

Delft University of Technology

Visual Analytics for High-Dimensional Images via Dimensionality Reduction

Vieth, A.

DOI
10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46
Publication date
2026
Document Version
Final published version
Citation (APA)
Vieth, A. (2026). Visual Analytics for High-Dimensional Images via Dimensionality Reduction. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-
7710a03e2b46

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46
https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46
https://doi.org/10.4233/uuid:0fdde46e-23cc-4984-b03b-7710a03e2b46

FOR HIGH-DIMENSIONAL IMAGES
VIA DIMENSIONALITY REDUCTION

Alexander Vieth

Analyzing high-dimensional images is a complex task. Unlike regular color images, they are not
straightforward to visualize. Their additional information content increases the complexity of
interpretation, both in terms of computational processing and human comprehension. Visual
analytics — the combination of visualization, interaction, and automated analysis methods —
has proven useful to gain insights into such large, difficult-to-handle data.

In this thesis, we investigate non-linear dimensionality-reduction methods for the exploration
of high-dimensional images. Specifically, we address the problem that current dimensionality-
reduction methods are image-agnostic: they treat spatially resolved data without considering
their spatial layout. We present algorithmic solutions that yield image-informed embeddings,
and interactions techniques that connect images and embedding representations. Further, we
present an open-source visual analytics software framework for rapid prototyping and extensible
workflow.

Visual Analytics for High-Dimensional Images

via Dimensionality Reduction

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen

chair of the Board for Doctorates

to be defended publicly on

Monday, 12 January 2026 at 17:30 o’clock

by

Alexander VIETH

Master of Science in

Electrical Engineering, Information Technology and Computer Engineering,

RWTH Aachen University, Germany

born in Münster, Germany.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof. dr. A. Vilanova, Delft & Eindhoven University of Technology, promotor
Prof. dr. ir. B.P.F. Lelieveldt, Leiden University Medical Center &

Delft University of Technology, promotor
Prof. dr. E. Eisemann, Delft University of Technology, promotor
Asst. Prof. dr. T. Höllt, Delft University of Technology, copromotor

Independent members:
Prof. dr. M.J.T. Reinders, Delft University of Technology

Assoc. Prof. dr. N. Gehlenborg, Harvard Medical School, USA

Assoc. Prof. dr. F.V. Paulovich, Eindhoven University of Technology

Assoc. Prof. dr. R. Raidou, TU Wien, Austria

Keywords: Visual Analytics, High-Dimensional Images,

Dimensionality Reduction, Software Framework

Printed by: Ridderprint

Cover by: Linda Hoogendam

Copyright © 2026 by Alexander Vieth

An electronic version of this dissertation is available at https://repository.tudelft.nl/.

This document was typeset with the help of LAT
E
X using the kaobook class.

https://repository.tudelft.nl/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/

The act of writing

Brings frustration, insight, joy

Right in that order

– based on academic haiku by Sally Wyatt

from Letters in Lockdown

https://web.archive.org/web/20250530112629/https://www.maastrichtuniversity.nl/sites/default/files/2023-03/1675_gedichtenbundel-a5-2021-def.pdf

Summary

Analyzing high-dimensional images is a complex task. Unlike regular color images, they are not straightforward

to visualize. Their additional information content increases the complexity of interpretation, both in terms of

computational processing and human comprehension. Visual analytics — the combination of visualization,

interaction, and automated analysis methods — has proven useful to gain insights into such large, difficult-to-

handle data. For example, non-linear dimensionality reduction is a commonly employed technique in visual

analytics for exposing interesting patterns through lower-dimensional representations of high-dimensional

data.

In this thesis, we investigate non-linear dimensionality-reduction methods for the exploration of high-

dimensional images. Specifically, we address the problem that current dimensionality-reduction methods

are image-agnostic: they treat spatially resolved data without considering their spatial layout. We present

algorithmic solutions that yield image-informed embeddings and interactions techniques that connect images

and embedding representations. To a large extend, we utilize hierarchical approaches to handle the image

data. We show how these techniques enable more insightful exploration of high-dimensional images.

Further, we present an open-source visual analytics software framework for rapid prototyping and extensible

workflow development for high-dimensional data analysis. All algorithms and techniques described in this

thesis are made available in or fully implemented as plugins for this framework.

Samenvatting

Het analyseren van hoogdimensionale beelden is een complexe taak. In tegenstelling tot gewone kleuraf-

beeldingen zĳn ze moeilĳker te visualiseren. Hun hogere informatiedichtheid verhoogt de complexiteit van

de interpretatie, zowel wat betreft de computationele verwerking als het menselĳk begripsvermogen. Visual

analytics — de combinatie van visualisatie, interactie en geautomatiseerde analysemethoden — is nuttig

gebleken om inzicht te verkrĳgen in dergelĳke grote, moeilĳk te verwerken data. Niet-lineaire dimensiereductie

is bĳvoorbeeld een veelgebruikte techniek in visual analytics om interessante patronen bloot te leggen met

behulp van lagerdimensionale representaties van hoogdimensionale gegevens.

In dit proefschrift onderzoeken we niet-lineaire dimensiereductiemethoden voor het verkennen van hoogdi-

mensionale beelden. We richten ons met name op het probleem dat de huidige dimensiereductiemethoden

beeldagnostisch zĳn: ze behandelen ruimtelĳk gestructureerde gegevens zonder rekening te houden met hun

ruimtelĳke structuur. We presenteren algoritmische oplossingen die beeldgestuurde inbeddingen opleveren

en interactietechnieken die beelden en inbeddingsrepresentaties met elkaar verbinden. We maken grotendeels

gebruik van hiërarchische benaderingen om de beeldgegevens te verwerken. We laten zien hoe deze technieken

een meer inzichtelĳke verkenning van hoogdimensionale beelden mogelĳk maken.

Verder presenteren we een open-source softwareframework voor visual analytics, bedoeld voor snelle

prototyping en uitbreidbare workflowontwikkeling bĳ de analyse van hoogdimensionale gegevens. Alle

algoritmen en technieken die in dit proefschrift worden beschreven, zĳn beschikbaar binnen of volledig

geïmplementeerd als plugins voor dit framework.

Contents

Summary vii

Samenvatting ix

Contents xi

Lists of Figures and Tables xiii

Lists of Symbols and Abbreviations xv

1. Introduction 1
1.1. Visual Analytics . 1

1.2. Dimensionality Reduction . 2

1.3. Contribution and Outline . 3

2. Background 5
2.1. High-dimensional Image Data . 5

2.2. Dimensionality Reduction Methods . 5

2.3. Neighborhood Definition . 8

2.4. t-distributed Stochastic Neighbor Embedding (t-SNE) . 9

3. Related Work 11
3.1. Exploratory Analysis of High-Dimensional Images . 11

3.2. Dimensionality Reduction for High-Dimensional Images . 11

3.3. Hierarchical Dimensionality Reduction . 12

3.4. Multivariate Graph Visualization and Node Embeddings . 13

4. Spatial Information in Dimensionality Reduction for High-Dimensional Images 15
4.1. Introduction . 15

4.2. Related Work . 16

4.3. Texture-Aware Dimensionality Reduction . 17

4.4. Application on Synthetic Data . 21

4.5. Implementation . 23

4.6. Use cases . 24

4.7. Conclusion . 27

5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings 29
5.1. Introduction . 29

5.2. Related Work . 30

5.3. Tasks and Requirements . 31

5.4. Coupling Image Navigation and Embedding Space . 32

5.5. Exemplary Use Case: Hyperspectral Image Exploration . 36

5.6. Limitations . 37

5.7. Conclusion . 38

6. Manifold-Preserving Superpixel Hierarchies 39
6.1. Introduction . 39

6.2. Related Work . 40

6.3. Superpixel Hierarchy . 42

6.4. Preliminary Considerations . 42

6.5. Method . 43

6.6. Validation . 47

6.7. Discussion . 52

6.8. Conclusion . 53

7. ManiVault: A Visual Analytics Framework for High-Dimensional Data 55
7.1. Introduction . 55

7.2. Related Work . 56

7.3. Design Considerations . 58

7.4. Framework Architecture . 59

7.5. Implementation . 66

7.6. Application Examples . 68

7.7. Conclusion . 72

8. Conclusion 73
8.1. Contributions . 73

8.2. Challenges and Outlook . 74

8.3. Closing Words . 75

References 77

Appendix 89

A. Supplement: Spidr 91

B. Supplement: Interactive Image HSNE 99

C. Supplement: Superpixels 101

D. Supplement: ManiVault 107

Publications 109

Curriculum Vitæ 111

Acknowledgments 113

List of Figures and Tables

Figures

1.1. The Datasaurus dozen . 2

1.2. Dimensionality reduction on images . 3

2.1. Multi-dimensional data and two projections . 6

4.1. Texture-aware dimensionality reduction . 16

4.2. Synthetic image dataset with varying texture . 17

4.3. Incorporating image texture information into dimensionality reduction 18

4.4. Comparison of several spatially informed embeddings . 20

4.5. Comparison of texture-aware and standard t-SNE embeddings 24

4.6. Texture-aware embedding of Imaging mass cytometry data . 26

5.1. Coupling image and embedding views . 30

5.2. Interaction with images and hierarchical embeddings . 32

5.3. Comparing several landmark mapping schemes . 34

5.4. Example for a coupled image and embedding exploration . 35

6.1. Different types of image hierarchies . 40

6.2. Manifold-preserving superpixels and embedding of an RGB image 41

6.3. Superpixel method overview . 44

6.4. Superpixels with t-SNE and UMAP . 45

6.5. Hyperspectral image exploration with superpixels and embeddings 46

6.6. Non-exact refinement of the superpixel hierarchy . 48

6.7. CyCIF image exploration with superpixels and embeddings . 49

6.8. Explained Variation and Undersegmentation Error . 51

6.9. Indian Pines ground truth segmentation . 52

7.1. Example screenshot of ManiVault . 56

7.2. ManiVault’s system architecture. 60

7.3. Parameter sharing in ManiVault . 63

7.4. Example of the plugin GUI configuration editor . 65

7.5. The data hierarchy view . 66

7.6. A selection of viewer plugins in ManiVault . 67

7.7. Spidr analysis and parallel coordinates plot . 68

7.8. Bare bone analytics plugin setup . 69

7.9. Bare bone viewer plugin setup . 70

7.10. A typical exploration workflow with ManiVault . 71

7.11. Screenshot of a re-implementation of a Cytosplore Viewer . 72

A.1. Comparison of spatially informed and standard embeddings . 92

A.2. Neighbor hit comparison of several embedding methods . 92

A.3. Spatially informed using different point cloud distances . 93

A.4. Spatially informed embeddings: 3x3 neighbourhood with Gaussian weighting 94

A.5. Spatially informed embeddings: 5x5 neighbourhood . 94

A.6. Spatially informed embeddings: 5x5 neighbourhood with Gaussian weighting 94

A.7. Spatially informed embeddings: 7x7 neighbourhood . 94

A.8. Spatially informed embeddings: 7x7 neighbourhood and Gaussian weighting 94

A.9. Neighbor hit analysis for several spatially informed embeddings 95

A.10. Computation time of the distance computation for varying neighborhood sizes 95

A.11. Computation time of the distance computation for channel numbers 96

A.12. Various modified embeddings of the Indian Pines data . 96

A.13. Annotated ground truth of Indian Pines Site 3 . 97

A.15. Comparison of spatially-aware and standard t-SNE embeddings for Indian Pines data 97

B.2. Summary statistic of several clusters in an embedding of Indian Pines data 100

B.3. Embedding refinement initialization types . 100

B.4. Image exploration with regular HSNE embeddings . 100

C.1. Superpixel hierarchy of the larger Indian Pines dataset . 103

C.2. CyCIF Focus Region . 104

C.3. Superpixel Hierarchy of a CyCIF image . 104

C.4. Superpixel hierarchy of a RGB images . 105

C.5. Superpixel hierarchy of a hyperspectral image . 105

Tables

7.1. Comparison of ManiVault with other visual analysis tools . 57

B.1. Durations of embedding update steps with automatic hierarchy traversal 99

C.1. Undersegmentation error (UE) for superpixel evaluation . 102

C.2. Explained variation (EV) for superixel evaluation . 102

D.1. Duration of t-SNE embedding computations in ManiVault . 107

D.2. Memory consumption of loaded data sets in ManiVault . 107

Lists of Symbols and Abbreviations

Symbols
Definitions are provided at first use in the text, and listed here for reference. Unless otherwise specified, when

a letter is reused, a bold style indicates vectors while regular style indicates scalars.

a High-dimensional attribute vector

b Low-dimensional projection vector

𝑐 Specific attribute dimension/channel

𝐶 Number of attribute dimensions

𝐸 Number of embedding dimensions

C Context indices

𝑑 Standard distance function (attribute space)

𝑑𝑠 Spatial distance function

D𝐸 Embedding view data indices

D𝐼 Image view data indices

𝑒𝑖 𝑗 An edge between vertices i and j

E Edges

𝑓 High-dimensional image function

F Focus indices

G Graph

𝒉 Histogram feature (vector, bold font)

ℎ Histogram feature (scalar)

𝑖 Data index (flattened)

i Image position (x and y coordinates)

𝐼 Area of influence

𝐼̂ Normalized area of influence

I Image Graph

K Selection indices on a level in image

K
𝑓

Selection focus indices in image

𝐿𝑘
𝑖

Landmark i on level k

L Hierarchy levels

𝑚 Number of hierarchy levels

𝑛 Total image/data size

𝑛N Total size of neighborhood

N𝐶,𝑘
Neighborhood in attribute space, set of 𝑘
indices, abbreviated as N

N𝑆,𝜂
Neighborhood in image space, set of 𝜂 in-

dices

Q Superpixel segmentation, ground truth

q Component in ground truth segmentation

𝑠 Number of superpixels

s Individual superpixel

S Superpixel segmentation, set of superpixels

𝑇 Transition probability matrix

v𝑏 Visual budget

v𝑡 Visual target

𝑣𝑖 A specific vertex

V Vertices

w Spatial neighborhood weights vector

𝑤 Spatial neighborhood weights scalar

𝑥 Image position x

𝑋 Image domain x direction/set

𝑦 Image position y

𝑌 Image domain y direction

X
𝑓

Selection focus indices in embedding

𝒁 Feature matrix

𝒛 Feature vector

Z𝜂 Feature extraction function

𝛾↑ Threshold level upwards

𝛾↓ Threshold level downwards

𝜂 Size of spatial neighborhood

𝜆 Length of a random walk

𝜇 Mean vector (bold font)

𝜇 Mean scalar

𝜎 Covariance

𝚺 Covariance matrix

𝜔 Number of random walks

Abbreviations

AE autoenconder. 7

API application programming interface. 4

CyCIF cyclic immunofluorescence. 29, 49, 50

DM diffusion maps. 7

DR dimensionality reduction. 2, 6–8, 15, 29, 39

EV explained variation. 51

GUI graphical user interface. 56

IMC imaging mass cytometry. 25, 26

IS isomap. 7

𝑘NN 𝑘-nearest neighbor. 8, 42

LoD level of detail. 39

MDS metric multidimensional scaling. 7, 8, 11, 13,

15

PCA principal component analysis. 2, 6

PCP parallel coordinates plot. 5

QF quadratic form. 19, 22, 23

ROI region of interest. 29, 39

SPLOM scatterplot matrix. 5

t-SNE t-distributed Stochastic Neighbor Embedding.

2, 7, 8, 15

UE undersegmentation error. 51

UMAP Uniform Manifold Approximation and Projec-

tion. 2, 7, 8, 15

VA Visual Analytics. 2, 55, 56, 59

Introduction 1.
A molecular biologist assesses highly multiplexed images of tumor tissues to

classify cancerous cells which potentially leads to advanced treatment plans.

An agricultural planner inspects hyperspectral images of crops for large scale 1.1 Visual Analytics 1
1.2 Dimensionality Re-

duction 2
1.3 Contribution and

Outline 3

monitoring of irrigation and pesticide dissemination systems. An art conservator

examines scans of old paintings to document their condition and possibly restore

them to closer versions of their original state. An astrophysicist studies near-

infrared images of the night sky, aiming to improve our understanding of the

evolution of the universe.

Each of these examples are set in widely varying applications, yet in all of them a

domain expert is working with a specific type of data: high-dimensional images.

These types of images do not just contain three color channels (red, green,

and blue) like a common photograph does; they generalize the typical three-

dimensional color feature of each pixel to any number of numerical attributes —

from the intensity of reflected light in multiple spectral ranges to the relative

abundance of specific proteins. High-dimensional images typically have dozens

or hundreds of such channels. This increased amount of information goes along

with increased difficulties to handle the data — both computationally and for

human understanding.

Domain experts regularly engage with data of unknown content. A novel

acquisition device produces new types of images, an object or specimen of

interest is recorded for the first time, or the image captures a yet unrecorded event.

After acquiring new images, each above domain expert seeks to understand "Exploratory data analysis is de-

tective work – numerical detective

work, counting detective work or

graphical detective work."

John W. Tukey in Exploratory Data
Analysis, page 1 [1]

their content. The data analysis begins with exploration. Among the main goals

during this stage are the identification of general characteristics, novel patterns

and the generation of hypotheses for their underlying causes. Statistical methods

are powerful tools for validating theoretical models and can also help uncover

patterns, but often do not suffice in gaining insight into unknown data. Merely

plotting data can reveal patterns in the data that many summary statistics fail

to capture, e.g., a dinosaur emerging from a large collection of observations,

as in Figure 1.1. But visualizing high-dimensional images effectively is not

straight-forward at all.

1.1. Visual Analytics

Processing large amounts of data effectively is challenging for both humans and

computers. Especially when aiming to obtain actionable insights from novel

data, neither purely algorithmic approaches nor human interpretation of static

visualizations suffice:

The credo of [...] From the foreword by Jarke van Wĳk

to Interactive Visual Data Analysis [2]

visual analytics is therefore to use a combination of

visualization, interaction, and automated analysis methods to explore huge

amounts of data and to obtain solid insights.

How does that apply to our situation? High-dimensional images qualify as large

data twofold, both in terms of their number of data points, as images typically

contain hundreds of thousands or millions of pixels, and with regard to the

number of attribute dimensions attached to each pixel. With grayscale or RGB

color images, all information can be mapped to the three RGB channels of modern

displays, allowing for immediate visualization and human interpretation of all

their content. In contrast, the many channels of high-dimensional images cannot

be displayed simultaneously in the same manner. Indeed, we face multiple

difficulties: Which (combination of) image channel(s) best reveals underlying

structures? What are effective strategies for mapping high-dimensional pixel

attributes onto the two-dimensional image space? And, in general, how can

2 1. Introduction

20 40 60 80

20

40

60

80

𝑥

𝑦

Bullseye (I)

20 40 60 80 100

0

50

100

𝑥

Dino (II)

20 40 60 80 100

0

50

100

𝑥

Slant up (III)

Summary statistics

𝜇𝑥 𝜇𝑦 𝜎𝑥 𝜎𝑦

I 54.27 47.83 16.77 26.94

II 54.27 47.83 16.77 26.94

III 54.27 47.83 16.77 26.94

𝜇: mean, 𝜎: standard deviation

Figure 1.1. Three datasets from the Datasaurus dozen collection [6], a recent take on Anscombe’s Quartet [7]: even though each data set is characterized by the same
summary statistics (up to several digits of precision), the differences in distribution show immediately when visualized.

patterns in the high-dimensional attribute space be related to their spatial

embedding in the image domain?

There is seldomly a single representation of complex data that shows all

interesting aspects simultaneously. One major aim of Visual Analytics (VA) is

to facilitate data exploration by coupling automated analysis with multiple

interactive visual representations, steering users towards potentially interesting

views on or parts of their data. For high-dimensional images this could manifest

in several coordinated views [3] on the data. For example, one view focusing

on the spatial layout, displaying a false color image of a user-selectable set of

channels. Another view solely concerned with the data attributes, e.g. a parallel-

coordinates plot [4] that automatically applies edge bundling [5] to highlight

clusters. And finally, a plot of a derived data representation that distills specific

data properties. In fact, lower-dimensional representations of high-dimensional

data have proven remarkably successful at displaying interesting patterns.

1.2. Dimensionality Reduction
Embedding points from a high-dimensional space into a lower dimensional

space aims to preserve intrinsic structure of the data while enabling interpretable

visualization and reducing computational complexity, e.g., to facilitate clustering.

Both linear and non-linear projections techniques have been well explored for

these purposes [8].

Dimension 1

Dimension 2

Principle component 1

While the mathematical foundation of these dimensionality reduction (DR)

techniques vary, they generally assume that the data lies in a subspace of the

original high-dimensional space. For example, principal component analysis

(PCA) keeps the linear subspace with the largest variance. In recent years, non-

linear, neighborhood-based techniques like t-distributed Stochastic Neighbor

Embedding (t-SNE) and Uniform Manifold Approximation and Projection

(UMAP) have become widely adapted methods for exploring and presenting

data structure.

Applying dimensionality reduction methods to high-dimensional images re-

mains challenging. Figure 1.2 illustrates the correspondence of embedded data

points and image pixels. The large number of pixels, i.e., the data points, leads

to dense and cluttered embeddings, and ignores the image layout. Views on the

data via channel-wise image representations and static embeddings separates

the exploration of image layout and attribute space. Fundamentally, most di-

mensionality reduction methods are not designed to take both the image layout

and attribute space into account, rendering them unable to capture important

image structure.

1.3. Contribution and Outline 3

Channel
Value

A�ributes

Pixel
Image

t-SNE UMAP

Figure 1.2. Embeddings of (left) a col-
lection of images, MNIST [9], and
(right) a single high-dimensional im-
ages, the Indian Pines data [10]. The
embedding points represent whole im-
ages and individual pixels respectively.
In this thesis, we focus on the latter set-
ting.

1.3. Contribution and Outline
Two decades ago, Illuminating the Path [11] set forth an ambitious research agenda

for visual analytics that remains largely applicable today. Among their goals,

several stand out as particularly pertinent to our discussion of high-dimensional

images:

Excerpt from the recommended vi-

sual paradigms that support ana-

lytical reasoning in Illuminating the
Path, page 8 [11]

Facilitate the understanding of massive and continually growing data;

facilitate knowledge discovery through information synthesis, which is the

integration of data based on their meaning rather than the original data

type; support multiple levels of data and information abstraction; provide

frameworks for analysis of spatial data.

This thesis presents three methods and a novel visual analytics framework

which contribute to making progress toward these goals with a particular

focus on exploring high-dimensional images with dimensionality reduction

techniques.

We present algorithms that yield image-informed embeddings and interaction

techniques connecting images with their embedding representations. Each thesis

chapter addresses different aspects of the relationship between the attribute

space and pixel layout of high-dimensional images: texture integration in DR,

interaction paradigms, scalability in the spatial domain, and analysis software

architecture. Specifically, this thesis presents a method to incorporate spatial

neighborhood information into dimensionality reduction techniques (Chapter 4),

a method to couple the exploration of high-dimensional images and hierarchical

embeddings (Chapter 5), a method to compute manifold-preserving superpixel

hierarchies of high-dimensional images (Chapter 6), and finally, a flexible

and extensible visual analytics software framework for high-dimensional data

(Chapter 7).

Chapter 4 Visual exploration of high-dimensional data is commonly facili-

tated by dimensionality reduction. However, common dimensionality reduction

methods do not include spatial information present in images, such as local

texture features, into the construction of low-dimensional embeddings. Conse-

quently, exploration of such data is typically split into a step focusing on the

attribute space followed by a step focusing on spatial information, or vice versa.

In this chapter, we present a method for incorporating spatial neighborhood in-

formation into distance-based dimensionality reduction methods, such as t-SNE.

We achieve this by modifying the distance measure between high-dimensional

attribute vectors associated with each pixel such that it takes the pixel’s spatial

neighborhood into account. Based on a classification of different methods for

Layout

Standard Texture-informed

comparing image patches, we explore a number of different approaches. We

compare these approaches from a theoretical and experimental point of view.

Finally, we illustrate the value of the proposed methods by qualitative and

quantitative evaluation on synthetic data and two real-world use cases.

Chapter 5 The spatial and attribute information of high-dimensional images

are typically explored separately, e.g., by using coordinated views of an image

representation and a low-dimensional embedding of the high-dimensional

attribute data. Facing ever-growing image data sets, hierarchical dimensionality

4 1. Introduction

reduction techniques lend themselves to overcome scalability issues. However,

current embedding methods do not provide suitable interactions to reflect image

space exploration. Specifically, it is not possible to adjust the level of detail in the

embedding hierarchy to reflect changing level of detail in image space stemming

from navigation such as zooming and panning. In this chapter, we propose such

a mapping from image navigation interactions to embedding space adjustments.

We show how our mapping applies the "overview first, details-on-demand"

characteristic inherent to image exploration in the high-dimensional attribute

space. We compare our strategy with regular hierarchical embedding technique

Zoom

Re�ne

Image View

Coupled Embedding View

Overview Detail

interactions and demonstrate the advantages of linking image and embedding

interactions through a representative use case.

Chapter 6 The above linking strategy between image space interactions and

the level-of-detail shown in hierarchical embedding views facilitates intuitive

exploration. However, available data hierarchies for hierarchical dimensionality

reduction methods ignore the spatial layout of pixels in the images. This impedes

the exploration of regions of interest in the image space, since there is no congru-

ence between a region of interest in image space and an associated embedding

of the high-dimensional attributes. In this chapter, we present a superpixel

hierarchy for high-dimensional images. In contrast to classical superpixel meth-

ods, our agglomerative superpixels construction takes the high-dimensional

attribute manifold into account. Based on the same considerations, we show

Superpixel
embeddings

Superpixel
hierarchy

how to use this hierarchy for hierarchical dimensionality reduction, facilitating

an "overview first, details-on-demand" exploration of high-dimensional images.

Finally, we compare our image-guided hierarchy with classical hierarchical

embedding-based image exploration in two use cases.

Chapter 7 Commonly, tailor-made visual analytics software is developed for

a given exploration and analysis setting. This limits their applicability in other

scenarios or fields. However, as diverse as these settings are, their characteristics

and requirements for data analysis are conceptually similar. Many applications

share abstract tasks and data types and are often constructed with similar build-

ing blocks. Developing such applications, even when based mostly on existing

building blocks, requires significant engineering efforts. This chapter presents

ManiVault, a flexible and extensible open-source visual analytics framework

for analyzing high-dimensional data. The primary objective of ManiVault is to

facilitate rapid prototyping of visual analytics workflows for visualization soft-

ware developers and practitioners alike. ManiVault is built using a plugin-based

architecture that offers easy extensibility. While our architecture deliberately

keeps plugins self-contained, to guarantee maximum flexibility and re-usability,

we have designed and implemented a messaging application programming

interface (API) for tight integration and linking of modules to support common

visual analytics design patterns. ManiVault provides several visualization and

analytics plugins, and ManiVault’s API makes the integration of new plugins

easy for developers. ManiVault facilitates the distribution of visualization and

analysis pipelines and results for practitioners through saving and reproducing

complete application states. As such, ManiVault can be used as a communication

tool among researchers to discuss workflows and results.

Background 2.
This chapter introduces the key concepts underlying the methods presented

later in this thesis. We will define high-dimensional image data and spatial

neighborhoods more rigorously in Sections 2.1 and 2.3 respectively. Then,

in Sections 2.2 and 2.4, we briefly review the field of dimensionality reduction

methods and introduce t-SNE in more detail, as an representative example of

non-linear projection methods.

2.1. High-dimensional Image Data
While, in general, dimensionality reduction methods can be applied on other

high-dimensional datasets as well, we focus on high-dimensional, digital 2D

images. Each pixel is an image element at a unique location with an associated

x

y 1 2 3

1

2

3

1 2 3

4 5 6

7 8 9

i i

......

1 (x=1, y=1)
2 (x=2, y=1)

8 (x=2, y=3)
9 (x=3, y=3)

Channel

Value

Attributes
of this pixel

attribute vector. We can formalize such a high-dimensional image as a discrete

function 𝑓 : 𝑋 × 𝑌 → ℝ𝐶
from the spatial domain 𝑋 × 𝑌 ⊂ ℕ2

to the attribute

range ℝ𝐶
. 𝑋 and 𝑌 are the sets of pixel coordinates that span the image

domain along its two dimensions while 𝐶 is the number of attributes, or image

channels. The 𝑖-th pixel is indexed with the tuple i = (𝑥, 𝑦)𝑖 where 1 ≤ 𝑖 ≤ 𝑛
and the number of pixels 𝑛 = |𝑋 × 𝑌|. For easy of notation, we will refer to

the x-coordinate of the 𝑖-th pixel as 𝑥i, and handle the y-coordinate likewise.

Now, 𝑓 (i) = ai yields the pixel’s high-dimensional attribute vector at location i
with ai = [𝑎i1 , . . . , 𝑎i𝐶]. In this work we focus on 2D images, but the above

definitions are straightforward to extend to 3D images consisting of voxels.

We can also interpret such a high-dimensional image as a combination of several

scalar images, each representing one channel of the high-dimensional image.

Therefore, we refer to the 𝑐-th channel of the image with 𝑓𝑐 , where 1 ≤ 𝑐 ≤ 𝐶,

such that 𝑓𝑐 = [𝑎1𝑐 , . . . , 𝑎n𝑐] denotes the values of the 𝑐-th channel for all pixels

in the image.

In chapters 4 and 6, it will be beneficial to interpret images as four- or eight-

connected graphs. The spatial image domain 𝑋 ×𝑌, a rectangular grid, then is a

graph I= (V, E) where each vertex 𝑣i ∈ Vis an image pixel with edges 𝑒ij ∈ E

between neighboring pixels. The image remains a discrete function, we merely

conceptualize it as a mapping 𝑓 : V→ ℝ𝐶
from the spatial domain of the

image I to the attribute space ℝ𝐶
. In a four-connected graph, all pixels sharing

an edge are neighbors. Section 2.3 provides an generalized definition for square

neighborhood, e.g., eight-connected graphs.

2.2. Dimensionality Reduction Methods
High-dimensional data can be difficult to visualize and analyze, particularly

when datasets contain not only many dimensions (hundreds or thousands)

but also numerous observations (millions). In the first instance, visualizing

the entire breadth of the data, e.g., using tables-based visualizations like

heatmaps [12], scatterplot matrixs (SPLOMs) [13] or parallel coordinates plots

(PCPs) [4] faces significant scalability challenges due to cluttering, screen space

constraints and increased cognitive load. In the second instance, analyzing data

High-dim Low-dim

in high-dimensional spaces is burdensome due to high computational costs and

potentially limited results, resulting from the curse of dimensionality. This curse
of dimensionality is a lose umbrella term for various undesired characteristics of

high-dimensional data which exacerbate their handling. As the dimensionality

of the data space increases, the data tends to populate this space more and more

sparsely, leading to counterintuitive behaviors such as norm concentration,

where distances between data points become increasingly uniform [14]. In

practice, many high-dimensional datasets have a lower intrinsic dimensionality

than the number of dimensions of the data space itself. I.e., it is possible to

6 2. Background

Parallel Coordinates Plot

Dimension
2 3

-2

-3

-1

0

2

3

1

0 1

N
or

m
al

iz
ed

 d
at

a
va

lu
es

-2 0 2 4

-2

-1

0

2

1

PCA

PC1 (68.6%)
PC

2
(1

9.
5%

)

Species
Adelie
Chinstrap
Gentoo

t-SNE

Figure 2.1. The Palmer penguins data [15] describes four physical attributes of three penguin species, shown in a PCP (left). The dimension 1-4 correspond to bill
length, bill depth, flipper length and body mass measurements. The first two principal components (center) explain 88.1% of the total variance of the data, yet the
Adelie and Chinstrap species and are not well-distinguishable in the PCA plot. The t-SNE embedding (right) clearly reveals the three clusters in the data, (largely)
corresponding to the three penguin species. The plot intentionally does not show axis descriptors or scale indication, as neither the axis orientation nor the absolute
coordinates of the embedded points provide insight into the data.

represent the data with minimal loss of information in a lower-dimensional

space. The lower-dimensional representation — the embedding — can then be

used for downstream analysis and visualization.

To obtain a lower-dimensional representation of the data, we can either focus on

a subset of dimensions or project the high-dimensional data faithfully into fewer

dimensions. Since selecting a subset of dimensions rarely suffices to preserve

the essential structure of complex data, we are primarily interested in projection

methods which are also capable of capturing structure that isn’t aligned with

the original feature axes. Such a dimensionality reduction (DR) method now

maps a high-dimensional data point a ∈ ℝ𝐶
to a low-dimensional embedding

point b ∈ ℝ𝐸
with typically 𝐸 ≪ 𝐶:

𝐷𝑅 : ℝ𝐶 → ℝ𝐸
; 𝐷𝑅(a) = b (2.1)

The map DR aims to preserve the intrinsic structure of the data. In general,

there are various ways of quantifying the quality of this structure preservation.

Typically though, they compare the distances between the high-dimensional

points and corresponding distances between the respective embedding points.

However, any projection to lower dimensionality incurs some loss of information,

i.e., the distribution of points in the embedding does not perfectly represent

the original data. Different priorities regarding which aspects of data structure

to preserve, and other trade-offs with respect to, e.g., computational speed

and memory consumption, have motivated the development of numerous

DR methods. There has been plenty of writing about these methods in both

literature reviews [8, 16–18] and topical books [19–21]; here, we will focus on a

selection of pertinent methods.Projection traits:

1. Linearity

2. Input type (point vs. distance)

3. Neighborhood (local vs. global)

4. Ease of use

5. Computational complexity

6. Out-of-sample

7. Inverse transform

8. Determinism

See [17] for a more comprehensive

description of these traits.

DR methods are commonly distinguished based on several traits. Among the

most important of these characteristics are their linearity, input type and neigh-

borhood scope. Whereas linear projections apply the same transformation across

the entire data space, non-linear DR maps can behave differently in different data

space regions. Next, some projections methods take high-dimensional points as

their input, i.e. attribute vectors a, others work with distances or dissimilarities

between points. Any method working with distances can naturally also handle

points by computing distances between them. Finally, a global DR map focuses

on preserving all point-to-point distances whereas a local DR map only aims to

preserve distance between points that are closely neighboring each other.

Principal component analysis (PCA) [22] is one of the most widely-used DR

methods. PCA performs a linear, global transformation: it projects the data

into a new coordinate system, such that the first new coordinate explains the

greatest variance in the data and following coordinates explain the next-greatest

2.2. Dimensionality Reduction Methods 7

variance in descending order. The first two such principal coordinates are used

for visualizing data as in Figure 2.1. Often, the first 𝑛 principal coordinates that

explain a large percentage (e.g. 90 − 95%) of the total variance of the data are

used as a pre-processing step for denoising.

Metric multidimensional scaling (MDS) [23] takes a different approach by

attempting to preserve pairwise distances between data points. Multidimen-

sional scaling (MDS) is a nonlinear, global method that iteratively updates a

low-dimensional embedding by minimizing a loss function which measures

the discrepancy between the pairwise distances of all high-dimensional data

points and the respective low-dimensional representations. Notably, when the

loss function is defined as the sum of squared differences between pairwise

distances, MDS is equivalent to PCA [8] and referred to as classical MDS or

Torgerson scaling. Other specialization, like Sammon mapping [24] adapts

classical scaling by weighting each difference by the inverse of the pairwise

distance in the high-dimensional space, thereby retaining more detail in local

data structure. Throughout this manuscript, we refer to metric multidimensional

scaling (MDS) simply as MDS.

Method Type Input Scope

PCA [22] Lin Attr Glo

MDS [23] NL Dist Glo

AE [25] NL Attr Glo

IS [26] NL Dist Glo

DM [27] NL Dist Glo

UMAP [28]

NL Dist Loc

t-SNE [29, 30]

Abbreviations:
Lin = Linear, NL = Nonlinear,

Attr = Attributes, Dist = Distances,

Glo = Global, Loc = Local.

An Autoenconder (AE) [25] is a multi-layer neural network that is trained

to reconstruct its input data. The network consists of an encoder that maps

high-dimensional data points to a low-dimensional latent representation and a

decoder that reconstructs the original data from this representation. Crucially,

the middle hidden layer (the bottleneck) has far fewer dimensions than the input

data, forcing the network to learn a compressed representation that captures

the most salient features of the data.

Many DR methods aim to capture the structure of high-dimensional data by

representing them as graphs, where each vertex corresponds to a data point

and each edge describes the (Euclidean) distance between two data points.

The underlying intuition behind this approach is the hypothesis that the high-

dimensional data lies on a lower-dimensional manifold — a topological space

where each local neighborhood resembles Euclidean space — embedded in

the high-dimensional space. The graph structure then helps approximate the

geometry of this underlying manifold. Isomap (IS) [26] exemplifies this idea

by first constructing a nearest-neighbor graph of the data (see Section 2.3)

and then computing geodesic distances between points on this graph (shortest

path lengths along the edges). These geodesic distances better approximate

distances along the underlying manifold than straight-line Euclidean distances.

isomap (IS) then applies MDS using these geodesic distances to compute a

low-dimensional embedding.

The Diffusion maps (DM) [27] framework also operates on graph representations

but aims to capture the manifold geometry more robustly than geodesic distances

by considering multiple paths between points. Specifically, diffusion maps (DM)

defines diffusion distances between two points based on random walks on

the graph: this distance reflects the probability of transitioning between the

points in a Markov process on the nearest neighbor graph. A low-dimensional

embedding is then obtained by solving an eigenvalue problem on the graph’s

transition matrix. This approach is more robust shortcuts in the graph compared

to geodesic distances because it averages over many paths rather than relying

on a single shortest path, but like isomap (IS) it focuses more on preserving

distance between very dissimilar points instead of the often more interesting

local data structure [8].

Over recent years, non-linear, local methods like t-distributed Stochastic Neigh-

bor Embedding (t-SNE) [29, 30] and Uniform Manifold Approximation and

Projection (UMAP) [28] have established themselves as the go-to DR meth-

ods for visualizing high-dimensional data. These DR methods also define

point-to-point distance using nearest neighbor graph structures but prioritize

preserving local neighborhood structure instead of all point-to-point distances.

Both methods optimize their embeddings by minimizing a loss function that

compares probability distributions over pairwise similarities, keeping similar

points close together while allowing dissimilar points to spread apart. Appro-

8 2. Background

priate initialization schemes (such as PCA-based initialization) can further help

preserve global structure to a certain extent [31]. Below, Section 2.4 discusses

t-SNE in more detail.

In contrast to linear, global embedding techniques like PCA, nonlinear, local

methods generally yield better cluster separability but are harder to interpret:

directions in the embedding space are not linear combinations of the original

features, and the axes do not correspond to any meaningful data attributes.

Consequently, while these embeddings effectively reveal clustering structure,

they do not provide insight into which original variables drive the observed

patterns. As such, the t-SNE embedding in Figure 2.1 intentionally does not label

any axis. Further, current best practices suggest to use multiple DR methods, as

each can highlight different aspects of the data, and incorporate meta data into

their visualization, e.g., via re-coloring to help explain patterns [18].

In this dissertation we focus mainly on nonlinear, local DR methods and their

hierarchical variants (see Section 3.3). However, the techniques proposed inSupplemental Material SA3 applies

the ideas form chapter 4 to UMAP

and MDS.

chapter 4, 5 and 6 mainly focus on incorporating image information into

DR methods by integrating image-layout and and high-dimensional attribute

information into the definition of (dis)similarities between pixels. They do not

further adjust the loss function or optimization procedure of the embedding

methods used. Thusly, these proposed techniques may be extended to any

distance based DR method.

Local DR methods focus on preserving distance between a data point and its

close neighbors. But in an image, a data point has neighbors in two spaces:

the image layout, i.e. neighboring pixels, and the attribute space, i.e. similar

attribute vectors. This duality invites a more thorough discussion of the term

neighborhood.

1 2 3

4 5 6

7 8 9

1

2

3

45

6

7

8

9

Symmetrized &
connected

kNN-graph

Image graph
(4-connected)

Attribute
distance d

a8 a9

d

Attribute
neighborhood of

for =3
1

Spatial
neighborhood of

for =1
1

2.3. Neighborhood Definition

The notion of neighborhood is twofold for high-dimensional image data: one

can distinguish between neighbors in the spatial and the attribute domain. We

refer to the attribute neighborhood N
𝐶,𝑘

i of pixel i as the set of indices of the 𝑘
pixels with the smallest distances 𝑑 to the attributes of pixel i:

N
𝐶,𝑘

i = k-arg min

j=(𝑥,𝑦)𝑗 , 1≤𝑗≤𝑛
𝑑(ai , aj). (2.2)

k-arg min performs a selection of the 𝑘 arguments in {j = (𝑥, 𝑦)𝑗 : 1 ≤ 𝑗 ≤ 𝑛}
that yield the 𝑘 smallest distances.

Typically, the squared Euclidean distance is chosen as the distance measure

𝑑(ai , aj) = ∥ai − aj∥2
2
, but other distances like cosine or Hamming distance are

popular choices as well. It is useful to represent the 𝑘 nearest neighbors of

each pixel in a 𝑘-nearest neighbor (𝑘NN) graph G. This sparse graph is often

symmetrized. At times (e.g., in chapter 6) it is also advantageous to connect

disconnected components in this graph.

Next, we define the spatial neighborhood N
𝑆,𝜂

i . In chapter 4 we assume an 8-

connected graph for which the spatial neighborhood is a square of𝑛N = (2 · 𝜂 + 1)2
pixels centered at i and with 𝜂 = 1. More generally, the set of spatially-

neighboring indices for a square neighborhood is given by:

N
𝑆,𝜂

i = {(𝑥i + 𝑟, 𝑦i + 𝑠) : −𝜂 ≤ 𝑟, 𝑠 ≤ 𝜂}. (2.3)

For a 4-connected graph the spatial neighborhood is not square-shaped and we

omit an algebraic definition here. Later, in chapter 6 we are mainly interested in

directly neighboring pixels/superpixels and refer to the set of pixels/superpixels

immediately connected by an edge as the spatial neighborhood.

2.4. t-distributed Stochastic Neighbor Embedding (t-SNE) 9

We focus on two-dimensional, rectilinear spatial layouts for the sake of simplicity,

but in principle our method is trivially extendable for data resolved in three

spatial dimensions, i.e., multivariate volumetric data.

2.4. t-distributed Stochastic Neighbor Embedding
(t-SNE)

Many non-linear, local, distance-based dimensionality reduction methods like

LargeVis [32], UMAP [28] and t-distributed stochastic neighbor embedding

(t-SNE) [29, 30] share a similar basic structure. First, based on a distance measure

in the attribute space, they construct a neighborhood graph that captures local

neighborhoods. Then, a low dimensional layout is produced, with the aim to

represent these neighborhoods as faithfully as possible; this process is guided

by optimizing a specific cost function. We will discuss the methods presented

in this dissertation using the example of t-SNE. While the same concepts are

applicable to all distance-based dimensionality reduction methods, we deem it

easiest to follow one specific example.

To create a low dimensional embedding as described above, t-SNE uses a

symmetric joint probability distribution 𝑃 to describe similarities between

high-dimensional points. Likewise, a joint probability distribution 𝑄 encodes

the similarity of the corresponding low-dimensional points in the embedding

space. Starting with a random initialization of 𝑄, the embedding points are

iteratively moved such that the distribution𝑄 matches 𝑃 well. This optimization

process is guided by the Kullback-Leibler (𝐾𝐿) divergence that measures the

divergence of 𝑃 and 𝑄 as cost function 𝐶𝑜𝑠𝑡(𝑃, 𝑄)

𝐶𝑜𝑠𝑡(𝑃, 𝑄) = 𝐾𝐿(𝑃, 𝑄) =
𝑛∑
𝑖

𝑛∑
𝑗 , 𝑗≠𝑖

𝑝ij ln

(
𝑝ij

𝑞ij

)
, (2.4)

where the probability 𝑝ij represents the similarity of two high-dimensional

data points ai and aj, and 𝑞ij represent the similarity of the two corresponding

low-dimensional data points in the embedding. 𝑝ij is symmetric and computed

as

𝑝ij =
𝑝i|j + 𝑝j|i

2𝑛
, (2.5)

where 𝑝j|i can be interpreted as the probability that the point aj is in the

neighborhood of the point ai in the attribute space. 𝑝j|i is calculated using the

distance measure 𝑑(a𝑖 , aj) between the high-dimensional points:

𝑝j|i =


exp

(
−𝑑(ai ,aj)/(2𝜎2

i)
)

∑
k∈N𝐶,𝑘i

exp

(
−𝑑(ai ,ak)/(2𝜎2

i)
) if j ∈N𝐶,𝑘

i

0 otherwise.

(2.6)

The number of nearest neighbors |N𝐶,𝑘
i | = 3𝜑 can be steered with a user-defined

perplexity 𝜑. The bandwidth 𝜎𝑖 , in turn, is determined based on the given

perplexity value such that

𝜑 = 2

−∑
j∈N𝐶,𝑘i

𝑝j|i log
2
𝑝j|i
. (2.7)

10 2. Background

Related Work 3.
All work in this thesis treats high-dimensional images and thus shares a large

portion of its related literature. Here, we gather relevant literature to Chapters 4 3.1 Exploring HD Images 11
3.2 DR in HD Images . . . 11
3.3 Hierarchical DR 12
3.4 Multivariate Graph

Visualization and
Node Embeddings . . 13

to 6 about the exploration of high-dimension images with dimensionality

reduction methods. Additionally, each chapter will cover related work specific

to the topics discussed therein individually. While high-dimension image

exploration is also essential to Chapter 7, it shifts focus from methodology to

software frameworks and therefore covers it related work separately.

While dimensionality reduction methods have been extensively studied across

various domains, their effective application to high-dimensional image data

specifically remains relatively under-explored, a gap that this thesis seeks to

address.

3.1. Exploratory Analysis of High-Dimensional Images
Exploration of high-dimensional images is a two-fold issue: exploring the

high-dimensional data attribute space and exploring the spatial layout.

There is a multitude of approaches for visual exploration of high-dimensional

data [33–36]. A challenge when facing high-dimensional data that is additionally

spatially resolved, is to effectively visualize spatial and attribute characteristics

in an integrated fashion. MulteeSum [37] compares spatio-temporal gene

expression data from fruit fly embryos by segmenting cells in the image

and providing multiple attribute summaries per cell. Another approach is to In Chapter 4 we use DR techniques

for image exploration.
characterize the data attributes in terms of specific features and represent them

as glyphs at their respective regions in space [38]. For multivariate volume data,

high-dimensional transfer functions have been employed in combination with

standard volume rendering techniques [39].

Generally, regarding both high-dimensional and color or grayscale images,

visualization and interaction systems for large images use image tiles of various

resolutions taken from image pyramids [40–42]. Image exploration might be Chapter 5 couples DR techniques

with image interaction techniques.
performed solely based on zoom and pan operations in the image pyramid

as presented by Jeong et al. [43], or can be supplemented with additional

information. Molin et al. [44], e.g., propagate low-level features to the current

zoom level. These examples deal specifically with grayscale or color images, but

high-dimensional images cannot be displayed or explored following the same

approaches: they do not trivially extend to more than three image channels.

3.2. Dimensionality Reduction for High-Dimensional
Images

Extensive reviews on dimensionality reduction and multidimensional projection

techniques can be found [16–18]. Non-linear dimensionality reduction techniques

such as t-SNE [29] and UMAP [28] have become popular techniques to visualize

and explore high-dimensional data. However, these techniques have been

applied to high-dimensional imaging data without considering image-specific

characteristics like texture information. Abdelmoula et al. [45] use t-SNE in

a segmentation pipeline for high-dimensional images. They embed pixels Chapter 4 introduces the notion of

spatial layout in DR methods.
according to their high-dimensional attribute values to a three-dimensional

space, followed by coloring the pixels by using the 3D embedding coordinates

as coordinates in the L
∗
a
∗
b color space. The resulting color images are then used

to aid the segmentation with the goal of identifying tissue segments with similar

properties, according to the original attribute space. Recently, Evers et al. [46]

followed a similar approach to identify regional correlations in spatio-temporal

weather ensemble simulations with the main difference of using MDS instead

of t-SNE.

12 3. Related Work

Other approaches combine dimensionality reduction with segmented image

data. Facetto [47] combines un- and semi-supervised learning to aid in the

visual analysis of high-dimensional imaging data in the field of structural

biology. After segmenting cells and aggregating their corresponding attributes

to features, they use UMAP to display the cells according to their similarities.

ImaCytE [48] is a visual analysis tool for similar data that focuses on the analysis

of cell neighborhoods. Again, cells are segmented and the attributes of pixels

within the cells aggregated. Cells are laid out according to their similarity in

the attribute space using t-SNE and the resulting information is used to analyze

spatial neighborhoods. All of these applications and tools make use of standard

dimensionality reduction methods that do not incorporate spatial information

and instead follow a two-step approach using the results of either dimensionality

reduction or spatial analysis as input to the other. Instead, in Chapter 4, we

directly include spatial information in the dimensionality reduction process

to reduce the number of steps and potential points of failure in interactive

analysis.

3.3. Hierarchical Dimensionality Reduction

Many image acquisition methods yield images containing many million pixels.

Even though UMAP [28] and modern implementations of t-SNE [49] enable

efficient embedding computation of data sets the size of single digit million

data points, these DR techniques reach their limits when being applied to

mega- or gigapixel images. The embeddings insufficiently display detailed dataChapter 5 connects interactions

with hierarchical DR methods and

image interactions.

characteristics like intra-cluster dissimilarities, and thus small-scale structures

will not be visible anymore, or larger structure is lost. Hierarchical DR techniques

tackle this issue and come with a lower computational cost [16]. Recently, several

methods that extend existing single-level techniques have emerged. For example,

Glimmer [50] (i.e., a hierarchical version of classical multidimensional scaling)

and HiPP [51] perform recursively subsampling and hierarchical clustering

respectively to create data hierarchies. The more recent HSNE [52] (i.e., a

hierarchical version of t-SNE [29]), and HUMAP [53] (i.e. a hierarchical version

of UMAP [28]) both select landmarks from lower hierarchy levels as points

in higher levels and use random walks to define similarities between them.

Multiscale PHATE [54] (i.e., a hierarchical version of PHATE [55]) simulates

a diffusion process using random walks to "smoothen" the data and coarse-

grain the k-nearest-neighbor data graph repeatedly. These methods all share

hierarchical aggregation to represent data points on various levels of abstraction

and aim to facilitate exploration of high-dimensional data, but are based on

different DR methods. In Chapter 5, we propose a direct coupling between the

interactions with an image, i.e., zooming and panning, and representations of

hierarchical dimensionality reduction methods.

While it is possible to apply these methods to high-dimensional images, none

of them takes the spatial information of the data into account when creating

their hierarchies or defining similarities between landmarks or sample points.

To combine both spatial layout and attribute information into the hierarchyChapter 6 introduces image infor-

mation into the hierarchy creation

for hierarchical DR methods.

construction we use a recurring motive from the above techniques: random

walks. They are typically employed on nearest-neighbor graphs of the attribute

data as a means to capture high-dimensional similarities. Diffusion Maps [56]

describes a unified framework of random walk based dimensionality reduction

methods and shows their equivalence to an eigenvector problem. In Chapter 6

we propose a superpixel algorithm in image space based on similarities in pixel

attribute space.

3.4. Multivariate Graph Visualization and Node Embeddings 13

3.4. Multivariate Graph Visualization and
Node Embeddings

Graph-based techniques are commonly applied to pattern recognition and

computer vision problems on imaging data [57]. For that, images are interpreted

as graphs: each pixel is interpreted as a node and neighboring pixels are

connected by a link. Several techniques for graph drawing aim to incorporate

network structure and node attributes [58] and are closely related to dimensionality

reduction techniques as they also embed complex data into low-dimensional

space while preserving certain structure.

GraphTPP [59] focuses on a visual combination of node attributes and connec-

tions in a 2D graph layout. First, principal component analysis (PCA) is applied

to the data using only the attributes. Then links between nodes are overlaid on

the resulting scatterplot. The user can then manually reposition points according

to their interpretation, and compute a new linear projection that best fits the

modified layout. GraphTSNE [60] aims to preserve graph connectivity and Chapter 4 embeds pixels while con-

sidering their image-space neigh-

bors.

node attribute similarity. It does so by training a graph convolutional network

on a modified t-SNE loss that combines the squared Euclidean distance be-

tween node attributes and the shortest-path distance between the nodes on the

graph. Their design seeks to position two points close in the embedding either

when their attributes are similar or they are connected by an edge. Similarly,

MVN-Reduce [61] defines a distance measure between two nodes as the sum

of a node’s attribute distance and their weighted shortest path distance on the

graph. The resulting distances are used as input to distance-based dimension-

ality reduction methods like MDS. The Heterogeneous Network Embedding

(HNE) framework [62] aims to create embeddings that position data points with

links closer and those without further away from each other. Therein, a neural

network is trained with a loss function that builds on a similarity term between

point attributes that is weighted depending on their respective node linkage.

Embedding nodes from a graph structure is a problem closely related to

dimensionality reduction methods. Khosla et al. [63] compare several such node

embedding methods, which compute a low-dimensional feature vector for each

node in a graph; in contrast to the above discussed dimensionality reduction

techniques, these methods are typically designed for the downstream tasks of

multi-label classification and link prediction. Variations of random walks are Chapter 6 uses random walk based

similarities for computing superpix-

els.

often used to define node features, e.g. the frequency of node visits, here as

well. In node2vec [64], for example, random walks are biased by adjusting the

transition probability for walking backwards and walking to a node that is not

connected to the previous node. tsNET [65] follows a different approach: they

take geodesic distances between nodes in graphs as input for the similarities as

defined in t-SNE and map them to 2D based on a modified cost function. Earlier,

Isomap [26] introduced the idea of using geodesic distances into DR methods

that build on multidimensional scaling. However, both Lee and Verleysen [66]

as well as Lafon and Lee [56] discuss that using shortest-path-based similarities

(i.e., using geodesic distances) can be susceptible to creating shortcuts that

jeopardize the representation of the underlying data manifold whereas random-

walk-based similarities seem to be more robust. In fact, random walks have

been used to estimate geodesic distances in various settings [67, 68].

14 3. Related Work

Spatial Information in Dimensionality
Reduction for High-Dimensional Images 4.

This chapter is based on the pa-

per “Incorporating Texture Informa-

tion into Dimensionality Reduction

for High-Dimensional Images” pub-

lished at the 15th IEEE Pacific Vi-

sualization Symposium (PacificVis

2022) [69].

4.1 Introduction 15
4.2 Related Work 16
4.3 Texture-Aware DR . . 17
4.4 Toy data example . . . 21
4.5 Implementation 23
4.6 Use cases 24
4.7 Conclusion 27

We have seen in our discussion on DR techniques for high-dimensional images

that these methods are applied to image data, but do not incorporate image

layout information, see Section 3.2. Specifically, spatial patterns (texture) are

completely lost in resulting embeddings. In this chapter, we propose an extension

to existing distance based DR techniques which informs them with texture

information.

4.1. Introduction

High-dimensional data is commonly acquired and analyzed in various appli-

cation domains, from systems biology [70] to insurance fraud detection [71].

Typically, high-dimensional data are tabular data with many columns (or

attributes), corresponding to the dimensionality per item, but there are no con-

nections between items. Dimensionality reduction techniques like t-SNE [29]

or UMAP [28] are well-established tools used for exploratory visual analysis

of such high-dimensional data [72]. Advances in imaging techniques have

introduced an increasing number of imaging data modalities producing high-

dimensional images (every pixel represents a high-dimensional attribute-vector).

Current state-of-the-art dimensionality reduction methods are commonly used

for the exploratory analysis of such imaging data, for example in cultural

heritage [73], biology [74], or geospatial applications [75]. However, they rely

only on attribute data of pixels and do not take additional spatial information,

such as texture, present in such imaging data into account. Thus, in the resulting

low-dimensional embeddings, the pixels are only arranged according to their

individual attributes (Figure 4.1b), but do not provide any insight into texture,

neighborhoods or other spatial relations common in image analysis.

The spatial configuration is, however, commonly of interest when analyzing

high-dimensional image data. For example, taking spatial neighborhood in-

formation into account, in addition to high-dimensional attributes, has led to

new discoveries in single-cell biology [76]. Typical approaches to combine high-

dimensional attributes and spatial information, however, rely on a two-stage

process: first, high-dimensional attributes are aggregated, for example to classify

pixels, then standard image analysis is performed on the aggregate images, see

Section 3.2. Decoupling the high-dimensional and spatial analysis in such a way

has several downsides: Most importantly, boundaries between clusters in an

embedding are often not well-defined, and as such classification is ambiguous

and has a level of arbitrariness. Issues with inaccurate classification might

appear undetected and lead to wrong conclusions. Furthermore, if problems

with the classification become apparent in the spatial analysis, one has to go

back to the high-dimensional analysis and potentially loses all progress in the

spatial analysis. Moreover, the necessary aggregation in the first step limits what

is discoverable in the spatial analysis step. Therefore, we deem the integration

of spatial information directly into the dimensionality reduction desirable for

exploratory analysis.

We present an approach to integrate spatial information directly into the

dimensionality reduction process with the goal to combine attribute and spatial

information in a single embedding (Figure 4.1c). Specifically, we propose to adapt

the similarity computation, used in distance-based dimensionality reduction,

such as t-SNE, UMAP, or MDS, to incorporate different spatial neighborhood

features. We exemplarily present different similarity computation methods for

such neighborhood comparisons by extending an existing classification [77] to

high-dimensional images.

The main contributions of this chapter are:

16 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Figure 4.1. Texture-aware dimen-
sionality reduction. An image (a)
with black and white pixels forms mul-
tiple textures. Standard distance-based
dimensionality reduction produces one
cluster of black and one cluster of
white pixels (b), a texture-aware version
should create clusters for the different
textures (c).

white pixels

black pixels

white black
homogeneous

checkerboard pixels

(a) (b) (c)

▶ incorporating texture information into distance-based dimensionality reduc-

tion for exploratory analysis of high-dimensional images through distance

measures including image neighborhoods.

▶ the exemplary extension of t-SNE using different classes of neighborhood

distance measures and their analysis.

4.2. Related Work

In the following, We aim to report the work most relevant to this chapter, namely,Relevant work on dimensionality

reduction on images is discussed in

Chapter 3.

texture and feature extraction in high-dimensional images, and dimensionality

reduction in hyperspectral imaging.

Often, high-dimensional image data is visualized indirectly by first extract-

ing features that capture interesting data characteristics and then displaying

those [34, 35]. One such feature is texture. We follow Haidekker’s definition

of texture as "any systematic local variation of the image values" [78] since it

emphasises that texture encodes spatially local relationships of pixel values.

Texture feature extraction is a broad, well-established field [79] but the extension

of single-channel texture features to multi-channel images is not trivial. Typically,

single-channel texture features are extracted for each channel and concatenated

to a feature vector. Multi-channel texture features such as color co-occurrence

matrices proposed by Palm [80] are less common and engineering such features

is an ongoing process in the image processing community [81].

Dimensionality reduction has been used to create texture features [82] and explore
texture databases [83], but such approaches are generally out of the scope of

this work.

In the analysis of hyperspectral images, dimensionality reduction is an important

step for pixel classification. A common approach to include spatial information

relies on computing the first couple of principal components of the high-

dimensional data and then continuing with classic image processing methods

that work on scalar or color data to extract spatial neighborhood information [84,

85]. For example, morphological image processing techniques are used to

capture spatial structure in high-dimensional images [86]. Spatial-spectral local

discriminant projection [87] takes a more direct way of combining spatial

and spectral information into dimensionality reduction by incorporating a

weighting factor into the neighborhood preserving embedding that represents

the spectral similarity between spatially neighboring pixels. However, this

and similar hyperspectral image analysis methods [88] rely on training with

ground truth data, which is typically not available in exploratory data analysis.

Recently, Halladin-Dąbrowska et al. [75] proposed a workflow using t-SNE for

cleaning ground truth data. However, they do not include spatial neighborhood

information in their embeddings.

A straightforward way to inform dimensionality reduction techniques of images

about their spatial domain is to consider each data point’s spatial location in the

point similarity measure used during the embedding. Spherical SNE [89] devises

a similarity function between data points in the style of bilateral filtering that

weights attribute distance with pixel location distance. This approach, however,

4.3. Texture-Aware Dimensionality Reduction 17

channel 1

(c)(b)(a)

channel 1
ch

an
ne

l 2 ch
an

ne
l 2

Figure 4.2. Synthetic test image
dataset with 𝑋 × 𝑌 = 32 × 32 and
𝐶 = 2. The distribution in attribute
space (c) reveals four groups. We use a
2D colormap (b) to color pixels in image
space (a) according to their attribute in-
formation.

does not capture the similarity of the local structure around the compared

points, which we aim for.

Applied to an image (interpreted as a 4- or 8-connected graph), all the approaches

mentioned in Section 3.4 essentially combine the pixel location distance (geodesic

distances on the graph) with the attribute distance, not dissimilar to what is

described for the Spherical SNE [89]. In contrast, the goal of our proposed

approach is to compare local texture structures rather than absolute distances.

Two pixels are compared by taking into account the structure of the high-

dimensional values in the spatial neighborhoods of the two pixels.

4.3. Texture-Aware Dimensionality Reduction
Figure 4.2 shows a synthetic toy-example of a ‘high-dimensional’ image with

two attribute channels (i.e., 𝐶 = 2). The spatial layout is displayed in Figure 4.2a

with each pixel color coded according its two attribute values using a 2D

colormap (Figure 4.2b). Figure 4.2c shows a scatterplot of all attribute values.

Four groups are clearly distinguishable based on the attributes. In image space

the four groups form eight visually distinct regions, four group-homogeneous

and four consisting of checkered patches. We use this image to showcase the

characteristics of our proposed approaches and compare it to a standard t-SNE

embedding.

To incorporate spatial neighborhood information into low-dimensional embed-

dings, we propose a set of distance measures that take the spatial neighborhood

N𝑆,𝜂
of pixels in high-dimensional images into account. The distance between

the attributes of two attribute vectors 𝑑(ai , aj) is thus replaced by a new texture-

informed distance 𝑑𝑠 (i, j, 𝑓 , 𝜂) and the k nearest neighbors in Equation 2.6 will

be based on this new measure as well. Since we aim to compare the spatial

neighborhood of two pixels, it does not suffice to include their image coordinates

or spatial distance; rather, it is necessary to involve each pixel’s spatial local

neighborhood. Essentially, we are comparing image patches instead of single

pixel values. All other steps of the embedding process remain as they were.

4.3.1. Comparing image patches
In the following, we will present a number of texture-aware distance measures

𝑑𝑠 . As the space of potential measures is vast, we will focus on a few exemplary

measures, following the classification of distance measures for image patches

introduced by Zitová and Flusser [77]. In particular, they distinguish image

patch comparison into area-based methods (ABM) and feature-based methods

(FBM).

ABM and FBM for image patch comparison differ in their approach to compute

similarity scores. ABM directly work with the pixel’s attribute values of the

two image patches to compare. They are sometimes called intensity-based

instead, which might reflect the immediate usage of the attribute values more

aptly. In contrast, FBM follow a two-step approach of first computing features

18 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Texture-aware
embedding

Standard
embedding

ds
PC(,)

dQF(,)

dBhat([Σ,μ]i , [Σ,μ]j)
ds

feat(,)

Feature-based approaches:
Specific distances for a feature

Area-based approach:
Point cloud distance

()
d(,)

Standard distance between
 attributes (e.g. Euclidean)

Similarity measure in
dimensionality

reduction method
(e.g. t-SNE, UMAP)

X

Y

Channels

X

Y

Channels [Σ,μ]

One histogram
per channel

One covariance matrix
and mean vector
for all channels

i j

i
j

Figure 4.3. Incorporating image texture information into dimensionality reduction by adapting the distance measure that defines pixel similarity.
High-dimensional image data is depicted in a data cube. Standard t-SNE compares pixels based on their attribute vectors only, e.g., using Euclidean distance (left).

We propose to also consider the spatial neighborhood N
𝑆,𝜂
i of the pixels (right) and present different approaches. Feature-based methods (FBM) derive texture

features per channel (e.g., local histogram) or across channels (e.g, covariance matrix) and compare those, while area-based method (ABM) (e.g., point cloud distance)
compare sets of original attribute vectors directly.

for each patch and then comparing those. ABM can be further categorized

into correlation-like methods (for example point cloud distances), Fourier

methods, mutual information methods, optimization methods [77]. We refer

to Goshtasby [90] for an extensive overview and discussion of area-based

similarity and dissimilarity measures. Likewise, there exists a rich body of

literature discussing image patch descriptors and appropriate feature matching

methods used in FBM [91, 92]. To note, most FBM extract various salient features

per image with the goal of matching the whole images. Such methods do not

necessarily produce one feature value per pixel which is desired for computing

the pairwise distance between pixels as in our case. More extensive and general

discussions of ABM and FBM can be found in [77, 93]. Here, we will present

how to structurally extend image patch comparison to high-dimensional images,

and will showcase t-SNE with exemplary methods for each category.

4.3.2. Application to high-dimensional images

Classically, both FBM and ABM are applied to grayscale or color images,

but we work with high-dimensional images instead. Typical ABM involve

direct comparison of individual points and thus can be applied to multi-

channel data, by directly comparing the multi-dimensional points with any

applicable metric. For FBM, a direct extension of a single-channel feature

to multi-channel data does not always exist or a straightforward extension

to multiple dimensions suffers from problems. Consider, for example, local

histograms. They work well to summarize single-channel data, but as the

number of dimensions of the histogram reflects the number of channels in the

data, a local histogram for high-dimensional data would typically be sparse

due to the curse of dimensionality [94]. Therefore, in addition to creating multi-

dimensional features, we also consider computing traditional one-dimensional

features per channel and then compute the distance between the resulting

feature vectors.

In the following, we will present a point cloud distance, namely the Chamfer

distance, to showcase an area-based method. We use channel-wise histograms as

single-channel features and the more general covariance matrix of the neighbor-

hood values as a multi-channel feature to provide examples for FBM. Figure 4.3

illustrates the concept behind the three approaches. An example of these

methods on synthetic data will be discussed in more detail in Section 4.4.1.

4.3. Texture-Aware Dimensionality Reduction 19

4.3.3. Feature-based methods

A wide range of image features exist and an adequate choice depends on the

application as well as the goal of the analysis [79]. It is out of the scope of this

paper to cover all possibilities. We focus on spatial heterogeneity which has

been successfully applied, for example, in biomedical tumor analysis [95] or

geospatial data analysis [96].

We investigate two texture features that capture local heterogeneity in scalar

images. As a single-channel feature example, we capture heterogeneity with

local histograms per pixel and channel. Histograms have been successfully used

for texture synthesis [97] and lend them-self well as texture features. But since

local histograms do not adapt well to high-dimensional data, we use the covari-

ance matrix 𝚺 and channel-wise means 𝜇, roughly generalizing the histogram

measure of dispersion, as a multi-channel feature. Covariance information

has as well been shown to be useful texture information for texture synthesis

in generative adversarial networks [98]. For FBM, the neighborhood distance

becomes 𝑑𝑠 (i, j, 𝑓 , 𝜂) = 𝑑
𝑓 𝑒𝑎𝑡
𝑠 (Z𝜂 (𝑓 , i),Z𝜂 (𝑓 , j)) with Z𝜂 being the chosen

feature extraction operator that will depend on the use case and neighborhood

size parameter 𝜂.

It is worth noting that the approach of computing the features separately per

channel assumes independence between all channels 𝑓𝑐 , which is typically not

the case. This means that in some cases certain combinations of attribute values

and texture features cannot be distinguished. The covariance matrix feature

(Section 4.3.3), and point cloud distance-based, (Section 4.3.4), approaches do

not have this limitation since they use the full attribute space to measure the

distances.

Local histograms features Local histograms are a common way to characterize

texture in scalar image processing. We compute one feature, i.e., the normalized

local histogram, per pixel and channel (confer the right side of Figure 4.3).

The histogram of attribute values of channel 𝑐 in the spatial neighborhood

N
𝑆,𝜂

i is referred to as the vector 𝒉i𝑐 = [ℎi𝑐1 , . . . , ℎi𝑐𝐵], where 𝐵 is the total

number of bins. All entries are normalized by the total amount of pixels in the

neighborhood. As the histogram is represented as a vector, rather than a single

scalar, this yields a feature matrix per pixel:

Zℎ𝑖𝑠𝑡 (𝑓 , i) = [𝒉i1 , . . . , 𝒉i𝐶]. (4.1)

This means, to compute the distance between two pixels, we now need to

compare two vectors of histograms. We can interpret a histogram as an estimate

of a probability density function. As such, we can choose one of the many

distance functions defined between probability distributions. One such distance

is the quadratic form (QF) distance [99], defined as

𝑑𝑄𝐹(𝒉i𝑐 , 𝒉j𝑐) = (𝒉i𝑐 − 𝒉j𝑐)⊺ A (𝒉i𝑐 − 𝒉j𝑐) (4.2)

=

𝐵∑
𝑏,𝑘=1

𝑎𝑏𝑘 (ℎi𝑐𝑏 − ℎj𝑐𝑏)(ℎi𝑐𝑘 − ℎj𝑐𝑘). (4.3)

Here, A = {𝑎𝑏𝑘}with 0 ≤ 𝑎𝑏𝑘 ≤ 1 and 𝑎𝑏𝑏 = 1, enables attributing a weight be-

tween bin indices, e.g., to take distance into account. We use 𝑎𝑏𝑘 = 1 − (| 𝑏 − 𝑘 |)/𝐵
as proposed by Equitz et al. [99].

With the distance per channel in place, we can define a distance 𝑑
𝑓 𝑒𝑎𝑡
𝑠 for all

channels as the sum of all channel-wise feature distances:

𝑑ℎ𝑖𝑠𝑡𝑠 (Zℎ𝑖𝑠𝑡 (𝑓 , i),Zℎ𝑖𝑠𝑡 (𝑓 , j)) =
𝐶∑
𝑐=1

𝑑𝑄𝐹(𝒉i𝑐 , 𝒉j𝑐). (4.4)

20 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

(a) Standard t-SNE (b) Local histogram
 Covariance
 (c) matrix and means (d) Point cloud

Figure 4.4. Comparison of different embeddings of the synthetic image data shown in Figure 4.2 using standard t-SNE (a) and the three presented texture-aware
approaches (b-d). We use the re-coloring approach introduced in Figure 4.2 to indicate embedding structure in image space. Here, we use the 2D embedding
coordinates to index the colormap shown in (a). As a result, pixels that are close in the embedding space have similar colors in image space.

Covariance matrix and means A more general dispersion feature for multi-

channel data are covariance matrices. We will use these in combination with

channel-wise mean values as an example for multi-channel features Z𝑐𝑜𝑣(𝑓 , i) =
[𝚺i , 𝜇i]. Each entry in 𝚺i = {𝜎𝑎𝑏} represents the variance between the attribute

values within the spatial neighborhood N
𝑆,𝜂

i of the channels 𝑓𝑎 and 𝑓𝑏 ; the

vector 𝜇i holds the mean values within the same neighborhood per channel.

One measure that is suited for comparing our covariance matrix feature is the

Bhattacharyya distance [100]:

𝑑𝐵ℎ𝑎𝑡𝑠 (Z𝑐𝑜𝑣(𝑓 , i),Z𝑐𝑜𝑣(𝑓 , j)) =
1

8

(𝜇i − 𝜇j)𝑇𝚺−1(𝜇i − 𝜇j) +
1

2

ln

(
det𝚺√

det𝚺i det𝚺j

)
(4.5)

with 𝚺 =
𝚺i+𝚺j

2
and det(𝚺) denoting the determinant of a matrix 𝚺.

4.3.4. Area-based methods

A straightforward example ABM is to interpret the attribute vectors of pixels in

the spatial neighborhood N
𝑆,𝜂

i as a high-dimensional point cloud, see Figure 4.3.

Instead of comparing explicit texture features, we are now computing distances

in the high-dimensional space defined by the data attributes directly. Point

cloud distances have been used to compare single-channel images [101] and

many naturally extend to higher dimensions since they are based around norms

of differences between attribute vectors. To stay consistent with the previously-

established notation, one can think of it as simply defining the feature as the data

values in the spatial neighborhood without any transformation, Z𝑃𝐶 (𝑓 , i) =
𝒁i = {aj : j ∈N𝑆,𝜂

i }, leading to a point cloud distance 𝑑𝑃𝐶 (𝒁i , 𝒁j).
Multiple distance measures between point clouds exist [38]. The choice, which

one to use, depends on the application that needs to be addressed. A commonly

used point cloud distance is the Chamfer (pseudo-) distance [102]. Conceptually,

to calculate this point cloud distance 𝑑𝑃𝐶 between the spatial neighborhoods

of two pixels i and j, for each point in the spatial neighborhood N
𝑆,𝜂

i we find

the closest point in the other neighborhood N
𝑆,𝜂

j with respect to a metric (e.g.,

squared Euclidean distance in our implementation) and average these closest

point distances. This yields:

𝑑𝑃𝐶𝑠 (𝒁i , 𝒁j) =
1

𝑛N

∑
q∈N𝑆,𝜂i

min

p∈N𝑆,𝜂j

∥aq − ap∥2
2
+

1

𝑛N

∑
p∈N𝑆,𝜂j

min

q∈N𝑆,𝜂i

∥aq − ap∥2
2

(4.6)

4.4. Application on Synthetic Data 21

In comparison with other point cloud distances, like the closely related Haus-

dorff distance, the Chamfer distance is more robust against outliers in the

neighborhoods. Unlike the max-min Hausdorff distance, here, we take the

average of all point-wise minima instead of their maximum. Supplemental

Material SA4 compares several Hausdorff family distances for the previously

introduced toy-example image discussed in Section 4.4.

4.3.5. Computational complexity
The computational complexity for the presented approaches can be split into

two parts: first the feature extraction and second the actual distance functions.

The histogram feature computation in our implementation scales linearly with

the number of spatial neighbors. For a single pixel and channel, this yields the

complexity for the local histogram feature extraction: O(𝑛N), scaling linearly,

only with the number of pixels in the neighborhood 𝑛N = (2 · 𝜂 + 1)2. The

covariance matrix feature calculation is dominated by the computational

complexity of a matrix multiplication between two matrices of size 𝑛N × 𝐶,

namely O(𝐶𝑛2

N
).

The distance calculation is the more time-consuming step for the presented

methods. For the local histogram feature approach the QF distance computation

scales quadratically with the number of bins 𝐵, which dominates its complexity

in O(𝐶 𝐵2). Covariance matrices and mean comparison with the Bhattacharyya

distance is more expensive. Its computation involves matrix-vector multipli-

cation and determinant calculation. Using LU decomposition for the latter

yields O(𝐶3).
Finally, the point cloud distance requires the computation of all pairwise

distances between the two neighborhoods. As a result, it’s complexity scales

quadratically with the neighborhood size O(𝐶 𝑛2

N
). Note, that neighborhood-

based dimensionality reduction methods, like t-SNE and UMAP, use the point

distances to construct k-nearest neighbor (𝑘NN) graph, which requires the

computation of all pairwise distances for the whole dataset. Naively, the 𝑘NN-

graph graph construction would scale quadratically with the number of pixels

rather than the neighborhood. However, most modern implementations of

t-SNE, and UMAP avoid quadratic complexity by using approximated 𝑘NN

algorithms [28, 103], as do we, see Section 4.5.

We have also experimentally verified this analysis, showing that the local

histogram approach is the fastest and the Bhattacharyya distance the slowest.

The full data can be found in the Supplemental Material SA6.

4.3.6. Spatial weighting
So far, we treated all pixels in the spatial neighborhood uniformly. In order to

define specific patterns of interest within the neighborhood, for example by

assigning pixels further away from the center a lower importance, we introduce

a spatial weighting w. Weights are consistent with respect to the center i of

a neighborhood, which implies that a pixel position p receives the weight:

w(i − p).
For the histogram features, spatial weights with

∑
w = 1 can be included in the

histogram construction by scaling pixel attributes by the weight. Weights can

be introduced into the covariance matrix and mean computation as detailed in

the Supplemental Material SA2, where we also cover the integration into the

Chamfer point cloud distance. A two-dimensional Gaussian kernel is a natural

weighting choice as it assigns smoothly decreasing importance to pixels further

away from the neighborhood center.

4.4. Application on Synthetic Data
To illustrate some of the properties of the different approaches, presented

in Section 4.3.3 and Section 4.3.4, we created a simple synthetic image data set,

22 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

shown in Figure 4.2. The image consists of 32 × 32 pixels, with two attribute

channels, separating the pixels into four groups (Figure 4.2c). As seen in

Figure 4.2a the spatial layout includes four homogeneous regions in the center

and checkered patches around them, each constructed by alternating 2× 2 pixel

blocks of two different classes.

Figure 4.4 shows a standard t-SNE embedding of the synthetic data set as well

as embeddings using the three described methods. All four embeddings were

computed using a perplexity of 20 and 1, 000 gradient descent iterations. For

the three texture-aware approaches we considered a uniformly weighted 3 × 3

neighborhood. To indicate structure derived from the t-SNE embedding in

image-space without clustering, we use a simple re-coloring previously shown

by Höllt et al. [104]. In short, 2D coordinates derived from the embedding

are added to each pixel. The pixel is then assigned a color by using these

coordinates as a lookup into a 2D colormap. As a result, pixels that are close

in the embedding space, and thus are similar according to the used distance

metric, will have a similar color in the image representation. We use t-SNE as an

example throughout the chapter, similar embeddings using UMAP and MDS

can be found in Supplemental Material SA3.

Standard t-SNE (Figure 4.4a) separates the pixels into four groups, one per

class, with some small scale structure within each class, introduced by noise in

the data. However, the embedding does not give any insight into the spatial

layout of the four classes. In particular, the pixels of each class positioned in the

checkerboard pattern cannot be distinguished from pixels of the same class in

the central homogeneous regions.

Figure 4.4b, shows the embedding and re-coloring using the Local histograms
and QF distance. We defined the number of histogram bins using the Rice rule:

𝐵 = ⌈2 3
√
𝑀⌉ = 5, with the neighborhood size 𝑀 = 3 × 3 = 9. The resulting

embedding is somewhat less clear than the standard t-SNE one, consisting of

only three major clusters, however, with more structure within those clusters.

The four homogeneous areas in the center show up in separated areas in the

embedding (arrows), indicated by their individual colors. These regions are

loosely connected to larger regions in the embedding containing the pixels

from the checkerboard regions. Notably, the individual two classes forming

a checkerboard region do form separate regions within the larger clusters to

some degree. However, pixels of the same class in two different checkerboard

regions, for example, pixels of with small values in both channels (Figure 4.2),

which are present in both checkerboards on the left image half, are separated,

as indicated by the blue-ish and orange-ish colors.

The result of our approach using the covariance matrix and means feature
can be seen in Figure 4.4c. We can clearly identify nine separate clusters in

the embedding. The four homogeneous regions correspond to the four small

clusters on the bottom of the embedding, while the four larger clusters represent

the four checkerboard regions, as indicated by the recolored image. The ninth

cluster corresponds to the boundaries between the checkered regions. Again, the

homogeneous areas are separated from the checkered but with much sharper

boundaries. Different from the previously described approaches, however, each

checkered area is recognized as a single cluster in the embedding, meaning that

the checkerboard pattern is not visible anymore in the re-colored image. In an

exploratory visual analysis setting, this would facilitate the selection and further

analysis of regions with specific spatial neighbourhood characteristics.

The Point cloud distance approach, here specifically using the Chamfer distance,

yields a similarly straightforward partitioned embedding in Figure 4.4d. Again,

all four homogeneous image patches are separately clustered as well as the

checkered regions. The borders between the different regions now also created

individual clusters in the middle of the embedding.

To quantitatively analyse the approaches, we compute the 𝑘-nearest neighbor

hit, as described by Espadoto et al. [17]. The average neighbor hits for 63-

nearest neighbors in embedding space are 77.9% (point cloud distance), 79.4%

(Bhattacharyya distance) and 80.4% (QF distance) whereas the standard t-SNE

4.5. Implementation 23

embedding yields 35.1%. While the point cloud and Bhattacharyya distance re-

sult in a higher neighbor hit for small neighbor numbers, their quality decreases

slightly faster for larger numbers than the QF distances hit. See Supplemental

Material SA1 and Figure A.2b in Supplemental Material SA3 for full details.

4.4.1. Discussion

All three presented texture-aware approaches are able to distinguish between

several spatial arrangements of the high-dimensional image.

A drawback of local histogram features is the number of bins as an additional

hyperparameter. Since there is no obvious choice for a good setting, the user

has to fall back to heuristically setting this value. Further, in the scope of this

work, we only discuss the QF distance for comparing histograms. Other distance

measures are available and would likely produce different results. As a per-

channel feature-based approach the local histograms implicitly assume channel

independence. Thus, they cannot capture multidimensional texture patterns.

Using multidimensional histograms instead of a 1D histogram per channel might

be able to capture such patterns. However, such an approach would drastically

increase computational complexity. The histogram size grows exponentially with

the number of dimensions, quickly making storing histograms and computing

distances infeasible. Further, such histograms are in danger of quickly becoming

very sparse and as such would not provide a useful basis for comparison

anymore.

The covariance matrix feature can capture multiple attribute dimensions with-

out requiring channel independence with the same goal of comparing the

distribution of values within the defined neighborhood. However, instead of

comparing all individual values, they are represented in an approximate way

based on the assumption that the values are Gaussian distributed. The point

cloud distance does not make this assumption and compares all attribute vectors

to each other. If we compare the covariance matrix feature with the point cloud

distance results, the most prominent difference between the embeddings is

how they treat the borders between cluster regions. When data has a bi-modal

distribution in a channel, the Gaussian assumption in the covariance feature

does not reveal this case, whereas the point cloud distance would.

An advantage of the FBM methods is that they produce features that can aid

the interpretation of structure in the resulting embeddings. Visualizing those

features in combination with the embeddings is an interesting avenue for future

work.

The spatial weights as introduced in Section 4.3.6 and spatial neighborhood

size 𝜂 affect the approaches to different degrees. See the Supplemental Material

SA5 for a brief overview of different neighborhood sizes and spatial weights. For

example, the Chamfer point cloud distance produces very similarly clustered

embeddings for several neighborhood sizes and is — with respect to the

synthetic data set — not much affected by radially decreasing spatial weights

for this example. Meanwhile, using the histogram feature, the checkered pixels

are clustered differently when weights are applied.

4.5. Implementation
Code available on GitHub in the

repository biovault/SpidrWe implemented the described distance measures as an extension for the open-

source t-SNE implementation in HDI [103, 105], where we use HNSW [106] with

our custom distance functions to create the approximated k-nearest neighbor

graph. The framework is implemented in C++ and OpenGL for GPU-based

calculations; a Python wrapper is provided as well. Our library is available as

open-source on GitHub [107].

https://github.com/biovault/Spidr

24 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

4.6. Use cases
Here, we illustrate the application of the presented approaches for visual data

exploration using two use cases. The first use case (Section 4.6.1) describes the

exploration of hyperspectral images, commonly used in geospatial analysis. For

the second use case (Section 4.6.2), we applied our method to imaging mass

cytometry data, a method that is recently gaining attention in systems biology.

We use the Chamfer point cloud distance as an example for an area-based method

and the covariance matrix feature exemplarily as a multi-channel feature-based

method. The Bhattacharyya distance comes with a high computational cost for

high large channel numbers, hence the usage of the point cloud distance for the

hyperspectral image example and the covariance matrix feature for the systems

biology use case.

4.6.1. Hyperspectral imaging
Similar to digital photography, hyperspectral imaging captures bands of the

electromagnetic spectrum. Instead of only three channels for red, green, and

blue in digital photography, hyperspectral imaging captures hundreds of narrow

spectral bands at the same time, each corresponding to a channel in the output

image. This spectral signature can be used to recognize materials or objects

in the image. To fully exploit the information in hyperspectral images, spatial

relations between the high-dimensional pixels need to be considered [85].

Here, we present a use case, based on the Indian Pines data set [10]. The

data set is an established reference hyperspectral image obtained by airborne

visible/infrared imaging spectrometry, covering 220 adjacent spectral bands,

of which 200 are typically used (after discarding 20 water absorption bands

that do not contain useful information). We consider a 145 × 145 pixel cutout of

the data set, known as Site 3. This subset of the data is one of three ‘intensive’
test sites and thus has been well documented. A ground truth (Figure 4.5e),

(d)

(a) (b)

(c)

(f)
Dividing

aisle

N
ei

gh
bo

r H
it

0%

25%

50%

75%

100%

k

1 10 20 30 40 50 60 70 80 90100

Standard t-SNE
Gaussian Filter
Point Cloud

(e)

Figure 4.5. Indian Pines: Comparison of texture-aware and standard t-SNE embeddings. Embeddings using standard t-SNE (a), standard t-SNE applied
after bilateral filtering (b), and our point cloud based t-SNE (c). A manually annotated map and ground truth labels are shown in (d) and (e), respectively. Points in
the embeddings are colored, according to ground truth labels for a qualitative comparison of embedding structure. Finally, we show the ration of k-nearest neighbors
in embedding space with the same ground truth label for different k in (f). Note, that for an exploratory use-case no ground truth is available and we only show it
here to illustrate the properties of the embeddings.

4.6. Use cases 25

providing labels indicating ground usage, such as fields, grassland, or houses

for all pixels is available for the data set. We use this ground truth data to verify

that the structure in our embeddings is meaningful; however, it must be noted

that in explorative analysis such a ground truth is not available and information

would need to be derived from the embedding structure. Each pixel in the data

set maps to a 20 × 20 meter area on the ground. The 200 channels of this cutout

cover wavelengths range from to 400-1300 nm in roughly 9-10 nm steps.

We computed embeddings using standard t-SNE (Figure 4.5a) and our texture-

aware t-SNE using the Chamfer point cloud distance with a 5× 5 neighborhood

(Figure 4.5c). To provide a better baseline than standard t-SNE, we applied

bilateral filtering to each channel of the original image data and derived a

standard t-SNE embedding from the filtered image (Figure 4.5b). A bilateral

filter applies edge-preserving smoothing to an image. Thus, in the resulting

image every pixel is a combination of a small neighborhood, providing a

straightforward way of incorporating some spatial neighborhood information.

We computed all embeddings using a perplexity of 30 and 5, 000 gradient

descent iterations. In Figure 4.5, we color-code the ground truth labels on each

embedding to indicate how well the structure in the embedding corresponds to

structure in the images.

The embedding based on the Chamfer point cloud distance shows more structure

than the other two embeddings. Notably, the colored points, corresponding

to the labels of the ground truth, form more clearly distinguished clusters

(see, for example, the orange points in the insets of Figure 4.5). The other

two embeddings show many clusters containing points belonging to multiple

regions. Most notably is the weak separation of the background, unlabeled

points (light gray) in Figs. 4.5a and 4.5b, compared to the coherent, strongly

separated groups in the point cloud-based embedding (Figure 4.5c).

This visual impression is reinforced by a quantitative analysis using the neigh-

borhood hit [17], the average ratio of 𝑘-nearest neighbors in embedding space

with the same ground truth label. Figure 4.5f shows the neighborhood hit for

the first 100 nearest neighbors. The point cloud distance approach yields a

significantly higher hit for all 𝑘-nearest neighbors than both standard t-SNE

and the bilateral filtering approach.

Figure 4.5d shows the original hand-drawn annotations overlaid on the indi-

vidual fields taken from the ground-truth data. The arrow points at an aisle

dividing two parts of a field that was given in the manual annotation but was

lost in the ground truth. In our point cloud-based embedding, we could identify

a cluster (arrow in Figure 4.5c) corresponding to this aisle and an unlabeled

area next to it. The yellow area in Figure 4.5d indicates the pixels corresponding

to that cluster, which illustrates the ability to distinguish structure, even beyond

the ground truth, in the case of the embedding using the point cloud distance.

Hereby, we illustrate the usefulness of combining spatial information with the

full attribute space for exploration purposes. While there exist clusters in the

other two embeddings that partially correspond to the aisle, they also contain

pixels from areas in different regions (see Figure A.14a in Supplemental Material

SA7 for an example).

In summary, our point-cloud embedding outperforms the other two with respect

to the exploration of spatially continuous, meaningful regions. More examples

for similar behaviour, for instance that a specific field is well captured in a single

cluster of the point-cloud embedding but divided between multiple clusters

in the other embeddings, are shown in Figure A.15 in Supplemental Material

SA7.

4.6.2. Imaging mass cytometry
Imaging mass cytometry (IMC) [108] is a recent imaging modality used to

study cellular biology. IMC simultaneously captures the expression of up to 50

different proteins in tissue by ablating tissue sections spot-by-spot. Combining

the resulting measurements in a regular grid results in a high-dimensional

26 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Granuloma

(a) (b) (d)(c)

Figure 4.6. Imaging mass cytometry. A false coloring image of a lung tissue sample gives an idea of the tissue structure in (a) with the granuloma enclosed by
the dashed line. Embeddings derived using standard t-SNE (b), and texture-informed embeddings using the covariance matrix and Gaussian weighting with a 3× 3

(c) and 7 × 7-sized (d) neighborhood are shown in combination with recolored images to indicate embedding structure in image space.

image, where the pixel position corresponds to the position in the tissue and the

channels to the different measured proteins. Visual analytics and exploratory

analysis based on dimensionality reduction is used in practice for the analysis

of IMC data, as for example presented by Somarakis et al. [48]. They present

a multi-step approach where cells are segmented, followed by aggregating

high-dimensional profiles per cell. These are then used to identify cell types

using dimensionality reduction and the resulting classification is the basis for

exploration of local neighborhoods of cells.

For this use case, we consider a tissue sample from a mammalian lung provided

by collaborating researchers. The image measures 272 × 374 pixels, each pixel

represents a 1 µm area, and we consider ten attribute channels, corresponding

to ten different proteins describing immune cells and structural properties.

Figure 4.6 shows an RGB re-coloring of the sample, mapping red, green, and

blue channels to one of three structural proteins each, to give an impression of

the tissue layout.

Figure 4.6b shows a standard t-SNE embedding and re-colored following the

same re-coloring scheme as in Figure 4.4. Figs. 4.6c and 4.6d show texture-aware

embeddings based on the covariance matrix feature and Bhattacharyya distance.

We used two different neighborhood sizes, 3 × 3 in Figure 4.6c and 7 × 7 in

Figure 4.6d to show structures on different scales in the image. For both, we

make use of a Gaussian spatial weighting. All embeddings were computed with

a perplexity of 30 and 5, 000 gradient descent iterations to ensure convergence.

Our collaborators are interested in the composition of cell structures called

granuloma, indicated in Figure 4.6, and their surrounding cells. A granuloma

is an agglomeration of immune cells, typically to isolate irritants or foreign

objects. Current analysis pipelines separate the analysis of the high-dimensional

attribute data and spatial layout of the cell data [48]. Our collaborators stated

that it would be useful to combine these two steps for early data exploration.

In the re-colored image in Figure 4.6b we can see that the granuloma as a

whole is already differentiated from the rest of the image, indicated by a bright

orange area with mint green, purple, and blue inclusions. The bright orange

indicates a combination of proteins, characteristic for a specific set of immune

cells (macrophages) which are expected in the center of the granuloma. It

is known that the area around a granuloma is made up of layers consisting

of said macrophages and different combinations of other immune cells. The

structure of these cell layers and interaction of cells within and between adjacent

layers is subject of current research. Hints of this changing composition can be

seen in Figure 4.6b where the center largely consists of mint-green inclusions

which slowly change to purple and blue inclusions towards the outside. A first

hypothesis when analysing the given tissue was that these layers are similar all

around the granuloma.

Comparing the small-scale texture-aware embedding and re-colored image in

Figure 4.6c, we get a similar impression with a bright-purple colored area with

4.7. Conclusion 27

some inclusions defining the granuloma. Note, that the colors are not directly

comparable due to the heuristic nature of t-SNE and the different structures of

the embeddings. However, we already see some hints at larger scale structure.

The central area of the granuloma (consisting of many blue (mint in Figure 4.6b)

inclusions) and the outer layers are now separately colored in a deep pink and

orange, respectively, indicating separation in the embedding. Individual cells

can still roughly be identified, for example the blue and purple patches within

and around the structure.

Finally, using a larger neighborhood as in Figure 4.6d clearly creates areas of

similar color, corresponding to higher-level structures. This is expected as the

neighbourhood is enlarged. Here, no individual cells are recognizable anymore.

The granuloma as a whole is clearly recognizable by a pink to orange area,

but in addition a clear layering structure is visible. The granuloma center is a

relatively homogeneous dark pink area. Around the granuloma, we can see the

layering of structures in different shades of orange to a greenish tone on the

far outside, following the colormap applied to the embedding from bottom to

top on the left side (arrow Figure 4.6d). Upon inspection of this texture-aware

embedding our collaborators were very interested in these layers surrounding

the granuloma center and how clearly they were identifiable in Figure 4.6d,

hereby eliminating the need for a multi-step approach which was typical for

their work flow. They also noted that the layer structure was more varied than

they expected which they intend to study further and verify that this is indeed

consistent across biological replicates.

4.7. Conclusion
In this chapter, we have presented a framework of texture-aware dimensionality

reduction for visual exploration of high-dimensional images and illustrated its

potential through examples based on t-SNE and three different texture-aware

distance metrics. The generated embeddings combine attribute similarity with

spatial context, and, thereby, support the exploration of high-dimensional

images. Our method adapts the point similarity calculation of distance-based

dimensionality reduction methods by taking the spatial nature of images into

account. We presented two classes of approaches for comparing spatial pixel

neighborhoods and extended them to high-dimensional images: Feature-based

methods (FBM), extracting and comparing features of neighborhoods, and

area-based methods (ABM), applying distance measures between the sets of

attributes within the neighborhoods directly. We have shown strengths and

weaknesses of the different approaches, illustrated them in a synthetic example

and presented their applicability via two use cases.

The presented method opens several avenues for future work. We focused on

images, i.e., structured, rectangular grids. Extensions to unstructured grids,

common in geographic information systems, or graphs are thinkable. While we

show several examples of different neighborhood sizes, we did not investigate

this parameter in-depth. Using varying neighborhood sizes might reveal spatial

structures that are only present at a specific scale. Another interesting avenue

might be to investigate the potential of other feature extraction methods,

like Markov random field texture models or neural network approaches to

capture domain-specific texture characteristics when training data is available.

Additionally, visualizing the extracted features alongside the embeddings is an

interesting idea in itself.

We have shown that texture-aware dimensionality reduction methods can

provide insights into high-dimensional images that cannot be captured with

standard dimensionality reduction methods alone. Yet, algorithmic enhance-

ments alone cannot fully support the demands of high-dimensional image

exploration. In the next chapter, we will discuss how image interactions like

zooming and panning can steer with level-of-detail changes in hierarchical

embeddings.

28 4. Spatial Information in Dimensionality Reduction for High-Dimensional Images

Coupled Exploration of
High-Dimensional Images and

Hierarchical Embeddings 5.
This chapter is based on the pa-

per “Interactions for Seamlessly

Coupled Exploration of High-

Dimensional Images and Hierar-

chical Embeddings” published at

the 28th Symposium on Vision,

Modeling, and Visualization (VMV

2023) [109].

5.1 Introduction 29
5.2 Related Work 30
5.3 Tasks and Require-

ments 31
5.4 Coupling Image Nav-

igation and Embed-
ding Space 32

5.5 Exemplary Use Case:
Hyperspectral Image
Exploration 36

5.6 Limitations 37
5.7 Conclusion 38

In the previous chapter we explored an algorithmic modification to inform DR

techniques about image information. In this chapter we shift our focus to inter-

action mechanism with high-dimensional images and hierarchical embedding

representations.

5.1. Introduction

A common exploration setup of high-dimensional images consists of multiple

coordinated views showing an image representation and a low-dimensional

embedding of the attribute data side-by-side. The image space is explored

mainly by navigation, i.e., panning and zooming interactions to focus on a

region of interest (ROI), since large images typically exhibit a higher resolution

than a screen is able to display physically. Therefore, navigation in image

space is commonly supported with image pyramids: Each attribute channel is

repeatedly downsampled to yield smaller images at multiple scales of detail.

Exploration starts at a lower resolution, matching the viewport pixels closely,

from where a user can then zoom into ROIs, which will automatically move

down the pyramid into higher level-of-detail views.

Whereas scalar or three-dimensional data can be easily mapped to colors, high-

dimensional attribute data cannot be directly shown in screen space without a

mapping from the high-dimensional to a color space. This mapping is often

achieved through a selection of attributes, clustering, or coloring of 2D/3D-

projections of the attribute data. Typically, the attribute space exploration of

high-dimensional images still cannot be performed well in image space alone

but is augmented with views on the attribute data. Attribute vectors are often

embedded with DR techniques like UMAP [28] or t-SNE [110] and subsequently

explored in the resulting low-dimensional embedding spaces, e.g., in single-cell

analysis with cyclic immunofluorescence (CyCIF) images [47], hyperspectral

images of artworks [111], or remote sensing [112]. While image sizes in the

order of a million pixels are common, data set sizes of over 100,000 points

are considered very large for DR techniques like t-SNE [113]: the resulting

embeddings usually cannot capture all desired detail and come with increased

computational cost.

Hierarchical DR techniques, such as HiPP [51], HSNE [52] or HUMAP [53], have

been developed to tackle issues that emerge from large amounts of data points.

They decrease the embedding size by using landmarks to create a hierarchical

data structure, in which each level represents the original data set at a different

level of abstraction. Hierarchical DR techniques follow the “overview first, zoom,
filter, details-on-demand” approach [114] for interactive data exploration. They

start out presenting the user an overview embedding, which shows dominant

data structures. From there, the user can request more refined embeddings

by selecting clusters, which will show a subset of the data at a more detailed

hierarchy level. This refinement interaction can be seen as analogous to zooming

in image space, based on an image-pyramid, to achieve higher levels of detail.

Existing (hierarchical) DR methods largely target abstract high-dimensional data

and thus lack interactions specific to exploration of high-dimensional images.

Most importantly, there is no coupling between user interactions in image space

and embedding space. E.g., zooming into a part of the image, i.e., requesting

more detail for this part of the data, has no effect on the level-of-detail of the

embedding view. This requires a set of interactions (i.e., selection and zoom)

in the embedding space to achieve the desired detail. Ideally, navigation in

image space comes with a desired adaptation of the view of the hierarchical

embedding space. Figure 5.1 shows an abstract example of such coupled image

30 5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

Figure 5.1. Coupling concept: (a)
Image interactions with a high-
dimensional image showing mostly
man-made object (top) and nature (bot-
tom) specifically zooming (I) and pan-
ning (II) to focus on mode detailed views.
(b) Coupled view of a hierarchical em-
bedding corresponding to the overview
(O), zoom (I) and pan (II) image views.
Interacting with the image view trig-
gers a corresponding change of detail
level in the embedding, from hierarchy
level 2 to 1.

Zoom

High-dimensional
attribut vector
per pixel

Top level of
hierarchical
embedding

Pan

Coupled Embedding View

Man-made

Man-made

Nature

Fields

Forrest

Nature

Houses

Streets

Image View

(b)(a)

O

III

O

III

2

1 1

I

II

and embedding views: Zooming into an image region Figure 5.1a triggers an

update of the embedding view Figure 5.1b, which is set to display a higher detail

embedding level, e.g., the roads that were not visible previously. A coupling

between the image scale space and hierarchical embedding space interactions

would thus enable a fully image-aware high-dimensional data exploration and

analysis.

The main contribution of this chapter is an interaction paradigm that couples

interactions in image space to hierarchical-embedding actions, including

▶ a mapping from image navigation interactions to embedding space actions,

▶ an optimization strategy for level-of-detail adjustment based on ROIs in

image space, and

▶ its implementation as an extension of HSNE, and an evaluation on a repre-

sentative data set.

5.2. Related Work
In the following, we aim to report the work most relevant to this chapter,Relevant work on visual anal-

ysis and exploration of high-

dimensional data is discussed in

Chapter 3.

namely, interaction paradigms for the exploration of and interaction with

high-dimensional images.

To adequately explore high-dimensional images, both the high-dimensional

attribute space and the image layout have to be taken into account. Ellsworth

et al. [115] discuss a holistic approach of showing multiple channels side by

side using a wall of monitors. Toolboxes like PySpacell [116] provide various

spatial statistics functions to analysis pre-segmented high-dimensional images.

SquidPy [117] is a framework that brings together high-dimensional image

viewers and image analysis tools.

State-of-the-art high-dimensional image analysis toolkits stress the importance

of region-of-interest based exploration of large images. Scope2Screen [118] is a

Focus+Context oriented application, which provides lens views on ROIs and lets

the user define false RGB recolorings of the viewport, based on manually selected

attribute channels. They mention the need for DR techniques and suitable visual

representations of found features in image space in order to couple image

and feature space more closely. Others, like histoCAT [119], ImaCytE [48], or

Facetto [47] offer multiple coordinated views to analyze high-dimensional image

data, including image viewers, parallel coordinate plots, and DR plots. Our

interaction coupling between hierarchical embedding and high-dimensional

image data allows for embedding the entire image data and recoloring of image

ROIs based on the entire high-dimensional attribute space.

Interacting is essential for the exploration of dimensionality-reduced data. There

exist various classification approaches, e.g., Liu et al. [36] who divide these

interactions into computation-centric, exploratory, and model manipulating.

Sacha et al. [120] described common user interactions with DR methods more

5.3. Tasks and Requirements 31

thoroughly. Past discussions of interactions with visualization techniques for

high-dimensional data by Yang et al. [121] and Sifer et al. [122] focused on

parallel coordinates and table-based approaches. Recently, Höllt et al. [104]

proposed Focus+Context-based interaction techniques specifically for the ex-

ploration of hierarchical embeddings. Marcílio-Jr. et al. [123] similarly specified

an interaction technique for single-level embeddings. These prior works, how-

ever, focus on interactions solely with embeddings. In this chapter, we discuss

how a hierarchical embedding should react to user interaction with an image

representation of the data.

Elmqvist and Fekete [124] propose a generalized model for interactions with

visualizations of hierarchically aggregated data. Their model, though, assumes

a single view of the data, whereas we tackle the problem of interacting with

two separate views: a spatial data layout (image view) and an embedding

hierarchy (embedding view), coupled to the image view. We aim to specify

suitable interactions with the image view and corresponding actions of the

embedding view.

5.3. Tasks and Requirements

The main purpose of coupling image-space interactions to embedding-space

actions is to enable a user to navigate in image space (T1), while simultaneously

exploring the attribute space of the currently visible image region (T2). Two-

dimensional embeddings are a useful modality for exploring similarities in the

attribute space. Albeit not a direct interaction with the image space, the user

should still be able to coarsen and refine the level of detail in the embedding

directly (T3), as it is already possible in traditional approaches.

In summary, the user should be able to

T1 navigate (zoom or pan) in image space,

T2 explore the attribute space of an image ROI, and

T3 request more or less detail for a ROI in attribute space.

A typical image exploration starts with the entire image in view (overview),

followed by zoom and pan operations to different ROIs for detail inspection.

The embedding space exploration should mirror this “overview first, details-
on-demand” characteristic of the image navigation (R1) with the intention of

providing analogous reactions in the attribute-space depiction to a single image-

space interaction. This entails that, as the user focuses on a spatial region of

interest, the embedding should be limited to a set of points which represents

the ROI (R2, R4). This contrasts other conceivable approaches that might follow

Focus+Context paradigms and would represent image areas outside a ROI as

well. Instead, R1 ensures a maximal appropriate detail level for a given ROI

and reduces computational costs by restricting both view and computation to a

subset of all data point. Additionally, to minimize cognitive load on the user,

the embedding should preserve coherence between updates when changing

ROIs (R3). In order to allow for an interactive data exploring, the embedding

has to update fast, that is, any additional computational effort on top of the

embedding procedure should be minimal (R4). Further, to enable linking

of image and attribute spaces, e.g., through highlighting of representative

embedding points and their represented pixels, a data mapping between

arbitrary selections in either space has to be supported (R5).

Thus, to successfully accomplish the user tasks, the image-to-embedding cou-

pling should:

R1 follow the “overview first, details-on-demand” approach,

R2 represent the ROI,

R3 provide stable transitions between embeddings,

R4 update at interactive exploration speeds, and

R5 link selections between image and embedding space.

32 5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

0

1

2 O

III

III

Embedding
landmarks

Coupled Embedding View

Man-made

Man-made

Nature

Trees A & B

Crops A & B

Nature

Houses

Streets

Nature

Houses

Streets

No
consistency

Image View

Layout
consistence

Standard HSNE Landmarks in Hierarchy

0

I O

II

III
[]

Visible landmarks in viewport
(b) (d)(c)(a)

0

1

2

drill-down

visible

()
Refinement in Standard HSNE

O

II

I I

III

2 1

0

1

1Zoom

O

IIIPan

Zoom

II

I
I

II

III

Fields

Forrest

Figure 5.2. Interaction overview: Image interactions and embedding hierarchy reactions: (a) exemplary image space depicting a region of mostly man-made
object (top) and mostly nature (bottom) with three viewports (I zoom from overview, II pan, III pan and zoom). (b) depicts the embeddings as shown after each
interaction. The data points that are currently in the viewport and landmarks that are shown in the corresponding embedding views are shown in (d). In contrast to
standard HSNE interactions, where a refinement of the landmarks that represent ROI I, marked with blue , leads to inconsistent cluster placement, our method
keeps a consistent layout, (b, I) and (c, top). The scattered placement of those top-level landmarks renders manual selection practically impossible. Changing the level
of detail for a given ROI (e.g., drilling down) can lead to embeddings containing invisible landmarks as seen in (c, bottom).

5.4. Coupling Image Navigation and Embedding Space
An intuitive way of coupling image-space navigation and high-dimensional

attribute-space exploration is to create a new embedding for each new ROI

in image space. However, this approach does not fulfill all our embedding-

view requirements and user tasks. First and foremost, neighborhood-based DR

techniques would have to recompute neighborhood graphs over and over, which

severely limits interactivity, thus breaking R4. Gigapixel or larger images are

not uncommon and already the first top-level embedding, which encompasses

all data points, can be infeasible to compute in reasonable time. With such

large images, even ROIs that cover only a small part of the image space can

contain hundreds of thousands or even millions of data points. Further, the large

number of points leads to indistinguishable similarity structures within clusters,

which might obscure interesting data characteristics. Finally, this approach only

enables a single level of detail per ROI since it is not possible to refine or coarsen

a standard embedding, thus breaking T3.

Hierarchical DR techniques overcome these issues. They are better suited for

embedding large data sets and do not require neighborhood re-computations

for data subsets (R4). Their hierarchical structure also allows a user to coarsen

or refine the level of detail shown for the attributes of an image ROI (T3). An

additional benefit to exploring image patches using hierarchical embeddings is

that the resulting data representations are informed by the entire data manifold

and not just a subset of the data.

5.4.1. Interactions: Zoom and Pan, Drill-Down and Roll-Up
Large images are most commonly navigated by zooming and panning operations.

These operations change the size (zooming) and position (panning) of a viewport

over the image and determine the ROI shown to the user. We generally follow

the mathematical notations for hierarchical embeddings and interactions with

hierarchical data structures as used in the literature [104], and fully laid out

in Supplemental Material SB1. This notation does not support the concept of

linking two spaces, which motivates the introduction of two new symbols: We

denote the set of all data points within an image viewport as D𝐼 and the set of

all corresponding landmarks shown in the embedding view used to represent

this viewport as D𝐸 .

Zooming and panning focus exclusively on the spatial data layout. Both oper-

ations modify D𝐼 by adding visible or removing invisible data points. In our

coupled image and embedding setting, we want zooming and panning in the

image view to update the embedding (T1, T2). Thus, we need a mapping of the

image interactions to possible actions in the embedding. Whenever D𝐼 changes,

we have to recompute D𝐸 so that every landmark 𝐿𝑘
𝑗
∈ D𝐸 on embedding

5.4. Coupling Image Navigation and Embedding Space 33

hierarchy level 𝑘 represents at least one data point 𝐿0

𝑖
∈ D𝐼 and all data points

in D𝐼 are represented by a landmark in D𝐸 (R2). Given a single level of detail

in the image viewport we define all landmarks in the embedding to be from

a single hierarchy level as well. The selection of the hierarchy level will be

discussed in Section 5.4.2.

Figure 5.2a showcases zoom and pan actions in an abstracted high-dimensional

image and indicates which set of data landmarks L0
are currently in D𝐼

(Figure 5.2d). Each viewport change triggers an update of D𝐸 (Figure 5.2b).

The updated embeddings aim to be consistent with their predecessors, i.e.,

clusters that represent similar data points remain in nearby embedding positions.

Standard hierarchical embedding refinement do not feature such coherence

(Figure 5.2c).

Starting an exploration, the viewport encompasses the entire image and thereby

all L0
landmarks. The corresponding top-level embedding contains all top-level

landmarks. Zooming-in only ever removes elements from D𝐼 and, in line with

this, the updated embedding will either only contain a subset of the previous

landmarks from the same abstraction level or landmarks from a finer abstraction

level that are represented by the previous landmarks. Panning and zooming-out,

however, may add previously unseen data points into the viewport and thereby

might require the inclusion of previously unrepresented landmarks into the

embedding. The pan, labeled II in Figure 5.2a, shows such an update of D𝐸 .

The set of data points in the viewport D𝐼 corresponds to a selection K0
of

landmarks from the data level: K0 = D𝐼 ⊆ L0
. To find a set of landmarks D𝐸 on

a level 𝑘 that represents K0
, we need a general mapping of landmark selections

between levels from K𝑘
to K𝑘+1

.

5.4.2. Landmark Mapping
The importance of landmark mapping is twofold: defining which embedding

landmarks {𝐿𝑘
𝑗
} ∈ D𝐸 best represent D𝐼 (R2), as well as linking selections

between image and embedding views (R5).

Standard approaches use top-down mappings since users define selections in

embedding space: starting at the top-level, refinement actions should represent

all landmarks contained in the selection; but in our image-driven scenario this

yields many landmarks outside the image ROI, see Figure 5.2c (bottom). We use

a bottom-up mapping approach to map K0
to K𝑘

:= D𝐸 , which represent the

image ROI (R2). For rolling-up one level we define a set K𝑘+1
that represents a

set K𝑘
as the union of all parents of the landmarks in K𝑘

. To avoid traversing

the hierarchy when rolling-up several levels, we can cache the representative

landmark on each level for every data point when computing the embedding

hierarchy in the first place. We use the same approach when drilling-down

into the hierarchy, based on a given viewport D𝐼 . Instead of computing all

children K𝑘−1
that are represented by K𝑘

we use the bottom-up mapping to

find the minimal set K′𝑘−1 ⊆K𝑘−1
, that contains only the landmarks needed to

represent D𝐼 . This means any set K𝑘
, representative for the data points K0

in

the viewport, can immediately be computed as the union of the representative

landmarks on level 𝑘.
For linking selections between a subset of the image viewport to the embedding

we follow the same bottom-up approach, the only difference being that instead

of rolling-up the entire viewport we start with the selected subset K0 ⊆ D𝐼 .

Vice versa, for linking selections from the embedding to the image, we traverse

the hierarchy downwards for all selected embedding landmarks K𝑘 ⊆ D𝐸 to

find the corresponding data point selection K0 ⊆ L0
.

At this point, we need to define how to couple the zoom factor in the image,

i.e., the ROI’s fraction of the full image space, to the selection of the hierarchy

level 𝑘 in the embedding, according to the underlying goals and requirements.

We define such a heuristic with the aim to keep the number of landmarks in

the embedding space within a pre-defined budget, similar to the visual entity

34 5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

0

1

2

Viewport

Our
Mapping

(a)

Top-level
embdding

Mapping
HSNE

0

1

2

(b)

0

1

2

(d)

Same
landmark

0

1

2

(c)
Pan

Figure 5.3. Mapping comparisons:. (a) shows the D𝐸 in resulting from our mapping. (b) depicts the HSNE landmarks in resulting from the top-down
approach. Colors indicates data level indices. (d) shows how a pan action updates landmarks in the coupled bottom-up approach whereas the top-down approach
might not display any change at all and (c) depicts HSNE’s bottom-up, landmarks-in-viewport-only mapping.

budget introduced by Elmqvist et al. [124]. Different from their approach, we

propose to find the level with the number of landmarks closest to a target

number v𝑡 , instead of applying a hard maximum to accommodate hierarchies

with large differences in the number of data points between neighboring levels.

In our framework, the budget is user defined. According to our requirements,

the budget should be chosen small enough to allow for interactive computation

of the embedding (R4) but could, e.g., also be defined as to not overload the

visual capacity of the linked embedding view. Given a budget v𝑡 , we determine

the hierarchy level 𝑘 by calculating the set K𝑘
that represents K0

for all hierarchy

levels. We pick the level 𝑘 for which |K𝑘 | is closest to v𝑡 .
We also enable refining or coarsening the level of detail of the representative

landmarks K𝑘
in the embedding view for a given viewport selection D𝐼

(T3). Knowing the current hierarchy level 𝑘 and D𝐼 , we can immediately

compute K𝑘−1
or K𝑘+1

with our bottom-up mapping. In contrast, simply

rolling-up or drilling-down the current landmarks in the embedding hierarchy

view without considering the viewport does not yield a satisfying result.

As exemplified by Figure 5.2c (bottom), e.g., requesting more detail for an

embedding by drilling-down all landmarks can yield landmarks outside the

viewport (breaking R2).

5.4.3. Implementation using HSNE
Our landmark and interaction mapping is suitable for any tree-based hierarchical

embedding method. As proof of concept, we implement our interactions with

HSNE [52] in the visual analytics framework ManiVault [125]. To do so, we hadCode available on GitHub in the

repository ManiVaultStudio/Im-

ageEmbeddingCoupling

to adjust HSNE in some aspects. Most importantly, HSNE defines representation

between levels probabilistically. HSNE defines an area of influence 𝐼
𝐿𝑘+1

𝑗
(𝐿𝑘
𝑖
) that

indicates the probability that a landmark 𝐿𝑘−1

𝑗
∈ L𝑘−1

is well represented by

𝐿𝑘
𝑖
∈ L𝑘

. The resulting data structure is not a proper tree since each landmark

in L𝑘
can be represented by multiple landmarks in L𝑘+1

. In order to convert this

structure into a tree, we compute for every data point the landmark in each scale

with the maximum influence exercised on the respective data point. Notably,

HSNE landmarks are not aggregates but each landmark 𝐿𝑘
𝑖

corresponds directly

to an actual data point 𝐿0

𝑗
.

In contrast to our method, regular HSNE employs a top-down mapping for

selection linking. It only applies this mapping from embedding to the data

level (image) and does not use a reverse mapping from image to embedding

view. Particularly, when linking from a lower to a higher hierarchy level,

selections are linked based on the landmarks that are contained in both levels

only, but not their parents. That means, rolling-up some K0
in the image

will result in K𝑘 =
{
𝐿𝑘
𝑖
| 𝐿𝑘

𝑖
∈K0

and 𝐿𝑘
𝑖
∈ L𝑘

}
. Figure 5.3 shows a simplified

HSNE hierarchy with three levels, where each landmark is connected to its

most representative landmark in the next abstract level. Figure 5.3a indicates

embedding landmarks resulting from our mapping for the three data points in

https://github.com/ManiVaultStudio/ImageEmbeddingCoupling
https://github.com/ManiVaultStudio/ImageEmbeddingCoupling

5.4. Coupling Image Navigation and Embedding Space 35

Regular HSNE

Embedding-
based

recoloring

Landmark
initialization

mostly
interpolated

Layout
consistency

No
consistency

mostly
previous

mostly
random

Level 2 Level 3Level 2

Level 2 Level 2Level 4

I

I

III

III

II

II

I II(f)(e) (g)

(b)(a) (c) (d)

Figure 5.4. Indian Pines: (a) Recolored image based on top-level embedding as shown in (e), with three ROI viewports as obtained after a zoom (I) and pan (II,
III). The top row (b, c, d) shows corresponding coupled embeddings as well as the current re-colored viewports. When changing the viewport to a region which
is represented by a similar set of landmarks, e.g., spatially neighboring regions, to embedding layout stays consistent. The initialization mode of each landmark
is indicated in a second scatterplot as based on previous , interpolated , and random positions. Standard HSNE refinements of landmark sets that are
representative of a current viewport, in (f) and (g), do not enable consistent embedding exploration and contain more landmarks for the same level of detail.

view. In contrast, as regular HSNE is top-down-oriented, it coarsens all top-level

landmarks (or those representing the viewport), resulting in an embedding that

contains all level 1 landmarks, of which some do not represent the viewport at

all (Figure 5.3b). Using a visual budget target of 2, HSNE would also not refine

the top-level at all in this example. Selecting the data points and in the

image viewport (Figure 5.3d), would only highlight in L1
and none in L2

,

since neither point is a landmark in that level.

In the standard HSNE exploration this mapping is sensible. Typically, in-

teractions with an HSNE embedding, like refining a selection, build on the

assumption that the selection is continuous in the embedding space [104]. The

likelihood that K0 ∩ L𝑘
contains all relevant landmarks is thus high. But

when interacting with the image space, that is, selecting a spatially connected

region in the image, the linked embedding landmarks usually do not corre-

spond to similarly confined regions in the hierarchy or the embedding layout.

Rather, representative landmarks will be scattered throughout the embedding,

since neighboring image pixels might depict data points with vastly dissimilar

attribute vectors (Figs. 5.2b and 5.2c).

5.4.4. Initialization of Embedding Updates
When drilling-down or rolling-up in a hierarchical embedding a new em-

bedding needs to be created. Initialization is a crucial step when calculating

neighborhood-based embeddings. In the default implementations of HSNE

these new embeddings are initialized randomly. In order to preserve the analysis

coherence, we want to re-use landmark positions from the current embedding

for the initialization of the updated embedding (R3). Similar to [104], we ini-

tialize all landmarks in D𝐸 that were preserved during drill-down or roll-up

with their previous positions from before the interaction Landmarks that were

added during a drill-down are initialized with the position of their respective

parents. When moving horizontally in the hierarchy, newly added landmarks

are initialized based on their neighborhood in the hierarchy. Therefore, we query

the existing neighborhood graph of the scale and interpolate the position using

the three closest neighbors that were present in the corresponding embedding

36 5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

before the interaction. In cases, where D𝐸 changes strongly, it might not always

be possible to find a neighbor for a given added landmark. In this case, the new

landmark is initialized at a random position.

As a result, upon panning to a region that remains similar with respect to the

attributes of the shown data points, the embedding is not expected to change

strongly; our initialization ensures that there is consistency between embedding

updates (R3). Nevertheless, when panning to a region containing points with

rather different attribute vectors, there will be little overlap between the previous

Current D𝐸 and the embedding will essentially be initialized randomly.

Initializing t-SNE embeddings (or derivatives that follow the same optimization

procedure) with small values is important for their convergence [113]. During

the optimization process, the embedding’s extends grow due to the repulsing

forces that are responsible for creating space between dissimilar points. To

re-enable proper convergence behaviour, we utilize the embedding extents

at a given moment of the first optimization and re-scale all points into this

frame (shrink the embedding) during re-initialization of the embedding for

each update.

5.5. Exemplary Use Case: Hyperspectral Image
Exploration

Here, we show the application of our approach to a representative hyperspectral

data set. We indicate the performance in comparison to exploration of the same

data using standard HSNE and focus on embedding transitions and visual

stability.

The Indian Pines Test Site 3 [10] data sets contain a 614 × 2, 678 ≈ 1.6M pixel

large image with 200 dimensions attached to each pixel that depict the light

spectrum reflected by the objects in view, specifically fields (e.g., corn and

soy), forests, roads, rivers and houses (more information on the data set in

Supplemental Material SB3). A typical workflow during the exploration of

such data using DR techniques starts with an overview of the image layout and

attribute data, in our scenario given by the top-level HSNE embedding.

In the following, we use image re-colorings to indicate embedding structure —

we map the 2D embedding positions to color using a 2D colormap by Bernard et

al. [126], as shown in previous work [69]. This color-coding allows connecting the

embedding and image space while minimizing imposing additional structure

that comes with choosing a specific clustering algorithm. We computed a 5-level

HSNE hierarchy by picking the 25% most important landmarks (with respect to

their area of influence) at every level to go to the next abstraction level [104],

leading to a top-level embedding with 4,205 landmarks (Figs. 5.4a and 5.4e).

This embedding is laid out over 2000 iterations. For better reproducibility and to

improve global structure we initialize the top-level embedding with the first two

PCA components of the top-level landmark attribute data [113]. Each following

embedding is laid out over 500 iterations with otherwise default parameters as

introduced by Pezzotti et al. [52]. Fewer iterations are sufficient due to the initial

embedding structure given by our re-initialization scheme; additional iterations

can be run on demand. The visual budget target is set to 10,000 landmarks

to provide an appropriate balance between detail and performance, aiming

for total update times of less than one second between changing the viewport

and finished embedding. The embedding view is constantly updated during

the gradient descent iterations starting about 300 ms after the user interaction,

providing visual feedback and thus visual coherence. For detailed timings,

we refer to Supplemental Material SB2. The highlighted ROIs mostly depict

three spectrally distinct top-level clusters (Figure B.3) with blue and violet hues

corresponding to woods, and reddish and yellow-green hues corresponding to

different types of fields.

Starting with the top-level embedding and image in full view, we will first

focus on an area in the lower part of the image (T1) which is predominantly

5.6. Limitations 37

covered by pixels from two regions in the top-level embedding, woods and

various fields (T2). We zoom-in to ROI I to focus on a subset of 57,424 pixels

(Figure 5.4b). Driven by the image-space zoom, we automatically drill down

the HSNE hierarchy in a single interaction step to level 2 with a representative

landmark count of 9,738, closest to our visual budget target of 10,000 (R1, R2).

The entire embedding update took a little under a second of which our hierarchy

traversal only contributed 50 ms (R4). Compared to the overview recoloring

Figure 5.4b, we see that the recolored patch in the new embedding shows a

more detailed structure, within the forest areas and also between (sub)types of

fields, due to the more detailed hierarchy level. Notably, since we initialize most

of the landmarks in the updated embedding, based on the previous landmark

positions (indicated in Figure 5.4b lower right), their general global positions

and thus corresponding colors are preserved (R3). E.g., the forest region is

still represented by landmarks in blue and violet hues, preserving a user’s

mental frame. In contrast, following standard HSNE interactions we start with

a selection of top-level landmarks that are representative for the ROI (obtained

using our bottom-up mapping, since standard HSNE does not provide such

correspondence) and drill-down twice to obtain the same level of detail. The

resulting embedding contains 50,116 landmarks — almost as many as pixel

in the viewport. This embedding represents larger image regions outside the

current ROI than our embedding and fails at preserving coherent landmark

positions between embedding updates. Our approach requires fewer interaction

to yield a more detailed and ROI-specific embedding.

As a next exploration step, we are interested if the observed patterns can also

be found in close vicinity of the current ROI. In Figure 5.4c we show the result

of a pan to the partially overlapping ROI II . Using our coupled interaction, we

stay on the same abstraction level 2, now with 9,533 representative landmarks.

Since the data points covered by the current ROI overlap substantially with

the previous one, many representative landmarks remain the same during

the embedding update. Landmark clusters that are representing the same

image regions also remain in similar embedding regions, preserving coherence

between the updates. In contrast, standard HSNE interactions would require

drill-down recomputations, leading to inconsistencies between embedding

updates (Figure 5.4g).

To see how the method behaves when moving to an unrelated region, we pan
to ROI III (Figure 5.4d). The pan triggers with a roll-up in the embedding

hierarchy to level 3 with 3,979 representative landmarks (level 2 had 16,404

landmarks for this viewport). Covering a very different set of data points, the

new ROI is represented by many landmarks that have not been in the previous

embedding, as visible by the abundance of randomly initialized landmarks.

Since the number of representative landmarks in level 2 and 3 are almost

equally distant to the visual target, a user might decide to request more detail

by manually drilling down the entire ROI (T3). Figure 5 in Supplement S2

shows the result of this operation. We can observe that the refined level-3

embedding follows the layout of the level-2 embedding, indicating that the

level 3 embedding was already capturing most of the variation.

5.6. Limitations
Our method currently restricts all embedding landmarks D𝐸 to be from the

same hierarchy level 𝑘. For scenarios in which a ROI contains regions of varying

homogeneity, an embedding view that reflects this with multiple levels of detail

could be helpful. To address this, and further following the terminology of

Elmqvist [124], our set of image interactions might be extended with a new

local-aggregation interaction. For this Focus+Context inspired action the user

would define a focus selection K0

𝑓
⊂K0

, a subset of the current viewport. We

would then need to find sets of focus F= K𝑘−1

𝑓
and context landmarks C = K𝑘

such that the embedding D𝐸 = C∪Frepresents the current ROI well. However,

38 5. Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings

even though Höllt et al. [104] already proposed such a Focus+Context framework

for hierarchical embeddings, it is not straightforward to extend to our setting.

Contiguous selections in the embedding space ensure that the represented data

points on lower levels are well-connected. As discussed in Section 5.4.3, these

selections can be assumed when interacting with the embedding rather than the

image. Selections of spatially connected regions in image space typically do not

correspond to similarly confined regions in the embedding hierarchy since data

points with vastly different neighbours might be spatially close. Rather, linked

landmarks might be scattered throughout the embedding. Landmarks with few

HSNE transition matrix connections experience lower attracting forces during

the embedding optimization and are pushed to the periphery by dominating

repulsive forces.

Further, our re-initialization scheme in Section 5.4.4 does not guarantee con-

sistency between embeddings when moving back and forth between two ROI

without any overlap in their corresponding D𝐸 . We consider approaching these

limitations future work.

5.7. Conclusion
In this chapter we have presented an interaction strategy for the coupled

exploration of high-dimensional images with hierarchical embeddings. Our

method couples image navigation interactions (zooming and panning) with

an embedding space that represents the attribute data. We showed how an

“overview-first, details-on-demand” approach is well-suited for driving embedding

detail based on user interactions with the image space.

Future lines of research may focus on extending the embedding view from a

single to multiple levels of detail by showing landmarks from several hierarchy

levels Another possible direction would be exploring ways of providing a user

with guidance on where to zoom and pan to.

We showed the potential benefits of coupling image navigation with simulta-

neously updating embeddings for exploration analysis workflows. However,

so far the construction of the embedding hierarchy has been agnostic of the

image itself. In the next chapter we will explore superpixels as a way of includ-

ing information about the image layout into data hierarchies for hierarchical

embeddings.

Manifold-Preserving
Superpixel Hierarchies 6.

This chapter is based on the pa-

per “Manifold-Preserving Super-

pixel Hierarchies for Exploration of

High-Dimensional Images” [under

review].

6.1 Introduction 39
6.2 Related Work 40
6.3 Superpixel Hierarchy 42
6.4 Preliminary Consider-

ations 42
6.5 Method 43
6.6 Validation 47
6.7 Discussion 52
6.8 Conclusion 53

In the previous chapters, we discussed the coupling image interactions and of

hierarchical DR and incorporated spatial arrangement of image data into DR

techniques. In this chapter we further examine how hierarchical data structures

may support the exploration of high-dimension images. Specifically, we build

on an image hierarchy compatible with existing DR techniques that maintains

fidelity to both the spatial layout of the images and the high-dimensional

attribute space.

6.1. Introduction
Hierarchical DR techniques [51–53] tackle the scaling problem of single-level

embedding methods. They reduce the number of embedded points by creating

hierarchical data structures. Upper levels in these hierarchies represent the

original data at increased rates of abstractions. Now, instead of projecting the

original data, hierarchical DR techniques embed (subsets of) the abstracted

points on a given hierarchy level. With each added abstraction level the DR tech-

niques embed fewer points, thus reducing scaling issues. However, abstracted

points often represent a wide spread of pixels, i.e., they do not necessarily

correspond to connected spatial regions. Figure 6.1 illustrates this shortcoming

of data-space-based hierarchical DR techniques applied to images: Without a

structural link between data hierarchy and image, exploring ROI in the image

space using the embedding becomes complicated. Points in the embedding

correspond to widely spread pixels and pixels might be represented by several

embedding points at the same time.

Previous approaches tackle the lacking awareness of spatial arrangement in

embeddings of images by incorporating spatial neighborhood information into

the similarity measure which is used for DR, see chapter 5. Even so, if one were

to use a spatially-informed distance measure in a standard hierarchical DR

techniques, the problem of non-spatially-continuous abstractions would remain.

Other approaches link the image and data space exploration by coupling the

level of detail (LoD) in a hierarchical embedding based on the LoD presented in

image space, guided by zooming and panning [109]. Still, each image-coupled

LoD embedding tends to represent large regions outside the ROI. To fully enable

a coupled exploration of image and attribute space, we need a hierarchical data

representation that couples these spaces both in its creation and respects their

link during interaction.

Our approach for such an image hierarchy comprises superpixels, i.e., non-

uniform, continuous pixel groups which segment the image. In this context, a

superpixel hierarchy is a sequence of superpixel segmentations with increasingly

large and consequently fewer superpixels. Segments in higher hierarchy levels

result from merging lower-level segments. When dealing with classic color

images, superpixel segmentation is typically based on a similarity measure

between perceptual features like distances in perceptually uniform color spaces.

We propose to merge segments using similarity measures based on the high-

dimensional manifold structure of the attribute data that is associated with

each pixel. Thereby, and in contrast to the data hierarchies used in other

hierarchical DR techniques, our superpixel hierarchy is informed not only by

the high-dimensional attributes but also the spatial component of image data.

In this chapter, we connect the exploration of image and attribute space of high-

dimensional images by incorporating spatial information into a hierarchical

embedding. To accomplish this, we propose:

▶ a superpixel hierarchy for high-dimensional images, based on

▶ a manifold-aware similarity measure between superpixels, and

▶ integrating this similarity in dimensionality reduction methods.

40 6. Manifold-Preserving Superpixel Hierarchies

Pi
xe

ls
 le

ve
l

Le
ve

l 1
Le

ve
l 2

Surrounding

Data-space-based Combined (ours)

Superpixel embeddingHSNE embedding

Landmarks map
to widespread

pixels

Blur and
subsample

Blur and
subsample

HSNE hierarchy

Pyramid
Superpixel hierarchy

Flower

Image-space-based

Agglom
erative

clusteringLandmark
represent attribute

neighbors

Landmark similarity
yields embedding

Manifold-informed
similarities

Figure 6.1. Image Hierarchies: Classical image-space-based hierarchies, like image pyramids, progressively blur and subsample the image (left). Data-space-based
hierarchies, as used in hierarchical DR methods (center), ignore the image space entirely and only aim to preserve manifold structure of the attribute space. A pixel,
as highlighted in the hierarchy, might actually be represented by multiple landmarks in abstraction levels. And, in turn, a landmark can represent scattered pixels.
Combined, this complicates an image-based exploration of the high-dimensional space. Our superpixel hierarchy (right) combines both image layout and attribute
space manifold structure.

6.2. Related Work

In the following, we aim to report the work most relevant to this chapter, namely,Relevant work on hierarchical di-

mensionality reduction is discussed

in Chapter 3.

superpixels and node embedding methods.

6.2.1. Superpixels
There exist a wide range of superpixel methods and their full discussion is

out of scope of this chapter; instead, we refer to more extensive reviews [127–

129]. Typically, superpixel methods work with three-dimensional color images,

though here we will focus on methods most pertinent to our work, which are

those specific to high-dimensional images.

Hyperspectral imaging (HSI) is the main high-dimensional image domain

which uses superpixel methods, usually aimed at downstream tasks like pixel

classification, endmember detection and hyperspectral unmixing. Using the

Felzenszwalb and Huttenlocher’s [130] image segmentation method Thompson

et al. [131] describe a superpixel segmentation methods for hyperspectral images

with the goal of endmember detection. They perform agglomerative clustering

to define superpixels and merge clusters based on spectral distances of pixels

within and between superpixels. While this approach does create a superpixel

hierarchy, it does not fully preserve the manifold structure of the underlying

spectral data. Also, while one technically could use their inter-superpixel

distance as a basis for an embedding of a hierarchy level, it does not capture the

similarity of all pixels contained in the respective superpixels well, since it only

incorporates distances of pixels along superpixel boundaries. Similarly adapting

an originally color-focused method, Xu et al. [132] follow the k-means based

SLIC [133] and substitute the color distance for a spectral distance. Barbato et

al. [134] also adapt SLIC, augmenting it with both hyperspectral distance and

an additional spectral clustering preprocessing step.

Another popular superpixel method in HSI are entropy rate superpixel [135].

They employ an entropy-based objective function for superpixel segmentation

that combines the entropy rate of a random walk on a graph with a balancing

term to promote compact, homogeneous, and similarly sized clusters. The

method constructs a graph in image space by iteratively adding edges between

pixels that maximize random walk entropy within the new superpixel. Several

authors extend this method to HSI: whereas Tang et al. [136] advocate using

spectral distances to set up the random walk transition probabilities, others use

the first or first three principal components to create a false-color image and

apply color distances [137]. The entropy rate superpixel method also creates

a superpixel hierarchy, but does not explicitly define distances or similarities

between superpixels, which we aim to do in order to embed each hierarchy

level.

6.2. Related Work 41

Grady [138] describes another method that uses random walks in image space

to define merge criteria for superpixels. Given specific seed pixels, a pixel is

assigned to a superpixel based on which seed pixel is visited most often by

random walks started on the pixel itself. Follow-up papers introduce additional

shape constraints and allow self-loops in their walks, as well as data-based seed

selection techniques [139, 140]. However, these methods require a fixed number

of seed points, and thereby superpixels, and do not define similarities between

superpixels either.

Agglomerative methods all implicitly create superpixel hierarchies but usually

chose a single hierarchy level as the resulting image segmentation. In contrast,

Wei et al. [141] explicitly compute all levels of a superpixel hierarchy based on

the Borůvka’s algorithm for finding a hierarchy of minimum spanning trees

applied to images. Yan et al. [142] extend this method for asymmetrical distance

measures between pixels. We base our superpixel hierarchy on the adaption of

the Borůvka’s algorithm presented by Wei et al. [141]. However, they ignore the

manifold structure of high-dimensional input data. To inform the superpixel

distance and superpixel merging with the data manifold structure we also

employ random walks, but use them in the pixel attribute space instead of the

image space as all methods above.

6.2.2. Node embedding methods
Embedding nodes (vertices) from a graph structure is a problem related to

dimensionality reduction methods, which are often used for visualizing and

exploring data. Khosla et al. [63] compare several such node embedding methods,

which compute a low-dimensional feature vector for each vertex in a graph; in

contrast to the above dimensionality reduction techniques, these methods are

typically designed for the downstream tasks of multi-label classification and link

prediction. Variations of random walks are often used to define vertex features,

e.g. the frequency of vertex visits, here as well. In node2vec [64], for example,

random walks are biased by adjusting the transition probability for walking

backwards and walking to a vertex that is not connected to the previous vertex.

tsNET [65] follows a different approach: they take geodesic distances between

vertices in graphs as input for the similarities as defined in t-SNE and map them

to 2D based on a modified cost function. Earlier, Isomap [26] introduced the idea

of using geodesic distances into DR methods that build on multidimensional

scaling. In fact, random walks have been used to estimate geodesic distances

in various settings [67, 68]. However, both Lee and Verleysen [66] as well as

Lafon and Lee [56] discuss that using shortest-path-based similarities (i.e. using

geodesic distances) can be susceptible to creating shortcuts that jeopardize the

Figure 6.2. RGB image (top left) and 2
levels of abstraction (3 and 5). Superpix-
els are recolored with the average color
of all pixels they contain. Numbers of
components: 15300 (150x102 pixels),
271, 14.

42 6. Manifold-Preserving Superpixel Hierarchies

representation of the underlying data manifold whereas random-walk-based

similarities seem to be more robust.

Embeddings are certainly not the only way of visualizing and exploring high-

dimensional image data in a hierarchical manner. For example, Jalba et al. [143]

use watershed based supervoxels for exploration of diffusion tensor images

(DTI). They set up a linked view of the segmented DTI and the watershed

tree that represents the multidimensional data hierarchically. Their method is

similar to ours in that it also creates a hierarchical superpixel representation

but uses domain specific superpixel merging criteria that involve computing

means in the data space, which is both difficult to generalize for non-DTI data

and ignores the data manifold structure.

6.3. Superpixel Hierarchy
Superpixels segment the image domain irregularly. We define a superpixelSee chapter 2 for our image indexing

notation.
segmentation S as a partition of I with 𝑠 = |S| disjoint components. Each

superpixel s𝑝 ∈ S is associated with a connected subgraph of I. A superpixel
hierarchy of 𝐿 levels is an ordered set of superpixel segmentations {S0 , . . . ,S𝐿}
with S0

containing all vertices from I as individual components and the

property that each superpixel of S𝑙+1
is obtained by merging one or more

superpixels fromS𝑙 . We read s𝑙𝑝 as the 𝑝-th superpixel on level 𝑙. Each superpixelMerging might not always be pos-

sible, see the merging criterion in

Section 6.5.

in this hierarchy can be seen as a set of superpixels from a lower level, down

to image pixels in the lowest level. The number of image pixels contained in a

superpixel is notated as |s𝑙𝑝 |.
Such a superpixel hierarchy can be constructed by merging components in

the image graph I following Borůvka’s algorithm for finding a minimum

spanning tree (MST) [141]. Starting with each pixel as a component/tree,

spatially neighboring trees are iteratively merged based on a distance criterion.

We use the Borůvka method similarly but where Borůvka’s algorithm connects

trees, we merge superpixels.

6.4. Preliminary Considerations

1 2 3

4 5 6

7 8 9

1

2

3

45

6

7

8

9

Symmetrized &
connected

kNN-graph

Image graph

Attribute
distance

d

A superpixel hierarchy is a hierarchy both in image space and pixel attribute

space: spatially adjacent pixels are merged based on similarities of their attributes

or features, e.g., color intensity or texture respectively. Rather than color

images, we are interested in high-dimensional images. High-dimensional data

often exhibits an underlying manifold structure which is of high interest for

data exploration. Using Euclidean distance or measures defined for color

images would ignore this manifold structure. Therefore, geodesic distances,

approximations thereof, or local measures are preferred. We will construct the

superpixel hierarchy with a manifold-aware similarity measure. To explore the

high-dimensional image both in image and pixel attribute space consistently,

we later use the same measure to embed each superpixel on a given hierarchy

level.

For capturing local manifold structure in high-dimensional data a 𝑘-nearest

neighbor (𝑘NN) graph in ℝ𝐶
is commonly used. We can compute a 𝑘NN-graph

based on distances between the high-dimensional attributes, e.g., using squared

Euclidean distances 𝛿(i, j) = ||ai − aj||2
2
. A 𝑘NN-graph is not guaranteed to be

made up of a single connected component, but we want to enforce the graph to

be connected, since it allows us to define geodesic distances between all vertex

pairs. Later in Section 6.5, we require connectedness as it ensures the existence

and uniqueness of a stationary distribution of random walks. We convert

the directed 𝑘NN-graph into a symmetrized and connected 𝑘NN-graph G

following the scheme laid out in Supplemental Material SC2. We index vertices

in this attribute-based graph Gwith i, like in the distinct image graph I, since

the i-th vertex (associated with ai) in G and 𝑣i in I refer to the same data

point, albeit with respect to the different spaces. The set of vertices that are

6.5. Method 43

directly connected to a vertex i via one edge was previously referred to as its

attribute neighborhood N
𝐶,𝑘

i but for notational simplicity we will use N(i) in
this chapter.

Once the symmetrized and connected 𝑘NN-graph Ghas been build, a straight-

forward manifold-preserving distance 𝑑G(i, j) between two data points is

their geodesic distance, i.e., the accumulated distance along the shortest-paths

between their vertices in G. Since on the data level every component s0

𝑝 ∈ S0
is a

single pixel and corresponds directly to a single data point we can immediately

apply the geodesic distance to compare them. On higher levels though, we need

to broaden the definition of this measure since there we are associating sets of

pixels/data points. One successfully applied measure used for comparing sets

of points is the Hausdorff distance:

𝑑𝐻 (s𝑝 , s𝑞) = max

{
max

i∈s𝑝

(
min

j∈s𝑞
𝑑(i, j)

)
, max

j∈s𝑞

(
min

i∈s𝑝
𝑑(j, i)

)}
(6.1)

with 𝑑(i, j) = 𝑑G(i, j). That is, we capture the worst-case mismatch between the

sets by finding the maximum distance from any pixel in one superpixel to any

pixel in the other. When both superpixel just contain a single pixel, 𝑑𝐻 simplifies

to the geodesic distance 𝑑G between them.

While this approach can yield reasonable results with respect to both the su-

perpixel hierarchy and respective embeddings (see Figure 6.2), its intrinsically

expensive computation renders it undesirable in practice. For high abstraction

levels it would involve computing all geodesic distance combinations between

sets of thousands of pixels, which becomes computationally taxing fast. One

way to address this could be taking a number, e.g., 100, sample pixels from

each superpixel and compute the Hausdorff distance between these represen-

tative subsets. However, geodesic distance based approaches like this may be

jeopardizing manifold representation by over-valuing shortcuts in the graph

which are not necessarily essential for the graph structure [56, 66]. Instead, we

propose a more robust similarity measure based on features obtained from

random walks on the data graph.

6.5. Method

Previous work on creating manifold-preserving hierarchies of high-dimensional

data [52, 53] used random walks to compute features for each data point,

and employed a distance between those features as a proxy for exact geodesic

distances to define manifold-preserving similarities between landmarks, i.e.,

vertices of the graph that represents a neighborhood on a more detailed level

of the hierarchy. We follow a similar approach, but do not use landmarks for

data-abstraction. Instead, we want to define a similarity between superpixels

that can be used both as a merging criterion during the superpixel hierarchy

creation with Borůvka’s algorithm as discussed above, and as the basis for the

embedding at each hierarchy level.

6.5.1. Constructing the image hierarchy

To compute embeddings of superpixels on each hierarchy levels we need to

define transition matrices 𝑇 𝑙 on each level 𝑙. We propose to define the data level

transitions 𝑇0
based on random walks in attribute space and compute 𝑇 𝑙 for

abstraction levels 𝑙 ≥ 0 by merging rows and columns of lower level transition

matrices.

See Section 2.4 for breakdown of

t-SNE.

As in the geodesic approach before, we begin on the data level with an undirected

and connected graph G. For each vertex in G, we start 𝜔 walks with 𝜆 steps

governed by the edge weights of G. On the data level 𝑙 = 0, we use a Gaussian

44 6. Manifold-Preserving Superpixel Hierarchies

1 3 5

642

A B C D E

F

Channel
a1 Ca...

Va
lu

e

Similarities
from overlap

Similarities
from point
distances

Superpixel

Superpixel image segmentationOriginal image

Data level embedding Abstraction level embedding

Figure 6.3. Method overview: Each image pixel is associated with a high-dimensional attribute vector (top left). (1) We compute a nearest neighbor graph G,
whose vertices correspond to pixels and edges are based on attribute similarities. The data level embedding is computed from this neighbor graph, like in, e.g.,
t-SNE. (2) We compute a feature vector per vertex, describing the local graph structure, using random walks. (3) For the next abstraction level, vertices in the
attribute graph Gare merged with the spatially (in the image layout, i.e., I) neighboring vertex of largest feature similarity. (4) The new vertex retains all outgoing
connections of the merged vertices. All vertex features are added and re-normalized. (5) This is repeated for each vertex. (6) Similarities between merged vertices are
used for creating embeddings where each point corresponds to one superpixel (right).

kernel to transform the edge weight (data distances) into transition probabilities

for the walks:

𝑝0

j|i =
exp (−𝛿(i, j)/𝜎i)∑
𝑘 exp (−𝛿(i, k)/𝜎i)

with j, k ∈N(i) (6.2)

𝜎i is chosen such that the conditional probability 𝑃i equals the perplexity

𝑢 = |N(i)|/3 as in t-SNE [110]. Small data distances are assigned a high transition

probability and large distances a small one. Notably, a random walk is confined

to the edges of the data graph G. The self-step probability 𝑝0

i|i is zero, since we do

not include a vertex into its own neighborhood. A walk may return to its starting

point. We adjust the perplexity (and thereby the number of nearest neighbors)

on a level following Kobak et al. [113] to 𝑢 = max (10, min(𝑛/100, 100)).
The random walks populate a sparse matrix 𝑇. A random walk starting at

vertex i in the attribute graph Gpopulates the matrix row 𝑇(i,−), an unnor-

malized feature for the vertex. At each step we increase the feature 𝑇(i, j) by a

weight, where j is the vertex the current step landed on. The weight decreases

exponentially with the number of already taken steps starting with a weight of

1. Finally, we normalize each row 𝑇(i,−) such that all entries sum to 1 yielding a

valid transition matrix. Figure 6.3 illustrates the coverage of the random walks,

i.e., the vertex feature, for two vertices in green and blue.

The transition probability vector 𝑇(i,−) is a descriptor (feature) of the high-

dimensional neighborhood of vertex i in the attribute graph G. Now, to quantify

the similarity between two vertices, and later superpixels, we measure the simi-

larities of their features, which are probability distributions after normalization.

Such a measure is given by the Bhattacharyya coefficient 𝐵𝐶 which measures

the overlap of two distributions, in our case:

𝐵𝐶 𝑙(s𝑙𝑟 , s𝑙𝑠) =
∑
s𝑙
𝑡
∈S𝑙

√
𝑇 𝑙(s𝑙𝑟 , s𝑙𝑡) 𝑇 𝑙(s𝑙𝑠 , s𝑙𝑡) (6.3)

The Bhattacharyya coefficient always lies within [0, 1] where 0 indicates no

overlap/similarity and 1 identical distributions. Note that on the data level 𝑙 =
0, a superpixel s0

𝑖
corresponds to a pixel at i = (𝑥, 𝑦)𝑖 , yielding 𝐵𝐶0(i, j) =∑

k∈S0

√
𝑇0(i, k) 𝑇0(j, k).

6.5. Method 45

Iterating over all superpixels, the Borůvka superpixel algorithm merges each

superpixel with their spatially neighboring superpixel in Iwith the smallest

distance in G. Pixels are either 4- or 8-connected in I, but on higher abstraction

levels superpixel neighbor-relation in I can be less regular. We can use the

Bhattacharyya distance 𝑑𝐵ℎ𝑎𝑡 = − ln 𝐵𝐶 as a distance measure between the su-

perpixel features. However, instead, we can skip the double inversion (negation

and ln of a number smaller than 1) and use the largest 𝐵𝐶 as a merge criteria

directly, which is equivalent to merging with the smallest 𝑑𝐵ℎ𝑎𝑡 due to their

strictly monotonic-inverse relation. In contrast to the distance measures pre-

sented for color image superpixel hierarchy from [141] or the geodesic approach

from Section 6.4, the 𝐵𝐶 similarity from Equation 6.3 may result in all-zero

similarities between a superpixel and its spatial neighbors. This is because the

random walks purposefully do not cover the entire data. In this case, we do

not merge this superpixel with any neighbor. (Unlike the Borůvka superpixel

hierarchy algorithm [141] which we generally follow for superpixel merging.)

However, the superpixel may still be merged later with newly-formed neighbors

on higher levels.

While we have a general superpixel merging criterion in Equation 6.3, we still

need a method to generate a transition matrix 𝑇 𝑙 on an abstraction level 𝑙. On

each level, we want the superpixel descriptors to preserve the data manifold.

Therefore, to obtain 𝑇 𝑙 on hierarchy level 𝑙, we merge corresponding rows and

columns of the transition matrix 𝑇 𝑙−1
, following the same merging-pattern

of superpixel components from S𝑙−1
to S𝑙 and re-normalize. Figure 6.3 (3-5)

illustrates the vertex and feature merging. The merged features of the meta

vertices now describe the local graph structure of all pixels contained in the

corresponding superpixel.

6.5.2. Computing embeddings on each abstraction level

On the data level, we use 𝑝0

i|j directly for embedding, as they are equivalent to

the high-dimensional similarities used in t-SNE. On higher abstraction levels,

we convert the superpixel similarity measure 𝐵𝐶 into analogous probability

distributions 𝑝 𝑙
s𝑠 |s𝑟 by applying a Gaussian kernel to the Bhattacharyya dis-

tance 𝑑𝐵ℎ𝑎𝑡 . For better readability we omit superscripts 𝑙 for the remainder of

this section, all equations are defined per level 𝑙:

𝑝s𝑠 |s𝑟 =
exp

(
−𝑑𝐵ℎ𝑎𝑡 (s𝑟 , s𝑠)/𝜎s𝑠

)∑
𝑘 exp

(
−𝑑𝐵ℎ𝑎𝑡 (s𝑟 , s𝑘)/𝜎s𝑠

) with s𝑠 , s𝑘 ∈N(s𝑟) (6.4)

where s𝑟 and s𝑠 refer to superpixels on level 𝑙 and N(s𝑟) is the set of superpixel

directly connected to s𝑟 . 𝜎s𝑠 is determined as in Equation 6.2.

Level 0 (data) Level 2 Level 4

Level 0 (data) Level 2 Level 4

a

b

Figure 6.4. Indian Pines: Embeddings and image space recolorings (see Figure 6.5f) for (a) t-SNE and (b) UMAP probabilities. The full hierarchy is shown in
Figure C.5 in the Supplemental Material SC6.

46 6. Manifold-Preserving Superpixel Hierarchies

HSNE
ROI selection Refined embeddings Recolored ROI based on

refined embedding
Superpixel embedding

Refine selection

Level 4

Level 4

6.248 superpixels

4.009 landmarks

1.261 superpixels326 superpixels

3.294 landmarks

~800.000 pixels in image

1.402 landmarks

Level 3

Level 3

a b d f

c e g

h k

i

~100.000 pixels in image

Figure 6.5. Indian Pines Exploration: (a) a false color image based on data channels 20 (587 nm, red), 76 (1090 nm, green) and 130 (1591 nm, blue) with a ROI
marked in red. (b) and (c) show the 4th abstraction level embedding of our superpixel embedding and HSNE, respectively; (d) and (e) highlight the superpixels and
landmarks which correspond to the ROI. (f) and (g) show refined embeddings of the highlighted subsets on a lower abstraction level. (h) and (i) recolor the a cutout of
the image based on the refined embeddings using an overlaid 2D colormap Finally, (k) indicates the pixels in the full images which are represented by the HSNE
refinement, whereas our superpixel refinement extends only slightly around the ROI.

The Bhattacharyya coefficient 𝐵𝐶 in 𝑑𝐵ℎ𝑎𝑡 (s𝑟 , s𝑠) is equivalent to the dot product

of two rows from 𝑇 after taking the square-root of each element. Further, the

random-walk generated superpixel features 𝑇 are a very sparse matrix which

allows for efficient computation of a dissimilarity matrix 𝐷 = [𝑑𝐵ℎ𝑎𝑡 (s𝑟 , s𝑠)] on

each level instead of computing each entry individually, as:

𝐷 = − ln

(√
𝑇
√
𝑇
⊤)

(6.5)

where

√
𝑇 =

[√
𝑇(s𝑟 , s𝑡)

]
takes the element-wise square root of 𝑇 and ln takes

the element-wise natural log.𝐷 is inherently symmetric since the Bhattacharyya

coefficient is symmetric as well, reducing the computational complexity fur-

ther.

For the embedding layout computation we use the symmetrized conditional

probabilities 𝑃 =
{
𝑝ij

}
with 𝑝ij = (𝑝i|j + 𝑝j|i)/2 as in t-SNE [110].

Embedding with UMAP. Above, we used t-SNE as our basis for defining joint

probabilities 𝑝ij but neither the hierarchy creation nor embedding layout are

limited to this choice. For example, we might choose the probability definition

from UMAP:

𝑝0

j|i = exp

(
− 𝛿(i, j) − 𝜌i

𝜎i

)
with j ∈N(i) (6.6)

where 𝜌i is the distance of i to its closest neighbor and 𝜎i is set such that

∑
i 𝑝j|i =

log
2
𝑘 as in [28]. On the abstraction levels, the probability distributions 𝑝s𝑠 |s𝑟 are

defined analogously to Equation 6.5 using the Bhattacharyya distance. Here, we

perform the conditional probability symmetrization with 𝑝ij = 𝑝i|j+𝑝j|i−𝑝i|j𝑝j|i.
The rest of the described algorithm remains unchanged. Figs. 6.4a and 6.4b

shows two abstraction levels and embeddings for the Indian Pines dataset [10]

with t-SNE and UMAP probabilities respectively.

6.5.3. Subset embedding refinement
To support the exploration of ROIs in image space, it is essential to be able

to request more detail, i.e., an embedding on lower abstraction level. Such a

refinement operation starts with a selection of superpixels S̃𝑙 on level 𝑙, e.g., by

manually selecting points in the embedding, or more pertinently, superpixels in

the image. We find the set of superpixels S̃𝑙−1
which represents the same data

6.6. Validation 47

points as S̃𝑙 . As each superpixel s𝑙 ∈ S̃𝑙 was obtained by merging superpixels

from level 𝑙−1, the refined superpixels can be looked up directly in the hierarchy.

From there, we calculate a new probability matrix 𝑃 𝑙−1
from the symmetrized

conditional probabilities 𝑃 𝑙−1
by extracting the submatrix for which all rows

and columns correspond to the refined superpixels. The rows in 𝑃 𝑙−1
are then

normalized to sum to 1.

Superpixel selections in the image space can easily lead to situations in which

superpixels without any connections in the transition matrix are selected. The

force-directed layout in t-SNE will not be able to place these superpixels close

to any other, leading to isolated points occupying large peripheral parts of

the embedding space. For such cases, we can relax the selection criteria of

lower-level superpixels in order to obtain a better connected superpixel. To

introduce additional, non-selected superpixels from level 𝑙 − 1 we define a

threshold 𝛾 ∈ [0, 1]. Any superpixel s𝑙−1

𝑗
that is connected to a selected S̃𝑙−1

𝑖

with a transition value 𝑝 𝑙−1

ij > 𝛾 is also added to the refined superpixels.

6.5.4. Implementation
As the computation of the 𝑘NN-graph on the data level tends to be increasingly

expensive for large data sets, we instead approximate the k-nearest neighbors

with HNSW [106] using Faiss [144]. Using an approximated 𝑘NN-graph is com-

mon practice in virtually all contemporary neighborhood-based dimensionality

reduction methods since its first introduction in A-tSNE [103] as this practice

comes with small to negligible loss of embedding quality.

The random walks on the data graph with 𝜆 steps are a Markov Chain Monte

Carlo technique to approximate 𝑃𝜆
. While it is possible to perform the sparse

matrix multiplication explicitly, we chose to approximate it with the random

walks. This allows us to tweak the number of repeated walks 𝜔 and step length𝜆
to adjust the tradeoff between computation speed, and approximation accuracy

and memory consumption.

We use the GPGPU approximation [103] of the t-SNE embedding layout and Code available on GitHub in the

repository biovault/HDILib
employ the stochastic gradient descent implemented by umappp for the UMAP

embedding layout. Code available on GitHub in the

repository libscran/umappp
An implementation of our method as a standalone library and an interactive

tool with coordinated views between image and embedding representation in

the ManiVault framework [125] are available on GitHub. SpatialHierarchyLibrary and

SpatialHierarchyPlugin available

on GitHub in the repositories

alxvth/SpatialHierarchyLibrary

and alxvth/SpatialHierarchyPlugin

6.6. Validation
In this section, we first present two use cases with real-world data to illustrate

the application of our method and, secondly, evaluate the superpixel hierarchy

quantitatively.

6.6.1. Use Case: Exploring Hyperspectral Images
Hyperspectral images contain information about a large spectrum of light, in

contrast to three color channels in RGB images. Here, we present an example

based on the Indian Pines Test Site 3 [10] dataset. The image depicts fields (e.g.,

corn and soy), forests, roads, rivers and houses from an aerial perspective. It

measures 614 × 2, 678 ≈ 1.6M pixels with 200 channels. The pixel resolution

is roughly 20 m × 20 m and the channels contain electromagnetic spectral

information from 400 nm to 2400 nm sampled at 10 nm. (We exclude 20 of the

original 220 channels due to their low information, as suggested by Gualtieri

and Cromp [145].)

When exploring large hyperspectral images, one typically searches for interest-

ing spatial-spectral regions, i.e., a combination of high-dimensional attribute

and image layout characteristics. We start from a zoomed-out overview repre-

sentation of the image and want to focus on a ROI in the lower part of the image

https://github.com/biovault/HDILib
https://github.com/libscran/umappp
https://github.com/alxvth/SpatialHierarchyLibrary
https://github.com/alxvth/SpatialHierarchyPlugin

48 6. Manifold-Preserving Superpixel Hierarchies

Figure 6.6. Non-exact refinement:
Instead of refining to the minimal su-
perpixel cover of the pixel ROI in a
lower abstraction level we may addi-
tional include all superpixels with a
transition probability 𝑝 𝑙−1

ij > 𝛾 to
a superpixel j from the cover above a
threshold, here 𝛾 = 0.01.

Level 3 (non-exact refinement)

6.108 superpixels~400.000 pixels in image

as indicated in Figure 6.5a. We compute our superpixel hierarchy with 𝜔 = 50

random walks with 𝜆 = 25 steps each. The seven superpixel levels alongside

their embeddings are shown in Figure C.1 in .

We compare our superpixel embedding exploration with an image-coupled

HSNE exploration [109] which proposes to drive the refinement of a hierarchical

image embedding from ROIs in image space, but uses a conventional image-

agnostic hierarchical data representation. Figs. 6.5b and 6.5c show the fourth

abstraction level embedding of our superpixel hierarchy and the HSNE hierarchy

respectively. The ROI encompasses ∼100, 000 pixels. These are covered by 326

superpixels on the fourth abstraction level and 1, 402 landmarks in the respective

HSNE level, see Figs. 6.5d and 6.5e. As the HSNE hierarchy has no notion of

the spatial data layout, high-level landmarks likely correspond to data points

scattered across the entire image, whereas all pixels in a superpixel are located

close together by design. Hence, far fewer points in the superpixel embedding

are used to cover the ROI.

Focusing on the ROI, we refine the selected embedding points to explore data

similarities on a lower level of abstraction. To connect the embedding with the

image representation we use an image recoloring based on the embedding: the

embedding positions are converted to colors using a 2D colormap by Bernard et

al. [126]; then, the corresponding superpixels are colored accordingly (Figs. 6.5h

and 6.5i). An interactive application would not solely rely on color here, but

provide a coupled selection mechanism, as in our reference implementation,

see Section 6.5.4. The 1, 261 refined superpixels on level 3 cover the same image

region as the selected superpixels in level 4 — slightly extending over the

ROI due to the superpixels irregular shapes. By contrast, the 3, 294 refined

landmarks cover a much larger area, and with ∼800, 000 pixels almost half the

image (see Figure 6.5j).

Notably, the refined superpixel embedding shows better distinguishable clusters

in the center, where the bulk of embedded superpixels are located, but also

shows more isolated superpixels in its periphery than the ROI-refined HSNE

embedding. This follows from the matrix cutting scheme in Section 6.5.3 to

obtain the transition matrix of the refined superpixel subset: the most similar

superpixels to those isolated, peripheral superpixel are located outside the

ROI and therefore not included in the refined embedding. As a result, some

embedding points have few, if any, non-zero transition probabilities within the

refined group and are pushed to the outside during the layout optimization.

One possible remedy to this issue is to perform a non-exact refinement. In

Figure 6.6 we included additional superpixels with a transition probabil-

ity 𝑝 𝑙−1

ij > 0.01 to a superpixel j already contained in the exact refinement.

The resulting set of superpixels still covers only half as many image pixels as the

refined HSNE landmarks. The superpixels clearly delineate borders of relevant

image regions like fields, roads and rivers. Since our superpixel embedding

projects a smaller cover of the total image it is able to show more detail than the

HSNE embedding at the same abstraction level.

6.6. Validation 49

High

FO
XP3

Low lamin panCK pMLC2panCK Collagen DNA

 upper selection

lower selection

Level 4

Multi-channel
exploration

Single-channel
exploration

Level 0 (data, t-SNE)

Level 2

Level 4

Level 6

i

h

j

a b

d

f

c

e g

Level 2Level 1 Level 3 Level 4 Level 5 Level 6

Figure 6.7. CyCIF Exploration: (a) Image recolored with two structural markers and DNA. Highlighted in white are two separate selections, corresponding to two
clusters in the fourth abstraction level superpixel embedding (b, d). (c) Recoloring based on three markers of interest, indicating a region with high intensity in
multiple markers. (e-h) Embeddings on several levels of abstraction and corresponding recolored images, using the colormapping from Figure 6.5f. (i, j) Zoom in on a
ROI as highlighted in (f), both recolored according to the embedding and with random gray values to better distinguish between superpixels.

6.6.2. Use Case: Exploring CyCIF Images
Analyzing the function of and interplay between cells in tissue is of major interest

in systems biology, e.g., for researching cancer. There exists a range of spatially For techniques like CyCIF, multiplex-
ing means the technique can detect

and image many different proteins

or biomarkers within the same tis-

sue sample or cell population dur-

ing a single experimental workflow.

resolved, multiplexed imaging methods that are commonly used in the domain.

For this use case, we focus on cyclic immunofluorescence (CyCIF) [146], an

imaging technique that enables the detection of numerous molecules in a piece

of tissue. CyCIF generates high-dimensional images, each channel representing

the abundance of a specific protein with a spatial resolution in the micrometer

range. The characteristic profile of protein expression is used to characterize

cells, and the spatial distribution of cells provides cues on interactions between

cells as well as between cells and other tissue structures. Both this segmentation

of cells and the subsequent analysis of their spatial neighborhood are key

concerns in current research.

Here, we apply our superpixel hierarchy embedding exploration to a CyCIF data

set on cancerous skin tissue published by Yapp et al. [147] which is also used

50 6. Manifold-Preserving Superpixel Hierarchies

in the Bio+MedVis Challenge at IEEE VIS 2025. While the original 54-channelData available via

biovis.net/2025/biovisChallenge
3D CyCIF data contains 10, 908 × 5, 508 × 194 voxels at a resolution of 0.14 µm,

we focus on a downsampled, maximum-projected subset of 2, 000 × 1, 500 with

a pixel resolution of 1.12 µm. Figure C.2 in the Supplemental Material SC4

indicates the location of the cutout. Figure 6.7a shows a false-color image using

markers indicative of tissue structure and general DNA abundance.

We use 27 log-normalized channels (as suggested by the original authors,

and listed in the Supplemental Material SC4) as input for our superpixel

hierarchy. For more memory efficient computation we use 𝜔 = 30 random

walks with 𝜆 = 10 steps and set the number of nearest neighbors in the data

𝑘NN-graph to 𝑘 = 90. Figure 6.7b shows the fourth abstraction level embedding

with 4, 104 superpixels. Many superpixels on this level partially or fully match

the outline of cells in the image.

In a first, straightforward exploration step, a practitioner might consider a

single marker/channel, as cells with a large abundance of this specific marker

indicate a certain role in the immune system. Figure 6.7d maps the average

FOXP3 expression of all pixels in a superpixel on the embedding. FOXP3 indicates

regulatory T cells which play a role in the immune response to cancer cells.

One cluster in the embedding stands out with all superpixels showing bright

pink color indicating high expression of FOXP3. The superpixels correspond to

multiple cells scattered along the diagonal of the image, indicated as white in

Figure 6.7a.

In a second exploration step, a practitioner can search for embedding clusters

and image regions with high expression across multiple channels, e.g., lamin,

panCK and pMLC2. Figure 6.7c again recolors the image, but now based on the

superpixels using the average marker expression of all pixels covered by a

superpixel are mapped to RGB color channels. A distinct group of superpixels

in the embedding shows high expression of all three markers — and these

superpixels in turn correspond largely to cells located in an upper-left stratum

of the tissue.

To show the merge sequence of several superpixels across hierarchy levels,

Figure 6.7i and Figure 6.7j focus on a small cutout, as indicated in Figure 6.7f.

This comparison requires a degree of alignment of embeddings in several

hierarchy levels. Kobak et al. [113] argue that initializing t-SNE embeddings

of single-cell transcriptomics data with their first two PCA components is

beneficial for preserving global structure and reproducibility. We apply this

approach to the superpixel embeddings by computing the first two principal

components based on the average expression of proteins within the superpixels.

Figs. 6.7e, 6.7f, 6.7g and 6.7h show multiple abstraction levels, following the

same embedding-based recoloring as in Figure 6.5h.

To better visually distinguish individual superpixels, Figure 6.7j assigns random

shades of gray to each. On lower abstraction levels, like 1 and 2, superpixels still

subdivide meaningful structures in the data. On higher abstraction levels, like 4

and 5, superpixels clearly highlight cell structure.

An in-depth analysis of the segmentation quality of the superpixel hierarchy goes

beyond the scope of this work. However, these initial findings are a promising

indication of a potential joint segmentation and exploration of single-cell data,

which are typically two completely separate workflows.

6.6.3. Quantitative Hierarchy Evaluation
Numerous quantitative metrics for the evaluation of superpixel algorithms

exist; Stutz et al. [128] give a comprehensive overview of commonly used

metrics. Classical superpixel algorithms are developed for color images and

aim to group perceptually similar pixels together. Most algorithms are not

straightforward extensible to high-dimensional data sets, as concepts like color,

texture or edges do not always have a trivial equivalent in high-dimensional

images. This renders a direct comparison between color-superpixel methods

and our high-dimensional-superpixel method not directly meaningful. We

https://biovis.net/2025/biovisChallenges_vis/

6.6. Validation 51

Barbato
Euclid. (no kNN, ours)
Geodesic (kNN, ours)
Random walks (ours)

Superpixels
5 50 500 50005

0.0

0.2

0.4

0.6

0.8

1.0

50 500 5000

Higher is better

U
nd

er
se

gm
en

ta
tio

n
Er

ro
r (

U
E)

Ex
pl

ai
ne

d
Va

ria
tio

n
(E

V
)

Superpixels

Lower is better

0.0

0.2

0.4

0.6

0.8

1.0

Higher levels

Higher le
vels

Figure 6.8. Explained Variation and
Undersegmentation Error: Numeri-
cal results are listed in Supplemental
Material SC5.

compare our method with the work by Barbato et al. [134]. It is the only method

— to our knowledge — that works directly in the high-dimensional space,

does not first project to three channels, and is also open-source, and, thereby,

reproducible. Additionally, we compare our random-walk based method to two

variations. First, the geodesic distance variation discussed in Section 6.4 that

similarly tries to preserve the manifold-structure. Secondly, to a variation using

the Euclidean distance between attributes instead of a distance based on the

data 𝑘NN graph, ignoring the manifold structure, to contrast our approach with

one that follows the same superpixel strategy but explicitly does not preserve

manifold structure.

A small region of the Indian Pines data set [10] comes with ground truth labels,

shown in Figure 6.9a, which we use as a ground truth segmentation for this

quantitative evaluation. This region comprises 145 × 145 ≈ 21, 000 pixels with

the same channels as described in Section 6.6.1 and contains 16 labels (exclusive

background).

For our main method, we use 𝜔 = 50 random walks with 𝜆 = 25 steps. For

the geodesic variant we do not compute the exact Hausdorff distance from

Equation 6.1, but take 100 sample pixels from each superpixel as discussed in

Section 6.4. We set the number of nearest neighbors in the data 𝑘NN-graph

to 𝑘 = 300 for each of our methods variants.

Our methods do not have a direct input parameter that steers the number of

output superpixels. Nonetheless, both our main method and its two variations

yield a segmentation of around 5000 superpixels at the first abstraction level.

Barbato’s method steers the number of computed superpixels using an input pa-

rameter, n_clusters. We evaluate Barbato’s method over a range of n_clusters
that yields superpixel segmentations with similar numbers of superpixels as

our abstraction levels. (See Table C.1 in Supplemental Material SC5 for a list of

all settings.) We use m_clust = 0.8 as proposed by the authors as the suggested

optimal setting. Additionally, we set the input parameter m to 0, as any non-zero

value enforced box-shaped superpixels and resulted in worse metrics.

We measured undersegmentation error (UE) and explained variation (EV)

for this analysis. UE measures how much a superpixel extends outside an

overlapping ground truth segment. If all superpixels completely lie within

ground truth segments, the UE is zero. Consequently, larger superpixels on

higher abstraction levels will cause an increasing UE. Given a ground-truth

segmentation Q and a superpixel segmentation S, we use:

𝑈𝐸(Q,S) = 1

|S|
∑
q𝑖∈Q

∑
s𝑟∈S

s𝑟∩ q𝑖≠∅

min{|s𝑟 ∩ q𝑖 |, |s𝑟 \ q𝑖 |}, (6.7)

As before, level indices are omitted for readability, i.e. S may be from any

abstraction level 𝑙.
EV measures the superpixel quality without reference to a ground truth. It tries

to capture how much of the original image’s pixel variation is preserved by the

52 6. Manifold-Preserving Superpixel Hierarchies

Figure 6.9. Indian Pines Ground
Truth: (a) Ground Truth segmentation
and labels with map overlay. (b) and
(c) Superpixels from two segmentations
using Barbato’s method do not merge
bottom-up, i.e. borders shift.

Hay-windrowed

Grass-Pasture-mowed

Stone-steel-towers

Oats

Wheat

Soybean-clean

Soybean-mintill

Soybean-notill

Corn

Corn-min

Corn-notil

Bidgs-Grass-Tress-Drives

Grass-Trees

Grass-Pasture

Grass-pasture-mowed

Background

a b

c

superpixel representation. We define the mean attribute value for a channel 𝑐 of

a superpixel s𝑟 , denoted 𝜇𝑐(s𝑟), as the average of the channel attributes of all

image pixels contained in the superpixel. The global channel mean is referred

to as 𝜇I
𝑐 . As such, we use:

𝐸𝑉(S) =
∑
𝑐∈[1,𝐶]

∑
s𝑟∈S |s𝑟 |(𝜇𝑐(s𝑟) − 𝜇I

𝑐)2∑
𝑐∈[1,𝐶

∑
𝑖∈[1,𝑛](𝑎𝑖𝑐 − 𝜇I

𝑐)2
(6.8)

where 𝑎𝑖𝑐 is the attribute value in image channel 𝑐 for data point 𝑖.
Figure 6.8 shows the EV and UE for superpixel segmentations for all four

compared methods. Additionally, all numerical results are listed in Tables C.1

and C.2 in Supplemental Material SC5. Over the entire range of superpixel

segmentation, our random-walks based method shows a slightly better EV

than the others. At low abstraction levels, i.e., with many small superpixels,

all methods show very similar results, which is expected as they all heavily

oversegment the image. Similarly, observing the UE results, the random walks

method scores several percentage points better than the others across a wide

range of abstraction levels. The UE measurement becomes a bit noisy for

low numbers of superpixels as here the ground truth will become strongly

undersegmented. Surprisingly, the Euclidean variant consistently outperforms

the Geodesic variant by a small margin with respect to both EV and UE.

Notably, Barbato’s method does not create a superpixel hierarchy but rather

compute each segmentation stand-alone. Hence, superpixels on a higher ab-

straction level do not precisely comprise superpixels from lower abstraction

levels, see Figs. 6.9b and 6.9c.

We do not explicitly evaluate the embedding layout here. Other hierarchical

embedding methods like HUMAP [53] or Multiscale PHATE [54] use Denoised

embedding manifold preservation (DEMaP) [55] which calculates the Spearman

correlation between geodesic distances in the high-dimensional input data and

Euclidean distances in the low-dimensional embedding. But, as we do not aim

to solely capture distances between high-dimensional points but also include

the image layout, measuring how well geodesic distances are preserved in the

embedding would not be a relevant indicator for the quality of our method.

Moreover, we do not modify the embedding layout algorithms after defining

high-dimensional transition probabilities in Equations 6.5 and 6.6, as we use

the same gradient descent optimization as t-SNE and UMAP respectively.

6.7. Discussion
The length 𝜆 and number 𝜔 of random walks on the data 𝑘NN graph are

free parameters in our methods. The ability of those random walks to create

features that are representative of a local graph neighborhood is inherently

tied to the graph structure, which is different per data set. We empirically

found 𝜆 ∈ [10, 50] and 𝜔 ∈ [20, 50] to yield good results, with smaller settings

6.8. Conclusion 53

requiring less compute time and memory. Other random-walk based embedding

methods reason similarly, leaving these parameters free while providing defaults

that work well for various scenarios: Node2vec [64] uses walks of length 80

with 10 walks from each vertex in their experiments, and the DeepWalk [148]

implementation defaults to 10 walks of length 40. Other methods propose data-

driven setting selections: PHATE [55] uses a heuristic measure to set the walk

length, derived from the decrease in entropy of the eigenvalues of a diffusion

affinity matrix based on random walk results. Kim et al. [149] establishes a

connection between the recommended walk length to the concept of "cover time"

— the number of steps it takes to visit all vertices of a graph. In general, since

random walks on graphs have been thoroughly analyzed in prior research [150],

future work might consider how these findings can inform robust data-driven

choices for random walk settings.

As visible in the image recolorings in Figs. 6.4a and 6.4b, the global position

of merged superpixels in the embedding is not stable across hierarchy level.

This happens due to the currently implemented default behavior for initializing

embeddings on each level, i.e. random placement of all points. An initialization

scheme similar to the one presented in Section 5.4.4 could provide a remedy: An

embedding point could be initialized at the average position of all corresponding

merged points from the final lower-level embedding.

We compute random walks only on the data 𝑘NN graph and essentially coarse-

grain the data graph on each abstraction level while merging the random walk

vertex features. This is similar to the diffusion and coarse-graining of Multiscale

PHATE [54]. Other methods like HSNE [52] and UMAP [53] start new random

walks on each new abstraction level for selecting new landmarks and defining

new similarities between them. One reason for new walks on each scale is that

they might yield better global data structure representation: While a walk on

an abstraction level graph might cover a similar portion as a walk on the data

level graph, the abstraction vertices now represent a larger percentage of the

data graph vertices. We did experiment with new random walks, but did not

observe improved results.

The Superpixel Hierarchy method by Wei et al. [141], which we build upon,

guarantees that the algorithm stops after 𝑂(log 𝑛) abstraction levels, as any

given superpixel is always merged with at least one other. In contrast, our

method is allowed to not merge a superpixel, if all Bhattacharyya coefficients 𝐵𝐶
between a superpixel’s feature and its spatial neighbors (see Equation 6.3) is 0,

such that the logarithm based 𝑑𝐵ℎ𝑎𝑡 is undefined. In fact, it is worth considering

introducing a threshold here, ensuring that superpixels are only merged if

they are considered similar enough. If the random walk length is set high, a

superpixel might be merged even though their attribute vertices are located

very far apart in the data 𝑘NN graph. However, defining such a threshold is not

trivial and would need to depend on the data structure.

In this work, we focus on high-dimensional image data, but cutting-edge

acquisition methods as showcased in Section 6.6.2 already produce high-

dimensional volumetric data. In principle, an extension of our method to

volumetric data is straightforward: instead of 2D pixel neighborhoods, one

would need to consider 3D voxel neighborhoods, but the general random walk

and supervoxel merging procedures remain unchanged.

6.8. Conclusion
We established a superpixel hierarchy for high-dimensional images which

preserves the manifold structure of the high-dimensional data. Each level, and

subsets thereof, can be embedded using dimensionality reduction methods to

facilitate exploration. We inform the hierarchy about high-dimensional manifold

using random walks on the data 𝑘NN graph, utilizing them in a modified version

of Borůvka’s algorithm. Our image-informed hierarchy improved on previous

“overview-first, details-on-demand” approaches for requesting embedding detail

based on ROIs in the image space.

54 6. Manifold-Preserving Superpixel Hierarchies

An interesting extension of our method is the introduction of multiple levels of

abstraction in a single embedding. While such a Focus+Context approach for

hierarchical embedding has been applied to exploration in attribute space [104],

utilizing it for ROIs in the image space could further aid image exploration.

Our method shows good potential for combining segmentation and exploration

steps. Our initial showcase of single cell data exploration in Section 6.6.2

indicates that the superpixel cell structures could be used in subsequent cell-

neighborhood analysis steps.

All in all, we propose a superpixel method that we demonstrate to aid with the

effective exploration of high-dimensional images.

ManiVault:
A Visual Analytics Framework

for High-Dimensional Data 7.
This chapter is based on the paper

“ManiVault: A Flexible and Exten-

sible Visual Analytics Framework

for High-Dimensional Data” pub-

lished in IEEE Transactions on Vi-

sualization and Computer Graphics

(TVCG) [125].

7.1 Introduction 55
7.2 Related Work 56
7.3 Design Considera-

tions 58
7.4 Framework Architec-

ture 59
7.5 Implementation 66
7.6 Application Examples 68
7.7 Conclusion 72

So far, we focused our discussion of Visual Analytics (VA) of high-dimensional

images on methodological approaches. In this chapter, we shift the focus on

how such methods can be made accessible for domain experts. We present a

software framework for the exploration of high-dimensional data, ManiVault.

The design of the framework emphasizes extensibility, allowing it to support a

broad range of high-dimensional data types. However, in line with the central

theme of this thesis, we primarily focus on high-dimensional images. Each

of the previously presented methods are implemented as extensions in this

framework. It is important to note that ManiVault is the result of a collaborative

effort, developed jointly with several contributors whose input shaped both its

design and implementation.

7.1. Introduction

Combinations of automated analysis and interactive visualizations, i.e., VA [11,

151], have proven to assist well in gaining insight for high-dimensional data. A

variety of visual encodings and processing algorithms for high-dimensional

data exist. At the same time, specialized application domains require specialized

workflows for handling their data and often need to adapt established methods

to their use case. Even though these domains encounter different domain-specific

questions, they often deal with similar abstract data set types. Additionally,

abstracting different domain-specific workflows regularly yields similar goals

and user tasks [152, 153] which might be tackled with recurring visual encod-

ing components like heatmaps or analytics methods such as dimensionality

reduction. It is time-consuming and wastes development resources to reinvent

the wheel by re-implementing, e.g., a linked selection mechanism for multiple

coordinated views every time a domain-specific VA solution is needed [47,

154–157]. We developed a visual analytics framework, ManiVault, as a flexible

solution for VA software developers, application designers, and practitioners to

implement algorithms and visual encodings, prototype workflow-specific tool

sets, and perform their data exploration and analysis respectively.

Existing VA systems for exploring general multivariate data do not meet all of

these goals. Commercial products like Visplore [158, 159] or Spotfire [160, 161]

come with wide feature ranges but are closed-source and not easily extensible.

Older open-source frameworks like XmdvTool [162] and GGobi [163] are mostly

limited to visual analysis and lack analytics functions. ParaView [164] and

Inviwo [165] are capable of displaying multivariate data as well but focus on

field data and the representation of spatial structures. Business intelligence

solutions like Tableau [166, 167] mostly focus on dashboard creation and chart

recommendations. Other fast dashboard prototyping tools, like Keshif [168],

provide infrastructure like linked selections of various data visualizations

but lack analytics capability. With ManiVault we propose a visual analytics

framework for general high-dimensional data that is easily extendable and lets

both developers and practitioners re-use algorithmic and visualization building

blocks for prototyping and reusing visual analytics systems.

Growing data sizes, both in the number of items and dimensions, increasingly

complicate interactive analysis. Progressive visual analytics [169] intends to

overcome this issue by continuously providing intermediate results of the cur-

rent data analysis step. The ability to control the analysis based on continuous

feedback is crucial for progressive VA systems [170]. In ManiVault we implement

a data-centric and modular framework that facilitates continuous data updates

and algorithm steering out of the box. The ManiVault core application manages

data sets and plugins, which provide both analysis and visualization func-

tionality. This architecture allows for fast data changes, selection updates, and

56 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

HSNE
refinement

Image viewer

Data properties

Data Hierarchy

linked
colormap

Spectral viewer

Scatterplot

HSNE
top level

Derived

Figure 7.1. Example screenshot of ManiVault used for the exploration of a hyperspectral imaging data set.

overall flexible data exploration. Additionally, since each plugin is agnostic of

any other, the system is easy to extend with new data types, visualizations, and

analysis algorithms. ManiVault is written in C++, using the Qt framework [171]

for cross-platform graphical user interface (GUI) development. OpenGL is

used for high-performance rendering (e.g., our scatterplot plugin) but viewer

plugins based on lower threshold JavaScript libraries like D3 [172] and Vega-

Lite [173] are also possible. ManiVault is open source and can be found at

github.com/ManiVaultStudio.

To summarize, in this chapter we describe:

▶ ManiVault, a modular and extensible visual analytics framework designed

for high-dimensional data,

▶ several functionality extensions in the form of basic data-, viewer-, and

analytics plugins, and

▶ three use cases ranging from plugin development to a practitioner’s

workflow.

7.2. Related Work
In the following, we aim to report the work most relevant to this chapter, namely,Relevant work on visual analysis

of high- and multidimensional is

discussed in Chapter 3.

Visual Analytics (VA) systems for multidimensional data and visualization

design environments with respect to our framework.

7.2.1. Visual Analysis and Analytics Systems
VA systems for the exploration and analysis of high-dimensional data are well

established both in academia and industry [176, 177]. Table 7.1 gives an overview

comparison between ManiVault and visual analysis tools that we deem most

similar. Most VA systems employ coordinated multiple views [3] with linked

selections for data exploration, and we follow this approach with ManiVault as

well. Chen et al. [178] discuss common practices and guidelines for the layout of

multiple views.

Pioneering visual analysis frameworks for multidimensional data include Xmd-

vTool [162], Spotfire [160], GGobi [163] and the InfoVis toolkit [179]. These

frameworks mostly focused on displaying data with a variety of visual idioms

and enabled exploration with brushing tools and linked selections. XmdvTool

https://github.com/ManiVaultStudio

7.2. Related Work 57

Table 7.1. Comparison with other visual analysis tools that are most similar to ManiVault, both open-source and closed-source (commercial, Comm.).

ManiVault XmdvTool GGobi Visplore Tableau ParaView Inviwo

[162] [163] [174] [167] [164] [165]

Focus on high-dim. data • • • • • — —

Focus on field data — — — — — • •

Extensible • •
a

• — — • •

Visual Analytics • • •
b

• • •
c

—
d

Progressive Analytics • — •
b

• — —
d

—
d

VA system authoring • — — — •
d

•
e

—

Active development • — — • • • •

License LGPL-3 PD EPL Comm. Comm. BSD-3 BSD-2

a
No dynamic extension loading

b
When used with its API, e.g., in combination with R

c
Via Trame [175]

d
The systems can be extended with

Visual Analytics functionality by plugins or Python integration, but the focus is on interactive field visualization
e

Focus on dashboards with

pre-populated data

was extended with several dimensionality reduction and clustering meth-

ods [121, 180, 181]. GGobi [163] integrates with the R language which enables

users to apply analysis algorithms via scripting. Spotfire grew into a commercial,

closed-source product with extensive analytics capabilities, while the others

are open-source, albeit unmaintained. All of these tools predate Progressive
VA and are not optimized for the specific needs of continuous updates and

steering of analytics processes. ManiVault is designed around the principles of

progressive VA from the start using a data-centric architecture. Data-producing

and -transforming plugins can continuously update the data managed by the

core, while data consumers get automatically notified about these changes.

Tableau [167], building on the Polaris system [166], might be the most prominent

and representative universal VA system. Marketing itself as a business intelli-

gence tool, Tableau focuses on flexible visualization of various data types and

more general analytics functions can be added via Python or R scripts. Similarly,

Visplore [158, 159] implements a suit of statistical analysis and visualization

methods for tabular data and aims at providing quick visual feedback for visual

interactions and data queries. Its commercial offspring [174] offers a more direct

integration of scripting languages to supplement built-in analysis functions.

The open-source ParaView [164], like many other analysis frameworks for spatial

field data, e.g., volume data, [182–185] is based on the VTK library [186], and

provides a wide range of visualization and analysis functions in an extensible

framework. ParaView follows VTK’s visualization pipeline and is designed

around the flow of data through various transformations to their final visual

presentation. Similarly, the commercial Amira Software [187, 188] offers a range

of analysis functions for multidimensional volumetric data, but it is not freely

extensible. Many visual analysis systems traditionally target either geometric

or abstract tabular data. However, in recent years, the analysis of spatial and

non-spatial data has become increasingly integrated [189]. With ManiVault we

create a system for general high-dimensional data that can be extended to handle

arbitrary spatial or abstract data types. Our data-centric system design enables

flexible exploration workflows instead of having practitioners concerned about

data flow through each step of the visualization pipeline.

7.2.2. Visualization Design Environments
Visualization design environments or similarly visualization prototyping sys-

tems are tools for creating visualizations that provide a graphical user interface

for specifying visual encodings of data and interaction dynamics. Many such

systems exist, and here we provide an overview of the tools most similar to

ManiVault.

Lyra [190] offers fine-grained design options for single plots through handles,

drop-zones, and other interaction mechanisms for graphical setup of re-usable

58 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Vega or Vega-Lite [173] specifications. Lyra 2 [191] extends this framework by

letting users define interactions like brushing and selection linkage between

multiple plots. iVisDesigner [192] follows similar principles but places emphasis

on collections of data visualizations in a dashboard format. Keshif [168] focuses

on a novice user audience by automatically aggregating data and selecting

visual representations based on pre-defined mappings for various data types. In

contrast to the above design environments for single or multiple visualizations,

ManiVault is a design environment for complete visual analytics systems

including automated analysis methods. While the above systems are focused

on abstract data, Inviwo [165] presents a visualization prototyping system for

spatial field data. Its design allows users to specify visualizations on various

abstraction levels, from visual (connecting functional boxes) to conventional

programming. Compared to Inviwo’s data-flow model, ManiVault is data-centric

and focused on providing several visualizations and analytics tool building

blocks. ManiVault’s core system coordinates views on the data and enables

linked selections between views out-of-the-box.

From a plugin-in developer’s perspective, ManiVault resembles the prefuse [193]

and ComVis [194] toolkits. They provide development environments and

software components for building dynamic visualizations. Both focus on non-

spatial data and target graph and tabular data set types. Scripting-based solutions

like Dash [195] for creating dashboard applications or Voilà [196] for converting

Jupyter notebooks into standalone web pages provide a GUI front-end to the

wide offer of analysis libraries in the Python, R or Julia ecosystems. ManiVault

is specifically laid out for progressive and high-dimensional data analysis. Our

C++ implementation supports high-performance computations and interactions

necessary for visual analytics.

7.3. Design Considerations
We designed ManiVault as a VA framework with multiple user groups in

mind. While these groups can overlap, their requirements for the effective and

convenient use of ManiVault are varied.

7.3.1. General Setting
High-dimensional data has become ubiquitous in many domains and the

analysis of such data plays a pivotal role in acquiring insights into complex

systems. Analytics software in different domains targeted at such data generally

utilizes comparable sets of analytical and visual tools, such as dimensionality

reduction, clustering algorithms, scatterplots, or parallel coordinates plots.

These generic tools are then combined with data-, user-, and domain-specific

tools and customizations to create a specific application. The primary motivation

for developing ManiVault is to facilitate rapid construction of visual analytics

applications for high-dimensional data without the need to re-implement

common functionality. Modularity is a key aspect for creating reusable tools,

both on a code and a user-facing abstraction level. The second main motivation

for ManiVault is a need for flexible exploratory analysis, but also subsequent

sharing of results, as well as the means to recreate the corresponding workflows.

We learned of the target user characteristics and design requirements during

multiple collaborations with practitioners in various fields [197–200] spanning

several years.

7.3.2. Target Users
We identified three target user groups, each with specific requirements:

U1 Developers use ManiVault to implement new ideas and methods. These

users, e.g., visualization researchers, interact with the system via code in order

to create customized modules. Developers need the framework to provide a

7.4. Framework Architecture 59

stable API that allows for the integration of their methods with little overhead.

Further, they need existing modules to focus on their specific contribution; e.g.,

a developer of a dimensionality reduction method might want to visualize

results in an existing scatterplot module without having to implement their

own.

U2 Application designers combine and adapt existing modules to create stand-

alone applications for specific use-cases. Not all options of a view (e.g., the point

size in a scatterplot) might be necessary for a specific workflow, and providing

all options in the GUI can be distracting. In these scenarios, ManiVault needs to

support flexible GUI customization. To minimize the burden, the framework

should support such customization directly in the GUI without programming.

U3 Practitioners and domain experts use the software to analyze their high-

dimensional data. Practitioners need ManiVault to allow for a flexible data

exploration process, to provide responsive user interfaces, and to offer domain-

specific visualization and analysis modules. Once their analysis is finished,

practitioners need the ability to easily share and reproduce the results and their

workflow in ManiVault. Given a well-defined workflow, they also need easy

access to specified presets of visualization and analysis layouts.

The boundaries between these user groups are fluid. E.g., a skilled practitioner

might want to extend a pre-bundled application with a module or develop a

module themselves.

7.3.3. System Requirements
Based on the general usage setting and needs of our target users, we define

the following high-level requirements for a visual analytics platform such as

ManiVault. The framework must be:

R1 Extensible: ManiVault has to provide an interface for adding new function-

alities. It must be possible to create modules for new

a data types,

b visualizations,

c analytics methods,

d data transformations,

e loading/writing data.

R2 Flexible: ManiVault must allow for workflows in multiple domains and

specifically enable straightforward workflow adaption during use.

R3 Linkable: ManiVault must provide modules with an API to easily link data

selections and synchronize parameters, such that no dependencies between

modules are created.

R4 Configurable: ManiVault must provide options for GUI configuration

during runtime through the user interface.

R5 Distributable: ManiVault must be able to save its current state, including

layout, data sets, and settings and reproduce a saved state.

R6 Performant: ManiVault must be performant when handling large data, stay

responsive and provide interfaces to interact with processes during calculation

to support progressive VA.

7.4. Framework Architecture
In order to ensure easy extensibility (R1), ManiVault is implemented as a modu-

lar system, see Figure 7.2a. The core application is a lightweight set of managers

and any user-facing functionality is dynamically loaded from self-contained

libraries, i.e., plugins, respectively discussed in Sections 7.4.1 and 7.4.2 (R6). This

compartmentalization into a core and extensions provides easier maintainability,

better scalability, and faster development. Together with a data-centric system

structure (Section 7.4.3), this enables flexible workflows (R2) with various ana-

lytics and visualization techniques. ManiVault features an intricate notification

and parameter sharing system to allow for communicating between plugins,

60 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Core

Plugins

Data Loader Writer

Linked parameters

Core events
Data
flow

Analysis ViewTransform

Data
manager

Event
manager

Project
manager

Settings
manager

Workspace
manager

Plugin
manager

Actions Utilities

S
ynchro

nize

Sends events to all plugins

(a) ManiVault system (c) Parameter linking(b) Core events

Shared parameters

Core

Analysis

DecimalAction
TriggerAction...

...
DecimalAction

ColormapAction...
View

View A

DecimalAction

P
ub

lis
h

{
 connect(data1, dataChanged, updateViewA);
 // change selection
 notifyDatasetSelectionChanged(data1);
}

View B

{
 connect(data1, nameChanged, updateViewA);
 // change data
 notifyDatasetDataChanged(data1);
}

Figure 7.2. ManiVault’s system architecture. The core manages data and events, provides GUI management (actions), etc. Green borders indicate plugins, a
light-grey background the core. Data flow from the core to data consumer plugins and from data producer plugins to the core is indicated with arrows. (b)
View A listens to notifyDatasetDataChanged emitted by View B. View B does not listen to the notifyDatasetSelectionChanged event triggered by View
A, but any plugin could. (c) a view plugin published a DecimalAction, moving the action in a shared parameters space and immediately subscribes to it. Now, an
analytics plugin can connect to the shared action, enabling synchronization across plugins.

see Section 7.4.4 (R3). GUI management objects, called actions (Section 7.4.5),

implement a part of the communication system and the configuration and

serialization system, see Sections 7.4.6 and 7.4.7 (R4, R5).

7.4.1. Core Application

ManiVault’s core is modularized into a set of managers, actions, and utilities as

shown in Figure 7.2a. ManiVault comprises a data-centric architecture: a data

manager stores and administers access to data sets. All data sets are organized

hierarchically, such that derived data sets like clusterings, embeddings, or proper

subsets are marked as children of their respective source data. This enables

simple access to properties of the parent data set and propagation of selections

from derived to source data sets. Analysis, transformation, visualization, and

loading/writing functionality as well as the definition of data types themselves

are separated into plugins. A plugin manager loads plugins into the core and

makes them available to the user. Each plugin can consume data, i.e., process

existing data in the core and/or produce data, i.e., store a new or alter an existing

data set in the core. While each plugin is self-contained, communication between

plugins is made possible using two messaging systems (Section 7.4.4). An event

manager in the core administers globally defines notifications while actions are

used for run-time configurable notifications (see Figs. 7.2b and 7.2c).

The general application layout is handled by a workspace manager which takes

care of the arrangement of all GUI widgets provided by view plugins. The

core contains two main system view plugins, a data hierarchy, and a data

properties viewer. The former displays the internal hierarchical data structure,

while the latter shows properties of the data (number of data points, dimensions,

active selections) and gives users access to the settings of analytics plugins, as

discussed in more detail in Section 7.5. ManiVault provides a number of actions,

GUI management objects, and administers any user-defined linking between

them, see Section 7.4.5. Further, a project manager is responsible for saving and

loading the current state of the application, including loaded data sets, the GUI

layout, opened plugins, and linked parameters. Global settings applicable to,

e.g., all plugins or the general application layout are handled by a dedicated

settings manager.

Additionally, ManiVault’s core supplies a set of utilities like dedicated renderers,

shaders, color maps, mathematical helper classes, such as vectors and matrices,

as well as common algorithms like mean shift clustering. These tools can be

used to create a more coherent visualization and analysis setup across plugins.

E.g., developers can rely on the availability of a standard set of color map types

in every view plugin, while maintaining the ability to introduce custom ones.

7.4. Framework Architecture 61

7.4.2. Plugin Types
ManiVault works with six distinct plugin types that bundle various types of

functionality. The system can be easily extended with new functionality by

writing a new plugin that will automatically be loaded on start-up (R1). In

combination with the data-centric core architecture, this enables a user to

perform flexible workflow changes (R2).

Data plugins enable extending the types of data the system can handle.

ManiVault provides a base data plugin class that developers can extend to

define a custom data format. E.g., we provide an image data type that extends

our basic point data type with image dimensions and thus a mapping of points

to image coordinates. The system can generally be extended with arbitrary data

formats.

View plugins provide a view on the data and allow interaction, such as

selection of data elements. Views can be fully-fledged visualizations or simpler

views such as lists. View plugins are primarily data consumers, i.e., they take a

data set as input for visualization, but can also function as data producers, e.g., by

providing means for annotating data. We provide example plugins with diverse

backends, like OpenGL and D3.

Analytics plugins allow for the implementation of data analytics modules

such as dimensionality reduction. As such, they are primarily data producers
but also follow the data consumer API to receive the input data on which they

perform calculations.

Transformation plugins resemble analytics plugins in code but are semanti-

cally different. They are also primarily data producers, but while analytics plugins

derive new properties, e.g., an embedding, that can have an arbitrary shape,

transformation plugins produce data of the same shape, i.e., with identical

items and attributes. An example of such a transformation is a normalization of

the original data.

Loader/Writer plugins respectively load specific types of data into the system

(data producer) or write it back to file (data consumer).

7.4.3. Data Handling
The data handling in ManiVault follows a model-view pattern. Internally, the

core’s data manager keeps a list of raw data models, data set views, and selection

views. A data plugin has to define both a raw data model and data set view

— the selection view is simply another instance of the same data set view on

the raw data. The raw data model holds the physical data values of a set and

is never exposed directly to non-data plugins. Therefore, for most intents and

purposes, the data set views can be regarded as the actual data sets present

in the system. They define access to the raw data for all non-data plugins by

providing, e.g., views on or copies of it. Each raw data object is associated with

exactly one selection object to ensure straightforward selection sharing across

all plugins that access a data set. Selection and set views can be separately

requested and adjusted. This model-view pattern allows for a simple API and

to create and use subsets with minimal overhead.

New data sets can be marked as derived from existing ones, e.g., when a new

data set is created by an analytics plugin. The derived data also functions as the

user-facing entry point through which the analytics settings can be accessed.

This operation will create new data set and raw data objects but no new selection

view. Instead, selection views are shared between parent and derived data sets.

This simplifies the propagation of selections between views, e.g., a derived

embedding shown in a scatterplot and the original data in a parallel coordinates

plot. To enable selection sharing between arbitrary data sets, ManiVault lets

users group data sets in the hierarchy view. Selections of any data sets within

a group and with the same number of data points are then automatically

synchronized.

62 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

We implemented a set of base data plugins in ManiVault, including plugins for

point data, multichannel images, clusters, color, and text data. The development

of ManiVault so far primarily targeted the point data type, which can store

various high-dimensional integer and floating point formats. Our image data

plugin shows the versatility of ManiVault’s data handling and the point data

type. When loading an image, two data sets are created: a point data set whose

raw data object stores the actual pixel values and a child image data set whose

raw data object stores metadata like image size. The image data set view provides

access to the parent’s raw data. This configuration ensures compatibility with

analytics, transformation, and view plugins that expect point data to process

multichannel images.

The implemented data handling system is lightweight. Besides the basic

ManiVault core (< 90 MB), the data manager and hierarchy require < 8 MB

of memory (on Windows). Each loaded data set produces less than 1.5 MB

overhead in addition to its binary size, stemming from the plugin instance and

core integration. More details can be found in Supplemental Material SD1.

7.4.4. Plugin Communication
Coordinated Multiple Views (CMVs) [3] are the basis for virtually any visual

analytics application. While the individual views in a CMV system naturally

map to modules in a modular architecture, an essential part of CMV systems

is the integration of those views. This enables techniques like brushing and

linking [201], where selections on the data are propagated to all views in

the system, or the synchronization of parameters, like the viewport in an

Overview+Detail system [202]. Enabling such linking of views, without breaking

the system’s modularity (R3) is no trivial task. A plugin should be self-contained

with respect to its functionality. Yet, at the same time, plugins need to be able

to communicate, such that they can inform other plugins about data changes

and that their parameters can be linked and synchronized throughout the

application.

We have designed and implemented two interfaces to solve the issue of inter-

plugin communication. First, an event-based communication API to cover

common system-wide types of events related to data set changes (Core Events)

and second a parameter-sharing API (Shared Parameters) as part of our GUI

building blocks (Section 7.4.5).

Core Events The ManiVault core API provides an event-based system for

inter-plugin communication using the publish-subscriber pattern. Plugins

send predefined events to the core, which distributes them, and all subscribers

(typically plugins) can digest these events as depicted in Figure 7.2b. To efficiently

support linking and brushing (R3), we have implemented such events for any

changes of data values like addition, updates, removal, changes to data selections

and several other data related changes. A plugin can choose to listen to all

events of a certain type or subscribe only to certain events concerning a specific

data set.

Exemplary events:

▶ notifyDatasetAdded
▶ notifyDatasetDataChanged
▶ notifyDatasetRemoved

An example of a linked selection is shown in Figure 7.3. The figure shows a

screenshot with three views, a scatterplot and a density plot on the left, and the

properties of a clustering analysis on the right. Clicking any cluster in the clusters

list (Figure 7.3a) will update the selection set attached to the data set and notify

the core of these changes with the notifyDatasetDataSelectionChanged event.

The core will then emit the dataSelectionChanged event with the changed data

as an argument and subscribed plugins will receive a notification that triggers a

refresh of the view with the updated selection (red points in Figure 7.3b).

Shared Parameters We designed a complementary API to share parameters

between modules (R3) using GUI actions (Section 7.4.5). With this system, a

plugin parameter is exposed to other plugins by placing it in a public shared

parameter pool, i.e., the parameter is published (Figure 7.2c). From there, other

https://en.wikipedia.org/wiki/Publish-subscribe_pattern

7.4. Framework Architecture 63

a

e

d

b

c

Figure 7.3. Parameter sharing by
connecting two actions of the same type
in the GUI. Both, the Mean-Shift plu-
gin and Scatterplot plugin use a Dec-
imalAction to steer their computation
and view respectively.

plugins can subscribe to published parameters (provided that the parameter

types match). Any change to a published parameter will be synchronized with

all subscribed parameters. We provide common GUI elements with ManiVault,

that developers can integrate into their plugins such that the user can publish

a parameter or subscribe to any published parameter at run-time through the

GUI (R4).

Figure 7.3 presents an example in the form of the kernel bandwidth (sigma)

parameter used in kernel density estimation (KDE) employed in density plot

visualizations (Figure 7.3c) but also mean-shift clustering. We have implemented

plugins for both that allow real-time changes of the sigma parameter, based on

Lampe and Hausers real-time KDE [203]. Linking this parameter between the

density plot and the clustering module enables visually finding a suitable density

estimation while the clustering is updated on-the-fly. To link the parameters the

user simply clicks on the underlined label in the GUI (Figure 7.3d), e.g., in the

density plot view, and chooses "publish". After defining a suitable name for the

parameter, the user can then click on the corresponding label in the settings

widget of the mean shift clustering plugin (Figure 7.3e) and click subscribe to

be presented with a list of suitable parameters, including the just defined one.

After subscribing, the connection is indicated by the italic font of the Sigma
label.

7.4.5. Actions
To support sharing of parameters as described above, but also to make it easy

to capture the state of a plugin, configure the GUI and unify the look and feel

between plugins, we have devised and implemented a number of building

blocks we call actions on top of the standard Qt GUI widgets. These include

simple actions for decimal and integral values as well as strings but also

64 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

more complex elements such as colors, color maps, file-pickers, etc.. In

addition to those standard GUI elements we implemented a number of custom

actions targeting typical VA applications. These include a general-purpose

selection action, that supports different modalities (brushing, rectangle, lasso,

etc.) and Boolean combinations (replace, add, remove), and a dimension picker

action that provides a consistent way to select one or multiple dimensions of a

data set, e.g., to limit the input to a dimensionality reduction plugin. Although

we believe that we provide large coverage of commonly required tasks with the

built-in actions, we also provide an API for plugin developers to create custom

actions.

By using our actions API, sharing of parameters as described in Section 7.4.4 is

automatically available through the GUI. In addition, actions can also be attached

to data objects, to expose their functionality to other plugins. A data producer

plugin can, e.g., attach an action to trigger a calculation within the plugin. Other

plugins can query these attached actions and provide the corresponding GUI

elements within their scope. We showcase this in our Hierarchical Stochastic

Neighbor Embedding (HSNE) [52] analytics plugin. The plugin creates a

hierarchical embedding structure that can be refined interactively. We attach an

action for triggering the refinement to the produced embedding data set. When

viewing the embedding in a scatterplot, the scatterplot view plugin exposes the

refine action and other attached actions through the context menu. The user

can then trigger the refinement directly from the scatterplot visualization, even

though the actual calculation is carried out by the HSNE plugin.

Besides serving as GUI building blocks, we have also implemented support for

serialization in the action system. Each action can be serialized into a QVariant
object, including its complete current state, consisting of whether it is active,

visible, writable, and the parameter itself. All actions that belong to a plugin

form a hierarchy that can again be serialized into a QVariant object and from

there into a JSON object in memory or file on disk. As such, a plugin that

has consistently been implemented with the actions API supports saving and

loading of the state out-of-the-box. Currently, we use this to create presets of

a plugin’s configuration and to save the complete state of the application to a

project file. In the future, we intend to extend this to a complete provenance

mechanism.

An example of a simple decimal action is the implementation of the Sigma

parameter discussed above and shown in Figure 7.3d. The GUI for this parameter

consists of the label, a spinbox, and a slider. Rather than manually creating the

GUI elements, the desired elements can be specified when creating the action.

An example of a customization that we integrated in the decimal action is to

show a spinbox or slider individually or both, as in this example. The action then

creates the GUI elements on-the-fly and also makes sure they are synchronized

by creating them as linked views on the parameter itself. The underlined label

indicates that the parameter is publishable and/or ready to subscribe, while

the italics font indicates that it is already linked. Clicking the label opens a GUI

interface for setting up parameter linking.

7.4.6. Projects and Workspaces
To save the entire state of the application and fully restore it at a later point in

time ManiVault uses projects (R5). Projects extend the serialization of actions,

described in Section 7.4.5, to the core framework, capturing settings and the

layout of the CMV system. In addition, a project contains a complete snapshot

of the data hierarchy. We implemented projects as self-contained, compressed

archives that are a combination of human-readable JSON files and binary

files. Two JSON files are used to save the entire state of the application. A

workspace.json contains the CMV layout and actions state and a project.json
saves the data hierarchy and additional project metadata. The actual data sets are

saved as raw binary blobs, with unique identifiers referenced in project.json,

to minimize load and save times. As such, a project is completely self-contained

https://doc.qt.io/qt-6/qvariant.html

7.4. Framework Architecture 65

a

b
Figure 7.4. Example of the plugin GUI
configuration editor which allows ap-
plication designers to edit the proper-
ties of the plugin actions hierarchy from
within the application.

and can be easily distributed to share findings or simply used to come back to

an analysis at a later point in time.

We split the description of the project into project.json and workspace.json
to add an additional feature, i.e., the definition of user-defined workspaces. As

described above, the workspace contains the complete spatial arrangement of

views (layout configuration) and their complete state. A workspace is used to

set up a complete tailor-made CMV VA application, including customized GUI

elements, but without preset data, as a project would. To enable easy tailoring of

layouts and cross-plugin connections directly in the application, even without

programming, we designed the Studio Mode for ManiVault.

7.4.7. Studio Mode

For the configuration of actions, workspaces, and complete projects, ManiVault

can be put into Studio Mode. This mode of operation allows application designers

to create complete tailor-made applications and data viewers from within the

GUI of ManiVault itself.

A plugin editor, shown in Figure 7.4, enables fine-grained control over the

user interface. It lists an overview of all actions that are currently available for

opened plugins (Figure 7.4a). Therein each action can be enabled or disabled

as a whole , but also customized with respect to its visibility or whether

it can be published , connected , or disconnected . Additionally, the

editor lets a user configure general options like the name of a plugin instance,

shown in its title bar, or whether the GUI of the plugin may be moved or closed

(Figure 7.4b).

The plugin editor is an essential tool for application designers, to create a

completely customized user experience for a specific application. At the same

time, it provides the possibility for advanced users of the system to create

presets of views. Besides saving a complete project, users can adjust the interface

of an individual plugin to their needs and save the resulting configuration as a

template for future instances of that plugin. Using the serialization described

above, these templates can be saved to disk, providing persistent access across

sessions.

For a user-definable flexible layout of the application, we incorporate the Qt

advanced docking system [204] into ManiVault. The system allows users and

application designers to re-arrange the entire layout according to their needs

and preferences.

66 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

7.5. Implementation

The ManiVault core is implemented in C++ and the Qt [171] cross-platform

application development framework. ManiVault provides a plugin API for dataCode available on GitHub in the

repository ManiVaultStudio/core
types, view, analytics, transformation, and writer/loader modules. For each of

these types we provide template implementations to lower the entry barrier for

developers. In addition, we have already implemented a number of plugins for

various use cases, including some of the core functionality of ManiVault such as

the basic data types, and the data hierarchy and data properties view plugins.

The data hierarchy view (Figure 7.5a) functions as the central access point to

any data loaded or created in ManiVault. It displays the data hierarchy in a

searchable tree widget where derived data, such as a clustering, are added as

children to the original data. A data set can be loaded into a viewer plugin by

simply dragging it from the hierarchy onto the view (Figure 7.5c). Alternatively,

the user can also interact with each data set through a context menu providing

access to all compatible data consumer plugins. For a fast setup of plugins

that expect more than a single input, users can select multiple data sets in

the hierarchy and open them through the same menu. The info panel shows

additional information like an analytics progress bar, status messages from

plugins or data group affiliation. If a data set is associated with an analytics

plugin, selecting the hierarchy entry will open the analytics settings in the

properties view.

The data properties view (Figure 7.5b) provides information for a data set

selected in the data hierarchy. For a loaded data set this can be additional

metadata created by the loader, e.g., the extents of an image data set. More

importantly, the data properties view also functions as the user interface for

analytics and transformation plugins. These plugins are instantiated through

the context menu of a data set, which then functions as their input; their output

data sets are then created as children of the input. Selecting an output data

set provides access to the parameters of the analytics or transformation plugin.

Figure 7.5b shows the data properties view of an embedding data set, created

with our t-SNE plugin. From here, the user can at any time interact with the

t-SNE algorithm, e.g., to pause the calculation, change parameters or compute

more iterations.

The data hierarchy and data properties views are integral parts of the system.

More specific functionality is implemented in a number of further plugins. Di-

mensionality reduction, integral to high-dimensional data analysis, is provided

by Principal Component Analysis (PCA), t-distributed Stochastic Neighbor

Embedding (t-SNE) [29], and Hierarchical Stochastic Neighbor Embedding

(HSNE) [52] plugins. The t-SNE and HSNE plugins wrap the high-performance

HDI library [205] and as such scale to millions of data points using its GPU-based

Figure 7.5. Data hierarchy (a)
and data properties view (b) in
ManiVault. Data sets can easily be
shown in views via drag and drop (c).

a

c

b

https://github.com/ManiVaultStudio/core

7.5. Implementation 67

(a) Scatterplot (b) Parallel Coordinates (c) Cluster Heatmap (d) Image View (e) Spectral View

Figure 7.6. A selection of viewer plugins in ManiVault.

implementations [105]. For clustering, we provide an interactive mean-shift
clustering plugin, based on real-time kernel density estimation [203].

For visualization, we provide a number of plugins for common plots, including

a scatterplot (Figure 7.6a), parallel coordinates plot (Figure 7.6b), and cluster
heatmap (Figure 7.6c). If performance is not a major concern, developers can

use web views in combination with Qt’s webchannel API for communicating

between the C++ back-end and web-technology-based front-end. This allows

for easily integrating the vast amount of available visualizations in languages

like D3 [172] and Vega-lite [173]. Our heatmap and parallel coordinates plot are

based on this technology. While the webchannel introduces some overhead, such

plugins are generally limited by the performance of the JavaScript rendering

libraries. If the scalability of a visualization is of high priority, developers can

implement custom high-performance views, e.g., using OpenGL. We have done

so with our scatterplot and image view (Section 7.5.1) plugins. The scatterplot

enables visualization and interaction with millions of points in real-time. In the

default point rendering mode, the different visual channels (point size, color,

opacity, etc.) are fully configurable either using fixed values or based on any

fitting data available. Additionally, we implemented a density representation,

to provide more visual scalability.

Finally, for data loading and writing, we currently provide support for basic

formats in the form of a comma-separated value (CSV) loader/writer and a

binary loader/writer.

7.5.1. High-Dimensional Imaging

Besides traditional abstract high-dimensional data analytics, we target a number

of applications related to high-dimensional imaging (e.g., the workflow pre-

sented in Section 7.6.2). As such, we developed a number of plugins targeting

such image data.

Central to these efforts is the image data type plugin. The image data type

extends the point data type by the extent of the image. Consequently, the image

data type is compatible with all data consumer plugins that take point data as

input; e.g., this allows to calculate a t-SNE using the pixels of a high-dimensional

image as input.

We implemented a sophisticated image view plugin (Figure 7.6d). Inspired

by widely used image editors, we opted for a layer-based approach. Users can

simply drag multiple data sets into the view, where they are added as layers.

From here, users can define the transparency, as well as the position of each

layer, e.g., to stack multiple properties of a single data set as semi-transparent

layers or arrange complementing data sets next to each other. These interactions

are possible through standard navigation tools for zooming and panning, while

selection is implemented using the action described in Section 7.4.5. The actual

visualization of the image is fully configurable: One or two attributes can be

displayed by using 1D and 2D color mapping, and three attributes by directly

mapping them to the three channels of RGB, HSL, or CIELAB color spaces.

https://doc.qt.io/qt-6/qtwebchannel-javascript.html

68 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Next to the image viewer, we also provide a spectral view plugin (Figure 7.6e),

specifically for hyperspectral images. The viewer is based on a simple D3 line

plot and shows spectra of individual pixels or, in the case of groups (e.g.,

selections or clusters), a mean spectrum and a variation as a band around it.

To load image data into ManiVault, we currently provide two options. The first

one is a versatile general image loader plugin. Hyperspectral image data is

commonly available as a stack of grayscale images, where each image represents

a specific wavelength, also interpreted as a dimension of a high-dimensional

space. Our image loader detects such stack in a folder containing common

image formats (including .png, .jpg, .tiff), and also allows direct loading of

other common image formats (grayscale, RGB, ARGB). Dimensions can be

interactively included or excluded from the data set in the loading menu. We

also support re-sampling of the data before loading and the creation of image

pyramids to enable analysis at varying levels of detail, depending on the features

of interest or time available for the analysis. Specific to hyperspectral images,

we also provide an ENVI loader plugin compatible with L3Harris’ geospatial

analysis software ENVI [206].

7.6. Application Examples

ManiVault has already been used for several projects across four universities

and several partners. Popa et al. [198] and Li et al. [200] describe the design

of complete VA systems for analysis of cultural heritage and biological data,

respectively. Vieth et al. [69] and Thĳssen et al. [199] developed VA approaches

for dimensionality reduction and explaining projections as ManiVault plugins.

Here, we walk through exemplary usage scenarios for our framework from

the perspective of our three target user groups (Section 7.3.2): software de-

velopers (Section 7.6.1), practitioners (Section 7.6.2) and application designers

(Section 7.6.3).

7.6.1. Writing ManiVault Plugins – Developer Perspective
ManiVault provides developers of VA modules with a comprehensive API for

data set access, the event notification system, and the other core managers

(Section 7.4.1). Extending the functionality of ManiVault through new plugins

thus comes with minimal overhead. Example code for each plugin type is

available at github.com/ManiVaultStudio/ExamplePlugins.

Here, we present two examples of the necessary steps for creating basic plugins

(R1). First, we create an analytics plugin based on the high-performance t-SNE

library HDI [205]. In addition, we discuss the implementation of a parallel

coordinates plot (PCP) plugin using an existing D3 implementation. Together

with the existing image viewer and scatterplot, these plugins combine into a

Figure 7.7. The Spidr analysis and
parallel coordinates plot as imple-
mented with the plugin setups from
Figs. 7.8 and 7.9.

b
a

https://www.github.com/ManiVaultStudio/ExamplePlugins

7.6. Application Examples 69

complete GUI-based application shown in Figure 7.7 that is usable by domain

expert users without programming knowledge.

To implement the analytics plugin, we follow the steps laid out in Figure 7.8.

In step 1, we create the output data set by deriving a new data set from the

input data, for which the plugin is opened in ManiVault. In this case, we will

create a two-dimensional t-SNE embedding containing x- and y-coordinates

for all the points in the input data set. As such, the output data set will be

a points data set that has the same number of points and two dimensions.

Next, we add a settings action to the created data set and define GUI elements

using ManiVault’s action system. The actions are added to the output data

and listed in the data properties view as shown in Figure 7.7a (step 2). We

create TriggerActions which add pushbuttons to the GUI, to start, pause,

and resume the calculations and a number of categorical OptionActions and

numerical DecimalActions, e.g., to expose t-SNE parameters like the distance

metric (OptionAction) or perplexity (DecimalAction) (R4). Finally, in step 3,

calls and reactions to library functions need to be defined. Here, we notify the

core and thereby other plugins about updated output data, in particular, as

the t-SNE optimization iteratively progresses, we notify the core after every

iteration, such that the viewer plugins can show the progress live. The result is

a lightweight wrapper with no notable performance overhead. Comparing the

performance to running the HDI library using its own Python wrapper showed

no performance regression (Supplemental Material SD1), even when including

progressive updates in ManiVault.

To implement the PCP viewer plugin, we need to set up a view widget that

shows the PCP chart in addition to settings, like with the analytics plugin.

Here, the settings are displayed in the same windows as the view widget

(Figure 7.7b). Since we build a JavaScript-driven plot, we derive this widget from

ManiVault::WebWidget and introduce all HTML and JavaScript resources that

are used for the PCP through a Qt resource file, pcp.qrc (step 1, Figure 7.9).

Step 2 is to simply set the existing pcp.html file in the existing viewWidget.

All JavaScript resources are automatically included through the HTML file.

At this point, the viewer is only able to show the content of the provided

HTML page. To establish interactions to and from the C++ side, we set up a

ManiVault::WebCommunicationObject, which uses a QWebChannel. Within

this communication object, we define signals and slots for communication.

E.g., the setData signal (step 3) is used to send the data, provided as a

QVariantList object, to a receiver on the JavaScript side. This receiver, i.e.,

the initPlot function is connected in step 4 to receive the signal. Vice versa,

slots defined in the communication object can be called directly in JavaScript

code, e.g., here we define an updateSelection slot, that can be called from the

JavaScript side with a list of selected items. The plugin then handles any related

computations in the corresponding C++ function.

7.6.2. Data Exploration – Practitioner Perspective
Practitioners in various disciplines work with high-dimensional data sets.

Here, we consider the exemplary case of exploring remote sensing data using

ManiVault. Similar to other application areas, visual exploration of geospatial

data is considered important but challenging [207]. While specific considera-

tions and final insights will differ from domain to domain, we can follow the

void AnalyticsPlugin::init() {
// 1. Derive output from input data set
setOutputDataset(_core->createDerivedDataset("outData"));
// 2. Add settings actions to output data set
outDataset->addAction(_settings->getSettings());
// 3. Connect GUI interactions (e.g. button press)
// and library callbacks (e.g. progress or finish)
connect(_settings->getStart(), press, this, runTask);
connect(_lib, finishedTask, this, updateCore);

}

Figure 7.8. Bare bone analytics plu-
gin setup for wrapping a C++ library.
Notifying of output data change (step
4) can be called progressively during
the calculation of or on finishing a task.

https://doc.qt.io/qt-6/qwebchannel.html

70 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Figure 7.9. Bare bone viewer plu-
gin setup for wrapping a JavaScript
library. Some boilerplate code is left out
for brevity; complete implementation is
available alongside other example plug-
ins online.

[ViewWidget.cpp]
ViewWidget::ViewWidget() :WebWidget() {
// 1. Init resources and communication bridge
Q_INIT_RESOURCE(pcp);
init(_comObj);

}

[ViewPlugin.cpp]
void ViewPlugin::init() {
// 2. Init web widget (set HTML contents)
viewWidget->setPage(":res/pcp.html", "qrc:/res/");
layout->addWidget(viewWidget);

}

[CommunicationObject.h]
class ComObj :public WebCommunicationObject {
// 3. Init signals for communication from cpp to js
signals:
void setData(QVariantList& data);

// 5. Init slots for communication from js to cpp
public slots:
void updateSelection(QVariantList& selection);

}

[qwebchannel.tools.js]
// 4. Register signals sent by the view widget
bridge.setData.connect(function(){initPlot(arguments[0])})

task abstraction by Lam et al. [153] to create a partial workflow that will be

representative of many fields (R2).

We want to explore a hyperspectral image data set, the HYDICE image of the

National Mall [208], showing 307 by 1280 pixels, each attached to 191 spectral

bands covering the 0.4-2.4 µm region of the light spectrum reflected by the

objects in view. Each band can be interpreted as an image channel. A major

objective when exploring hyperspectral images is the identification of surface

cover classes. It is typical to manually define class labels for a small subset of

pixels that afterwards are used in semi-supervised automated classification

for the rest of the data. Connecting any derived features from the spectrum

back to the spatial image layout is essential during these analysis steps. More

specifically, our goals are now to (I) explore the data, connected to the task of

discovering and describing observations, and to (II) explain these observations by

identifying main causes. These steps will yield well-justified classes that can be

used in downstream analysis.

First, in ManiVault, we load the HYDICE data set using an image loader plugin.

To inspect the loaded image we can open it in an image viewer plugin, which

provides single-channel and false-coloring visualizations based on any three

channels. We additionally open a spectral view plugin which shows the full

spectrum of a single pixel or the averaged spectrum of a selection that we

define in the image viewer, resulting in the setup of Figure 7.10a. Then, to easily

discover a hierarchical class structure, we use the HSNE analytics plugin to create

a hierarchical embedding of the data employing angular distance: we open the

analysis through a context-menu of the data set entry in the data hierarchy, select

the cosine distance metric, start the embedding and display it in a scatterplot as

seen in Figure 7.10b. Next, we manually outline three clusters that are apparent

in the top-level HSNE embedding as shown in Figure 7.1 (center top). To inspect

their spectra, we drag and drop the new cluster data set from the data hierarchy

into the spectral viewer, Figure 7.1 (right). Additionally, we might inspect the

cluster sizes in the data properties. Clicking on a specific cluster displayed in

the data properties will select corresponding data points in the embedding

and highlight corresponding pixels in the image (Figure 7.10c). Thus, we can

quickly relate the cluster spectra to image positions and define the main pixel

classes water, vegetation, and buildings. We want to focus on a single cluster —

the one corresponding to buildings. Therefore, we refine the cluster of interest

to a lower HSNE hierarchy level through a context menu opened by clicking

inside the embedding — the HSNE plugin added an action to the data set that

is displayed there as well as in the data properties window. To establish a visual

connection between the spatial data layout and embedding, we drag the new

7.6. Application Examples 71

a b c

Top-level HSNE
embedding

Average spectra
of selected

image region

Manual selection
Selected cluster

Figure 7.10. A typical exploration workflow with ManiVault: A user can open and re-arrange views on the fly, derive new data sets using analytics plugins
and connect parameters between plugins. Linked colormaps of the scatterplot and image viewer are shown in Figure 7.1.

embedding data set to the image viewer, which automatically infers the proper

image dimensions for the data subset from its parent in the data hierarchy and

converts it into an additional image layer. Further, we can link the colormaps

of this image layer and the embedding through the parameter-sharing system

by publishing one and connecting the other to it (R3). Zooming into a spatial

area of interest, Figure 7.1 (left), we can discriminate between several building

structures like houses and streets, and even create subclasses of roofs that

immediately stand out thanks to the embedding-based recoloring.

The above procedure intertwined the accomplishment of goals (I) and (II).

ManiVault made it easy to connect various views on the data, i.e., a spatial

layout, high-dimensional pixel attributes, and derived features in the form of

embedding positions. We quickly discriminated between classes in the data

and identified differing spectral characteristics as their cause.

7.6.3. Sharing Analysis Setups – Designer Perspective
ManiVault’s workspace and project features can be used to save and continue an

analysis session but also enable dissemination of results and complete workflows.

To showcase this, we re-implemented the Cytosplore Viewer application [209]

dedicated to sharing the results of Bakken et al. [210] in ManiVault, shown in

Figure 7.11. Instead of having to write an entire stand-alone application to share

an interactive environment alongside data to explore related insights in, we can

use a ManiVault project to bundle both views and data (R5).

The viewer application depicts RNA sequencing data on brain cells from three

vertebrate species. The viewer aims to highlight differences in the expression

of genes and cell types that are shared across the species as described in the

original paper. The main elements of the viewer application are three scatterplots

showing t-SNE embeddings of the gene data of each species, a hierarchical

cluster viewer showing cell types, and a table view showing statistical properties

of the expression data. To create the viewer, we configure ManiVault’s GUI from

within the GUI (R4). We start with loading all data sets and setting up a single

scatterplot plugin. We link scatterplot parameters like its colormap to a global

settings panel that lets users configure all three scatterplots, like in the original

application. Its settings can be saved as a preset which we use for the other two

scatterplot instances. Similarly, we populate the cluster hierarchy view and table

viewer with data. Figure 7.11 shows a configuration in which a user-selected

entry in the table view defines the data attributes (here a gene’s expression)

used to recolor the scatterplot data points (here tissue samples).

ManiVault’s Studio Mode allows us to lock this setup of views and parameter

connections. This is achieved by simply publishing the current view layout,

loaded data, and parameter linkage through the "File" menu tab. We can now

share the viewer with other parties.

72 7. ManiVault: A Visual Analytics Framework for High-Dimensional Data

Figure 7.11. Screenshot of a re-
implementation of a Cytosplore
Viewer for comparative cellular analy-
sis of motor cortex in human, marmoset,
and mouse [210]. The viewer shows em-
beddings of cells from the three species
in combination with a shared cluster
hierarchy and the option to calculate
differential gene expression.

7.7. Conclusion
This chapter describes the design considerations for and implementation of

ManiVault, an extensible visual analytics framework for high-dimensional data.

Due to its modular architecture and data-centric design, the software enables

flexible exploration and analysis workflows. We presented various plugins that

provide visualization and analytics functionalities to the system. To build upon

these, we showed how existing libraries can be easily incorporated into the

system. ManiVault’s action and event systems allow users to adjust plugins and

their interplay, enabling the creation of fully customized applications.

Currently, the system provides data plugins that cover a wide range of applica-

tions. New data types like multivariate graph data [58] can be introduced into

the system as new data plugins without changes to the application’s core. We

plan to extend the current serialization mechanism, used for saving the state of

the system, to handle information about interaction history and other kinds of

provenance [211]. Analytics plugins that run code in interpreted languages like

Python. We would like to improve this integration in order to easily integrate

the vast amount of data science tools available in those languages.

We believe that ManiVault has great potential in aiding with the creation and

use of visual analytics applications for visualization developers, practitioners,

and application designers.

Conclusion 8.
A wide variety of domains produce high-dimensional images, from single-cell

biology to astrophysics. As experts in these domains acquire new data of unseen 8.1 Contributions 73
8.2 Challenges and Out-

look 74
8.3 Closing Words 75

phenomena or using novel equipment, they face the need to explore and analyze

these new images. However, high-dimensional images are challenging to handle:

Both their size and complex structure introduce difficulties computationally, e.g.,

in terms of algorithmic design, as well as for interactive visual representation,

since their direct visualization is incompatible with standard displaying methods

and thus limits human interpretation.

In this thesis, we introduced several visual analytics techniques, i.e., the com-

bination of visualization, interaction, and automated analysis methods, to

aid exploration and analysis of high-dimensional images. Specifically, we

presented several methods that bridge dimensionality reduction techniques

with image data properties and a software framework for the exploration of

high-dimensional data.

8.1. Contributions

One major shortcoming of applying DR techniques like t-SNE and UMAP to

images is that they do not incorporate spatial information, i.e., pixel neighbor-

hood relations. While their embedding may capture the pixel attribute structure

well, any image-specific characteristics, e.g., texture information, is lost. In Chapter 4:

Spatial Information in Dimensional-

ity Reduction for High-Dimensional

Images

chapter 4 we modified the distance metric used in neighborhood-based DR

techniques to address this limitation. Instead of using a distance metric between

the attribute vectors of two pixels, as is the standard approach, we include the

pixel’s spatial neighbor’s in the comparison. We explore comparisons based

on high-dimensional texture features and using a point-cloud based distance

metric that directly works with all attribute vectors in the pixel’s neighborhood.

We show that incorporating spatial information into DR techniques exposes

data patterns that are not easily identifiable in standard embeddings.

Modern image data is typically high in resolution, containing up to several

million data points. With these large images sizes, dimensionality reduction

techniques become more computationally demanding and their output less

interpretable as embeddings become cluttered. Hierarchical DR techniques

address these scalability issues. Typical exploration setups for high-dimensional

images consist of an image view and an embedding view. While a user can

change the level of abstraction and regions of interest in image and embedding

space, there exists no coupling between these interactions. In chapter 5 we Chapter 5:

Coupled Exploration of High-

Dimensional Images and Hierarchi-

cal Embeddings

proposed such a mapping from image navigation interactions to embedding

space actions. We show that such a coupling allows for a natural extension

of the “overview-first, details-on-demand” approach to exploring image and

embedding space simultaneously. The automated coupling reduces the number

of interactions required to reach a desired level of abstraction in both spaces.

We introduced interactions for coupled image exploration and attribute explo-

ration via hierarchical embeddings. However, existing data hierarchies used

in hierarchical DR techniques are designed for abstract data, not image data,

leading to non-spatially-continuous abstractions. That is, embedding points on

abstraction levels often represent a wide spread of pixels, hampering a region-of-

interest based image exploration. This issue would remain even when combining

the hierarchical DR with spatially-informed distance measure as addressed in

chapter 4. In chapter 6, we proposed a superpixel hierarchy to overcome this Chapter 6:

Manifold-Preserving Superpixel Hi-

erarchies

problem. Therein, we present a method to merge pixels spatially based on a

random-walk-based attribute similarity, which preserves the high-dimensional

attribute manifold. We showed that these manifold-preserving superpixels

provide a suitable abstraction for high-dimensional image exploration.

74 8. Conclusion

As valuable as individual methods for exploration, analysis, and interaction

may be, they can only be effective if they are accessible to domain experts. New

imaging modalities and advances in computational methods will continuously

update the best practices in data handling, requiring analysis environments

to be flexible. In chapter 7 we presented the software framework ManiVault,Chapter 7:

ManiVault: A Visual Analytics

Framework for High-Dimensional

Data

which enables users from varying backgrounds and with diverse expertise to

setup and extend visual analytics workflows. We show how ManiVault supports

software developers, application designers, and practitioners to implement

algorithms and visual encodings, prototype workflow-specific tool sets, and

perform their data exploration and analysis, respectively. All methods presented

in this thesis are also made available in or fully implemented as plugins for this

framework.

Collectively, these contributions address high-dimensional image exploration

by integrating spatial awareness into dimensionality reduction, developing

interaction techniques, and creating manifold-preserving superpixel hierarchies.

The domain-agnostic nature of these methods enables their application across

diverse fields. This generality necessarily comes at the cost of leaving out

any domain-specific optimizations that may be available in those use cases.

However, by implementing these approaches within the ManiVault framework,

they become accessible and adaptable. Domain experts can build on this

foundation to tailor workflows to their specific data and analysis needs.

8.2. Challenges and Outlook

Dimensionality reduction enables the discovery of meaningful insights in

data that is otherwise unfamiliar or difficult to interpret. However, especially

non-linear embeddings, which this thesis builds on, can be difficult to reason

about. Clusters in the data might become apparent, but explanations for why

any particular data point is clustered generally require additional interpretive

tools or domain knowledge. Our introduction of similarities that combine

image-space and attributes in the dimensionality reduction process exacerbates

this point and opens up additional questions about the feature importance of

spatial pixel layout. A rich body of visual analytics research exists to aid in

embedding interpretation [212, 213], and leveraging this work further presents

an opportunity to refine and improve the effectiveness of the methods presented

in this thesis.

Hypothesis generation and confirmatory analysis are closely linked and should

be complementary during the data analysis process. Hypothesis generation

focuses on gaining insight into unseen data as well as uncovering patterns

and anomalies, whereas confirmatory analysis is concerned with validating

predefined hypotheses using statistical methods. The methods and software

framework in this thesis primarily target the former analysis stage. While

confirmatory analysis remains outside the scope of this work, its tighter inte-

gration into the exploratory workflow with embeddings and inside ManiVault

represents a valuable direction for future development.

Ongoing development in domains such as spatial transcriptomics indicate a

trend toward significant growth in the size of high-dimensional image data

— both in terms of spatial resolution and number of channels. This trend

underscores the need for increasingly specialized methods for interactive

exploration and analysis, capable of handling both the scale and complexity

of such data, as well as inclusion of domain specific knowledge. Additionally,

advances in acquisition of volumetric high-dimensional data highlight the need

to generalize spatial neighborhood relationships and interaction paradigms to

accommodate 3D data and corresponding embeddings techniques.

8.3. Closing Words 75

8.3. Closing Words
This thesis started out with the goal of addressing long-standing challenges

in facilitating the understanding of massive and continually growing data,

supporting multiple levels of data and information abstraction and providing "We do not guarantee to introduce

you to the “best” tools, particularly

since we are not sure that there can

be unique bests." John W. Tukey in

Exploratory Data Analysis, page 1 [1]

frameworks for analysis of spatial data. Did it succeed? We presented such

a software framework and new methods for abstracting and interacting with

large spatial data. Yet, progress in visual analytics is difficult to quantify and the

search for good solutions often open-ended. As new types of data and analytical

challenges emerge, both methods and frameworks must evolve accordingly. The

work presented here contributes to this ongoing process. It is another step along

the path forward.

76 8. Conclusion

References

[1] John W. Tukey. Exploratory Data Analysis. Pearson, 1977 (cited on pages 1, 75).

[2] Christian Tominski and Heidrun Schumann. Interactive Visual Data Analysis. AK Peters Visualization

Series. CRC Press, 2020. doi: 10.1201/9781315152707 (cited on page 1).

[3] Jonathan C. Roberts. ‘State of the Art: Coordinated & Multiple Views in Exploratory Visualization’. In:

Proc. CMV. New York: IEEE, 2007, pp. 61–71. doi: 10.1109/CMV.2007.20 (cited on pages 2, 56, 62).

[4] Julian Heinrich and Daniel Weiskopf. ‘State of the Art of Parallel Coordinates’. In: Proc. Eurographics.
Ed. by Mateu Sbert and László Szirmay-Kalos. Eurographics Association, 2013, pp. 95–116. doi:

10.2312/CONF/EG2013/STARS/095-116 (cited on pages 2, 5).

[5] A. Lhuillier, C. Hurter, and A. Telea. ‘State of the Art in Edge and Trail Bundling Techniques’. In:

Computer Graphics Forum 36.3 (2017), pp. 619–645. doi: 10.1111/cgf.13213 (cited on page 2).

[6] Justin Matejka and George Fitzmaurice. ‘Same Stats, Different Graphs: Generating Datasets with

Varied Appearance and Identical Statistics through Simulated Annealing’. In: Proc. CHI. Association

for Computing Machinery, 2017, pp. 1290–1294. doi: 10.1145/3025453.3025912 (cited on page 2).

[7] F. J. Anscombe. ‘Graphs in Statistical Analysis’. In: The American Statistician 27.1 (1973), pp. 17–21. doi:

10.1080/00031305.1973.10478966 (cited on page 2).

[8] Laurens van der Maaten, Eric Postma, and Jaap van den Herik. Dimensionality Reduction: A Comparative
Review. Tilburg University Technical Report, TiCC-TR 2009-005. url: lvdmaaten.github.io/publications.

2009 (cited on pages 2, 6, 7).

[9] C. LeCun Y. Cortes and C.J.C. Burges. The MNIST Database of Handwritten Digits. url: yann.lecun.com/

exdb/mnist. New York, NY, USA, 1998 (cited on page 3).

[10] Marion F. Baumgardner, Larry L. Biehl, and David A. Landgrebe. 220 Band AVIRIS Hyperspectral Image
Data Set: June 12, 1992 Indian Pine Test Site 3. 2015. doi: 10.4231/R7RX991C (cited on pages 3, 24, 36, 46,

47, 51, 99).

[11] Kristin A Cook and James J Thomas. Illuminating the Path: The Research and Development Agenda for Visual
Analytics. osti.gov/biblio/912515. Pacific Northwest National Lab (PNNL), 2005 (cited on pages 3, 55).

[12] Leland Wilkinson and Michael Friendly. ‘The History of the Cluster Heat Map’. In: The American
Statistician 63.2 (2009), pp. 179–184. doi: 10.1198/tas.2009.0033 (cited on page 5).

[13] J. M. Chambers. Graphical Methods for Data Analysis. New York: Chapman and Hall/CRC, 1983, p. 410.

doi: 10.1201/9781351072304 (cited on page 5).

[14] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. ‘On the Surprising Behavior of

Distance Metrics in High Dimensional Space’. In: Proc. Database Theory — ICDT. Ed. by Jan Van

den Bussche and Victor Vianu. Springer Berlin Heidelberg, 2001. doi: 10.1007/3-540-44503-X_27
(cited on page 5).

[15] Allison Marie Horst, Alison Presmanes Hill, and Kristen B Gorman. palmerpenguins: Palmer Archipelago
(Antarctica) penguin data. R package version 0.1.0. 2020. doi: 10.5281/zenodo.3960218. url: https:
//allisonhorst.github.io/palmerpenguins/ (cited on page 6).

[16] Luis Gustavo Nonato and Michaël Aupetit. ‘Multidimensional Projection for Visual Analytics: Linking

Techniques with Distortions, Tasks, and Layout Enrichment’. In: IEEE Transactions on Visualization and
Computer Graphics 25.8 (2019), pp. 2650–2673. doi: 10.1109/TVCG.2018.2846735 (cited on pages 6, 11,

12, 99).

[17] Mateus Espadoto et al. ‘Toward a Quantitative Survey of Dimension Reduction Techniques’. In: IEEE
Transactions on Visualization and Computer Graphics 27.3 (2021), pp. 2153–2173. doi: 10.1109/TVCG.2019.
2944182 (cited on pages 6, 11, 22, 25, 91).

[18] Cyril de Bodt et al. Low-dimensional embeddings of high-dimensional data. arXiv preprint. 2025. doi:

10.48550/arXiv.2508.15929 (cited on pages 6, 8, 11).

[19] John A. Lee and Michel Verleysen, eds. Nonlinear Dimensionality Reduction. 1st ed. New York, NY:

Springer, 2007. doi: 10.1007/978-0-387-39351-3 (cited on page 6).

https://doi.org/10.1201/9781315152707
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.2312/CONF/EG2013/STARS/095-116
https://doi.org/10.1111/cgf.13213
https://doi.org/10.1145/3025453.3025912
https://doi.org/10.1080/00031305.1973.10478966
https://web.archive.org/web/20250325065528/https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
https://web.archive.org/web/20250112235228/http://yann.lecun.com/exdb/mnist/
https://web.archive.org/web/20250112235228/http://yann.lecun.com/exdb/mnist/
https://doi.org/10.4231/R7RX991C
https://www.osti.gov/biblio/912515
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1201/9781351072304
https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.5281/zenodo.3960218
https://allisonhorst.github.io/palmerpenguins/
https://allisonhorst.github.io/palmerpenguins/
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.48550/arXiv.2508.15929
https://doi.org/10.1007/978-0-387-39351-3

78 References

[20] Sylvain Lespinats, Benoit Colange, and Denys Dutykh, eds. Nonlinear Dimensionality Reduction Techniques.
1st ed. New York, NY: Springer, 2022. doi: 10.1007/978-3-030-81026-9 (cited on page 6).

[21] Benyamin Ghojogh et al. Elements of Dimensionality Reduction and Manifold Learning. 1st ed. Cham:

Springer, 2023. doi: 10.1007/978-3-031-10602-6 (cited on page 6).

[22] I. T. Jolliffe. Principal Component Analysis. 2nd ed. Springer, 2002. doi: 10.1007/b98835 (cited on pages 6,

7).

[23] Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional Scaling. 2nd ed. Springer, 2005. doi:

10.1007/0-387-28981-X (cited on page 7).

[24] J.W. Sammon. ‘A Nonlinear Mapping for Data Structure Analysis’. In: IEEE Transactions on Computers
C-18.5 (1969), pp. 401–409. doi: 10.1109/T-C.1969.222678 (cited on page 7).

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. url:http://www.deeplearningbook.
org. MIT Press, 2016 (cited on page 7).

[26] J. B. Tenenbaum, V. De Silva, and J. C. Langford. ‘A global geometric framework for nonlinear

dimensionality reduction’. In: Science 290.5500 (2000), pp. 2319–2323. doi: 10.1126/science.290.
5500.2319 (cited on pages 7, 13, 41).

[27] Ronald R. Coifman and Stéphane Lafon. ‘Diffusion maps’. In: Applied and Computational Harmonic
Analysis 21.1 (2006). Special Issue: Diffusion Maps and Wavelets, pp. 5–30. doi: 10.1016/j.acha.2006.
04.006 (cited on page 7).

[28] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. arXiv preprint. 2018. doi: 10.48550/arXiv.1802.03426 (cited on pages 7, 9,

11, 12, 15, 21, 29, 46).

[29] Laurens van der Maaten and Geoffrey Hinton. ‘Visualizing data using t-SNE’. In: Journal of Machine
Learning Research 9 (2008). url: jmlr.org/vandermaaten08a, pp. 2579–2605 (cited on pages 7, 9, 11, 12,

15, 66).

[30] Laurens van der Maaten. ‘Accelerating t-SNE using Tree-Based Algorithms’. In: Journal of Machine
Learning Research 15 (2014), pp. 3221–3245 (cited on pages 7, 9).

[31] Dmitry Kobak and George C. Linderman. ‘Initialization is critical for preserving global data structure

in both t-SNE and UMAP’. In: Nature Biotechnology 39.2 (2021), pp. 156–157. doi: 10.1038/s41587-020-
00809-z (cited on page 8).

[32] Jian Tang et al. ‘Visualizing Large-scale and High-dimensional Data’. In: Proc. WWW. 2016, pp. 287–297.

doi: 10.1145/2872427.2883041 (cited on page 9).

[33] Pak Chung Wong and R. Daniel Bergeron. ‘30 Years of Multidimensional Multivariate Visualization’.

In: Scientific Visualization, Overviews, Methodologies, and Techniques. New York: IEEE, 1997, pp. 3–33

(cited on page 11).

[34] R. Fuchs and H. Hauser. ‘Visualization of Multi-Variate Scientific Data’. In: Computer Graphics Forum
28.6 (2009), pp. 1670–1690. doi: 10.1111/j.1467-8659.2009.01429.x (cited on pages 11, 16).

[35] Johannes Kehrer and Helwig Hauser. ‘Visualization and Visual Analysis of Multifaceted Scientific

Data: A Survey’. In: IEEE Transactions on Visualization and Computer Graphics 19.3 (2013), pp. 495–513.

doi: 10.1109/TVCG.2012.110 (cited on pages 11, 16).

[36] Shusen Liu et al. ‘Visualizing High-Dimensional Data: Advances in the Past Decade’. In: IEEE
Transactions on Visualization and Computer Graphics 23.3 (2017), pp. 1249–1268. doi: 10.1109/TVCG.2016.
2640960 (cited on pages 11, 30).

[37] Miriah Meyer et al. ‘MulteeSum: A tool for comparative spatial and temporal gene expression

data’. In: IEEE Transactions on Visualization and Computer Graphics 16.6 (2010), pp. 908–917. doi:

10.1109/TVCG.2010.137 (cited on page 11).

[38] C Eichner et al. ‘Feature-Based Visual Analytics for Studying Simulations of Dynamic Bi-Stable Spatial

Systems’. In: Proc. EuroVA. 2013. doi: 10.2312/PE.EuroVAST.EuroVA13.025-029 (cited on pages 11,

20).

[39] Liang Zhou and Charles Hansen. ‘Transfer function design based on user selected samples for intuitive

multivariate volume exploration’. In: Proc. PacificVis. 2013, pp. 73–80. doi: 10.1109/PacificVis.2013.
6596130 (cited on page 11).

https://doi.org/10.1007/978-3-030-81026-9
https://doi.org/10.1007/978-3-031-10602-6
https://doi.org/10.1007/b98835
https://doi.org/10.1007/0-387-28981-X
https://doi.org/10.1109/T-C.1969.222678
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.48550/arXiv.1802.03426
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1111/j.1467-8659.2009.01429.x
https://doi.org/10.1109/TVCG.2012.110
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2010.137
https://doi.org/10.2312/PE.EuroVAST.EuroVA13.025-029
https://doi.org/10.1109/PacificVis.2013.6596130
https://doi.org/10.1109/PacificVis.2013.6596130

79

[40] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. ‘HadoopViz: A MapReduce Frame-

work for Extensible Visualization of Big Spatial Data’. In: Proc. ICDE. New York: IEEE, 2016, pp. 601–612.

doi: 10.1109/ICDE.2016.7498274 (cited on page 11).

[41] Trevor Manz et al. ‘Viv: Multiscale Visualization of High-Resolution Multiplexed Bioimaging Data on

the Web’. In: Nature Methods 19.5 (2022), pp. 515–516. doi: 10.1038/s41592-022-01482-7 (cited on

page 11).

[42] Leslie Solorzano, Gabriele Partel, and Carolina Wählby. ‘TissUUmaps: Interactive Visualization of

Large-Scale Spatial Gene Expression and Tissue Morphology Data’. In: Bioinformatics 36.15 (2020),

pp. 4363–4365. doi: 10.1093/bioinformatics/btaa541 (cited on page 11).

[43] Won-Ki Jeong et al. ‘Interactive Histology of Large-Scale Biomedical Image Stacks’. In: IEEE Transactions
on Visualization and Computer Graphics 16.6 (2010), pp. 1386–1395. doi: 10.1109/TVCG.2010.168 (cited

on page 11).

[44] Jesper Molin et al. Scale Stain: Multi-Resolution Feature Enhancement in Pathology Visualization. arXiv

preprint. 2016. doi: 10.48550/arXiv.1610.04141 (cited on page 11).

[45] Walid M. Abdelmoula et al. ‘Data-driven identification of prognostic tumor subpopulations using

spatially mapped t-SNE of Mass spectrometry imaging data’. In: Proceedings of the National Academy of
Sciences of the United States of America 113.43 (2016), pp. 12244–12249. doi: 10.1073/pnas.1510227113
(cited on page 11).

[46] Marina Evers, Karim Huesmann, and Lars Linsen. ‘Uncertainty-aware Visualization of Regional Time

Series Correlation in Spatio-temporal Ensembles’. In: Computer Graphics Forum 40.3 (2021), pp. 519–530.

doi: 10.1111/CGF.14326 (cited on page 11).

[47] Robert Krueger et al. ‘Facetto: Combining Unsupervised and Supervised Learning for Hierarchical

Phenotype Analysis in Multi-Channel Image Data’. In: IEEE Transactions on Visualization and Computer
Graphics 26.1 (2020), pp. 227–237. doi: 10.1109/tvcg.2019.2934547 (cited on pages 12, 29, 30, 55).

[48] Antonios Somarakis et al. ‘ImaCytE: Visual Exploration of Cellular Microenvironments for Imaging

Mass Cytometry Data’. In: IEEE Transactions on Visualization and Computer Graphics 27.1 (2019), pp. 1–1.

doi: 10.1109/TVCG.2019.2931299 (cited on pages 12, 26, 30).

[49] Mark van de Ruit, Markus Billeter, and Elmar Eisemann. ‘An Efficient Dual-Hierarchy t-SNE Mini-

mization’. In: IEEE Transactions on Visualization and Computer Graphics 28.1 (2022), pp. 614–622. doi:

10.1109/TVCG.2021.3114817 (cited on page 12).

[50] Stephen Ingram, Tamara Munzner, and Marc Olano. ‘Glimmer: Multilevel MDS on the GPU’. In: IEEE
Transactions on Visualization and Computer Graphics 15.2 (2009), pp. 249–261. doi: 10.1109/TVCG.2008.85
(cited on page 12).

[51] F.V. Paulovich and R. Minghim. ‘HiPP: A Novel Hierarchical Point Placement Strategy and its

Application to the Exploration of Document Collections’. In: IEEE Transactions on Visualization and
Computer Graphics 14.6 (2008), pp. 1229–1236. doi: 10.1109/tvcg.2008.138 (cited on pages 12, 29, 39).

[52] N. Pezzotti et al. ‘Hierarchical Stochastic Neighbor Embedding’. In: Computer Graphics Forum 35.3

(2016), pp. 21–30. doi: 10.1111/cgf.12878 (cited on pages 12, 29, 34, 36, 39, 43, 53, 64, 66, 99).

[53] Wilson E. Marcílio-Jr et al. ‘HUMAP: Hierarchical Uniform Manifold Approximation and Projection’.

In: IEEE Transactions on Visualization and Computer Graphics 31.9 (2025), pp. 5741–5753. doi: 10.1109/
TVCG.2024.3471181 (cited on pages 12, 29, 39, 43, 52, 53).

[54] Manik Kuchroo et al. ‘Multiscale PHATE Identifies Multimodal Signatures of COVID-19’. In: Nature
Biotechnology 40.5 (2022), pp. 681–691. doi: 10.1038/s41587-021-01186-x (cited on pages 12, 52, 53).

[55] Kevin R. Moon et al. ‘Visualizing Structure and Transitions in High-Dimensional Biological Data’. In:

Nature Biotechnology 37.12 (2019), pp. 1482–1492. doi: 10.1038/s41587-019-0336-3 (cited on pages 12,

52, 53).

[56] Stéphane Lafon and Ann B. Lee. ‘Diffusion Maps and Coarse-Graining: A Unified Framework for

Dimensionality Reduction, Graph Partitioning, and Data Set Parameterization’. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 28.9 (2006), pp. 1393–1403. doi: 10.1109/TPAMI.2006.184
(cited on pages 12, 13, 41, 43).

https://doi.org/10.1109/ICDE.2016.7498274
https://doi.org/10.1038/s41592-022-01482-7
https://doi.org/10.1093/bioinformatics/btaa541
https://doi.org/10.1109/TVCG.2010.168
https://doi.org/10.48550/arXiv.1610.04141
https://doi.org/10.1073/pnas.1510227113
https://doi.org/10.1111/CGF.14326
https://doi.org/10.1109/tvcg.2019.2934547
https://doi.org/10.1109/TVCG.2019.2931299
https://doi.org/10.1109/TVCG.2021.3114817
https://doi.org/10.1109/TVCG.2008.85
https://doi.org/10.1109/tvcg.2008.138
https://doi.org/10.1111/cgf.12878
https://doi.org/10.1109/TVCG.2024.3471181
https://doi.org/10.1109/TVCG.2024.3471181
https://doi.org/10.1038/s41587-021-01186-x
https://doi.org/10.1038/s41587-019-0336-3
https://doi.org/10.1109/TPAMI.2006.184

80 References

[57] Donatello Conte et al. ‘How and Why Pattern Recognition and Computer Vision Applications Use

Graphs’. In: Applied Graph Theory in Computer Vision and Pattern Recognition. Ed. by Abraham Kandel,

Horst Bunke, and Mark Last. Springer Berlin Heidelberg, 2007, pp. 85–135. doi: 10.1007/978-3-540-
68020-8_4 (cited on page 13).

[58] Andreas Kerren, Helen C. Purchase, and Matthew O. Ward, eds. Multivariate Network Visualization.

1st ed. Vol. 8380. Lecture Notes in Computer Science. Cham, Switzerland: Springer International

Publishing, 2014, pp. XVI, 237. doi: 10.1007/978-3-319-06793-3 (cited on pages 13, 72).

[59] Helen Gibson and Paul Vickers. graphTPP: A multivariate based method for interactive graph layout and
analysis. arXiv preprint. 2017. doi: 10.48550/arXiv.1712.05644 (cited on page 13).

[60] Yao Yang Leow, Thomas Laurent, and Xavier Bresson. ‘GraphTSNE: A Visualization Technique for

Graph-Structured Data’. In: Proc. ICLR Workshop on Representation Learning on Graphs and Manifolds.
arXiv document: 1904.06915. 2019 (cited on page 13).

[61] Rafael M Martins et al. ‘MVN-Reduce: Dimensionality Reduction for the Visual Analysis of Multivariate

Networks’. In: Proc. EuroVis. 2017. doi: 10.2312/eurovisshort.20171126 (cited on page 13).

[62] Shiyu Chang et al. ‘Heterogeneous Network Embedding via Deep Architectures’. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015). doi:

10.1145/2783258 (cited on page 13).

[63] Megha Khosla, Vinay Setty, and Avishek Anand. ‘A Comparative Study for Unsupervised Network

Representation Learning’. In: IEEE Transactions on Knowledge and Data Engineering 33.5 (2021), pp. 1807–

1818. doi: 10.1109/TKDE.2019.2951398 (cited on pages 13, 41).

[64] Aditya Grover and Jure Leskovec. ‘Node2vec: Scalable Feature Learning for Networks’. In: Proc. KDD.

2016, pp. 855–864. doi: 10.1145/2939672.2939754 (cited on pages 13, 41, 53).

[65] J. F. Kruiger et al. ‘Graph Layouts by T-SNE’. In: Computer Graphics Forum 36.3 (2017), pp. 283–294. doi:

10.1111/cgf.13187 (cited on pages 13, 41).

[66] John Aldo Lee and Michel Verleysen. ‘Nonlinear Dimensionality Reduction of Data Manifolds with

Essential Loops’. In: Neurocomputing. Geometrical Methods in Neural Networks and Learning 67 (2005),

pp. 29–53. doi: 10.1016/j.neucom.2004.11.042 (cited on pages 13, 41, 43).

[67] F. Göbel and A. A. Jagers. ‘Random Walks on Graphs’. In: Stochastic Processes and their Applications 2.4

(1974), pp. 311–336. doi: 10.1016/0304-4149(74)90001-5 (cited on pages 13, 41).

[68] Keenan Crane et al. A Survey of Algorithms for Geodesic Paths and Distances. arXiv preprint. 2020. doi:

10.48550/arXiv.2007.10430 (cited on pages 13, 41).

[69] A. Vieth et al. ‘Incorporating Texture Information into Dimensionality Reduction for High-Dimensional

Images’. In: Proc. PacificVis. New York: IEEE, 2022, pp. 11–20. doi: 10.1109/pacificvis53943.2022.
00010 (cited on pages 15, 36, 68).

[70] Thomas Höllt et al. ‘Cytosplore: Interactive Visual Single-Cell Profiling of the Immune System’. In:

Eurographics 2019 - Dirk Bartz Prize. Ed. by Stefan Bruckner and Steffen Oeltze-Jafra. The Eurographics

Association, 2019. doi: 10.2312/egm.20191032 (cited on page 15).

[71] R. A. Leite et al. ‘EVA: Visual Analytics to Identify Fraudulent Events’. In: IEEE Transactions on
Visualization and Computer Graphics 24.1 (2018), pp. 330–339. doi: 10.1109/TVCG.2017.2744758 (cited

on page 15).

[72] Michael Sedlmair, Tamara Munzner, and Melanie Tory. ‘Empirical Guidance on Scatterplot and

Dimension Reduction Technique Choices’. In: IEEE Transactions on Visualization and Computer Graphics
19.12 (2013), pp. 2634–2643. doi: 10.1109/TVCG.2013.153 (cited on page 15).

[73] Matthias Alfeld et al. ‘Joint Data Treatment for Vis–NIR Reflectance Imaging Spectroscopy and XRF

Imaging Acquired in the Theban Necropolis in Egypt by Data Fusion and t-SNE’. In: Comptes Rendus
Physique 19.7 (2018), pp. 625–635. doi: 10.1016/j.crhy.2018.08.004 (cited on page 15).

[74] Natasja L. de Vries et al. ‘Unravelling the complexity of the cancer microenvironment with multidi-

mensional genomic and cytometric technologiess’. In: Frontiers in Oncology (2020). doi: 10.3389/fonc.
2020.01254 (cited on page 15).

[75] Anna Halladin-Dąbrowska, Adam Kania, and Dominik Kopeć. ‘The t-SNE Algorithm as a Tool to

Improve the Quality of Reference Data Used in Accurate Mapping of Heterogeneous Non-Forest

Vegetation’. In: Remote Sensing 12.1 (2020). doi: 10.3390/rs12010039 (cited on pages 15, 16).

https://doi.org/10.1007/978-3-540-68020-8_4
https://doi.org/10.1007/978-3-540-68020-8_4
https://doi.org/10.1007/978-3-319-06793-3
https://doi.org/10.48550/arXiv.1712.05644
https://doi.org/10.48550/arXiv.1904.06915
https://doi.org/10.2312/eurovisshort.20171126
https://doi.org/10.1145/2783258
https://doi.org/10.1109/TKDE.2019.2951398
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1111/cgf.13187
https://doi.org/10.1016/j.neucom.2004.11.042
https://doi.org/10.1016/0304-4149(74)90001-5
https://doi.org/10.48550/arXiv.2007.10430
https://doi.org/10.1109/pacificvis53943.2022.00010
https://doi.org/10.1109/pacificvis53943.2022.00010
https://doi.org/10.2312/egm.20191032
https://doi.org/10.1109/TVCG.2017.2744758
https://doi.org/10.1109/TVCG.2013.153
https://doi.org/10.1016/j.crhy.2018.08.004
https://doi.org/10.3389/fonc.2020.01254
https://doi.org/10.3389/fonc.2020.01254
https://doi.org/10.3390/rs12010039

81

[76] Boyd Kenkhuis et al. ‘Iron Loading is a Prominent Feature of Activated Microglia in Alzheimer’s

Disease Patients’. In: Acta Neuropathologica Communications (2021). doi: 10.1186/s40478-021-01126-5
(cited on page 15).

[77] Barbara Zitová and Jan Flusser. ‘Image registration methods: a survey’. In: Image and Vision Computing
21.11 (2003), pp. 977–1000. doi: 10.1016/S0262-8856(03)00137-9 (cited on pages 15, 17, 18).

[78] Haidekker M. ‘Texture Analysis’. In: Advanced Biomedical Image Analysis. Wiley, 2010, pp. 236–275. doi:

10.1002/9780470872093.CH8 (cited on page 16).

[79] Anne Humeau-Heurtier. ‘Texture feature extraction methods: A survey’. In: IEEE Access 7 (2019),

pp. 8975–9000. doi: 10.1109/ACCESS.2018.2890743 (cited on pages 16, 19).

[80] Christoph Palm. ‘Color texture classification by integrative Co-occurrence matrices’. In: Pattern
Recognition 37.5 (2004), pp. 965–976. doi: 10.1016/j.patcog.2003.09.010 (cited on page 16).

[81] Chandan Singh, Ekta Walia, and Kanwal Preet Kaur. ‘Color texture description with novel local binary

patterns for effective image retrieval’. In: Pattern Recognition 76 (2018), pp. 50–68. doi: 10.1016/J.
PATCOG.2017.10.021 (cited on page 16).

[82] Sylvain Lefebvre and Hugues Hoppe. ‘Appearance-space texture synthesis’. In: ACM Transactions on
Graphics 25.3 (2006), pp. 541–548. doi: 10.1145/1141911.1141921 (cited on page 16).

[83] Xuejiao Luo, Leonardo Scandolo, and Elmar Eisemann. ‘Texture Browser: Feature-based Texture

Exploration’. In: Computer Graphics Forum 40.3 (2021), pp. 99–109. doi: https://doi.org/10.1111/
cgf.14292 (cited on page 16).

[84] Mathieu Fauvel et al. ‘Advances in spectral-spatial classification of hyperspectral images’. In: Proceedings
of the IEEE 101.3 (2013), pp. 652–675. doi: 10.1109/JPROC.2012.2197589 (cited on page 16).

[85] Pedram Ghamisi et al. ‘Advances in Hyperspectral Image and Signal Processing: A Comprehensive

Overview of the State of the Art’. In: IEEE Geoscience and Remote Sensing Magazine 5.4 (2017), pp. 37–78.

doi: 10.1109/MGRS.2017.2762087 (cited on pages 16, 24).

[86] Mauro Dalla Mura et al. ‘Morphological attribute Profiles for the Analysis of Very High Resolution

Images’. In: IEEE Transactions on Geoscience and Remote Sensing 48 (2010), pp. 3747–3762. doi: 10.1109/
TGRS.2010.2048116 (cited on page 16).

[87] Hong Huang et al. ‘Spatial-spectral local discriminant projection for dimensionality reduction of

hyperspectral image’. In: ISPRS Journal of Photogrammetry and Remote Sensing 156 (2019), pp. 77–93. doi:

10.1016/j.isprsjprs.2019.06.018 (cited on page 16).

[88] Guolan Lu and Baowei Fei. ‘Medical hyperspectral imaging: a review’. In: Journal of Biomedical Optics
19.1 (2014), p. 010901. doi: 10.1117/1.jbo.19.1.010901 (cited on page 16).

[89] Dalton Lunga and Okan Ersoy. ‘Spherical stochastic neighbor embedding of hyperspectral data’. In: IEEE
Transactions on Geoscience and Remote Sensing 51.2 (2013), pp. 857–871. doi: 10.1109/TGRS.2012.2205004
(cited on pages 16, 17).

[90] A. Ardeshir Goshtasby. ‘Similarity and Dissimilarity Measures’. In: Image Registration. Springer Link,

2012, pp. 7–66. doi: 10.1007/978-1-4471-2458-0_2 (cited on page 18).

[91] Rajiv Kapoor, Deepak Sharma, and Tarun Gulati. ‘State of the art content based image retrieval

techniques using deep learning: a survey’. In: Multimedia Tools and Applications 2021 (2021), pp. 1–23.

doi: 10.1007/S11042-021-11045-1 (cited on page 18).

[92] Chengcai Leng et al. ‘Local Feature Descriptor for Image Matching: A Survey’. In: IEEE Access 7 (2019),

pp. 6424–6434. doi: 10.1109/ACCESS.2018.2888856 (cited on page 18).

[93] Jiayi Ma et al. ‘Image Matching from Handcrafted to Deep Features: A Survey’. In: International Journal
of Computer Vision 2020 129:1 129.1 (2020), pp. 23–79. doi: 10.1007/S11263-020-01359-2 (cited on

page 18).

[94] Naomi Altman and Martin Krzywinski. ‘The curse(s) of dimensionality’. In: Nature Methods 15.6 (2018),

pp. 399–400. doi: 10.1038/s41592-018-0019-x (cited on page 18).

[95] Adrien Depeursinge, Omar S. Al-Kadi, and J. Ross Mitchell. Biomedical texture analysis: Fundamentals,
tools and challenges. Elsevier, 2017, pp. 1–415. doi: 10.1016/C2016-0-01903-4 (cited on page 19).

https://doi.org/10.1186/s40478-021-01126-5
https://doi.org/10.1016/S0262-8856(03)00137-9
https://doi.org/10.1002/9780470872093.CH8
https://doi.org/10.1109/ACCESS.2018.2890743
https://doi.org/10.1016/j.patcog.2003.09.010
https://doi.org/10.1016/J.PATCOG.2017.10.021
https://doi.org/10.1016/J.PATCOG.2017.10.021
https://doi.org/10.1145/1141911.1141921
https://doi.org/https://doi.org/10.1111/cgf.14292
https://doi.org/https://doi.org/10.1111/cgf.14292
https://doi.org/10.1109/JPROC.2012.2197589
https://doi.org/10.1109/MGRS.2017.2762087
https://doi.org/10.1109/TGRS.2010.2048116
https://doi.org/10.1109/TGRS.2010.2048116
https://doi.org/10.1016/j.isprsjprs.2019.06.018
https://doi.org/10.1117/1.jbo.19.1.010901
https://doi.org/10.1109/TGRS.2012.2205004
https://doi.org/10.1007/978-1-4471-2458-0_2
https://doi.org/10.1007/S11042-021-11045-1
https://doi.org/10.1109/ACCESS.2018.2888856
https://doi.org/10.1007/S11263-020-01359-2
https://doi.org/10.1038/s41592-018-0019-x
https://doi.org/10.1016/C2016-0-01903-4

82 References

[96] Manfred M. Fischer and Arthur Getis, eds. Handbook of Applied Spatial Analysis: Software Tools, Methods
and Applications. 1st ed. Springer Berlin Heidelberg, 2010, pp. XV, 811. doi: 10.1007/978-3-642-03647-7
(cited on page 19).

[97] David J. Heeger and James R. Bergen. ‘Pyramid-Based Texture Analysis/Synthesis’. In: Proc. SIGGRAPH.

1995, pp. 229–238. doi: 10.1145/218380.218446 (cited on page 19).

[98] Leon Gatys, Alexander Ecker, and Matthias Bethge. ‘A Neural Algorithm of Artistic Style’. In: Journal
of Vision 16.12 (2016). arXiv document: 1508.06576, pp. 326–326. doi: 10.1167/16.12.326 (cited on

page 19).

[99] Will Equitz et al. ‘Efficient Color Histogram Indexing for Quadratic Form Distance Functions’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 17.7 (1995), pp. 729–736. doi: 10.1109/34.391417
(cited on page 19).

[100] Euisun Choi and Chulhee Lee. ‘Feature extraction based on the Bhattacharyya distance’. In: Pattern
Recognition 36.8 (2003), pp. 1703–1709. doi: 10.1016/S0031-3203(03)00035-9 (cited on page 20).

[101] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge. ‘Comparing Images Using

the Hausdorff Distance’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 15.9 (1993),

pp. 850–863. doi: 10.1109/34.232073 (cited on page 20).

[102] Haoqiang Fan, Hao Su, and Leonidas Guibas. ‘A point set generation network for 3D object reconstruc-

tion from a single image’. In: Proc. CVPR. 2017, pp. 2463–2471. doi: 10.1109/CVPR.2017.264 (cited on

page 20).

[103] Nicola Pezzotti et al. ‘Approximated and user steerable tSNE for progressive visual analytics’. In: IEEE
transactions on visualization and computer graphics 23.7 (2017), pp. 1739–1752. doi: 10.1109/TVCG.2016.
2570755 (cited on pages 21, 23, 47).

[104] T. Höllt et al. ‘Focus+Context Exploration of Hierarchical Embeddings’. In: Computer Graphics Forum
38.3 (2019), pp. 569–579. doi: 10.1111/cgf.13711 (cited on pages 22, 31, 32, 35, 36, 38, 54, 99).

[105] Nicola Pezzotti et al. ‘GPGPU Linear Complexity t-SNE Optimization’. In: IEEE Transactions on
Visualization and Computer Graphics 26.1 (2020), pp. 1172–1181. doi: 10.1109/tvcg.2019.2934307 (cited

on pages 23, 67, 107).

[106] Yu A. Malkov and D. A. Yashunin. ‘Efficient and Robust Approximate Nearest Neighbor Search Using

Hierarchical Navigable Small World Graphs’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 42.4 (2020), pp. 824–836. doi: 10.1109/TPAMI.2018.2889473 (cited on pages 23, 47).

[107] Alexander Vieth. Spatial Information in Dimensionality Reduction (Spidr). url: github.com/biovault/Spidr.

2022. doi: 10.5281/zenodo.6120879 (cited on page 23).

[108] Charlotte Giesen et al. ‘Highly multiplexed imaging of tumor tissues with subcellular resolution by

mass cytometry’. In: Nature Methods 11.4 (2014), pp. 417–422. doi: 10.1038/nmeth.2869 (cited on

page 25).

[109] Alexander Vieth et al. ‘Interactions for Seamlessly Coupled Exploration of High-Dimensional Images

and Hierarchical Embeddings’. In: Proc. Vision, Modeling, and Visualization. Ed. by Michael Guthe and

Thorsten Grosch. The Eurographics Association, 2023. doi: 10.2312/vmv.20231227 (cited on pages 29,

39, 48).

[110] Laurens van der Maaten. ‘Accelerating T-SNE Using Tree-Based Algorithms’. In: Journal of Machine
Learning Research 15.93 (2014), pp. 3221–3245 (cited on pages 29, 44, 46).

[111] Marc Vermeulen et al. ‘Application of Uniform Manifold Approximation and Projection (UMAP) in

Spectral Imaging of Artworks’. In: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
252 (2021), p. 119547. doi: 10.1016/j.saa.2021.119547 (cited on page 29).

[112] Hong Huang et al. ‘Dimensionality Reduction of Hyperspectral Imagery Based on Spatial–Spectral

Manifold Learning’. In: IEEE Transactions on Cybernetics 50.6 (2020), pp. 2604–2616. doi: 10.1109/TCYB.
2019.2905793 (cited on page 29).

[113] Dmitry Kobak and Philipp Berens. ‘The Art of Using T-SNE for Single-Cell Transcriptomics’. In: Nature
Communications 10.1 (2019), p. 5416. doi: 10.1038/s41467-019-13056-x (cited on pages 29, 36, 44, 50).

[114] B Shneiderman. ‘The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations’. In:

Proc. Visual Languages. 1996, pp. 336–343. doi: 10.1109/VL.1996.545307 (cited on page 29).

https://doi.org/10.1007/978-3-642-03647-7
https://doi.org/10.1145/218380.218446
https://doi.org/10.48550/arXiv.1508.06576
https://doi.org/10.1167/16.12.326
https://doi.org/10.1109/34.391417
https://doi.org/10.1016/S0031-3203(03)00035-9
https://doi.org/10.1109/34.232073
https://doi.org/10.1109/CVPR.2017.264
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1111/cgf.13711
https://doi.org/10.1109/tvcg.2019.2934307
https://doi.org/10.1109/TPAMI.2018.2889473
https://github.com/biovault/Spidr
https://doi.org/10.5281/zenodo.6120879
https://doi.org/10.1038/nmeth.2869
https://doi.org/10.2312/vmv.20231227
https://doi.org/10.1016/j.saa.2021.119547
https://doi.org/10.1109/TCYB.2019.2905793
https://doi.org/10.1109/TCYB.2019.2905793
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1109/VL.1996.545307

83

[115] David A. Ellsworth, Christopher E. Henze, and Bron C. Nelson. ‘Interactive Visualization of High-

Dimensional Petascale Ocean Data’. In: Proc. LDAV. 2017, pp. 36–44. doi: 10.1109/LDAV.2017.8231849
(cited on page 30).

[116] France Rose et al. ‘PySpacell: A Python Package for Spatial Analysis of Cell Images’. In: Cytometry Part
A 97.3 (2020), pp. 288–295. doi: 10.1002/cyto.a.23955 (cited on page 30).

[117] Giovanni Palla et al. ‘Squidpy: A Scalable Framework for Spatial Omics Analysis’. In: Nature Methods
2022 19:2 19.2 (2022), pp. 171–178. doi: 10.1038/s41592-021-01358-2 (cited on page 30).

[118] Jared Jessup et al. ‘Scope2Screen: Focus+Context Techniques for Pathology Tumor Assessment in

Multivariate Image Data’. In: IEEE Transactions on Visualization and Computer Graphics 28.1 (2022),

pp. 259–269. doi: 10.1109/TVCG.2021.3114786 (cited on page 30).

[119] Denis Schapiro et al. ‘histoCAT: analysis of cell phenotypes and interactions in multiplex image

cytometry data’. In: Nature Methods 14.9 (2017), pp. 873–876. doi: 10.1038/nmeth.4391 (cited on

page 30).

[120] Dominik Sacha et al. ‘Visual Interaction with Dimensionality Reduction: A Structured Literature

Analysis’. In: IEEE Transactions on Visualization and Computer Graphics 23.1 (2017), pp. 241–250. doi:

10.1109/TVCG.2016.2598495 (cited on page 30).

[121] Jing Yang, Matthew O. Ward, and Elke A. Rundensteiner. ‘Interactive Hierarchical Displays: A General

Framework for Visualization and Exploration of Large Multivariate Data Sets’. In: Computers & Graphics
27.2 (2003), pp. 265–283. doi: 10.1016/S0097-8493(02)00283-2 (cited on pages 31, 57).

[122] Mark Sifer. ‘User Interfaces for the Exploration of Hierarchical Multi-dimensional Data’. In: Proc. VAST.

2006, pp. 175–182. doi: 10.1109/VAST.2006.261422 (cited on page 31).

[123] Wilson E. Marcílio-Jr et al. ‘ExplorerTree: A Focus+Context Exploration Approach for 2D Embeddings’.

In: Big Data Research 25 (2021). doi: 10.1016/J.BDR.2021.100239 (cited on page 31).

[124] Niklas Elmqvist and Jean-Daniel Fekete. ‘Hierarchical Aggregation for Information Visualization:

Overview, Techniques, and Design Guidelines’. In: IEEE Transactions on Visualization and Computer
Graphics 16.3 (2010), pp. 439–454. doi: 10.1109/TVCG.2009.84 (cited on pages 31, 34, 37, 99).

[125] Alexander Vieth et al. ‘ManiVault: A Flexible and Extensible Visual Analytics Framework for High-

Dimensional Data’. In: IEEE Transactions on Visualization and Computer Graphics 30.1 (2024), pp. 175–185.

doi: 10.1109/TVCG.2023.3326582 (cited on pages 34, 47, 55).

[126] Jürgen Bernard et al. ‘A Survey and Task-Based Quality Assessment of Static 2D Colormaps’. In: Proc.
SPIE 9397, Visualization and Data Analysis. Ed. by David L. Kao et al. Vol. 9397. SPIE, 2015, p. 93970M.

doi: 10.1117/12.2079841 (cited on pages 36, 48).

[127] Murong Wang et al. ‘Superpixel Segmentation: A Benchmark’. In: Signal Processing: Image Communication
56 (2017), pp. 28–39. doi: 10.1016/j.image.2017.04.007 (cited on page 40).

[128] David Stutz, Alexander Hermans, and Bastian Leibe. ‘Superpixels: An Evaluation of the State-of-the-Art’.

In: Computer Vision and Image Understanding 166 (2018), pp. 1–27. doi: 10.1016/j.cviu.2017.03.007
(cited on pages 40, 50).

[129] Isabela Borlido Barcelos et al. ‘A Comprehensive Review and New Taxonomy on Superpixel Segmenta-

tion’. In: ACM Comput. Surv. 56.8 (2024), 200:1–200:39. doi: 10.1145/3652509 (cited on page 40).

[130] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. ‘Efficient Graph-Based Image Segmentation’. In:

International Journal of Computer Vision 59.2 (2004), pp. 167–181. doi: 10.1023/B:VISI.0000022288.
19776.77 (cited on page 40).

[131] David R. Thompson et al. ‘Superpixel Endmember Detection’. In: IEEE Transactions on Geoscience and
Remote Sensing 48.11 (2010), pp. 4023–4033. doi: 10.1109/TGRS.2010.2070802 (cited on page 40).

[132] Xiang Xu et al. ‘Regional Clustering-Based Spatial Preprocessing for Hyperspectral Unmixing’. In:

Remote Sensing of Environment 204 (2018), pp. 333–346. doi: 10.1016/j.rse.2017.10.020 (cited on

page 40).

[133] Radhakrishna Achanta et al. ‘SLIC superpixels compared to state-of-the-art superpixel methods’.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 34.11 (2012), pp. 2274–2281. doi:

10.1109/TPAMI.2012.120 (cited on page 40).

https://doi.org/10.1109/LDAV.2017.8231849
https://doi.org/10.1002/cyto.a.23955
https://doi.org/10.1038/s41592-021-01358-2
https://doi.org/10.1109/TVCG.2021.3114786
https://doi.org/10.1038/nmeth.4391
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1016/S0097-8493(02)00283-2
https://doi.org/10.1109/VAST.2006.261422
https://doi.org/10.1016/J.BDR.2021.100239
https://doi.org/10.1109/TVCG.2009.84
https://doi.org/10.1109/TVCG.2023.3326582
https://doi.org/10.1117/12.2079841
https://doi.org/10.1016/j.image.2017.04.007
https://doi.org/10.1016/j.cviu.2017.03.007
https://doi.org/10.1145/3652509
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1109/TGRS.2010.2070802
https://doi.org/10.1016/j.rse.2017.10.020
https://doi.org/10.1109/TPAMI.2012.120

84 References

[134] Mirko Paolo Barbato et al. ‘Unsupervised segmentation of hyperspectral remote sensing images

with superpixels’. In: Remote Sensing Applications: Society and Environment 28 (2022), p. 100823. doi:

https://doi.org/10.1016/j.rsase.2022.100823 (cited on pages 40, 51).

[135] Ming-Yu Liu et al. ‘Entropy Rate Superpixel Segmentation’. In: Proc. CVPR. 2011, pp. 2097–2104. doi:

10.1109/CVPR.2011.5995323 (cited on page 40).

[136] Yiwei Tang, Liaoying Zhao, and Lang Ren. ‘Different Versions of Entropy Rate Superpixel Segmentation

For Hyperspectral Image’. In: Proc. ICSIP. 2019, pp. 1050–1054. doi: 10.1109/SIPROCESS.2019.8868344
(cited on page 40).

[137] Ya-Ru Fan. ‘Robust Superpixel Segmentation for Hyperspectral-Image Restoration’. In: Entropy 25.2

(2023), p. 260. doi: 10.3390/e25020260 (cited on page 40).

[138] L. Grady. ‘Random Walks for Image Segmentation’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 28.11 (2006), pp. 1768–1783. doi: 10.1109/TPAMI.2006.233 (cited on page 41).

[139] Jianbing Shen et al. ‘Lazy Random Walks for Superpixel Segmentation’. In: IEEE Transactions on Image
Processing 23.4 (2014), pp. 1451–1462. doi: 10.1109/TIP.2014.2302892 (cited on page 41).

[140] Xuejing Kang, Lei Zhu, and Anlong Ming. ‘Dynamic Random Walk for Superpixel Segmentation’. In:

IEEE Transactions on Image Processing 29 (2020), pp. 3871–3884. doi: 10.1109/TIP.2020.2967583 (cited

on page 41).

[141] Xing Wei et al. ‘Superpixel Hierarchy’. In: IEEE Transactions on Image Processing 27.10 (2018), pp. 4838–

4849. doi: 10.1109/TIP.2018.2836300 (cited on pages 41, 42, 45, 53).

[142] Tingman Yan, Xiaolin Huang, and Qunfei Zhao. ‘Hierarchical Superpixel Segmentation by Parallel

CRTrees Labeling’. In: IEEE Transactions on Image Processing 31 (2022), pp. 4719–4732. doi: 10.1109/
TIP.2022.3187563 (cited on page 41).

[143] Andrei C. Jalba, Michel A. Westenberg, and Jos B. T. M. Roerdink. ‘Interactive Segmentation and

Visualization of DTI Data Using a Hierarchical Watershed Representation’. In: IEEE Transactions on
Image Processing 24.3 (2015), pp. 1025–1035. doi: 10.1109/TIP.2015.2390139 (cited on page 42).

[144] Matthĳs Douze et al. The Faiss library. arXiv preprint. 2024. doi: 10.48550/arXiv.2401.08281 (cited

on page 47).

[145] J. Anthony Gualtieri and Robert F. Cromp. ‘Support Vector Machines for Hyperspectral Remote Sensing

Classification’. In: Proc. 27th AIPR Workshop: Advances in Computer-Assisted Recognition. Vol. 3584. SPIE,

1999, pp. 221–232. doi: 10.1117/12.339824 (cited on pages 47, 99).

[146] Jia-Ren Lin et al. ‘Highly multiplexed immunofluorescence imaging of human tissues and tumors using

t-CyCIF and conventional optical microscopes’. In: eLife 7 (2018), e31657. doi: 10.7554/eLife.31657
(cited on page 49).

[147] Clarence Yapp et al. ‘Highly multiplexed 3D profiling of cell states and immune niches in human

tumors’. In: Nature Methods 22.10 (2025), pp. 2180–2193. doi: 10.1038/s41592-025-02824-x (cited on

page 49).

[148] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. ‘DeepWalk: Online Learning of Social Representations’.

In: Proc. KDD. New York, NY, USA: Association for Computing Machinery, 2014, pp. 701–710. doi:

10.1145/2623330.2623732 (cited on page 53).

[149] Jinwoo Kim et al. ‘Revisiting Random Walks for Learning on Graphs’. In: Proc. ICLR. arXiv document:

2407.01214. 2025, pp. 82497–82547 (cited on page 53).

[150] László Lovász. ‘Random Walks on Graphs: A Survey’. In: Combinatorics, Paul Erdős is eighty. Ed. by

D. Miklós, V. T. Sós, and T. Szőnyi. Vol. 2. János Bolyai Mathematical Society, 1993, pp. 1–46 (cited on

page 53).

[151] Daniel Keim et al. ‘Visual Analytics: Definition, Process, and Challenges’. In: Information Visualization:
Human-Centered Issues and Perspectives. Ed. by Andreas Kerren et al. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 2008, pp. 154–175. doi: 10.1007/978-3-540-70956-5_7 (cited on

page 55).

[152] Matthew Brehmer and Tamara Munzner. ‘A Multi-Level Typology of Abstract Visualization Tasks’.

In: IEEE Transactions on Visualization and Computer Graphics 19.12 (2013), pp. 2376–2385. doi: 10.1109/
TVCG.2013.124 (cited on page 55).

https://doi.org/https://doi.org/10.1016/j.rsase.2022.100823
https://doi.org/10.1109/CVPR.2011.5995323
https://doi.org/10.1109/SIPROCESS.2019.8868344
https://doi.org/10.3390/e25020260
https://doi.org/10.1109/TPAMI.2006.233
https://doi.org/10.1109/TIP.2014.2302892
https://doi.org/10.1109/TIP.2020.2967583
https://doi.org/10.1109/TIP.2018.2836300
https://doi.org/10.1109/TIP.2022.3187563
https://doi.org/10.1109/TIP.2022.3187563
https://doi.org/10.1109/TIP.2015.2390139
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.1117/12.339824
https://doi.org/10.7554/eLife.31657
https://doi.org/10.1038/s41592-025-02824-x
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.48550/arXiv.2407.01214
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124

85

[153] Heidi Lam, Melanie Tory, and Tamara Munzner. ‘Bridging from Goals to Tasks with Design Study

Analysis Reports’. In: IEEE Transactions on Visualization and Computer Graphics 24.1 (2018), pp. 435–445.

doi: 10.1109/TVCG.2017.2744319 (cited on pages 55, 70).

[154] Yuxin Ma et al. ‘Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics’.

In: IEEE Transactions on Visualization and Computer Graphics 26.1 (2020), pp. 1075–1085. doi: 10.1109/
TVCG.2019.2934631 (cited on page 55).

[155] Dong Sun et al. ‘PlanningVis: A Visual Analytics Approach to Production Planning in Smart Factories’.

In: IEEE Transactions on Visualization and Computer Graphics 26.1 (2020), pp. 579–589. doi: 10.1109/
TVCG.2019.2934275 (cited on page 55).

[156] Mingyu Pi et al. ‘Visual Cause Analytics for Traffic Congestion’. In: IEEE Transactions on Visualization
and Computer Graphics 27.3 (2021), pp. 2186–2201. doi: 10.1109/TVCG.2019.2940580 (cited on page 55).

[157] Jiang Wu et al. ‘TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports’. In: IEEE
Transactions on Visualization and Computer Graphics 28.1 (2022), pp. 835–845. doi: 10.1109/TVCG.2021.
3114832 (cited on page 55).

[158] Harald Piringer, Wolfgang Berger, and Helwig Hauser. ‘Quantifying and Comparing Features in

High-Dimensional Datasets’. In: Proc. IV. New York: IEEE, 2008, pp. 240–245. doi: 10.1109/IV.2008.17
(cited on pages 55, 57).

[159] Harald Piringer et al. ‘A Multi-Threading Architecture to Support Interactive Visual Exploration’. In:

IEEE Transactions on Visualization and Computer Graphics 15.6 (2009), pp. 1113–1120. doi: 10.1109/TVCG.
2009.110 (cited on pages 55, 57).

[160] Christopher Ahlberg. ‘Spotfire: An Information Exploration Environment’. In: ACM SIGMOD Record
25.4 (1996). url: tibco.com, archived webpage, pp. 25–29. doi: 10.1145/245882.245893 (cited on

pages 55, 56).

[161] Christopher Ahlberg and Ben Shneiderman. ‘Visual Information Seeking: Tight Coupling of Dynamic

Query Filters with Starfield Displays’. In: Proc. CHI. New York: ACM, 1994, pp. 313–317. doi: 10.1145/
191666.191775 (cited on page 55).

[162] M.O. Ward. ‘XmdvTool: Integrating Multiple Methods for Visualizing Multivariate Data’. In: Proc.
VIS. url: davis.wpi.edu/xmdv, archived webpage. New York: IEEE, 1994, pp. 326–333. doi: 10.1109/
VISUAL.1994.346302 (cited on pages 55–57).

[163] Deborah F Swayne et al. ‘GGobi: Evolving from XGobi into an Extensible Framework for Interactive Data

Visualization’. In: Computational Statistics & Data Analysis. Data Visualization 43.4 (2003), pp. 423–444.

doi: 10.1016/S0167-9473(02)00286-4 (cited on pages 55–57).

[164] JAMES Ahrens, BERK Geveci, and CHARLES Law. ‘ParaView: An End-User Tool for Large-Data

Visualization’. In: Visualization Handbook. Ed. by Charles D. Hansen and Chris R. Johnson. Burlington,

MA, USA: Butterworth-Heinemann, 2005, pp. 717–731. doi: 10.1016/B978-012387582-2/50038-1
(cited on pages 55, 57).

[165] Daniel Jönsson et al. ‘Inviwo - A Visualization System with Usage Abstraction Levels’. In: IEEE
Transactions on Visualization and Computer Graphics 26.11 (2020), pp. 3241–3254. doi: 10.1109/TVCG.
2019.2920639 (cited on pages 55, 57, 58).

[166] C. Stolte, D. Tang, and P. Hanrahan. ‘Polaris: A System for Query, Analysis, and Visualization of

Multidimensional Relational Databases’. In: IEEE Transactions on Visualization and Computer Graphics 8.1

(2002), pp. 52–65. doi: 10.1109/2945.981851 (cited on pages 55, 57).

[167] Tableau Software, LLC. Tableau. url: tableau.com, archived webpage (cited on pages 55, 57).

[168] Mehmet Adil Yalçın, Niklas Elmqvist, and Benjamin B. Bederson. ‘Keshif: Rapid and Expressive Tabular

Data Exploration for Novices’. In: IEEE Transactions on Visualization and Computer Graphics 24.8 (2018),

pp. 2339–2352. doi: 10.1109/TVCG.2017.2723393 (cited on pages 55, 58).

[169] Charles D. Stolper, Adam Perer, and David Gotz. ‘Progressive Visual Analytics: User-Driven Visual

Exploration of In-Progress Analytics’. In: IEEE Transactions on Visualization and Computer Graphics 20.12

(2014), pp. 1653–1662. doi: 10.1109/TVCG.2014.2346574 (cited on page 55).

[170] Sriram Karthik Badam, Niklas Elmqvist, and Jean-Daniel Fekete. ‘Steering the Craft: UI Elements and

Visualizations for Supporting Progressive Visual Analytics’. In: Computer Graphics Forum 36.3 (2017),

pp. 491–502. doi: 10.1111/cgf.13205 (cited on page 55).

https://doi.org/10.1109/TVCG.2017.2744319
https://doi.org/10.1109/TVCG.2019.2934631
https://doi.org/10.1109/TVCG.2019.2934631
https://doi.org/10.1109/TVCG.2019.2934275
https://doi.org/10.1109/TVCG.2019.2934275
https://doi.org/10.1109/TVCG.2019.2940580
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/IV.2008.17
https://doi.org/10.1109/TVCG.2009.110
https://doi.org/10.1109/TVCG.2009.110
https://www.tibco.com/products/tibco-spotfire
https://web.archive.org/web/20230328072936/https://www.tibco.com/products/tibco-spotfire
https://doi.org/10.1145/245882.245893
https://doi.org/10.1145/191666.191775
https://doi.org/10.1145/191666.191775
https://davis.wpi.edu/~xmdv/
https://web.archive.org/web/20230701091130/https://davis.wpi.edu/~xmdv/
https://doi.org/10.1109/VISUAL.1994.346302
https://doi.org/10.1109/VISUAL.1994.346302
https://doi.org/10.1016/S0167-9473(02)00286-4
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1109/TVCG.2019.2920639
https://doi.org/10.1109/TVCG.2019.2920639
https://doi.org/10.1109/2945.981851
https://www.tableau.com/
https://web.archive.org/web/20230327051153/https://www.tableau.com/
https://doi.org/10.1109/TVCG.2017.2723393
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1111/cgf.13205

86 References

[171] The Qt Company. Qt. url: qt.io, archived webpage (cited on pages 56, 66).

[172] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. ‘D
3

Data-Driven Documents’. In: IEEE Transac-
tions on Visualization and Computer Graphics 17.12 (2011), pp. 2301–2309. doi: 10.1109/TVCG.2011.185
(cited on pages 56, 67).

[173] Arvind Satyanarayan et al. ‘Vega-Lite: A Grammar of Interactive Graphics’. In: IEEE Transactions on
Visualization and Computer Graphics 23.1 (2017), pp. 341–350. doi: 10.1109/TVCG.2016.2599030 (cited

on pages 56, 58, 67).

[174] Visplore GmbH. Visplore. url: visplore.com, archived webpage (cited on page 57).

[175] Kitware. Trame. url: kitware.github.io/trame, archived webpage (cited on page 57).

[176] Wenqiang Cui. ‘Visual Analytics: A Comprehensive Overview’. In: IEEE Access 7 (2019), pp. 81555–81573.

doi: 10.1109/ACCESS.2019.2923736 (cited on page 56).

[177] Aindrila Ghosh et al. ‘A Comprehensive Review of Tools for Exploratory Analysis of Tabular Industrial

Datasets’. In: Visual Informatics 2.4 (2018), pp. 235–253. doi: 10.1016/j.visinf.2018.12.004 (cited

on page 56).

[178] Xi Chen et al. ‘Composition and Configuration Patterns in Multiple-View Visualizations’. In: IEEE
Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 1514–1524. doi: 10.1109/TVCG.2020.
3030338 (cited on page 56).

[179] J.-D. Fekete. ‘The InfoVis Toolkit’. In: Proc. INFOVIS. New York: IEEE, 2004, pp. 167–174. doi: 10.1109/
INFVIS.2004.64 (cited on page 56).

[180] J. Yang et al. ‘Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets’.

In: Proc. VisSym. Eindhoven, NL: The Eurographics Association, 2003. doi: 10.2312/VisSym/VisSym03/
019-028 (cited on page 57).

[181] Qingguang Cui et al. ‘Measuring Data Abstraction Quality in Multiresolution Visualizations’. In: IEEE
Transactions on Visualization and Computer Graphics 12.5 (2006), pp. 709–716. doi: 10.1109/TVCG.2006.161
(cited on page 57).

[182] L. Bavoil et al. ‘VisTrails: Enabling Interactive Multiple-View Visualizations’. In: Proc. VIS. New York:

IEEE, 2005, pp. 135–142. doi: 10.1109/VISUAL.2005.1532788 (cited on page 57).

[183] Slicer Community. 3D Slicer. url: slicer.org, archived webpage (cited on page 57).

[184] Hank Childs et al. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data. Chapman and

Hall/CRC, 2012, pp. 395–410. doi: 10.1201/b12985-29 (cited on page 57).

[185] Naohisa Sakamoto and Koji Koyamada. ‘KVS: A Simple and Effective Framework for Scientific

Visualization’. In: Journal of Advanced Simulation in Science and Engineering 2.1 (2015), pp. 76–95. doi:

10.15748/jasse.2.76 (cited on page 57).

[186] Will Schroeder, Ken Martin, and Bill Lorensen. The visualization toolkit. 4th. url: gitlab.kitware.com/vtk/textbook,

archived pdf. Kitware, 2006 (cited on page 57).

[187] Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. ‘amira: A Highly Interactive System for

Visual Data Analysis’. In: Visualization Handbook. Ed. by Charles D. Hansen and Chris R. Johnson.

Burlington: Butterworth-Heinemann, 2005, pp. 749–767. doi: 10.1016/B978-012387582-2/50040-X.

(Visited on 02/07/2023) (cited on page 57).

[188] Thermo Fisher Scientific. Amira. url: thermofisher.com, archived webpage (cited on page 57).

[189] Johannes Sorger et al. ‘A Taxonomy of Integration Techniques for Spatial and Non-Spatial Visualizations’.

In: Proc. VMV. Eindhoven, NL: The Eurographics Association, 2015. doi: 10.2312/vmv.20151258 (cited

on page 57).

[190] Arvind Satyanarayan and Jeffrey Heer. ‘Lyra: An Interactive Visualization Design Environment’. In:

Computer Graphics Forum 33.3 (2014), pp. 351–360. doi: 10.1111/cgf.12391 (cited on page 57).

[191] Jonathan Zong et al. ‘Lyra 2: Designing Interactive Visualizations by Demonstration’. In: IEEE
Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 304–314. doi: 10.1109/TVCG.2020.
3030367 (cited on page 58).

[192] Donghao Ren, Tobias Höllerer, and Xiaoru Yuan. ‘iVisDesigner: Expressive Interactive Design of

Information Visualizations’. In: IEEE Transactions on Visualization and Computer Graphics 20.12 (2014),

pp. 2092–2101. doi: 10.1109/TVCG.2014.2346291 (cited on page 58).

https://www.qt.io/
https://web.archive.org/web/20230327120156/https://www.qt.io/
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2016.2599030
https://visplore.com/
https://web.archive.org/web/20230328074906/https://visplore.com/
https://kitware.github.io/trame/
https://web.archive.org/web/20230324134037/https://kitware.github.io/trame/
https://doi.org/10.1109/ACCESS.2019.2923736
https://doi.org/10.1016/j.visinf.2018.12.004
https://doi.org/10.1109/TVCG.2020.3030338
https://doi.org/10.1109/TVCG.2020.3030338
https://doi.org/10.1109/INFVIS.2004.64
https://doi.org/10.1109/INFVIS.2004.64
https://doi.org/10.2312/VisSym/VisSym03/019-028
https://doi.org/10.2312/VisSym/VisSym03/019-028
https://doi.org/10.1109/TVCG.2006.161
https://doi.org/10.1109/VISUAL.2005.1532788
https://www.slicer.org/
https://web.archive.org/web/20230327212031/https://www.slicer.org/
https://doi.org/10.1201/b12985-29
https://doi.org/10.15748/jasse.2.76
https://gitlab.kitware.com/vtk/textbook
https://web.archive.org/web/20230328124130/https://gitlab.kitware.com/vtk/textbook/raw/master/VTKBook/VTKTextBook.pdf
https://doi.org/10.1016/B978-012387582-2/50040-X
https://www.thermofisher.com/nl/en/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://web.archive.org/web/20230328072745/https://www.thermofisher.com/us/en/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://doi.org/10.2312/vmv.20151258
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2020.3030367
https://doi.org/10.1109/TVCG.2020.3030367
https://doi.org/10.1109/TVCG.2014.2346291

87

[193] Jeffrey Heer, Stuart K. Card, and James A. Landay. ‘Prefuse: A Toolkit for Interactive Information

Visualization’. In: Proc. CHI. New York: ACM, 2005, pp. 421–430. doi: 10.1145/1054972.1055031
(cited on page 58).

[194] Kresimir Matkovic et al. ‘ComVis: A Coordinated Multiple Views System for Prototyping New

Visualization Technology’. In: Proc. IV. New York: IEEE, 2008, pp. 215–220. doi: 10.1109/IV.2008.87
(cited on page 58).

[195] Plotly Technologies Inc. Dash. url: dash.plotly.com, archived webpage (cited on page 58).

[196] Thomas Kluyver et al. Jupyter Notebooks-a publishing format for reproducible computational workflows. url:

jupyter.org, archived webpage, github.com/voila-dashboards/voila. 2016 (cited on page 58).

[197] T. Höllt et al. ‘Cytosplore: Interactive Immune Cell Phenotyping for Large Single-Cell Datasets’. In:

Computer Graphics Forum 35.3 (2016), pp. 171–180. doi: 10.1111/cgf.12893 (cited on page 58).

[198] Andra Popa et al. ‘Visual Analysis of RIS Data for Endmember Selection’. In: Proc. GCH. Eindhoven,

NL: The Eurographics Association, 2022. doi: 10.2312/gch.20221233 (cited on pages 58, 68).

[199] Julian Thĳssen, Zonglin Tian, and Alexandru Telea. ‘Scaling Up the Explanation of Multidimensional

Projections’. In: Proc. EuroVA. Ed. by Marco Angelini and Mennatallah El-Assady. The Eurographics

Association, 2023. doi: 10.2312/eurova.20231098 (cited on pages 58, 68).

[200] Chang Li et al. ‘SpaceWalker enables interactive gradient exploration for spatial transcriptomics data’.

In: Cell Reports Methods 3.12 (2023). doi: 10.1016/j.crmeth.2023.100645 (cited on pages 58, 68).

[201] A. Buja et al. ‘Interactive Data Visualization Using Focusing and Linking’. In: Proc. VIS. New York:

IEEE, 1991, pp. 156–163. doi: 10.1109/VISUAL.1991.175794 (cited on page 62).

[202] C. Plaisant, D. Carr, and B. Shneiderman. ‘Image-browser taxonomy and guidelines for designers’. In:

IEEE Software 12.2 (1995), pp. 21–32. doi: 10.1109/52.368260 (cited on page 62).

[203] Ove Daae Lampe and Helwig Hauser. ‘Interactive visualization of streaming data with Kernel Density

Estimation’. In: Proc. PacificVis. New York: IEEE, 2011. doi: 10.1109/pacificvis.2011.5742387 (cited

on pages 63, 67).

[204] githubuser0xFFFF. Advanced Docking System for Qt. url: github.com/Qt-Advanced-Docking-System,

archived webpage (cited on page 65).

[205] Nicola Pezzotti. High Dimensional Inspector. url: github.com/Nicola17/High-Dimensional-Inspector.

2018. doi: 10.5281/zenodo.1303855 (cited on pages 66, 68, 107).

[206] Jason D. Wolfe and Sarah R. Black. Hyperspectral Analytics in ENVI Target Detection and Spectral Mapping
Methods. Tech. rep. url: l3harrisgeospatial.com/Whitepaper.pdf, archived pdf. Harris Corporation,

2018, p. 40 (cited on page 68).

[207] Mark Gahegan. ‘Visual Exploration and Explanation in Geography Analysis with Light’. In: Geographic
Data Mining and Knowledge Discovery. Ed. by Harvey J. Miller and Jiawei Han. 2nd. CRC Press, 2009.

Chap. 11, pp. 291–324. doi: 10.1201/9781420073980-11 (cited on page 69).

[208] David A. Landgrebe. HYDICE image of Washington DC Mall. url: engineering.purdue.edu, archived

webpage (cited on page 70).

[209] Jeroen Eggermont et al. Cytosplore Viewer. url: viewer.cytosplore.org, archived webpage (cited on

page 71).

[210] Trygve E. Bakken, Nikolas L. Jorstad, and Qiwen Hu et al. ‘Comparative Cellular Analysis of Motor

Cortex in Human, Marmoset and Mouse’. In: Nature 598.7879 (2021), pp. 111–119. doi: 10.1038/s41586-
021-03465-8 (cited on pages 71, 72).

[211] Eric D. Ragan et al. ‘Characterizing Provenance in Visualization and Data Analysis: An Organizational

Framework of Provenance Types and Purpose’. In: IEEE Transactions on Visualization and Computer
Graphics 22.1 (2016), pp. 31–40. doi: 10.1109/TVCG.2015.2467551 (cited on page 72).

[212] Z. Huang et al. ‘VA + Embeddings STAR: A State-of-the-Art Report on the Use of Embeddings in

Visual Analytics’. In: Computer Graphics Forum 42.3 (2023), pp. 539–571. doi: 10.1111/cgf.14859 (cited

on page 74).

[213] Hyeon Jeon et al. ‘Unveiling High-dimensional Backstage: A Survey for Reliable Visual Analytics

with Dimensionality Reduction’. In: Proc. CHI 2025. Proc. CHI. New York, NY, USA: Association for

Computing Machinery, 2025, pp. 1–24. doi: 10.1145/3706598.3713551 (cited on page 74).

https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1109/IV.2008.87
https://dash.plotly.com
https://web.archive.org/web/20230328073033/https://dash.plotly.com/
https://jupyter.org/
https://web.archive.org/web/20230327204631/https://jupyter.org/
https://github.com/voila-dashboards/voila/
https://doi.org/10.1111/cgf.12893
https://doi.org/10.2312/gch.20221233
https://doi.org/10.2312/eurova.20231098
https://doi.org/10.1016/j.crmeth.2023.100645
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1109/52.368260
https://doi.org/10.1109/pacificvis.2011.5742387
https://github.com/githubuser0xFFFF/
https://github.com/githubuser0xFFFF/Qt-Advanced-Docking-System/
https://web.archive.org/web/20230328075959/https://github.com/githubuser0xFFFF/Qt-Advanced-Docking-System/
https://github.com/Nicola17/High-Dimensional-Inspector
https://doi.org/10.5281/zenodo.1303855
https://www.l3harrisgeospatial.com/Portals/0/pdfs/Confirmation/L3HG_Hyperspectral_Whitepaper.pdf
https://web.archive.org/web/20230327182751/https://www.l3harrisgeospatial.com/Portals/0/pdfs/Confirmation/L3HG_Hyperspectral_Whitepaper.pdf
https://doi.org/10.1201/9781420073980-11
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://web.archive.org/web/20230328074006/https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://web.archive.org/web/20230328074006/https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://viewer.cytosplore.org/
https://web.archive.org/web/20230328074120/https://viewer.cytosplore.org/
https://doi.org/10.1038/s41586-021-03465-8
https://doi.org/10.1038/s41586-021-03465-8
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1111/cgf.14859
https://doi.org/10.1145/3706598.3713551

88 References

[214] G. Bradski. ‘The OpenCV Library’. In: Dr. Dobb’s Journal of Software Tools (2000). url: opencv.org,

archived webpage (cited on page 91).

[215] Leland McInnes et al. ‘UMAP: Uniform Manifold Approximation and Projection’. In: The Journal of
Open Source Software 3.29 (2018), p. 861 (cited on page 91).

[216] F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830 (cited on page 91).

[217] Joshua Tenenbaum. ‘Mapping a Manifold of Perceptual Observations’. In: Proc. NIPS. Ed. by M. Jordan,

M. Kearns, and S. Solla. Vol. 10. url: scikit-learn.org, official pdf. MIT Press, 1997, pp. 682–688 (cited on

page 107).

[218] Samer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia Object Image Library (COIL-20). Tech. rep.

CUCS-005-96. url: cs.columbia.edu. Department of Computer Science, Columbia University, 1996

(cited on page 107).

[219] Y. LeCun et al. ‘Gradient-based learning applied to document recognition’. In: Proceedings of the IEEE
86.11 (1998). url: yann.lecun.com/exdb/mnist, pp. 2278–2324. doi: 10.1109/5.726791 (cited on

page 107).

[220] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. url: github.com/zalandoresearch/fashion-mnist. arXiv preprint. 2017.

doi: 10.48550/arXiv.1708.07747 (cited on page 107).

[221] Grace X. Y. Zheng, Jessica M. Terry, and Jason H. Bielas. ‘Massively Parallel Digital Transcriptional

Profiling of Single Cells’. In: Nature Communications 8.1 (2017). url: file.biolab.si/opentsne/benchmark,

p. 14049. doi: 10.1038/ncomms14049 (cited on page 107).

https://opencv.org/
https://web.archive.org/web/20251119034741/https://opencv.org/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html/
https://proceedings.neurips.cc/paper_files/paper/1997/file/28e209b61a52482a0ae1cb9f5959c792-Paper.pdf
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/5.726791
https://github.com/zalandoresearch/fashion-mnist/
https://doi.org/10.48550/arXiv.1708.07747
https://file.biolab.si/opentsne/benchmark//
https://doi.org/10.1038/ncomms14049

Appendix

A. Supplement: Spidr

SA1: Computation settings
For all t-SNE computations we set used the following HDLib parameters:

▶ Exaggeration=250
▶ exponential decay=40
▶ number of trees=4
▶ number of checks=1024

When computing approximated nearest neighbors with HNSWlib we use the default parameters M=16 and

ef_construction=200 as well as the random seed 0.

We apply bilateral filtering using OpenCV [214] with the settings

▶ sigmaColor=75
▶ sigmaSpace=75
▶ d=5

For the quantitative analysis, we compute the 𝑘-nearest neighbor hit, as described by Espadoto et al [17]. In

brief, for labelled data, for every point in the low-dimensional embedding, we compute the fraction of the 𝑘
nearest neighbors in the low-dimensional embedding have the same label as the probed point. This fraction is

then averaged for all points in the dataset. For the synthetic data, we define the ground truth by separating the

checkered areas and homogeneous areas as shown in Figure A.2a. For the Indian Pines dataset, we use the

16-class ground truth data provided with the original data. For the synthetic data, we limit 𝑘 to 𝑘 = [1..63],
as the inner, homogeneous squares in the image cover 64 pixels, meaning larger values for 𝑘 would include

more neighbors than pixels existing for the given label. For the Indian Pines data, we compute the 𝑘-nearest

neighbor hit for 𝑘 = [1..100]. For all, we do not include the probed point in the 𝑘-nearest neighbors.

SA2: Weighted feature computation and weighted Chamfer distance
With weights w that sum to 1 and weighted 𝜇∗ = [𝜇∗

1
, . . . , 𝜇∗

𝐶
], an entry 𝜎𝑗𝑘 of the covariance matric 𝚺i is given

by:

𝜎𝑗𝑘 =
∑

q∈N𝑆,𝜂i

w(i − q)(𝑎q𝑗 − 𝜇∗𝑗)(𝑎q𝑘 − 𝜇∗𝑘)
𝑇 . (A.1)

where the weighted means are 𝜇∗𝑐 =
∑

q∈N𝑆,𝜂i
w(i − q)𝑎q𝑐 .

For weighting the covariance matrix feature, including the channel-wise means, one only needs to introduce

the weights w in the calculation of the expected value as probabilities.

The Chamfer point cloud distance from Equation 4.6 can be extended by weighting the minimal distances

from each point in the first to the second neighborhood as shown in Equation:

𝑑𝑃𝐶𝑠 (𝒁i , 𝒁j) =
1

|N𝑆,𝜂
i |

∑
q∈N𝑆,𝜂i

𝑤(i − q) min

p∈N𝑆,𝜂j

∥aq − ap∥2
2
+

1

|N𝑆,𝜂
j |

∑
p∈N𝑆,𝜂j

𝑤(j − p) min

q∈N𝑆,𝜂i

∥aq − ap∥2
2
.

(A.2)

SA3: Texture-aware UMAP and MDS embeddings
It is possible to use the spatially informed distances between image patches of high-dimensional images in any

distance-based dimensionality reduction method. Here, we show spatially informed UMAP and metric MDS

embeddings for the synthetic data set from Section 4.4.

We use the umap-learn [215] implementation for UMAP and scikit-learn [216] metric MDS. Note, that in the

MDS Bhattacharyya example, the central cluster is actually two: the upper part corresponds to the upper left

92 A. Supplement: Spidr

area in the image and the lower part to the lower right. Between the two clusters are the border points between

the checkered regions (and the pixels on the vertical border between the homogeneous areas).

t-S
NE

UM
AP

M
DS

Standard Chamfer point cloud Histograms Bhattacharyya

Figure A.1. Spatially informed and standard embeddings with t-SNE, UMAP and MDS. Embeddings and recolored images as described in Figure 4.4 in the
main chapter.

(a) Ground truth.

N
ei

gh
bo

r H
it

0%

25%

50%

75%

100%

k
1 8 15 22 29 36 43 50 57 63

(b) t-SNE

N
ei

gh
bo

r H
it

0%

25%

50%

75%

100%

k
1 8 15 22 29 36 43 50 57 63

(c) UMAP

N
ei

gh
bo

r H
it

0%

25%

50%

75%

100%

k
1 8 15 22 29 36 43 50 57 63

(d) MDS

Figure A.2. Ground truth for the synthetic dataset, classifying the four checkered areas on the outside and the four homogeneous regions in the center (a). Nearest
neighbor hit for the t-SNE (b), UMAP (c), and MDS (d) embeddings from Figure A.1. — standard version, — covariance matrix and mean, — point cloud
distance and — histogram.

SA4: Other point cloud distances

The Chamfer point cloud distance, see Equation 4.6, belongs to the broader family of distances related to the

Hausdorff distance. These distances build on finding the nearest point for each point in one set to the other.

Instead of averaging the minima, the Hausdorff distance takes their maximum instead:

𝑑𝑃𝐶
𝐻𝑎𝑢𝑠
(𝒁i , 𝒁j) = max

{
max

q∈N𝑆,𝜂i

©­­« min

p∈N𝑆,𝜂j

∥aq − ap∥2
2

ª®®¬ , max

q∈N𝑆,𝜂j

©­« min

p∈N𝑆,𝜂i

∥aq − ap∥2
2

ª®¬
}

(A.3)

Another variant that might be more robust against outliers in the data might take the median, instead of the

average, like the Chamfer distance:

𝑑𝑃𝐶
𝐻𝑀
(𝒁i , 𝒁j) =

1

2

©­­«median

q∈N𝑆,𝜂i

©­­« min

p∈N𝑆,𝜂j

∥aq − ap∥2
2

ª®®¬ + median

q∈N𝑆,𝜂j

©­« min

p∈N𝑆,𝜂i

∥aq − ap∥2
2

ª®¬
ª®®¬ (A.4)

Sum of squared differences: When taking the average instead of the minimum of point-wise distances in the

Chamfer distance, ending up an average of averages.

93

𝑑𝑃𝐶
𝑆𝑆𝐷
(𝒁i , 𝒁j) =

1

|N𝑆,𝜂
i |

∑
q∈N𝑆,𝜂i

1

|N𝑆,𝜂
j |

∑
p∈N𝑆,𝜂j

∥aq − ap∥2
2
+ 1

|N𝑆,𝜂
j |

∑
q∈N𝑆,𝜂j

1

|N𝑆,𝜂
i |

∑
p∈N𝑆,𝜂i

∥aq − ap∥2
2

=
2

|N𝑆,𝜂
i | · |N

𝑆,𝜂
j |

∑
q∈N𝑆,𝜂j

∑
p∈N𝑆,𝜂i

∥aq − ap∥2
2

(A.5)

Weighted versions analogous to Section 4.3.6:

𝑑𝑃𝐶
𝐻𝑎𝑢𝑠
(𝒁i , 𝒁j) = max

{
max

q∈N𝑆,𝜂i

©­­«𝑤q min

p∈N𝑆,𝜂j

∥aq − ap∥2
2

ª®®¬ , max

q∈N𝑆,𝜂j

©­«𝑤q min

p∈N𝑆,𝜂i

∥aq − ap∥2
2

ª®¬
}

(A.6)

𝑑𝑃𝐶
𝐻𝑀
(𝒁i , 𝒁j) =

1

2

©­­«median

q∈N𝑆,𝜂i

©­­«𝑤q min

p∈N𝑆,𝜂j

∥aq − ap∥2
2

ª®®¬ + median

q∈N𝑆,𝜂j

©­«𝑤q min

p∈N𝑆,𝜂i

∥aq − ap∥2
2

ª®¬
ª®®¬ (A.7)

𝑑𝑃𝐶
𝑆𝑆𝐷
(𝒁i , 𝒁j) =

2

|N𝑆,𝜂
i | · |N

𝑆,𝜂
j |

∑
q∈N𝑆,𝜂j

∑
p∈N𝑆,𝜂i

(𝑤q + 𝑤p)∥aq − ap∥2
2

(A.8)

See Figure A.3 for a comparison of these point cloud distances for the synthetic data set from the main

chapter.

(a) Hausdorff (b) Hausdorff Median

(c) Chamfer (d) SSD

N
ei

gh
bo

r H
it

50%

63%

75%

88%

100%

k
1 8 15 22 29 36 43 50 57 63

Hausdor Hausdor Median Chamfer SSD

(e) Nearest neighbor hit

Figure A.3. All spatially informed embeddings are computed with a 3x3 neighbourhood and their respective nearest neighbor hit.

94 A. Supplement: Spidr

SA5: Varying neighborhood sizes and spatial weighting
See Figs. A.4, A.5, A.6, A.7 and A.8 for an overview of of the effect of different neighborhood sizes for the

synthetic data set from the main chapter.

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.4. All spatially informed embeddings are computed with a 3x3 neighbourhood and Gaussian weighting.

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.5. All spatially informed embeddings are computed with a 5x5 neighbourhood.

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.6. All spatially informed embeddings are computed with a 5x5 neighbourhood and Gaussian weighting.

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.7. All spatially informed embeddings are computed with a 7x7 neighbourhood.

(a) Local histograms (b) Covariance matrix and means (c) Chamfer point cloud distance
Figure A.8. All spatially informed embeddings are computed with a 7x7 neighbourhood and Gaussian weighting.

95

Local Histogram

N
ei

gh
bo

r H
it

60%

70%

80%

90%

100%

k
1 8 15 22 29 36 43 50 57 63

(a) Local histograms

Covariance matrix and means

N
ei

gh
bo

r H
it

60%

70%

80%

90%

100%

k
1 8 15 22 29 36 43 50 57 63

(b) Covariance matrix and means

Chamfer point cloud distance

N
ei

gh
bo

r H
it

60%

70%

80%

90%

100%

k
1 8 15 22 29 36 43 50 57 63

(c) Chamfer point cloud distance
Figure A.9. Neighbor hit values for the local histogram (Figure 4.4b), covariance (Figure 4.4c), and point cloud (Figure 4.4d) -based embeddings and their
different neighborhood size versions (Figs. A.4, A.5, A.6, A.7, and A.8). — 3x3 neighborhood, — 5x5 neighborhood, — 7x7 neighborhood, — 3x3 neighborhood
Gaussian weighted, — 5x5 neighborhood Gaussian weighted, — 7x7 neighborhood Gaussian weighted.

SA6: Computation time evaluation
Figs. A.10 and A.11 show the computation time for the distance computation (including feature computation)

and subsequent embedding time. All measurements were conducted on a computer with an Intel i5-9600K

processor and a NVIDIA GeForce RTX 2080 SUPER graphics cards. A corresponding theoretical complexity

analysis of each distance is presented in Section 4.3.5. Some measurements show the influence of hardware

optimizations implemented in the used libraries, which influences the computation time, see for example the

time behaviour of the Bhattacharyya distance for various neighborhood sizes in Figure A.10.

3x3 5x5 7x7 9x9
Neighborhood size

101

102

103

Ti
m

e
(s

)

QF, 50 ch, distances
QF, 100 ch, distances
QF, 200 ch, distances
PC, 50 ch, distances
PC, 100 ch, distances
PC, 200 ch, distances
Bhat, 5 ch, distances
Bhat, 7 ch, distances
Bhat, 10 ch, distances
Avg. & var, embed

Figure A.10. Computation time of the distance computation for varying neighborhood sizes: local histogram comparison with the quadratic form distance (QF),
covariance matrix feature comparison with the Bhattacharyya distance (Bat) and the Chamfer point cloud distance (PC). The Indian Pines data set with 21.025

data points and 200 channels was used for computation. The same random channel subsets were used for runs with less than 200 channels. The Bhattacharyya
distance is listed for fewer channels since its runtime grows impractically large for higher channel counts, as shown in Figure A.11. As mentioned in the main
chapter, when using the QF distance we use the Rice rule to set the number of histogram bins. This results in 5, 6, 8 and 9 bins for the various neighborhood sizes
respectively. The embedding time is not influenced by the distance metric and shown as an average of all measurements with variance bars.

96 A. Supplement: Spidr

5 10 25 50 100 200
Number of channels

100

101

102

Ti
m

e
(s

)
QF, 3x3, distances
QF, 5x5, distances
QF, 7x7, distances
PC, 3x3, distances
PC, 5x5, distances
PC, 7x7, distances
Bhat, 3x3, distances
Bhat, 5x5, distances
Bhat, 7x7, distances
t-SNE, distances
t-SNE, embed

Figure A.11. Computation time of the distance computation for channel numbers: local histogram comparison with the quadratic form distance (QF), covariance
matrix feature comparison with the Bhattacharyya distance (Bat) and the Chamfer point cloud distance (PC). The Indian Pines data set with 21.025 data points
and 200 channels was used for computation. The same random channel subsets were used for runs with less than 200 channels. The Bhattacharyya distance is
listed for fewer channels since its runtime grows impractically large for higher channel counts. The histogram bin number for the QF distance is set as described in
Figure A.10. The embedding time is not influences by the distance metric and the shown embedding times for the standard t-SNE procedure is representative for
the embeddings times of all runs.

SA7: Indian Pines - additional figures

(a) (b) (c)
Figure A.12. Overview of the Indian Pines dataset with different embedding methods. Coloring based on colormapping embedding coordinates, as discussed
for Figure 4.4. (a) standard t-SNE, (b) standard t-SNE applied to a bilaterally filtered version of the image, and (c) our point cloud-based t-SNE.

97

beans with corn residue
beans with corn residue
wheat with corn residue

(a) Highlights in the ground
truth. (b) Dividing aisle.

(a) Bilaterally filtered (b) Annotated map

Dividing
aisle and

other areas

(a) Attempted selection of the dividing aisle in the t-SNE embedding based on the
bilaterally filtered data. In contrast to Figure 4.5d, it is not possible to find a cluster that
only corresponds to the aisle.

Figure A.13. Ground truth of Indian Pines Site 3 with highlighted areas as further discussed in Figure A.15 and an annotated map of the Site without a
color-coded background.

(a) selected in standard t-SNE (b) selected in t-SNE of bilaterally filtered image (c) selected in point-cloud distance t-SNE

(d) bilateral filtered (e) point cloud (f) standard (g) point cloud (h) standard (i) bilateral filtered

Figure A.15. Indian Pines: Comparison of spatially-aware and standard t-SNE embeddings. The top row (a-c) shows a standard t-SNE embedding,
an embedding of the bilaterally filtered data set and our spatially-aware embedding (based on the Chamfer point cloud distance). We tried to select the three
highlighted regions from Figure A.13a in each embedding and show the respective pixel on the ground truth. The lower row (d-i) highlights the selections made in
the above embeddings in the two other embeddings, for example highlighted points in (d) and (e) correspond to points selected in (a).

98 A. Supplement: Spidr

B. Supplement: Interactive Image HSNE

SB1: Background - Hierarchical Embeddings
A hierarchical embedding method typically extends existing DR techniques by creating a hierarchical representa-

tion of the original data items and projecting only elements from individual hierarchy levels instead of all

data [16]. Using the notation for hierarchical embeddings from Höllt et al. [104], the hierarchical data structure

consists of landmarks, within 𝑚 levels, namely the sets L0 . . .L𝑚−1
. The lowest hierarchy level L0

contains all

data points. Each landmark 𝐿𝑘+1

𝑖
∈ L𝑘+1

in a higher hierarchy level represents (→) a set of landmarks from the

lower level L𝑘 = {𝐿𝑘
𝑖
| 𝐿𝑘

𝑖
← 𝐿𝑘+1

𝑗
}. Thus, the higher embedding levels provide more abstract representations

of the original data. Here, for simplicity, we assume the hierarchy to be a proper tree: each landmark 𝐿𝑘
𝑖

is

represented by only one landmark in L𝑘+1
. In practice this is not necessarily the case [52].

Given a selection of landmarks K𝑘
on a level 𝑘, we are interested in their relation to landmarks in other

hierarchy levels. Following the terminology for visualizations of hierarchically structured data from Elmqvist

et al. [124], we describe coarsening the level of detail, i.e., the process of finding all landmarks K𝑘+1
on the

more abstract level 𝑘 + 1 that well represent them, as rolling-up. Analogously, refining the level of detail, that

is finding the landmarks K𝑘−1
on the more detailed level 𝑘 − 1 that are represented by K𝑘

is the result of

drilling-down.

SB2: Timings
Timings for regular HSNE and interactive HSNE, all taken on a machine equipped with an Intel Core i5-9600K

CPU and a NVIDIA GeForce RTX 2080 SUPER GPU. The total embedding time is approximately equal to

the data structure initialization and gradient descent time. Our hierarchy traversal step adds a comparably

small overhead to the entire embedding computation. In most scenarios, the user is presented with iteratively

updating embeddings within 300ms (hierarchy traversal plus data structure initialization times).

Table B.1. Indian Pines: Durations of embedding update step connected to an image interaction. ROIs as indicated in Figure 5.4a. Times, in ms, are averages over
10 runs with sample standard deviation.

ROI I ROI II ROI III

Scale 2 2 3

Landmarks 9,738 9,533 3,979

Data points in view 57,424 58,212 50,691

Hierarchy traversal [our] 48.0 (2.6) 39.3 (2.9) 39.2 (4.2)

Embedding 848.1 (78.2) 862.2 (17.8) 619.8 (33.2)

Data structure initialization 244.6 (11.8) 243.8 (4.7) 40.4 (2.5)

Gradient descent 598.8 (80.0) 614.0 (20.4) 545.5 (32.2)

Note: Times in ms, standard deviation in parentheses.

SB3: Additional Indian Pines Information and Figures
The Indian Pines Test Site 3 [10] data are a set of hyperspectral 145 × 145 pixel images with known class

information for each pixel. This well analyzed data set is only a small part of a larger, unlabeled measurement

of 614 × 2, 678 ≈ 1.6M pixels, depicting an area around the Purdue University Agronomy Center in Indiana,

USA, made up of fields (e.g. corn and soy), forests, roads, rivers and houses. The pixel resolution is roughly

20m x 20m and contains electromagnetic spectral information from from 400-2400 nm sampled at 10 nm. We

excluded 20 channels of the 220 channel data set due to their low information quality since they cover spectral

water absorption bands, as suggested in [145]. This results in 200 samples, that we interpret as dimensions,

forming our high-dimensional attribute space used as input for the dimensionality reduction. We normalized

the data by clamping each channel to the 99.999th percentile and scaling it to the range [0, 1].

100 B. Supplement: Interactive Image HSNE

+/- Std
Mean A

B
C

Wavelength

Normalized
intensity

400nm 2400nm

1

0.5

* **

A

B

C

(a) (b)

Figure B.2. Indian Pines cluster characteristics: (a) shows the top level (4th) HSNE
embedding of the Indian Pines data. (b) displays channel-wise intensity values for three cluster
of different types of fields (A and C) and forest (B). * and ** indicate frequency bands that were
omitted from the data. The three regions of interest discussed in Figure 5.4 are mostly represented
with landmarks from the three clusters above.

(a)

(b) (c)

almost all
previous

Figure B.3. Drill-down of the embedding for ROI 3 from
Figure 5.4d: the recolored image region (a), new embedding
(b) and initializations (c).

No
consistency

Level 3 Level 3

I II(c) (d)

No
consistency

Level 2 Level 2

I II(a) (b)

Figure B.4. Regular HSNE embeddings: (a) and (b) as in Figure 5.4f and Figure 5.4g. (c) and (d) show the intermediate refinements on level 3 between the top
level embedding and the level 2 embeddings. They contain 11,857 and 11,207 landmarks respectively while the level 2 embeddings contain 50,116 and 46,461
landmarks respectively.

C. Supplement: Superpixels

SC1: Complexity of geodesic approach
Both the construction of a search index in HNSW and the actual nearest neighbor search is rather feasible with

complexities of respectively 𝑂(𝑛 log 𝑛) and 𝑂(log 𝑛). But computing the geodesic distance 𝑑G between two

graph nodes is intrinsically complex and increases the typical complexity of distance computation for, e.g.

Euclidean distances, of𝑂(1) to𝑂((𝑛+|E|) log 𝑛)with the A* search algorithm or𝑂(𝑛 log 𝑛+|E|)with Dĳkstra’s

algorithm
∗
. This distance needs to be computed |s𝑝 | · |s𝑞 | times for the Hausdorff-based set comparison. On

higher levels the components contain numbers of pixels in the same order of magnitude as the entire image,

such that computing a single set comparison with the Hausdorff distance will become intractable, as well.

SC2: Symmetrized and connected 𝑘NN-graph
We convert the directed 𝑘NN-graph into an undirected graph by making each edge bidirectional, compute its

connected components and add new edges that connect the components. For that purpose, we first compute

the mean value of the high-dimensional data points in each connected component. Secondly, we set up a

fully-connected helper graph, each vertex corresponding to one connected component and edge weights being

the 𝛿 distances between their means. We then compute its minimum spanning tree (MST). Finally, we find the

smallest 𝛿 distance between any two points from two components connected by an edge in the above MST and

introduces a bidirectional connection into the symmetrized 𝑘NN-graph. If a symmetrized 𝑘NN-graph already

only has one connected component, no new edges are introduced.

SC3: Indian Pines
Settings for the superpixel hierarchy discussed in Section 6.6.1: 𝑘NN algorithm: HNSW (faiss implementation),

300 nearest neighbors, Number of random walks: 50, Length of random walks: 25.

Settings for the HSNE hierarchy : 𝑘NN algorithm: HNSW (hnswlib implementation), perplexity of 30 (yielding

90 nearest neighbors),

Figure C.1 shows the superpixel hierarchy from Section 6.6.1 for all level from 0 to 7. It is possible to continue

with more abstraction levels until there is only one superpixel, which covers the entire image, but the very

large superpixles on high levels do not create interesting subdivision of the image anymore and are not shown

here.

SC4: CiCYF
The marker channels used for the superpixel hierarchy and corresponding embeddings for the CiCYF discussed

in Section 6.6.2 (as per personal correspondence with the data paper’s authors): 5hmc, b-actin, CD103, CD11b,

CD11c, CD163, CD20, CD206, CD31, CD3E, CD4, CD8a, FOXP3, HLA-AB, IRF1, Ki67, laminABC, MART1,

panCK, PD1, podoplanin, S100A, S100B, SOX10, SOX9, pMLC2, yH2AX.

The channels Collagen and Hoechst (a marker used to stain DNA and labeled as "DNA" in our figure) used for

recoloring in Figure 6.7 are not part of the input markers to the superpixel hierarchy.

Figure C.2 shows the full image data and indicates the region we focus on in Section 6.6.2, with 𝑥𝑏𝑒 𝑔𝑖𝑛 = 2060,

𝑥𝑠𝑖𝑧𝑒 = 2000, 𝑦𝑏𝑒 𝑔𝑖𝑛 = 450, 𝑦𝑠𝑖𝑧𝑒 = 1500.

Figure C.3 shows the superpixel hierarchy from Section 6.6.2 for all level from 0 to 6.

SC5: Quantitative results: Indian Pines dataset
Table C.1 and Table C.2 list the numerical values for the graph in Figure 6.8, showing the quantitative evaluation

results discussed in Section 6.6.3.

Even though UE is constrained to [0, 1] and a value of 1 can be expected for a worst-case segmentation,

a "segmentation" of the Indian Pines data into a single segment yields a UE of 0.975. This is due to the

∗
see A* on boost.org/doc/libs/1_86_0/libs/graph/doc/astar_search.html or en.wikipedia.org/wiki/A*_search_algorithm and Dĳkstra’s

algorithm on boost.org/doc/libs/1_86_0/libs/graph/doc/dĳkstra_shortest_paths.html or en.wikipedia.org/wiki/Dĳkstra%27s_algorithm

https://www.boost.org/doc/libs/1_86_0/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm
https://www.boost.org/doc/libs/1_86_0/libs/graph/doc/dijkstra_shortest_paths.html
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

102 C. Supplement: Superpixels

term min{|s𝑟 ∩ q𝑖 |, |s𝑟 \ q𝑖 |} in Equation 6.7, which was introduced in this measure to improve in earlier

formulations of undersegmentation error which tend to penalize small overlap of large superpixels with a

ground truth segment. However, since the ground-truth label "background" covers just-so more than half

the image pixels, this is the only term in which |s𝑟 \ q𝑖 | is considered instead of |s𝑟 ∩ q𝑖 |. This edge case of a

ground-truth segment covering more than 50% does not impact the evaluation though.

SC6: Miscellaneous
Figure C.4 shows the full superpixel hierarchy for the bus image from Figure 6.2.

Figure C.5 shows the full superpixel hierarchy for small Indian Pines image from Figure 6.4.

Table C.1. Undersegmentation error (UE): Values for the plot in Figure 8. Lower is better.

Level 1 2 3 4 5 6 7 8 9 10 11

Euclid. Val. 0.073 0.147 0.269 0.493 0.704 0.900 0.975 — — — —

(ours) # 5763 1441 345 88 16 5 1 — — — —

Geo. Val. 0.072 0.141 0.238 0.485 0.622 0.870 0.975 — — — —

(ours) # 5769 1447 364 89 23 5 1 — — — —

Val. 0.092 0.098 0.149 0.171 0.227 0.340 0.378 0.578 0.644 0.730 0.975

Barbato

6901 5769 2227 1590 587 234 169 61 43 20 1

𝑘NN Val. 0.084 0.151 0.244 0.356 0.661 0.812 0.867 0.975 — — —

(ours) # 5191 1282 325 84 23 7 2 1 — — —

Barbato’s method does not know an explicit level distinction. The levels correspond to several n_clusters settings:

1, 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000

Table C.2. Explained variation (EV): Values for the plot in Figure 8. Higher is better. EV is 1 when the number of superpixels is equal the number of pixels, i.e.,
no abstraction.

Level 1 2 3 4 5 6 7 8 9 10 11

Euclid. Val. 0.970 0.918 0.837 0.709 0.517 0.290 0.0 — — — —

(ours) # 5763 1441 345 88 16 5 1 — — — —

Geo. Val. 0.969 0.918 0.845 0.693 0.488 0.218 0.0 — — — —

(ours) # 5769 1447 364 89 23 5 1 — — — —

Val. 0.963 0.958 0.922 0.906 0.861 0.794 0.766 0.680 0.641 0.485 0.0

Barbato

6901 5769 2227 1590 587 234 169 61 43 20 1

𝑘NN Val. 0.963 0.919 0.853 0.765 0.578 0.453 0.209 0.0 — — —

(ours) # 5191 1282 325 84 23 7 2 1 — — —

Barbato’s method does not know an explicit level distinction. The levels correspond to several n_clusters settings:

1, 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000

103

Level 0 (data) Level 1 Level 2 Level 3

Level 4

1,644,292 pixels 448,546 superpixels (27.28%) 107,225 superpixels (23.91%) 25,569 superpixels (23.85%)

6,248 superpixels (24.44%) 1,468 superpixels (23.50%) 322 superpixels (21.93%) 78 superpixels (24.22%)

Level 5 Level 6 Level 7

Figure C.1. Indian Pines superpixel hierarchy: Data level embedding alongside seven superpixel abstraction level embedding. Each level shows a false color
image based on the average spectrum per superpixel of channel 20 (587 nm, red), 76 (1090 nm, green) and 130 (1591 nm, blue). Next to them are recolorings of
the superpixel based on the embedding layout using a 2D colormap which is superimposed on the respective embeddings (as shown in Figure 6.5. Superpixels
are hardly visible in these down-scaled version of the originally 614 × 2, 678 (w x h) images, but more abstract levels clearly show more and more high-level
structure. The percentages indicates the reduction of components, i.e., the number of components (superpixels) in level 1 reduces to 27.28% of the previous level.

104 C. Supplement: Superpixels

panCK

2000 x 1500

5454 x 2754

Collagen DNA50 μm

Figure C.2. CyCIF Focus Region: As used in Section 6.6.2. DNA corresponds to the Hoechst channel.

Level 0 (data, t-SNE)

3,000,000 pixels

658,609 superpixels

11,582 uperpixels

2,906 superpixels

624 superpixels

 83,370 superpixels 103 superpixels

Density

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Figure C.3. CyCIF Superpixel Hierarchy: Full superpixel hierarchy for the CyFIC data from Section 6.6.2.

105

Figure C.4. RGB image of a bus (top left) and 6 levels of abstraction. Superpixels are recolored with the average color of all the image pixels they contain. Below,
embeddings of each level using the same coloring. Numbers of components: 15300 (150x102 pixels), 4094, 1054, 271, 64, 14, 4.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

a

b

Figure C.5. Indian Pines: Embeddings and image space recolorings for (a) t-SNE and (b) UMAP probabilities.

106 C. Supplement: Superpixels

D. Supplement: ManiVault

SD1: Benchmarks
Speed ManiVault can show progressive updates of analytics plugins with only small additional computational

penalties. To show this, we compute t-SNE embeddings with a ManiVault analytics plugin that uses the HDI

library GPGPU implementation of t-SNE [105, 205]. First, we compute embeddings non-progressively, and

then, in a second setting, we show intermediate embeddings every 10 gradient descent iterations (respectively

"no updated" and "with updates" in Table D.1. Additionally, we compare these runs with a lightweight python

wrapper
∗

around the same t-SNE library. Every embedding is laid out over 500 gradient descent iterations.

The non-progressive computation is slightly faster than the Python wrapper around the same library calls.

The difference between the total runtime of the t-SNE embeddings in ManiVault with and without updates is

explained by the difference in the gradient descent time: In the former setting, the analytics plugin notifies

ManiVault’s core about the current embedding layout. All measurements were taken on a machine equipped

with an NVIDIA GeForce RTX 2080 SUPER GPU and an Intel Core i5-9600K CPU and running Windows 11

22H2.

Table D.1. Duration of t-SNE embedding computations with the same implementation, invoked via a Python wrapper and ManiVault, once showing only the
final embedding and once progressively updating a scatterplot. Times, in seconds, are averages over 10 runs with sample standard deviation.

Data set

Swiss Roll 3D COIL-20 MNIST Fashion-MNIST 10x Mouse

[217] [218] [219] [220] [221]

points 1,500 1,440 70,000 70,000 1,306,127

dimensions 3 16,384 784 784 50 (first PCs)

nptsne
∗ a

0.30 (0.02) 2.32 (0.08) 23.31 (0.14) 20.58 (0.01) 268.38 (2.21)

ManiVault
b

0.58 (0.05) 2.37 (0.05) 22.51 (0.11) 20.20 (0.27) 258.60 (5.76)

ManiVault
c

0.59 (0.07) 2.46 (0.09) 22.85 (0.15) 20.24 (0.11) 257.91 (4.02)

Note: Times in seconds, sample standard deviation in parentheses.
a

Python wrapper,
b

no updates,
c

with updates

Memory After starting ManiVault, with the Data Hierarchy and Data Property Viewer open, the software

consumes around 87 MB of memory (on Windows). Loading data sets comes with a small memory overhead.

Here, we loaded various data sets, as listed in Table D.1, and compared their binary size on disk with the

growing memory footprint of ManiVault after loading them. We observe a 0.7 − 1.5 MB overhead per data set,

compared to their binary size, when utilizing the point data type plugin. For larger data set, it can be useful to

trade off precision for lower memory uptake. We can employ a bfloat16 floating point implementation
†

to

store large data set, and thereby effectively half the memory ManiVault requires: e.g. the 10x Mouse data will

take up 126.15 MB instead of 249.87 MB.

Table D.2. Memory consumption of loaded data sets, as listed in Table D.1, in ManiVault compared to their binary size on disk. Values are averages over 4 loaded
data sets.

Data set [217] [218] [219] [220] [221]

Binary type float32 uint8 uint8 uint8 float32

Raw binary 0.017 22.5 52.34 52.34 249.12

ManiVault (float32) 0.97 - - - 249.87

ManiVault (uint8) - 23.77 53.5 54.1 -

Note: Values in MB. Slight deviations might occur due to Qt’s memory management on

Windows 11, e.g., the difference between MNIST and Fashion-MNIST.

∗
Github: biovault/nptsne

†
Github: biovault/biovault_bfloat16

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://github.com/biovault/nptsne
https://github.com/biovault/biovault_bfloat16

Publications

▶ A. Vieth, A. Vilanova, B. Lelieveldt, E. Eisemann and T. Höllt, "Incorporating Texture Information into

Dimensionality Reduction for High-Dimensional Images," 2022 IEEE 15th Pacific Visualization Symposium

(PacificVis), 2022, pp. 11-20, doi: 10.1109/PacificVis53943.2022.00010.

▶ A. Vieth, B. Lelieveldt, E. Eisemann, A. Vilanova and T. Höllt, "Interactions for Seamlessly Coupled

Exploration of High-Dimensional Images and Hierarchical Embeddings," Vision, Modeling, and Visualization

(VMV), 2023, pp. 63-70, doi: 10.2312/vmv.20231227. Best Paper Honorable Mentions VMV 2023

▶ A. Vieth, T. Kroes, J. Thĳssen, B. van Lew, J. Eggermont, S. Basu, E. Eisemann, A. Vilanova, T. Höllt

and B. Lelieveldt, "ManiVault: A Flexible and Extensible Visual Analytics Framework for High-Dimensional

Data," IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 1, pp. 175-185, 2024, doi:

10.1109/TVCG.2023.3326582. Best Paper Honorable Mentions IEEE VIS 2023

▶ A. Vieth, B. Lelieveldt, E. Eisemann, A. Vilanova and T. Höllt, "Manifold-Preserving Superpixel Hierarchies

for Exploration of High-Dimensional Images" [under review]

https://doi.org/10.1109/PacificVis53943.2022.00010
https://doi.org/10.2312/vmv.20231227
https://doi.org/10.1109/TVCG.2023.3326582

Curriculum Vitæ

Alexander Vieth

31 December 1994 Born in Münster, Germany

Education

2006 - 2013 Abitur at Gymnasium Arnoldinum in Steinfurt, Germany

2013 - 2017 Bachelor Sc. Electrical Engineering, Information Technology and Computer

Engineering at RWTH Aachen University, Germany

2017 - 2019 Master Sc. Electrical Engineering, Information Technology and Computer Engineering

at RWTH Aachen University, Germany

2019 - 2026 PhD in the Computer Graphics and Visualization group at TU Delft, The Netherlands

Acknowledgments

Roughly ten years ago, during my Bachelors, a couple of friends and I confidently declared that we would

soon leave the academic path and embrace industry. Planning for or speculating about the future is always

both exciting and important. Surely, we had a good grasp on what our future would hold. Fast forward to now,

and each of us is finishing up their PhD. A good moment to pause and ponder: What went wrong? And, of

course, what went right? First and foremost, I was lucky to cross paths with many amazing people who I want

to thank for their constant support over the last years. It took me quite some time to get here, but without you

it would have been far less enjoyable, and surely taken even longer.

Thank you, Thomas and Anna, for without you I could not have started or finished this PhD. I can only wish

for everyone to experience their scientific socialization with colleagues who display integrity in and joy for

research as much as you do. Thank you, Boudewĳn, for the enthusiasm that you bring to every project. And

thank you, Elmar, for your display of immense scientific creativity. You are great supervisors.

I’m glad to have been part of the Computer Graphics and Visualization group at the TU Delft. The variety of

research topics and people made for a consistently interesting environment. Thank you to all of the PhDs

and Postdocs: Jerry, Mathĳs, Lukas, Jackson, Mĳael, Guowei, Xuejiao, Ali, Amir, Yang, Chen-Chi, Benno,

Soumyadeep, Christoph, Mika, Mrinal, Fengshi, Celine, Priyanka, Nasikun and Leo. And thank you to the

staff members as well: Rafa, Klaus, Riccardo, Petr, Michael, and Martin. Of course, thank you, Lauretta and

Ruud for always helping out. Faizan and Marcos, you were the first vis-related PhD buddies in a mostly

graphics-centered group, thank you for starting the journey with me. Nicolas, thank you for the many

conversations over coffee and dinner, as well as unforgettable travel experiences! Thank you, Mark, Annemieke,

Baran and Ruben for defeating gruesome villains with the power of friendship. And thanks, Berend, for

constantly reminding me that invasions are not socially acceptable anymore.

I was lucky to be involved with the Imaging Genetics group in the Division of Image Processing at the Leiden

University Medical Center and the Visualization cluster at the TU Eindhoven throughout the course of my

PhD. I truly appreciate having gotten to know all of you. Thank you, Thomas, Baldur and Jeroen for the fruitful

ManiVault collaboration. Thanks, Astrid and Julian, for a great after-conference road trip. And of course, thank

you Sanne, Vidya, Kirsten, Linhao, Dennis, Bram, and Chang for many fun and vaguely vis-related meetups!

Thanks, Silvia, for consistently motivating people to join reading groups. Thanks, Jenia and Faeze, for being

great office mates in the new LKEB cubicles. And thanks Moody, for joining me in pushing through the final

steps of finishing our PhDs.

Thank you, Linda, for only sometimes losing patience with me over the last years. Thanks, Bean, simply for

being the cutest cat, except at five in the morning. Thank you, my sisters, parents, family and all friends who

accompanied me through this journey. You are the best.

And finally, thank you, dear reader, for making it this far, or jumping here straight away. After all, you are one

of the select few to open this thesis in the first place.

There is no justice in the laws of nature,

no term for fairness in the equations of motion.

The universe is neither evil, nor good, it simply does not care.

The stars don’t care, or the sun, or the sky.

But they don’t have to! We care! There is light in the world, and it is us!"

– from Harry Potter and the Methods of Rationality by Eliezer Yudkowsky

https://web.archive.org/web/20250518223038/https://hpmor.com

	Summary
	Samenvatting
	Contents
	Lists of Figures and Tables
	Lists of Symbols and Abbreviations
	Introduction
	Visual Analytics
	Dimensionality Reduction
	Contribution and Outline

	Background
	High-dimensional Image Data
	Dimensionality Reduction Methods
	Neighborhood Definition
	t-distributed Stochastic Neighbor Embedding (t-SNE)

	Related Work
	Exploratory Analysis of High-Dimensional Images
	Dimensionality Reduction for High-Dimensional Images
	Hierarchical Dimensionality Reduction
	Multivariate Graph Visualization and Node Embeddings

	Spatial Information in Dimensionality Reduction for High-Dimensional Images
	Introduction
	Related Work
	Texture-Aware Dimensionality Reduction
	Application on Synthetic Data
	Implementation
	Use cases
	Conclusion

	Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings
	Introduction
	Related Work
	Tasks and Requirements
	Coupling Image Navigation and Embedding Space
	Exemplary Use Case: Hyperspectral Image Exploration
	Limitations
	Conclusion

	Manifold-Preserving Superpixel Hierarchies
	Introduction
	Related Work
	Superpixel Hierarchy
	Preliminary Considerations
	Method
	Validation
	Discussion
	Conclusion

	ManiVault: A Visual Analytics Framework for High-Dimensional Data
	Introduction
	Related Work
	Design Considerations
	Framework Architecture
	Implementation
	Application Examples
	Conclusion

	Conclusion
	Contributions
	Challenges and Outlook
	Closing Words

	References
	Appendix
	Supplement: Spidr
	Supplement: Interactive Image HSNE
	Supplement: Superpixels
	Supplement: ManiVault

	Publications
	Curriculum Vitæ
	Acknowledgments

