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Similarity joins are operations which involve identifying similar pairs of records
within one or multiple datasets. These operations are typically time-sensitive, as
timely identification of relations can lead to increased profitability. Therefore, it
is advantageous to analyze them using a stream processing system, which offers
real-time capabilities. Due to the computational complexity of comparing numer-
ous records, similarity joins can be resource-intensive.

To address this challenge, employing a distributed setting for executing the op-
erations proves to be the most effective approach for resource management. In this
research, we evaluate four distinct distributed systems designed for similarity joins
in stream processing environments. The primary objective is to assess their individ-
ual strengths and weaknesses, as well as their overall efficiency. Our investigation
reveals that certain solutions exhibit superior scalability and resource utilization,
while highlighting the potential for further advancements in this domain.
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Chapter 1

Introduction

The exponential growth of data over the last few years has led to a surge of interest in
data mining and analysis. One of the key operations to be performed on this data is
to find similar pairs of records across different datasets, which are commonly known
as similarity joins. These similarity joins are especially useful for applications such
as fraud detection [9] ,trend detection [40] and spam detection [31].

As the amount of data to be processed has increased dramatically, the resources
needed to analyze it by using traditional batch processing systems are too high,
which has led to the surge of real-time processing known as stream processing. The
concept of stream processing was studied a long time ago [5], but it was not until
recently that stream processing frameworks were developed and implemented [32].
Stream processing systems can handle unbounded datasets by processing the data
as it arrives and continuously updating the results, without the need to store the
entire dataset in memory. It enables the processing of data as it arrives, allowing for
real-time analysis and decision-making.

Processing data in a distributed manner rather than in a single-machine system
can provide scalability, as the system can add more nodes as needed to handle an
increase in demand; fault tolerance, as if one node fails, the system can continue to
operate using the remaining nodes; high performance, especially when the work-
load can be divided into smaller tasks that can be executed in parallel across multi-
ple nodes; and higher cost-effectiveness, as it allows the use of commodity hardware
and enables scaling out instead of scaling up.

There are not many applications that can perform distributed similarity joins
in stream processing environments, and there is no established method for testing
and assessing these systems in order to compare them with one another. The major
goal of this thesis is to put into practice the systems that have been suggested to
accomplish such jobs and to develop a set of benchmarks and tests that will allow
for a comparison of these systems to determine which one excels at particular tasks.

1.1 Research Questions

The research questions to be answered by this thesis are the following:

How do the different systems compare in terms of efficiency, accuracy and
scalability?

The comparison among the systems will be conducted based on several key met-
rics, including the number of times a record needs to be replicated, the number of
operations needed to process a record, and the average time taken to process a single
record. Additionally, the assessment will encompass the system’s capacity to handle
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records per second and the corresponding resource utilization during record pro-
cessing.

Which tasks are the most suitable for each system and how flexible are they?

The systems under investigation employ various techniques to distribute the ex-
ecution load and partition the data space, along with filtering methods to enhance
data processing efficiency. These techniques demonstrate varying degrees of effec-
tiveness based on the data’s distinct characteristics, such as length or homogeneity.
The present research endeavors to identify the most relevant data characteristics for
optimal system performance.

How can the performance of the systems be optimized for different use cases?

To enhance the effectiveness and performance of the systems under investiga-
tion, a thorough exploration of potential system enhancements is warranted. By
conducting a meticulous examination of the frameworks, it will be possible to as-
certain whether their current design is flawless or if there are aspects that could be
modified to yield improvements.

1.2 Contributions

In the same sequence that they were articulated in section 1.1, a list of the contri-
butions that were made during the process of answering our research questions is
provided in this section.

1. The different systems were effectively compared. Different experiments were
performed, which are described in section 5 and the results maybe observed at
section 6.

2. The experiments utilized in this study involved varying datasets consisting of
diverse data types and objectives. The most suitable system for each scenario
could be determined effectively by analyzing the information obtained during
these experiments.

3. During the evaluation of the systems some inherent flaws of the different sys-
tems were found. Solutions for these flaws were proposed in the project.

1.3 Outline

The structure of the thesis is as follows: Chapter 2 presents the background and re-
lated work information on distributed systems to perform similarity joins in stream
processing environments is presented. Chapter 3 provides an analysis of the rele-
vant literature in the field, focusing on previous works and studies related to the
topic. Chapter 4 presents the different solutions that were implemented and tested.
Chapter 5 presents the implementation of the chosen solutions and the set up for the
experiments to test them. Chapter 6 presents the results obtained in the experiments
performed. Finally, chapter 7 provides a comprehensive summary of the work con-
ducted and the results obtained and a discussion of potential future work that could
be explored based on the outcomes of this thesis.
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Chapter 2

Background

This section aims to elucidate the concepts of similarity joins, stream processing, and
distributed environments, as well as providing a brief description of the technologies
that were used to develop the project.

2.1 Similarity joins

Data mining and database management systems use similarity joins as a core pro-
cedure to find objects that are similar to one another across diverse datasets using
a predetermined similarity metric. Similarity joins are advantageous because they
may support a wide range of applications, including record linking, data integration,
entity resolution, and information retrieval.

They were first proposed by the authors of [20] who introduced the idea of us-
ing hash-based techniques for approximate similarity joins in high-dimensional data
sets. Since then several algorithms have been proposed to perform similarity joins
such as [7, 8, 18, 22].

The similarity join problem involves comparing each record in one dataset with
every record in the same or another dataset to identify pairs of records that are sim-
ilar according to a given similarity function. The similarity function typically mea-
sures the distance or similarity between two objects based on some domain-specific
criteria, such as the jaccard similarity between two strings or the cosine similarity
between two vectors.

The usefulness of similarity joins lies in their ability to enable effective data in-
tegration and knowledge discovery by identifying similar records across different
datasets. For example, similarity joins can be used to detect fraudulent activities
[9], identify trends in social media platforms such as Twitter [40] or spam detection
[31]. In the academic domain, similarity joins can be applied in various fields such
as bioinformatics, text mining, and multimedia analysis to identify similar genes,
documents, and images, respectively [35, 25, 41].

Similarity joins pose various challenges and problems that require careful at-
tention to ensure their accurate and efficient execution while minimizing resource
consumption. The main issues to be addressed will be exposed in the following
subsections.

2.1.1 Scalability

Performing similarity joins on large datasets can be computationally expensive and
time-consuming, especially when dealing with high-dimensional data. As the size
of the dataset increases, the number of comparisons required grows exponentially,
leading to increased processing time and resource requirements.
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Pruning techniques such as prefix [13] or length [4] filtering may be applied in
order to reduce the number of comparisons that are performed on a single record
to find which ones are similar to it. The use of these and similar techniques will be
present in all the frameworks implemented for this study.

2.1.2 Similarity metric

Depending on the similarity metric being used, the number of records found simi-
lar to a single record could increase or decrease. The chosen similarity metric could
have a significant impact on the quality of the results. Different similarity metrics
may be suitable for different types of data or applications, and selecting the wrong
metric can lead to inaccurate results. Some of these metrics include the Jacquard sim-
ilarity, cosine similarity, or angular distance between a pair of records. The chosen
similarity metrics will be the same across all the frameworks studied in this project,
with Jacquard similarity being the main used metric.

2.1.3 Threshold selection

Similarity joins require a threshold value to determine the level of similarity required
between two records to be considered a match. Selecting an appropriate threshold
can be challenging as it depends on the specific application and the characteristics of
the data. A threshold that is too low may result in false positives, while a threshold
that is too high may result in missed matches. As it can be observed in [36], the
amount of matches found within a dataset varies dramatically when using different
threshold values, so the appropriate threshold has to be chosen depending on the
data that is being used.

2.1.4 Data preprocessing

Preprocessing the data can be necessary to improve the efficiency and accuracy of
similarity joins. This may involve techniques such as data normalization, dimen-
sionality reduction, or feature selection. However, preprocessing can also introduce
its own challenges, such as selecting the right techniques and ensuring that the pre-
processing steps do not alter the similarity between records. All the data that the
different studied systems use is altered (e.g., sentences are divided into the words
that compose them and then alphabetically sorted afterwards) in order to make the
systems work more efficiently and smoothly.

2.1.5 Data skeweness

When employing a distributed system, data skewness can be a concern for similarity
joins since it can result in uneven workloads throughout the cluster’s nodes, causing
some nodes to complete their duties considerably sooner than others. Systems must
balance the workload across the various nodes that make up the system to overcome
this issue. Several studies have already suggested methods for carrying out this
work, like [33] and [28].
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2.2 Stream processing

The amount of data generated by various sources such as social media, sensors, and
IoT devices has increased exponentially, which has led to the creation of stream pro-
cessing, which allows to quickly and efficiently process vast volumes of data right
after they have been generated in real-time, which is crucial in some applications
such as fraud and anomaly detection [29]. Unlike batch processing, stream process-
ing can analyze data as it arrives, without the need to collect all the data beforehand.
Stream processing is also more scalable than batch processing, as it can handle large
volumes of data without running out of memory or computing resources while lim-
iting the number of records to be processed at a time. On the other side, batch pro-
cessing can be time-consuming and expensive when processing large datasets since
it may need significant computational resources.

More over, stream processing models enable the analytical model to be continu-
ously refined while taking into account the content of the incoming input, leading
to more accurate results. In contrast, as batch processing is based on a static analysis
paradigm and does not take into consideration how the data changes over time, it
could produce less accurate results. Lastly, stream processing allows for real-time
feedback and action capabilities, which are desirable in applications such as online
advertising or recommendation systems [12].

Creating an efficient and fully functional stream processing system comes with
several problems that need to be solved; the main ones will be explained in the
following subsections.

2.2.1 Real-time processing

Stream processing systems need to process data in real-time as soon as it is generated
or received. This means that the system needs to be designed to handle a continuous
and high volume of data at a fast pace and, in many cases, with very low latency. In
order to overcome this problem, systems need to have enough resources to run as
well as allocate them efficiently.

2.2.2 Scalability

Similar to similarity joins, stream processing systems need to be scalable as the
amount of data being processed could increase over time. Typically, they require
a horizontally scalable architecture, which can be achieved through a distributed
system capable of accommodating the addition of new nodes to its architecture.

2.2.3 Fault tolerance

Since stream processing systems operate continuously and process high volumes
of data, they must be capable of handling failures and restarting their activities
gracefully. To prevent data loss or significant downtime, the system should be de-
signed to recover from errors such as node failures or network disruptions. This can
be achieved by implementing the appropriate mechanisms and protocols, such as
checkpoint creation and data replication.
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2.2.4 Data consistency

Stream processing systems need to ensure that the data processed is consistent and
accurate. This can be challenging because the data arrives in a continuous and un-
bounded stream, making it difficult to maintain consistency. Mechanisms to ensure
that all the data generated has been processed will be needed, as will exactly-once
processing guarantees, which are already provided by frameworks such as [11, 32].

2.3 Distributed systems

Performing tasks such as similarity joins in real-time using stream processing tech-
nologies requires the use of a large amount of resources, and single-machine systems
are a very expensive option when implementing this sort of system. This is one of
the reasons for using a distributed system. Distributed systems consist of multiple
independent machines that work together to solve a complex problem. This type of
system offers several advantages over single-machine systems.

Scalability is one of the prime reasons for employing distributed systems. As
data volumes and computational requirements grow, it becomes increasingly dif-
ficult for a single machine to handle the workload. Distributed systems allow the
workload to be distributed across multiple machines, enabling the system to scale
in order to meet increasing demand. Fault tolerance is another benefit of distributed
systems. Single-machine systems are susceptible to failures that could take the en-
tire system down, such as hardware issues, software bugs, or power outages. On the
other hand, distributed systems are created to use replication and redundancy to be
resilient to failures.

Lastly, distributed systems can offer improved performance over single-machine
systems by exploiting parallelism. In a distributed system, tasks can be divided into
smaller sub-tasks that can be processed in parallel by multiple machines, allowing
the system to complete tasks faster than a single machine could. For computationally
demanding applications like machine learning, data mining, and scientific simula-
tions, this is especially helpful.

On the other hand, implementing a system in a distributed manner implies a
higher level of programming complexity and can potentially add additional com-
munication and replication costs to a system. In the following subsections, the prob-
lems associated with using distributed systems will be addressed.

2.3.1 Consistency

Distributed systems need to maintain data consistency across multiple machines,
which could have different characteristics and capabilities. This is a challenging task
due to issues such as network latency and communication delays, as well as possible
network errors. There are different levels and types of consistency, as well as mech-
anisms to ensure the consistency of the results while minimizing the resources used
to maintain it.

2.3.2 Communication overhead

In a distributed system, the different machines need to communicate with each other
over a network. This communication adds extra overhead and latency to the ma-
chines’ computations. Therefore, system implementations strive to minimize the
amount of communication between nodes in order to reduce these additional costs.
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2.3.3 Complexity

Distributed systems are generally more complex than single-machine systems, as
they involve multiple machines that must work together to produce accurate results.
To minimize the amount of data replication and communication between nodes, co-
ordination among the different nodes is necessary to perform tasks effectively.

2.4 Technologies used

In this sections the different technologies used to implement the systems and bench-
mark them will be described.

2.4.1 Apache Flink

All the systems have been adapted to work in Apache Flink [11], which is an open-
source distributed data processing system that provides a powerful and flexible
platform for stream processing. Flink is designed to handle high-throughput, low-
latency data processing at scale. It provides a distributed architecture that enables
parallel processing of streaming data, which allows for the efficient and timely pro-
cessing of large volumes of data.

One of the key advantages of Apache Flink is its fault-tolerance mechanism.
Flink uses a technique called "stream checkpointing" to ensure that data is processed
reliably and without data loss in the presence of failures. Stream checkpointing pe-
riodically takes snapshots of the streaming data and stores them in a reliable stor-
age system. In case of failure, Flink can recover the processing state from the latest
checkpoint, ensuring that no data is lost. This feature will be used to implement the
dynamic repartition protocols that the different chosen systems require in order to
achieve their maximum performance.

Apache Flink provides a powerful and flexible platform for stream processing.
Its fault-tolerance mechanism, unified programming model, and rich set of APIs and
libraries make it a good choice for building complex and scalable data processing
pipelines. This APIs include a REST API which can be queried within a Kubernetes
cluster in order to make the different services running in the cluster interact with
each other.

2.4.2 Kubernetes

Kubernetes [10] is an open-source container orchestration system that allows for
the efficient deployment, scaling, and management of containerized applications.
A high degree of automation, scalability, and reliability can be accomplished in
software deployment processes by deploying a collection of services in Kubernetes
pods.

One of the main advantages of Kubernetes is its ability to automate the deploy-
ment and scaling of containerized applications. Kubernetes enables the automatic
deployment of containerized services to a cluster of nodes and provides automated
scaling of these services based on resource utilization metrics such as CPU and mem-
ory usage. This can help organizations reduce the time and effort required for man-
ual deployment and scaling of services.

High availability and resilience are two advantages of using Kubernetes to de-
ploy a collection of services. Kubernetes has the ability to recognize node failures,
recover from them, and automatically reassign failed services to healthy nodes. This
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can ensure that services continue to be responsive and accessible even in the event
of hardware or software malfunctions.

By giving each of the various pods present in a cluster a distinct IP address and
opening up ports inside each pod, Kubernetes also permits communication between
the various services inside the cluster.

Moreover, Kubernetes offers a portable and adaptable platform for software dis-
tribution. Without making significant changes to the deployment configurations,
services launched in Kubernetes can be quickly transferred across various environ-
ments, such as development, testing, and production. In order to design the product
for subsequent deployment on stronger machines, this can be helpful.

2.5 Apache Kafka

Apache Kafka [23] is a messaging system that is distributed, fault-tolerant, and scal-
able, allowing for the efficient and reliable flow of data across computers. High
performance, scalability, reliability, and flexibility in data processing can be attained
by utilizing Kafka to ingest and extract data from a system.

One of Kafka’s primary features is its ability to manage high-throughput, low-
latency data streams. Kafka’s distributed architecture allows it to manage large
amounts of data while maintaining low latency, making it an ideal platform for real-
time data processing applications. Kafka also has a scalable and fault-tolerant ar-
chitecture that can help process data reliably and without data loss even when the
system fails.

Furthermore, Kafka includes a rich collection of APIs and integrations that can
aid in the creation and maintenance of complicated data processing pipelines. Kafka
provides stream processing APIs that can be used to transform and aggregate stream-
ing data in real time. Kafka also integrates with popular data processing frameworks
like Apache Flink, allowing the creation of sophisticated data processing workflows.

2.6 Benchmarking

As there have not been a lot of systems that perform distributed similarity joins in
stream processing environments, there are not any established benchmarks or ex-
periments that can be used to compare a system with other developed systems. The
authors of [38] describe a series of experiments that they have designed to com-
pare the system that they developed with the other systems that employ different
algorithms for both distributing the dataset’s records to different partitions and to
perform the similarity joins between the different records, however they do not pro-
vide the code for such experiments or the implementations of the other systems, so
they can not be used to evaluate other systems.

In order to create fair benchmarks to compare the different systems, the exper-
iments will use different types of data and datasets, although they will be mainly
focused on analyzing text and sets of strings. The experiments will measure differ-
ent metrics, taking into account both records that obtained a join result and those
that did not. These metrics include:

• Throughput: Amount of records that the system is able to process per second.

• Number of joins: Number of different similarity joins performed during the
execution of the program.
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• Latency since ingestion: Time required to process a record since it was ingested
by the system.

• Latency since creation: Time required to process a record since its creation by
the producer.

• Operations: Number of operations that a record has needed in order to be
process and find potential joins.

• Replication: Amount of times a record has been replicated by the system in
use.

A comprehensive set of metrics will be measured to assess the system’s perfor-
mance. However, it should be noted that not all metrics are entirely representative
of the system’s overall performance. As a result, only select metrics will be utilized
for the analysis of the system’s performance.

Careful consideration will be given to choose the most relevant and meaningful
metrics that provide valuable insights into the system’s effectiveness and efficiency.

Which of these metrics will be used is described in section 5.4.
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Chapter 3

Related work

This chapter presents a comprehensive overview of the current state-of-the-art con-
cerning distributed similarity joins in stream processing environments. To collect
relevant papers, diverse tools and keywords were utilized, while ensuring the exclu-
sion of those that proved unsuitable for the project—specifically, papers that could
not be adapted to function in distributed or streaming environments. To establish a
benchmark that enables the evaluation of different systems under equitable condi-
tions, our approach involved selecting systems that implemented distinct techniques
for executing the joins.

The primary systems employed in this project include the Distributed Streaming
Set Similarity Join (DSSSJ) [38] and the Cluster Join [15]. DSSSJ adopts a length-based
partitioning approach and implements the "Bundle Join" algorithm to execute the
joins efficiently. On the other hand, the Cluster Join utilizes a set of anchor records
to distribute the data and perform the joins in a distributed manner. Both of these
systems were proposed by the thesis supervisor and constitute integral components
of the research undertaking.

In order to find other solutions and work related to the project, the search of
papers mainly involved searching for papers that either cited the previously men-
tioned systems or were cited by them. The paper [19] presents an evaluation of
different map-reduce systems that have been developed in order to perform simi-
larity joins in a distributed manner. The systems described in the paper were not
developed to work in a stream processing environment, but they can be adapted to
such environments.

Taking into account the results exposed by the paper, it was decided to imple-
ment the Vernica Join [33], which distributes the records depending on the values
of its prefix tokens. This system was qualified by [19] as the most efficient and also
presents a partitioning system that is different from the others.

Other systems that were considered for the project would include [17], which
was discarded as its implementation is very similar to Cluster join and according to
[19] its performance is not outstanding, or [37], which was discarded as it required
a lot of adaptation for working in a distributed environment as it would require
sharing logs of information between the different nodes.

In total, four distinct systems were implemented for evaluation in this research.
Additionally, a flexible framework was developed to test these systems, facilitating
seamless adaptation of any new system for evaluation. As a result, the framework’s
extensibility allows for the potential assessment of additional systems in future re-
search endeavors.
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Chapter 4

Chosen solutions

As of today, the development of solutions for performing distributed similarity joins
in stream processing environments remains limited. Notably, only one system, iden-
tified as [38], has been published with the explicit purpose of fully addressing this
requirement. However, several systems have been proposed for similarity joins, al-
though they do not necessarily adopt a distributed approach or utilize stream pro-
cessing, such as [17] and [30]. Two frameworks, Cluster join [15] and Vernica join
[33], were selected for adaptation to enable similarity joins within stream processing
environments.

In addition to these frameworks, a naive solution was implemented to facilitate
performance comparison with the other systems. This section provides a compre-
hensive overview of the adaptations made to the chosen frameworks and the corre-
sponding adjustments applied.

4.1 Distributed Streaming Set Similarity Join

[38] proposes a distributed system for processing records in stream processing envi-
ronments based on distributing the records to different machines depending on their
length rather than distributing them randomly, depending on their prefix. [13, 6], or
distributing them by applying partition-based signatures [17, 16]. The aim of using
this distribution scheme is to have no data replication and low communication costs
while achieving a good load balance that ensures a high system throughput.

Their proposal is to partition the length space of the records into several disjoint
length intervals, which enables each node of the system to only take care of a length
interval. However, instead of doing a uniform partition that could result in a critical
load imbalance and thus low performance, they propose the use of a cost model to
dynamically estimate the local workload of each node and efficiently partition the
length space.The initial partitions are created based on historic data from previous
executions of the system.

The highlighted distribution scheme offers a significant advantage over the prefix-
based and partition-based models. In this scheme, each record requires indexing
only once, eliminating the need for additional storage across all nodes. Figure 4.1
provides an illustration of all the distribution schemes. Notably, the distribution
scheme proposed by the authors, which follows a length-based schema, stands out
as it necessitates minimal data replication while ensuring low communication costs.
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FIGURE 4.1: Example of different distribution schemes [38].

Once a record has been dispatched to a node, the node has to perform two key
operations with the data from the incoming record. It has to perform a join operation
to find all the similar pairs in the record and index it for future joins. In order to
perform these two operations, the authors develop a join bundle-based algorithm
that they name BundleJoin.

The BundleJoin algorithm creates bundles with the join results returned from
join operations. Each of these bundles contains highly similar records in terms of
their prefix, length, bounds, and positional bounds. The belonging of a record to a
bundle is verified in a batch processing operation by using the difference between
the tokens of the record with the ones of the different records within the bundle.

Figure 4.2 illustrates an overview of the bundle algorithm. As can be observed,
in the first step of the algorithm, the objective is to identify records that resemble the
incoming record. If the record is the master of a bundle, then all associated records
are retrieved for comparison. If the record is not the master of a bundle, only the
found record is compared to the incoming record. If the comparison yields similarity
and the record being compared is within a bundle, then the incoming record is added
to the bundle. If there is no similarity found, a new bundle can be created with the
incoming record as the master.

New Record

Record List

Record 1

Record 2

Record 3

...

Find similar
records

Is master of
a bundle?

Get records
associated to

the bundle

Evaluate the
next record

Is similar
record?

Bundle List

Bundle 1

Bundle 2

Bundle 3

...

Yes

No

Join found
Add record to
bundle/create
new bundle

No Yes

FIGURE 4.2: Overview of the BundleJoin algorithm.

The system utilizes an inverted list to link each processed record’s token to the
record itself. If a record does not belong to a bundle, it is labeled as a single record.
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Additionally, there is a list of created bundles. The BundleJoin algorithm consists of
two stages, the first being the join stage.

Figure 4.3 demonstrates the join portion of the algorithm. Initially, an empty
set of candidates is created, and then the algorithm iterates through the tokens that
make up the record. It retrieves records with the same token by querying the in-
verted list, which indicates which records contain the token. The set of candidates
is then filtered using two criteria: similar length and passing the bundle positional
filter. The latter verifies that the candidate record has at least a similar prefix. The
similar records that meet these criteria are classified as similar records.

Record to be
joined

Prefix filter

Add r' into C

Initialize
candidate

set C

Get token for
next position 

Batch
verification

Are there tokens
left to process?

No

Yes
Are there records
left to process?

Get records
for the token

Passed

Not
PassedLength filter

Bundle
positional filter

Yes

Passed

FIGURE 4.3: Bundle join: Join algorithm.

After creating a set of candidate records, a batch verification process is used to
generate a final set of truly similar records. The batch verification algorithm (as
shown in Figure 4.4) compares each record not only with the set of similar records
from the previous steps but also with all the records belonging to the same bundle
as the master record of that bundle. Once the candidate set has been verified, the
algorithm moves on to the next stage.
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FIGURE 4.4: Bundle join: Batch verification algorithm.

The second stage of the bundle algorithm is indexing. Figure 4.5 illustrates the
indexing part of the BundleJoin algorithm. Once a record is processed through the
system, the algorithm tries to find the most adequate bundle for it. In the case that an
adequate bundle has not been found, the record is marked as single and its tokens
are inserted in the inverted list for future reference. If a suitable bundle has been
found, the record’s tokens that are not shared with the master entry of the bundle
are indexed in the inverted list and the information about the bundle is updated.
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FIGURE 4.5: Bundle join: Indexing algorithm.

The list of bundles in the system has a master record associated with each bundle.
The master record is similar to every other record in the bundle. If a record is similar
to the master record of a bundle, it is added to that bundle. This reduces the number
of comparisons required. All created bundles are registered in the bundle list.

4.2 Cluster Join

Cluster join [15], is a framework designed to perform similarity joins by leveraging
the MapReduce method for comparing the records. They propose partitioning the
space by designating a set of anchor records, sampled from the dataset that is going
to be analyzed, that represent the centers around which the records can be clustered
to form partitions.

Figure 4.6 illustrates an example in which a vectorial space has been divided by
using the euclidean distance between its anchors. As can be observed, there are
three distinct home partition spaces, one for each of the anchors, as well as an outer
partition space for each of them. A record can be assigned a unique home partition,
but may belong to multiple outer partitions. Similarity joins are executed between
records located within the same partition. The use of partitions facilitates parallel
processing of the joins, as they can be executed by different machines.
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FIGURE 4.6: Example of space partitioning using euclidean distance
[15].

A record that corresponds to the outer partition of an anchor will only be com-
pared with the records in the home partition of said anchor; this is to prevent per-
forming the same comparison twice. In the case of the home partition anchor, the
record will be compared with all the records in both the outer and home partitions
of the anchor. In a further effort to prevent the same comparison being made, the
system implements a mechanism in which if a record corresponds to both a home
partition and an outer partition at the same time, it will only be sent to the outer par-
tition if it has a higher ID than the home partition, so no unnecessary comparisons
are made.

If a partition receives more records than expected, the partition can be expanded
by employing a 2-D hashing mechanism, so when the amount of records associated
with one anchor exceeds a certain threshold, the anchor will be expanded and the
load divided between the subpartitions made in the process. In their implementa-
tion, they perform this action by sampling the dataset they want to analyze again.
Figure 4.7 exposes how this algorithm works. Once the anchor has too many query
points assigned, it will expand to a hashmap whose side follows the formula S =
2Q/T, where Q is the amount of query points associated with the anchor, T is the
threshold, and S is the side of the matrix.

Anchor points

Query Points Batch of
points

Get records
per anchor

Aqs>Thd? 2-D hash
partitioning

Do nothing

No

Yes

FIGURE 4.7: 2D-hashing expansion algorithm.
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In order to ensure that a record will be compared with all candidate records for
a similarity join, the authors propose performing the record dispatching in two dif-
ferent ways. When the records are from two different streams, each record will be
assigned to either the columns or the rows of the hash map. The column or row to
which it will be dispatched will depend on a hashing function, which will ensure
that a record will be compared with every eligible candidate. In the case of a self-
join, half of the matrix will be unnecessary, so the pairs with the same hash value
will only be compared in diagonal cells. Figure 4.8 illustrates how the records are
distributed when using the 2-D hashing mechanisms in both the multiple stream
and single stream cases.

FIGURE 4.8: 2D hashing illustration [15].

In order to adapt this system to streaming environments, an historic file will be
sampled to acquire the anchor points, and the anchors will be expanded dynami-
cally, depending on the amount of records associated with the anchor during the
execution. As it already partitions the record space, it does not need any adapta-
tions to be correctly executed in a distributed environment.

4.3 Vernica Join

The authors of [33] propose a system that leverages the map-reduce programming
model in order to perform the similarity joins in a distributed manner by distributing
the records to different partitions depending on the tokens in their prefix in order to
balance the workload.

Their proposal involves sorting the tokens within a record based on their fre-
quency of occurrence in the dataset, prioritizing the placement of the least frequent
tokens ahead of the others. Once the tokens have been ordered the first n tokens
(prefix tokens) are used to route the records to the processing nodes in which the
similarity joins will be performed.

The paper proposes two ways to perform such routing which are using individ-
ual tokens, which involves replicating each record as many times as the number of
tokens in its prefix and using grouped tokens, which involves mapping multiple to-
kens to the same key in order to reduce the amount of keys that are used. In this
case, two records that share the same token group might not share any tokens. The
groupId will be assigned to each record following a Round Robin approach.

In a stream processing environment, access to the complete dataset beforehand
is not available. However, the whole set of words to be used during the experiments
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can be accessed. Historical data will be utilized to calculate the frequency of each
token appearing in order to sort tokens from incoming records.

The partitioning algorithm proposed by [33] is illustrated in Figure 4.9. The first
step involves calculating the frequency of each token to sort the record’s tokens.
Next, the prefix length is calculated, and a partitionId is assigned based on the tokens
in the prefix. The partitionId can either be the token itself or a groupId based on the
token’s value.
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their frequency

Calculate record
prefix length

Assign partitionId
according to
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token as partitionId
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depending on the

token value

Collector

Token to GroupID
map

FIGURE 4.9: Vernica partitioning algorithm.
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Figure 4.10 displays how the groupId is assigned to each token according to the
paper. As it can be observed, if the token has already been assigned an id, the system
will just retrieve the id from the token and add it to the token to groupId map; if not,
the token will be assigned a groupId following a round-robin system, in which the
value will depend on the amount of nodes or partitions that are present in the system
and the id assigned to the previous token.
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Assign a groupId
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Token to GroupID
map

Collector

Assign GroupID depending on token

Is token in token 
to GroupID map?

Send GroupID
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NoLast GroupId
assigned

Yes

Update

FIGURE 4.10: Vernica groupId assignment algorithm.

After the record has been sent to its corresponding partitions, the paper indicates
that the joins shall be done by using either a basic kernel (BK) algorithm to perform
the join, which entails comparing all records within a partition with each other, or
utilizing the PPJoin+ algorithm [34]. The latter approach applies a prefix and length
filter to the records, which helps to decrease the number of comparisons that need
to be executed.

4.4 Naive implementation

In addition to the previously described systems, a decision was made to develop a
naive system for distributing records to various nodes and conducting join opera-
tions in a stream processing environment.

Under this approach, the records are dispatched to all nodes but indexed only in
a single node. The assignment of the indexing node follows a round-robin system,
ensuring a balanced workload and equitable distribution of join operations among
the nodes. The distribution system is further illustrated in Figure 4.11.
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FIGURE 4.11: Naive system partitioning algorithm.

Once the record has been received by a node, the comparisons will be executed
using the BK algorithm, as described in the Vernica join 4.3. Additionally, the sys-
tem will have the capability to employ the PPJoin filtering technique, which was
specifically developed for this project.
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Chapter 5

Implementation

In this section it will be explained how the different solutions described at section 4
have been implemented, as well as the experiments to evaluate their performance.

5.1 Overview

All the systems have been deployed to Kubernetes in the same way. There are six
different pods running different services, as illustrated in Figure 5.1.
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Record
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245
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FIGURE 5.1: Overview of the system implementation.

Starting from the left, the first pod is in charge of writing the data to be pro-
cessed to the second pod, which is the Kafka server1, from which the main program
will read the records as well as write the results of the execution so that the metrics
calculators (two separate pods represented as one) and the repartitioner can read the
information of the execution.

The main program is running in the Flink cluster, which is the central pod of the
system. This cluster will be continuously run the system that is ingesting the data
and performing the similarity joins.

The system will be in charge of writing the data about how the records are being
distributed to Kafka, so the repartitioner can trigger the repartition for the system,
whose sequential stages are delineated by numerical annotations within the image,
wherein lower values correspond to initial steps, and higher values correspond to
subsequent ones. It is also in charge of writing to Kafka information about how

1The two Kafka nodes showed in the diagram correspond to the same pod in reality.
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the records are being processed (number of comparisons required, time required to
process the record, etc.) and about the joins that have been performed.

This information is ingested by the consumers that write it into logs so that it can
be later retrieved and the execution of the system can be evaluated.

5.1.1 Data producer

The initial component of the system incorporates a Kafka producer responsible for
data generation from the datasets mentioned in subsection 5.3.2. For synthetic data,
a list of 5,000 words is utilized for runtime generation. In contrast, text files were
created to store at least one gigabyte of information for the other datasets, with the
exception of the Tweets dataset, which comprises a dataset of 100 MB.

The synthetic data generation process consistently employs the same random
seed, thereby enabling the evaluation of results across different systems under equiv-
alent conditions. This ensures a fair and controlled comparison between the systems,
as any variations in the results can be attributed to the differences in their underly-
ing algorithms and processing techniques, rather than to variations in the generated
data.

Following data generation, it is written to one or two Kafka topics, depending on
the requirement to assess joins within the same stream or across different streams.
Subsequently, the record processing job employs this data to identify similarity joins.
In the experiments performed in this project two different streams of data are used
for analyzing the performance of the systems.

To ensure uniform data creation by the Kafka writer, a special implementation
was devised. Records slated for writing in a second are divided into several inter-
vals, and a sleep operation is executed at each interval to prevent record bursts. The
sleep duration corresponds to the following formula:

Second-Record Rate×TimePerRecord
Nº Intervals

In this formula, the variable TimePerRecord represents the time taken by the pro-
gram to write a single record to Kafka. To determine this value, a million records
were generated for each dataset, and the average time required to generate these
records was calculated.

The utilization of the repartitioning algorithm presents a challenge in the sys-
tem’s performance as the data generator continues to operate uninterrupted during
the repartitioning process.

Consequently, the system must handle all the data generated during this repar-
titioning period at once, which significantly influences the obtained results. How-
ever, implementing a mechanism to pause the data generator and accurately track its
progress in reading the dataset proved to be excessively complex and time-consuming
within the scope of the project.

Despite the complexities involved, the decision not to stop the data generator
and simulate real-time conditions has merit. In practical scenarios, data generation
typically continues without interruption even if a repartitioning event occurs.

In this study, the producer assumes the responsibility of marking the records
that are to be sent to the record consumer. This ensures that one-third of the records
are directed to the consumer, thereby guaranteeing the relevance of the observed
latencies.
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It is essential to note that, due to time constraints, the experiments conducted in
this research exclusively employed Strings as input. Unfortunately, this limitation
prevented the examination of other input types during the testing process.

5.1.2 Data adaptation

The various implementations used for this project utilize different types of record
objects to store record information. However, a consistent adaptation approach
is employed across all implementations to ensure fairness in system comparisons.
This adaptation involves tokenizing the words within the input sentence and sort-
ing them in alphabetical order.

Notably, the time required to adapt the input and generate the record object is
deemed invariant when assessing system performance. This is because the adap-
tation duration is consistent across all implementations and does not provide any
discriminatory information.

5.1.3 Repartitioner

The repartitioner is the node that reads the data that is written to the Kafka server
by the record processing job about how partitions are being formed, and evaluates
whether a recalculation of the system’s partitions is needed or not.

Figure 5.2 illustrates how the repartitioner works. As it can be observed, if a
repartition is required, the repartitioner stops the job, creating a savepoint in the
process, and calls the state modifier (that will be executed in the main cluster) with
the arguments required for its execution (jobName, jobId, etc.).
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FIGURE 5.2: Repartition calculation algorithm.

The repartitioner makes sure that the program has been executed for at least 30
seconds before triggering a repartition, and once this repartition is triggered it checks
again if 30 seconds have passed since the program resumed its execution to trigger
the next one, in case the conditions for a repartition have been met again.

5.1.4 State modifier

The state modifier will load the savepoint information, modify it, and resume the
record processing job with the modified state.

Figure 5.3 displays how the state modification algorithm works. Once the mod-
ifier decodes the arguments sent by the repartitioner, it retrieves the path where the
savepoint information has been saved. It will then proceed to read the data, modify
it, and store it in a new savepoint location. Once this process has finished, it will
resume the job from the modified savepoint.
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5.1.5 Metric readers

The last component of the system consists of two Kafka consumers tasked with read-
ing the metrics data written by the system to the Kafka server, which pertains to sys-
tem performance metrics such as processing latency, required operations, and more.

When a predefined quantity of data, as specified by the user, is received, it will be
written to a log file. This log file will subsequently be utilized for evaluating system
performance based on the metrics outlined in section 2.6. This systematic approach
ensures a comprehensive and standardized assessment of the system’s performance,
facilitating a thorough evaluation of its capabilities.

5.2 Systems implementations

This section aims to provide an analysis of the various adaptations made to the sys-
tems detailed in Section 4, which enable them to execute similarity joins in a dis-
tributed manner within stream processing environments.

5.2.1 Distributed Streaming Set Similarity Join

The authors designed [38] to function in stream processing environments in a dis-
tributed manner, minimizing the need for significant modifications. The initial sys-
tem was originally built utilizing the Apache Storm framework [32]. However, it has
been adapted to work with the Apache Flink framework [11] in this project.

The repartition algorithm utilized by this system involves leveraging the pro-
cessed record’s length information to periodically evaluate the load balance across
partitions. If any partition is deemed imbalanced, the algorithm recalculates the
new partitions and dispatches them to the state modifier, which then executes the
algorithm depicted in Figure 5.4.
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FIGURE 5.4: State modifier algorithm for the DSSSJ system.

As depicted in Figure 5.4, the state modifier is responsible for updating the par-
titioning operator’s partitions, enabling new records to be dispatched to their desig-
nated partitions for processing.

Next, the modifier consolidates all the records from the processing step, facilitat-
ing their redistribution to their corresponding partitions. This step necessitates an
update to all data structures in the processing operator, including the record, bun-
dle, and inverted lists. Following this process, the updated information is saved as
a savepoint, and the program execution resumes.

5.2.2 Cluster Join

In the case of the system defined in [15], the authors did not intend to run it in a
stream processing environment, so some adaptations needed to be done. The first of
these adaptations would concern the selection of the anchors.

It is important to ensure that the data used for creating the anchors is represen-
tative of the dataset being used in the experiment, and that every record can be sent
to at least one anchor. As different datasets were used for the experiments, different
sets of anchors were used for each one. The sets of anchors were generated through
the utilization of the lists of unique words found in the datasets, as explained in
Section 5.3.4.

A total of 500 anchors were selected, encompassing all the words from the spec-
ified word lists. Various experiments were conducted using different numbers of
anchors to determine the optimal quantity for the system’s implementation. The
system’s execution was evaluated with 250, 500, 1,000, and 2,000 anchors. The find-
ings revealed that the number of anchors yielding the best results was 500. Despite
the suggestion by the authors of [15] that a higher number of anchors may be ideal,
their evaluation did not employ the Jacquard similarity metric, rendering their re-
sults unsuitable for direct comparison to this project’s work. The use of the Jacquard
similarity metric in the experiments ensures the relevance and applicability of the
outcomes to this specific study.
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The system was originally designed to handle spatial data, necessitating adap-
tations for text data integration. To maximize the detection of potential joins, an
algorithm was devised. This algorithm involves sending the record to all anchors
that shares at least a token with the record as outer partitions and sending it to the
one with the highest similarity as the home partition anchor.

Anchor A

Anchor B

R1 Pruning Anchor A

Anchor BR2 Comparison
missed

...

FIGURE 5.5: Limitations of the pruning mechanism proposed by [15].

As explained by Figure 5.5, it is not possible to apply the pruning technique that
the authors proposed that it was based on comparing the ids of the records, as one
outer anchor could have a lower id than the home partition anchor and be pruned
while not sharing any token with the home partition anchor, meaning that potential
comparisons could be skipped. As the priority is to reduce skipping matches to the
minimum, no pruning could be executed, however as there are no repeated tokens
in the anchors is not possible that a record is sent to two different anchors that share
the same token with it.

Consequently, extensive data replication occurs, rendering the system akin to
the Vernica join system. However, the authors did not propose any specific modi-
fications for adapting their system to accommodate strings and this is the solution
with more guarantees that could be implemented. Join replication will be measured
as well as the number of unique joins observed.

The original system did not implement a repartition algorithm; instead, it ex-
panded some of the selected anchors based on a sample of the whole static dataset.
In the proposed implementation, the repartitioner will be in charge of measuring
how many records have been assigned to each anchor and triggering an anchor ex-
pansion when the records assigned to an anchor have exceeded a certain threshold.

5.2.3 Vernica Join

In adapting the system described in [33] to a stream processing environment, certain
modifications were necessary. It was decided to only implement the approach that
makes use of GroupIds to group the different tokens as it is more efficient (requires
less virtual partitions) and reduces the complexity of the system.

The initial system employed the extraction of a comprehensive token set com-
prising the constituent elements of a record’s information from the static dataset
subject to analysis. As previously expounded, word lists were meticulously gen-
erated, encompassing all tokens present in the datasets employed for the project’s
experimental purposes. These word lists, as elucidated in Section 5.3.4, serve as the
token repositories for the Vernica join system.
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The calculation of token frequencies in this study relies on the utilization of his-
torical data associated with each dataset. When a token is absent from the available
historical data, it is presumed to have occurred at least once due to its presence
within the dataset used for the experiments.

The paper detailing the Vernica join system did not provide a repartitioning al-
gorithm to balance the load between the various partitions. Consequently, an algo-
rithm had to be developed to perform this task. This algorithm is triggered when
the difference in the number of records assigned to one groupID and another ex-
ceeds a certain threshold. A high level description of the algorithm can be observed
in Figure 5.6.
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FIGURE 5.6: High level state modifier algorithm for the Vernica join
system.

As it has been illustrated in Figure 5.6, after updating the token frequencies and
creating set with all the records in the system, the tokens are distributed to create a
new token to groupId map that is used to create new partitions.

The tokens and records associated with each groupID are redistributed in accor-
dance with the algorithm described in Figure 5.7. Prior to redistribution, the token
frequencies are sorted in descending order of the number of records associated with
them.
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FIGURE 5.7: Greedy algorithm for the Vernica system state modifica-
tion.

In Figure 5.7, N_rec_ass represents the number of records associated with the
partition being processed, while N_rec_ctr represents the number of records associ-
ated with the token being processed. Additionally, N_rec_req represents the min-
imum number of records that each partition should have associated with it. This
value corresponds to the total number of records divided by the number of parti-
tions in the system.

As Figure 5.7 illustrates, the greedy algorithm implemented ensures that the
records are fairly distributed across the partitions, although each partition will have
more records than necessary assigned to it, except for the last partition. Conse-
quently, load balance cannot be guaranteed entirely due to the heterogeneous nature
of the number of records associated with each token.

5.2.4 Finding an incorrect number of joins

Following the execution of testing experiments, it was observed that despite the
claims of perfection and absence of skipping joins by all the systems, there was a
particular implementation that exhibited the potential to skip joins or detect false
joins, particularly under conditions of low similarity thresholds. These implementa-
tions are identified as the DSSSJ and the Cluster join implementations.

Cluster join

In the case of the Cluster join implementation, a noteworthy scenario arises where
a single record might possess multiple anchors that could serve as the home parti-
tion anchor or it should be indexed in less than optimal anchors to ensure complete
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comparison with any potential candidate.
Consequently, this situation may lead to two records, which are deemed to be

potential matches due to the presence of shared tokens, failing to achieve a correct
combination to facilitate a successful join. Moreover, the absence of any predeter-
mined sorting order for the anchors introduces variability in the number of obtained
joins across different executions.

Figure 5.8 visually depicts this situation, wherein two records that should ideally
be compared (given their common tokens) are either compared or not, contingent on
the selection of an anchor as the home or outer partition for them.
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Comparison
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FIGURE 5.8: Example of the Cluster join system skipping a compari-
son.

The frequency of encountering such cases is higher than anticipated, especially
when employing low similarity thresholds. This is attributed to the existence of a
wide range of potential anchors that could be considered as the main one for the
records, thereby significantly increasing the likelihood of inadvertently skipping a
join. In some cases as much as 75% of the joins were skipped by this system.

Having numerous main anchors for the same record could address this, but
doing so will likely degrade the system’s already subpar performance (which is
demonstrated in the results section 6). Therefore, it was chosen to leave the algo-
rithm untouched because the system’s performance is already poor, but acknowl-
edge this limitation.
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DSSSJ

The case of DSSSJ presents a notable point of interest within the context under con-
sideration. Upon an examination of Lemma 6 as presented in the scholarly work,
depicted in Figure 5.9, it becomes evident that certain scenarios exist wherein the
applicability of the mentioned lemma is limited.
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FIGURE 5.9: Lemma 6 as presented in [38].

An instance exemplifying this scenario is delineated in Figure 5.10. In this con-
text, should the similarity threshold measure below 0.143, Lemma 6 maintains its va-
lidity, potentially resulting in the identification of a join erroneously, as both records
showed have a master of a bundle in common but do not share any tokens with each
other.

It is noteworthy that this problem is found only in configurations characterized
by low similarity thresholds. Thus, avoiding the usage of such configurations en-
sures the accurate program execution; however, this concern remains significant.

The paper states that it doesn’t skip any true joins, and this is accurate. However,
it’s important to note that just because true joins are handled correctly, it doesn’t
eliminate the possibility of also encountering false joins.

[advertise, civilian, lawn]
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Master

Record to
compare
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FIGURE 5.10: Lemma 6 exception in DSSSJ.
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This condition also manifest that comparisons that would not be made by just
using a simple inverted list instead of the bundle join solutions are being made by
the system, as in Figure 5.10 can be observed, the two records that are compared
have no tokens in common and therefore that comparison could have been avoided
in the first place.

5.2.5 Filtering

Both in the Vernica join [33] and Cluster join [15] papers is proposed the use of filter-
ing in order to reduce the amount of comparisons per record. Both of them propose
the use of the PPJoin algorithm, which is an extension of the PPJoin algorithm. The
Naive solution can also benefit from the use of this algorithm., so it was incorporated
as an extra to it as well.

The PPJoin algorithm incorporates filtering techniques to identify potential can-
didate pairs for similarity join based on token length and prefix token sharing.

PPJoin extends this algorithm by introducing positional filtering, utilizing an in-
verted list to track token positions in records. However, in dynamic settings such
as stream processing environments, the use of an inverted list makes PPJoin+ more
computationally expensive compared to the simple PPJoin algorithm.

In consideration of the cost-effectiveness of implementing PPJoin+ algorithm, it
was determined that the benefits derived from conducting additional comparisons
were outweighed. As a result, the decision was made to solely implement the PPJoin
algorithm as a filtering mechanism for the tested systems. This filtering algorithm
will be applied exclusively during the processing step and not during the partition-
ing step. This approach ensures that unnecessary comparisons are avoided while
maintaining the efficiency of the overall process, so no joins will be skipped.

5.2.6 Metric readers

The system is composed of two metric readers that measure different statistics about
the system’s performance by reading the data written to the Kafka server by the
program executor and analyzing it. Each metric reader reads from a separate topic.

Within the system, a specific metric reader is responsible for capturing data per-
taining to the number of operations necessary for record processing, irrespective of
the presence or absence of a join, along with the associated processing time. In this
context, an operation denotes the comparison made between two records.

To mitigate the overhead associated with writing this record level information to
Kafka, a design decision was made to collect data for only one third of the records.
This sampling strategy was deemed sufficiently representative of the system’s over-
all behavior while reducing the overall data collection burden.

The other metric reader is in charge of analyzing the number of joins found by
the system. This metric reader collects statistics about the number of joins found
and the latencies that the records that obtained a join experienced. All the obtained
joins are written to Kafka. This metric reader removes the duplicate joins written
to Kafka by the systems by maintaining a unique set of the pairs of joins that were
observed. This is especially useful for the Vernica system, as it tends to produce a
lot of duplicate joins.

Other metrics such as the amount of replication observed in the system or the
amount of records that the system has processed are obtained by querying the REST
API provided by the Apache Flink framework [3].
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5.3 Experimental setup

This section aims to outline the essential details regarding the experimental setup,
including datasets utilized, hardware specifications, software tools and versions and
any relevant parameters or configurations.

5.3.1 Comparison metric

Given that the data used to evaluate the systems consists entirely of strings, the most
appropriate comparison metric was selected, the Jacquard similarity. The decision to
utilize this metric was particularly fitting due to its compatibility with string-based
data and its widespread adoption in academic research.

By employing the Jacquard similarity metric, the framework developed for this
research becomes highly applicable and accessible to future researchers seeking to
evaluate their own systems, ensuring consistency and comparability across various
studies.

5.3.2 Datasets employed

In order to facilitate the experiments, a combination of synthetic data, generated
with parameters under controlled conditions, and real-world data from various text
sources with varying specifications, such as the record length, was utilized.

As most of the systems employed in this study are meant to find similarity joins
between records composed of strings and used Jacquard similarity as evaluation
metric, the datasets used in the experiments are only text datasets from various
sources.

Synthetic data

The experimental synthetic data utilized in the study comprises sentences of varying
lengths. More specifically, it encompasses sentences with a range of 1 to 15 words
(referred to as "Synthetic115" dataset) and sentences consisting of precisely 10 words
(referred to as "Synthetic10" dataset).

The choice of the first range was motivated by its ease of handling for any system.
This range ensures that some matches will be found and is similar to the length range
typically found in tweets. Additionally, it provides a variety of lengths for the DSSSJ
system to work with.

The second range was selected to analyze the behavior of the DSSSJ system when
working with data of a single length. By focusing on sentences with exactly 10
words, the system’s performance can be observed based on its ability to partition
records according to their length.

To construct the sentences within the dataset, the list of 5,000 words provided by
[27] was utilized. These words were read from the list, and each one could be used
more than once to compose the sentences. The decision to employ a limited set of
words was deliberate, as it allowed for the possibility of sentence similarity while
maintaining a manageable dataset size.

News articles

A subset of news articles offered by [14] was utilized for this study. Specifically, ar-
ticles corresponding to the timeframe of May 2022 were selected, capturing a period
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characterized by the onset of the Ukraine conflict but encompassing diverse news
topics.

The dataset employed followed the Web ARChive (WARC) format [24], which
contained a lot of extra data that was not relevant for the study, so as much of this
data as possible was removed, as the main focus was the body of the news articles.
However, even in the main body of the news articles, additional website-specific
information such as JavaScript or HTML code could be found that was not possible
to remove. Despite these inherent limitations, similar records could be found within
the dataset by using the appropriate thresholds.

However, after performing a set of experiments it became clear that no system
was going to be able to process a reasonable amount of records from this dataset per
second, being most of the systems unable to process more than 1 record with a 99th
percentile latency of one second.

Due to the substantial number of tokens per record and the limited resources of
the workers, utilizing this dataset to obtain meaningful results became unfeasible.
The combination of large record sizes and resource constraints imposed significant
challenges in processing and analyzing the dataset effectively.

As a result, it was necessary to exclude this dataset from the analysis to ensure
accurate and manageable experimentation with the available resources.

Amazon reviews

A subset of the Amazon reviews, sourced from [1], was utilized in this study. These
reviews were available in TSV (Tab-Separated Values) format. The primary focus
was on extracting the textual content from each review, which was subsequently
employed for comparative analysis.

The reviews within the dataset demonstrated diverse lengths, ranging from zero
characters (in cases where only a rating was provided, and such sentences were
removed) to a maximum limit of 5,000 characters. On average, the length of the
reviews in the dataset amounts to approximately 30 words.

This variation in review length adds complexity to the analysis but also offers
valuable insights into the nature of the data and the potential challenges associated
with processing and evaluating it.

Yelp reviews

A subset of reviews from Yelp [39] was also used. These reviews are available in
a JSON format, with a specific field labeled as "text" that encompasses the review
content, which is utilized by the system for comparison purposes.

Yelp reviews share certain characteristics with Amazon reviews. They have a
maximum length of 5,000 characters and can potentially consist of no text at all.

On average, the reviews in the dataset presented a length of 100 words. It is im-
portant to note that this average length indicates a relatively longer textual content
compared to Amazon reviews, which may contribute to a relatively lower potential
for similarity between Yelp reviews,which was demonstrated throughout the exper-
iments, as well as the difficulty of processing such long sentences.

Tweets

This dataset that is used for the experiments comprises a subset of more than 1.6
million tweets [26]. These tweets are presented in a CSV format, and the conducted
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analysis focuses solely on the tweet content, which is located in the final field of each
line.

Tweets are restricted to a maximum length of 280 characters, with an average
length ranging from 75 to 120 characters. More specifically, the dataset used for the
experiments in this project contained an average of 10 words per record.

Consequently, the data obtained from this dataset is notably smaller compared to
the previously mentioned datasets. However, this reduced size presents a unique in-
teresting opportunity for identifying similar records. Moreover, tweets often exhibit
trending patterns, which can be effectively captured using the systems implemented
in this project.

5.3.3 Data preprocessing

To optimize the data reading process from the various datasets, a decision was made
to reduce their sizes to approximately one gigabyte of data each. This reduction was
achieved by selecting only a subset of entries from each dataset and writing the
corresponding text to plain text files.

Due to the Tweets dataset being initially smaller than the other datasets, only 100
megabytes of data were available for use in this case. By curating the datasets in this
manner, the processing and analysis of the data became more manageable, enabling
efficient experimentation and evaluation of the systems.

All sentences written to the text files used for ingestion are stripped of any non-
alphabetical characters, as well as any embedded code (such as JavaScript and HTML)
found within them. Furthermore, the sentences are transformed to lowercase to fa-
cilitate easier and standardized processing.

As the size of the entries in each of the datasets varies, the amount of entries for
each of the data types is different. Table 5.1 displays the number of records that can
be used for each dataset. The number of entries of each dataset is sufficient as the
performed experiments do not last long enough or use a record rate high enough to
use all of them.

Dataset Entries
Tweets 1,431,768
News 137,017

Amazon 6,153,816
Yelp 1,771,197

TABLE 5.1: Available entries per dataset.

For the historical data that is required by the DSSSJ and Vernica systems the
records that followed the ones used to create the text files were used, as they share
similar characteristics to ones preceding them.

Each of the datasets created as historical data has a size of 100 megabytes (except
the tweets dataset that only contains 10 megabytes of data), so the number of entries
corresponding to each dataset is equal to 10% of the entries numbers exposed at
Table 5.1. In the case of the synthetic data, an historical file of 100 megabytes was
created for them, but with a seed different from the one used for the experiments to
avoid complete resemblance.
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5.3.4 Word lists

To ensure a comprehensive representation of the datasets’ information and facilitate
the assignment of records to suitable anchors, distinct word lists were created for
each dataset. These word lists aimed to capture the entirety of the dataset’s content.

In order to streamline the storage and utilization of relevant information, a fil-
tering approach was implemented. Specifically, only words appearing in two or
more records were retained, while those occurring in a single instance were dis-
carded. This filtering criterion helped eliminate potentially insignificant or idiosyn-
cratic terms that offered limited value for analysis purposes.

Furthermore, to further optimize the word lists, certain restrictions were im-
posed. Non-alphabetical characters were removed from the word set, ensuring that
only meaningful words were included.

Moreover, specific preprocessing steps were applied to refine the dataset. For in-
stance, any JavaScript and HTML code present in the news dataset was eliminated,
aiming to eliminate extraneous programming-related artifacts. Additionally, a uni-
form lowercase format was adopted for all words during the creation of datasets
intended for writing into Kafka. This standardization facilitated consistent and reli-
able downstream processing and analysis.

Overall, these measures ensured that the generated word lists encompassed rele-
vant and meaningful terms, improving the accuracy and effectiveness of subsequent
analytical tasks.

Dataset Unique words
Tweets 176,984
News 624,112

Amazon 323,837
Yelp 51,825

Synthetic 4,893

TABLE 5.2: Unique words found per dataset.

Table 5.2 shows the amount of unique words found in each of the datasets that
were used for the experiments. As it can be observed, even though Yelp is not the
smallest dataset it contains the least unique words among the real world datasets,
probably because of the reviews are quite similar. As expected, the News datataset
contains the largest amount of unique words, as news articles tend to use a richer
and broader vocabulary than other types of text.

Creating the anchors for the Cluster Join system involved dividing the unique
words equally among the selected number of anchors, determined to be 500 as the
most optimal quantity. However, this approach led to lengthy comparisons between
the anchors and the records, especially in datasets with a substantial number of
unique words. Since anchors typically contain more tokens, the execution of Cluster
Join became slow and time-consuming. The slow execution can hinder the system’s
performance and impede its scalability, highlighting the importance of carefully con-
sidering the selection of anchors and the impact on system efficiency.

5.3.5 Parameters

To conduct the experiments, various parameters that influence the execution of the
different join systems were systematically varied. The key parameters include:
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1. Parallelism: Quantity of tasks that can be executed concurrently. In the con-
text of the studied scenario, it determines the number of Flink task managers
operating simultaneously.

2. Partitions: Number of partitions assigned to each task manager. In these ex-
periments, its value will remain case always 1.

3. Record rate: Number of records per second that the data generator creates.

4. Similarity threshold: Minimum level of similarity required for two records to
be considered a match. In this project only the jacquard similarity was consid-
ered. The chosen value for this parameter will be determined by the selectivity
for each dataset.

5. Filters: Determines whether the implemented PPJoin filtering [34] is used or
not.

6. Repartition: Determines whether the implemented repartition methods will be
used or not.

The selection of values for each of the parameters in the experiments will be
elaborated on in the following subsections.

Parallelism

The determination of the best parallelism for a given system, without extensive re-
source consumption, presents challenges. Therefore, commonly employed values
for job parallelism 5, 20 and 30 have been selected.

The initial intention was to utilize a parallelism level of 50 however, it became
evident that the cluster was unable to effectively handle such a high degree of par-
allelism, resulting in numerous errors. The same problem was faced when using a
parallelism of 40. Consequently, a deliberate decision was made to reduce the par-
allelism to 30, with the primary objective being the attainment of meaningful and
reliable results.

In the experiments, the performance of each system will be assessed under dif-
ferent parallelism settings to identify the optimal configuration for subsequent ex-
periments.

Each of the task managers of the systems will be assigned a single CPU, and for
the rest of the services (flink job manager, consumers, producer, Kafka and zookeeper
server) 21 CPUS will be available for every parallelism setting, in order to make the
comparison as fair as possible.

To maintain consistency and fairness across the experiments, an equal amount
of RAM, specifically 300 gigabytes, will be allocated to each experimental setting.
This approach guarantees that the system’s performance is not hindered or biased
by varying RAM availability and only on the system capability of distributing the
task managers.

5.3.6 Number of partitions

As each of the task managers will only be assigned a single CPU, each one will be
only responsible for one partition, so the number of partitions present in the system
will be equal to the number of task manager pods running. This reduces the com-
plexity of the system and secures an efficient resource utilization. Having a single



40 Chapter 5. Implementation

partition helps the task manager to correctly balance the load between the available
resources as well as making the system’s state management easier and easier to scale.

5.3.7 Record rate

The record rate will determine the number of records that the data generator will
produce per second. As it was mentioned before the entries of each dataset used
in this experiment vary in size, meaning that in most experiments different records
rates will be used for each dataset to ensure the correct operation of the system.

As it will be explained later, the main goal of the experiments conducted during
this project is to find the maximum throughput that a system can process before
experiencing latencies above 1 second for the 99th percentile of the records being
processed. When using each of the selected datasets and different parallelisms, there
will be no static value for the record rate; It will be dynamically calculated to achieve
a latency of one second for processing a record.

To compute the average number of operations necessary for processing a record
and the extent of record replication experienced by each system, a distinct set of
experiments has been devised. These experiments are characterized by utilizing a
constant rate of 50 records per second and generating a total of 5,000 records only.
This deliberate restriction ensures equitable comparisons across the systems. No-
tably, the focus of these experiments is on the computation of average operations per
record and the observed replication, with no consideration for latency experience.
The experiments have been meticulously conducted for each system, encompassing
all available datasets and varying parallelism configurations.

5.3.8 Similarity threshold

To determine the threshold of similarity to be utilized during the execution of an ex-
periment, the selectivity of each dataset will be employed. This entails establishing
the threshold based on the proportion of similarity joins achieved out of the maxi-
mum possible similarity joins that could be identified.

For the purpose of the experiments, selectivities of 0.01%, 0.05%, 0.1% and 0.5%
will be employed. To ascertain the similarity thresholds corresponding to these se-
lectivity levels, a gradient descent algorithm will be utilized, aiming to achieve a
threshold accuracy of six decimal places.

Figure 5.11 illustrates the operation of the algorithm devised to determine the
various selectivities. As depicted, the algorithm progresses from higher similarity
values towards lower values in order to identify the appropriate selectivity for a
given dataset. The experiments are executed using the Naive system outside the
cluster, using a text file that contained the first 15,000 entries of the dataset being
tested, except for the Yelp dataset, that due to the length of its entries was slower to
process, so 7,500 entries were used instead.
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FIGURE 5.11: Selectivity finder algorithm.

After conducting the experiments, the similarity thresholds associated with each
of them were determined and presented in Table 5.3. The results reveal an inverse
relationship between selectivity and similarity threshold. However, for the cases
of 0.1% and 0.5% selectivities, the Synthetic10 dataset did not produce sufficient
matches to establish a suitable similarity threshold.

Selectivity (%) Tweets Amazon2 Yelp Synthetic115 Synthetic10
0.001 0.500001 1.000000∗ 0.28355 0.250001 0.111111
0.01 0.285731 1.000000∗ 0.256891 0.099992 0.052632
0.05 0.214282 0.499993 0.234082 0.090903 0.052623
0.1 0.190473 0.399994 0.224373 0.076924 -
0.5 0.142854 0.222215 0.201384 0.041665 -

TABLE 5.3: Similarity thresholds identified for each selectivity across
datasets.

Within the framework, there exists the capability to control the selectivity of the
synthetic data for a given similarity threshold. However, for the majority of exper-
iments, a low selectivity of 0.001% was predominantly adopted to avoid the neces-
sity of utilizing this option. This particular selectivity value represents the lowest

2∗Dataset’s lowest selectivity was 0.024% as there were several identical records in the used dataset.
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observed during the investigation, thereby corresponding to the highest similarity
thresholds.

Consequently, this choice of selectivity ensures the least occurrence of skipping
or false joins, as elaborated in subsection 5.2.4. Throughout the experiments, consis-
tency in the synthetic data was maintained by employing an identical random seed
for sentence generation, thereby enabling the comparability of results across each
execution.

5.4 Experimental design

In order to assess the proposed systems in this project, the sustainable throughput
for each experimental dataset outlined in section 5.3.2 was obtained.

The experiments were conducted by joining two different streams of data. The
records from one stream can only be joined with the records of the other stream and
vice versa, however all the systems and the framework it self are adapted for having
a single stream of data and performing self joins.

An investigation was carried out with the objective of ascertaining the approx-
imate record rate at which systems are capable of sustaining a processing latency
below one second for the 99th percentile of processed records. These experiments
were denoted as "sustainable throughput experiments".

The decision to adopt the "processing" latency as the selected metric is driven by
its capability to isolate the time required for record processing within the system.
Unlike latency from record creation, which might be susceptible to network delays
or external influences, the "processing" latency solely considers the system’s inter-
nal processing time. This approach enables the acquisition of a more accurate and
pertinent metric for the analysis. By concentrating on the processing time within the
system, the evaluation yields a more reliable and meaningful result.

To perform these experiments, an algorithm was developed which is presented
in Figure 5.12. It can be observed that if the latency transitions from below one
second to above one second, or vice versa, between two executions, the step size is
reduced by half. This process is repeated until either a step size of one is reached or
the obtained latency precisely equal one second. Intermediate results are saved to
facilitate analysis of the system’s behavior.
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FIGURE 5.12: Sustainable throughput finder algorithm.

To expedite the experimental duration, a tolerance window of +/- 100 millisec-
onds was established to deem results as valid. This reduction significantly reduced
the overall execution time of the experiments involving the four systems across the
five datasets, decreasing it from approximately 96 hours to less than 24 hours per
parallelism option.

Regarding the evaluation of metrics such as replication and operations per record,
a fixed throughput was adopted for all systems, irrespective of their individual la-
tency performance. This approach was chosen to ensure a fair comparison by ensur-
ing that each system processes a comparable number of records. Bear in mind that
the comparison between two records shall be regarded as the operative procedure
throughout the entirety of the project.

The selected throughput for the experiments was set at 50 records per second,
and to ensure a fair comparison between the systems, the producer was halted after
precisely generating 5,000 records. Despite variations in the latency observed among
the different systems, it is worth noting that the two metrics under investigation
remain unaffected by these latency differences. A selectivity of 0.001% was also
chosen to perform these experiments.

As all the systems are theoretically designed to not skip a single similarity join (as
explained in the subsection 5.2.4, this does not hold up in the real implementations),
there is little to no interest in comparing the selectivity of the systems, as for the same
throughput they should all be the same, and differences among them could only be
the product of how they were stopped or other events during their execution.
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Chapter 6

Experimentals results

In this chapter, the results obtained from the various experiments that were per-
formed will be displayed and analyzed in order to evaluate the different systems.
As it has been described in section 4, each of the systems utilized in this project
presented different algorithms for distributing the records and performing the joins,
each of them presenting a series of advantages and disadvantages that will be ex-
plored in this chapter.

6.1 Results obtained with no repartition

This section presents an analysis of the outcomes derived from executing all sys-
tems without enabling the repartition capabilities. None of the systems employ the
PPJoin filtering, with the exception of DSSSJ, which incorporates filters as part of its
default implementation. The experiments were conducted across varying levels of
parallelism, specifically 5, 20, and 30.

6.1.1 Sustainable throughput

Figures 6.1-6.3 show the sustainable throughput that was obtained for the different
systems when using each of the before mentioned datasets when using parallelisms
of 5, 20 and 30 respectively.



46 Chapter 6. Experimentals results

Amazon Synthetic10 Synthetic115 Tweets Yelp

Datasets

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 d

ur
in

g 
ex

ec
ut

io
n 

tim
e

ClusterJoin
DSSSJ
Naive
Vernica

FIGURE 6.1: Sustainable throughput achieved with parallelism of 5
and repartitioning disabled.
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FIGURE 6.2: Sustainable throughput achieved with parallelism of 20
and repartitioning disabled.
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FIGURE 6.3: Sustainable throughput achieved with parallelism of 30
and repartitioning disabled.

Upon analyzing the three results figures, a significant observation emerges re-
garding the system’s performance, which appears to be heavily influenced by the
dataset under consideration. As anticipated, DSSSJ and the Vernica join demon-
strate superior scalability, in line with expectations, given their specific design to
process string records. In contrast, the Naive and Cluster join solutions exhibit a
more generalized approach. This finding suggests that the choice of system should
be carefully considered based on the nature of the dataset to be processed.

As observed, DSSSJ emerges as the most scalable system for all datasets, except
for the synthetic dataset. The limitations in scalability for the Synthetic10 data arise
from its uniform record length, resulting in an ineffective partitioning system. Con-
sequently, all records are processed within a single node, thereby impeding the sys-
tem’s ability to scale. Similar issues are encountered with the Synthetic115 dataset,
where the data cannot be distributed across more than 15 partitions. Consequently,
this accounts for the nearly identical throughput obtained for parallelism values of
20 and 30.

Nevertheless, for datasets containing more varying record lengths, such as Ama-
zon, Tweets, and Yelp datasets, the performance of DSSSJ surpasses that of other
systems, exhibiting better scalability as well. Notably, in the case of the Tweets
dataset, the difference in performance is less pronounced, mainly because the ma-
jority of records are of short length and are concentrated within the same partitions.
Nonetheless, DSSSJ still demonstrates favorable scalability and outperforms other
systems in these scenarios with datasets containing varying record lengths.

The Vernica join system also exhibits commendable scalability, particularly ev-
ident as the level of parallelism increases, facilitating a more even distribution of
the workload across multiple nodes. Notably, this system demonstrates exceptional
performance with synthetic datasets and, to a lesser extent, with Tweets dataset.
This superiority can be attributed to the shorter length of records in these datasets,
enabling faster processing.
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However, the scalability of the Vernica join system encounters challenges with
the Amazon and Yelp datasets, where longer records prevail. In such cases, a bot-
tleneck is evident during the processing step of the system, primarily when com-
paring records with one another. The increased complexity of record comparisons
for longer records hampers the system’s ability to scale effectively in these specific
scenarios.

The Naive system demonstrates commendable performance, emerging as the
second-best performing system across all datasets when employing a parallelism
of 5, with the exception of the Synthetic115 dataset, where it outperforms all other
systems.

However, as anticipated, the Naive system faces limitations in scalability, as ev-
ident from the results obtained. The increased parallelism leads to a higher num-
ber of operations being skipped, but this advantage is outweighed by the higher
replication experienced by the system’s records. Notably, for parallelism value of
30, a notable degradation in performance is observed for the Synthetic and Tweets
datasets, indicating that further scaling would not be feasible for these datasets us-
ing the Naive system.

Lastly, the results obtained from the Cluster join implementation are analyzed,
which not only skips several joins but also exhibits significantly inferior performance
compared to the other systems.

For a parallelism value of 5, the system’s processing rate is less than 3 records
per second for the Amazon and Yelp datasets, and only 11 records per second for
the Tweets and Synthetic10 datasets. While the performance improves with the Syn-
thetic115 dataset, processing almost 135 records per second, it still lags behind all
other systems.

Moreover, the system demonstrates poor scalability, with only a slight perfor-
mance increase observed for the Amazon dataset when transitioning from a paral-
lelism of 5 to 20, but still considerably lower than other systems. Interestingly, for
the Synthetic115 dataset, employing a higher parallelism results in processing even
fewer records.

With a parallelism of 30, the system struggles to process more than 10 records
per second for any dataset, except for the Synthetic10 dataset, where it manages 66
records per second, still falling well below other systems.

As previously mentioned, the Cluster join was originally designed for spatial
data, and adapting it to handle strings led to a significant downgrade in its perfor-
mance. Consequently, the system’s poor performance is understandable, given the
deviation from its intended use case.

It is worth noting that all systems, except for DSSSJ with a parallelism of 30,
struggle to process more than 11 records per second when working with the Yelp
dataset. This limitation can be attributed to the dataset’s records, which demand
more computationally expensive operations per record compared to other datasets,
primarily due to their extended lengths.

This observation suggests that the systems would face considerable challenges
when processing records from datasets similar to the News dataset, where the records
exhibit exceptionally high lengths. The high computational cost associated with
such lengthy records would likely lead to a significant reduction in the processing
rate, making it challenging to achieve efficient data processing for datasets of this
nature.
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6.1.2 Record replication

As for the record replication experienced by the systems, the experiments were con-
ducted as described in the subsection 5.4. Replication is only measured for this con-
figuration as the use of filters and repartition should not influence the amount of
replication observed by a system. The results obtained are reflected in Figures 6.4-
6.6.
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FIGURE 6.4: Observed record replication for a parallelism of 5.
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FIGURE 6.5: Observed record replication for a parallelism of 20.
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FIGURE 6.6: Observed record replication for a parallelism of 30.

The observations indicate that record replication in each system grows with higher
parallelism, with the Naive implementation demonstrating the highest record repli-
cation as it aligns with the parallelism in all cases.

Cluster join demonstrates a consistently high replication ratio across all datasets
when operating with parallelism 5. Notably, the replication ratio reaches its max-
imum possible value for the Synthetic10 and Yelp datasets. However, with an in-
crease in parallelism, the replication ratio does not exhibit significant growth. This
phenomenon explains why scaling up the parallelism does not lead to a substantial
increase in throughput. One might expect that higher replication would result in bet-
ter record distribution among nodes, reducing the load on each node and improving
overall performance. Nevertheless, this is not observed in practice.

An interesting observation lies in the significantly higher replication ratio ex-
hibited by Cluster join when used with the Amazon dataset, as compared to other
systems (excluding the Naive solution). This disparity is likely attributed to the
long length of the Amazon entries. While Vernica join only considers the prefix of
records, Cluster join utilizes all tokens within a record for distribution. This charac-
teristic accounts for the higher replication ratio observed in the case of the Amazon
dataset.

Regarding the DSSSJ system, it consistently exhibits the lowest replication ratios
across all datasets with a parallelism of 5. This suggests that limited partitioning
occurs, leading to most records being allocated to the same nodes. Notably, this
pattern is particularly intriguing in the context of the Amazon dataset, implying a
concentration of data at specific lengths. Moreover, it is noteworthy that the DSSSJ
system achieves the highest sustainable throughput in figure 6.1 using the Amazon
dataset. This indicates that the filtering techniques employed by DSSSJ may play a
crucial role in its success.

However, as the parallelism increases, replication ratios rise due to improved
data space partitioning for most datasets, except for Synthetic10, which has only
one associated length. Interestingly, despite Synthetic115 exhibiting a replication
ratio similar to the Tweets dataset, DSSSJ achieves a sustainable throughput more
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than 100 records lower for Synthetic115. This observation suggests that other filters
in the DSSSJ system may perform more effectively with the Tweets dataset.

The Vernica join system, like Cluster join, capitalizes on higher parallelism to
increase the replication of records, thereby reducing the load on individual nodes
within the system. When applied to the Yelp dataset, which comprises lengthy
entries and a diverse array of tokens, the system exhibits a high replication ratio.
Conversely, for the Amazon dataset, where records are not as lengthy and token
diversity is lower, the replication ratio is not as high.

For the Synthetic10 dataset, the replication ratio approaches 10 for parallelisms
of 20 and 30. This outcome aligns with the most efficient processing strategy for
this dataset, where each token within a record is dispatched to a different node,
optimizing record processing.

Another intriguing observation pertains to the sustainable throughput obtained
for the Tweets dataset compared to the Synthetic115 dataset. Although the replica-
tion ratio for the Tweets dataset does not significantly differ from that of the Syn-
thetic115 dataset, the sustainable throughput achieved for the former is lower. This
discrepancy is likely attributed to the fact that records in the Tweets dataset con-
tain more tokens. Consequently, the processing step of the system, involving record
comparisons, becomes the limiting factor affecting system performance.

6.1.3 Average operations per record

This subsection presents the average number of operations performed to each record
upon entering the processing stage of the system without repartitioning or filtering
enabled. Each operation represents a comparison of a record with another record.
The corresponding results are presented in Figures 6.7 to 6.9.
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FIGURE 6.7: Observed average operations per record for a parallelism
of 5.
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FIGURE 6.8: Observed average operations per record for a parallelism
of 20.
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FIGURE 6.9: Observed average operations per record for a parallelism
of 30.

The initial observation reveals that when parallelism is enhanced, all systems ex-
hibit a reduction in the number of operations necessary for a join process. However,
it is notable that certain systems demonstrate a greater propensity to capitalize on
heightened parallelism compared to others.

As observed, Cluster join operates with minimal record comparisons, but we also
have to take into account that it skips comparisons. The Synthetic datasets, charac-
terized by low lengths and high replication ratios, particularly demonstrate the least
number of operations required by the system. This observation aligns logically, as
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the increased spread of records with high replication reduces the number of neces-
sary operations.

The finding that the system requires relatively few operations reinforces the no-
tion that the bottleneck of the system lies in the partitioning step. Since records need
to be compared with all anchors during this phase, it likely contributes significantly
to the low throughput achieved by the system. Identifying this bottleneck is crucial
for optimizing the system’s performance and increasing its overall efficiency.

Regarding the DSSSJ system, the number of operations required is directly pro-
portional to the replication needed, and it decreases as replication increases. No-
tably, the Synthetic10 dataset requires the same number of operations for all paral-
lelisms since all computations are performed by just one node.

For the other datasets, DSSSJ achieves a lower number of required operations
compared to other systems when using parallelism higher than 5. This indicates that
DSSSJ excels at load balancing among its nodes, even though its replication may not
be as high as the one observed in other systems such as the Vernica join.

The efficiency of DSSSJ’s filtering and partitioning techniques is particularly ev-
ident in the Synthetic115 dataset, where less than one comparison is performed per
record, showcasing the remarkable efficiency of these techniques.

Furthermore, the amount of operations in the Amazon dataset does not reduce
as drastically when increasing parallelism compared to the Tweets and Yelp datasets.
This behavior is logical, given that the replication experienced by the Amazon dataset
is lower than that of the other two datasets, resulting in less significant reductions in
operations with increased parallelism. This observation reinforces the influence of
replication levels on system performance.

As expected, the Naive implementation demonstrates a decrease in the number
of operations per record as the parallelism level increases. With more nodes avail-
able in the system, the workload per node decreases, resulting in fewer operations
required per node. This reduction in per-node operations explains why the achieved
throughput notably increases when the parallelism is increased.

However, it is noteworthy that the difference in operations required by the sys-
tem when transitioning from parallelism 20 to parallelism 30 is not as significant as
the difference observed between parallelism 5 and parallelism 20. This is reason-
able since the amount of records per node is not heavily reduced in the shift from
parallelism 20 to 30.

This observation suggests that the Naive implementation might not be as scal-
able as other systems, such as Vernica join or DSSSJ, as its throughput growth is not
as substantial when parallelism is increased. In contrast, the other systems show
higher scalability and achieve more notable increases in throughput with increased
parallelism.

Upon analysis, it becomes evident that the Vernica join system requires a higher
number of operations compared to other systems for making joins. However, sur-
prisingly, this does not result in lower throughput. The key factor contributing to
this efficiency is the highly effective partitioning system employed by Vernica join.
Despite the higher number of operations per node, the system compensates for it
by maintaining a relatively low replication ratio, especially when compared to the
Naive solution.

Moreover, it is interesting to observe that the number of operations required for
each record decreases significantly with the increase in parallelism. This trend is
understandable as higher parallelism leads to increased replication, reducing the
number of records per node and consequently the number of operations per node.
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This reduction in per-node operations leads to a notable increase in the achieved
throughput.

In summary, the Vernica join system’s remarkable efficiency in partitioning and
balancing the load among nodes allows it to perform well even with a higher num-
ber of operations per record. The system’s scalability is evident as the throughput
increases notably with increased parallelism, showcasing its ability to handle larger
workloads efficiently.

6.2 Results obtained with repartition

This section exclusively presents results for systems equipped with a repartition al-
gorithm, specifically DSSSJ, Cluster join, and Vernica join. However, subsequent
experiments revealed that the repartitioning algorithm employed by Cluster join
incurred excessive execution time, rendering it incapable of completing the repar-
titioning process within a reasonable time frame. Consequently, this system was
excluded from further experimentation.

The primary factor contributing to this limitation is the necessity to replicate all
records across partitions associated with the expanded identifiers once an anchor
is expanded. This particular process is exceedingly resource-intensive and time-
consuming, making it infeasible to accomplish within the program’s execution.

This outcome was met with substantial disappointment, considering the exten-
sive work and effort invested in the development of the repartitioning algorithm.
Nevertheless, considering the already sub optimal performance of Cluster join, it
became increasingly doubtful whether further partitioning of the space would have
yielded any improvements. Consequently, the evaluation in this section focuses
solely on DSSSJ and Vernica join.

The use of repartitioning also supposed the use of too many resources for the
Vernica join system when executing it with the Tweets and the Amazon dataset with
parallelism 5. The system, as the system could not handle the correct creation of a
checkpoint for later modification of the state.

In this particular section of the experiments, the performed analysis will focus
solely on the sustainable throughput of the system. Comparing the replication and
operations required for each record rendered to be pointless in this context, as none
of the systems triggered a repartition when processing only 5,000 records .

The total processing time is actually lower when the repartitioning feature is en-
abled, as a portion of the overall execution time is allocated to executing the repar-
titioning operations. This was taken into account when analyzing the results, and
both the results for only the time allocated to process records and the total execution
time will be exposed.

6.2.1 Sustainable throughput

The sustainable throughput achieved by each dataset and system during their re-
spective execution times, excluding the duration of the repartitioning process (re-
ferred to as ET), and the total runtime of the experiment (referred to as TT), is pre-
sented in Figures 6.10 to 6.12.
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FIGURE 6.10: Sustainable throughput achieved with parallelism of 5
and repartition enabled.
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FIGURE 6.11: Sustainable throughput achieved with parallelism of 20
and repartition enabled.
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FIGURE 6.12: Sustainable throughput achieved with parallelism of 30
and repartition enabled.

The results demonstrate a lack of interest in employing a repartitioning algo-
rithm for the systems under consideration. The obtained throughput is consistently
lower when repartitioning was enabled compared to the cases where no reparti-
tioning was utilized. Notably, in the instances where a relatively good throughput
was observed (i.e., Amazon, Synthetic10, and Synthetic115 datasets for DSSSJ with
parallelism 5), it is worth noting that the repartitioning algorithm was not actually
triggered during the execution.

This observation further reinforces the notion that the implementation of the
repartitioning algorithm did not yield favorable results in terms of sustainable through-
put.

The bad results could also be attributed to how the experiments were imple-
mented, as the total execution time is of only 180 seconds and a repartition can be
triggered with a period of 30 seconds.

In the case of DSSSJ, although the repartitioning process was executed swiftly, the
challenge emerged from dealing with all the records generated during the system’s
repartitioning, resulting in system saturation and diminished performance.

Notably, the Synthetic10 dataset exhibited the best performance among the datasets.
This can be attributed to the fact that no repartitioning was triggered for this dataset,
and thus, all records were directed to a single node. By avoiding repartitioning, the
system was able to process the data more efficiently, leading to higher throughput.

As evident from the graphs, the throughput obtained during the time the system
was running and for the entire execution duration displayed minimal difference.
Consequently, the repartitioning mechanism seems beneficial primarily for resource
distribution rather than achieving high throughputs. However, it is important to
acknowledge that the throughput obtained with repartitioning enabled was signifi-
cantly lower than when repartitioning was disabled.

In summary, the results indicate that while repartitioning might be useful for
resource allocation, its application does not appear to be very effective in achieving
high throughputs.
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The case of the Vernica join did not show any significant improvement with the
utilization of repartitioning. The repartitioning process demanded substantial time
and resources, and as a result, while the throughput achieved during the system’s
execution was not inherently poor, it did not surpass the throughput obtained with-
out repartitioning. Moreover, the overall throughput obtained throughout the entire
experiment was considerably lower when repartitioning was enabled compared to
the scenario where repartitioning was not employed.

The decision to use repartitioning in the systems proved to be an overall failure,
as it did not lead to any noticeable performance enhancements. Instead, it neces-
sitated an additional consumption of resources and introduced a significant level
of complexity to the systems. The development and testing of the repartitioning
component became the most time-consuming aspect of the project without yielding
desirable outcomes.

6.3 Results obtained when applying filters

This section presents the results obtained from executing the Naive, Vernica join, and
Cluster join implementations with activated PPJoin filtering. The experiments were
conducted without enabling repartitioning to facilitate a comprehensive compari-
son of the results, taking into account both the achievable sustainable throughput
and the number of operations required per record. This approach was chosen due
to the previously observed inferior performance of Vernica join with enabled repar-
titioning, as demonstrated in the preceding subsections.

This approach allows for a comprehensive analysis of the systems performance
while considering multiple performance metrics. As the filtering is only applied
in the processing stage, replication will remain unaltered and therefore there is not
point in analyzing this metric.

6.3.1 Sustainable throughput

Figures 6.13 to 6.15 present the sustainable throughput achieved by the various sys-
tems when employing parallelisms of 5, 20, and 30, respectively, with filtering en-
abled. These tables display the sustainable throughput for each of the mentioned
dataset-system combinations.
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FIGURE 6.13: Sustainable throughput achieved with parallelism of 5
and filtering enabled.
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FIGURE 6.14: Sustainable throughput achieved with parallelism of 20
and filtering enabled.
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FIGURE 6.15: Sustainable throughput achieved with parallelism of 30
and filtering enabled.

As it is displayed, all the solutions experience some increase in their obtained
throughput, even the Cluster join solution, when using the PPJoin filtering algo-
rithm, however none of them experience drastic changes.

It can be observed, the performance of the Cluster join system remains quite poor
when using filters for most datasets. However, there is a moderate improvement
across all datasets, especially for those with shorter records such as the synthetic
datasets and the Tweets dataset. The system’s performance is significantly boosted
when a parallelism of 20 is employed. Particularly, the Synthetic115 and Tweets
datasets benefit from the length filtering, which reduces the number of comparisons
needed and speeds up the processing of records.

Interestingly, the system’s performance is lower when using a parallelism of
30 compared to a parallelism of 20 for all datasets. This can be attributed to the
increased coordination required between nodes at higher parallelism levels. The
higher costs associated with this coordination during the partitioning step likely
contribute to reduced throughput, resulting in lower performance.

The performance of the Naive solution exhibits a notable increase in through-
put for the Synthetic115 dataset, while other datasets do not experience significant
improvements in their achieved throughput. This disparity can be attributed to the
specific characteristics of the datasets, particularly the Synthetic115 dataset having
more varied record lengths. The filtering process in this case effectively reduces the
number of necessary comparisons, leading to improved performance.

On the other hand, for datasets with more homogeneous record lengths, the fil-
tering might not substantially reduce the number of required comparisons. Con-
sequently, the throughput improvement is not as significant. This observation is
particularly interesting as the Naive solution requires a relatively high number of
operations compared to the rest of the systems.

However, applying filters might require just as much computational resources
as making full comparisons, especially when the load is evenly distributed among
nodes, and communication becomes a major bottleneck for achieving high through-
put in this system.
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The communication overhead could potentially limit the system’s ability to take
full advantage of the filtering process and significantly boost throughput for datasets
with more homogeneous record lengths.

When analyzing the Vernica join system’s performance, it becomes evident that
the achieved throughput is generally similar to the one achieved without using filter-
ing techniques. The only dataset that experiences some increase in throughput is the
Amazon dataset, but only when using a parallelism of 20. In fact, some datasets,
such as the Tweets and Synthetic115 datasets, experience a decrease in achieved
throughput when using a parallelism of 30. This observation indicates that the pro-
cessing step is not the bottleneck of the system, and the use of filters does not sig-
nificantly benefit the system’s performance, specially when the similarity thresholds
are not that high and the system cannot fully benefit from using the prefix filtering.

The reduced benefit of using filters can be attributed to the fact that, in some
cases, the additional computations required by the filters do not compensate for the
reduction in the number of comparisons that need to be made. This is especially true
for datasets with short record lengths, such as the Synthetic115 and Tweets datasets,
where the application of filters may not offer substantial advantages.

In conclusion, the use of filtering techniques is not a guarantee of increased
throughput, and it should be considered selectively for datasets that contain records
of varying lengths (to apply length filtering) or significantly different tokens in their
prefixes (for prefix filtering). The efficiency of filtering largely depends on the dataset
characteristics, and its potential benefits should be carefully evaluated before imple-
mentation.

6.3.2 Average operations per record

This subsection presents the average number of operations performed to each record
upon entering the processing stage of the system without repartitioning or filtering
enabled. Each operation represents a comparison of a record with another record.
The corresponding results are presented in Figures 6.16 to 6.18.
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FIGURE 6.16: Observed average operations per record for a paral-
lelism of 5 with filtering enabled.
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FIGURE 6.17: Observed average operations per record for a paral-
lelism of 20 with filtering enabled.
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FIGURE 6.18: Observed average operations per record for a paral-
lelism of 30 with filtering enabled.

As observed, there is a notable reduction in the number of comparisons between
records required by each system for every dataset when using any of the parallelism
settings during the experiments. This decrease in comparisons is expected as par-
allelism allows for workload distribution among nodes, resulting in fewer compar-
isons per node.

However, as mentioned earlier, this lower number of comparisons does not ap-
pear to fully compensate for the additional computations required by the use of
filters. The benefits of filtering techniques might not be sufficient to overcome the
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computational overhead they introduce, especially for datasets with certain charac-
teristics, such as short record lengths or similar tokens in prefixes.

When analyzing the results obtained by the Cluster join system, it becomes evi-
dent that the use of filtering techniques leads to a significant reduction in the num-
ber of comparisons required for specific datasets. For the Amazon and Synthetic115
datasets, the amount of comparisons is reduced by a factor of 10, while for the Syn-
thetic10 dataset, it is reduced by a factor of 8.5 for every parallelism setting. This
indicates that these datasets benefit the most from the application of filtering, which
is due to the variety of lengths in the Synthetic115 dataset and the high similarity
thresholds for the Amazon and synthetic datasets, which apply the prefix filtering
and discard most of the records for comparisons.

Furthermore, there is also a reduction in the number of operations needed for
the Tweets dataset, which explains the modest increase in the throughput obtained
for this dataset. This observation suggests that the filtering techniques applied by
the Cluster join system are particularly effective for these datasets, leading to im-
proved performance and throughput. For the Yelp datases the amount of operations
required does not differ as much from the case of not using filtering techniques and
this explains why almost no increase in the achieved throughput is observed.

Upon analyzing the Naive solution, it is evident that there is a significant de-
crease in the number of operations required for every dataset, including the Yelp
dataset. However, once again, the two datasets that benefit the most from the use
of filtering are again the synthetic datasets and the Amazon dataset, for the same
reasons as in Cluster join.

Among them, the Synthetic115 dataset experiences the most substantial reduc-
tion in the number of operations required, with less than one operation per join for
parallelisms 20 and 30. This remarkable reduction explains why the biggest increase
in throughput is observed for this dataset.

Furthermore, it is noteworthy that the amount of operations decreases signif-
icantly with the increase in parallelism. This reduction in operations is expected
as higher parallelism allows for more efficient distribution of the workload among
nodes, resulting in fewer operations per node.

The Vernica join system also shows a significant reduction in the number of oper-
ations needed for the synthetic datasets, and to a lesser extent, for the Amazon and
Tweets datasets. However, the number of operations required by the Yelp dataset
remains unaffected.

Among the datasets, the synthetic ones experience the most substantial reduc-
tion in operations. Interestingly, even though the synthetic datasets have the most
operations reduced, the dataset that benefited the most was the Amazon dataset.
Despite having a lower reduction in operations, the cost of a comparison between
two records for the Amazon dataset is higher. This results in the observed increase
in throughput for the Amazon dataset, showcasing the efficiency of filtering tech-
niques for this dataset.

On the other hand, the Tweets dataset performed worse when using filters, as the
reduction in operations was not enough to increase the achieved throughput. This
observation highlights the importance of carefully analyzing and considering the
characteristics of each dataset before deciding to use filtering techniques. Filtering
benefits datasets with varying record lengths and diverse tokens in their prefixes, but
its impact may vary based on dataset-specific factors such as the cost of comparisons
and overall system setup.
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Chapter 7

Conclusions

This section serves the purpose of presenting a comprehensive summary of the work
carried out throughout the project. It aims to address the research questions formu-
lated in chapter 1, analyze the findings, and draw relevant conclusions. Moreover, it
explores potential future research directions that can be pursued based on the out-
comes of this study, providing valuable insights for further advancements in the
domain of distributed similarity joins in stream processing environments.

7.1 Summary

The research conducted focused on the evaluation of different systems to evaluate
similarity joins. It was necessary to implement the systems using the Apache Flink
framework [11] and evaluate them in a cluster with enough resources to guarantee
their correct evaluation.

Answers to the research questions posed at the beginning of this project will now
be used to explain the conclusions reached after conducting the experiments.

How do the different systems compare in terms of efficiency, accuracy, and
scalability?

Based on the conducted experiments, it has been determined that DSSSJ exhibits
superior performance across real-world datasets in terms of both achieved through-
put and resource utilization. However, when applied to synthetic data with specific
characteristics, DSSSJ demonstrated comparatively inferior results. Also, the system
found false joins when using low similarity thresholds, an error that the Naive so-
lution and the Vernica join solution do not suffer, so its accuracy is lower than that
obtained by those two solutions.

The Vernica join, despite being developed over 12 years ago and not being de-
signed to work in stream processing environments, remains remarkably efficient for
data processing, yielding commendable throughput results. Nevertheless, it neces-
sitates greater resource allocation compared to DSSSJ in most scenarios, although it
does not miss any joins.

Furthermore, the Naive solution’s scalability is severely limited, leading to sub-
optimal results relative to the considerable resources invested in its execution. This
emphasizes the exigency for more sophisticated approaches to efficiently handle
similarity joins; however, this approach should always be used as a baseline to com-
pare the rest of the systems, both in terms of efficiency and accuracy.

Lastly, the Cluster join solution proves unsuitable for text datasets, underscoring
the fact that not all solutions are universally applicable to all types of data, espe-
cially within stream processing environments; furthermore, the system is unable to
correctly find all the similarity joins in the datasets used, rendering it a poor solution
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for processing text.

Which tasks are the most suitable for each system, and how flexible are they?

The answer to this question is similar to the one provided for the previous one.
We have found that the type of data and its characteristics deeply affect the perfor-
mance of the systems.

DSSSJ is ideal for high similarity thresholds, which guarantee lower data replica-
tion and better partitioning of the space, as well as a more efficient use of the Bundle
Join algorithm. It also works better for data that contains a wide range of lengths, as
it is focused mainly on distributing the records depending on their length.

Regarding the Vernica join system, it is also more convenient to have a high simi-
larity threshold, as the prefix will be shorter and the records will be replicated fewer
times. However, the system worked very well with the synthetic data, so it is appar-
ent that the use of a dataset with a small vocabulary and sentences of shorter length
is beneficial for this system.

In the context of the Naive solution, datasets do not exhibit any discernible ad-
vantage, and their performance is solely conditioned by the length of the records.
Specifically, shorter records tend to yield superior outcomes for this approach, as
the comparisons between records are less expensive.

In the case of Cluster join, acceptable performance was observed exclusively with
synthetic datasets. This phenomenon can be attributed to the synthetic datasets pos-
sessing a smaller vocabulary, which facilitated the process of locating an anchor.
Additionally, the shorter length of records in these synthetic datasets contributed to
their improved performance compared to other datasets.

How can the performance of the systems be optimized for different use cases?

During the experiments, several ways to optimize the different systems for cer-
tain types of data manifested themselves.

In the context of DSSSJ, further testing of its algorithms should be done in order
to find the reason why it misses some joins. This could be due to a misinterpretation
of the algorithms on our part, but it seems that some of the mechanisms proposed
by the authors are not defined well enough for another person to implement them
correctly.

In the case of Vernica join, an optimal configuration involves utilizing a signif-
icant degree of parallelism. It is evident from the conducted experiments that its
performance deteriorates when parallelism is set to a low value, such as 5. This out-
come indicates that deploying a complex implementation like Vernica join is not ad-
vantageous when operating with limited parallelism. In such scenarios, it becomes
impractical to employ this approach, and it may be more sensible to opt for simpler
alternatives like the Naive solution.

The Naive solution can be optimized by adopting a different partitioning algo-
rithm, such as employing a 2-D matrix to distribute the records. This method in-
troduces minimal complexity to the system and could improve its performance. Al-
though the Naive solution may not exhibit high scalability, it proves to be efficient
and optimal in situations where parallelism is low. In such scenarios, its simplic-
ity and straightforward implementation make it a viable choice for processing data
effectively.

As for the Cluster join system, it is imperative to undertake additional efforts in
its implementation to prevent missing joins, especially in cases where a record may
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have multiple home partitions. Addressing this limitation may slightly impact the
system’s performance. However, despite any optimizations, the experiments indi-
cate that this approach may not be well-suited for handling text datasets effectively.
Therefore, exploring alternative solutions becomes necessary to achieve better per-
formance and results when dealing with text-based data.

7.2 Future work

In this section, some improvements to the designed framework are proposed, as are
other potential experiments that could be performed using it.

7.2.1 Adapting the framework for numerical data

As it was explained in section 4.2, Cluster join is a system that is designed to work
with vector data, as a vector space can be more easily partitioned into anchors and
the amount of data replication is lower thanks to their distributing and pruning ap-
proaches. When using this type of data, Cluster join typically uses other similarity
metrics, such as euclidean or cosine distances, in order to find which records are
similar. Probably, when using this type of data, the results obtained by Cluster join
are better than the ones that we obtained with our experiments.

However, due to time constraints, the designed framework has not been adapted
for using vector data or similarity metrics other than Jacquard similarity. It would be
interesting to implement functionalities that allow the use of vector data and other
similarity functions to test the performance of cluster join and compare it with other
approaches such as the Naive implementation or the solution proposed by [28].

7.2.2 Implementing other systems

The limitations in implementing all the desired systems and the potential of other
existing systems, such as the Streaming hypercube [28] or Mass join [17] solutions,
which present exciting avenues for future research and experimentation, Adapting
other similarity join systems to be applicable in stream processing environments
could provide valuable insights and comparisons with existing systems.

Furthermore, exploring the possibility of modifying certain solutions, like the
Naive solution, to incorporate more efficient partitioning algorithms that could po-
tentially yield superior results would also be a valuable avenue for future research.

It is crucial to recognize that not all systems are well-suited for stream processing
environments. Stream processing introduces unique challenges, such as handling
continuous data streams, real-time processing, and resource constraints. Therefore,
careful consideration and adaptation of systems designed for batch processing or
other paradigms are necessary to make them compatible with stream processing.

Exploring and adapting systems from various types of data processing approaches
beyond map-reduce operations can lead to a richer understanding of the strengths
and weaknesses of different technologies in the context of similarity joins in stream
processing. Each system may have distinct trade-offs in terms of performance, scal-
ability, and resource utilization in this dynamic environment.

7.2.3 Test the systems with different settings

Through the utilization of parallelisms set at 5, 20, and 30, a comprehensive eval-
uation of system scalability was conducted. Nevertheless, further insights can be
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gained by investigating system behavior at higher parallelism levels or by allocating
additional resources to each task manager. Additionally, an interesting approach
would involve allocating more CPUs for the task managers or adding more parti-
tions to each of them. Such adjustments could potentially enhance the system’s per-
formance and resource utilization, providing valuable insights for optimizing the
overall execution of the join operations.

While the current study presented results based on a specific selectivity, extend-
ing the investigation to incorporate multiple selectivity levels could provide a more
comprehensive understanding of the systems’ capabilities and limitations. It would
enable researchers to assess how the systems respond to varying degrees of data
similarity and how their performance scales accordingly.

Additionally, exploring the performance of the systems using alternative datasets
would be of interest. For instance, assessing the behavior of the systems with the
news dataset [14], given sufficient resources, could provide valuable insights. Fur-
thermore, conducting tests using synthetic data that encompasses a larger number of
tokens than the datasets employed in this project would yield valuable information
for system evaluation.

7.2.4 Test the systems on the cloud

In the experiments conducted for this study, the systems were deployed on a clus-
ter provided by Delft University of Technology, which offered ample resources for
executing the designed benchmarks accurately. However, it would be interesting to
explore the systems’ performance on a cloud service capable of dynamically scaling
resources on demand.

By utilizing cloud services such as Amazon Web Services [2] or Google Cloud
[21], the execution of the systems could benefit from the ability to allocate additional
resources as required. This approach would not only enhance the systems’ efficiency,
but also provide valuable insights into their adaptability to scaling in a real-world
cloud environment. Testing under these conditions would offer a more comprehen-
sive evaluation of the systems’ capabilities in scenarios closer to practical, real-world
usage.



67

Bibliography

[1] Amazon. Amazon Customer Reviews Dataset. https://s3.amazonaws.com/
amazon-reviews-pds/readme.html. Accessed on May 20, 2023. 2023.

[2] Amazon. Amazon Web Services. https://aws.amazon.com/. Accessed on July
31, 2023.

[3] Apache Flink. Apache Flink REST API Documentation. https://nightlies.
apache.org/flink/flink- docs- release- 1.15/docs/ops/rest_api/.
Accessed on May 22, 2023. 2023.

[4] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. “Efficient exact set-
similarity joins”. In: Proceedings of the 32nd international conference on Very large
data bases. 2006, pp. 918–929.

[5] Brian Babcock et al. “Models and issues in data stream systems”. In: Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. 2002, pp. 1–16.

[6] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. “Scaling up all
pairs similarity search”. In: Proceedings of the 16th international conference on
World Wide Web. 2007, pp. 131–140.

[7] Christian Bohm and H-P Kriegel. “A cost model and index architecture for the
similarity join”. In: Proceedings 17th International Conference on Data Engineering.
IEEE. 2001, pp. 411–420.

[8] Christian Böhm et al. “Epsilon grid order: An algorithm for the similarity
join on massive high-dimensional data”. In: ACM SIGMOD Record 30.2 (2001),
pp. 379–388.

[9] Brent Bryan, Frederick Eberhardt, and Christos Faloutsos. “Compact Similar-
ity Joins”. In: 2008 IEEE 24th International Conference on Data Engineering. 2008,
pp. 346–355. DOI: 10.1109/ICDE.2008.4497443.

[10] Brendan Burns et al. “Borg, Omega, and Kubernetes”. In: ACM Queue 14 (2016),
pp. 70–93. URL: http://queue.acm.org/detail.cfm?id=2898444.

[11] Paris Carbone et al. “Apache Flink: Stream and Batch Processing in a Single
Engine”. In: IEEE Data Engineering Bulletin 38 (Jan. 2015).

[12] Shiyu Chang et al. “Streaming recommender systems”. In: Proceedings of the
26th international conference on world wide web. 2017, pp. 381–389.

[13] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. “A primitive oper-
ator for similarity joins in data cleaning”. In: 22nd International Conference on
Data Engineering (ICDE’06). IEEE. 2006, pp. 5–5.

[14] Common Crawl. Common Crawl News Dataset. https://data.commoncrawl.
org/crawl-data/CC-NEWS/index.html. Accessed on May 20, 2023. 2023.

[15] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. “Clusterjoin: A similarity
joins framework using map-reduce”. In: Proceedings of the VLDB Endowment
7.12 (2014), pp. 1059–1070.

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://aws.amazon.com/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/ops/rest_api/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/ops/rest_api/
https://doi.org/10.1109/ICDE.2008.4497443
http://queue.acm.org/detail.cfm?id=2898444
https://data.commoncrawl.org/crawl-data/CC-NEWS/index.html
https://data.commoncrawl.org/crawl-data/CC-NEWS/index.html


68 Bibliography

[16] Dong Deng et al. “An efficient partition based method for exact set similarity
joins”. In: Proceedings of the VLDB Endowment 9.4 (2015), pp. 360–371.

[17] Dong Deng et al. “Massjoin: A mapreduce-based method for scalable string
similarity joins”. In: 2014 IEEE 30th International Conference on Data Engineering.
IEEE. 2014, pp. 340–351.

[18] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. “Similarity join in met-
ric spaces using ed-index”. In: Database and Expert Systems Applications: 14th In-
ternational Conference, DEXA 2003, Prague, Czech Republic, September 1-5, 2003.
Proceedings 14. Springer. 2003, pp. 484–493.

[19] Fabian Fier et al. “Set similarity joins on mapreduce: An experimental survey”.
In: Proceedings of the VLDB Endowment 11.10 (2018), pp. 1110–1122.

[20] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. “Similarity search in high
dimensions via hashing”. In: Vldb. Vol. 99. 6. 1999, pp. 518–529.

[21] Google. Google Cloud. https://cloud.google.com/. Accessed on July 31, 2023.

[22] Edwin H Jacox and Hanan Samet. “Metric space similarity joins”. In: ACM
Transactions on Database Systems (TODS) 33.2 (2008), pp. 1–38.

[23] Jay Kreps, Neha Narkhede, and Jun Rao. “Kafka: A distributed messaging
system for log processing”. In: Proceedings of the NetDB. 2011.

[24] Library of Congress. Library of Congress Format Description for FDD000236. https:
//www.loc.gov/preservation/digital/formats/fdd/fdd000236.shtml. Ac-
cessed on May 20, 2023. 2023.

[25] Michael D Lieberman, Jagan Sankaranarayanan, and Hanan Samet. “A fast
similarity join algorithm using graphics processing units”. In: 2008 IEEE 24th
international conference on data engineering. IEEE. 2008, pp. 1111–1120.

[26] Marchetti, M. M. Tweets Dataset. https://www.kaggle.com/datasets/mmmarchetti/
tweets-dataset. Accessed on May 20, 2023. 2023.

[27] Oxford 3000-5000 Wordlist. https://www.oxfordlearnersdictionaries.com/
wordlists/oxford3000-5000. Accessed on May 20, 2023. 2023.

[28] Yuan Qiu, Serafeim Papadias, and Ke Yi. “Streaming HyperCube: A Massively
Parallel Stream Join Algorithm.” In: EDBT. 2019, pp. 642–645.

[29] Radhya Sahal, John G Breslin, and Muhammad Intizar Ali. “Big data and
stream processing platforms for Industry 4.0 requirements mapping for a pre-
dictive maintenance use case”. In: Journal of manufacturing systems 54 (2020),
pp. 138–151.

[30] Zeyuan Shang et al. “K-join: Knowledge-aware similarity join”. In: IEEE Trans-
actions on Knowledge and Data Engineering 28.12 (2016), pp. 3293–3308.

[31] Liwen Sun et al. “On link-based similarity join”. In: Proceedings of the VLDB
Endowment (2011).

[32] Ankit Toshniwal et al. “Storm@ twitter”. In: Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data. 2014, pp. 147–156.

[33] Rares Vernica, Michael J Carey, and Chen Li. “Efficient parallel set-similarity
joins using mapreduce”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 2010, pp. 495–506.

[34] C Xiao et al. “Efficient similarity joins for near duplicate detection. In WWW,
pages 131-140”. In: (2008).

https://cloud.google.com/
https://www.loc.gov/preservation/digital/formats/fdd/fdd000236.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000236.shtml
https://www.kaggle.com/datasets/mmmarchetti/tweets-dataset
https://www.kaggle.com/datasets/mmmarchetti/tweets-dataset
https://www.oxfordlearnersdictionaries.com/wordlists/oxford3000-5000
https://www.oxfordlearnersdictionaries.com/wordlists/oxford3000-5000


Bibliography 69

[35] Chuan Xiao, Wei Wang, and Xuemin Lin. “Ed-join: an efficient algorithm for
similarity joins with edit distance constraints”. In: Proceedings of the VLDB En-
dowment 1.1 (2008), pp. 933–944.

[36] Chuan Xiao et al. “Top-k Set Similarity Joins”. In: 2009 IEEE 25th International
Conference on Data Engineering. 2009, pp. 916–927. DOI: 10.1109/ICDE.2009.
111.

[37] Chengcheng Yang et al. “Dynamic Set Similarity Join: An Update Log based
Approach”. In: IEEE Transactions on Knowledge and Data Engineering (2021).

[38] Jianye Yang et al. “Distributed streaming set similarity join”. In: 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE. 2020, pp. 565–576.

[39] Yelp. Yelp Dataset. https://www.yelp.com/dataset. Accessed on May 20,
2023. 2023.

[40] Xiangmin Zhou and Lei Chen. “Event detection over twitter social media streams”.
In: The VLDB journal 23.3 (2014), pp. 381–400.

[41] Lei Zhu et al. “SVS-JOIN: efficient spatial visual similarity join for geo-multimedia”.
In: IEEE Access 7 (2019), pp. 158389–158408.

https://doi.org/10.1109/ICDE.2009.111
https://doi.org/10.1109/ICDE.2009.111
https://www.yelp.com/dataset

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Research Questions
	Contributions
	Outline

	Background
	Similarity joins
	Scalability
	Similarity metric
	Threshold selection
	Data preprocessing
	Data skeweness

	Stream processing
	Real-time processing
	Scalability
	Fault tolerance
	Data consistency

	Distributed systems
	Consistency
	Communication overhead
	Complexity

	Technologies used
	Apache Flink
	Kubernetes

	Apache Kafka
	Benchmarking

	Related work
	Chosen solutions
	Distributed Streaming Set Similarity Join
	Cluster Join
	Vernica Join
	Naive implementation

	Implementation
	Overview
	Data producer
	Data adaptation
	Repartitioner
	State modifier
	Metric readers

	Systems implementations
	Distributed Streaming Set Similarity Join
	Cluster Join
	Vernica Join
	Finding an incorrect number of joins
	Cluster join
	DSSSJ

	Filtering
	Metric readers

	Experimental setup
	Comparison metric
	Datasets employed
	Synthetic data
	News articles
	Amazon reviews
	Yelp reviews
	Tweets

	Data preprocessing
	Word lists
	Parameters
	Parallelism

	Number of partitions
	Record rate
	Similarity threshold

	Experimental design

	Experimentals results
	Results obtained with no repartition
	Sustainable throughput
	Record replication
	Average operations per record

	Results obtained with repartition
	Sustainable throughput

	Results obtained when applying filters
	Sustainable throughput
	Average operations per record


	Conclusions
	Summary
	Future work
	Adapting the framework for numerical data
	Implementing other systems
	Test the systems with different settings
	Test the systems on the cloud


	Bibliography

