at varying levels of detail, depending on the features
of interest or time available for the analysis. Specific to hyperspectral images,
we also provide an ENVI loader plugin compatible with L3Harris” geospatial
analysis software ENVI [206].

7.6. Application Examples

ManiVault has already been used for several projects across four universities
and several partners. Popa et al. [198] and Li et al. [200] describe the design
of complete VA systems for analysis of cultural heritage and biological data,
respectively. Vieth et al. [69] and Thijssen et al. [199] developed VA approaches
for dimensionality reduction and explaining projections as ManiVault plugins.
Here, we walk through exemplary usage scenarios for our framework from
the perspective of our three target user groups (Section 7.3.2): software de-
velopers (Section 7.6.1), practitioners (Section 7.6.2) and application designers
(Section 7.6.3).

7.6.1. Writing ManiVault Plugins — Developer Perspective

ManiVault provides developers of VA modules with a comprehensive API for
data set access, the event notification system, and the other core managers
(Section 7.4.1). Extending the functionality of ManiVault through new plugins
thus comes with minimal overhead. Example code for each plugin type is
available at github.com/ManiVaultStudio/ExamplePlugins.

Here, we present two examples of the necessary steps for creating basic plugins
(R1). First, we create an analytics plugin based on the high-performance t-SNE
library HDI [205]. In addition, we discuss the implementation of a parallel
coordinates plot (PCP) plugin using an existing D3 implementation. Together
with the existing image viewer and scatterplot, these plugins combine into a

Name Info
v & indianPine:

© Images (145145)

 Spatially informed Embedding

https://www.github.com/ManiVaultStudio/ExamplePlugins

7.6. Application Examples | 69

complete GUI-based application shown in Figure 7.7 that is usable by domain
expert users without programming knowledge.

To implement the analytics plugin, we follow the steps laid out in Figure 7.8.
In step 1, we create the output data set by deriving a new data set from the
input data, for which the plugin is opened in ManiVault. In this case, we will
create a two-dimensional t-SNE embedding containing x- and y-coordinates
for all the points in the input data set. As such, the output data set will be
a points data set that has the same number of points and two dimensions.
Next, we add a settings action to the created data set and define GUI elements
using ManiVault’s action system. The actions are added to the output data
and listed in the data properties view as shown in Figure 7.7a (step 2). We
create TriggerActions which add pushbuttons to the GUI, to start, pause,
and resume the calculations and a number of categorical OptionActions and
numerical DecimalActions, e.g., to expose t-SNE parameters like the distance
metric (OptionAction) or perplexity (DecimalAction) (R4). Finally, in step 3,
calls and reactions to library functions need to be defined. Here, we notify the
core and thereby other plugins about updated output data, in particular, as
the t-SNE optimization iteratively progresses, we notify the core after every
iteration, such that the viewer plugins can show the progress live. The result is
a lightweight wrapper with no notable performance overhead. Comparing the
performance to running the HDI library using its own Python wrapper showed
no performance regression (Supplemental Material SD1), even when including
progressive updates in ManiVault.

To implement the PCP viewer plugin, we need to set up a view widget that
shows the PCP chart in addition to settings, like with the analytics plugin.
Here, the settings are displayed in the same windows as the view widget
(Figure 7.7b). Since we build a JavaScript-driven plot, we derive this widget from
ManiVault: :WebWidget and introduce all HTML and JavaScript resources that
are used for the PCP through a Qt resource file, pcp.qrc (step 1, Figure 7.9).
Step 2 is to simply set the existing pcp.html file in the existing viewWidget.
All JavaScript resources are automatically included through the HTML file.
At this point, the viewer is only able to show the content of the provided
HTML page. To establish interactions to and from the C++ side, we set up a
ManiVault: :WebCommunicationObject, which uses a QWebChannel. Within
this communication object, we define signals and slots for communication.
E.g., the setData signal (step 3) is used to send the data, provided as a
QvariantList object, to a receiver on the JavaScript side. This receiver, i.e.,
the initPlot function is connected in step 4 to receive the signal. Vice versa,
slots defined in the communication object can be called directly in JavaScript
code, e.g., here we define an updateSelection slot, that can be called from the
JavaScript side with a list of selected items. The plugin then handles any related
computations in the corresponding C++ function.

7.6.2. Data Exploration — Practitioner Perspective

Practitioners in various disciplines work with high-dimensional data sets.
Here, we consider the exemplary case of exploring remote sensing data using
ManiVault. Similar to other application areas, visual exploration of geospatial
data is considered important but challenging [207]. While specific considera-
tions and final insights will differ from domain to domain, we can follow the

void AnalyticsPlugin::init() {
// 1. Derive output from input data set
setOutputDataset(_core->createDerivedDataset("outData"));
// 2. Add settings actions to output data set
outDataset->addAction(_settings->getSettings());
// 3. Connect GUI interactions (e.g.button press)
// and library callbacks (e.g.progress or finish)
connect(_settings->getStart(), press, this, runTask);
connect(_1lib, finishedTask, this, updateCore);

Figure 7.8. Bare bone analytics plu-
gin setup for wrapping a C++ library.
Notifying of output data change (step
4) can be called progressively during
the calculation of or on finishing a task.

https://doc.qt.io/qt-6/qwebchannel.html

70 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Figure 7.9. Bare bone viewer plu-
gin setup for wrapping a JavaScript
library. Some boilerplate code is left out
for brevity; complete implementation is
available alongside other example plug-
ins online.

[ViewWidget.cpp]
ViewWidget::ViewWidget() :WebWidget() {
// 1.1Init resources and communication bridge
Q_INIT_RESOURCE(pcp);
init(_comObj);
}
[ViewPlugin.cpp]
void ViewPlugin::init() {
// 2.1Init web widget (set HTML contents)
viewWidget->setPage(":res/pcp.html", "qrc:/res/");
layout->addWidget (viewWidget);
}
[CommunicationObject.h]
class ComObj :public WebCommunicationObject {
// 3.1Init signals for communication from cpp to js
signals:
void setData(QVariantList& data);
// 5.1Init slots for communication from js to cpp
public slots:
void updateSelection(QVariantList& selection);
}
[qwebchannel.tools.js]
// 4.Register signals sent by the view widget
bridge.setData.connect(function(){initPlot(arguments[0])})

task abstraction by Lam et al. [153] to create a partial workflow that will be
representative of many fields (R2).

We want to explore a hyperspectral image data set, the HYDICE image of the
National Mall [208], showing 307 by 1280 pixels, each attached to 191 spectral
bands covering the 0.4-2.4 pm region of the light spectrum reflected by the
objects in view. Each band can be interpreted as an image channel. A major
objective when exploring hyperspectral images is the identification of surface
cover classes. It is typical to manually define class labels for a small subset of
pixels that afterwards are used in semi-supervised automated classification
for the rest of the data. Connecting any derived features from the spectrum
back to the spatial image layout is essential during these analysis steps. More
specifically, our goals are now to (I) explore the data, connected to the task of
discovering and describing observations, and to (II) explain these observations by
identifying main causes. These steps will yield well-justified classes that can be
used in downstream analysis.

First, in ManiVault, we load the HYDICE data set using an image loader plugin.
To inspect the loaded image we can open it in an image viewer plugin, which
provides single-channel and false-coloring visualizations based on any three
channels. We additionally open a spectral view plugin which shows the full
spectrum of a single pixel or the averaged spectrum of a selection that we
define in the image viewer, resulting in the setup of Figure 7.10a. Then, to easily
discover a hierarchical class structure, we use the HSNE analytics plugin to create
a hierarchical embedding of the data employing angular distance: we open the
analysis through a context-menu of the data set entry in the data hierarchy, select
the cosine distance metric, start the embedding and display it in a scatterplot as
seen in Figure 7.10b. Next, we manually outline three clusters that are apparent
in the top-level HSNE embedding as shown in Figure 7.1 (center top). To inspect
their spectra, we drag and drop the new cluster data set from the data hierarchy
into the spectral viewer, Figure 7.1 (right). Additionally, we might inspect the
cluster sizes in the data properties. Clicking on a specific cluster displayed in
the data properties will select corresponding data points in the embedding
and highlight corresponding pixels in the image (Figure 7.10c). Thus, we can
quickly relate the cluster spectra to image positions and define the main pixel
classes water, vegetation, and buildings. We want to focus on a single cluster —
the one corresponding to buildings. Therefore, we refine the cluster of interest
to a lower HSNE hierarchy level through a context menu opened by clicking
inside the embedding — the HSNE plugin added an action to the data set that
is displayed there as well as in the data properties window. To establish a visual
connection between the spatial data layout and embedding, we drag the new

7.6. Application Examples | 71

Selected cluster] .

.8

@ Name # Points

@ Water 27255
@ Buildings 152532

B Vegetation 212961

Average spectra
of selected
image region

Figure 7.10. A typical exploration workflow with ManiVault: A user can open and re-arrange views on the fly, derive new data sets using analytics plugins
and connect parameters between plugins. Linked colormaps of the scatterplot and image viewer are shown in Figure 7.1.

embedding data set to the image viewer, which automatically infers the proper
image dimensions for the data subset from its parent in the data hierarchy and
converts it into an additional image layer. Further, we can link the colormaps
of this image layer and the embedding through the parameter-sharing system
by publishing one and connecting the other to it (R3). Zooming into a spatial
area of interest, Figure 7.1 (left), we can discriminate between several building
structures like houses and streets, and even create subclasses of roofs that
immediately stand out thanks to the embedding-based recoloring.

The above procedure intertwined the accomplishment of goals (I) and (II).
ManiVault made it easy to connect various views on the data, i.e., a spatial
layout, high-dimensional pixel attributes, and derived features in the form of
embedding positions. We quickly discriminated between classes in the data
and identified differing spectral characteristics as their cause.

7.6.3. Sharing Analysis Setups — Designer Perspective

ManiVault’s workspace and project features can be used to save and continue an
analysis session but also enable dissemination of results and complete workflows.
To showcase this, we re-implemented the Cytosplore Viewer application [209]
dedicated to sharing the results of Bakken et al. [210] in ManiVault, shown in
Figure 7.11. Instead of having to write an entire stand-alone application to share
an interactive environment alongside data to explore related insights in, we can
use a ManiVault project to bundle both views and data (R5).

The viewer application depicts RNA sequencing data on brain cells from three
vertebrate species. The viewer aims to highlight differences in the expression
of genes and cell types that are shared across the species as described in the
original paper. The main elements of the viewer application are three scatterplots
showing t-SNE embeddings of the gene data of each species, a hierarchical
cluster viewer showing cell types, and a table view showing statistical properties
of the expression data. To create the viewer, we configure ManiVault’s GUI from
within the GUI (R4). We start with loading all data sets and setting up a single
scatterplot plugin. We link scatterplot parameters like its colormap to a global
settings panel that lets users configure all three scatterplots, like in the original
application. Its settings can be saved as a preset which we use for the other two
scatterplot instances. Similarly, we populate the cluster hierarchy view and table
viewer with data. Figure 7.11 shows a configuration in which a user-selected
entry in the table view defines the data attributes (here a gene’s expression)
used to recolor the scatterplot data points (here tissue samples).

ManiVault’s Studio Mode allows us to lock this setup of views and parameter
connections. This is achieved by simply publishing the current view layout,
loaded data, and parameter linkage through the "File" menu tab. We can now
share the viewer with other parties.

72 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Figure 7.11. Screenshot of a re-
impl ion of a Cytosplore
Viewer for comparative cellular analy-
sis of motor cortex in human, marmoset,
and mouse [210]. The viewer shows em-
beddings of cells from the three species
in combination with a shared cluster
hierarchy and the option to calculate
differential gene expression.

7.7. Conclusion

This chapter describes the design considerations for and implementation of
ManiVault, an extensible visual analytics framework for high-dimensional data.
Due to its modular architecture and data-centric design, the software enables
flexible exploration and analysis workflows. We presented various plugins that
provide visualization and analytics functionalities to the system. To build upon
these, we showed how existing libraries can be easily incorporated into the
system. ManiVault’s action and event systems allow users to adjust plugins and
their interplay, enabling the creation of fully customized applications.
Currently, the system provides data plugins that cover a wide range of applica-
tions. New data types like multivariate graph data [58] can be introduced into
the system as new data plugins without changes to the application’s core. We
plan to extend the current serialization mechanism, used for saving the state of
the system, to handle information about interaction history and other kinds of
provenance [211]. Analytics plugins that run code in interpreted languages like
Python. We would like to improve this integration in order to easily integrate
the vast amount of data science tools available in those languages.

We believe that ManiVault has great potential in aiding with the creation and
use of visual analytics applications for visualization developers, practitioners,
and application designers.

Conclusion

A wide variety of domains produce high-dimensional images, from single-cell
biology to astrophysics. As experts in these domains acquire new data of unseen
phenomena or using novel equipment, they face the need to explore and analyze
these new images. However, high-dimensional images are challenging to handle:
Both their size and complex structure introduce difficulties computationally, e.g.,
in terms of algorithmic design, as well as for interactive visual representation,
since their direct visualization is incompatible with standard displaying methods
and thus limits human interpretation.

In this thesis, we introduced several visual analytics techniques, i.e., the com-
bination of visualization, interaction, and automated analysis methods, to
aid exploration and analysis of high-dimensional images. Specifically, we
presented several methods that bridge dimensionality reduction techniques
with image data properties and a software framework for the exploration of
high-dimensional data.

8.1. Contributions

One major shortcoming of applying DR techniques like t-SNE and UMAP to
images is that they do not incorporate spatial information, i.e., pixel neighbor-
hood relations. While their embedding may capture the pixel attribute structure
well, any image-specific characteristics, e.g., texture information, is lost. In
chapter 4 we modified the distance metric used in neighborhood-based DR
techniques to address this limitation. Instead of using a distance metric between
the attribute vectors of two pixels, as is the standard approach, we include the
pixel’s spatial neighbor’s in the comparison. We explore comparisons based
on high-dimensional texture features and using a point-cloud based distance
metric that directly works with all attribute vectors in the pixel’s neighborhood.
We show that incorporating spatial information into DR techniques exposes
data patterns that are not easily identifiable in standard embeddings.

Modern image data is typically high in resolution, containing up to several
million data points. With these large images sizes, dimensionality reduction
techniques become more computationally demanding and their output less
interpretable as embeddings become cluttered. Hierarchical DR techniques
address these scalability issues. Typical exploration setups for high-dimensional
images consist of an image view and an embedding view. While a user can
change the level of abstraction and regions of interest in image and embedding
space, there exists no coupling between these interactions. In chapter 5 we
proposed such a mapping from image navigation interactions to embedding
space actions. We show that such a coupling allows for a natural extension
of the “overview-first, details-on-demand” approach to exploring image and
embedding space simultaneously. The automated coupling reduces the number
of interactions required to reach a desired level of abstraction in both spaces.
We introduced interactions for coupled image exploration and attribute explo-
ration via hierarchical embeddings. However, existing data hierarchies used
in hierarchical DR techniques are designed for abstract data, not image data,
leading to non-spatially-continuous abstractions. That is, embedding points on
abstraction levels often represent a wide spread of pixels, hampering a region-of-
interest based image exploration. This issue would remain even when combining
the hierarchical DR with spatially-informed distance measure as addressed in
chapter 4. In chapter 6, we proposed a superpixel hierarchy to overcome this
problem. Therein, we present a method to merge pixels spatially based on a
random-walk-based attribute similarity, which preserves the high-dimensional
attribute manifold. We showed that these manifold-preserving superpixels
provide a suitable abstraction for high-dimensional image exploration.

([
8.1 Contributions 73
8.2 Challenges and Out-
look 74
8.3 Closing Words 75
Chapter 4:

Spatial Information in Dimensional-
ity Reduction for High-Dimensional
Images

Chapter 5:

Coupled Exploration of High-
Dimensional Images and Hierarchi-
cal Embeddings

Chapter 6:
Manifold-Preserving Superpixel Hi-
erarchies

74 8. Conclusion

Chapter 7:

ManiVault: A Visual Analytics
Framework for High-Dimensional
Data

As valuable as individual methods for exploration, analysis, and interaction
may be, they can only be effective if they are accessible to domain experts. New
imaging modalities and advances in computational methods will continuously
update the best practices in data handling, requiring analysis environments
to be flexible. In chapter 7 we presented the software framework ManiVault,
which enables users from varying backgrounds and with diverse expertise to
setup and extend visual analytics workflows. We show how ManiVault supports
software developers, application designers, and practitioners to implement
algorithms and visual encodings, prototype workflow-specific tool sets, and
perform their data exploration and analysis, respectively. All methods presented
in this thesis are also made available in or fully implemented as plugins for this
framework.

Collectively, these contributions address high-dimensional image exploration
by integrating spatial awareness into dimensionality reduction, developing
interaction techniques, and creating manifold-preserving superpixel hierarchies.
The domain-agnostic nature of these methods enables their application across
diverse fields. This generality necessarily comes at the cost of leaving out
any domain-specific optimizations that may be available in those use cases.
However, by implementing these approaches within the ManiVault framework,
they become accessible and adaptable. Domain experts can build on this
foundation to tailor workflows to their specific data and analysis needs.

8.2. Challenges and Outlook

Dimensionality reduction enables the discovery of meaningful insights in
data that is otherwise unfamiliar or difficult to interpret. However, especially
non-linear embeddings, which this thesis builds on, can be difficult to reason
about. Clusters in the data might become apparent, but explanations for why
any particular data point is clustered generally require additional interpretive
tools or domain knowledge. Our introduction of similarities that combine
image-space and attributes in the dimensionality reduction process exacerbates
this point and opens up additional questions about the feature importance of
spatial pixel layout. A rich body of visual analytics research exists to aid in
embedding interpretation [212, 213], and leveraging this work further presents
an opportunity to refine and improve the effectiveness of the methods presented
in this thesis.

Hypothesis generation and confirmatory analysis are closely linked and should
be complementary during the data analysis process. Hypothesis generation
focuses on gaining insight into unseen data as well as uncovering patterns
and anomalies, whereas confirmatory analysis is concerned with validating
predefined hypotheses using statistical methods. The methods and software
framework in this thesis primarily target the former analysis stage. While
confirmatory analysis remains outside the scope of this work, its tighter inte-
gration into the exploratory workflow with embeddings and inside ManiVault
represents a valuable direction for future development.

Ongoing development in domains such as spatial transcriptomics indicate a
trend toward significant growth in the size of high-dimensional image data
— both in terms of spatial resolution and number of channels. This trend
underscores the need for increasingly specialized methods for interactive
exploration and analysis, capable of handling both the scale and complexity
of such data, as well as inclusion of domain specific knowledge. Additionally,
advances in acquisition of volumetric high-dimensional data highlight the need
to generalize spatial neighborhood relationships and interaction paradigms to
accommodate 3D data and corresponding embeddings techniques.

8.3. Closing Words | 75

8.3. Closing Words

This thesis started out with the goal of addressing long-standing challenges
in facilitating the understanding of massive and continually growing data,

supporting multiple levels of data and information abstraction and providing "We do not guarantee to introduce
frameworks for analysis of spatial data. Did it succeed? We presented such you to the “best” tools, particularly

. . . . since we are not sure that there can
a software framework and new methods for abstracting and interacting with be unique bests.” John W. Tukey in
large spatial data. Yet, progress in visual analytics is difficult to quantify and the Exploratory Data Analysis, page 1[1]

search for good solutions often open-ended. As new types of data and analytical
challenges emerge, both methods and frameworks must evolve accordingly. The
work presented here contributes to this ongoing process. It is another step along
the path forward.

76 8. Conclusion

References

(1
[2]

(31

[4]

(5]

(6]

7]

(8]

[9]

[10]

(1]

(12]

(13]

[14]

(15]

[16]

[17]

[18]

[19]

John W. Tukey. Exploratory Data Analysis. Pearson, 1977 (cited on pages 1, 75).

Christian Tominski and Heidrun Schumann. Interactive Visual Data Analysis. AK Peters Visualization
Series. CRC Press, 2020. por: 10.1201/9781315152707 (cited on page 1).

Jonathan C. Roberts. ‘State of the Art: Coordinated & Multiple Views in Exploratory Visualization’. In:
Proc. CMV. New York: IEEE, 2007, pp. 61-71. por: 10.1169/CMV.2007.20 (cited on pages 2, 56, 62).

Julian Heinrich and Daniel Weiskopf. ‘State of the Art of Parallel Coordinates’. In: Proc. Eurographics.
Ed. by Mateu Sbert and L&szl6 Szirmay-Kalos. Eurographics Association, 2013, pp. 95-116. por:
10.2312/CONF/EG2013/STARS/095- 116 (cited on pages 2, 5).

A. Lhuillier, C. Hurter, and A. Telea. ‘State of the Art in Edge and Trail Bundling Techniques’. In:
Computer Graphics Forum 36.3 (2017), pp. 619-645. por: 10.1111/cgf.13213 (cited on page 2).

Justin Matejka and George Fitzmaurice. ‘Same Stats, Different Graphs: Generating Datasets with
Varied Appearance and Identical Statistics through Simulated Annealing’. In: Proc. CHI. Association
for Computing Machinery, 2017, pp. 1290-1294. por: 10.1145/3025453.3025912 (cited on page 2).

F.]. Anscombe. ‘Graphs in Statistical Analysis’. In: The American Statistician 27.1 (1973), pp. 17-21. por:
10.16080/00031305.1973.10478966 (cited on page 2).

Laurens van der Maaten, Eric Postma, and Jaap van den Herik. Dimensionality Reduction: A Comparative
Review. Tilburg University Technical Report, TICC-TR 2009-005. urL: Ivdmaaten.github.io/publications.
2009 (cited on pages 2, 6, 7).

C. LeCun Y. Cortes and C.J.C. Burges. The MNIST Database of Handwritten Digits. urL: yann.lecun.com/
exdb/mnist. New York, NY, USA, 1998 (cited on page 3).

Marion F. Baumgardner, Larry L. Biehl, and David A. Landgrebe. 220 Band AVIRIS Hyperspectral Image
Data Set: June 12, 1992 Indian Pine Test Site 3. 2015. por: 10.4231/R7RX991C (cited on pages 3, 24, 36, 46,
47,51, 99).

Kristin A Cook and James] Thomas. llluminating the Path: The Research and Development Agenda for Visual
Analytics. osti.gov/biblio/912515. Pacific Northwest National Lab (PNNL), 2005 (cited on pages 3, 55).

Leland Wilkinson and Michael Friendly. ‘The History of the Cluster Heat Map’. In: The American
Statistician 63.2 (2009), pp. 179-184. por: 10.1198/tas.2009.0033 (cited on page 5).

J. M. Chambers. Graphical Methods for Data Analysis. New York: Chapman and Hall/CRC, 1983, p. 410.
por: 10.1201/9781351072304 (cited on page 5).

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. ‘On the Surprising Behavior of
Distance Metrics in High Dimensional Space’. In: Proc. Database Theory — ICDT. Ed. by Jan Van
den Bussche and Victor Vianu. Springer Berlin Heidelberg, 2001. por: 10.1007/3-540-44503-X_27
(cited on page 5).

Allison Marie Horst, Alison Presmanes Hill, and Kristen B Gorman. palmerpenguins: Palmer Archipelago
(Antarctica) penguin data. R package version 0.1.0. 2020. por: 10.5281/zenodo.3960218. UrL: https:
//allisonhorst.github.io/palmerpenguins/ (cited on page 6).

Luis Gustavo Nonato and Michaél Aupetit. ‘Multidimensional Projection for Visual Analytics: Linking
Techniques with Distortions, Tasks, and Layout Enrichment’. In: IEEE Transactions on Visualization and
Computer Graphics 25.8 (2019), pp. 2650—-2673. por: 10.1109/TVCG.2018.2846735 (cited on pages 6, 11,
12, 99).

Mateus Espadoto et al. “Toward a Quantitative Survey of Dimension Reduction Techniques’. In: IEEE
Transactions on Visualization and Computer Graphics 27.3 (2021), pp. 2153-2173. por: 10.1109/TVCG.2019.
2944182 (cited on pages 6, 11, 22, 25, 91).

Cyril de Bodt et al. Low-dimensional embeddings of high-dimensional data. arXiv preprint. 2025. por:
10.48550/arXiv.2508.15929 (cited on pages 6, 8, 11).

John A. Lee and Michel Verleysen, eds. Nonlinear Dimensionality Reduction. 1st ed. New York, NY:
Springer, 2007. por: 10.1007/978-0-387-39351- 3 (cited on page 6).

https://doi.org/10.1201/9781315152707
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.2312/CONF/EG2013/STARS/095-116
https://doi.org/10.1111/cgf.13213
https://doi.org/10.1145/3025453.3025912
https://doi.org/10.1080/00031305.1973.10478966
https://web.archive.org/web/20250325065528/https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
https://web.archive.org/web/20250112235228/http://yann.lecun.com/exdb/mnist/
https://web.archive.org/web/20250112235228/http://yann.lecun.com/exdb/mnist/
https://doi.org/10.4231/R7RX991C
https://www.osti.gov/biblio/912515
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1201/9781351072304
https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.5281/zenodo.3960218
https://allisonhorst.github.io/palmerpenguins/
https://allisonhorst.github.io/palmerpenguins/
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.48550/arXiv.2508.15929
https://doi.org/10.1007/978-0-387-39351-3

78 References

[20] Sylvain Lespinats, Benoit Colange, and Denys Dutykh, eds. Nonlinear Dimensionality Reduction Techniques.
1st ed. New York, NY: Springer, 2022. por: 10.1007/978-3-030-81026- 9 (cited on page 6).

[21] Benyamin Ghojogh et al. Elements of Dimensionality Reduction and Manifold Learning. 1st ed. Cham:
Springer, 2023. por: 10.1007/978-3-031-10602-6 (cited on page 6).

[22] 1. T.Jolliffe. Principal Component Analysis. 2nd ed. Springer, 2002. por: 10.1007/b98835 (cited on pages 6,
7).

[23] Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional Scaling. 2nd ed. Springer, 2005. por:
10.1007/0-387-28981- X (cited on page 7).

[24]].W. Sammon. ‘A Nonlinear Mapping for Data Structure Analysis’. In: IEEE Transactions on Computers
C-18.5 (1969), pp. 401-409. por: 10.1109/T-C.1969.222678 (cited on page 7).

[25] IanGoodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. urL: http://www.deeplearningbook.
org. MIT Press, 2016 (cited on page 7).

[26]]. B. Tenenbaum, V. De Silva, and]. C. Langford. ‘A global geometric framework for nonlinear
dimensionality reduction’. In: Science 290.5500 (2000), pp. 2319-2323. por: 10.1126/science.290.
5500.2319 (cited on pages 7, 13, 41).

[27] Ronald R. Coifman and Stéphane Lafon. ‘Diffusion maps’. In: Applied and Computational Harmonic
Analysis 21.1 (2006). Special Issue: Diffusion Maps and Wavelets, pp. 5-30. por: 10.1016/j .acha.2006.
04.006 (cited on page 7).

[28] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. arXiv preprint. 2018. por: 10.48550/arXiv.1802.03426 (cited on pages 7, 9,
11,12, 15, 21, 29, 46).

[29] Laurens van der Maaten and Geoffrey Hinton. ‘Visualizing data using t-SNE'. In: Journal of Machine
Learning Research 9 (2008). URL: jmlr.org/vandermaaten08a, pp. 2579-2605 (cited on pages 7, 9, 11, 12,
15, 66).

[30] Laurens van der Maaten. “Accelerating t-SNE using Tree-Based Algorithms’. In: Journal of Machine
Learning Research 15 (2014), pp. 3221-3245 (cited on pages 7, 9).

[31] Dmitry Kobak and George C. Linderman. ‘Initialization is critical for preserving global data structure
in both t-SNE and UMAP". In: Nature Biotechnology 39.2 (2021), pp. 156-157. por: 10.1038/541587-020-
00809- z (cited on page 8).

[32] Jian Tang et al. ‘Visualizing Large-scale and High-dimensional Data’. In: Proc. WWW. 2016, pp. 287-297.
por: 10.1145/2872427.2883041 (cited on page 9).

[33] Pak Chung Wong and R. Daniel Bergeron. ‘30 Years of Multidimensional Multivariate Visualization’.
In: Scientific Visualization, Overviews, Methodologies, and Techniques. New York: IEEE, 1997, pp. 3-33
(cited on page 11).

[34] R. Fuchs and H. Hauser. ‘Visualization of Multi-Variate Scientific Data’. In: Computer Graphics Forum
28.6 (2009), pp. 1670-1690. por: 10.1111/j.1467-8659.2009.01429. x (cited on pages 11, 16).

[35] Johannes Kehrer and Helwig Hauser. ‘Visualization and Visual Analysis of Multifaceted Scientific
Data: A Survey’. In: IEEE Transactions on Visualization and Computer Graphics 19.3 (2013), pp. 495-513.
por: 10.1109/TVCG.2012.110 (cited on pages 11, 16).

[36] Shusen Liu et al. “Visualizing High-Dimensional Data: Advances in the Past Decade’. In: IEEE
Transactions on Visualization and Computer Graphics 23.3 (2017), pp. 1249-1268. por: 10.1109/TVCG.2016.
2640960 (cited on pages 11, 30).

[37] Miriah Meyer et al. ‘MulteeSum: A tool for comparative spatial and temporal gene expression
data’. In: IEEE Transactions on Visualization and Computer Graphics 16.6 (2010), pp. 908-917. por:
10.1109/TVCG.2010.137 (cited on page 11).

[38] C Eichner et al. ‘Feature-Based Visual Analytics for Studying Simulations of Dynamic Bi-Stable Spatial
Systems’. In: Proc. EuroVA. 2013. por: 10.2312/PE.EuroVAST.EuroVA13.025- 029 (cited on pages 11,
20).

[39] Liang Zhou and Charles Hansen. ‘Transfer function design based on user selected samples for intuitive
multivariate volume exploration’. In: Proc. PacificVis. 2013, pp. 73-80. por: 10.1109/PacificVis.2013.
6596130 (cited on page 11).

https://doi.org/10.1007/978-3-030-81026-9
https://doi.org/10.1007/978-3-031-10602-6
https://doi.org/10.1007/b98835
https://doi.org/10.1007/0-387-28981-X
https://doi.org/10.1109/T-C.1969.222678
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.48550/arXiv.1802.03426
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1111/j.1467-8659.2009.01429.x
https://doi.org/10.1109/TVCG.2012.110
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2010.137
https://doi.org/10.2312/PE.EuroVAST.EuroVA13.025-029
https://doi.org/10.1109/PacificVis.2013.6596130
https://doi.org/10.1109/PacificVis.2013.6596130

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

79

Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. ‘HadoopViz: A MapReduce Frame-
work for Extensible Visualization of Big Spatial Data’. In: Proc. ICDE. New York: IEEE, 2016, pp. 601-612.
por: 10.1109/ICDE.2016.7498274 (cited on page 11).

Trevor Manz et al. ‘Viv: Multiscale Visualization of High-Resolution Multiplexed Bioimaging Data on
the Web’. In: Nature Methods 19.5 (2022), pp. 515-516. por: 10.1038/541592-022-01482-7 (cited on
page 11).

Leslie Solorzano, Gabriele Partel, and Carolina Wéhlby. ‘TissUUmaps: Interactive Visualization of
Large-Scale Spatial Gene Expression and Tissue Morphology Data’. In: Bioinformatics 36.15 (2020),
pp- 4363-4365. por: 10.1093/bioinformatics/btaa541 (cited on page 11).

Won-Ki Jeong et al. ‘Interactive Histology of Large-Scale Biomedical Image Stacks’. In: IEEE Transactions
on Visualization and Computer Graphics 16.6 (2010), pp. 1386-1395. por: 10.1109/TVCG.2016. 168 (cited
on page 11).

Jesper Molin et al. Scale Stain: Multi-Resolution Feature Enhancement in Pathology Visualization. arXiv
preprint. 2016. por: 10.48550/arXiv.1610.04141 (cited on page 11).

Walid M. Abdelmoula et al. ‘Data-driven identification of prognostic tumor subpopulations using
spatially mapped t-SNE of Mass spectrometry imaging data’. In: Proceedings of the National Acadenty of
Sciences of the United States of America 113.43 (2016), pp. 12244-12249. por: 10.1673/pnas. 1510227113
(cited on page 11).

Marina Evers, Karim Huesmann, and Lars Linsen. “Uncertainty-aware Visualization of Regional Time
Series Correlation in Spatio-temporal Ensembles’. In: Computer Graphics Forum 40.3 (2021), pp. 519-530.
por: 10.1111/CGF. 14326 (cited on page 11).

Robert Krueger et al. “Facetto: Combining Unsupervised and Supervised Learning for Hierarchical
Phenotype Analysis in Multi-Channel Image Data’. In: IEEE Transactions on Visualization and Computer
Graphics 26.1 (2020), pp. 227-237. por: 10.1109/tvcg.2019.2934547 (cited on pages 12, 29, 30, 55).

Antonios Somarakis et al. ImaCytE: Visual Exploration of Cellular Microenvironments for Imaging
Mass Cytometry Data’. In: IEEE Transactions on Visualization and Computer Graphics 27.1 (2019), pp. 1-1.
por: 10.1109/TVCG.2019.2931299 (cited on pages 12, 26, 30).

Mark van de Ruit, Markus Billeter, and Elmar Eisemann. ‘An Efficient Dual-Hierarchy t-SNE Mini-
mization’. In: IEEE Transactions on Visualization and Computer Graphics 28.1 (2022), pp. 614-622. por:
10.1109/TVCG.2021.3114817 (cited on page 12).

Stephen Ingram, Tamara Munzner, and Marc Olano. ‘Glimmer: Multilevel MDS on the GPU’. In: [EEE
Transactions on Visualization and Computer Graphics 15.2 (2009), pp. 249-261. por: 10.1109/TVCG.2008.85
(cited on page 12).

F.V. Paulovich and R. Minghim. ‘HiPP: A Novel Hierarchical Point Placement Strategy and its
Application to the Exploration of Document Collections’. In: IEEE Transactions on Visualization and
Computer Graphics 14.6 (2008), pp. 1229-1236. por: 10.1109/tvcg.2008.138 (cited on pages 12, 29, 39).

N. Pezzotti et al. “Hierarchical Stochastic Neighbor Embedding’. In: Computer Graphics Forum 35.3
(2016), pp. 21-30. por: 10.1111/cgf.12878 (cited on pages 12, 29, 34, 36, 39, 43, 53, 64, 66, 99).

Wilson E. Marcilio-Jr et al. ‘'HUMAP: Hierarchical Uniform Manifold Approximation and Projection’.
In: IEEE Transactions on Visualization and Computer Graphics 31.9 (2025), pp. 5741-5753. por: 10.1109/
TVCG.2024.3471181 (cited on pages 12, 29, 39, 43, 52, 53).

Manik Kuchroo et al. ‘Multiscale PHATE Identifies Multimodal Signatures of COVID-19". In: Nature
Biotechnology 40.5 (2022), pp. 681-691. por: 10.1038/541587-021- 01186- x (cited on pages 12, 52, 53).

Kevin R. Moon et al. ‘Visualizing Structure and Transitions in High-Dimensional Biological Data’. In:
Nature Biotechnology 37.12 (2019), pp. 1482-1492. por: 10.1038/541587-019- 0336 - 3 (cited on pages 12,
52, 53).

Stéphane Lafon and Ann B. Lee. ‘Diffusion Maps and Coarse-Graining: A Unified Framework for
Dimensionality Reduction, Graph Partitioning, and Data Set Parameterization’. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 28.9 (2006), pp. 1393-1403. por: 10.1109/TPAMI.2006.184
(cited on pages 12, 13, 41, 43).

https://doi.org/10.1109/ICDE.2016.7498274
https://doi.org/10.1038/s41592-022-01482-7
https://doi.org/10.1093/bioinformatics/btaa541
https://doi.org/10.1109/TVCG.2010.168
https://doi.org/10.48550/arXiv.1610.04141
https://doi.org/10.1073/pnas.1510227113
https://doi.org/10.1111/CGF.14326
https://doi.org/10.1109/tvcg.2019.2934547
https://doi.org/10.1109/TVCG.2019.2931299
https://doi.org/10.1109/TVCG.2021.3114817
https://doi.org/10.1109/TVCG.2008.85
https://doi.org/10.1109/tvcg.2008.138
https://doi.org/10.1111/cgf.12878
https://doi.org/10.1109/TVCG.2024.3471181
https://doi.org/10.1109/TVCG.2024.3471181
https://doi.org/10.1038/s41587-021-01186-x
https://doi.org/10.1038/s41587-019-0336-3
https://doi.org/10.1109/TPAMI.2006.184

80

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

References

Donatello Conte et al. ‘How and Why Pattern Recognition and Computer Vision Applications Use
Graphs'. In: Applied Graph Theory in Computer Vision and Pattern Recognition. Ed. by Abraham Kandel,
Horst Bunke, and Mark Last. Springer Berlin Heidelberg, 2007, pp. 85-135. por: 10.1007/978- 3-540-
68020-8_4 (cited on page 13).

Andreas Kerren, Helen C. Purchase, and Matthew O. Ward, eds. Multivariate Network Visualization.
1st ed. Vol. 8380. Lecture Notes in Computer Science. Cham, Switzerland: Springer International
Publishing, 2014, pp. XVI, 237. por: 10.1007/978-3-319-06793- 3 (cited on pages 13, 72).

Helen Gibson and Paul Vickers. graphTPP: A multivariate based method for interactive graph layout and
analysis. arXiv preprint. 2017. por: 10.48550/arXiv.1712.05644 (cited on page 13).

Yao Yang Leow, Thomas Laurent, and Xavier Bresson. ‘GraphTSNE: A Visualization Technique for
Graph-Structured Data’. In: Proc. ICLR Workshop on Representation Learning on Graphs and Manifolds.
arXiv document: 1904.06915. 2019 (cited on page 13).

Rafael M Martins et al. ‘MVN-Reduce: Dimensionality Reduction for the Visual Analysis of Multivariate
Networks’. In: Proc. EuroVis. 2017. por: 10.2312/eurovisshort.20171126 (cited on page 13).

Shiyu Chang et al. ‘Heterogeneous Network Embedding via Deep Architectures’. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015). por:
10.1145/2783258 (cited on page 13).

Megha Khosla, Vinay Setty, and Avishek Anand. ‘A Comparative Study for Unsupervised Network
Representation Learning’. In: IEEE Transactions on Knowledge and Data Engineering 33.5 (2021), pp. 1807—
1818. por: 10.1109/TKDE.2019.2951398 (cited on pages 13, 41).

Aditya Grover and Jure Leskovec. ‘Node2vec: Scalable Feature Learning for Networks’. In: Proc. KDD.
2016, pp. 855-864. por: 10.1145/2939672.2939754 (cited on pages 13, 41, 53).

J. F. Kruiger et al. ‘Graph Layouts by T-SNE’. In: Computer Graphics Forum 36.3 (2017), pp. 283-294. por:
10.1111/cgf.13187 (cited on pages 13, 41).

John Aldo Lee and Michel Verleysen. ‘Nonlinear Dimensionality Reduction of Data Manifolds with
Essential Loops’. In: Neurocomputing. Geometrical Methods in Neural Networks and Learning 67 (2005),
pp- 29-53. por: 10.1016/j .neucom.2004.11.042 (cited on pages 13, 41, 43).

F. Gobel and A. A. Jagers. ‘Random Walks on Graphs'. In: Stochastic Processes and their Applications 2.4
(1974), pp. 311-336. por: 10.1016/0304-4149(74)90001-5 (cited on pages 13, 41).

Keenan Crane et al. A Survey of Algorithms for Geodesic Paths and Distances. arXiv preprint. 2020. por:
10.48550/arXiv.2007.10430 (cited on pages 13, 41).

A. Vieth et al. ‘Incorporating Texture Information into Dimensionality Reduction for High-Dimensional
Images’. In: Proc. PacificVis. New York: IEEE, 2022, pp. 11-20. por: 10.1109/pacificvis53943.2022.
00010 (cited on pages 15, 36, 68).

Thomas Hollt et al. ‘Cytosplore: Interactive Visual Single-Cell Profiling of the Immune System’. In:
Eurographics 2019 - Dirk Bartz Prize. Ed. by Stefan Bruckner and Steffen Oeltze-Jafra. The Eurographics
Association, 2019. por: 10.2312/egm.20191032 (cited on page 15).

R. A. Leite et al. ‘EVA: Visual Analytics to Identify Fraudulent Events’. In: IEEE Transactions on
Visualization and Computer Graphics 24.1 (2018), pp. 330-339. por: 10.1109/TVCG.2017.2744758 (cited
on page 15).

Michael Sedlmair, Tamara Munzner, and Melanie Tory. ‘Empirical Guidance on Scatterplot and

Dimension Reduction Technique Choices’. In: IEEE Transactions on Visualization and Computer Graphics
19.12 (2013), pp. 2634-2643. por: 10.1109/TVCG.2013. 153 (cited on page 15).

Matthias Alfeld et al. ‘Joint Data Treatment for Vis—-NIR Reflectance Imaging Spectroscopy and XRF
Imaging Acquired in the Theban Necropolis in Egypt by Data Fusion and t-SNE’. In: Comptes Rendus
Physique 19.7 (2018), pp. 625-635. por: 10.1016/j.crhy.2018.08.004 (cited on page 15).

Natasja L. de Vries et al. “Unravelling the complexity of the cancer microenvironment with multidi-
mensional genomic and cytometric technologiess’. In: Frontiers in Oncology (2020). por: 10.3389/fonc.
2020.01254 (cited on page 15).

Anna Halladin-Dabrowska, Adam Kania, and Dominik Kope¢. ‘The t-SNE Algorithm as a Tool to
Improve the Quality of Reference Data Used in Accurate Mapping of Heterogeneous Non-Forest
Vegetation’. In: Remote Sensing 12.1 (2020). por: 10.3390/rs12010039 (cited on pages 15, 16).

https://doi.org/10.1007/978-3-540-68020-8_4
https://doi.org/10.1007/978-3-540-68020-8_4
https://doi.org/10.1007/978-3-319-06793-3
https://doi.org/10.48550/arXiv.1712.05644
https://doi.org/10.48550/arXiv.1904.06915
https://doi.org/10.2312/eurovisshort.20171126
https://doi.org/10.1145/2783258
https://doi.org/10.1109/TKDE.2019.2951398
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1111/cgf.13187
https://doi.org/10.1016/j.neucom.2004.11.042
https://doi.org/10.1016/0304-4149(74)90001-5
https://doi.org/10.48550/arXiv.2007.10430
https://doi.org/10.1109/pacificvis53943.2022.00010
https://doi.org/10.1109/pacificvis53943.2022.00010
https://doi.org/10.2312/egm.20191032
https://doi.org/10.1109/TVCG.2017.2744758
https://doi.org/10.1109/TVCG.2013.153
https://doi.org/10.1016/j.crhy.2018.08.004
https://doi.org/10.3389/fonc.2020.01254
https://doi.org/10.3389/fonc.2020.01254
https://doi.org/10.3390/rs12010039

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

(84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

81

Boyd Kenkhuis et al. ‘Iron Loading is a Prominent Feature of Activated Microglia in Alzheimer’s
Disease Patients’. In: Acta Neuropathologica Communications (2021). por: 10.1186/540478-021-01126-5
(cited on page 15).

Barbara Zitova and Jan Flusser. ‘Image registration methods: a survey’. In: Image and Vision Computing
21.11 (2003), pp. 977-1000. por: 10.1016/56262- 8856 (03) 00137- 9 (cited on pages 15,17, 18).

Haidekker M. ‘Texture Analysis’. In: Advanced Biomedical Image Analysis. Wiley, 2010, pp. 236-275. por:
10.1002/9780470872093. CH8 (cited on page 16).

Anne Humeau-Heurtier. ‘Texture feature extraction methods: A survey’. In: IEEE Access 7 (2019),
pp- 8975-9000. por: 16.1109/ACCESS.2018.2890743 (cited on pages 16, 19).

Christoph Palm. ‘Color texture classification by integrative Co-occurrence matrices’. In: Pattern
Recognition 37.5 (2004), pp. 965-976. por: 10.1016/j .patcog.2003.09.010 (cited on page 16).

Chandan Singh, Ekta Walia, and Kanwal Preet Kaur. ‘Color texture description with novel local binary
patterns for effective image retrieval’. In: Pattern Recognition 76 (2018), pp. 50-68. por: 10.1016/J .
PATC0G.2017.160.621 (cited on page 16).

Sylvain Lefebvre and Hugues Hoppe. ‘Appearance-space texture synthesis’. In: ACM Transactions on
Graphics 25.3 (2006), pp. 541-548. por: 10.1145/1141911.1141921 (cited on page 16).

Xuejiao Luo, Leonardo Scandolo, and Elmar Eisemann. “Texture Browser: Feature-based Texture
Exploration’. In: Computer Graphics Forum 40.3 (2021), pp. 99-109. por: https://doi.org/10.1111/
cgf.14292 (cited on page 16).

Mathieu Fauvel et al. ‘Advances in spectral-spatial classification of hyperspectral images’. In: Proceedings
of the IEEE 101.3 (2013), pp. 652-675. por: 10.1109/IPROC . 20122197589 (cited on page 16).

Pedram Ghamisi et al. ‘Advances in Hyperspectral Image and Signal Processing: A Comprehensive
Overview of the State of the Art’. In: IEEE Geoscience and Remote Sensing Magazine 5.4 (2017), pp. 37-78.
por: 10.1109/MGRS.2017.2762087 (cited on pages 16, 24).

Mauro Dalla Mura et al. ‘Morphological attribute Profiles for the Analysis of Very High Resolution
Images’. In: IEEE Transactions on Geoscience and Remote Sensing 48 (2010), pp. 3747-3762. por: 10.1109/
TGRS .2010.2048116 (cited on page 16).

Hong Huang et al. ‘Spatial-spectral local discriminant projection for dimensionality reduction of
hyperspectral image’. In: ISPRS Journal of Photogrammetry and Remote Sensing 156 (2019), pp. 77-93. por:
10.1016/j.1isprsjprs.2019.06.018 (cited on page 16).

Guolan Lu and Baowei Fei. ‘Medical hyperspectral imaging: a review’. In: Journal of Biomedical Optics
19.1(2014), p. 010901. por: 16.1117/1.3b0.19.1.010901 (cited on page 16).

Dalton Lunga and Okan Ersoy. ‘Spherical stochastic neighbor embedding of hyperspectral data’. In: IEEE
Transactions on Geoscience and Remote Sensing 51.2 (2013), pp. 857-871. por: 10.1169/TGRS . 2012.2205004
(cited on pages 16, 17).

A. Ardeshir Goshtasby. ‘Similarity and Dissimilarity Measures’. In: Image Registration. Springer Link,
2012, pp. 7-66. por: 10.1007/978- 1-4471-2458-0_2 (cited on page 18).

Rajiv Kapoor, Deepak Sharma, and Tarun Gulati. ‘State of the art content based image retrieval
techniques using deep learning: a survey’. In: Multimedia Tools and Applications 2021 (2021), pp. 1-23.
por: 10.1007/511042-021-11045- 1 (cited on page 18).

Chengcai Leng et al. ‘Local Feature Descriptor for Image Matching: A Survey’. In: IEEE Access 7 (2019),
pp- 6424-6434. por: 10.1109/ACCESS.2018.2888856 (cited on page 18).

Jiayi Ma et al. ‘Image Matching from Handcrafted to Deep Features: A Survey’. In: International Journal
of Computer Vision 2020 129:1129.1 (2020), pp. 23-79. por: 10.1007/511263-020-01359- 2 (cited on
page 18).

Naomi Altman and Martin Krzywinski. “The curse(s) of dimensionality’. In: Nature Methods 15.6 (2018),
pp- 399-400. por: 10.1038/541592-018- 0019- x (cited on page 18).

Adrien Depeursinge, Omar S. Al-Kadi, and J. Ross Mitchell. Biomedical texture analysis: Fundamentals,
tools and challenges. Elsevier, 2017, pp. 1-415. por: 10.1016/C2016-0-01903- 4 (cited on page 19).

https://doi.org/10.1186/s40478-021-01126-5
https://doi.org/10.1016/S0262-8856(03)00137-9
https://doi.org/10.1002/9780470872093.CH8
https://doi.org/10.1109/ACCESS.2018.2890743
https://doi.org/10.1016/j.patcog.2003.09.010
https://doi.org/10.1016/J.PATCOG.2017.10.021
https://doi.org/10.1016/J.PATCOG.2017.10.021
https://doi.org/10.1145/1141911.1141921
https://doi.org/https://doi.org/10.1111/cgf.14292
https://doi.org/https://doi.org/10.1111/cgf.14292
https://doi.org/10.1109/JPROC.2012.2197589
https://doi.org/10.1109/MGRS.2017.2762087
https://doi.org/10.1109/TGRS.2010.2048116
https://doi.org/10.1109/TGRS.2010.2048116
https://doi.org/10.1016/j.isprsjprs.2019.06.018
https://doi.org/10.1117/1.jbo.19.1.010901
https://doi.org/10.1109/TGRS.2012.2205004
https://doi.org/10.1007/978-1-4471-2458-0_2
https://doi.org/10.1007/S11042-021-11045-1
https://doi.org/10.1109/ACCESS.2018.2888856
https://doi.org/10.1007/S11263-020-01359-2
https://doi.org/10.1038/s41592-018-0019-x
https://doi.org/10.1016/C2016-0-01903-4

82

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

References

Manfred M. Fischer and Arthur Getis, eds. Handbook of Applied Spatial Analysis: Software Tools, Methods
and Applications. 1st ed. Springer Berlin Heidelberg, 2010, pp. XV, 811. por: 10.1007/978-3-642-03647-7
(cited on page 19).

David J. Heeger and James R. Bergen. ‘Pyramid-Based Texture Analysis/Synthesis’. In: Proc. SIGGRAPH.
1995, pp. 229-238. por: 10.1145/218380.218446 (cited on page 19).

Leon Gatys, Alexander Ecker, and Matthias Bethge. ‘A Neural Algorithm of Artistic Style’. In: Journal
of Vision 16.12 (2016). arXiv document: 1508.06576, pp. 326-326. por: 10.1167/16.12.326 (cited on
page 19).

Will Equitz et al. ‘Efficient Color Histogram Indexing for Quadratic Form Distance Functions’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 17.7 (1995), pp. 729-736. por: 10.1109/34.391417
(cited on page 19).

Euisun Choi and Chulhee Lee. ‘Feature extraction based on the Bhattacharyya distance’. In: Pattern
Recognition 36.8 (2003), pp. 1703-1709. por: 10.1016/50031- 3203 (03)00035- 9 (cited on page 20).

Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge. ‘Comparing Images Using
the Hausdorff Distance’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 15.9 (1993),
pp- 850-863. por: 10.1109/34.232073 (cited on page 20).

Haogqiang Fan, Hao Su, and Leonidas Guibas. ‘A point set generation network for 3D object reconstruc-
tion from a single image’. In: Proc. CVPR. 2017, pp. 2463-2471. por: 10.1109/CVPR.2017.264 (cited on
page 20).

Nicola Pezzotti et al. “Approximated and user steerable tSNE for progressive visual analytics’. In: IEEE
transactions on visualization and computer graphics 23.7 (2017), pp. 1739-1752. por: 16.1169/TVCG.2016.
2570755 (cited on pages 21, 23, 47).

T. Hollt et al. “Focus+Context Exploration of Hierarchical Embeddings’. In: Computer Graphics Forum
38.3 (2019), pp. 569-579. por: 10.1111/cgf.13711 (cited on pages 22, 31, 32, 35, 36, 38, 54, 99).

Nicola Pezzotti et al. ‘GPGPU Linear Complexity t-SNE Optimization’. In: IEEE Transactions on
Visualization and Computer Graphics 26.1 (2020), pp. 1172-1181. por: 10.1109/tvcg.2019.2934307 (cited
on pages 23, 67, 107).

Yu A. Malkov and D. A. Yashunin. ‘Efficient and Robust Approximate Nearest Neighbor Search Using
Hierarchical Navigable Small World Graphs’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 42.4 (2020), pp. 824-836. por: 10.1109/TPAMI.2018.2889473 (cited on pages 23, 47).

Alexander Vieth. Spatial Information in Dimensionality Reduction (Spidr). urL: github.com /biovault/Spidr.
2022. por: 10.5281/zenodo . 6120879 (cited on page 23).

Charlotte Giesen et al. ‘Highly multiplexed imaging of tumor tissues with subcellular resolution by
mass cytometry’. In: Nature Methods 11.4 (2014), pp. 417-422. por: 10.1038/nmeth . 2869 (cited on
page 25).

Alexander Vieth et al. ‘Interactions for Seamlessly Coupled Exploration of High-Dimensional Images
and Hierarchical Embeddings’. In: Proc. Vision, Modeling, and Visualization. Ed. by Michael Guthe and
Thorsten Grosch. The Eurographics Association, 2023. por: 10.2312/vmv. 20231227 (cited on pages 29,
39, 48).

Laurens van der Maaten. ‘Accelerating T-SNE Using Tree-Based Algorithms’. In: Journal of Machine
Learning Research 15.93 (2014), pp. 3221-3245 (cited on pages 29, 44, 46).

Marc Vermeulen et al. “‘Application of Uniform Manifold Approximation and Projection (UMAP) in
Spectral Imaging of Artworks’. In: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
252 (2021), p. 119547. por: 16.1016/j .saa.2021.119547 (cited on page 29).

Hong Huang et al. ‘Dimensionality Reduction of Hyperspectral Imagery Based on Spatial-Spectral
Manifold Learning’. In: IEEE Transactions on Cybernetics 50.6 (2020), pp. 2604-2616. por: 10.1109/TCYB.
2019.2905793 (cited on page 29).

Dmitry Kobak and Philipp Berens. ‘The Art of Using T-SNE for Single-Cell Transcriptomics’. In: Nature
Communications 10.1 (2019), p. 5416. por: 10.1038/541467-019-13056- x (cited on pages 29, 36, 44, 50).

B Shneiderman. ‘The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations’. In:
Proc. Visual Languages. 1996, pp. 336-343. por: 10.1109/VL.1996.545307 (cited on page 29).

https://doi.org/10.1007/978-3-642-03647-7
https://doi.org/10.1145/218380.218446
https://doi.org/10.48550/arXiv.1508.06576
https://doi.org/10.1167/16.12.326
https://doi.org/10.1109/34.391417
https://doi.org/10.1016/S0031-3203(03)00035-9
https://doi.org/10.1109/34.232073
https://doi.org/10.1109/CVPR.2017.264
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1111/cgf.13711
https://doi.org/10.1109/tvcg.2019.2934307
https://doi.org/10.1109/TPAMI.2018.2889473
https://github.com/biovault/Spidr
https://doi.org/10.5281/zenodo.6120879
https://doi.org/10.1038/nmeth.2869
https://doi.org/10.2312/vmv.20231227
https://doi.org/10.1016/j.saa.2021.119547
https://doi.org/10.1109/TCYB.2019.2905793
https://doi.org/10.1109/TCYB.2019.2905793
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1109/VL.1996.545307

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

83

David A. Ellsworth, Christopher E. Henze, and Bron C. Nelson. ‘Interactive Visualization of High-
Dimensional Petascale Ocean Data’. In: Proc. LDAV. 2017, pp. 36—44. por: 10.1109/LDAV.2017.8231849
(cited on page 30).

France Rose et al. ‘PySpacell: A Python Package for Spatial Analysis of Cell Images’. In: Cyfometry Part
A 97.3 (2020), pp. 288-295. por: 10.1002/cyto.a.23955 (cited on page 30).

Giovanni Palla et al. ‘Squidpy: A Scalable Framework for Spatial Omics Analysis’. In: Nature Methods
2022 19:219.2 (2022), pp. 171-178. por: 10.1638/541592-021-01358- 2 (cited on page 30).

Jared Jessup et al. ‘Scope2Screen: Focus+Context Techniques for Pathology Tumor Assessment in
Multivariate Image Data’. In: IEEE Transactions on Visualization and Computer Graphics 28.1 (2022),
pp- 259-269. por: 10.1109/TVCG.2021.3114786 (cited on page 30).

Denis Schapiro et al. ‘histoCAT: analysis of cell phenotypes and interactions in multiplex image
cytometry data’. In: Nature Methods 14.9 (2017), pp. 873-876. por: 10 . 1038/ nmeth . 4391 (cited on
page 30).

Dominik Sacha et al. “Visual Interaction with Dimensionality Reduction: A Structured Literature
Analysis’. In: IEEE Transactions on Visualization and Computer Graphics 23.1 (2017), pp. 241-250. por:
10.1109/TVCG.2016.2598495 (cited on page 30).

Jing Yang, Matthew O. Ward, and Elke A. Rundensteiner. ‘Interactive Hierarchical Displays: A General
Framework for Visualization and Exploration of Large Multivariate Data Sets’. In: Computers & Graphics
27.2 (2003), pp. 265-283. por: 10.1016/50097 - 8493 (02)00283- 2 (cited on pages 31, 57).

Mark Sifer. ‘User Interfaces for the Exploration of Hierarchical Multi-dimensional Data’. In: Proc. VAST.
2006, pp. 175-182. por: 10.1109/VAST.2006.261422 (cited on page 31).

Wilson E. Marcilio-Jr et al. ‘ExplorerTree: A Focus+Context Exploration Approach for 2D Embeddings’.
In: Big Data Research 25 (2021). por: 10.1016/J.BDR.2021.100239 (cited on page 31).

Niklas Elmqvist and Jean-Daniel Fekete. ‘Hierarchical Aggregation for Information Visualization:
Overview, Techniques, and Design Guidelines’. In: IEEE Transactions on Visualization and Computer
Graphics 16.3 (2010), pp. 439-454. por: 10.1109/TVCG.2009.84 (cited on pages 31, 34, 37, 99).

Alexander Vieth et al. ‘ManiVault: A Flexible and Extensible Visual Analytics Framework for High-
Dimensional Data’. In: IEEE Transactions on Visualization and Computer Graphics 30.1 (2024), pp. 175-185.
por: 10.1109/TVCG.2023.3326582 (cited on pages 34, 47, 55).

Jiirgen Bernard et al. ‘A Survey and Task-Based Quality Assessment of Static 2D Colormaps’. In: Proc.
SPIE 9397, Visualization and Data Analysis. Ed. by David L. Kao et al. Vol. 9397. SPIE, 2015, p. 93970M.
por: 10.1117/12.2079841 (cited on pages 36, 48).

Murong Wang et al. ‘Superpixel Segmentation: A Benchmark’. In: Signal Processing: Image Communication
56 (2017), pp. 28-39. por: 10.1016/j .image.2017.04.007 (cited on page 40).

David Stutz, Alexander Hermans, and Bastian Leibe. ‘Superpixels: An Evaluation of the State-of-the-Art’.
In: Computer Vision and Image Understanding 166 (2018), pp. 1-27. por: 10.1016/j.cviu.2017.03.007
(cited on pages 40, 50).

Isabela Borlido Barcelos et al. ‘A Comprehensive Review and New Taxonomy on Superpixel Segmenta-
tion’. In: ACM Comput. Surv. 56.8 (2024), 200:1-200:39. por: 10.1145/3652509 (cited on page 40).

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. ‘Efficient Graph-Based Image Segmentation’. In:
International Journal of Computer Vision 59.2 (2004), pp. 167-181. por: 10.1023/B:VISI.0000022288.
19776.77 (cited on page 40).

David R. Thompson et al. ‘Superpixel Endmember Detection’. In: IEEE Transactions on Geoscience and
Remote Sensing 48.11 (2010), pp. 4023-4033. por: 10.1109/TGRS.2010.2070802 (cited on page 40).

Xiang Xu et al. ‘Regional Clustering-Based Spatial Preprocessing for Hyperspectral Unmixing’. In:
Remote Sensing of Environment 204 (2018), pp. 333-346. por: 10.1016/].rse.2017.10.020 (cited on
page 40).

Radhakrishna Achanta et al. ‘SLIC superpixels compared to state-of-the-art superpixel methods’.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 34.11 (2012), pp. 2274-2281. por:
10.1109/TPAMI.2012.120 (cited on page 40).

https://doi.org/10.1109/LDAV.2017.8231849
https://doi.org/10.1002/cyto.a.23955
https://doi.org/10.1038/s41592-021-01358-2
https://doi.org/10.1109/TVCG.2021.3114786
https://doi.org/10.1038/nmeth.4391
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1016/S0097-8493(02)00283-2
https://doi.org/10.1109/VAST.2006.261422
https://doi.org/10.1016/J.BDR.2021.100239
https://doi.org/10.1109/TVCG.2009.84
https://doi.org/10.1109/TVCG.2023.3326582
https://doi.org/10.1117/12.2079841
https://doi.org/10.1016/j.image.2017.04.007
https://doi.org/10.1016/j.cviu.2017.03.007
https://doi.org/10.1145/3652509
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1109/TGRS.2010.2070802
https://doi.org/10.1016/j.rse.2017.10.020
https://doi.org/10.1109/TPAMI.2012.120

84

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

References

Mirko Paolo Barbato et al. “Unsupervised segmentation of hyperspectral remote sensing images
with superpixels’. In: Remote Sensing Applications: Society and Environment 28 (2022), p. 100823. por:
https://doi.org/10.1016/j.rsase.2022.100823 (cited on pages 40, 51).

Ming-Yu Liu et al. “Entropy Rate Superpixel Segmentation’. In: Proc. CVPR. 2011, pp. 2097-2104. por:
10.1109/CVPR.2011.5995323 (cited on page 40).

Yiwei Tang, Liaoying Zhao, and Lang Ren. ‘Different Versions of Entropy Rate Superpixel Segmentation
For Hyperspectral Image’. In: Proc. ICSIP. 2019, pp. 1050-1054. por: 10.1109/SIPROCESS.2019.8868344
(cited on page 40).

Ya-Ru Fan. ‘Robust Superpixel Segmentation for Hyperspectral-Image Restoration’. In: Entropy 25.2
(2023), p. 260. por: 10.3390/e25020260 (cited on page 40).

L. Grady. ‘Random Walks for Image Segmentation’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 28.11 (2006), pp. 1768-1783. por: 10.1169/TPAMI . 2006 .233 (cited on page 41).

Jianbing Shen et al. ‘Lazy Random Walks for Superpixel Segmentation’. In: IEEE Transactions on Image
Processing 23.4 (2014), pp. 1451-1462. por: 10.1109/TIP.2014.2302892 (cited on page 41).

Xuejing Kang, Lei Zhu, and Anlong Ming. ‘Dynamic Random Walk for Superpixel Segmentation’. In:
IEEE Transactions on Image Processing 29 (2020), pp. 3871-3884. por: 10.1109/TIP.2020.2967583 (cited
on page 41).

Xing Wei et al. ‘Superpixel Hierarchy’. In: IEEE Transactions on Image Processing 27.10 (2018), pp. 4838—
4849. por: 10.1109/TIP.2018.2836300 (cited on pages 41, 42, 45, 53).

Tingman Yan, Xiaolin Huang, and Qunfei Zhao. ‘Hierarchical Superpixel Segmentation by Parallel
CRTrees Labeling’. In: IEEE Transactions on Image Processing 31 (2022), pp. 4719-4732. por: 10.1109/
TIP.2022.3187563 (cited on page 41).

Andrei C. Jalba, Michel A. Westenberg, and Jos B. T. M. Roerdink. ‘Interactive Segmentation and
Visualization of DTI Data Using a Hierarchical Watershed Representation’. In: IEEE Transactions on
Image Processing 24.3 (2015), pp. 1025-1035. por: 10.1109/TIP.2015.2390139 (cited on page 42).

Matthijs Douze et al. The Faiss library. arXiv preprint. 2024. por: 10.485560/arXiv.2401.08281 (cited
on page 47).

J. Anthony Gualtieri and Robert F. Cromp. ‘Support Vector Machines for Hyperspectral Remote Sensing
Classification’. In: Proc. 27th AIPR Workshop: Advances in Computer-Assisted Recognition. Vol. 3584. SPIE,
1999, pp. 221-232. por: 10.1117/12.339824 (cited on pages 47, 99).

Jia-Ren Lin et al. ‘Highly multiplexed immunofluorescence imaging of human tissues and tumors using
t-CyCIF and conventional optical microscopes’. In: eLife 7 (2018), e31657. por: 10.7554/eLife.31657
(cited on page 49).

Clarence Yapp et al. ‘Highly multiplexed 3D profiling of cell states and immune niches in human
tumors’. In: Nature Methods 22.10 (2025), pp. 2180-2193. por: 10.1038/541592- 025- 02824- x (cited on
page 49).

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. ‘DeepWalk: Online Learning of Social Representations’.
In: Proc. KDD. New York, NY, USA: Association for Computing Machinery, 2014, pp. 701-710. por:
10.1145/2623330.2623732 (cited on page 53).

Jinwoo Kim et al. ‘Revisiting Random Walks for Learning on Graphs’. In: Proc. ICLR. arXiv document:
2407.01214. 2025, pp. 82497-82547 (cited on page 53).

Léaszl6 Lovasz. ‘Random Walks on Graphs: A Survey’. In: Combinatorics, Paul Erdds is eighty. Ed. by
D. Miklés, V. T. S6s, and T. Szényi. Vol. 2. Janos Bolyai Mathematical Society, 1993, pp. 1-46 (cited on
page 53).

Daniel Keim et al. ‘Visual Analytics: Definition, Process, and Challenges’. In: Information Visualization:
Human-Centered Issues and Perspectives. Ed. by Andreas Kerren et al. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2008, pp. 154-175. por: 10.1007/978- 3 - 540 - 70956 - 5_7 (cited on
page 55).

Matthew Brehmer and Tamara Munzner. ‘A Multi-Level Typology of Abstract Visualization Tasks’.
In: IEEE Transactions on Visualization and Computer Graphics 19.12 (2013), pp. 2376-2385. por: 10.1169/
TVCG.2013.124 (cited on page 55).

https://doi.org/https://doi.org/10.1016/j.rsase.2022.100823
https://doi.org/10.1109/CVPR.2011.5995323
https://doi.org/10.1109/SIPROCESS.2019.8868344
https://doi.org/10.3390/e25020260
https://doi.org/10.1109/TPAMI.2006.233
https://doi.org/10.1109/TIP.2014.2302892
https://doi.org/10.1109/TIP.2020.2967583
https://doi.org/10.1109/TIP.2018.2836300
https://doi.org/10.1109/TIP.2022.3187563
https://doi.org/10.1109/TIP.2022.3187563
https://doi.org/10.1109/TIP.2015.2390139
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.1117/12.339824
https://doi.org/10.7554/eLife.31657
https://doi.org/10.1038/s41592-025-02824-x
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.48550/arXiv.2407.01214
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]
[168]

[169]

[170]

85

Heidi Lam, Melanie Tory, and Tamara Munzner. ‘Bridging from Goals to Tasks with Design Study
Analysis Reports’. In: IEEE Transactions on Visualization and Computer Graphics 24.1 (2018), pp. 435-445.
por: 10.1109/TVCG.2017.2744319 (cited on pages 55, 70).

Yuxin Ma et al. “Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics’.
In: IEEE Transactions on Visualization and Computer Graphics 26.1 (2020), pp. 1075-1085. por: 10.1169/
TVCG.2019.2934631 (cited on page 55).

Dong Sun et al. ‘PlanningVis: A Visual Analytics Approach to Production Planning in Smart Factories’.
In: IEEE Transactions on Visualization and Computer Graphics 26.1 (2020), pp. 579-589. por: 10.1109/
TVCG.2019.2934275 (cited on page 55).

Mingyu Pi et al. “Visual Cause Analytics for Traffic Congestion’. In: IEEE Transactions on Visualization
and Computer Graphics 27.3 (2021), pp. 2186-2201. por: 10.11609/TVCG.2019.2940580 (cited on page 55).

Jiang Wu et al. “TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports’. In: IEEE
Transactions on Visualization and Computer Graphics 28.1 (2022), pp. 835-845. por: 10.1109/TVCG.2021.
3114832 (cited on page 55).

Harald Piringer, Wolfgang Berger, and Helwig Hauser. ‘Quantifying and Comparing Features in
High-Dimensional Datasets’. In: Proc. IV. New York: IEEE, 2008, pp. 240-245. por: 10.1169/1V.2008.17
(cited on pages 55, 57).

Harald Piringer et al. ‘A Multi-Threading Architecture to Support Interactive Visual Exploration’. In:
IEEE Transactions on Visualization and Computer Graphics 15.6 (2009), pp. 1113-1120. por: 10.1169/TVCG.
2009.110 (cited on pages 55, 57).

Christopher Ahlberg. ‘Spotfire: An Information Exploration Environment’. In: ACM SIGMOD Record
25.4 (1996). urL: tibco.com, archived webpage, pp. 25-29. por: 10. 1145/245882 . 245893 (cited on
pages 55, 56).

Christopher Ahlberg and Ben Shneiderman. Visual Information Seeking: Tight Coupling of Dynamic
Query Filters with Starfield Displays’. In: Proc. CHI. New York: ACM, 1994, pp. 313-317. por: 10.1145/
191666.191775 (cited on page 55).

M.O. Ward. "XmdvTool: Integrating Multiple Methods for Visualizing Multivariate Data’. In: Proc.
VIS. urL: davis.wpi.edu/xmdyv, archived webpage. New York: IEEE, 1994, pp. 326-333. por: 10.1109/
VISUAL.1994.346302 (cited on pages 55-57).

Deborah F Swayne et al. ‘GGobi: Evolving from XGobi into an Extensible Framework for Interactive Data
Visualization’. In: Computational Statistics & Data Analysis. Data Visualization 43.4 (2003), pp. 423—444.
por: 10.1016/50167-9473(02)00286- 4 (cited on pages 55-57).

JAMES Ahrens, BERK Geveci, and CHARLES Law. ‘ParaView: An End-User Tool for Large-Data
Visualization'. In: Visualization Handbook. Ed. by Charles D. Hansen and Chris R. Johnson. Burlington,
MA, USA: Butterworth-Heinemann, 2005, pp. 717-731. por: 10.1016/B978-012387582-2/50038- 1
(cited on pages 55, 57).

Daniel Jonsson et al. ‘Inviwo - A Visualization System with Usage Abstraction Levels’. In: IEEE
Transactions on Visualization and Computer Graphics 26.11 (2020), pp. 3241-3254. por: 10.1109/TVCG.
2019.2920639 (cited on pages 55, 57, 58).

C. Stolte, D. Tang, and P. Hanrahan. ‘Polaris: A System for Query, Analysis, and Visualization of
Multidimensional Relational Databases’. In: IEEE Transactions on Visualization and Computer Graphics 8.1
(2002), pp. 52-65. por: 10.1109/2945.981851 (cited on pages 55, 57).

Tableau Software, LLC. Tableau. urL: tableau.com, archived webpage (cited on pages 55, 57).

Mehmet Adil Yalgin, Niklas EImqvist, and Benjamin B. Bederson. ‘Keshif: Rapid and Expressive Tabular
Data Exploration for Novices’. In: IEEE Transactions on Visualization and Computer Graphics 24.8 (2018),
pp- 2339-2352. por: 10.1109/TVCG.2017.2723393 (cited on pages 55, 58).

Charles D. Stolper, Adam Perer, and David Gotz. ‘Progressive Visual Analytics: User-Driven Visual
Exploration of In-Progress Analytics’. In: IEEE Transactions on Visualization and Computer Graphics 20.12
(2014), pp. 1653-1662. por: 10.1109/TVCG.2014.2346574 (cited on page 55).

Sriram Karthik Badam, Niklas Elmqvist, and Jean-Daniel Fekete. ‘Steering the Craft: UI Elements and
Visualizations for Supporting Progressive Visual Analytics’. In: Computer Graphics Forum 36.3 (2017),
pp- 491-502. por: 10.1111/cgf.13205 (cited on page 55).

https://doi.org/10.1109/TVCG.2017.2744319
https://doi.org/10.1109/TVCG.2019.2934631
https://doi.org/10.1109/TVCG.2019.2934631
https://doi.org/10.1109/TVCG.2019.2934275
https://doi.org/10.1109/TVCG.2019.2934275
https://doi.org/10.1109/TVCG.2019.2940580
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/IV.2008.17
https://doi.org/10.1109/TVCG.2009.110
https://doi.org/10.1109/TVCG.2009.110
https://www.tibco.com/products/tibco-spotfire
https://web.archive.org/web/20230328072936/https://www.tibco.com/products/tibco-spotfire
https://doi.org/10.1145/245882.245893
https://doi.org/10.1145/191666.191775
https://doi.org/10.1145/191666.191775
https://davis.wpi.edu/~xmdv/
https://web.archive.org/web/20230701091130/https://davis.wpi.edu/~xmdv/
https://doi.org/10.1109/VISUAL.1994.346302
https://doi.org/10.1109/VISUAL.1994.346302
https://doi.org/10.1016/S0167-9473(02)00286-4
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1109/TVCG.2019.2920639
https://doi.org/10.1109/TVCG.2019.2920639
https://doi.org/10.1109/2945.981851
https://www.tableau.com/
https://web.archive.org/web/20230327051153/https://www.tableau.com/
https://doi.org/10.1109/TVCG.2017.2723393
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1111/cgf.13205

86 References

[171] The Qt Company. Qt. urL: gt.io, archived webpage (cited on pages 56, 66).

[172] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. ‘D® Data-Driven Documents’. In: IEEE Transac-
tions on Visualization and Computer Graphics 17.12 (2011), pp. 2301-2309. por: 160.1109/TVCG.2011.185
(cited on pages 56, 67).

[173] Arvind Satyanarayan et al. ‘Vega-Lite: A Grammar of Interactive Graphics’. In: IEEE Transactions on
Visualization and Computer Graphics 23.1 (2017), pp. 341-350. por: 10.1109/TVCG.2016.2599030 (cited
on pages 56, 58, 67).

[174] = Visplore GmbH. Visplore. urL: visplore.com, archived webpage (cited on page 57).
[175] Kitware. Trame. UrL: kitware.github.io/trame, archived webpage (cited on page 57).

[176] Wengiang Cui. ‘Visual Analytics: A Comprehensive Overview’. In: IEEE Access 7 (2019), pp. 81555-81573.
por: 10.1109/ACCESS.2019.2923736 (cited on page 56).

[177] Aindrila Ghosh et al. ‘A Comprehensive Review of Tools for Exploratory Analysis of Tabular Industrial
Datasets’. In: Visual Informatics 2.4 (2018), pp. 235-253. por: 10.1016/j.visinf.2018.12.004 (cited
on page 56).

[178] Xi Chen et al. ‘Composition and Configuration Patterns in Multiple-View Visualizations’. In: IEEE
Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 1514-1524. por: 10.1109/TVCG.2020.
3030338 (cited on page 56).

[179] J.-D. Fekete. ‘The InfoVis Toolkit’. In: Proc. INFOVIS. New York: IEEE, 2004, pp. 167-174. por: 10.1169/
INFVIS.2004.64 (cited on page 56).

[180] J. Yang et al. ‘Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets’.
In: Proc. VisSym. Eindhoven, NL: The Eurographics Association, 2003. por: 10.2312/VisSym/VisSym03/
019- 028 (cited on page 57).

[181] Qingguang Cui et al. ‘Measuring Data Abstraction Quality in Multiresolution Visualizations’. In: I[EEE
Transactions on Visualization and Computer Graphics 12.5 (2006), pp. 709-716. por: 10.1109/TVCG.2006.161
(cited on page 57).

[182] L. Bavoil et al. ‘VisTrails: Enabling Interactive Multiple-View Visualizations’. In: Proc. VIS. New York:
IEEE, 2005, pp. 135-142. por: 10.1109/VISUAL.2005.1532788 (cited on page 57).

[183] Slicer Community. 3D Slicer. urt: slicer.org, archived webpage (cited on page 57).

[184] Hank Childs et al. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data. Chapman and
Hall/CRC, 2012, pp. 395-410. por: 10.1201/b12985- 29 (cited on page 57).

[185] Naohisa Sakamoto and Koji Koyamada. ‘KVS: A Simple and Effective Framework for Scientific
Visualization’. In: Journal of Advanced Simulation in Science and Engineering 2.1 (2015), pp. 76-95. por:
10.15748/jasse.2.76 (cited on page 57).

[186] Will Schroeder, Ken Martin, and Bill Lorensen. The visualization toolkit. 4th. urL: gitlab.kitware.com /vtk/textbook,
archived pdf. Kitware, 2006 (cited on page 57).

[187] Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. ‘amira: A Highly Interactive System for
Visual Data Analysis’. In: Visualization Handbook. Ed. by Charles D. Hansen and Chris R. Johnson.
Burlington: Butterworth-Heinemann, 2005, pp. 749-767. por: 10.1016/B978-012387582-2/50040- X.
(Visited on 02/07/2023) (cited on page 57).

[188] Thermo Fisher Scientific. Amira. urL: thermofisher.com, archived webpage (cited on page 57).

[189] Johannes Sorger et al. ‘A Taxonomy of Integration Techniques for Spatial and Non-Spatial Visualizations’.
In: Proc. VMV. Eindhoven, NL: The Eurographics Association, 2015. por: 10.2312/vmv. 20151258 (cited
on page 57).

[190] Arvind Satyanarayan and Jeffrey Heer. ‘Lyra: An Interactive Visualization Design Environment’. In:
Computer Graphics Forum 33.3 (2014), pp. 351-360. por: 10.1111/cgf. 12391 (cited on page 57).

[191] Jonathan Zong et al. ‘Lyra 2: Designing Interactive Visualizations by Demonstration’. In: IEEE
Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 304-314. por: 10.1109/TVCG.2020.
3030367 (cited on page 58).

[192] Donghao Ren, Tobias Héllerer, and Xiaoru Yuan. ‘iVisDesigner: Expressive Interactive Design of
Information Visualizations’. In: IEEE Transactions on Visualization and Computer Graphics 20.12 (2014),
pp- 2092-2101. por: 10.1109/TVCG.2014.2346291 (cited on page 58).

https://www.qt.io/
https://web.archive.org/web/20230327120156/https://www.qt.io/
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2016.2599030
https://visplore.com/
https://web.archive.org/web/20230328074906/https://visplore.com/
https://kitware.github.io/trame/
https://web.archive.org/web/20230324134037/https://kitware.github.io/trame/
https://doi.org/10.1109/ACCESS.2019.2923736
https://doi.org/10.1016/j.visinf.2018.12.004
https://doi.org/10.1109/TVCG.2020.3030338
https://doi.org/10.1109/TVCG.2020.3030338
https://doi.org/10.1109/INFVIS.2004.64
https://doi.org/10.1109/INFVIS.2004.64
https://doi.org/10.2312/VisSym/VisSym03/019-028
https://doi.org/10.2312/VisSym/VisSym03/019-028
https://doi.org/10.1109/TVCG.2006.161
https://doi.org/10.1109/VISUAL.2005.1532788
https://www.slicer.org/
https://web.archive.org/web/20230327212031/https://www.slicer.org/
https://doi.org/10.1201/b12985-29
https://doi.org/10.15748/jasse.2.76
https://gitlab.kitware.com/vtk/textbook
https://web.archive.org/web/20230328124130/https://gitlab.kitware.com/vtk/textbook/raw/master/VTKBook/VTKTextBook.pdf
https://doi.org/10.1016/B978-012387582-2/50040-X
https://www.thermofisher.com/nl/en/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://web.archive.org/web/20230328072745/https://www.thermofisher.com/us/en/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://doi.org/10.2312/vmv.20151258
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2020.3030367
https://doi.org/10.1109/TVCG.2020.3030367
https://doi.org/10.1109/TVCG.2014.2346291

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

87

Jeffrey Heer, Stuart K. Card, and James A. Landay. ‘Prefuse: A Toolkit for Interactive Information
Visualization’. In: Proc. CHI. New York: ACM, 2005, pp. 421-430. por: 10.1145/1054972.1055031
(cited on page 58).

Kresimir Matkovic et al. “‘ComVis: A Coordinated Multiple Views System for Prototyping New
Visualization Technology’. In: Proc. IV. New York: IEEE, 2008, pp. 215-220. por: 10.1169/IV.2008.87
(cited on page 58).

Plotly Technologies Inc. Dash. urL: dash.plotly.com, archived webpage (cited on page 58).

Thomas Kluyver et al. Jupyter Notebooks-a publishing format for reproducible computational workflows. URL:
jupyter.org, archived webpage, github.com/voila-dashboards/voila. 2016 (cited on page 58).

T. Hollt et al. ‘Cytosplore: Interactive Inmune Cell Phenotyping for Large Single-Cell Datasets’. In:
Computer Graphics Forum 35.3 (2016), pp. 171-180. por: 10.1111/cgf. 12893 (cited on page 58).

Andra Popa et al. “Visual Analysis of RIS Data for Endmember Selection’. In: Proc. GCH. Eindhoven,
NL: The Eurographics Association, 2022. por: 10.2312/gch.20221233 (cited on pages 58, 68).

Julian Thijssen, Zonglin Tian, and Alexandru Telea. ‘Scaling Up the Explanation of Multidimensional
Projections’. In: Proc. EuroVA. Ed. by Marco Angelini and Mennatallah El-Assady. The Eurographics
Association, 2023. por: 10.2312/eurova. 20231098 (cited on pages 58, 68).

Chang Li et al. ‘SpaceWalker enables interactive gradient exploration for spatial transcriptomics data’.
In: Cell Reports Methods 3.12 (2023). por: 10.1016/j.crmeth.2023.100645 (cited on pages 58, 68).

A. Buja et al. “Interactive Data Visualization Using Focusing and Linking’. In: Proc. VIS. New York:
1EEE, 1991, pp. 156-163. por: 10.1109/VISUAL.1991.175794 (cited on page 62).

C. Plaisant, D. Carr, and B. Shneiderman. ‘Image-browser taxonomy and guidelines for designers’. In:
IEEE Software 12.2 (1995), pp. 21-32. por: 10.1109/52.368260 (cited on page 62).

Ove Daae Lampe and Helwig Hauser. ‘Interactive visualization of streaming data with Kernel Density
Estimation’. In: Proc. PacificVis. New York: IEEE, 2011. por: 10.1109/pacificvis.2011.5742387 (cited
on pages 63, 67).

githubuserOxFFFF. Advanced Docking System for Qt. urL: github.com/Qt-Advanced-Docking-System,
archived webpage (cited on page 65).

Nicola Pezzotti. High Dimensional Inspector. urL: github.com/Nicolal7 /High-Dimensional-Inspector.
2018. por: 10.5281/zenodo. 1303855 (cited on pages 66, 68, 107).

Jason D. Wolfe and Sarah R. Black. Hyperspectral Analytics in ENVI Target Detection and Spectral Mapping
Methods. Tech. rep. urL: 13harrisgeospatial.com/Whitepaper.pdf, archived pdf. Harris Corporation,
2018, p. 40 (cited on page 68).

Mark Gahegan. ‘Visual Exploration and Explanation in Geography Analysis with Light’. In: Geographic
Data Mining and Knowledge Discovery. Ed. by Harvey J. Miller and Jiawei Han. 2nd. CRC Press, 2009.
Chap. 11, pp. 291-324. por: 10.1201/9781420073980- 11 (cited on page 69).

David A. Landgrebe. HYDICE image of Washington DC Mall. urL: engineering.purdue.edu, archived
webpage (cited on page 70).

Jeroen Eggermont et al. Cytosplore Viewer. URL: viewer.cytosplore.org, archived webpage (cited on
page 71).

Trygve E. Bakken, Nikolas L. Jorstad, and Qiwen Hu et al. ‘Comparative Cellular Analysis of Motor

Cortex in Human, Marmoset and Mouse’. In: Nature 598.7879 (2021), pp. 111-119. por: 10.1038/541586-
021-03465- 8 (cited on pages 71, 72).

Eric D. Ragan et al. ‘Characterizing Provenance in Visualization and Data Analysis: An Organizational
Framework of Provenance Types and Purpose’. In: IEEE Transactions on Visualization and Computer
Graphics 22.1 (2016), pp. 31-40. por: 10.1169/TVCG.2015.2467551 (cited on page 72).

Z. Huang et al. "VA + Embeddings STAR: A State-of-the-Art Report on the Use of Embeddings in
Visual Analytics’. In: Computer Graphics Forum 42.3 (2023), pp. 539-571. por: 10.1111/cgf. 14859 (cited
on page 74).

Hyeon Jeon et al. “Unveiling High-dimensional Backstage: A Survey for Reliable Visual Analytics
with Dimensionality Reduction’. In: Proc. CHI 2025. Proc. CHI. New York, NY, USA: Association for
Computing Machinery, 2025, pp. 1-24. por: 10.1145/3706598.3713551 (cited on page 74).

https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1109/IV.2008.87
https://dash.plotly.com
https://web.archive.org/web/20230328073033/https://dash.plotly.com/
https://jupyter.org/
https://web.archive.org/web/20230327204631/https://jupyter.org/
https://github.com/voila-dashboards/voila/
https://doi.org/10.1111/cgf.12893
https://doi.org/10.2312/gch.20221233
https://doi.org/10.2312/eurova.20231098
https://doi.org/10.1016/j.crmeth.2023.100645
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1109/52.368260
https://doi.org/10.1109/pacificvis.2011.5742387
https://github.com/githubuser0xFFFF/
https://github.com/githubuser0xFFFF/Qt-Advanced-Docking-System/
https://web.archive.org/web/20230328075959/https://github.com/githubuser0xFFFF/Qt-Advanced-Docking-System/
https://github.com/Nicola17/High-Dimensional-Inspector
https://doi.org/10.5281/zenodo.1303855
https://www.l3harrisgeospatial.com/Portals/0/pdfs/Confirmation/L3HG_Hyperspectral_Whitepaper.pdf
https://web.archive.org/web/20230327182751/https://www.l3harrisgeospatial.com/Portals/0/pdfs/Confirmation/L3HG_Hyperspectral_Whitepaper.pdf
https://doi.org/10.1201/9781420073980-11
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://web.archive.org/web/20230328074006/https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://web.archive.org/web/20230328074006/https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://viewer.cytosplore.org/
https://web.archive.org/web/20230328074120/https://viewer.cytosplore.org/
https://doi.org/10.1038/s41586-021-03465-8
https://doi.org/10.1038/s41586-021-03465-8
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1111/cgf.14859
https://doi.org/10.1145/3706598.3713551

88

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

References

G. Bradski. “The OpenCV Library’. In: Dr. Dobb’s Journal of Software Tools (2000). URL: opencv.org,
archived webpage (cited on page 91).

Leland McInnes et al. ‘'UMAP: Uniform Manifold Approximation and Projection’. In: The Journal of
Open Source Software 3.29 (2018), p. 861 (cited on page 91).

F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In: Journal of Machine Learning Research
12 (2011), pp. 2825-2830 (cited on page 91).

Joshua Tenenbaum. ‘Mapping a Manifold of Perceptual Observations’. In: Proc. NIPS. Ed. by M. Jordan,
M. Kearns, and S. Solla. Vol. 10. urr: scikit-learn.org, official pdf. MIT Press, 1997, pp. 682-688 (cited on
page 107).

Samer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia Object Image Library (COIL-20). Tech. rep.
CUCS-005-96. UrL: cs.columbia.edu. Department of Computer Science, Columbia University, 1996
(cited on page 107).

Y. LeCun et al. ‘Gradient-based learning applied to document recognition’. In: Proceedings of the IEEE
86.11 (1998). urL: yann.lecun.com/exdb/mnist, pp. 2278-2324. por: 10.1109/5.726791 (cited on
page 107).

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. urL: github.com/zalandoresearch/fashion-mnist. arXiv preprint. 2017.
por: 10.48550/arXiv.1708.07747 (cited on page 107).

Grace X. Y. Zheng, Jessica M. Terry, and Jason H. Bielas. ‘Massively Parallel Digital Transcriptional
Profiling of Single Cells’. In: Nature Communications 8.1 (2017). urL: file.biolab.si/opentsne /benchmark,
p- 14049. por: 10.1038/ncomms 14049 (cited on page 107).

https://opencv.org/
https://web.archive.org/web/20251119034741/https://opencv.org/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html/
https://proceedings.neurips.cc/paper_files/paper/1997/file/28e209b61a52482a0ae1cb9f5959c792-Paper.pdf
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/5.726791
https://github.com/zalandoresearch/fashion-mnist/
https://doi.org/10.48550/arXiv.1708.07747
https://file.biolab.si/opentsne/benchmark//
https://doi.org/10.1038/ncomms14049

APPENDIX

A. Supplement: Spidr

SA1: Computation settings

For all t-SNE computations we set used the following HDLib parameters:

Exaggeration=250
exponential decay=40
number of trees=4
number of checks=1024

vyvYyy

When computing approximated nearest neighbors with HNSWIib we use the default parameters M=16 and
ef_construction=200 as well as the random seed 0.
We apply bilateral filtering using OpenCV [214] with the settings

» sigmaColor=75
» sigmaSpace=75
» d=5

For the quantitative analysis, we compute the k-nearest neighbor hit, as described by Espadoto et al [17]. In
brief, for labelled data, for every point in the low-dimensional embedding, we compute the fraction of the k
nearest neighbors in the low-dimensional embedding have the same label as the probed point. This fraction is
then averaged for all points in the dataset. For the synthetic data, we define the ground truth by separating the
checkered areas and homogeneous areas as shown in Figure A.2a. For the Indian Pines dataset, we use the
16-class ground truth data provided with the original data. For the synthetic data, we limit k to k = [1..63],
as the inner, homogeneous squares in the image cover 64 pixels, meaning larger values for k would include
more neighbors than pixels existing for the given label. For the Indian Pines data, we compute the k-nearest
neighbor hit for k = [1..100]. For all, we do not include the probed point in the k-nearest neighbors.

SA2: Weighted feature computation and weighted Chamfer distance

With weights w that sum to 1and weighted p* = [, ..., ui-], an entry o of the covariance matric Z; is given
by:
ok = >, wli—a)ag —p)agr —)" (A1)

qENis'q
where the weighted means are 1, = xS w(i— q)agc.

q&N
For weighting the covariance matrix feature, including the channel-wise means, one only needs to introduce
the weights w in the calculation of the expected value as probabilities.
The Chamfer point cloud distance from Equation 4.6 can be extended by weighting the minimal distances
from each point in the first to the second neighborhood as shown in Equation:

1 . .
dfC(Zi,Zj) = D Z w(i-q) nru?rn”aq - aP||§ +
MA |qewf”’ pe.
(A.2)
LS w(j-p) min flag - apl?.
Ul $1

PestJl qeN;

SA3: Texture-aware UMAP and MDS embeddings

It is possible to use the spatially informed distances between image patches of high-dimensional images in any
distance-based dimensionality reduction method. Here, we show spatially informed UMAP and metric MDS
embeddings for the synthetic data set from Section 4.4.

We use the umap-learn [215] implementation for UMAP and scikit-learn [216] metric MDS. Note, that in the
MDS Bhattacharyya example, the central cluster is actually two: the upper part corresponds to the upper left

92

A. Supplement: Spidr

area in the image and the lower part to the lower right. Between the two clusters are the border points between
the checkered regions (and the pixels on the vertical border between the homogeneous areas).

Standard Chamfer point cloud Histograms Bhattacharyya
v
, s -
KX JSew
B 2
i" %
v
S s | N e .
|0 » e o
- i ¢
| ®& | . .
sl @ e
2w & R

main chapter.

o

H

Nopoor it

250 2% 250

(@) Ground truth. (b) t-SNE (c) UMAP (d) MDS

Figure A.2. Ground truth for the synthetic dataset, classifying the four checkered areas on the outside and the four homogeneous regions in the center (a). Nearest
neighbor hit for the t-SNE (b), UMAP (c), and MDS (d) embeddings from Figure A.1. — standard version, — covariance matrix and mean, — point cloud
distance and — histogram.

SA4: Other point cloud distances

The Chamfer point cloud distance, see Equation 4.6, belongs to the broader family of distances related to the
Hausdorff distance. These distances build on finding the nearest point for each point in one set to the other.
Instead of averaging the minima, the Hausdorff distance takes their maximum instead:

e (Zi,Z)) = max{ } (A.3)

max | min ||aq—aP||§ , max | min [lag —aP||§
quiS,q peNjS"l qGJV]. ! pENiS'q

Another variant that might be more robust against outliers in the data might take the median, instead of the
average, like the Chamfer distance:

1
dggA(Zi,Zj) =5 median min [lag —apllé + median min llag —ap||§ (A4)

S il A M
qeN; PN, 9ex; pef;

Sum of squared differences: When taking the average instead of the minimum of point-wise distances in the
Chamfer distance, ending up an average of averages.

PC - —_—

dssp(Zi, Zj) = S Z 5 TS 2 llag —apll; + S Z " S 2 ||aq_ap||2
W qen, 511 | pE.N'. | i laen S | pen; !
A TS oS Z Z ”aq —apll;
| l l qE.N pEJV

Weighted versions analogous to Section 4.3.6:

P
dHCaus(Zl'Zl) = max{ max Wq rmg llaq —ap||2 , max Wq m1§1 llag _ap||2 }
qu pe./‘/j A qu peN’

1
dﬁ%(li,zj) =5 medéan wq mlg ||aq—ap||2 + medéan wq mm ||aq—ap||2
qen." pE./Vj qs; & i
2
PC _ 2
dssp(Zi, Zj) = S 20 2 (wq+wp)lag - aplly
I i . | j | qujS"l Pe_/\,»isr’l

(A5)

(A6)

(A7)

(A.8)

See Figure A.3 for a comparison of these point cloud distances for the synthetic data set from the main

chapter.

(a) Hausdorff (b) Hausdorff Median

&
(c) Chamfer (d) SSD
— Hausdorff ~ Hausdorff Median ~ Chamfer ~ SSD

100%
S \\
-
B o —
- \
g
2

63%

50%

1 8 15 22 29 36 43 50 57 63

(e) Nearest neighbor hit

Figure A.3. All spatially informed embeddings are computed with a 3x3 neighbourhood and their respective nearest neighbor hit.

94 A. Supplement: Spidr

SA5: Varying neighborhood sizes and spatial weighting

See Figs. A.4, A.5, A.6, A7 and A.8 for an overview of of the effect of different neighborhood sizes for the
synthetic data set from the main chapter.

.
»
R 2
G
(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.4. All spatially informed embeddings are computed with a 3x3 neighbourhood and Gaussian weighting.

(@) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.5. All spatially informed embeddings are computed with a 5x5 neighbourhood.

8

£

viEd

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance

o .

Figure A.6. All spatially informed ings are computed with a 5x5 neighbourhood and Gaussian weighting.

X,
Rk od

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.7. All spatially informed embeddings are computed with a 7x7 neighbourhood.

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance

Figure A.8. All spatially informed ings are computed with a 7x7 neighbourhood and Gaussian weighting.

95

Local Histogram

Covariance matrix and means. Chamfer point cloud distance
AN

” R - -

o o o%
() Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.9. Neighbor hit values for the local histogram (Figure 4.4b), covariance (Figure 4.4c), and point cloud (Figure 4.4d) -based embeddings and their
different neighborhood size versions (Figs. A.4, A.5, A.6, A.7, and A.8). — 3x3 neighborhood, — 5x5 neighborhood, — 7x7 neighborhood, — 3x3 neighborhood
Gaussi ighted, — 5x5 neighborhood Gaussi ighted, — 7x7 neighborhood Gaussian weighted.

SA6: Computation time evaluation

Figs. A.10 and A.11 show the computation time for the distance computation (including feature computation)
and subsequent embedding time. All measurements were conducted on a computer with an Intel i5-9600K
processor and a NVIDIA GeForce RTX 2080 SUPER graphics cards. A corresponding theoretical complexity
analysis of each distance is presented in Section 4.3.5. Some measurements show the influence of hardware
optimizations implemented in the used libraries, which influences the computation time, see for example the
time behaviour of the Bhattacharyya distance for various neighborhood sizes in Figure A.10.

QF, 50 ch, distances
QF, 100 ch, distances
QF, 200 ch, distances
PC, 50 ch, distances
PC, 100 ch, distances
PC, 200 ch, distances
Bhat, 5 ch, distances
Bhat, 7 ch, distances
Bhat, 10 ch, distances
Avg. & var, embed

103 4

i

102 4

\
\
\

Time (s)

W0t e +. _________________ 3

T T T
3x3 5x5 7x7 9x9
Neighborhood size

Figure A.10. Computation time of the distance computation for varying neighborhood sizes: local histogram comparison with the quadratic form distance (QF),
covariance matrix feature comparison with the Bhattacharyya distance (Bat) and the Chamfer point cloud distance (PC). The Indian Pines data set with 21.025
data points and 200 channels was used for computation. The same random channel subsets were used for runs with less than 200 channels. The Bhattacharyya
distance is listed for fewer channels since its runtime grows impractically large for higher channel counts, as shown in Figure A.11. As mentioned in the main
chapter, when using the QF distance we use the Rice rule to set the number of histogram bins. This results in 5, 6, 8 and 9 bins for the various neighborhood sizes
respectively. The embedding time is not influenced by the distance metric and shown as an average of all measurements with variance bars.

96 A. Supplement: Spidr

QF, 3x3, distances
QF, 5x5, distances
QF, 7x7, distances
PC, 3x3, distances
PC, 5x5, distances
PC, 7x7, distances
Bhat, 3x3, distances
Bhat, 5x5, distances

Bhat, 7x7, distances
—e— t-SNE, distances
—#- t-SNE, embed

11t

Time (s)

100 '_/‘——_./‘,

5 10 25 50 100 200
Number of channels

Figure A.11. Computation time of the distance computation for channel numbers: local histogram comparison with the quadratic form distance (QF), covariance
matrix feature comparison with the Bhattacharyya distance (Bat) and the Chamfer point cloud distance (PC). The Indian Pines data set with 21.025 data points
and 200 channels was used for computation. The same random channel subsets were used for runs with less than 200 channels. The Bhattacharyya distance is
listed for fewer channels since its runtime grows impractically large for higher channel counts. The histogram bin number for the QF distance is set as described in
Figure A.10. The embedding time is not influences by the distance metric and the shown embedding times for the standard t-SNE procedure is representative for
the embeddings times of all runs.

SA7: Indian Pines - additional figures

Figure A.12. Overview of the Indian Pines dataset with different embedding methods. Coloring based on colormapping embedding coordinates, as discussed
for Figure 4.4. (a) standard t-SNE, (b) standard t-SNE applied to a bilaterally filtered version of the image, and (c) our point cloud-based t-SNE.

I beans with corn residue
I beans with comn residue
I wheat with com residuc

(@) Highlights in the ground
truth.

(b) Dividing aisle.

97

aisle and
other areas

' L3
(a) Bilaterally filtered ’(b) Annotated map

(a) Attempted selection of the dividing aisle in the t-SNE embedding based on the
bilaterally filtered data. In contrast to Figure 4.5d, it is not possible to find a cluster that
only corresponds to the aisle.

Figure A.13. Ground truth of Indian Pines Site 3 with highlighted areas as further discussed in Figure A.15 and an annotated map of the Site without a

color-coded background.

(a) selected in standard -SNE

(d) bilateral filtered () point cloud

L e N4

~ul L}

i "
r L

*
*
=" h
. . 'S
(b) selected in t-SNE of bilaterally filtered image (0) selected in point-cloud distance t-SNE
. B e
B3 A
230 A o %
| * i
(2) point cloud ! (h) standard (i) bilateral filtered

Figure A.15. Indian Pines: Comparison of spatially-aware and standard t-SNE embeddings. The top row (a-c) shows a standard t-SNE embedding,
an embedding of the bilaterally filtered data set and our spatially-aware embedding (based on the Chamfer point cloud distance). We tried to select the three
highlighted regions from Figure A.13a in each embedding and show the respective pixel on the ground truth. The lower row (d-i) highlights the selections made in
the above embeddings in the two other embeddings, for example highlighted points in (d) and (e) correspond to points selected in (a).

98 A. Supplement: Spidr

B. Supplement: Interactive Image HSNE

SB1: Background - Hierarchical Embeddings

A hierarchical embedding method typically extends existing DR techniques by creating a hierarchical representa-
tion of the original data items and projecting only elements from individual hierarchy levels instead of all
data [16]. Using the notation for hierarchical embeddings from Hollt et al. [104], the hierarchical data structure
consists of landmarks, within 1 levels, namely the sets £° ... 2£"~1. The lowest hierarchy level £° contains all
data points. Each landmark L*! € £¥+1 in a higher hierarchy level represents (—) a set of landmarks from the

lower level #X = {Li.< | Lf.‘ — L;‘*l}. Thus, the higher embedding levels provide more abstract representations

of the original data. Here, for simplicity, we assume the hierarchy to be a proper tree: each landmark L{,‘ is
represented by only one landmark in £%*+1. In practice this is not necessarily the case [52].

Given a selection of landmarks #* on a level k, we are interested in their relation to landmarks in other
hierarchy levels. Following the terminology for visualizations of hierarchically structured data from Elmqvist
et al. [124], we describe coarsening the level of detail, i.e., the process of finding all landmarks & k+1 on the
more abstract level k + 1 that well represent them, as rolling-up. Analogously, refining the level of detail, that
is finding the landmarks =1 on the more detailed level k — 1 that are represented by % is the result of
drilling-down.

SB2: Timings

Timings for regular HSNE and interactive HSNE, all taken on a machine equipped with an Intel Core i5-9600K
CPU and a NVIDIA GeForce RTX 2080 SUPER GPU. The total embedding time is approximately equal to
the data structure initialization and gradient descent time. Our hierarchy traversal step adds a comparably
small overhead to the entire embedding computation. In most scenarios, the user is presented with iteratively
updating embeddings within 300ms (hierarchy traversal plus data structure initialization times).

Table B.1. Indian Pines: Durations of embedding update step connected to an image interaction. ROIs as indicated in Figure 5.4a. Times, in ms, are averages over
10 runs with sample standard deviation.

ROI (D ROI @ ROI (1)

Scale 2 2 3
Landmarks 9,738 9,533 3,979
Data points in view 57,424 58,212 50,691
Hierarchy traversal [our] 48.0 (2.6) 39.3 (2.9) 39.2 (4.2)
Embedding 8481 (78.2) 862.2 (17.8) 619.8 (33.2)
L Data structure initialization ~ 244.6 (11.8) 2438 (47) 404 (2.5)
L Gradient descent 598.8 (80.0) 614.0 (20.4) 545.5 (32.2)

Note: Times in ms, standard deviation in parentheses.

SB3: Additional Indian Pines Information and Figures

The Indian Pines Test Site 3 [10] data are a set of hyperspectral 145 X 145 pixel images with known class
information for each pixel. This well analyzed data set is only a small part of a larger, unlabeled measurement
of 614 X 2,678 ~ 1.6M pixels, depicting an area around the Purdue University Agronomy Center in Indiana,
USA, made up of fields (e.g. corn and soy), forests, roads, rivers and houses. The pixel resolution is roughly
20m x 20m and contains electromagnetic spectral information from from 400-2400 nm sampled at 10 nm. We
excluded 20 channels of the 220 channel data set due to their low information quality since they cover spectral
water absorption bands, as suggested in [145]. This results in 200 samples, that we interpret as dimensions,
forming our high-dimensional attribute space used as input for the dimensionality reduction. We normalized
the data by clamping each channel to the 99.999th percentile and scaling it to the range [0, 1].

100 B. Supplement: Interactive Image HSNE

Normalized

1 E
intensity ‘

®) almost all
Figure B.2. Indian Pines cluster characteristics: (a) shows the top level (4th) HSNE (b) previous
embedding of the Indian Pines data. (b) displays channel-wise intensity values for three cluster . i .
of different types of fields (A and C) and forest (B). “and * indicate frequency bands that were Figure B.3. Drill-down of the embedding for ROI 3 from
omitted from the data. The three regions of interest discussed in Figure 5.4 are mostly represented Figure 5.4d: the recolored image region (a), new embedding
with landmarks from the three clusters above. (b) and initializations (c).

No
consistency

Figure B.4. Regular HSNE embeddings: (a) and (b) as in Figure 5.4f and Figure 5.48. (c) and (d) show the intermediate refinements on level 3 between the top
level embedding and the level 2 embeddings. They contain 11,857 and 11,207 landmarks respectively while the level 2 embeddings contain 50,116 and 46,461
landmarks respectively.

C. Supplement: Superpixels

SC1: Complexity of geodesic approach

Both the construction of a search index in HNSW and the actual nearest neighbor search is rather feasible with
complexities of respectively O(n log n) and O(logn). But computing the geodesic distance d¢ between two
graph nodes is intrinsically complex and increases the typical complexity of distance computation for, e.g.
Euclidean distances, of O(1) to O((n +|€|) log 1) with the A* search algorithm or O(n log 1 +|€|) with Dijkstra’s
algorithm”. This distance needs to be computed |sp] - |44| times for the Hausdorff-based set comparison. On
higher levels the components contain numbers of pixels in the same order of magnitude as the entire image,
such that computing a single set comparison with the Hausdorff distance will become intractable, as well.

SC2: Symmetrized and connected kKNN-graph

We convert the directed kNN-graph into an undirected graph by making each edge bidirectional, compute its
connected components and add new edges that connect the components. For that purpose, we first compute
the mean value of the high-dimensional data points in each connected component. Secondly, we set up a
fully-connected helper graph, each vertex corresponding to one connected component and edge weights being
the 6 distances between their means. We then compute its minimum spanning tree (MST). Finally, we find the
smallest 0 distance between any two points from two components connected by an edge in the above MST and
introduces a bidirectional connection into the symmetrized kKNN-graph. If a symmetrized kNN-graph already
only has one connected component, no new edges are introduced.

SC3: Indian Pines

Settings for the superpixel hierarchy discussed in Section 6.6.1: kNN algorithm: HNSW (faiss implementation),
300 nearest neighbors, Number of random walks: 50, Length of random walks: 25.

Settings for the HSNE hierarchy : kNN algorithm: HNSW (hnswlib implementation), perplexity of 30 (yielding
90 nearest neighbors),

Figure C.1 shows the superpixel hierarchy from Section 6.6.1 for all level from 0 to 7. It is possible to continue
with more abstraction levels until there is only one superpixel, which covers the entire image, but the very
large superpixles on high levels do not create interesting subdivision of the image anymore and are not shown
here.

SC4: CiCYF

The marker channels used for the superpixel hierarchy and corresponding embeddings for the CiCYF discussed
in Section 6.6.2 (as per personal correspondence with the data paper’s authors): 5Shmc, b-actin, CD103, CD11b,
CD1lc, CD163, CD20, CD206, CD31, CD3E, CD4, CD8a, FOXP3, HLA-AB, IRF1, Ki67, laminABC, MART1,
panCK, PD1, podoplanin, S100A, S100B, SOX10, SOX9, pMLC2, yH2AX.

The channels Collagen and Hoechst (a marker used to stain DNA and labeled as "DNA" in our figure) used for
recoloring in Figure 6.7 are not part of the input markers to the superpixel hierarchy.

Figure C.2 shows the full image data and indicates the region we focus on in Section 6.6.2, with xpegi, = 2060,
Xsize = 2000, Ypegin = 450, Ysize = 1500.

Figure C.3 shows the superpixel hierarchy from Section 6.6.2 for all level from 0 to 6.

SC5: Quantitative results: Indian Pines dataset

Table C.1and Table C.2 list the numerical values for the graph in Figure 6.8, showing the quantitative evaluation
results discussed in Section 6.6.3.

Even though UE is constrained to [0,1] and a value of 1 can be expected for a worst-case segmentation,
a "segmentation” of the Indian Pines data into a single segment yields a UE of 0.975. This is due to the

see A on boost.org/doc/libs/1_86_0/libs/graph/doc/astar_search.html or en.wikipedia.org/wiki/A*_search_algorithm and Dijkstra’s
algorithm on boost.org/doc/libs/1_86_0/libs/graph/doc/dijkstra_shortest_paths.html or en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://www.boost.org/doc/libs/1_86_0/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm
https://www.boost.org/doc/libs/1_86_0/libs/graph/doc/dijkstra_shortest_paths.html
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

102 C. Supplement: Superpixels

term min{|s; N g;|, |9r \ ¢i|} in Equation 6.7, which was introduced in this measure to improve in earlier
formulations of undersegmentation error which tend to penalize small overlap of large superpixels with a
ground truth segment. However, since the ground-truth label "background" covers just-so more than half
the image pixels, this is the only term in which |4, \ g;| is considered instead of |3, N ¢;|. This edge case of a

ground-truth segment covering more than 50% does not impact the evaluation though.

SCé6: Miscellaneous

Figure C.4 shows the full superpixel hierarchy for the bus image from Figure 6.2.

Figure C.5 shows the full superpixel hierarchy for small Indian Pines image from Figure 6.4.

Table C.1. Undersegmentation error (UE): Values for the plot in Figure 8. Lower is better.

Level 1 2 3 4 5 6 7 8 9 10 11
Euclid. Val. | 0.073 0147 0.269 0493 0704 0.900 0.975 — — — —
(ours) # 5763 1441 345 88 16 5 1 — — — —
Geo. Val. | 0.072 0.141 0.238 0485 0.622 0.870 0.975 = = = —
(ours) # 5769 1447 364 89 23 5 1 — — — —
Barbato Val. | 0.092 0.098 0149 0171 0.227 0.340 0.378 0.578 0.644 0730 0.975

6901 5769 2227 1590 587 234 169 61 43 20 1
kNN Val. | 0.084 0151 0.244 0356 0.661 0.812 0.867 0.975 — — —
(ours) # 5191 1282 325 84 23 7 2 1 — — —

Barbato’s method does not know an explicit level distinction. The levels correspond to several n_clusters settings:

1, 5, 10, 25,50, 100,250, 500, 1000, 2500, 5000

Table C.2. Explained variation (EV): Values for the plot in Figure 8. Higher is better. EV is 1when the number of superpixels is equal the number of pixels, i.e.,
no abstraction.

Level 1 2 3 4 5 6 7 8 9 10 11
Euclid. Val. | 0970 0918 0.837 0709 0517 0.290 0.0 — — — —
(ours) # 5763 1441 345 88 16 5 1 — — . —
Geo. Val. | 0969 0918 0.845 0.693 0.488 0.218 0.0 — — — —
(ours) # 5769 1447 364 89 23 8 1 — — — —
Barbato Val. | 0963 0958 0.922 0906 0861 0794 0766 0.680 0.641 0485 0.0

6901 5769 2227 1590 587 234 169 61 43 20 1
kNN Val. | 0963 0919 0.853 0765 0.578 0.453 0.209 0.0 — — —
(ours) # 5191 1282 325 84 23 7 2 1 = = =

Barbato’s method does not know an explicit level distinction. The levels correspond to several n_clusters settings:

1, 5, 10, 25,50, 100, 250, 500, 1000, 2500, 5000

103

Level O (data)

1,644,292 pixels 25,569 superpixels (23.85%)

6,248 superpixels (24.44%) 1,468 superpixels (23.50%) 78 superpixels (24.22%)

Figure C.1. Indian Pines superpixel hierarchy: Data level embedding alongside seven superpixel abstraction level embedding. Each level shows a false color
image based on the average spectrum per superpixel of channel 20 (587 nm, red), 76 (1090 nm, green) and 130 (1591 nm, blue). Next to them are recolorings of
the superpixel based on the embedding layout using a 2D colormap which is superimposed on the respective embeddings (as shown in Figure 6.5. Superpixels
are hardly visible in these down-scaled version of the originally 614 X 2,678 (w x h) images, but more abstract levels clearly show more and more high-level
structure. The percentages indicates the reduction of components, i.e., the number of components (superpixels) in level 1 reduces to 27.28% of the previous level.

104 C. Supplement: Superpixels

5454 x 2754

y,

Density

|
i

Figure C.3. CyCIF Superpixel Hierarchy: Full superpixel hierarchy for the CyFIC data from Section 6.6.2.

2000 x 1500

Figure C.2. CyCIF Focus Region: As used in Section 6.6.2. DNA corresponds to the Hoechst channel.

3,000,000 pixels

Level 0 (data, t-SNE)

658,609 superpixels;

Level 1

83,370 superpixels
@;@y
» kP

Level 2

Level 3

Level 4

Level 5

Level 6

Col

.

lagen

11,582 uperpixels

2,906 superpixels|

624 superpixels

¥,

L

\

103 superpixels

cost?®

105

Level 0 (data) Level 1) Level 2 Level 4 S Level 5 Level 6
Figure C.4. RGB image of a bus (top left) and 6 levels of abstraction. Superpixels are recolored with the average color of all the image pixels they contain. Below,

embeddings of each level using the same coloring. Numbers of components: 15300 (150x102 pixels), 4094, 1054, 271, 64, 14, 4.

Level 3

Level 0 . Level 1 i Level 2 Level 3 Level 4 Level 5

Level 0 Level 2 Level 3 Level 4 Level 5

Figure C.5. Indian Pines: Embeddings and image space recolorings for (a) t-SNE and (b) UMAP probabilities.

106 C. Supplement: Superpixels

D. Supplement: ManiVault

SD1: Benchmarks

Speed ManiVault can show progressive updates of analytics plugins with only small additional computational
penalties. To show this, we compute t-SNE embeddings with a ManiVault analytics plugin that uses the HDI
library GPGPU implementation of t-SNE [105, 205]. First, we compute embeddings non-progressively, and
then, in a second setting, we show intermediate embeddings every 10 gradient descent iterations (respectively
"no updated" and "with updates" in Table D.1. Additionally, we compare these runs with a lightweight python
wrapper * around the same t-SNE library. Every embedding is laid out over 500 gradient descent iterations.
The non-progressive computation is slightly faster than the Python wrapper around the same library calls.
The difference between the total runtime of the t-SNE embeddings in ManiVault with and without updates is
explained by the difference in the gradient descent time: In the former setting, the analytics plugin notifies
ManiVault’s core about the current embedding layout. All measurements were taken on a machine equipped
with an NVIDIA GeForce RTX 2080 SUPER GPU and an Intel Core i5-9600K CPU and running Windows 11
22H2.

Table D.1. Duration of t-SNE embedding computations with the same implementation, invoked via a Python wrapper and ManiVault, once showing only the

final embedding and once progressively updating a scatterplot. Times, in seconds, are averages over 10 runs with sample standard deviation.
Data set Swiss Roll 3D COIL-20 MNIST Fashion-MNIST 10x Mouse
[217] [218] [219] [220] [221]
points 1,500 1,440 70,000 70,000 1,306,127
dimensions 3 16,384 784 784 50 (first PCs)
nptsne * 2 0.30 (0.02) 2.32 (008) 23.31 (0.14) 20.58 (0.01) 268.38 (2.21)
ManiVault ? 0.58 (0.05) 2.37 (005 2251 (011 20.20 (0.27) 258.60 (5.76)
ManiVault 0.59 (0.07) 2.46 (009 22.85 (015) 20.24 (0.1 257.91 (4.02)

b

Note: Times in seconds, sample standard deviation in parentheses. ? Python wrapper, ° no updates, © with updates

Memory After starting ManiVault, with the Data Hierarchy and Data Property Viewer open, the software
consumes around 87 MB of memory (on Windows). Loading data sets comes with a small memory overhead.
Here, we loaded various data sets, as listed in Table D.1, and compared their binary size on disk with the
growing memory footprint of ManiVault after loading them. We observe a 0.7 — 1.5 MB overhead per data set,
compared to their binary size, when utilizing the point data type plugin. For larger data set, it can be useful to
trade off precision for lower memory uptake. We can employ a bfloatl6 floating point implementation * to
store large data set, and thereby effectively half the memory ManiVault requires: e.g. the 10x Mouse data will
take up 126.15 MB instead of 249.87 MB.

Table D.2. Memory consumption of loaded data sets, as listed in Table D.1, in ManiVault compared to their binary size on disk. Values are averages over 4 loaded
data sets.

Dataset [217] [218] [219] [220] [221]

Binary type float32 uint8 uint8 uint8 float32
Raw binary 0.017 22.5 52.34 5234 24912
ManiVault (float32) 0.97 - - - 249.87
ManiVault (uint8) - 2377 53.5 54.1 -

Note: Values in MB. Slight deviations might occur due to Qt's memory management on
Windows 11, e.g., the difference between MNIST and Fashion-MNIST.

* Github: biovault/nptsne
t Github: biovault/biovault_bfloatl6

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://github.com/biovault/nptsne
https://github.com/biovault/biovault_bfloat16

Publications

v

A. Vieth, A. Vilanova, B. Lelieveldt, E. Eisemann and T. Hollt, "Incorporating Texture Information into
Dimensionality Reduction for High-Dimensional Images," 2022 IEEE 15th Pacific Visualization Symposium
(PacificVis), 2022, pp. 11-20, doi: 10.1109 /PacificVis53943.2022.00010.

v

A. Vieth, B. Lelieveldt, E. Eisemann, A. Vilanova and T. Hollt, "Interactions for Seamlessly Coupled
Exploration of High-Dimensional Images and Hierarchical Embeddings," Vision, Modeling, and Visualization

(VMV), 2023, pp. 63-70, doi: 10.2312 /vmv.20231227. @ Best Paper Honorable Mentions VMV 2023

v

A. Vieth, T. Kroes, J. Thijssen, B. van Lew,]. Eggermont, S. Basu, E. Eisemann, A. Vilanova, T. Hollt
and B. Lelieveldt, "ManiVault: A Flexible and Extensible Visual Analytics Framework for High-Dimensional
Data," IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 1, pp. 175-185, 2024, doi:
10.1109/TVCG.2023.3326582. @ Best Paper Honorable Mentions IEEE VIS 2023

» A.Vieth, B. Lelieveldt, E. Eisemann, A. Vilanova and T. H6llt, "Manifold-Preserving Superpixel Hierarchies

for Exploration of High-Dimensional Images" [under review]

https://doi.org/10.1109/PacificVis53943.2022.00010
https://doi.org/10.2312/vmv.20231227
https://doi.org/10.1109/TVCG.2023.3326582

Curriculum Vitae

Alexander Vieth

31 December 1994 Born in Miinster, Germany

Education

2006 - 2013
2013 - 2017

2017 - 2019

2019 - 2026

Abitur at Gymnasium Arnoldinum in Steinfurt, Germany

Bachelor Sc. Electrical Engineering, Information Technology and Computer
Engineering at RWTH Aachen University, Germany

Master Sc. Electrical Engineering, Information Technology and Computer Engineering
at RWTH Aachen University, Germany

PhD in the Computer Graphics and Visualization group at TU Delft, The Netherlands

Acknowledgments

Roughly ten years ago, during my Bachelors, a couple of friends and I confidently declared that we would
soon leave the academic path and embrace industry. Planning for or speculating about the future is always
both exciting and important. Surely, we had a good grasp on what our future would hold. Fast forward to now,
and each of us is finishing up their PhD. A good moment to pause and ponder: What went wrong? And, of
course, what went right? First and foremost, I was lucky to cross paths with many amazing people who I want
to thank for their constant support over the last years. It took me quite some time to get here, but without you
it would have been far less enjoyable, and surely taken even longer.

Thank you, Thomas and Anna, for without you I could not have started or finished this PhD. I can only wish
for everyone to experience their scientific socialization with colleagues who display integrity in and joy for
research as much as you do. Thank you, Boudewijn, for the enthusiasm that you bring to every project. And
thank you, Elmar, for your display of immense scientific creativity. You are great supervisors.

I'm glad to have been part of the Computer Graphics and Visualization group at the TU Delft. The variety of
research topics and people made for a consistently interesting environment. Thank you to all of the PhDs
and Postdocs: Jerry, Mathijs, Lukas, Jackson, Mijael, Guowei, Xuejiao, Ali, Amir, Yang, Chen-Chi, Benno,
Soumyadeep, Christoph, Mika, Mrinal, Fengshi, Celine, Priyanka, Nasikun and Leo. And thank you to the
staff members as well: Rafa, Klaus, Riccardo, Petr, Michael, and Martin. Of course, thank you, Lauretta and
Ruud for always helping out. Faizan and Marcos, you were the first vis-related PhD buddies in a mostly
graphics-centered group, thank you for starting the journey with me. Nicolas, thank you for the many
conversations over coffee and dinner, as well as unforgettable travel experiences! Thank you, Mark, Annemieke,
Baran and Ruben for defeating gruesome villains with the power of friendship. And thanks, Berend, for
constantly reminding me that invasions are not socially acceptable anymore.

I was lucky to be involved with the Imaging Genetics group in the Division of Image Processing at the Leiden
University Medical Center and the Visualization cluster at the TU Eindhoven throughout the course of my
PhD. I truly appreciate having gotten to know all of you. Thank you, Thomas, Baldur and Jeroen for the fruitful
ManiVault collaboration. Thanks, Astrid and Julian, for a great after-conference road trip. And of course, thank
you Sanne, Vidya, Kirsten, Linhao, Dennis, Bram, and Chang for many fun and vaguely vis-related meetups!
Thanks, Silvia, for consistently motivating people to join reading groups. Thanks, Jenia and Faeze, for being
great office mates in the new LKEB cubicles. And thanks Moody, for joining me in pushing through the final
steps of finishing our PhDs.

Thank you, Linda, for only sometimes losing patience with me over the last years. Thanks, Bean, simply for
being the cutest cat, except at five in the morning. Thank you, my sisters, parents, family and all friends who
accompanied me through this journey. You are the best.

And finally, thank you, dear reader, for making it this far, or jumping here straight away. After all, you are one
of the select few to open this thesis in the first place.

There is no justice in the laws of nature,
no term for fairness in the equations of motion.
The universe is neither evil, nor good, it simply does not care.
The stars don’t care, or the sun, or the sky.
But they don’t have to! We care! There is light in the world, and it is us!"

— from Harry Potter and the Methods of Rationality by Eliezer Yudkowsky

https://web.archive.org/web/20250518223038/https://hpmor.com

	Summary
	Samenvatting
	Contents
	Lists of Figures and Tables
	Lists of Symbols and Abbreviations
	Introduction
	Visual Analytics
	Dimensionality Reduction
	Contribution and Outline

	Background
	High-dimensional Image Data
	Dimensionality Reduction Methods
	Neighborhood Definition
	t-distributed Stochastic Neighbor Embedding (t-SNE)

	Related Work
	Exploratory Analysis of High-Dimensional Images
	Dimensionality Reduction for High-Dimensional Images
	Hierarchical Dimensionality Reduction
	Multivariate Graph Visualization and Node Embeddings

	Spatial Information in Dimensionality Reduction for High-Dimensional Images
	Introduction
	Related Work
	Texture-Aware Dimensionality Reduction
	Application on Synthetic Data
	Implementation
	Use cases
	Conclusion

	Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings
	Introduction
	Related Work
	Tasks and Requirements
	Coupling Image Navigation and Embedding Space
	Exemplary Use Case: Hyperspectral Image Exploration
	Limitations
	Conclusion

	Manifold-Preserving Superpixel Hierarchies
	Introduction
	Related Work
	Superpixel Hierarchy
	Preliminary Considerations
	Method
	Validation
	Discussion
	Conclusion

	ManiVault: A Visual Analytics Framework for High-Dimensional Data
	Introduction
	Related Work
	Design Considerations
	Framework Architecture
	Implementation
	Application Examples
	Conclusion

	Conclusion
	Contributions
	Challenges and Outlook
	Closing Words

	References
	Appendix
	Supplement: Spidr
	Supplement: Interactive Image HSNE
	Supplement: Superpixels
	Supplement: ManiVault

	Publications
	Curriculum Vitæ
	Acknowledgments

