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A B S T R A C T

Monitoring and evaluating the biofouling state and its effects on the vessel’s hull and propeller performance is a
crucial problem that attracts the attention of both academy and industry. Effective and reliable tools to address
this would allow a timely cleaning procedure able to trade off costs, efficiency, and environmental impacts.
In this paper, the authors carry out a critical review, accompanied with summary tables, of the biofouling
problem with a particular focus on the shipping industry and the state-of-the-art techniques for monitoring
and evaluating the biofouling state and its effects on the vessel’s hull and propeller performance. In particular,
different techniques are grouped according to the three main families of numerical models that have been
designed and exploited in the literature: Physical Models (i.e., models relying on the mechanistic knowledge
of the phenomena), Data-Driven Models (i.e., models relying on historical data about the phenomena together
with Artificial Intelligence), and Hybrid Models (i.e., a hybridisation between Physical and Data-Driven
Models). A conclusion from the performed review, open problems, and future direction of this field of research
is detailed at the end of the review.
1. Introduction

The last decade has been characterised by growing concerns about
greenhouse emissions and their increasingly apparent effects on climate
change (Ritchie and Roser, 2020). The problem of global warming has
been internationally recognised (IPCC, 2018) and has been one of the
biggest drivers in most fields of current research and regulation. The
shipping industry is no exception, and several promising technologies
have been and are under development towards a net-zero carbon
footprint (Anderson and Peters, 2016).

The increase in globalisation of trade comes partially as a result
of a raising demand for the transport of resources (Hoffmann and
Kumar, 2013). Shipping has been identified as the most efficient mode
of transport to face this demand when compared to its land and air
alternatives (Bouman et al., 2017). As a result, shipping has become
responsible for 90% of global trade and a seemingly low, in comparison,
global transport emission share of 2.9% (Buhaug et al., 2009; Smith
et al., 2014; MEPC, 2020). This is due to a relatively low energy con-
sumption and, therefore, a low cost per unit of carried weight (Owen
et al., 2018), as well as a high degree of cargo safety (Seo et al.,
2016). However, sulphur oxides, nitrogen oxides, particulate matter,
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and carbon dioxide emissions due to shipping are still a significant
contributor to air pollution (Coraddu et al., 2017).

Following the growth observed in the last 40 years (Bouman et al.,
2017), the volume of waterborne transport work is expected to further
increase, potentially doubling by 2030 (Ho-Chun Fang et al., 2013).
Moreover, the shipping industry only recently started the uptake of
new technologies (i.e., alternative fuels Gilbert et al., 2018; Balcombe
et al., 2019) and still primarily relies on fossil fuel energy (Adland et al.,
2018). Consequently, a rapid increase in shipping’s Green House Gas
(GHG) emissions volume and emissions share is expected due to the
increase in transport volumes and the quicker decarbonisation of other
industries (Chen et al., 2019). For example, the most recent Fourth GHG
Study by the International Maritime Organisation (IMO) (MEPC, 2020)
observed that the decrease in carbon intensity of shipping operations
(i.e., due to the use of new technologies) was outweighed by the growth
and total shipping emissions (i.e., due to the increase in waterborne
transport volume). Specifically, emissions are still expected to increase
from about 90% of 2008 levels in 2018 to 90–130% of 2008 emissions
in 2050 for a range of possible scenarios (MEPC, 2020). As an attempt
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to rectify this, the IMO has been actively taking regulatory action. The
development and enforcement of the EEDI (Energy Efficiency Design
Index) by the Marine Environment Protection Committee (MEPC) and,
since 2011, the requirement for ship owners to incorporate the Ship
Energy Efficiency Management Plan (SEEMP) (MEPC, 2011) in line
with the IMO are some examples of the IMO’s efforts. Nevertheless,
stricter regulations will be required in the future (such as the one
on sulphur content requirements for marine fuel inside and outside
Emission Control Areas (ECAs) Bilgili, 2021) to achieve the IMO’s
ambition towards a net zero environmental footprint of shipping by the
end of the century, following a 50% reduction by 2050 (IMO, 2018).

The means of achieving the required emission reductions still re-
mains an open question. In its second GHG study (Buhaug et al., 2009),
the IMO suggests a combination of technological and operational im-
provements. The authors of Bouman et al. (2017) review a series of
studies on ship energy efficiency increasing (and/or emission reducing)
technologies and practices currently available in academia and indus-
try. They reach the conclusion that a 75% reduction in emissions is
possible by 2050 based on current technologies, including the adoption
of alternative fuels. Unfortunately, they also state that widespread de-
ployment of these technologies and practices is currently not happening
fast enough or at the required scale. The authors of Rehmatulla et al.
(2017) come to similar conclusions when analysing the implementation
of over 30 candidate technologies. GHG reducing technologies (i.e., fuel
cells, batteries, dual-fuel engines) and alternative fuels (i.e., ammonia
and hydrogen) will have a substantial impact on the future (Bouman
et al., 2017), but the current fleet cannot be realistically retrofitted in
the short-medium term. For this reason, it is mandatory to keep current
propulsion systems at their best efficiency. Improving vessel efficiency
is also in line with ship owners’ desire to reduce fuel costs, which
often contribute to more than half of a ship’s operational costs (Seo
et al., 2016). In fact, an emission reduction of 33% by 2030 could
be possible because most energy efficiency improving measures are
cost efficient (Eide et al., 2011). Nevertheless, despite these being
financially feasible, the adoption of new technologies is rare among
vessel owners and operators. This is the so-called ’energy efficiency
gap’, which is caused by an unrealised potential for improvement, and
affects many other fields (Johnson et al., 2014). Focusing our attention
on the shipping industry, there are many factors causing this gap (e.g.,
safety, reliability, technological uncertainty, and market constraints)
that act as a barrier for the implementation of new energy efficiency
improving technologies (Acciaro et al., 2013).

Regardless of the emission reducing technologies employed, the ves-
sel’s hull and propellers are and will always be subject to performance
decay. This loss in performance is mainly due to biofouling, namely
the undesirable accumulation of microorganisms, algae, and animals
on artificial surfaces immersed in seawater (Flemming, 2002). Effective
maintenance can be responsible for up to 20% of total operational
costs (Coraddu et al., 2019a) and, therefore, is a perfect candidate
for optimisation and improvement. Moreover, effective maintenance of
systems and system components reduces the disruptions that can be
caused by faults or failures on-board (Tsaganos et al., 2020), ensuring
that the vessel is operating at its best efficiency. Therefore, using intel-
ligent tools as a decision-support instrument in maintenance planning
is a potential source of operational improvements (Karagiannidis and
Themelis, 2021). However, improvements need to be economically
viable for vessel owners, as well as effective in reducing environmental
impact (Halim et al., 2018). The majority of a vessel’s energy consump-
tion is employed to overcome the resistance associated with a ship’s
movement through water. This is directly linked to the roughness of the
underwater ship surfaces. Direct exposure to seawater, which is both
highly corrosive and filled with living organisms, is the main cause of
surface roughness increases that negatively impact the hydrodynamic
performance of a ship (Farkas et al., 2021a). This increase is responsible
for higher GHG emissions due to the consumption of additional fuel,
2

which is necessary in order to maintain a certain speed.
While novel systems that combat biofouling (Legg et al., 2015) are
already available, two main methods of biofouling control are widely
implemented (Flemming et al., 2009; Adland et al., 2018), namely,
antifouling coatings and periodical cleaning. Nevertheless, no coating
can fully stop biofouling (Oliveira and Granhag, 2016) and the coating
needs to be periodically replaced during dry-docking. Additionally, pe-
riodical cleaning is a time-consuming and costly maintenance activity.
For this reason, being able to monitor and evaluate the biofouling
state and its effects on vessels’ hull and propeller performance is of
paramount importance. Unfortunately, due to the dynamic and multi-
faceted nature of the problem, this remains a difficult task (Farkas et al.,
2021b). Throughout the years, researchers have attempted to develop
numerical methods which can effectively be used as a guide for main-
tenance strategies. In the current work, the authors critically review
the state-of-the-art of such methods. The review is supplemented by
summary tables grouping different approaches according to the three
main numerical modelling approaches present in research: Physical
Models (PMs) (i.e., models relying on the mechanistic knowledge of the
phenomena), Data-Driven Models (DDMs) (i.e., models relying on his-
torical data about the phenomena together with Artificial Intelligence),
and Hybrid Models (HMs) (i.e., a hybridisation between Physical and
Data-Driven Models). A conclusion from the performed review, open
problems, and future direction of this field of research is detailed at
the end of the current work.

The rest of the paper is organised as follows. Section 2 provides
a comprehensive description of the biofouling problem. Section 3 out-
lines the preliminaries for the review of numerical methods for monitor-
ing and evaluating of a vessel’s biofouling state and its effects. A critical
analysis of existing work is reported in Section 4. Section 5 summarises
the open problems and future perspectives of this important field of
research. Finally, Section 6 concludes the review.

2. The biofouling problem

A large body of research has been devoted to analysing the im-
pact of biofouling and mitigating its effects on vessel powering and
performance. To better understand the numerical model, it is worth
describing the biofouling phenomenon in more detail.

2.1. Biofouling definition

Biofouling is an unwanted process, characterised by several stages of
formation, which results in the growth of marine life on a ship’s wetted
surfaces. According to Townsin (2003), ship hull biofouling can be
characterised by three categories: weeds, shells, and slime. The former
two are referred to as macrofouling and the latter as microfouling.
Macrofouling forms on vessels with longer nonoperational periods and
has more pronounced negative effects on ship performance (Koboević
et al., 2019). Instead, ships with high operational speeds and low
periods of down time commonly experience earlier and less detrimental
stages of biofouling, such as the formation of a biofilm and the growth
of algae, also termed as microfouling (Koboević et al., 2019; Farkas
et al., 2020b).

The initial biofouling stage is the formation of a slime film with
varying thickness, depending on the growth stage. Once a biofilm has
been formed, its presence makes the further growth of weed and shells
much easier (Candries et al., 2003). This development is not uniform
over the vessel’s entire underwater surfaces (Adland et al., 2018): the
separate regions of an underwater body experience varying conditions,
for example in terms of fluid flow, due to the general non-uniformity
of a ship hull, providing different levels of facilitation for organism
growth. Moreover, this development also varies between vessel types
and missions, depending on their operational characteristics (Davidson
et al., 2020). In fact, navy ships often spend long periods in port,
whereas commercial vessels rarely remain stationary for a prolonged

period of time due to their need to complete transport work in order to
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Fig. 1. Variation of environmental factors with latitude affecting biofouling
rocess (Yebra et al., 2004).

emain profitable. Therefore, a container carrier, that often completes
ong voyages at constant high speeds, most likely will experience the
nset of fouling to a lesser extent when compared to a sedentary navy
hip (Koboević et al., 2019). Finally, the vessel’s operational envelope
as a substantial influence on biofouling. Environmental variables (e.g.,
ater temperature, salinity, pH, nutrient composition, flow velocity,
epth, and light) affect the properties of biofouling (Uzun et al., 2019;
3

ebra et al., 2004).
Biofouling organisms thrive in warmer weather (Adland et al.,
2018), which not only means that there is a geographical influence
on their development, but also seasonal variations. In fact, examples
of water temperature, salinity, and pH as a function of latitude are
reported in Fig. 1. The majority of marine lifeforms prefer steady envi-
ronmental conditions, therefore, fewer organisms are able to survive on
the submerged surfaces of vessels whose operation involves rapid and
frequent changes in environmental conditions (Koboević et al., 2019).

2.2. Biofouling impacts

Biofouling results in severe drawbacks and dangers (see Fig. 2). In
particular, it negatively impacts vessel efficiency in terms of perfor-
mance and costs (Hewitt et al., 2009) (see Sections 2.2.1 and 2.2.2), as
well as resulting in damages to the environment when combined with
the global nature of shipping (Moser et al., 2016) (see Section 2.2.3).

2.2.1. Performance impact
In order for a vessel to move through water at a certain speed,

its propulsion system must generate an appropriate amount of thrust,
which overcomes the inherent resistance associated with this move-
ment. The total experienced resistance is a combination of several
components concerning friction, as well as pressure variations due to
wind, waves, and the hull’s movement through water (Atlar et al.,
2018). The biggest and most influential contribution to the total re-
sistance (up to 90% according to Schultz, 2007) is the skin friction
of a vessel’s underwater hull. It originates from the viscosity of water
and is directly affected by the smoothness/roughness of the underwater
surfaces of a ship. Thus, it is easy to observe that the condition of a
vessel’s hull, propeller, and other appendages has a direct correlation
with this important frictional element of the total resistance. Biofouling
has a negative effect on the roughness of the subjected surface, resulting
in an altered hydrodynamic profile and a higher total resistance.

The negative impact of an increase of the hull’s resistance due to
biofouling can be evaluated in two ways (Farkas et al., 2020b). To
maintain a desired speed, there must be an appropriate increase in
the delivered thrust by the propulsor, i.e. there will be a higher power
demand. If the delivered power is to be maintained, the increase in total
resistance due to biofouling results in a natural decrease of the vessel’s
speed. Additionally, if the former perspective is taken into account,
the increase in delivered power can also be considered with regards
to fuel economy. These different evaluation methods exist in literature,
making it difficult to easily compare the results of different research
works (Adland et al., 2018).

Each of the mentioned biofouling stages is different with regard
to the scale of its negative impact on a vessel’s performance (Schultz,
2007). Even the formation of a slime film has a pronounced impact
on hydrodynamic performance. For example, Watanabe et al. (1969)
reported an 8÷15% increase of frictional resistance due to the presence
of slime. This has been further confirmed by Farkas et al. (2020b) where
a Computational Fluid Dynamics (CFD) implementation was exploited
to determine the impact of different stages of slime film development.
An increase in total resistance ranging from 0.5 to 25.8% was observed
when different biofilm stages were examined. Moreover, in Schultz
(2007) the effects of biofouling on ship resistance and powering were
studied and it was discovered that a light slime film resulted in around
a 10% increase in shaft power and total resistance, whereas heavy slime
films could result in around a 20% increase.

Macrofouling affects the total resistance to a greater extent. The
estimation of added resistance due to weed biofouling is difficult and
of minor interest (Townsin, 2003). Instead, the impact of hard calcare-
ous fouling on hull resistance, propeller performance, and propulsion
characteristics is often the subject of research in the field. For example,
(Kempf, 1937) conducted an experimental campaign on pontoons with
varying coverage and height of shells with the goal of predicting

added resistance due to biofouling. In Demirel et al. (2017) towing
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Fig. 2. Biofouling impacts.
Table 1
Performance impact of biofouling.
Ref. Method Microfouling impact Macrofouling impact

Watanabe et al. (1969) Rotor and Towing tank
experiments

Frictional resistance increase
8 ÷ 15%

N/A

Farkas et al. (2020b) CFD Total resistance increase
0.5 ÷ 25.8%

Total resistance
increase 50 ÷ 120%

Schultz (2007) Laboratory-scale drag
measurements and
boundary layer
similarity law analysis

Total resistance increase of
around 10% for a light slime
film and around 20% for a
heavy one

Total resistance
increase ranging
from 35 ÷ 86%
tank experiments using flat plates covered with artificial barnacles of
varying size and coverage were performed. The results, extrapolated
at full-scale, showed that barnacle size has a significant effect on
added resistance due to biofouling, where a 10% coverage with 10mm
diameter and 5mm height artificial barnacles led to the same 44.6%
increase in effective power requirement that was observed for a 50%
coverage with 2.5 mm diameter and 1.25 mm height shells. The above
results confirmed the assumption of Schultz (2004) that the height of
the largest barnacles (part of a fouling layer) has the largest impact on
drag. In Schultz (2007) an increase of required shaft power between
35% for lesser and 86% for heavy calcareous fouling was reported. This
was observed at cruising speed through a method of predicting the
effects of coating roughness and fouling on a full-scale ship by utilising
model tests. Finally, the authors of Farkas et al. (2020b) exploited
CFD simulations with varying extents of hard fouling on different ship
and propeller types to determine the impact of hard fouling on ship
performance. They observed increases in total resistance in the range
between 50 ÷ 120% across different hull forms, along with increases in
required delivered power between 75 ÷ 213.4%.

For the sake of completeness, a brief summary on the performance
impact that has been attributed to biofouling is reported in Table 1.

2.2.2. Financial impacts
As discussed in the previous section, over time biofouling decreases

the efficiency of a vessel, requiring additional fuel for achieving the
same mission. An increase in the fuel quantity required for powering
is accompanied by extra financial strain. In fact, 60 ÷ 70% of the oper-
ational costs of a ship result from its energy requirements (Rehmatulla
and Smith, 2015). There is a direct monetary cost to maintaining a
fouling-free vessel, as well as accompanying down periods, where the
vessel is unable to perform its mission (see Fig. 3). Therefore, there is an
obvious trade-off between the costs of hull and propeller maintenance
activities and the costs due to increases in total resistance. In fact, it is
crucial to develop tools which are able to effectively estimate the loss in
efficiency (and the increase in costs) due to the vessel’s biofouling state
in order to detect the optimal point in time for conducting hull and
propeller maintenance (Coraddu et al., 2019b). The most influential
and widely known study to address the financial aspects of ship fouling
4

Fig. 3. Economic impact of biofouling.

is that done by Schultz et al. (2011). An in-depth analysis and break-
down of the costs associated with the fouling of an entire class of naval
vessels allowed the researchers to quantify the financial expenditure
that is needed to combat the usual performance deterioration with time.
The above lead to a conclusion that even modest improvements in the
fouling condition of a hull could save enough money to cover the costs
of development, acquisition, and implementation of even relatively
expensive technical or management solutions.

The financial aspects are not only ground for the creation of tools
and strategies which can help fouling management, but there is also a
need and desire for such developments (CSC, 2011).

2.2.3. Environmental impacts
As stated in the introduction, the energy efficiency gap in Maritime

is a serious problem that needs to be addressed. The overall efficiency
decrease due to biofouling has a severe environmental impact caused
by the increase in the amount of pollutants expelled to the atmosphere
through exhaust gases. The IMO has previously estimated that the
deterioration in hull and propeller performance of the world fleet is
accountable for 9 ÷ 12% of GHG emissions (IMO, 2011). Being able
to assess the vessel’s performance decrease due to fouling in real-
time and, subsequently, to use this information to improve current
maintenance practice then becomes fundamental. Moreover, these tools
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are inexpensive and relatively easy to exploit on both old and current
vessels. In fact, researchers have been able to achieve this using Noon
Reports (NR) (Pedersen and Larsen, 2009a) which are widely available
for most ships and even if not, their creation is solely dictated by
company operational practice.

Another aspect to take into consideration is that a single vessel
can travel across very long distances and often connects geographical
locations with entirely different marine life, becoming a vector for the
transportation of species across the globe. This becomes a problem
when considering potentially invasive organisms, which threaten the
biodiversity of the oceans. In fact, there is evidence that fouling is
even more likely to cause the transfer of foreign species than bal-
last water (Sylvester et al., 2011; Chan et al., 2015). The chance of
spreading non-indigenous species through fouling has been observed
to increase with the age of the hull and propeller’s antifouling coat-
ing (Chan et al., 2015). Interestingly, microfouling is far less likely
to result in the spread of non-indigenous species when compared to
macrofouling because the organisms that slime films are comprised of
lack reproductive structure (Chan et al., 2015). Maintaining a vessel’s
hull at earlier stages of fouling development, while also collecting the
resultant waste, could be considered as a viable option in reducing this
environmental risk (Schultz et al., 2011; Adland et al., 2018).

2.3. Fouling control

To mitigate biofouling’s negative effects, two main means of miti-
gation and control are used in combination.

Antifouling coatings are normally applied to the exposed surfaces of
ships to protect against, or at least slow down, the build-up of biomass.
Different coating technologies exist, utilising different approaches. As
described by Uzun et al. (2019), the main ones are Self-Polishing
Copolymers (SPC), Controlled Depletion Polymers (CDP), and Foul-
Release coatings (FR), which can be further split up into biocidal
(SPC and CDP) and non-biocidal (FR). Ultimately, the former release
chemicals to prevent the formation of biofouling, whereas the latter
reduce the attachment strength of marine life and facilitate the release
of biofouling from treated surfaces when the vessel is moving. Biocidal
coatings have a long history of environmental damage: for a long time
tributyl tin (TBT) was used industry-wide because of its very high
effectiveness in preventing fouling, however, was ultimately banned
due to its serious environmental impact (Townsin, 2003) and replaced
with copper-based biocidal coatings. However, these are now also being
banned regionally (Townsin, 2003). Hard coatings, on the other hand,
have been found neutral to the ocean with a lifespan of at least 10
years, where they may even extend the life of the hull (Song and
Cui, 2020). None of the technologies mentioned above provide full
protection (i.e., biofouling still occurs on the hull and propeller of
vessels). The application of antifouling coatings only reduces fouling
accumulation between cleaning events and allows for longer periods
between them (Oliveira and Granhag, 2016).

Manual cleaning of the hull and propeller is the second method
of fouling control, which can either be done underwater by divers
with specialised brushes and Remotely Operated Vehicles (ROVs) or
when the vessel is dry-docked (Song and Cui, 2020; Morrisey and
Woods, 2015). Dry-docking is the more effective of the two methods
as it allows for cleaning, sandblasting, and re-coating of the hull with
a new antifouling coating and results in a larger reduction in total
resistance (Adland et al., 2018). Moreover, it is the only method which
allows for the neutralisation of invasive species (Adland et al., 2018).
Unfortunately, dry-docking is also expensive and thus is undertaken
only when necessary, usually every 3 to 5 years (Hua et al., 2018). Un-
erwater cleaning of the hull and propeller has been observed to have
oughly half the beneficial effect on reducing fouling resistance when
ompared to dry-docking (Adland et al., 2018), however, it is much
heaper. In fact, in Haslbeck and Bohlander (1992), authors state that
5

nderwater cleaning costs would get accounted for in between 14 and e
4 operational hours through fuel savings. The replacement of divers
ith specialised ROVs for underwater cleaning can be identified as
nother option (Bohlander and Zealand, 2009). Unfortunately, for foul-
elease silicone coatings, underwater cleaning is not suitable (Foteinos
t al., 2017). Additionally, it also does not allow for the collection of
iological waste and can lead to the rapid discharge of antifoulants
rom biocidal ship hull coatings, which without proper filtration can
ause severe environmental damage (Scianni and Georgiades, 2019).
or this reason, classic underwater cleaning is banned in many ports
cross the world (Koboević et al., 2019). Nevertheless, methods for
ddressing the shortcomings of underwater cleaning, namely capture
echnology, are currently under development (Tamburri et al., 2020).
dditionally, underwater cleaning is often combined with hard coatings
hich avoids the discharge of toxic particles (Song and Cui, 2020).

. Preliminaries

Before reviewing the methods available in the literature, in this
ection, a concise explanation of biofouling-related parameters and
ollectable data useful for monitoring and evaluating the relevant
ffects on hull and propeller performance is provided. In fact, it is
mportant to have a clear understanding of what phenomena can be
easured or simulated by means of endogenous (i.e., vessel specific)

r exogenous (e.g., environmental) data collection. Specifically, a pa-
ameter is referred to as exogenous if it is determined outside of a
essel’s operation and cannot be influenced by the examined system,
hereas endogenous measurements describe factors over which there is

ontrol. For example, environmental conditions are exogenous as they
escribe the environment in which the ship has to operate and cannot
e influenced. In fact, exogenous parameters are the main subject of
iltering because of the inherent difficulty of estimating their effects on
vessel. Knowledge about exogenous parameters is extremely valuable
ecause it allows approaches to take the influence of outside conditions
nto consideration, irregardless whether this is done as part of a deter-
inistic approach for evaluating added resistances due to wind, waves

tc., or as part of a data-driven approach where the phenomena are
aptured in a purely artificial way.

For this reason, the data that can be available is first described,
ollowed by what quantities it is possible to estimate for the purpose
f monitoring and evaluating biofouling effects on hull and propeller
erformance.

.1. Available data sources

The quality, volume, and variety of collected data varies between
essels and is highly dependent on the particular equipment installed
n board (Cheliotis et al., 2020). Due to the long life cycle of ships,
ata recording capabilities vary substantially, depending on a ship’s
ge (Rødseth et al., 2016). Retrofitting sensory equipment is an option
hich many ship owners actually pursue (Lim et al., 2019). Considering

he task of vessel’s operational monitoring, for both newbuilding and
etrofitting, selecting the array of sensors is a complex ship-specific
roblem, which depends on the particular monitoring application, the
hipowner’s needs and the desired capabilities (Kaminaris et al., 2014).
n fact, many different metrics need to be taken into account, such
s the cost of the sensors and their probability of failure, the costs
nd the complexity of the installation, and the estimated benefits (e.g.,
nvironmental, economical, etc.) (Lim et al., 2019). The final array
f sensors available for the vessel’s monitoring directly affects the
ondition monitoring system’s capabilities, quality, and accuracy (Dal-
eim and Steen, 2021). As a matter of fact, collecting high frequency
nd quality operational data facilitates the development of enhanced
onitoring capabilities but, at the same time, increases the cost of

he installation, maintenance, and operation of the monitoring system
tself (Raptodimos et al., 2016). Most commonly, it is required to
xploit, in an opportunistic way, all the measures and sensors already
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Table 2
Typical biofouling-related operational measurements.

Parameters Description Source Sensors Reliability

Water Depth The value of a water depth measurement in terms of
vessel performance modelling comes with respect to
estimating shallow water effects. With decreasing
water depth, these become more impactful

Exogenous Depth sounder (also called echo
sounder or depth finder) or
Pressure-based depth sensor

High

Water Properties
(e.g., Temperature,
Density, Viscosity,
and Salinity)

Variations in water properties directly affect the
hydrodynamic performance of a vessel

Exogenous Various sea water sensors High

Sea State Properties Knowledge of the sea state allows for the estimation
of wave effects on the ship

Exogenous Shipboard sensors, Satellite data or
Wave buoys

Medium/ High

Water Current
Properties

Knowledge of the water current speed and direction
with respect to the vessel could allow for the use of
speed over ground instead of speed over water
(SoW). This helps curtail the low reliability of SoW
measurements.

Exogenous Acoustic Doppler current profilers High

Wind State
Properties

Knowledge of the wind state allows for the
estimation of wind effects on the ship.

Exogenous Anemometer High

Air Properties
(Temperature,
Pressure, Humidity
etc.)

Variations in air properties directly affect the
aerodynamic performance of a vessel.

Exogenous Shipboard sensors such as
temperature sensor, barometer,
humidity sensor etc.

High

Draft & Trim Draft & Trim are key hydrostatic properties, which
directly affect hydrodynamic performance.

Endogenous Hydrostatic level sensors in multiple
locations across ship length

High

Vessel Speed
through Water

Speed through water (also LOG speed) helps
determine a vessel’s operational efficiency and rate
of fuel consumption. It is complicated to calculate
accurately, requiring knowledge of currents and
other forces acting on the vessel.

Endogenous Paddle wheel speed sensor,
Ultrasonic speed sensor,
Electromagnetic speed sensor or,
most recently, Doppler log which is
more accurate

Medium/ High

Vessel Speed over
Ground

Speed over Ground (also GPS speed) is the speed at
which the vessel moves with respect to its
geographical position.

Endogenous GPS signal High

ME RPM & Torque The power output of the engine through its RPM
and Torque indicates operational setting.

Endogenous Rotational speed sensor (for example
a tachometer) and a Torque sensor

High

ME Fuel
Consumption

Fuel is the source of propulsive power and so it is
directly linked to energy efficiency.

Endogenous Mass flow metre High

Fuel Properties Fuel properties such as heating values, density,
temperature etc. vary and are important parameters
related to the energy input into the power plant.

Endogenous Fuel quality sensor & Fuel heating
value sensor

High

Shaft Torque, RPM
and Power

The shaft power is a good indicator of the power
available for propelling the vessel.

Endogenous Shaft power (torsion) metre Medium/ High

Propeller Thrust A propeller’s generated thrust is the vessel’s moving
force, which opposes total resistance.

Endogenous Thrust metre, usually an optical
sensor

High

Propeller Pitch The propeller’s pitch sets its operational point. For a
vessel with a controllable pitch propeller, this can
be varied.

Endogenous Propulsion Control System High

Rudder Angle &
Activity

Angling the rudder results in a sideways force,
which turns the vessel. Rudder activity also results
in power losses i.e. added resistance.

Endogenous Rudder angle sensor High
available and still obtain good results without investing in retrofitting
or modifying newbuiding projects (Koboević et al., 2019). Note that,
some information, can be also retrieved via virtual sensors which do
not require any physical sensor installation (Lim et al., 2019). Although
virtual sensors might lead to less accurate estimation, this approach
still provides some benefits of having a physical sensor without the
associated capital cost (Costantini and Susstrunk, 2004).

Table 2 briefly reviews the biofouling-related operational measure-
ments as well as example sensory equipment. Some sensory features
are inherently less reliable than others due to the nature of the target
parameter and the nature of the sensor exploited (Ikonomakis et al.,
2021). A lot of variables are not included (e.g., light intensity, water
nutrient composition, and water pH etc.) despite them being influential
in terms of the speed and type of biofouling formation, partially be-
cause of the difficulties associated with their measurement (Uzun et al.,
2019). Moreover, the current work is focused on methods for determin-
ing the biofouling performance impact rather than the specifics of the
biofouling growth process.
6

3.2. Parameters to estimate

For what concerns the scope of this review, the most important
parameter to estimate is the impact that biofouling has on the vessel’s
hull and propeller performance. In particular, it is often required to
compare the actual ’real-life’ performance with the base case when
the hull and propeller are ’clean’ (i.e., not fouled) (Brandsæter and
Vanem, 2018). Commonly, data recorded during ship sea trials is used
to represent this unfouled scenario (Coraddu et al., 2019a; Foteinos
et al., 2017; ISO, 2016a,b,c). Nevertheless, this approach is not always
the correct one since, in time, other vessel components are subject to
decay (Liang et al., 2019) and this may lead to an overestimation of the
biofouling effects on hull and propeller performance. Additional vessel
fuel consumption is usually exploited to translate the added resistance
due to biofouling into a measure that can be easily converted into
a monetary cost (Schultz et al., 2011). However, due to many other
exogenous factors that can potentially influence the fuel consumption,
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Table 3
Typical parameters for biofouling impact estimation.

Ref. Parameter Link to shipping practice

Coraddu et al. (2019b), ISO (2016a,b,c), Koboević et al. (2019),
Farkas et al. (2020b), Logan (2012), Erol et al. (2020),
Karagiannidis and Themelis (2021)

Speed loss Can be translated into longer voyage times and
bigger delays in schedule.

Koboević et al. (2019), Coraddu et al. (2019a), Adland et al.
(2018), Farkas et al. (2020a,b)

Additional fuel consumption Direct connection to increased fuel costs and,
therefore, operational costs.

Pedersen and Larsen (2009a), Uzun et al. (2019), Demirel et al.
(2017), Farkas et al. (2020b), Atlar et al. (2018), Schultz (2007),
Foteinos et al. (2017), Demirel et al. (2019), Song et al. (2020c),
Schultz et al. (2011), Logan (2012), Foteinos et al. (2017), Demirel
et al. (2017), Uzun et al. (2019), Song et al. (2020a), García et al.
(2020), Senteris et al. (2019), Laurie et al. (2021), Karagiannidis
and Themelis (2021)

Additional power requirement/Added
resistance

Can result in overloading of the vessel’s engine
and is indicative of higher energy needs/lower
ship efficiency.

Song et al. (2020b), Farkas et al. (2021b) Change in propeller open-water
performance (i.e Thrust coefficient,
Torque coefficient & efficiency)

Indicative of a shift in propeller performance
envelope and can be used to guide modifications
towards optimal vessel operation.
o

p
C
p
2

it has been proven to be inaccurate for describing the added resistance
due to biofouling (Carchen and Atlar, 2020). In fact, Carchen and
Atlar (2020) argue the need for new measures (in addition to speed
loss, added power requirements and fuel consumption) which provide
enhanced insight into vessel hydrodynamic performance changes due
to biofouling. Specifically, they propose three novel parameters, i.e.,
hull viscous drag, effective wake, and propeller sectional drag, which
have the potential to improve the ability to evaluate biofouling’s impact
on ship hydrodynamic performance. Nevertheless, these parameters are
difficult to relate to commercial shipping practice. For example, the
use of simpler parameters such as speed loss is useful in translating
the delay in vessel operations into financial losses (Coraddu et al.,
2019b). The same can be said regarding increases in power and fuel
requirements (Schultz et al., 2011).

Table 3 summarises the main parameters that are usually estimated
and exploited to measure the biofouling impact.

3.3. Modelling approaches

To estimate the parameters described in Section 3.2 based on the
data described in Section 3.1 the most effective and cost-efficient
approach is to use numerical methods (Carchen et al., 2019). These
numerical models can build upon the physical knowledge of the prob-
lem (Farkas et al., 2020b), or on historical data about the biofouling
phenomenon (Coraddu et al., 2019b), or on both (Coraddu et al.,
2021). According to what type of information is used to formulate the
model, physical knowledge of the problem and/or collected histori-
cal data, the construction of the model changes. In particular, three
different types of modelling approaches can be identified: Physical
models (PMs), Data-driven models (DDMs), and Hybrid models (HMs).
PMs are built based on a-priori, mechanistic knowledge of the real
system (i.e., the numerical description of the biofouling growth and
related added resistance) (Carchen et al., 2019). DDMs, instead, are
built based on historical collections of observations of the vessel in
operation (i.e., vessel speed, fuel consumption, delivered power, wind,
waves, sea currents data), exploiting state-of-the-art Machine Learning
(ML) techniques (Coraddu et al., 2019b). In the case of an HM, the PM
and the DDM are combined to build models which use both a-priori
physical information of the underlying phenomenon and historical
data (Haranen et al., 2016). Fig. 4 reports a graphical representation
of these three modelling approaches and how they are built.

Since PMs are based on the knowledge of the physical laws govern-
ing the phenomenon, they can be very reliable. In fact, by construction,
they only produce physically plausible predictions. The expected accu-
racy of the results grows with the increase of the detail in modelling
the physical phenomenon (Atlar et al., 2018). However, usually, in-
creasing the accuracy of PM results in quite a high request in terms
of computational requirements (Carchen et al., 2019). This fact limits
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their use in the wild where substantial computational capabilities are
seldom available (Carchen et al., 2019).

DDMs, instead, do not require any a-priori knowledge of the phys-
ical system, but rather are built on historical data collected from
the real system. They usually require a large amount of data and
a large amount of computational resources to be constructed (i.e.,
the learning phase) to reach a satisfying performance in terms of
model accuracy (Coraddu et al., 2015). Instead, once the model is
constructed, its use for making predictions (i.e., the forward phase)
is computationally inexpensive (Coraddu et al., 2016) and this has
big added value for DDMs as only the forward phase needs to be
exploited in order to use them in operation. However, since they rely
only on historical observations, DDMs work well in the statistical sense
(i.e., on average), but they can produce implausible estimations (i.e.,
not physically plausible estimations) in particular situations (Coraddu
et al., 2021).

HMs have been developed to fill the gaps of PMs and DDMs and
develop models able to take the best of the two worlds (Leifsson
et al., 2008). HMs, in fact, can be able to: exploit the mechanistic
knowledge of the system and avoid implausible predictions, reduce the
computational requirements of a PM by exploiting historical data, and
reduce DDMs’ need for large amounts of historical data by starting
from an already good approximation of the phenomenon provided by
PMs (Haranen et al., 2016).

Advantages and disadvantages of PMs, DDMs, and HMs for estimat-
ing the impact of biofouling on vessel’s hull and propeller performance
will be discussed in detail in the following sections, presenting and
analysing examples of models proposed in the literature belonging to
each one of these categories. For each example, the accuracy obtained
by the model on real-word or synthetic data has been reported, if
available.

4. Analytical review

In this review, PMs, DDMs, and HMs proposed in literature for
estimating the impact of biofouling on vessel’s hull and propeller
performance have been analysed. In particular, among the variety of
methods proposed in the literature, the models presented in this work
have been chosen to represent all the different approaches to the
problem.

The methods presented for each category were selected according to
the following criteria: recently developed models (from 2015 to 2021)
r models between 2000 and 2015 with at least 25 citations.

In the case of PMs, the most exploited and effective methods for
redicting the hull and propeller’s deterioration due to fouling are
FD models, which incorporate fouling condition specific roughness
roperties into the wall function of the CFD software (Song et al., 2019,
020c,a,b; García et al., 2020; Farkas et al., 2020b,a, 2021b,a). Other
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Fig. 4. The three performance modelling approaches.
commonly exploited models are based on Granville’s boundary layer
similarity law scaling (Schultz, 2007; Schultz et al., 2011; Turan et al.,
2016; Demirel et al., 2017, 2019; Uzun et al., 2019), which extrapolate
flat plate experimental results into full-scale resistance and powering
predictions for vessels.

In the case of DDMs, instead, the most exploited and effective meth-
ods for determining biofouling’s impact on performance are based on
artificial neural networks (Pedersen and Larsen, 2009a; Coraddu et al.,
2019b; Senteris et al., 2019; Laurie et al., 2021; Karagiannidis and
Themelis, 2021). Additionally, classification methods based on neural
networks are used to identify different levels of biofouling (Wang et al.,
2006; Bloomfield et al., 2021) and biofouling species (Chin et al.,
2017).

For what concerns HMs, this approach has been less investigated in
the literature and no methods have so far been proposed for assessing
biofouling’s impact on the vessel’s hull and propeller performances.

In the following sections, advantages and disadvantages of PMs,
DDMs, and HMs and relevant examples have been analysed in de-
tail. Moreover, for each class of models, tables have been reported
summarising the following aspects (if available):
8

• Input data: the data that the models require to make the desired
estimation;

• Data origin: synthetic data or real-world data collected during
sea-trials or operations by on-board sensors or by exogenous
sources;

• Amount of data: the amount of data exploited to build and
validate the models;

• Method: the technique used by the models to predict the output;
• Output: what parameter(s) the model actually estimates;
• Accuracy: the accuracy obtained by the models;
A section is dedicated to show how, in some cases, PMs have been

translated into industry standards (Section 4.1.1). Physical models have
been around the longest, therefore they are considered by actors in
Maritime to be more robust and trustworthy (Carchen et al., 2019).

4.1. Physical models

PMs are the most well-established numerical approach with re-
gard to assessing the biofouling state (Logan, 2012). PMs, as already
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explained before, rely on the a-priori physical knowledge of the phe-
nomenon and are built upon a set of governing laws and assump-
tions (Carchen et al., 2019). The complexity, the accuracy, and the
computational requirements of a PM vary by adding or removing some
assumptions (Atlar et al., 2018). To model the hydrodynamic perfor-
mance of a ship and then quantify the negative impact of the different
stages of the biofouling, PMs estimate the total resistance of a vessel
or its different components (i.e. wind, waves, currents, and sometimes
the rudder effect) through experiment and simulation (Adland et al.,
2018). As PMs are the most popular numerical approach, many exist in
literature with different levels of complexity.

Among PMs, Experimental Fluid Dynamics (EFD) represents the
baseline for biofouling state estimation. EFD consist of conducting
experiments in a controlled test environment, such as towing tanks
and cavitation tunnels, with the goal of quantifying a target effect
on hydrodynamic performance (Carchen et al., 2019). There is a long
history of research utilising such techniques, which is well described
by Demirel et al. (2017) who utilise a series of towing tests on flat
plates using artificial 3D printed barnacles to determine the effects of
barnacle height and coverage on vessel resistance and powering. The
main drawback of EFD is their high associated costs and the limitation
to specific experimental conditions. In fact, it is both time and cost
intensive to conduct a rigorous experimental procedure which covers
many operational scenarios (Carchen et al., 2019). Moreover, experi-
mental facilities often are not suitable for full-scale testing, limiting EFD
to model scale and leading to results often being extrapolated to full-
scale for further analysis. For example, for the analysis of biofouling’s
impact on vessel performance, the Granville’s similarity law scaling
procedure (Granville, 1958, 1987) is often used to translate laboratory-
scale results into a prediction of the impact of fouling. This procedure
was first introduced by Schultz (2004, 2007) and it has been employed
extensively in research even since (Schultz et al., 2011; Turan et al.,
2016; Demirel et al., 2017, 2019; Uzun et al., 2019; Farkas et al.,
2020a). Ultimately, EFD is not often used on its own to determine
fouling effects, but rather as a source of information employed in more
advanced PMs (Uzun et al., 2019; Farkas et al., 2020b; Schultz, 2007;
Song et al., 2020c; Demirel et al., 2017; Schultz, 2004; Demirel et al.,
2019; Atlar et al., 2018).

Another approach, an alternative to EFD, to determine biofouling’s
impact on ship performance, involves estimating the total resistance
and then correcting for its various components which allows the isola-
tion of fouling’s contribution (Adland et al., 2018). This estimation has
often been performed with resistance modelling methods (Logan, 2012;
Adland et al., 2018), which were originally developed by Todd Todd
(1967). A collection of separate empirical and non-empirical methods
for each resistance component can be exploited (Logan, 2012; Ped-
ersen and Larsen, 2009a). A good example is the work by Foteinos
et al. (2017), where an engine model in the MOTHER software is
first calibrated according to shop test and sea trial reports and then
used to estimate total ship resistance; empirical formulae are used
to determine calm water resistance, air resistance, and wave-added
resistance, which are then subtracted from the total ship resistance to
obtain the contribution of hull & propeller fouling. Researchers include
different levels of detail in their decomposition of total resistance (Lo-
gan, 2012). For example, Carchen et al. (2019) developed a real-time
biofouling impact monitoring system on the basis of automatic data
collection and resistance modelling. The authors considered not only
the wind, wave, and calm water resistance (which are usually taken
into account Foteinos et al., 2017) but also the steering and shal-
low water effects. Resistance modelling is based on a-priori physical
knowledge and, therefore, results in only physically plausible results.
However, these results are often inaccurate, partially due to a need for
estimating several unknown friction-related coefficients (Pedersen and
Larsen, 2009a).

The state-of-the-art PMs are surely the ones based on CFD, which
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often replace or supplement EFD and resistance modelling (Carchen
et al., 2019). CFD demonstrate high accuracy using computers to solve
complex Navier-Stokes equations describing fluid flow. However, CFD
are very computationally expensive when compared to other meth-
ods (Karagiannidis and Themelis, 2021). Similar to EFD methods, CFD
simulations are confined to the analysis of a single flow or operational
condition at a time, which limits their practical real-time applica-
bility (Carchen et al., 2019). Nonetheless, a large body of research
relies on CFD to measure biofouling impact (Farkas et al., 2020b,
2021a,b; Song et al., 2020c; Atlar et al., 2018; Farkas et al., 2020a;
Song et al., 2020a; García et al., 2020; Song et al., 2019, 2020b). The
CFD approach to estimating the biofuling state is to consider increases
in the vessel’s surface roughness due to specific biofouling conditions
and incorporate these in the wall function by means of appropriate
roughness functions (Schultz, 2007). The specific roughness functions
are usually determined using experimental methods (Schultz, 2004).
Additionally, data collected from EFD is used to validate this type of
PMs (Song et al., 2019, 2020c,a,b; Farkas et al., 2020b,a, 2021a,b).

PMs are quite useful not only to get an estimation of the biofouling
state but also to gain a better understanding of the hydrodynamic
behaviour of fouled vessels and surfaces (Carchen and Atlar, 2020).
However, even nowadays, there are still specific physical phenomena
which cannot be easily modelled through PMs (Montewka et al., 2019).
Consequently, in realistic scenarios, PMs often lack in accuracy or are
too computationally demanding.

For a more precise view of the current state-of-the-art approaches,
Table 4 summarises the most relevant contributions in the field of PMs
for biofouling state estimation.

4.1.1. Industry standards
The current industry standard for estimating changes in ship hull

and propeller performance consists of applying the ISO 19030 devel-
oped by the International Organisation for Standardisation (ISO). The
aim of the ISO 19030 is to prescribe practical methods for measuring
changes in ship specific hull and propeller performance and to define
a set of relevant performance indicators for hull and propeller mainte-
nance, repair, and retrofit activities (ISO, 2016a). The ISO 1903 consists
of three parts:

1. an explanation of the general principles that are adopted (ISO,
2016a);

2. a description of the default and most accurate method that
can be applied for determining metrics for changes in hull and
propeller performance (ISO, 2016b);

3. a set of alternative methods that can be used in case the default
procedure cannot be adopted (ISO, 2016c), enhancing the range
of applicability of the standard.

ISO 19030 has been identified as a good starting point for vessel
owners and operators to track hull and propeller performance, con-
sidering the previous lack of an official standard (Koboević et al.,
2019). However, it has received criticism for its underlying meth-
ods (Bertram, 2017), e.g., the suggested corrections and filtering proce-
dure (Coraddu et al., 2019b; Farkas et al., 2020b) and its performance
assessment (Oliveira et al., 2020). In fact, most performance monitoring
approaches utilise a reference condition, which is then compared to
real-time performance to determine any noticeable shifts (Bertram,
2017). However, these corrections are often done through simplistic
methods with narrow ranges of applicability which demonstrate inac-
curate results. The ISO 19030 is no different as it requires filtering out
of operating points that are outside of the applicability of the methods’
assumptions (Coraddu et al., 2019b). While the ISO 19030 standard is
considered a positive step forward from previously non-existent official
guidance to hull and propeller monitoring, it is still affected by issues

which have not yet been resolved (Oliveira et al., 2020).
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Summary of PMs for monitoring and evaluating the biofouling state and effects on vessels’ hull and propeller performance.
Ref. Method Input data Data origin Amount of data Output Accuracy

Schultz (2007), Schultz et al. (2011) Granville’s similarity
law analysis based on
laboratory-scale
experimental results.

Fouling condition and
antifouling paint
specific roughness
functions, vessel
geometry & particulars.

Experiment
derived
roughness
functions.

Roughness functions for
7 surface conditions.

Predictions of full-scale ship
resistance and powering for a
range of fouling conditions
and roughness.

Extrapolated full-scale results are
compared with trial results for
similar hull forms: Reference
values of 24% and 8%, compared
to extrapolated results of 22 ÷ 32%
and 9%.

Logan (2012) Propeller power
absorption technique
which uses the
propeller as an
instrument to estimate
speed or power.

Propeller particulars,
ship performance data.

Automated data
acquisition
systems installed
on-board.

After filtering, 3326
entries were used.

Power increase and/or speed
loss due to fouling.

Average speed and shaft
horsepower absolute errors of
1.8% and 0.9% respectively.

Foteinos et al. (2017) Shaft torque prediction
through an engine
simulation software fed
with recorded engine
data, coupled with
resistance modelling

Engine shop test data,
sea trial reports,
performance reports,
noon reports, engine
and vessel geometry

Real-world
engine & vessel
trial and
operation.

Four Panamax vessels’
operational data.

Estimation of resistance due to
fouling through increases in
the Propeller Law and Fouling
Resistance coefficients.

Results with more than 5%
deviation from sea trials were
discarded from analysis.

Turan et al. (2016), Demirel et al. (2017) Granville’s similarity
law analysis based on a
series of flat plate
towing tests for
different artificial
barnacle heights &
coverage.

Barnacle size and
coverage values.

3-D scans of
actual barnacles.

10 different
combinations of
barnacle size and
coverage.

Added resistance diagrams are
plotted using predictions of
added resistance and the
effective power of ships for
varying barnacle fouling
conditions.

Uncertainties estimated through
repeatability tests based on a
procedure defined by the ITTC:
Friction coefficient uncertainty
below 4%; Roughness function
uncertainty was mostly under
+∕ − 6%, however, for small
barnacles it was below 28%.

Demirel et al. (2019) A prediction code
based on Granville’s
similarity law is used
to predict the effects of
different fouling states.

Roughness height,
roughness functions,
corresponding
roughness Reynolds
numbers and desired
ship lengths.

Experiment
derived
roughness
functions from
Schultz (2007).

Roughness functions for
7 surface conditions.

Frictional resistance coefficient
values which are used to
generate added resistance
diagrams for the prediction of
increases in frictional
resistance coefficients and
effective powers of ships due
to a range of surface
conditions.

The authors provide no
information on the accuracy of
the used method.

Carchen et al. (2019), Carchen and Atlar (2020) A ship performance
monitoring system,
based on real-life data
collection and
resistance modelling.

Time, SoG, Course over
Ground, Heading, SoW,
Propeller speed,
Propeller Torque,
Propeller Thrust,
Rudder angle, Wind
speed, Wind direction,
Wave amplitude, Wave
spectrum, Wave
properties

Automatic
on-board
monitoring
system.

Data from sea trials
and normal service
with 1 Hz sampling
frequency.

Normalised delivered power,
apparent wake fraction,
effective wake fraction, fouling
coefficient and change in
frictional resistance coefficient

The authors present no validation
study, which would give
indication into the accuracy of
their method.

(continued on next page)
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Uzun et al. (2019) A time-dependent

biofouling growth
model based on field
test data coupled with
a frictional resistance
and powering
prediction model based
on Granville’s similarity
law.

Vessel idle times, field
test data for AF
coatings, water
temperature, biofouling
condition specific
roughness functions &
ship particulars.

Static field tests
from a paint
company.

Test from one to three
years in two regions.

Fouling Rating, calcareous
fouling surface coverage,
percentage increase in
frictional resistance &
percentage increase of
effective power.

Following the validation of their
model, the authors conducted a
case study in which the model
committed a 4% error when
estimating the increase of
effective power due to fouling.

Song et al. (2019) CFD implementation
utilising biofouling
state specific roughness
functions.

Fouling conditions’
specific roughness
functions, geometry and
particulars of KCS hull.

Experiment
derived
roughness
functions from
Demirel et al.
(2017).

Roughness functions for
10 fouling conditions.

Fouling effects on the
resistance components, form
factors, wake fractions and
flow characteristics.

Verification study based on grid
convergence index (GCI) method:
GCIs under 1%. As part of a
validation study, the modified
wall-function results from CFD
were compared with experimental
results, however, exact values for
committed errors are not given.

Song et al. (2020c) CFD implementation
utilising biofouling
state specific roughness
functions.

Fouling conditions’
specific roughness
functions, geometry
and particulars of KCS
and KVLCC2 hulls.

Experiment
derived
roughness
functions from
Demirel et al.
(2017).

Roughness functions for
3 surface conditions.

Fouling effects on the
resistance components, form
factors, wake fractions and
flow characteristics.

Verification study based on grid
convergence index (GCI) method:
GCIs under 1%. Validation study
by comparison with experimental
results: observed errors are within
5% of reference values.

Song et al. (2020a) CFD implementation
utilising biofouling
state specific roughness
functions.

Fouling conditions’
specific roughness
functions, geometry
and particulars of the
KP 505 propeller and
the KCS hull.

Experiment
derived
roughness
functions from
Demirel et al.
(2017).

Roughness functions for
10 surface conditions.

Effects of fouling on full-scale
ship resistance and powering,
as well as flow characteristics.

Verification study based on grid
convergence index (GCI) method:
GCIs under 0.1%. Validation
study by comparison with
experimental results: observed
errors are within 5.5% of
reference values.

Song et al. (2020b) CFD implementation at
full-scale utilising
biofouling state specific
roughness functions.

Fouling conditions’
specific roughness
functions, full-scale
KP505 propeller
geometry and
particulars

Experiment
derived
roughness
functions from
Demirel et al.
(2017).

Roughness functions for
10 surface conditions.

Propeller open water
performance (i.e. Thrust
coefficient, Torque coefficient
and open-water efficiency)

Verification study based on grid
convergence index (GCI) method:
GCIs under 1%. As part of a
validation study, the results from
CFD were compared with
experimental results, however,
exact values for committed errors
are not given.

(continued on next page)
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Table 4 (continued).
García et al. (2020) A validated RANS

solver (OpenFOAM)
utilised according to
experimentally
investigated surface
roughness properties.

Fouling conditions’ &
hull coatings’ specific
roughness functions,
geometry and
particulars of the KCS
hull.

Experiment
derived
roughness
functions.

Experiments for 4
marine coatings.

Impact of fouling on ship total
resistance and frictional
resistance.

Verification study based on grid
convergence index (GCI) and
correction factor (CF) methods:
GCIs and CFs around 10%.
Validation study by comparison
with synthetic CFD results from
Song et al. (2019): average
deviation of 5% for drag
coefficient and 5% for frictional
resistance coefficient.

Farkas et al. (2020b) CFD implementation
utilising biofouling
state specific roughness
functions.

Fouling conditions’
specific roughness
functions, geometry
and particulars of the
KP 505 propeller and
KCS hull.

Experiment
derived
roughness
functions from
Schultz et al.
(2015), Farkas
et al. (2018).

Roughness functions for
8 surface conditions.

Impact of biofilm on ship
propulsion characteristics.

Verification study based on grid
convergence index (GCI) method:
GCIs under 3.5%. Validation
study by comparison with
experimental results: observed
errors are within +∕ − 6% of
reference values.

Farkas et al. (2020a) The ITTC 1978
Performance Prediction
Method is modified by
incorporating
Granville’s similarity
law scaling in
combination with CFD.

Roughness functions,
vessel geometry and
particulars, results from
towing tank
experiments.

Experiment
derived
roughness
functions from
Schultz et al.
(2015).

Roughness functions for
8 surface conditions.

Impact of fouling on ship
resistance and propulsion
characteristics.

Verification study based on grid
convergence index (GCI) method:
GCIs under 4.9%. Validation
study by comparison with
experimental results: observed
errors are within 4.2% of
reference values.

Farkas et al. (2021b) CFD implementation
utilising biofouling
state specific roughness
functions.

Fouling conditions’
specific roughness
functions, geometry
and particulars of WB,
KP505 & KP458
propellers

Experiment
derived
roughness
functions from
Schultz et al.
(2015), Schultz
(2004).

Roughness functions for
14 surface conditions.

Open water performance (i.e.
Thrust coefficient, Torque
coefficient and open-water
efficiency) of propellers

Verification study based on grid
convergence index (GCI) method:
GCIs under 5%. Validation study
by comparison with experimental
results: observed errors are within
2.7%, 2.5%, and 5.4% of
reference values for WB, KP505 &
KP458 respectively.

Farkas et al. (2021a) CFD implementation
utilising biofouling
state specific roughness
functions.

Fouling conditions’
specific roughness
functions, geometry
and particulars of KCS,
KVLCC2 & BC hulls

Experiment
derived
roughness
functions from
Schultz et al.
(2015).

Roughness functions for
8 surface conditions.

Impact of fouling on ship
resistance and propulsion
characteristics.

Verification study based on grid
convergence index (GCI) method:
GCIs under 4.2%. Validation
study by comparison with
experimental results: observed
errors are within 2.1%, 4.2%, and
2.6% of reference values for KCS,
KVLCC2 & BC respectively.
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4.2. Data-driven models

In recent years, DDMs have been growing in popularity in the field
of ship performance modelling (Montáns et al., 2019). Unlike PMs, they
do not require any a-priory knowledge about the underlying physical
principles (Coraddu et al., 2019b). In the field of biofouling, DDMs are
built by applying predictive ML algorithms on historical data, collected
from automatic on-board data logging systems (Coraddu et al., 2019b,a;
Laurie et al., 2021), noon reports (Pedersen and Larsen, 2009b; Adland
et al., 2018), and vessel inspections and surveys (Bloomfield et al.,
2021). Generally, the main limitations of DDMs are the need for high
quantity and quality data (Coraddu et al., 2017) and their possible
lack of physical meaning (Coraddu et al., 2021). Nevertheless, DDMs
can account for many ship-specific and environmental phenomena, that
might be difficult, or even impossible, to model with PMs (Coraddu
et al., 2019b), with very limited computational overhead.

DDMs have been successful and have increasingly received the
attention of researchers and the Maritime industry because modern on-
board equipment is capable of recording and storing large amounts of
good quality historical data (Laurie et al., 2021). In fact, advanced data
logging systems are nowadays a standard in newbuilds, as well as being
conveniently installed during the retrofitting of older vessels (Lim et al.,
2019). This trend is expected to continue in the future (Rødseth et al.,
2016).

Research that exploits DDMs for biofouling state estimation is still
in its infancy and a limited number of works are available in the
literature. Nonetheless, DDMs have already showed promising results
when compared to PMs (Pedersen and Larsen, 2009a,b) and the ISO
19030 standard (Coraddu et al., 2019b).

DDMs, in fact, can also easily leverage on structured information
like images and videos (Goodfellow et al., 2016) to better estimate the
biofouling state. For example, Wang et al. (2006) were able to accu-
rately classify fouling conditions through image recognition techniques,
combined with an Artificial Neural Network. Due to an excellent ac-
curacy, despite using research-tailored input images, they argue that
manual underwater surveys could be replaced with artificial methods.
Bloomfield et al. (2021), similarly to Wang et al. (2006), leveraged
on Convolutional Artificial Neural Networks to classify underwater
survey images of a vessel’s hull according to a tiered fouling level
framework. The achieved accuracy is shown to be very close to expert
agreement rates on a subsample of the used image library. Chin et al.
(2017) collected an image database containing entries for 10 common
fouling species from internet sources and used it in combination with
an image processing technique to train a Convolutional Artificial Neural
Network. The latter is then used to classify biofouling according to
species that are present and fouling density.

Apart from DDMs which leverage on images of the hull, other
methods can be used to determine the biofouling state. For example,
Coraddu et al. (2019a), utilising just a set of real data collected on-
board from a real vessel, developed an unsupervised DDM based on
outlier detection ML algorithms to estimate the hull and propeller bio-
fouling condition. Through a rigorous and statistically robust approach,
using as little as 10 manually labelled samples, a very high accuracy is
achieved. In fact, the research by Coraddu et al. (2019a) demonstrates
that DDMs can be effective without using very large historical datasets,
which is the common opinion.

Even though having an indication of a vessel’s biofouling state is
valuable for maintenance-related planning and decision making pro-
cesses, being able to evaluate the exact impact that biofouling has on
performance is surely much more valuable (ISO, 2016a). In this context,
DDMs have shown a very high potential and effectiveness in many stud-
ies. For example, Coraddu et al. (2019b) proposed DDMs based on deep
learning models able to quantify the speed loss due to biofouling in real-
time by using just data coming from the vessel’s on-board monitoring
systems. The developed DDMs show to outperform the state-of-the-art
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ISO 19030 industry standard, providing more reliable and actionable
results. Other DDMs have also been developed to determine speed loss
due to biofouling (Erol et al., 2020).

Apart from using a speed loss prediction as proxy for the biofouling
state estimation, the most popular performance metric in terms of
quantifying biofouling is shaft power (Pedersen and Larsen, 2009a,b;
Senteris et al., 2019; Laurie et al., 2021; Karagiannidis and Themelis,
2021). Recently, Laurie et al. (2021) employed and compared a set of
ML techniques (i.e., linear regression, decision tree, k-nearest neigh-
bours, artificial neural networks, and random forest) when predicting
the shaft power of a fouled vessel. Considering the complex nature of
biofouling phenomena, a very high prediction accuracy (errors below
2%) was observed for some of the statistical methods. In fact, DDMs can
accurately estimate vessel performance in a broad range of operating
conditions because they are built on historical data, as opposed to the
majority of PMs.

Another aspect that needs to be carefully taken into account when
estimating the biofouling state is the impact of hull and propellers
cleaning. For example, Adland et al. (2018) investigated the impact of
hull and propeller cleaning on vessel performance. In particular, they
proposed a DDM capable of determining the performance impact of
the underwater cleaning and the dry-docking of a vessel. To asses the
validity of the proposal, the authors rely on a dataset of daily noon
reports combined with a historical log of cleaning instances.

For a more precise view of the current state-of-the-art approaches,
Table 5 summarises the most relevant contributions in the field of
DDMs for biofouling state estimation.

4.3. Hybrid models

HMs are a hybridisation between PMs and DDMs. In a HM, the
PM and the DDM are combined to build a model which uses both a-
priory physical information for the underlying phenomenon as well as
historical data (Carchen et al., 2019). For example, the prediction of
a PM can be used as an initial estimate to feed into a DDM (Coraddu
et al., 2021). HMs aim to address the main setbacks of PMs (i.e., com-
putational requirements and accuracy) and DDMs (i.e., possible lack of
a physical interpretation and need for large amount of data).

By looking at the literature, no applications of HMs to biofouling
have yet been proposed and this represents a clear research gap. In
fact, there is an opportunity to utilise the large amount of high-quality
PMs in literature to supplement DDMs. A simple combination of state-
of-the-art approaches may result in an HM able to outperform the
original model in terms of accuracy, computational complexity, data
requirements, and physical interpretability. In fact, HMs have shown
their potential within other niches of vessel performance modelling
with favourable results (Haranen et al., 2016): Leifsson et al. (2008)
successfully utilised a HM, which outperformed both a PM and a
DDM, for predicting vessel speed and fuel consumption in the scope
of vessel operational optimisation; Similarly, Coraddu et al. (2015)
compare the performance of PMs, DDMs and HMs in predicting the
fuel consumption of a vessel in a real scenario and conclude that HMs
improve upon the accuracy of PMs and the data requirements of DDMs;
Additionally, in Coraddu et al. (2017), Coraddu et al. utilise the latter
to effectively optimise vessel trim in real operational conditions; Swider
et al. (2017) look into the complementarity potential between PMs and
DDMs and reach encouraging conclusions, which are supplemented by
an example application of an HM for predicting the speed/power of an
offshore vessel; Coraddu et al. (2018) utilise a HM to accurately predict
engine temperatures during operational dynamic manoeuvring based
on engine models and engine measurements for a Holland class patrol
vessel and show that, for this, a hybrid approach greatly outperforms
a DDM; Yang et al. (2019) use real operational data from a crude oil
tanker over a 7-year sailing period to demonstrate the accuracy and
reliability of a genetic algorithm-based HM in predicting vessel fuel
consumption; Montewka et al. (2019) successfully incorporate the use

of a HM for evaluating ship performance in ice-covered water in a



OceanEngineering251(2022)110883

14

I.Valchev
et
al.

Table 5
Summary of DDMs for monitoring and evaluating the biofouling state and effects on vessels’ hull and propeller performance.

Ref. Method Input data Data origin Amount of data Output Accuracy

Chin et al. (2017) Convolutional Neural
Network paired with
OpenCV image
processing.

A database of images
of different fouling
organisms and fouling
density.

Internet. 1825 images of 10
common fouling
species.

Classification of the fouling
species and density of fouling.

Mean classification accuracy of
74.75% & standard deviation of
7.92%. No model accuracy is
provided for determining fouling
density.

Coraddu et al. (2019a) One-Class Support
Vector Machines and
Global k-Nearest
Neighbour methods for
outlier detection.

A featureset, comprised
of measured values
from the ship
monitoring systems and
wave buoy data.

On-board
monitoring
systems & wave
buoys.

39(+10) features,
unspecified number of
samples.

Hull and propeller fouling is
identified and labelled.

Even with as little as 10 labelled
samples, the proposed model has
impressive accuracy when
classifying whether the ship is
fouled, achieving 0.04+/−0.001
Average Misclassification Rate.

Bloomfield et al. (2021) Convolutional Neural
Network.

A dataset of underwater
images of ship hulls,
labelled according to
their Simplified Level
of Fouling (SLoF).

In-water surveys
of around 300
vessels.

10263 images with
SLoF labels.

Estimates for SLoF, based on
input image.

Mean average precision of 0.796,
standard deviation of 0.023.

Adland et al. (2018) Before–after and
difference-in-differences
estimators.

A dataset, consisting of
daily vessel parameter
measurements,
combined with a
historical log of hull &
propeller cleanings.

Daily noon
reports &
maintenance
logs.

7868 daily observations
after data cleaning &
28 maintenance
activities.

Impact of hull & propeller
cleaning activities on the
average fuel consumption of
examined vessels.

The proposed procedure is
applied at an arbitrary point in
time, instead of the time of a
known cleaning for validation.
This is repeated 1000 times and
the results indicate an
encouraging 0.002%+/−0.086%
average change in fuel
consumption at these arbitrary
points.

Pedersen and Larsen (2009a) Artificial Neural
Network.

A dataset, comprised of
measured values from
the ship monitoring
system.

On-board
monitoring.

4 8-feature datasets,
consisting of a total
679 10-minute
averages.

A 10-minute average
propulsion power estimate.

A 2.7% cross-validation error is
reported, however, there is no
indication of its interval of
confidence. Also, there is no
unbiased test of the model where
a set of data, omitted in training
and validation, is used.

Coraddu et al. (2019b) Deep Extreme Learning
Machine.

A dataset, comprised of
measured parameters
from the ship’s
monitoring system,
combined with a
historical log of hull &
propeller cleanings.

Data logging
systems &
maintenance
logs of two
Handymax
tankers.

15 min averages over
nearly 5 years for 17
features & 9 cleaning
events.

Speed through Water & speed
loss percentage, as well as
estimates for timing of
maintenance activities

The proposed method shows a
higher level of reliability when
compared to the state-of-the-art
ISO 19030 industrial standard.
Additionally, all changes,
corresponding to a cleaning event,
are detectable. No indication of
accuracy of the DELM when
predicting Speed through Water.

Senteris et al. (2019) Artificial Neural
Network

A featureset, comprised
of measured parameters
from a ship’s
monitoring system, as
well as environmental
features.

VLCC automatic
monitoring
system.

11 features, unspecified
number of samples.

Shaft power estimate. Graphs on the error distribution
are provided, however, authors
provide no indication on which
the final selected model is and its
exact accuracy.

(continued on next page)
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Table 5 (continued).
Erol et al. (2020) Curve fitting and

Detrended Fluctuation
Analysis (DFA)

Two datasets, collected
9 months apart, that
include ship speed,
propulsion power, fuel
consumption, generated
power, battery power,
aft & fore draught.

Alarm
monitoring
system of an
electric ferry.

A week of data at the
start & one after 9
months (1 sample per
minute).

Speed loss estimate after 9
months of operation.

Only Motor power vs Vessel speed
curve fitting accuracy is provided:
best fit R-square & RMSE -
0.9999 & 0.07248 before and
0.9999 & 0.05637 after 9 months.

Laurie et al. (2021) Multiple Linear
Regression, Decision
Tree (AdaBoost), KNN,
ANN and Random
Forest.

A dataset from a ship’s
monitoring system,
expanded through
artificial feature
generation and
additional wave
information.

On-board
automatic ship
monitoring &
CMEMS.

20 features with 10571
entries after cleaning.

Shaft power. MAPEs & RMSPE: Multiple Linear
Regression - 6.453% 0.0930%,
Decision Tree - 6.987% 0.0932%,
KNN - 1.245% 0.0302%, ANN -
1.893% 0.0317% and Random
Forest - 1.171% 0.0264%.

Karagiannidis and Themelis (2021) Artificial Neural
Network

A dataset from a ship’s
monitoring system,
expanded through
artificial feature
generation.

Container ship
continuous
monitoring
system.

14 (+5) features -
1 min samples over 19
months.

Main Engine Fuel Oil
Consumption (t/24hr) or Shaft
Power (kW) estimate.

RMSE & R-square for Fuel
Consumption - 0.78 & 0.998 with
and 0.96 & 0.997 without fouling
feature. RMSE & R-square for
Shaft Power - 132.07 & 0.999
with and 203.19 & 0.997 without
fouling feature.
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route planning methodology for an ice going bulk carrier; Liu et al.
(2020) build a digital twin based on a HM which provides a satisfying
prediction of ship speed and fuel consumption and demonstrate the
application effects of the HM through an arrival time forecast and a
weather routing showcase; Finally, Coraddu et al. (2021) combine PMs
and DDMs to build a fast, accurate and physically grounded model that
can be used for real-time prediction of engine performance parameters
in dynamic conditions in order to identify emerging failure early on
and establish trends in performance reduction.

5. Open problems and future perspectives

After providing a complete review of the numerical methods for
monitoring and evaluating the biofouling state and effects on vessels’
hull and propeller performance in Section 4, the current section sum-
marises the open problems and future perspectives of this field of
research.

For what concerns the open problems, there are at least two main
aspects that are worth discussing. Firstly, regardless of the numerical
methods adopted, filtering out unfavourable exogenous factors which
might alter the biofouling state estimation and the effect of the environ-
mental conditions is of great importance. In this respect, robust filtering
and outlier detection procedures should be carried out to feed the PMs,
DDMs, or HMs with reliable data. Secondly, some of the proposed
approaches are computationally expensive which might prevent their
use in real-time for maintenance-related decision making processes.
Although DDMs can be considered computationally inexpensive in the
forward phase, the training phase (to build or update the model) can be
quite taxing (especially if this phase is performed on-board). Moreover,
the additional burden of detecting and filtering outliers has to be
accounted for real-time applications. For this reason, researchers should
focus their attention on the development of numerical frameworks
which also take into account computational burden.

Focusing our attention on the future, the authors foresee a wider
use of hybridisation techniques for biofouling assessment. As reported
in Section 4.3, to the best of the author’s knowledge, no applications
of HMs to biofouling have yet been proposed. Leveraging on state-
of-the-art PMs, in the upcoming years, researchers have the unique
opportunity to exploit the on-board operational data to develop HMs
for a more accurate, reliable, computationally inexpensive, and phys-
ically grounded biofouling state assessment. In fact, HMs have the
potential to offer the accuracy, speed, and flexibility of data-driven ap-
proaches, while maintaining some physical knowledge of the problem
through simplistic PMs, making them an ideal candidate for supporting
real-world maintenance strategies. For this reason, the development of
HMs could unlock the continuous real-time evaluation of the hull and
propeller status, enabling shipowners and operators to select the opti-
mal trade-off between cleaning costs and increased fuel consumption
due to biofouling. While adopting HMs for biofouling state and effects
estimation is surely a new field for future research, there is still space
for improvement for the current approaches. For example, the effects
of exogenous factors are not accurately represented by PMs, but rather
simple filtering procedures for unmodeled conditions are exploited.
DDMs, by construction, can handle this condition by simply considering
these exogenous factors in the data collection, nevertheless this requires
a large amount of historical data to sample all conditions that the model
needs to learn. For this reason, the development and implementation
of increasingly advanced data logging and storing systems over the
entire global fleet (newbuilds and retro-fittings) is becoming essential.
Finally, given the relevance of the topic and its impact on the global
shipping footprint, there is a need for an update of the current industry
standard to reflect the state-of-the-art in monitoring capabilities provid-
ing enhanced and certified numerical procedures for biofouling state
assessment.
16
6. Conclusion

The scope of this work was to review the numerical methods for
monitoring and evaluating the biofouling state and effects on ves-
sels’ hull and propeller performance. For this reason, the problem of
biofouling was first described, its impact on performance, which is
summarised in Table 1, and gave insight into the preliminary steps
in biofouling related performance modelling such as data acquisition,
ideal parameter requirements, listed in Table 2, and desired outputs
for impact estimation, summarised in Table 3. The above was then
followed by a critical review of approaches to biofouling state and
effects estimation. In particular, these were grouped into three families
of numerical methods, i.e., PMs, DDMs, and HMs, and analysed them
from a practical real-world view point. For each family, strengths and
weaknesses were discussed, as well as reviewed the most important ap-
proaches that exist in literature and listed these approaches in Table 4
for PMs and Table 5 for DDMs. In short, PMs are based fully on the
physical knowledge of the phenomena (providing also the ground for
the current industrial standards); DDMs fully rely on historical data to
learn the desired model; while HMs are able to exploit both sources of
information. Summary tables were created as an additional supplement
to the review. Finally, the current open problems and future direction
of this important field of research were expanded on.

In summary, PMs have, so far, been the standard approach to
biofouling analysis and can achieve good prediction accuracy, however,
this is achieved at the expense of an increased requirement for com-
putational resources that prevent their use in real-time applications.
DDMs, instead, have the advantage of providing a more accurate near
real-time prediction at the cost of a computational expensive training
phase. Unfortunately, DDMs can, in some cases, provide results that are
not physically plausible due to their statistical nature, however, they
have been observed to work well on average For this reason, HMs,
which are able to take the best from PMs and DDMs, can potentially
offer the optimum solution as they are able to deliver physically
plausible results in near real-time. Nevertheless, at the time of writing,
HMs have not yet been employed or sufficiently investigated for the
specific application of biofouling state and effect estimation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

Acciaro, M., Hoffmann, P., Eide, M., 2013. The energy efficiency gap in maritime
transport. J. Shipp. Ocean Eng. 3 (1–2), 1.

Adland, R., Cariou, P., Jia, H., Wolff, F., 2018. The energy efficiency effects of periodic
ship hull cleaning. J. Cleaner Prod. 178, 1–13.

Anderson, K., Peters, G., 2016. The trouble with negative emissions. Science 354 (6309),
182–183.

Atlar, M., Yeginbayeva, I.A., Turkmen, S., Demirel, Y.K., Carchen, A., Marino, A.,
Williams, D., 2018. A rational approach to predicting the effect of fouling control
systems on "in-service" ship performance. GMO J. Ship Mar. Technol. 24 (213),
5–36.

Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., Staffell, I.,
2019. How to decarbonise international shipping: Options for fuels, technologies
and policies. Energy Convers. Manage. 182, 72–88.

Bertram, V., 2017. Some heretic thoughts on ISO 19030. In: HullPIC Hull Performance
& Insight Conference.

Bilgili, L., 2021. Life cycle comparison of marine fuels for IMO 2020 Sulphur cap. Sci.
Total Environ. 774, 145719.

Bloomfield, N.J., Wei, S., Woodham, B.A., Wilkinson, P., Robinson, A.P., 2021.
Automating the assessment of biofouling in images using expert agreement as a
gold standard. Sci. Rep. 11 (1), 1–10.

Bohlander, J., Zealand, M., 2009. Review of Options for in-Water Cleaning of Ships.
Ministry of Agriculture and Forestry.

Bouman, E.A., Lindstad, E., Rialland, A.I., Strømman, A.H., 2017. State-of-the-art
technologies, measures, and potential for reducing GHG emissions from shipping-a
review. Transp. Res. D: Transp. Environ. 52, 408–421.

http://refhub.elsevier.com/S0029-8018(22)00322-5/sb1
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb1
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb1
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb2
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb2
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb2
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb3
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb3
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb3
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb4
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb4
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb4
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb4
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb4
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb4
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb4
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb5
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb5
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb5
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb5
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb5
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb6
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb6
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb6
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb7
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb7
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb7
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb8
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb8
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb8
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb8
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb8
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb9
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb9
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb9
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb10
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb10
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb10
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb10
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb10


Ocean Engineering 251 (2022) 110883I. Valchev et al.
Brandsæter, A., Vanem, E., 2018. Ship speed prediction based on full scale sensor
measurements of shaft thrust and environmental conditions. Ocean Eng. 162,
316–330.

Buhaug, Ø., Corbett, J.J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.,
Lindstad, H., Mjelde, A., Palsson, C., et al., 2009. Second IMO greenhouse
gas study. International Maritime Organization, URL https://www.imo.org/en/
OurWork/Environment/Pages/Second-IMO-GHG-Study-2009.aspx.

Candries, M., Atlar, M., Anderson, C.D., 2003. Estimating the impact of new-generation
antifoulings on ship performance: the presence of slime. J. Mar. Eng. Technol. 2
(1), 13–22.

Carchen, A., Atlar, M., 2020. Four KPIs for the assessment of biofouling effect on ship
performance. Ocean Eng. 217, 107971.

Carchen, A., Atlar, M., Turkmen, S., Pazouki, K., Murphy, A.J., 2019. Ship performance
monitoring dedicated to biofouling analysis: Development on a small size research
catamaran. Appl. Ocean Res. 89, 224–236.

Chan, F.T., MacIsaac, H.J., Bailey, S.A., 2015. Relative importance of vessel hull fouling
and ballast water as transport vectors of nonindigenous species to the Canadian
arctic. Can. J. Fish. Aquat. Sci. 72 (8), 1230–1242.

Cheliotis, M., Lazakis, I., Theotokatos, G., 2020. Machine learning and data-driven fault
detection for ship systems operations. Ocean Eng. 216, 107968.

Chen, J., Fei, Y., Wan, Z., 2019. The relationship between the development of global
maritime fleets and GHG emission from shipping. J. Environ. Manag. 242, 31–39.

Chin, C.S., Si, J.T., Clare, A.S., Ma, M., 2017. Intelligent image recognition system
for marine fouling using softmax transfer learning and deep convolutional neural
networks. Complexity 2017.

Coraddu, A., Kalikatzarakis, M., Oneto, L., Meijn, G.J., Godjevac, M., Geertsmad, R.D.,
2018. Ship diesel engine performance modelling with combined physical and
machine learning approach. In: International Naval Engineering Conference and
Exhibition.

Coraddu, A., Lim, S., Oneto, L., Pazouki, K., Norman, R., Murphy, A.J., 2019a. A
novelty detection approach to diagnosing hull and propeller fouling. Ocean Eng.
176, 65–73.

Coraddu, A., Oneto, L., Baldi, F., Anguita, D., 2015. Ship efficiency forecast based on
sensors data collection: Improving numerical models through data analytics. In:
OCEANS-Genova.

Coraddu, A., Oneto, L., Baldi, F., Anguita, D., 2017. Vessels fuel consumption forecast
and trim optimisation: a data analytics perspective. Ocean Eng. 130, 351–370.

Coraddu, A., Oneto, L., Baldi, F., Cipollini, F., Atlar, M., Savio, S., 2019b. Data-driven
ship digital twin for estimating the speed loss caused by the marine fouling. Ocean
Eng. 186, 106063.

Coraddu, A., Oneto, L., Cipollini, F., Kalikatzarakis, M., Meijn, G.J., Geertsma, R.,
2021. Physical, data-driven and hybrid approaches to model engine exhaust gas
temperatures in operational conditions. Ships Offshore Struct. 1–22.

Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., Figari, M., 2016. Machine learn-
ing approaches for improving condition-based maintenance of naval propulsion
plants. Proc. Inst. Mech. Eng. M J. Eng. Marit. Environ. 230 (1), 136–153.

Costantini, R., Susstrunk, S., 2004. Virtual sensor design. In: Sensors and Camera
Systems for Scientific, Industrial, and Digital Photography Applications V.

CSC, 2011. A transparent and reliable hull and propeller performance standard. Clean
Shipping Coalition. URL https://bellona.no/assets/sites/3/2015/06/fil_MEPC_63-4-
8_-_A_transparent_and_reliable_hull_and_propeller_performance_standard_CSC1.pdf.

Dalheim, Ø.Ø., Steen, S., 2021. Uncertainty in the real-time estimation of ship speed
through water. Ocean Eng. 235, 109423.

Davidson, I.C., Smith, G., Ashton, G.V., Ruiz, G.M., Scianni, C., 2020. An experimental
test of stationary lay-up periods and simulated transit on biofouling accumulation
and transfer on ships. Biofouling 36 (4), 455–466.

Demirel, Y.K., Song, S., Turan, O., Incecik, A., 2019. Practical added resistance diagrams
to predict fouling impact on ship performance. Ocean Eng. 186, 106112.

Demirel, Y.K., Uzun, D., Zhang, Y., Fang, H.C., Day, A.H., Turan, O., 2017. Effect of
barnacle fouling on ship resistance and powering. Biofouling 33 (10), 819–834.

Eide, M.S., Longva, T., Hoffmann, P., Endresen, Ø., Dalsøren, S.B., 2011. Future cost
scenarios for reduction of ship CO2 emissions. Marit. Policy Manag. 38 (1), 11–37.

Erol, E., Cansoy, C.E., Aybar, O.O., 2020. Assessment of the impact of fouling on
vessel energy efficiency by analyzing ship automation data. Appl. Ocean Res. 105,
102418.

Farkas, A., Degiuli, N., Martić, I., 2018. Towards the prediction of the effect of biofilm
on the ship resistance using CFD. Ocean Eng. 167, 169–186.

Farkas, A., Degiuli, N., Martić, I., 2021a. Assessment of the effect of biofilm on the
ship hydrodynamic performance by performance prediction method. Int. J. Nav.
Archit. Ocean Eng. 13, 102–114.

Farkas, A., Degiuli, N., Martić, I., 2021b. The impact of biofouling on the propeller
performance. Ocean Eng. 219, 108376.

Farkas, A., Degiuli, N., Martić, I., Ančić, I., 2020a. Performance prediction method for
fouled surfaces. Appl. Ocean Res. 99, 102151.

Farkas, A., Song, S., Degiuli, N., Martić, I., Demirel, Y.K., 2020b. Impact of biofilm
on the ship propulsion characteristics and the speed reduction. Ocean Eng. 199,
107033.

Flemming, H., 2002. Biofouling in water systems-cases, causes and countermeasures.
Appl. Microbiol. Biotechnol. 59 (6), 629–640.

Flemming, H., Murthy, P.S., Venkatesan, R., Cooksey, K., 2009. Marine and Industrial
Biofouling. Springer.
17
Foteinos, M.I., Tzanos, E.I., Kyrtatos, N.P., 2017. Ship hull fouling estimation using
shipboard measurements, models for resistance components, and shaft torque
calculation using engine model. J. Ship Res. 61 (2), 64–74.

García, S., Trueba, A., Boullosa-Falces, D., Islam, H., Soares, C.G., 2020. Predicting
ship frictional resistance due to biofouling using Reynolds-averaged Navier-Stokes
simulations. Appl. Ocean Res. 101, 102203.

Gilbert, P., Walsh, C., Traut, M., Kesieme, U., Pazouki, K., Murphy, A., 2018. Assessment
of full life-cycle air emissions of alternative shipping fuels. J. Cleaner Prod. 172,
855–866.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
Granville, P.S., 1958. The frictional resistance and turbulent boundary layer of rough

surfaces. J. Ship Res. 2 (04), 52–74.
Granville, P.S., 1987. Three indirect methods for the drag characterization of arbitrarily

rough surfaces on flat plates. J. Ship Res. 31 (1).
Halim, R., Kirstein, L., Merk, O., Martinez, L., 2018. Decarbonization pathways

for international maritime transport: A model-based policy impact assessment.
Sustainability 10 (7), 2243.

Haranen, M., Pakkanen, P., Kariranta, R., Salo, J., 2016. White, grey and black-
box modelling in ship performance evaluation. In: Hull Performence & Insight
Conference.

Haslbeck, E.G., Bohlander, G.S., 1992. Microbial biofilm effects on drag-lab and field.
In: The National Shipbuilding Research Program, Ship Production Symposium
Proceedings.

Hewitt, C., Gollasch, S., Minchin, D., 2009. The vessel as a vector-biofouling, ballast
water and sediments. In: Biological Invasions in Marine Ecosystems.

Ho-Chun Fang, I., Cheng, F., Incecik, A., Carnie, P., 2013. Global marine trends
2030. Quinetic, Lloyd’s Register, University of Strathclyde. URL http://www.
futurenautics.com/wp-content/uploads/2013/10/GlobalMarineTrends2030Report.
pdf.

Hoffmann, J., Kumar, S., 2013. Globalisation-the maritime nexus. In: The Handbook of
Maritime Economics and Business.

Hua, J., Chiu, Y., Tsai, C., 2018. En-route operated hydroblasting system for
counteracting biofouling on ship hull. Ocean Eng. 152, 249–256.

Ikonomakis, A., Nielsen, U.D., Holst, K.K., Dietz, J., Galeazzi, R., 2021. How good is
the STW sensor? An account from a larger shipping company. J. Mar. Sci. Eng. 9
(5), 465.

IMO, 2011. A transparent and reliable hull and propeller performance standard, MEPC
63-4-8. URL http://fs.fish.govt.nz/Page.aspx?pk=7&sc=SUR.

IMO, 2018. Meeting summary of the marine environment protection committee, 72nd
session. International Maritime Organisation (IMO). URL https://www.imo.org/en/
MediaCentre/MeetingSummaries/Pages/MEPC-72nd-session.aspx.

IPCC, 2018. Global Warming of 1. 5◦ C.. Tech. Rep., Intergovernmental Panel on
Climate Change, URL https://www.ipcc.ch/sr15/.

ISO, 2016a. ISO 19030-1, Ships and marine technology measurement of changes in hull
and propeller performance - Part 1: General principles.

ISO, 2016b. ISO 19030-2, Ships and marine technology measurement of changes in
hull and propeller performance - Part 2: Default method.

ISO, 2016c. ISO 19030-3, Ships and marine technology measurement of changes in hull
and propeller performance - Part 3: Alternative methods.

Johnson, H., Johansson, M., Andersson, K., 2014. Barriers to improving energy
efficiency in short sea shipping: an action research case study. J. Cleaner Prod.
66, 317–327.

Kaminaris, S.D., Tripolitakis, E., Stavrakakis, G.S., Diakaki, C., 2014. An intelligent data
acquisition and transmission platform for the development of voyage and mainte-
nance plans for ships. In: International Conference on Information, Intelligence,
Systems and Applications.

Karagiannidis, P., Themelis, N., 2021. Data-driven modelling of ship propulsion and
the effect of data pre-processing on the prediction of ship fuel consumption and
speed loss. Ocean Eng. 222, 108616.

Kempf, G., 1937. On the effect of roughness on the resistance of ships. Trans. INA 79,
109–119.

Koboević, Z., Bebić, D., Kurtela, Z., 2019. New approach to monitoring hull condition
of ships as objective for selecting optimal docking period. Ships Offshore Struct.
14 (1), 95–103.

Laurie, A., Anderlini, E., Dietz, J., Thomas, G., 2021. Machine learning for shaft power
prediction and analysis of fouling related performance deterioration. Ocean Eng.
108886.

Legg, M., Yücel, M.K., De Carellan, I.G., Kappatos, V., Selcuk, C., Gan, T.H., 2015.
Acoustic methods for biofouling control: A review. Ocean Eng. 103, 237–247.

Leifsson, L., Sævarsdóttir, H., Sigurdsson, S., Vésteinsson, A., 2008. Grey-box modeling
of an ocean vessel for operational optimization. Simul. Model. Pract. Theory 16
(8), 923–932.

Liang, L., Pang, Y., Tang, Y., Zhang, H., Liu, H., Liu, Y., 2019. Combined wear of slurry
erosion, cavitation erosion, and corrosion on the simulated ship surface. Adv. Mech.
Eng. 11 (3).

Lim, S., Pazouki, K., Murphy, A.J., 2019. Monitoring systems in design of ships. In:
Practical Design of Ships and Other Floating Structures.

Liu, M., Zhou, Q., Wang, X., Yu, C., Kang, M., 2020. Voyage performance evaluation
based on a digital twin model. IOP Conf Ser.: Mater. Sci. Eng. 929 (1), 012027.

http://refhub.elsevier.com/S0029-8018(22)00322-5/sb11
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb11
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb11
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb11
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb11
https://www.imo.org/en/OurWork/Environment/Pages/Second-IMO-GHG-Study-2009.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Second-IMO-GHG-Study-2009.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Second-IMO-GHG-Study-2009.aspx
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb13
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb13
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb13
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb13
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb13
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb14
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb14
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb14
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb15
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb15
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb15
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb15
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb15
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb16
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb16
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb16
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb16
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb16
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb17
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb17
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb17
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb18
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb18
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb18
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb19
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb19
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb19
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb19
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb19
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb20
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb20
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb20
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb20
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb20
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb20
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb20
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb21
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb21
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb21
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb21
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb21
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb22
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb22
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb22
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb22
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb22
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb23
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb23
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb23
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb24
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb24
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb24
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb24
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb24
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb25
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb25
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb25
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb25
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb25
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb26
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb26
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb26
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb26
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb26
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb27
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb27
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb27
https://bellona.no/assets/sites/3/2015/06/fil_MEPC_63-4-8_-_A_transparent_and_reliable_hull_and_propeller_performance_standard_CSC1.pdf
https://bellona.no/assets/sites/3/2015/06/fil_MEPC_63-4-8_-_A_transparent_and_reliable_hull_and_propeller_performance_standard_CSC1.pdf
https://bellona.no/assets/sites/3/2015/06/fil_MEPC_63-4-8_-_A_transparent_and_reliable_hull_and_propeller_performance_standard_CSC1.pdf
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb29
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb29
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb29
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb30
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb30
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb30
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb30
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb30
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb31
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb31
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb31
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb32
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb32
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb32
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb33
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb33
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb33
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb34
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb34
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb34
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb34
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb34
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb35
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb35
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb35
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb36
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb36
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb36
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb36
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb36
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb37
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb37
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb37
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb38
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb38
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb38
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb39
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb39
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb39
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb39
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb39
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb40
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb40
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb40
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb41
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb41
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb41
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb42
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb42
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb42
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb42
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb42
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb43
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb43
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb43
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb43
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb43
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb44
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb44
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb44
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb44
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb44
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb45
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb46
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb46
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb46
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb47
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb47
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb47
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb48
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb48
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb48
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb48
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb48
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb49
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb49
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb49
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb49
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb49
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb50
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb50
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb50
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb50
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb50
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb51
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb51
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb51
http://www.futurenautics.com/wp-content/uploads/2013/10/GlobalMarineTrends2030Report.pdf
http://www.futurenautics.com/wp-content/uploads/2013/10/GlobalMarineTrends2030Report.pdf
http://www.futurenautics.com/wp-content/uploads/2013/10/GlobalMarineTrends2030Report.pdf
http://www.futurenautics.com/wp-content/uploads/2013/10/GlobalMarineTrends2030Report.pdf
http://www.futurenautics.com/wp-content/uploads/2013/10/GlobalMarineTrends2030Report.pdf
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb53
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb53
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb53
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb54
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb54
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb54
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb55
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb55
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb55
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb55
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb55
http://fs.fish.govt.nz/Page.aspx?pk=7&sc=SUR
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-72nd-session.aspx
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-72nd-session.aspx
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-72nd-session.aspx
https://www.ipcc.ch/sr15/
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb59
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb59
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb59
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb60
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb60
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb60
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb61
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb61
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb61
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb62
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb62
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb62
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb62
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb62
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb63
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb63
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb63
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb63
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb63
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb63
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb63
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb64
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb64
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb64
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb64
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb64
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb65
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb65
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb65
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb66
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb66
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb66
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb66
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb66
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb67
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb67
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb67
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb67
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb67
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb68
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb68
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb68
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb69
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb69
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb69
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb69
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb69
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb70
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb70
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb70
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb70
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb70
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb71
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb71
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb71
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb72
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb72
http://refhub.elsevier.com/S0029-8018(22)00322-5/sb72


Ocean Engineering 251 (2022) 110883I. Valchev et al.
Logan, K.P., 2012. Using a ship’s propeller for hull condition monitoring. Nav. Eng. J.
124 (1), 71–87.

MEPC, 2011. Resolution mepc.203(62). International Maritime Organization. URL https:
//wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/
MEPCDocuments/MEPC.203(62).pdf.

MEPC, 2020. Fourth IMO greenhouse gas study. International Maritime Organization.
URL https://docs.imo.org.

Montáns, F.J., Chinesta, F., Gómez-Bombarelli, R., Kutz, J.N., 2019. Data-driven
modeling and learning in science and engineering. Comptes Rendus Mécanique
347 (11), 845–855.

Montewka, J., Goerlandt, F., Lensu, M., Kuuliala, L., Guinness, R., 2019. Toward a
hybrid model of ship performance in ice suitable for route planning purpose. Proc.
Inst. Mech. Eng. O J. Risk Reliab. 233 (1), 18–34.

Morrisey, D.J., Woods, C., 2015. In-Water Cleaning Technologies: Review of
Information. Ministry for Primary Industries, Manatū Ahu Matua.
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