
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2016

MSc THESIS

Hybrid Navigation System for Lely Mixing and
Feeding Robot

He Cheng

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2016-14

To date, autonomous robots have been widely used and appear huge
advantages in dairy farming that is a labor-intensive industry. Vec-
tor is an automatic feeding system developed by Lely to feed cows
accurately and flexibly with minimum labor requirements in dairy
farms. As the autonomous mobile robot of the Vector, the Mixing
and Feeding Robot (MFR) is able to automatically distribute feed
for cows based on a reactive navigation system. However, since the
reactive approach only responds to stimuli at the moment, MFR is
susceptible to errors in the barn environment like the temporary loss
of valid ultrasonic or inductive sensing; without following a fence or
a metal stripe, MFR is quite limited in its ability to navigate.
In this project, a hybrid navigation system is proposed combining
the reactive navigation currently used on MFR and the map-based
navigation consisting of mapping, localization and path planning.
Due to MFR’s incapability to build a map of the environment with
current sensors, a laser scanner is added for map building. Based
on Adaptive Monte Carlo Localization (AMCL), the Striped-based
Adaptive Monte Carlo Localization algorithm (SAMCL) is proposed
for MFR to localize itself based on the map. Moreover, a control

strategy is developed to switch between the reactive navigation and the map-based navigation accordingly.
To evaluate the performance, the hybrid navigation system is tested in the simulation model built by
the robotics simulator V-REP and it is concluded that the proposed navigation system improves MFR’s
error-tolerant capacity and navigation performance.

Hybrid Navigation System for Lely Mixing and
Feeding Robot

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

He Cheng
born in Ruian, China

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Hybrid Navigation System for Lely Mixing and
Feeding Robot

by He Cheng

Abstract

To date, autonomous robots have been widely used and appear huge advantages in dairy
farming that is a labor-intensive industry. Vector is an automatic feeding system developed by
Lely to feed cows accurately and flexibly with minimum labor requirements in dairy farms. As
the autonomous mobile robot of the Vector, the Mixing and Feeding Robot (MFR) is able to
automatically distribute feed for cows based on a reactive navigation system. However, since
the reactive approach only responds to stimuli at the moment, MFR is susceptible to errors in
the barn environment like the temporary loss of valid ultrasonic or inductive sensing; without
following a fence or a metal stripe, MFR is quite limited in its ability to navigate.

In this project, a hybrid navigation system is proposed combining the reactive navigation
currently used on MFR and the map-based navigation consisting of mapping, localization and
path planning. Due to MFR’s incapability to build a map of the environment with current
sensors, a laser scanner is added for map building. Based on Adaptive Monte Carlo Localization
(AMCL), the Striped-based Adaptive Monte Carlo Localization algorithm (SAMCL) is proposed
for MFR to localize itself based on the map. Moreover, a control strategy is developed to switch
between the reactive navigation and the map-based navigation accordingly.

To evaluate the performance, the hybrid navigation system is tested in the simulation model
built by the robotics simulator V-REP and it is concluded that the proposed navigation system
improves MFR’s error-tolerant capacity and navigation performance.

Laboratory : Computer Engineering
Codenumber : CE-MS-2016-14

Committee Members :

Advisor: dr. ir. Arjan van Genderen, CE, TU Delft

Advisor: Rene Beltman, Product Development, Lely

Chairperson: dr. Msc. Sorin Cotofana, CE, TU Delft

Member: dr. ir. Andre Bossche, EI, TU Delft

i

ii

To the memories of my father and grandparents.

To my mother who has shaped me into the man I am today with all
that she has.

iii

iv

Contents

List of Figures viii

List of Tables ix

List of Acronyms xi

Acknowledgements xiii

1 Introduction 1

1.1 Context . 2

1.1.1 Lely MFR . 2

1.1.2 Sample Barn Environment . 3

1.1.3 Feed Distribution Process . 3

1.2 Problem Description . 4

1.3 Objectives . 5

1.4 Overview . 5

2 Background 7

2.1 Recursive State Estimation . 7

2.1.1 Robot Environment Interaction . 7

2.1.2 Bayes Filter . 9

2.2 Map-based Navigation . 9

2.2.1 Localization . 10

2.2.2 Mapping . 11

2.2.3 Path planning . 13

2.3 ROS . 14

2.3.1 General Concepts . 14

2.3.2 Navigation Stack . 15

2.3.3 Frames and Transforms . 16

2.4 Robotics Simulators . 17

3 Robot Configuration 19

3.1 Basic Specifications . 19

3.2 Drive System . 19

3.3 Sensors . 20

3.3.1 Ultrasonic Sensors . 21

3.3.2 Inductive Sensors . 22

3.3.3 IMU . 23

3.3.4 Wheel Encoders . 23

3.3.5 Laser Scanner . 24

v

4 Simulation Model 25
4.1 Body Part Importation . 25
4.2 Drive System Simulation . 25
4.3 Sensor Simulation . 26

4.3.1 Ultrasonic Sensor Simulation . 26
4.3.2 Inductive Sensor Simulation . 27
4.3.3 IMU Simulation . 27
4.3.4 Wheel Encoder Simulation . 28
4.3.5 Laser Scanner Simulation . 28

4.4 Charger Detector and Charging Pole Simulation 28

5 SAMCL Algorithm 31
5.1 Reference Frame . 31
5.2 Laser Scanner Faking . 31
5.3 Insufficiency of the AMCL Algorithm . 32
5.4 The SAMCL Algorithm . 33

5.4.1 Set-up of Calibration Metal Stripes 33
5.4.2 Description of the SAMCL Algorithm 34

6 Hybrid Navigation System 39
6.1 Architecture . 39
6.2 V-REP Module . 40
6.3 Time Source Module . 40
6.4 Map Module . 41
6.5 Localization Module . 42
6.6 Hybrid Control Module . 43

7 Simulated Experiments and Results 49
7.1 Environment Set-up . 49

7.1.1 Barn Environment . 49
7.1.2 Barn Environment with Errors . 49
7.1.3 Test Environment for Localization 50

7.2 Experiment 1: Map Building . 51
7.3 Experiment 2: Localization . 52
7.4 Experiment 3: Hybrid Navigation . 53

7.4.1 Navigation in the Error-free Environment 54
7.4.2 Navigation in the Environment with Errors 55

7.5 Summary of Experiments . 56

8 Conclusions and Future Work 57
8.1 Conclusions . 57
8.2 Main Contributions . 58
8.3 Future Work . 59

Bibliography 63

vi

List of Figures

1.1 Lely Vector . 1

1.2 MFR navigation . 2

1.3 Sample barn environment . 3

2.1 Evolution of Bayesian states . 8

2.2 Example of occupancy grid map [1] . 13

2.3 Publish/Subscribe model . 15

2.4 Request/Response model . 15

2.5 Illustration of frames and transforms . 17

3.1 Drive system . 20

3.2 Illustration of ultrasonic sensing (modified from [2]) 21

3.3 Positions of ultrasonic sensors . 22

3.4 Inductive sensor . 22

3.5 Positions of inductive sensors . 22

3.6 Relation between output voltage and distance 23

4.1 Simulated MFR body . 25

4.2 Simulated drive system . 26

4.3 Simulated ultrasonic sensors . 27

4.4 Illustration of radius and radius far . 27

4.5 Simulated inductive Sensors . 28

4.6 Simulated charger detector . 29

4.7 Simulated charging Pole . 29

5.1 Reference frame . 31

5.2 Illustration of a laser scanner . 32

5.3 Illustration of faking a laser scanner from two ultrasonic sensors 32

5.4 Illustration of AMCL using the faked laser scanner 33

5.5 Illustration of a stripe marker in the global frame 34

5.6 Simplified model of inductive sensors . 36

5.7 Illustration of calibration line calculation 36

5.8 Illustration of calibration . 37

6.1 Architecture of hybrid navigation system 39

6.2 Illustration of V-REP module . 40

6.3 Illustration of time source module . 41

6.4 Illustration of Map module . 41

6.5 Map building system . 42

6.6 Map building with the faked laser scanner 42

6.7 Illustration of localization module . 43

6.8 Illustration of hybrid control module . 44

6.9 Illustration of straight driving control . 44

vii

6.10 Illustration of a route . 45
6.11 Illustration of fence following control . 46
6.12 Illustration of fence navigation mode . 46
6.13 Illustration of stripe following control . 47
6.14 Illustration of stripe navigation mode . 47

7.1 Sample barn environment in V-REP . 49
7.2 Sample barn environment with errors in V-REP 50
7.3 Test environment for localization . 50
7.4 Occupancy grid map of the sample barn environment 51
7.5 The uncertainties of AMCL pose estimate over time 52
7.6 The uncertainties of SAMCL pose estimate over time 53
7.7 Comparison between the pose estimated by AMCL and the real pose

provided by V-REP . 53
7.8 Comparison between the pose estimated by SAMCL and the real pose

provided by V-REP . 53
7.9 Trajectory in error-free environment . 54
7.10 Trajectory in the environment with errors 55

viii

List of Tables

3.1 Basic specifications . 19
3.2 Specifications of the drive wheels . 20
3.3 Specifications of the swivel wheel . 21
3.4 PIL P42 performance . 21
3.5 Ultrasonic sensor positions . 22
3.6 Inductive Sensor Positions . 23

ix

x

List of Acronyms

AMCL Adaptive Monte Carlo Localization

CE Computer Engineering

EI Electronic Instrumentation

EKF Extended Kalman Filter

EEMCS Electrical Engineering, Mathematical and Computer Science

ICC Instantaneous Center of Curvature

IMU Inertial Measurement Unit

SAMCL Stripe-based Adaptive Monte Carlo Localization

MCL Monte Carlo Localization

MFR Mixing and Feeding Robot

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

xi

xii

Acknowledgements

It is a great pleasure to acknowledge my deepest gratitude to my two supervisors at TU
Delft and at Lely, respectively. Thank dr. Arjan van Genderen for his supervision on
my process as well as his guide on my thesis report. Thank Rene Beltman for hosting
me at Lely and guiding me along the way. Further, thank dr. Sorin Cotofana for being
the chairperson and thank dr. Andre Bossche for being a member of my committee.
Besides, I am also very grateful to Lely Vector team for all their help.

Without all my friends, I cannot reach my goals. Thank Bella, Yefu, Kang, Chenyun
and Laura for their unfailing support. Thank Zheng, Vincent, Nancy, Liang and
Zhimian for backing me up during the course of this project. Thanks to all who are not
mentioned here but did light up my life.

From the bottom of my heart, a special gratitude goes out to my family, especially my
dearest mother, who nurture me and inspire me with unconditional love.

He Cheng
Delft, The Netherlands
October 25, 2016

xiii

xiv

Introduction 1
Recent years, great success has been made in the field of autonomous robotics, a branch
of robotics that studies and designs robots able to perform behaviors or tasks with a
high degree of autonomy. To date, autonomous robots have already been widely used
in dairy farming that is a labor-intensive industry involving many tasks such as feeding,
milking, livestock management, etc. Gradually, these robots appear huge advantages
especially in aspects of increasing productivity, improving accuracy, and decreasing
labor cost.

Due to the complexity of the farming environment, high intelligence and robustness are
required for farming robots to perform tasks in a noisy environment. However, farming
robotics is also born with a high requirement for a low cost so that it is affordable
to farmers usually with the limited budget. Therefore, instead of purely to develop
an advanced robot, the main concern in this field is to develop a good robot with a
reasonable cost.

Figure 1.1: Lely Vector

As a leading innovator in agriculture, Lely manufactures machinery for dairy farms, in-
cluding Lely Astronaut for automatic milking, Lely Vector for automatic feeding, etc. To
be more detailed, Lely Vector is able to feed cows accurately and flexibly with minimum
labor requirements. As shown in Figure 1.1, this feeding system consists of four parts:

1. Feed Kitchen: the area where feed for cows is stored.

1

2 CHAPTER 1. INTRODUCTION

2. Feed Grabber: the robotic claw that picks different portions of feed and put it
into the container of the MFR.

3. MFR: the autonomous mobile robot able to automatically mix, distribute and
push feed for cows.

4. Charging Station: the place where MFR charges its battery with the charging
pole and where MFR waits for feed grabber to put feed.

1.1 Context

1.1.1 Lely MFR

This project centers on how MFR navigates in barn environment for distributing or
pushing feed, as shown in Figure 1.2. Since cows stay in areas enclosed by fences, MFR
should distribute feed along fences so that cows could reach feed just by stretching their
heads out of the fences.

Figure 1.2: MFR navigation

For navigation, MFR is equipped with the following sensors (more details in Chapter 3):

• Two ultrasonic sensors allows MFR to follow feeding fences at pre-determined
distances.

• Two inductive sensors are used in two ways. One is to enable MFR to follow
metal stripes to a target place. The other is to inform MFR that it has already
reached its target and it is time to execute next action when a metal stripe, as a
marker, is detected.

• A gyroscope is used to measure angular velocity, which mainly enables MFR to
turn with a certain angle. Meanwhile, the angular velocity is also a signal to check
if wheel slip happens.

• Two wheel encoders are used to measure the velocity of two motored wheels,
from which MFR’s velocity as well as the distance MFR has driven could be esti-
mated.

build 0.18

1.1. CONTEXT 3

1.1.2 Sample Barn Environment

Figure 1.3: Sample barn environment

Since barn environments vary in different farms, it is impossible to discuss them all in
this thesis. Instead, a 26 × 26m2 sample barn environment (see Figure 1.3) is set up
covering basic features of barn environment. The light gray part is floor; the black parts
are walls; the green lines are fences enclosing areas where cows stay; the brown part is
feed kitchen; the red dot is MFR; the blue dot is the charging pole; the dark gray lines
numbered are metal stripes; the yellow parts are doors.

1.1.3 Feed Distribution Process

After feed is loaded and mixed, MFR autonomously drives through the barn distribut-
ing feed for cows. Based on the barn environment in Figure 1.3, the process of feed
distribution is summarized as follows:

• Start from the charging station, rotate 180 degrees counterclockwise, and drive
forward following the No.1 metal stripe till its end;

• Drive straight forward 1 meter and rotate 90 degrees counterclockwise;

• Follow the fence till No.2 metal stripe is detected by the inductive sensors, and
rotate 180 degrees counterclockwise;

• Distribute feed along the fence till No.3 metal stripe is detected, drive straight
forward 2 meters, and rotate 90 degrees counterclockwise;

• Distribute feed till No.4 metal stripe is detected, drive forward 2 meters, and rotate
90 degrees counterclockwise;

build 0.18

4 CHAPTER 1. INTRODUCTION

• Distribute feed along the fence till No.5 metal stripe is detected;

• Follow No.5 metal stripe till its end;

• Follow the wall till No. 6 metal stripe is detected, rotate 90 degrees clockwise;

• Distribute feed along the fence till No.7 metal stripe is detected;

• Follow the wall till No.8 metal stripe is detected;

• Follow No.8 metal stripe till its end;

• Drive straight forward till No.1 metal stripe is detected;

• Follow No.1 metal stripe back to the charging station, connecting to the charging
pole.

1.2 Problem Description

Before introducing MFR navigation system, it is necessary to explain the concept of the
reactive approach. This approach embeds the agent’s control strategy into a collection of
pre-programmed condition-action pairs with minimal internal states [3] [4] [5]. Typically
they apply a simple functional mapping between stimuli and appropriate responses. In
MFR navigation system, these mappings rely on the direct coupling between sensing and
action. For example, ultrasonic sensing triggers fence following or wall following action;
inductive sensing triggers stripe following or next action. Currently, MFR utilizes a
two-level navigation system. In the high level, a route with action sequences is manually
planned in advance; in the low level, the reactive approach is employed to take care of
every single action. Since barn environment usually does not change much after being
built up, such a navigation system has proven effective. However, it still suffers from
several problems:

• MFR temporarily loses track of the feeding fence during fence following due to part
of the fence is moved by farmers or other reasons. In this case, MFR would stop
navigating if it cannot find the fence again.

• MFR loses track of the metal stripe. In this case, MFR would stop and then look
for the stripe by turning left and right for a certain degree. If no stripe is found by
this way, MFR would just stop there and raise an alarm. In barns, it is common
that the floor is dirty. If the error is due to the fact that the stripe is covered by
dirty stuff, hardly could MFR recover from that.

• MFR heavily relies on metal stripes. For example, in Figure 1.3, MFR is not able
to navigate back without No.8 metal stripe.

build 0.18

1.3. OBJECTIVES 5

1.3 Objectives

Since reactive navigation only responds to the sensing at the moment, hardly could the
above problems be handled by the current navigation system. Therefore, here comes
map-based navigation that is the combination of three processes [6] [7].

• Mapping, the process of memorizing the data about the environment in a suitable
way of representation.

• Localization, the process of deriving the current pose of the robot within the map.

• Path planning, the process of choosing a course of action to reach a goal, given the
current pose.

In map-based navigation, the robot is able to know its pose in the environment, which
compensates the drawbacks of reactive navigation. Since the peculiarity of barn en-
vironment, reactive navigation has its obvious advantage in fence following and strip
following, map-based navigation could not fully replace it.
The primary objective of this work is to develop a hybrid navigation system merging
reactive navigation and map-based navigation that tolerates the errors mentioned above
and improve MFR’s navigation performance. The focus is placed on a low-cost solution
with minimal changes in hardware, specified in two requirements:

• Make the full of sensors that are currently installed on MFR.

• Avoid dramatically increasing the cost of Lely Vector if new sensors are needed.
For example, it is not feasible to install on every MFR an industrial laser scanner
that generally costs e5,000 on average.

The research questions that this thesis aims to answer are:

• How could MFR build up a map of the barn environment? Are current sensors
enough? If not, what kind of sensors are needed?

• How could MFR localize itself based on the map it keeps? Are current sensors
enough? If not, what kind of sensors are needed?

• Could the proposed hybrid navigation system address the above problems?

1.4 Overview

The rest of this thesis is structured as follows. Chapter 2 presents the background of
robot navigation including map building, localization and path planning. Chapter 3
introduces the configuration of MFR. Chapter 4 mainly describes how MFR is simulated
in the simulator V-REP. Chapter 5 analyzes the insufficiency of the AMCL algorithm
and proposes the SAMCL algorithm for localization. Chapter 6 describes the design
of the hybrid navigation system combining the reactive navigation currently used on
MFR and the map-based navigation. Chapter 7 introduces the setup of simulated
experiments and the corresponding results. Chapter 8 reaches conclusions of this thesis
project, clarifies the main contributions, and discusses future work.

build 0.18

6 CHAPTER 1. INTRODUCTION

build 0.18

Background 2
This chapter presents the related topics about this thesis project, covering recursive state
estimation, map-based navigation, the Robot Operating System (ROS) and robotics
simulators. Section 2.1 introduces recursive state environment, which is the foundation
of probabilistic robotics. Section 2.2 states the concepts and the state of the art of
map-based navigation including localization, mapping and path planning. Section 2.3
introduces the structure of ROS, the Navigation Stack, and frames and transforms.
Section 2.4 mainly introduces the robotics simulator called V-REP, which is used for
simulation in this project.

2.1 Recursive State Estimation

This section presents the recursive state estimation, including basic concepts, Bayes
filter, and particle filter, all of which are the elements of probabilistic robotics described
in [8].

2.1.1 Robot Environment Interaction

Equipped with sensors, a robot can obtain information about its environment. However,
sensors are noisy and usually give relative information. Therefore, the robot maintains
a belief of its state. More details are presented below.

Environments are characterized by state, which in this project can be considered as the
collection of all aspects of the robot that can impact the future. For example, the state
variables can be:

• The robot pose, which consists of position and orientation relative to a global
coordinate frame. A rigid mobile robot represents its pose by six variables, three
Cartesian coordinates (x, y, and z) for its position and Euler angles (pitch, roll,
and yaw) for its orientation.

• The robot velocity, which consists of a velocity for each pose variable.

Definition 2.1 A state is denoted by x and the state at time t is denoted by xt.

A robot interacts with its environment in two ways:

• Sensor measurement is the process that the robot retrieves information about
the state of its environment through its sensors.

• Control action is the process that the robot influences the state of its environment
through its actuators.

7

8 CHAPTER 2. BACKGROUND

Correspondingly, there are two types of data:

• Measurement data carries information about a momentary state of the environ-
ment, such as range data, image data, etc.

• Control data carries information about the change of state in the environment,
such as the velocity command for a robot.

Definition 2.2 The measurement data at time t is denoted by zt. The notion zt1:t2 =
zt1 , zt1+1, zt1+2, ..., zt2 denotes the sequence of all measurement data acquired from time
t1 to time t2, for t1 ≤ t2.

Definition 2.3 The control data at time t is denoted by ut. The notion ut1:t2 =
ut1 , ut1+1, ut1+2, ..., ut2 denotes the sequence of all control data from time t1 to time t2,
for t1 ≤ t2.

The evolution of state is characterized by probabilistic laws. In probabilistic robotics, it
is assumed that the robot performs a control action ut first and then a measurement zt
(see Figure 2.1). The evolution of state in the process of control action can be expressed
as a probability distribution:

p(xt|x0:t−1, z1:t−1, u1:t) (2.1)

Figure 2.1: Evolution of Bayesian states

Theorem 2.1 The Markov Assumption postulates that the conditional probability
distribution of future states only depends on the present state.

According to the Markov Assumption, if the state xt is complete, it is a sufficient sum-
mary of all previous control actions u1:t−1 and sensor measurements z1:t−1. Hence, the
expression 2.1 can be simplified as

p(xt|x0:t−1, z1:t−1, u1:t) = p(xt|xt−1, ut) (2.2)

where the probability p(xt|xt−1, ut) is the state transition probability that specifies
how the environment state evolves over time as a function of the control action ut.

Similarly, if xt is complete, the measurement process can be modeled as

p(zt|x0:t, z1:t−1, u1:t) = p(zt|xt) (2.3)

build 0.18

2.2. MAP-BASED NAVIGATION 9

where the probability p(zt|xt) is the measurement probability that specifies how the
sensor measurement zt is generated from the environment state xt.

Another fundamental concept in probabilistic robotics is a belief that reflects the robot’s
knowledge about the environment state.

Definition 2.4 A belief over a state variable xt is denoted by bel(xt).

A belief distribution is a posterior distribution over the state xt conditioned on all the
previous measurements z1:t and controls u1:t. The distribution can be expressed as

bel(xt) = p(xt|z1:t, u1:t) (2.4)

The belief bel(xt) is calculated after taking in the measurement zt. It is also very impor-
tant to calculate the posterior just after performing the control ut and before zt, which
is expressed as

bel(xt) = p(xt|z1:t−1, u1:t) (2.5)

This process is called prediction since bel(xt) predicts the state xt based on the previous
posterior and the control ut before taking in the measurement ut. The process that
calculates bel(xt) from bel(xt) is called correction.

2.1.2 Bayes Filter

Bayes filter is the most general algorithm to calculate the belief distribution bel from
measurements and controls. The pseudo algorithm is depicted in Algorithm 1. First,
the predicted belief bel(xt) is calculated by the integral of the product of the previous
belief bel(xt−1) and the probability that the state xt is achieved from xt−1 by taking in
the control ut. This step is called prediction, implemented in Line 3. Second, the final
belief bel(xt) is calculated by the product of normalization constant η, the probability
that the measurement zt is observed at each hypothetical state xt, and the predicted
belief bel(xt). The normalization constant η ensures bel(xt) to sum up to 1. This step is
called correction, implemented in Line 4.

Algorithm 1 Bayes Filter, adopted from [8]

1: Inputs: bel(xt−1), ut, zt
2: for all xt do
3: bel(xt) =

∫
p(xt | ut, xt−1) bel(xt−1) dx

4: bel(xt) = η p(zt | xt) bel(xt)
5: end for
6: Output: bel(xt)

2.2 Map-based Navigation

This section introduces the three processes of the map-based navigation: mapping, lo-
calization and path planning [6] [7].

build 0.18

10 CHAPTER 2. BACKGROUND

2.2.1 Localization

As the cornerstone of successful navigation, localization is to estimate the robot’s pose in
the environment. With the initial pose known, the robot can track its pose by a motion
model (e.g. odometry model 1) that accommodates small pose error approximated by a
unimodal distribution (e.g Gaussian distribution). Due to the error, the pose estimate
is not fully correct and the robot is absolutely uncertain about its pose. Over time, the
uncertainty of the robot’s absolute pose grows without bound. In order to reduce the
uncertainty, a map of the environment is needed. With the map known, the robot can
use its sensors to observe the environment around it and match these observations to
the map. By this way, the robot can determine its absolute pose in the environment.

To date, the most popular approach for localization is the Monte Carlo localization
(MCL) [9], which is an algorithm for robots to localize by using a particle filter. The key
idea underlying MCL is to represent the posterior belief bel(xt) by a set of N weighted,

random samples or particles Xt = {< x
[n]
t , ω

[n]
t > | n = 1, ..., N}. ω[n]

t is a non-negative
numerical weighting factor called importance factor, that is, the weight of a particle.
The total weight of all particles is 1. In 2D environment, xt is expressed as

< x, y, θ > (2.6)

where < x, y, θ > denotes a robot pose, x and y are the robot’s coordinates in a
world-centered Cartesian reference frame, and θ is the robot’s orientation, that is, yaw
in Euler angles.

The pseudocode of the MCL algorithm is depicted in Algorithm 2, which calculates the
sample set Xt recursively from the set Xt−1. It inputs a sample set Xt−1 along with
the most recent control ut, the most recent measurement zt and the map m. It outputs
the sample set Xt, which represents the belief bel(xt) called the target distribution.
Xt is a temporary sample set, which represents the belief bel(xt) called the proposal
distribution. The algorithm is realized in four steps:

1. Prediction (Line 4). When the robot moves, MCL recursively generates a particle

x
[n]
t based on the particle xnt−1 and the control ut.

2. Correction (Line 7). In order to do resampling, the importance factor ω
[n]
t is

calculated for each particle x
[n]
t based on the measurement zt and the map m

(implemented in Line 5). The weighted sample set Xt can approximately represent
the posterior belief bel(xt), but is does not distribute according to it yet.

3. Normalization (Line 9 ∼ 11). The total weight of all particles are normalized to
1.

4. Resampling (Line 12 ∼ 15). N new particles are drawn randomly from the
weighted sample set Xt with probability proportional to ωt

[n] (n = 1, ..., N). That

1odometry model, available at http://ais.informatik.uni-freiburg.de/teaching/ss11/

robotics/slides/06-motion-models.pdf

build 0.18

http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/06-motion-models.pdf
http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/06-motion-models.pdf

2.2. MAP-BASED NAVIGATION 11

is, the more weighted particle are more likely to be drawn (possibly more than
once) while the less weighted ones are rarely chosen, which makes particles converge
towards a better estimate of the robot’s pose. By this way, the temporary particle
set Xt is transformed into a corrected particle set Xt of the same size.

Algorithm 2 Monte Carlo Localization (adopted from [8])

1: Inputs: Xt−1, ut, zt,m
2: Xt = Xt = ∅, α = 0
3: for n = 1 to N do
4: Sample xt

[n] ∼ p(xt | ut, xt−1[n])
5: ωt

[n] = p(zt| xt[n],m)
6: α = α + ωt

[n]

7: Xt = Xt + < xt
[n], ωt

[n] >
8: end for
9: for n = 1 to N do

10: ωt
[n] = ωt

[n] / α
11: end for
12: for n = 1 to N do
13: draw x

[i]
t , i ∈ 1, ..., N with probability ∝ ωt

[i]

14: Xt = Xt + < xt
[i], ωt

[i] >
15: end for
16: Output: Xt

The AMCL [10] is implemented to increase the efficiency of MCL by using KLD-sampling
to dynamically adjust the size of the particle set. That is to say, when the robot is highly
uncertain about its pose, AMCL will increase the number of particles; on the contrary,
the number of particles will be decreased. In this way, the AMCL makes a trade-off
between localization accuracy and computation efficiency. The pseudocode of AMCL
algorithm is depicted in Algorithm 3, where the KLD-sampling is mainly implemented
in Line 8 ∼ 13. The key idea of the KLD-sampling method is to bound the approximation
error introduced by the sample-based representation of the particle filter. The number
of samples needed to avoid exceeding the bound ε is approximated by [10]

n =
1

2ε
χ2
k−1,1−δ (2.7)

where ε is the pre-specified bound; 1 − δ is the possibility that guarantees the bound
is not exceeded; k is the number of possible bins, limited by a given bin size ∆; χ2 is
chi-squared distribution 2.

2.2.2 Mapping

Mapping is the process of building a map of a mobile robot’s environment based on
sensory information. Actually, a map is a list of objects in the environment and their

2chi-squared distribution, available at https://en.wikipedia.org/wiki/Chi-squared_

distribution

build 0.18

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution

12 CHAPTER 2. BACKGROUND

Algorithm 3 Adaptive Monte Carlo Localization (adopted from [8])

1: Inputs: Xt−1, ut, zt,m, ε, δ,∆
2: Xt = Xt = ∅, n = 0, k = 0, α = 0
3: do
4: Sample xt

[n] ∼ p(xt | ut, xt−1[n])
5: ωt

[n] = p(zt| xt[n],m)
6: α = α + ωt

[n]

7: Xt = Xt + < xt
[n], ωt

[n] >
8: if xt

[n] falls into an empty bin b then
9: k = k + 1

10: b = non-empty
11: end if
12: n = n + 1
13: while n < 1

2εχ
2
k−1,1−δ

14: for n = 1 to N do
15: ωt

[n] = ωt
[n] / α

16: end for
17: for n = 1 to N do
18: draw x

[i]
t , i ∈ 1, ..., N with probability ∝ ωt

[i]

19: Xt = Xt + < xt
[i], ωt

[i] >
20: end for
21: Output: Xt

locations. An accurate map facilitates robots to complete complex tasks successfully.

In the field of robotics, the dominant way of map representation is metric map, in
which the environment is represented as a set of objects with precise geometric positions
within an absolute coordinate frame. A metric map is easy to construct, gives precise
representation, and is easy for different robots to reuse [1]. However, for a large-scale
environment, the metric approach suffers from serious problems caused by memory
and time complexity. Recent progress in metric mapping has made it possible to build
useful and accurate metric maps of reasonably large-scale environments. Successful
metric mapping examples can be found in [11][12], whose environment sizes are larger
than 200m× 200m. In comparison, the scale of a barn environment is much smaller, for
example, 100m× 100m. Therefore, the metric approach is fully suitable for representing
barn environments.

Within metric representation, occupancy grid mapping algorithm [13][14][15] enjoys
huge popularity. In a grid map (see Figure 2.2), the environment is represented by a
block of cells and each cell is assigned a probability of being occupied.

In the process of mapping an unknown environment, good localization is essential
for constructing an accurate map while a good map is a precondition for accurate
localization [16][17]. This interdependence makes map building difficult because errors

build 0.18

2.2. MAP-BASED NAVIGATION 13

Figure 2.2: Example of occupancy grid map [1]

in localization arising during mapping are incorporated into the map and subsequently
need to be detected and corrected. Therefore, the mapping process is often referred to
Simultaneous Localization and Mapping (SLAM) that is intensively researched
in the field of robotics. A survey of SLAM algorithms can be found in [18]. The
OpenSLAM community [19] also provides an access to mainstream SLAM algorithms
like CEKF-SLAM, DP-SLAM, GMapping, etc.

Rao-Blackwellized particle filters [20] have been introduced as an effective method to
solve SLAM problem. Its key idea is to estimate a posterior p(x1:t|z1:t, u0:t) about the
potential poses x1:t of the robot given its control u0:t (e.g. odometry information) and
measurement z1:t, which is then used to compute a posterior over maps and poses:

p(x1:t,m|z1:t, u0:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u0:t) (2.8)

As a highly efficient Rao-Blackwellized particle filter, the Gmapping [11][12] substan-
tially improves the performance of Rao-Blackwellized particle filters by applying two
approaches described in [21]:

• The proposal distribution is computed highly accurately by evaluating the likeli-
hood around the most likely pose obtained by a scan-matching procedure combined
with odometry information. The scan-matching procedure is to match the current
observation against the map built so far with the purpose of finding the most likely
pose.

• The adaptive resampling strategy is applied that a resampling step is only taken
when needed, which enables the algorithm to keep a reasonable particle diversity
and therefore significantly reduces the risk of particle depletion [22].

Based on the above considerations, GMapping will be used to build maps for barn
environments in this project.

2.2.3 Path planning

Path planning is a natural extension of localization that enables a robot to find
the optimal and collision-free route from the start position to the goal position

build 0.18

14 CHAPTER 2. BACKGROUND

through an environment with obstacles. Path planning requires a map of the environ-
ment and the robot’s awareness of its location on the map that both are discussed above.

Classically, the environment of the robot is represented as a graph S = (S,E), where
S is the set of possible robot localizations and E is the set of edges representing paths
between these locations. The cost of each edge represents the cost of taking the path.
Hence, planning a path can be modeled as searching least-cost paths on this kind of
weighted graph. Two most popular graph search algorithms are Dijkstra’s algorithm
[23] and A* algorithm [24]. Dijkstra’s algorithm is able to more accurately produce
the shortest path to the goal while consumes more computing power. A* algorithm
typically has a better performance than Dijkstra’s algorithm, which, however, is very
likely to result in less optimal paths.

The move base module (see Section 2.3.2) has already implemented popular path plan-
ning algorithms and will be directly applied in this project for path planning. Hence,
details will not be touched in this thesis report. If interested, more information can be
found in [25].

2.3 ROS

ROS, developed by Stanford Artificial Intelligence Laboratory and Willow Garage, is
an open-source meta-operating system for robots since it provides a structured com-
munication layer based on a host operating system that can only be a Unix-based sys-
tem currently. It provides services such as low-level device control, implementation of
commonly-used functionality, message-passing between processes, and package manage-
ment. It also provides rich tools and libraries for software development across multiple
computers. Its aim is to provide a flexible and general framework to simplify the devel-
opment of robot software.

2.3.1 General Concepts

An ROS system is a peer-to-peer network of small, mostly independent processes called
nodes that run at the same time. Usually, each node is responsible for a specific
computation or task. For example, one node performs map building, one node performs
localization, one node performs path planning, one node controls velocity, etc. To
make the system work, these nodes should be able to communicate with each other.
Therefore, a manager of the system is needed enabling nodes to find and communicate
with one another. Such a manager is called the ROS Master that provides registration
services and lookup information. Nodes register their information with the Master, and
then receive information about other registered nodes and establish connections with
the nodes they are interested in.

The communication among nodes is realized by passing messages. A message is a
simple data structure. ROS provides standard message data types such as integer, float,
twist, imu, odometry, etc. Meanwhile, ROS developers can also define your own custom

build 0.18

2.3. ROS 15

message data types.

ROS provides two communication mechanisms for nodes. The more common one is the
publish/subscribe model shown in Figure 2.3. In this model, messages are passed
via ROS transport system called topics. A topic is a name used to identify the content
of the message. If a node wants to send a certain kind of data, it will publish messages
to the proper topic or topics; if a node wants to receive a certain kind of data, it will
subscribe the data to the topic or topics. Generally, multiple nodes can publish or
subscribe to one topic; one node can also publish or subscribe to multiple topics.

Figure 2.3: Publish/Subscribe model Figure 2.4: Request/Response model

The publish/subscribe model is very flexible and can handle most cases. However, as a
many-to-many transport, it is not suitable for a distributed system that often requires
request/response interaction. To address this problem, ROS provides the other
communication mechanism named services shown in Figure 2.4. A service is defined by
a pair of messages, one for the request and the other for the response. The node that
sends a request is called client, and the one that response the request is called server.

The above introduction is mainly about the ROS Computation Graph level, which, basi-
cally, is enough to understand this project. More information about the ROS Filesystem
Level and the ROS Community Level can be found in [26][27][28][29][30].

2.3.2 Navigation Stack

The Navigation Stack3 is a collection of packages for autonomous navigation of robot
including mapping, localization and path planning. Considering it as a whole, it inputs
data from odometry, sensors and map, and outputs velocity commands for a mobile
robot base.

The map of the environment will be built with the package gmapping4, which
implements the mapping algorithm in [11][12]. If a map is available, it can be provided
for the Navigation Stack via map server 5, which offers map data as a ROS Service.

3Navigation Stack, available at http://wiki.ros.org/navigation
4gmapping, available at http://wiki.ros.org/gmapping
5map server, available at http://wiki.ros.org/map_server

build 0.18

http://wiki.ros.org/navigation
http://wiki.ros.org/gmapping
http://wiki.ros.org/map_server

16 CHAPTER 2. BACKGROUND

The Navigation Stack utilizes the package amcl that implements AMCL algorithm
described in [10]. This package can localize a robot in 2D environment against a known
map by taking in laser scans, and transform messages from the odometry frame to the
robot base frame.

The path planning module is called move base 6, which mainly consists of a global
planner and a local planner. The global planner has the task of building a path from
the staring pose to the goal pose over the entire, static map of the environment. On
the other hand, the local planner, based on the environment surrounding the robot at
the moment, decides which action to choose from a set of possible actions in order to
fulfill the global plan. Besides, the environment is represented as a grid map, where
each cell has a cost that is higher in correspondence of obstacles and lower in free space.
As mentioned in Section 2.2.3, cost is used for planning paths and the planner tends to
move in least-cost cells, which enables the robot to avoid obstacles.

2.3.3 Frames and Transforms

In the field of robotics, the location of objects in three-dimensional space is constantly
concerned. In order to describe the pose of an object in space, a coordinate frame is
attached rigidly to the object. Then, the pose of this frame is described relative to some
reference frames. Any frame can serve as a reference frame. Respect to the reference
frame, the pose of an object is actually the transform from the frame attached rigidly to
the object itself to the reference frame. For example, Figure 2.5 shows typical frames for
mobile robots following the convention of REP105 - Coordinate Frames for Mobile
Platforms 7. The frame called map is a world fixed frame that works as a long-term
global reference since a robot’s pose in this frame will not drift over time. By default,
the pose of a mobile robot is relative to the map frame. The frame called odom is
a world-fixed frame that is useless as a long-term reference but useful as an accurate,
short-term local reference, since a robot’s pose relative to this frame is guaranteed to be
continuous but will drift over time. The odom frame is typically used for an odometry
source. The frame rigidly attached to the robot base is called base link. Referring
to the map frame, the robot’s pose can be obtained by calculating the transform from
the map frame to the base link frame, which actually is the map→odom transform plus
the odom→base link transform. In ROS, a package named tf 8 is provided for keeping
track of multiple coordinate frames over time. More information can also be found in
[31]. Besides REP 105, REP 103 - Standard Units of Measure and Coordinate
Conventions 9 is also an important guide to coordinate frame conventions. To better
integrate and reuse open resources, this project follows REP 105 and REP 103.

6move base, available http://wiki.ros.org/move_base
7REP 105, available at http://www.ros.org/reps/rep-0105.html
8tf, available at http://wiki.ros.org/tf
9REP 103, available at http://www.ros.org/reps/rep-0103.html

build 0.18

http://wiki.ros.org/move_base
http://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/tf
http://www.ros.org/reps/rep-0103.html

2.4. ROBOTICS SIMULATORS 17

Figure 2.5: Illustration of frames and transforms

2.4 Robotics Simulators

Over the last few years, robotics simulators have grown with the boom of the field
of robotics. Even though the scenarios a robot may encounter in the real world is
more than that can be simulated, current simulators provide many and increasingly
more features that largely facilitates simulation and make simulation closer to the real
world. Creating a virtual model of a robot by simulators can significantly shorten the
development life cycle of a project and also reduce cost.

Currently, there are many powerful robotics simulators, such as V-REP10, Gazebo11,
Webots12, etc. More information about simulators can also be found in [32]. However,
not all of them are suitable for simulating MFR. The suitable simulator should fulfill the
following requirements:

• The simulator is compatible with ROS

• The simulator can simulate variety of hardware, like sensors and actuators

• The simulator has strong physics engines

Developed by Coppelia Robotics, V-REP is an open-source 3D robot simulator and
free for academic use. V-REP is becoming more and more popular in the robotics
community due to its obvious advantages. It supports physics engines like ODE, Bullet,
Vortex and Newton 13. Meanwhile, it has a rich built-in library of sensors and actuators.
In addition, it offers many possibilities to interface with the external world. The plugin
vrep ros bridge14 provides a communication interface between V-REP and ROS, which

10V-REP, available at http://www.coppeliarobotics.com/
11Gazebo, available at http://gazebosim.org/
12Webots, available at https://www.cyberbotics.com/index
13V-REP’s dynamics module, available at http://www.coppeliarobotics.com/helpFiles/en/

dynamicsModule.htm
14vrep ros bridge, available at http://wiki.ros.org/vrep_ros_bridge

build 0.18

http://www.coppeliarobotics.com/
http://gazebosim.org/
https://www.cyberbotics.com/index
http://www.coppeliarobotics.com/helpFiles/en/dynamicsModule.htm
http://www.coppeliarobotics.com/helpFiles/en/dynamicsModule.htm
http://wiki.ros.org/vrep_ros_bridge

18 CHAPTER 2. BACKGROUND

enables ROS to control V-REP simulation externally. Therefore, V-REP is chosen as
the simulator for this project.

build 0.18

Robot Configuration 3
This chapter mainly presents the configuration of MFR as a reference basis for the
simulation model described in Chapter 4. Section 3.1 lists MFR’s basic specifications.
In Section 3.2 MFR’s drive system is introduced. After that, Section 3.3 introduces the
sensors that are currently used on MFR or should be added for the proposed navigation
system.

3.1 Basic Specifications

Table 3.1 lists MFR’s basic specifications, including size, weight and speed.

Table 3.1: Basic specifications

Dimensions

Length 227 cm
Width 160 cm
Height 190 cm
Weight 1485 kg

Requirements

Max Speed 0.5 m/s
Average Speed 0.25 m/s

3.2 Drive System

MFR utilizes the differential drive mechanism (see Figure 3.1a) that consist of two
rear drive wheels mounted on a common axis with independent motors. Two drive
wheels can independently rotate forward or backward. To keep MFR’s balance, a front
swivel wheel is added. The swivel wheel is free to turn and not controllable. To be
noted, if the robot reverses its direction, the swivel wheel can cause an undesired mo-
tion since the swivel must turn 180 degrees. Therefore, this is not allowed in this project.

As shown in Figure 3.1b, vl denotes the velocity of the left drive wheel; vr denotes the
velocity of the right drive wheel; v denotes MFR’s linear velocity; ω denotes MFR’s
angular velocity; L is the distance between the two drive wheels; Instantaneous Center
of Curvature (ICC) is the point that the robot rotates about when two drive wheels
are rotating at different speeds; R is the signed distance from the ICC to the midpoint

19

20 CHAPTER 3. ROBOT CONFIGURATION

(a) Configuration (b) Kinematics

Figure 3.1: Drive system

between the two drive wheels. v, ω and R can be calculated by:

v =
vl + vr

2
(3.1)

ω =
vr − vl
L

(3.2)

R =
L

2

vr + vl
vr − vl

(3.3)

Table 3.2 lists the specifications of the drive wheels and Table 3.3 presents those of the
swivel wheel. To make it clear, a coordinate frame is attached to point C that is the
center of MFR on the bottom, marked as (0, 0, 0). The z-axis is pointing upward. The
positions of all components listed in this chapter are relative to this frame.

Table 3.2: Specifications of the drive wheels

Size (mm)

Diameter 300
Width 90

Positions (mm)

x-axis ± 460
y-axis -260
z-axis 150

3.3 Sensors

Sensors are the key components for every robot to observe the environment and estimate
its state. Currently, MFR is equipped with two ultrasonic sensors, two inductive sensors,
a gyroscope and two wheel encoders for reactive navigation. In this project, another two
kinds of sensors are needed, an accelerometer and a laser scanner.

build 0.18

3.3. SENSORS 21

Table 3.3: Specifications of the swivel wheel

Size (mm)

Diameter 250
Width 120

Position (mm)

x-axis 0
y-axis 450
z-axis 125

3.3.1 Ultrasonic Sensors

An ultrasonic sensor (see Figure 3.2) emits a cone-shaped ultrasonic beam that reflects
off of objects within the wave field. The echo is then received by the sensor. An
ultrasonic sensor has a blind zone within which it cannot receive the echo accurately.
The minimum distance is the outer edge of the blind zone. The range between the
minimum and the maximum sensing distances is the valid sensing range. To be noted,
the opening angle of beam cone varies with different distances at which objects are
detected.

Figure 3.2: Illustration of ultrasonic sensing (modified from [2])

PIL P42 ultrasonic sensor is currently used on MFR. When tested with a horizontal iron
pole ∅40 millimeters, the minimum sensing distance is about 0.27 centimeters and the
maximum is 319 centimeters. Table 3.4 lists the opening angles of the cone-shaped beam
with different distances at which the iron pole is detected.

Table 3.4: PIL P42 performance

Distance (cm) 50 100 150 200 250 300 350 400

Opening angle (°) 18 12 8 6.5 4.5 1.5 - -

Two such ultrasonic sensors are installed on the red iron shelf in the front of MFR, as
shown in Figure 3.3. One is oriented to the right side, and the other is oriented to the left,

build 0.18

22 CHAPTER 3. ROBOT CONFIGURATION

which ensures MFR to follow the feeding fence at the pre-determined distances.Table 3.5
lists the positions of two ultrasonic sensors. Since the positions of ultrasonic sensors can
be adjusted accordingly along the iron shelf vertically, the values along the z-axis are
not specified here.

Figure 3.3: Positions of ultrasonic sensors

Table 3.5: Ultrasonic sensor positions

axis value (mm)

x ± 250

y 1310

3.3.2 Inductive Sensors

Figure 3.4: Inductive sensor Figure 3.5: Positions of inductive sensors

An inductive sensor (see Figure 3.4) is a type of non-contact sensor used to detect metal
objects. An inductive sensor has an oscillator generating a fluctuating magnetic field
around the sensing face, the blue part in Figure 3.4. When a metallic object moves into
the inductive sensor’s field of detection, the inductive sensor’s own magnetic field will

build 0.18

3.3. SENSORS 23

be weakened, which causes a change in the output voltage of the sensor.

As shown in Figure 3.5, two inductive sensors are installed on the bottom of MFR for
following metal stripes or detecting metal stripe markers. Table 3.6 lists the positions
of the inductive sensors.

Table 3.6: Inductive Sensor Positions

axis value(mm)

x ± 50

y 225

z 40

The relation between the output voltage and the distance between the metal stripe and
inductive sensors is shown in Figure 3.6, where the blue part is the output of the left
inductive sensor and the red is that of the right.

Figure 3.6: Relation between output voltage and distance

3.3.3 IMU

As the necessary device for map-based navigation, an inertial measurement unit (IMU)
is the combination of gyroscopes and accelerometers. A gyroscope is a device used to
measure angular velocity. An accelerometer is used to measure accelerations.

MFR has a gyroscope with the rate noise density of 0.015 °/sec/
√
Hz but lacks an

accelerometer. For this project, an accelerometer is added in the simulation model
described in Chapter 4.

3.3.4 Wheel Encoders

A wheel encoder is used to measure the amount of rotation completed by the wheel in
the form of ticks, from which odometry information is retrieved. MFR is equipped with

build 0.18

24 CHAPTER 3. ROBOT CONFIGURATION

two wheel encoders that are integrated with motors RECM377/4, one for each drive
wheel. Between two timestamps, the average velocity is given by

vavg =
∆ticks

∆t · res
· circ (3.4)

where ∆ticks is the difference between the total number of ticks revealed by two subse-
quent readings, ∆t is the difference between the timestamps of the two detections, res is
resolution that is the number of ticks per turn, and circ is the wheel circumference.

3.3.5 Laser Scanner

Currently, MFR does not have a laser scanner but it is necessary for mapping, the
reason of which is explained in Section 6.4. A laser scanner offers a long-range and
high-accuracy range measurement with a wide scan angle. The scanning is achieved by
an embedded rotating mirror that changes the direction of the laser beam with a certain
angle increment and a certain frequency. Since a laser scanner provides a large amount
of range data, it is widely used in navigation despite its high price.

build 0.18

Simulation Model 4
This chapter describes the simulation model of MFR. Section 4.1 introduces how to
import MFR’s body part into V-REP. In Section 4.2, the simulation of MFR’s drive
system is presented. Then the simulation of sensors is described in Section 4.3. After
that, Section 4.4 presents the simulation of the charger detector and the charging pole.

4.1 Body Part Importation

V-REP is only able to import some file formats that describe objects as triangular meshes,
such as OBJ, DXF, STL, etc. However, the available CAD file format is STEP that is
not a triangular mesh format. Therefore, the file should be converted to an appropriate
triangular mesh format first. In addition, the complexity of the converted CAD model
is still so high that it consumes a large amount of computing power, which would make
the simulation run extremely slow. Therefore, before importing the model into V-REP,
its complexity is reduced to less than 10,000 faces by the mesh decimation approach in
MeshLab 1. The finished body part of MFR is shown in Figure 4.1.

Figure 4.1: Simulated MFR body

4.2 Drive System Simulation

The simulated drive system is shown in Figure 4.2. V-REP provides joints 2 that can be
used to build mechanisms. The two motors that control the drive wheels are simulated by

1MeshLab, available at http://meshlab.sourceforge.net/
2Joint types and operation, available at http://www.coppeliarobotics.com/helpFiles/en/

jointDescription.htm

25

http://meshlab.sourceforge.net/
http://www.coppeliarobotics.com/helpFiles/en/jointDescription.htm
http://www.coppeliarobotics.com/helpFiles/en/jointDescription.htm

26 CHAPTER 4. SIMULATION MODEL

two revolute joints (joint3 and joint4) under Torque or force mode with the joint motors
enabled. The joints can be controlled to rotate about the axis3 with given velocities that
can be set in the script file 3. In this project, control algorithms are implemented in
ROS nodes that publish velocity commands for the motors. Correspondingly, V-REP
subscribes these commands in the form of twist messages and actuates the motors.

Figure 4.2: Simulated drive system

The mechanism of the swivel wheel is mainly simulated by two revolute joints (joint1
and joint2) also under Torque or force mode but with the joint motors disabled. By this
way, joint1 is free to rotate about the axis1 and joint2 is free to rotate about the axis2.

4.3 Sensor Simulation

4.3.1 Ultrasonic Sensor Simulation

Proximity sensors are the sensors that detect the presence of objects without physical
contact. V-REP provides a built-in proximity sensor model that is able to simulate five
subtypes: ultrasonic, infrared, laser, inductive and capacitive 4.

An ultrasonic sensor can be simulated the cone-shaped ultrasonic proximity sensor. Ac-
cording to the performance of PIL P42 sensor mentioned in Section 3.3.1, the minimum
sensing distance is set to 0.27 m and the maximum is 2.5 m; the opening angle is set to
10 degrees. The ultrasonic data is published on topics “/ultrasonic distance/left” and
“/ultrasonic distance/right” accordingly.

3V-REP embedded scripts, available at http://www.coppeliarobotics.com/helpFiles/en/

scripts.htm
4V-REP proximity sensors, available at http://www.coppeliarobotics.com/helpFiles/en/

proximitySensors.htm

build 0.18

http://www.coppeliarobotics.com/helpFiles/en/scripts.htm
http://www.coppeliarobotics.com/helpFiles/en/scripts.htm
http://www.coppeliarobotics.com/helpFiles/en/proximitySensors.htm
http://www.coppeliarobotics.com/helpFiles/en/proximitySensors.htm

4.3. SENSOR SIMULATION 27

Figure 4.3: Simulated ultrasonic sensors

4.3.2 Inductive Sensor Simulation

Similarly, an inductive sensor could be simulated by the cylinder-shaped inductive
proximity sensor. The radius is set to 0.045 m, and the radius far is set to 0.08 m (see
Figure 4.4). The finished model is shown in Figure 4.5.

Figure 4.4: Illustration of radius and radius far

Since the output of proximity sensors in V-REP is distance, the simulated inductive sen-
sors will also output distance for convenience. The inductive data is published on topics
“/inductive distance/left” and “/inductive distance/right” accordingly. If the mathe-
matical expression of the voltage-distance relation in Figure 3.6 is known, it is also easy
to do the conversion from distance to voltage.

4.3.3 IMU Simulation

V-REP provides a gyroscope model and an accelerometer model, which can be combined
to simulate an IMU. In the simulation, the IMU frame is placed to coincide with the
robot base frame.

In ROS, IMU data is published or subscribed in the from of IMU message 5. However,

5IMU message, available at http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html

build 0.18

http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html

28 CHAPTER 4. SIMULATION MODEL

Figure 4.5: Simulated inductive Sensors

there is no publisher type available in V-REP for publishing IMU message. Hence, a new
publisher type called simros strmcmd get imu state is created and the IMU data is
published on topic “/imu/data raw”.

4.3.4 Wheel Encoder Simulation

V-REP does not provide an wheel encoder model, but we can generates encoder ticks
based on joint position values by

ticks =
cur pos− prev pos

resolution
(4.1)

where cur pos means the current joint position, prev pos means the joint position of the
previous time step, resolution means the amount of radian per tick. The encoder data
is published on topics “/encoder ticks/left” and “/encoder ticks/right” accordingly.

4.3.5 Laser Scanner Simulation

V-REP provides a laser scanner model that can be directly used. To be noted, the laser
scan data is published on topic “/scan”.

4.4 Charger Detector and Charging Pole Simulation

When MFR drives back to the charging pole, it should stop immediately if connected
to the charger. In the simulation, an inductive sensor (see Figure 4.6) is used as the
detector that tells if MFR is connected to the charger. Meanwhile, the interface of the
charger (see Figure 4.7) should be made detectable only for inductive sensors. When the
distance returned by the detector is smaller than a predetermined value, it means MFR
is connected to the charger.

build 0.18

4.4. CHARGER DETECTOR AND CHARGING POLE SIMULATION 29

Figure 4.6: Simulated charger detector Figure 4.7: Simulated charging Pole

build 0.18

30 CHAPTER 4. SIMULATION MODEL

build 0.18

SAMCL Algorithm 5
This chapter proposes the SAMCL algorithm. Section 5.1 first clarifies the default ref-
erence frame used in this chapter. Section 5.2 introduces how to fake a laser scanner
using the two ultrasonic sensors already installed on MFR. Then Section 5.3 explains
the reason why the AMCL algorithm is not sufficient for MFR’s localization. After that,
Section 5.3 presents the description of the SAMCL algorithm.

5.1 Reference Frame

The robot frame named base link is attached to the center of MFR base, with the z-axis
pointing upward, as shown in Figure 5.1. Unless otherwise stated, the x-axis and the
y-axis mentioned in this chapter are silently referred to the base link frame. Hence,
the positive direction of the x-axis represents MFR’s forward direction and the positive
direction of the y-axis represents MFR’s leftward direction.

Figure 5.1: Reference frame

5.2 Laser Scanner Faking

As mentioned in Section 2.3.2, the amcl package takes in n pieces of range data from a
laser scanner with a given angle increment ∆ within a certain scan angle θ, for example,
180 degrees (see Figure 5.2). The number n can be given as

n =
θ

∆
+ 1 (5.1)

However, MFR does not have a laser scanner. To solve this problem, the range data from
the two ultrasonic sensors can be used to fake a laser scanner despite the relatively low
accuracy and the relatively short detection range (see Figure 5.3). One ultrasonic sensor

31

32 CHAPTER 5. SAMCL ALGORITHM

can be modeled as one laser beam at a certain direction. To be noted, the two ultrasonic
sensors are not installed at the same point but with a certain distance d. The coordinate
frame for the faked laser scanner, named base scan, is attached on the center point O.
The faked laser scan data can be given as

L1 =

{
Dr + d

2 , Dr is valid

0, Dr is invalid
(5.2)

Li = 0, i ∈ 2, ..., n− 1 (5.3)

Ln =

{
Dl + d

2 , Dl is valid

0, Dl is invalid
(5.4)

where Dr and Dl represents the range data of the right ultrasonic sensor and the left
respectively; Li, i ∈ 1, ..., n represents laser scan data.

Figure 5.2: Illustration of a laser scanner

By this way, the faked laser scanner has two pieces of range data at most (the two solid
arrowed lines in Figure 5.3); other range data is always zero (the dotted arrowed lines
in Figure 5.3), which represents invalid measurements.

Figure 5.3: Illustration of faking a laser scanner from two ultrasonic sensors

5.3 Insufficiency of the AMCL Algorithm

As mentioned in Chapter 2, the AMCL algorithm consists of prediction step, correction
step, normalization step, and resampling step. In the prediction step, the robot estimates

build 0.18

5.4. THE SAMCL ALGORITHM 33

its pose by odometry; in the correction step, the laser scan data is used to reduce the
uncertainty of pose estimate. Since the real laser scanner provides range data from all
directions within its wide scan angle, the robot is able to correct the predicted pose along
both the x-axis and the y-axis. However, the faked laser scanner only has two pieces
of valid data that can only reduce the uncertainty of MFR’s pose along the y-axis if
fences or walls are detected. Therefore, the AMCL using the faked laser scanner cannot
help correct the pose error along the x-axis. That is to say, MFR’s pose estimate along
the x-axis only relies on odometry-based prediction. However, the error in odometry
increases over time without bound. For example, when MFR drives along the fence, the
uncertainty grows, as shown in Figure 5.4. For a short distance, the uncertainty might
stay within a reasonable range; however, for a long distance, the uncertainty might grow
to several meters till the navigation fails. Therefore, the AMCL algorithm is not sufficient
for MFR to localize itself in the environment.

Figure 5.4: Illustration of AMCL using the faked laser scanner

5.4 The SAMCL Algorithm

5.4.1 Set-up of Calibration Metal Stripes

According to the analysis in Section 5.3, there should be sensor readings to reduce
the uncertainty along the x-axis. Among the sensors MFR already has, besides the
ultrasonic sensors, only the inductive sensors on MFR’s bottom are capable of observing
the environment in the way of detecting metal stripes on the floor. Hence, the natural
idea is to set up metal stripes for pose calibration, named stripe markers to avoid
confusion. The pose of every calibration marker in the environment is pre-stored in a
YAML file in the form of

<< x, y, z >,< a, b, c, d >> (5.5)

where < x, y, z > represents the position of a random point on the marker by Cartesian
coordinates, < a, b, c, d > represents the orientation of the marker by a quaternion.
Since a marker is always placed on the floor, the position value z is always zero and so
are the orientation values a and b.

To make it easier to explain, the pose of a marker is typed as

<< x, y >, θ >, θ ∈ [−π
2
,
π

2
) (5.6)

where θ is the Euler angle Y aw. The conversion between Euler angles and Quaternion

build 0.18

34 CHAPTER 5. SAMCL ALGORITHM

can be easily done, by hand 1 or by online calculator 2.

A stripe marker can be modeled as a straight line in the global coordinate, as shown in
Figure 5.5. If θ0 6= −π

2 or 0, the equation of the marker << x0, y0 >, θ0 > can be given
as

y = kx+ b (5.7)

where the slope k = tan θ0, the y-intercept b = y0 − kx0. If θ0 = −π
2 , the equation is

given as

x = x0 (5.8)

If θ0 = 0, the equation is given as

y = y0 (5.9)

Figure 5.5: Illustration of a stripe marker in the global frame

5.4.2 Description of the SAMCL Algorithm

Now the SAMCL algorithm is proposed for localizing MFR in the barn environment,
depicted in Algorithm 4. S = {sj | j = 1, ...,M} is the set of stripe markers. robot pose
is the estimated pose in the latest update. h is the pre-specified distance threshold to
determine if the robot is close enough to a stripe marker. In this algorithm, Line 4 ∼ 23
is the same to the AMCL algorithm; Line 24 ∼ 33 is added for resampling particles
if a stripe marker is detected, which is implemented in three steps: determining the
stripe marker, calculating the calibration line, and resampling.

1. Determining the Stripe Marker

When at least one inductive sensor detects a metal stripe, the algorithm will check which
stripe marker it is by calculating the distance d between robot pose and each marker pose
sj(j ∈ 1, ...,M); if d is smaller than the threshold h, then sj is the detected marker.

1Conversion equations, available at http://www.chrobotics.com/library/understanding-quaternions
2Online calculator, available at http://quaternions.online/

build 0.18

5.4. THE SAMCL ALGORITHM 35

Algorithm 4 SAMCL

1: Inputs: Xt−1, ut, zt,m, ε, δ,∆, S, h, robot pose
2: Xt = Xt = ∅, n = 0, k = 0, α = 0
3: do
4: Sample xt

[n] ∼ p(xt | ut, xt−1[n])
5: ωt

[n] = p(zt| xt[n],m)
6: α = α + ωt

[n]

7: Xt = Xt + < xt
[n], ωt

[n] >
8: if xt

[n] falls into an empty bin b then
9: k = k + 1

10: b = non-empty
11: end if
12: n = n + 1
13: while n < 1

2εχ
2
k−1,1−δ

14: for n = 1 to N do
15: ωt

[n] = ωt
[n] / α

16: end for
17: for n = 1 to N do
18: draw x

[i]
t , i ∈ 1, ..., N with probability ∝ ωt

[i]

19: Xt = Xt + < xt
[i], ωt

[i] >
20: end for
21: if at least one inductive sensor gives valid data then
22: for j = 1 to M do
23: d = distance(robot pose, sj)
24: if d < h then
25: calculate the equation of the calibration line
26: for n = 1 to N do
27: relocate x

[n]
t to its corresponding foot point on the calibration line

28: end for
29: break
30: end if
31: end for
32: end if
33: Output: Xt

2. Calculating the Calibration Line

Before discussing the calibration line, it is necessary to simplify the model of the two
inductive sensors. As shown in Figure 5.6, point O1 and point O2 are respectively
the center of the left inductive sensor and the right; point C is the center of point
O1 and point O2. To simplify the calculation, the two inductive sensors together
are modeled as one point, that is, point C. Since the size of the inductive sensor is
very small (e.g. radius = 4cm) relative to that of the environment, the error caused
by this model is ignorable. Hence, the coordinate frame base ind is attached on point C.

build 0.18

36 CHAPTER 5. SAMCL ALGORITHM

Figure 5.6: Simplified model of inductive sensors

When a stripe marker is detected, the position of the inductive sensors are determined
that is exactly above the marker. Since the transform between the base ind frame and
the base link frame is known, the point A′ can be determined. Meanwhile, the calibration
line is parallel to the stripe marker. Hence, the equation of the calibration line can be
calculated based on the point A′ and the slope of the stripe marker.

Figure 5.7: Illustration of calibration line calculation

3. Calibrating

Since the equation of the calibration line is determined, particles should be relocated to
their foot points on the calibration line and their importance weights are still kept the
same.The process of calibration is illustrated in Figure 5.8.

build 0.18

5.4. THE SAMCL ALGORITHM 37

Figure 5.8: Illustration of calibration

build 0.18

38 CHAPTER 5. SAMCL ALGORITHM

build 0.18

Hybrid Navigation System 6
This chapter describes the design of the novel navigation system for MFR. Above all,
the overview of the system is described in Section 6.1. Section 6.4 introduces how to
build an occupancy grid map for the barn environment. Section 6.5 states how the
localization module is set up. After that, Section 6.6 presents the hybrid navigation
strategy combining the reactive navigation and the map-based navigation.

6.1 Architecture

The navigation system mainly consists of five modules, as shown in Figure 6.1. The
time source module offers the simulation time as the system clock. The V-REP module
includes MFR simulation model and the barn environment. This module provides sensor
data for other modules and receives velocity commands used to control MFR’s movement.
The map module offers map data to the localization module and the hybrid control
module. By taking in map data and sensor data, the localization module enables MFR
to estimate its pose in the environment. With sensor data, odometry and transforms, the
hybrid control module decides to follow the map-based control strategy or the reactive
control strategy and outputs the corresponding velocity commands. More details will be
presented in the rest of this chapter.

Figure 6.1: Architecture of hybrid navigation system

39

40 CHAPTER 6. HYBRID NAVIGATION SYSTEM

6.2 V-REP Module

The V-REP module (see Figure 6.2) corresponds to the simulation model described in
Chapter 4. The simulation time in V-REP is published and will be used as ROS system
clock. More details are presented in Section 6.3. The sensors publish measurement data
on the corresponding topics shown in the illustration figure. After receiving the velocity
commands on topic “twist mux/cmd vel”, the motors will be set to rotate accordingly.

Figure 6.2: Illustration of V-REP module

6.3 Time Source Module

Normally, ROS system uses the system clock of the computer that it runs on as a time
source. Since this navigation system is developed and tested with the simulation model,
the simulation time generated by V-REP should be used as the time source, which
allows ROS system has a consistent time measurement with V-REP. Hence, the package
sim time to clock is developed to subscribe the simulation time and then publish it
on topic “/clock”, as shown in Figure 6.3.

build 0.18

6.4. MAP MODULE 41

Figure 6.3: Illustration of time source module

6.4 Map Module

For navigation in this project, an occupancy grid map of the barn environment should
be provided. Assuming the map has already been constructed, a package named
map server 1 is used to read the map from file and to offer the map data to other
nodes, as shown in Figure 6.4.

Figure 6.4: Illustration of Map module

If the map of the environment has not been built for the map module yet, the gmapping
package can be used to build a map of the barn environment. However, here comes
the same problem arising in the application of the AMCL algorithm: MFR is not able
to provide the real laser scan data that the Gmapping algorithm needs. Therefore, as
described in Section 5.2, the two ultrasonic sensors are faked as a laser scanner. To build
the map, MFR is manually controlled to drive around in the test barn environment
(see Figure 6.6a). The map building system is shown in Figure 6.5, which, to be
noted, is independent of the navigation system. For manual control, a keyboard control
node turtle teleop key is used to publish twist messages on topic “/turtle2/cmd vel”
that is subscribed by V-REP to control motors. The package mfr wheel odom is
developed that takes in encoder ticks and outputs wheel encoder odometry on topic
“/odometry/raw” and the odom → base link transform. By subscribing laser scan
data and transforms, the node slam gmapping of the gmapping package is able to
construct an occupancy grid map that will be saved to file via map server.

Applying the map building system, MFR is manually driven around in the test barn
environment (see Figure 6.6a) and the occupancy grid map is constructed shown
in Figure 6.6b. The black part of the map corresponds to the occupied area, the
white part corresponds to the unoccupied area, and the gray part corresponds to the
unknown area. Since the map is totally a mess, map building is stopped before it
is finished. The key reason why the map building fails is that mapping, as a SLAM
process, requires high-quality localization. However, in our case, MFR’s localization
is only based on odometry since the scan-matching (see Section 2.2.2) fails with the
extremely limited range data from the two ultrasonic sensors. In this case, the pose
estimation error will grow without bounds with the increasing distance that MFR
drives. Unfortunately, the pose error will be incorporated into the map, since the

1map server, available at http://wiki.ros.org/map_server

build 0.18

http://wiki.ros.org/map_server

42 CHAPTER 6. HYBRID NAVIGATION SYSTEM

Figure 6.5: Map building system

observed data about the environment cannot be constructed on the right spot on the
map. On the contrary, a bad-quality map will further increase the error in localiza-
tion. Therefore, it is insufficient to build a map by just using the current sensors on MFR.

(a) Test environment (b) Occupancy grid map

Figure 6.6: Map building with the faked laser scanner

Considering the large cost of an industrial laser scanner, it is not financially feasible to
install a laser scanner on every MFR. Hence, here comes an alternative: the laser scanner
is just used to build a map and will be removed after it is done.

6.5 Localization Module

As the foundation of the navigation system, the localization module is shown in Fig-
ure 6.7. The package mfr wheel odom is implemented in this project to input wheel
encoder ticks and to output odometry data, known as wheel encoder odometry. Mean-
while, an IMU is used to provide accurate measurements of angular velocities and linear
accelerations that are then fused into an orientation by the IMU filter by Madgwick [33],

build 0.18

6.6. HYBRID CONTROL MODULE 43

implemented in imu filter madgwick2. To obtain a more accurate odometry, the node
ekf localization node 3 is used to fuse the filtered IMU data and the wheel encoder
odometry into the IMU odometry. The ekf localization node also provides the odom →
base link transform. By inputting necessary messages and the stripe file, the node samcl
publishes the estimated pose on topic “amcl pose” and the map → odom transform.

Figure 6.7: Illustration of localization module

6.6 Hybrid Control Module

By inputting transforms, sensor data and map data, this hybrid control module (see
Figure 6.8) outputs velocity commands. The route file is actually the set of navigation
actions which are previously planned according to the specific barn environment.
By reading the actions, MFR is able to execute them one by one, such as, drive
straightforward, follow the feeding fence, etc. As the core of this module, the package
mfr navigation controller implements the combination of the reactive navigation
strategy and the map-based navigation strategy. The hybrid control strategy works
like this: for the reactive control, the controller generates velocity commands on topic
“/base vel” based on the momentary sensor readings; for the map-based control, the
controller sends a goal to the move base (see Section 2.3.2) that plans an obstacle-free
path to the goal and publishes velocity commands on topic “/cmd vel”. It is notable
that the velocity on “/base vel” is assigned a higher priority than that on “/cmd vel”.
The package twist mux 4 is applied to output the higher prioritized velocity command

2imu filter madgwick, available at http://wiki.ros.org/imu_filter_madgwick
3ekf localization node, available at http://wiki.ros.org/robot_localization
4twist mux, available at http://wiki.ros.org/twist_mux

build 0.18

http://wiki.ros.org/imu_filter_madgwick
http://wiki.ros.org/robot_localization
http://wiki.ros.org/twist_mux

44 CHAPTER 6. HYBRID NAVIGATION SYSTEM

if there is more than one velocity commands at the same time.

Figure 6.8: Illustration of hybrid control module

To be more detailed, five modes of navigation actions are implemented in the navigation
controller, summarized as below.

A. Turn

This mode utilizes the reactive approach. In this mode, MFR is able to turn clockwise
or counterclockwise with a given angle. The velocity commands for turning will be
published until the given angle is reached. The angle turned is calculated by the difference
between MFR’s orientation at the moment and its initial orientation.

B. Straight Driving

This mode also utilizes the reactive approach. In this mode, MFR is able to drive straight
forward or backward until a given distance is reached or a metal stripe is detected.
MFR’s orientation is kept by applying a PID controller 5, a simple but widespread
control algorithm that continuously calculates the error value as the difference between
the desired setpoint and a measured process variable, and applies a correction of the error.
For straight movement, the desired setpoint is MFR’s initial orientation; the measured
process variable is MFR’s orientation at the moment; the correction is achieved by the
adjustment of velocities (see Figure 6.9).

Figure 6.9: Illustration of straight driving control

5PID controller, available at https://en.wikipedia.org/wiki/PID_controller

build 0.18

https://en.wikipedia.org/wiki/PID_controller

6.6. HYBRID CONTROL MODULE 45

C. Free Navigation

This mode utilizes the map-based navigation. In this mode, MFR navigates along an
obstacle-free route (see Figure 6.10) that is usually defined as a sequence of waypoints
plus a goal. A waypoint is a point on the route that the robot should pass by before
the destination is reached; the goal is actually the destination. It is easy to understand
that the number of waypoints can be zero, but there must be a goal as the end of a
path. As shown in Figure 6.8, the mfr navigation controller sends the waypoints and the
goal one after another to the move base that will plan obstacle-free paths and publish
velocity commands on topic “/cmd vel” for MFR to follow the planned paths. With this
mode, MFR is able to navigate to a point without the need of following a metal strip as
mentioned in Chapter 1, which brings more flexibility to MFR’s navigation.

Figure 6.10: Illustration of a route

D. Fence Navigation

This mode combines the reactive navigation and the map-based navigation. In terms of
the reactive navigation, a PID controller is applied to make MFR follow the feeding fence
with a pre-determined distance by correcting the error between the measured ultrasonic
distance and the desired distance, as shown in Figure 6.11. This approach can accurately
and responsively control the distance between MFR and the feeding fence, but it is
susceptible to the temporary loss of the range data from the two ultrasonic sensors. On
the other hand, the map-based navigation cannot control the distance as well as the
former, but it is able to suffer from the temporary loss of ultrasonic data since MFR
knows where it is with the localization module and where to go with the move base.
Therefore, the reactive navigation is preferred to the map-based navigation in this mode;
if the former fails, the latter will be taken until the former is available again. As shown
in Figure 6.12, MFR follows the fence to the point A by the reactive navigation; from
the point A to the point B, MFR cannot detect the fence and follows the planned path
by the map-base navigation; after reaching the point B, MFR continues fence following
till the end of the fence and then navigates to the goal.

build 0.18

46 CHAPTER 6. HYBRID NAVIGATION SYSTEM

Figure 6.11: Illustration of fence following control

Figure 6.12: Illustration of fence navigation mode

E. Stripe Navigation

Principally, the proposed navigation system does not need to follow a metal stripe as
much as the old navigation system does. However, for some cases, it is still needed. For
example, when MFR drives back to the charging area, MFR’s pose should be controlled
so accurately that MFR can be connected to the charger that is small in size. Obviously,
this case cannot be handled by map-based navigation. In addition, barn environments
are quite complex and it cannot be denied that stripe following is not useful anymore.

Similar to the last one, this mode also applies the combined strategy. Similarly, a PID
controller is used enabling MFR to follow a metal stripe with measurement data from the
two inductive sensors, as shown in Figure 6.13. When the reactive navigation fails, the
map-based navigation will be taken. As shown in Figure 6.14, MFR follows the stripe
to the point A by the reactive approach; from the point A to the point B, the stripe
cannot be detected, so MFR navigates to the point B by the map-based approach; after
that, MFR continues stripe following till the end and navigate to the goal.

build 0.18

6.6. HYBRID CONTROL MODULE 47

Figure 6.13: Illustration of stripe following control

Figure 6.14: Illustration of stripe navigation mode

build 0.18

48 CHAPTER 6. HYBRID NAVIGATION SYSTEM

build 0.18

Simulated Experiments and
Results 7
This chapter presents the set-up of experiments and the evaluation of the proposed
navigation system. Section 7.1 describes how environments are set up in V-REP for the
experiments on map building, localization, and hybrid navigation. Section 7.2 shows the
result of map building with a laser scanner. In Section 7.3, the SAMCL pose estimate is
compared with the AMCL pose estimate. Then the hybrid navigation system is evaluated
in Section 7.4. In the end, a short summary is presented in Section 7.5.

7.1 Environment Set-up

7.1.1 Barn Environment

Based on the sample barn environment described in Section 1.1.2, a barn environment
(see Figure 7.1) is set up in V-REP for testing the proposed navigation system. The
green objects are feeding fences enclosing the area for cows to stay; the long metal stripes
are set for MFR to follow; the short metal stripes are stripe markers for localization; the
white parts around are walls.

Figure 7.1: Sample barn environment in V-REP

7.1.2 Barn Environment with Errors

As shown in Figure 7.2, the error cases (marked with letters) mentioned in Section 1.2
are simulated in the barn environment:

49

50 CHAPTER 7. SIMULATED EXPERIMENTS AND RESULTS

A The ultrasonic signal is temporarily lost in this 90-degree corner with the corner ra-
dius of 1 meters (the red part), which is simulated by making this part undetectable
by ultrasonic sensors.

B This part of the fence (2 meters) is removed and therefore the ultrasonic sensors
cannot detect it in this area.

C This part of the metal stripe (the quarter-circle arc shape with the radius of 0.5
meters) cannot be detected, which is simulated by the removal of this part.

Figure 7.2: Sample barn environment with errors in V-REP

7.1.3 Test Environment for Localization

A typical test environment is set up for comparing the SAMCL pose estimate with the
AMCL pose estimate. As shown in Figure 7.3, MFR starts at (−5.5, 4.7, 0.0) with the
yaw orientation of 0 radian. Two calibration markers are placed at (0.0, 4.7, 0.0) and
(5.0, 4.7, 0.0), respectively.

Figure 7.3: Test environment for localization

build 0.18

7.2. EXPERIMENT 1: MAP BUILDING 51

7.2 Experiment 1: Map Building

Equipped with a laser scanner, MFR is manually controlled to drive around in the
environment shown in Figure 7.1. A good grid map (see Figure 7.4) is built with the
resolution of 0.05 meters, which serves as the map data for the experiments in Section
7.3 and Section 7.4.

Figure 7.4: Occupancy grid map of the sample barn environment

build 0.18

52 CHAPTER 7. SIMULATED EXPERIMENTS AND RESULTS

7.3 Experiment 2: Localization

In this experiment, MFR will be manually controlled to drive forward along the feeding
fence twice in the environment shown in Figure 7.3 for two scenarios, respectively.

1. AMCL pose estimate: the AMCL algorithm is applied to estimate MFR’s pose.
For comparison, V-REP publishes MFR’s real pose in the simulated environment.
The results are shown in Figure 7.5 and Figure 7.7.

2. SAMCL pose estimate: the SAMCL algorithm is used for MFR’s pose estimate
and its real pose is published by V-REP as a reference. The results are shown in
Figure 7.6 and Figure 7.8.

Figure 7.5 shows the evolution of the AMCL particle set at five time points (the red
parts). As shown in the figure, MFR starts at time t0 and then the AMCL particle
set grows longer and longer over time, which means the uncertainty of the AMCL pose
estimate increases. As explained in Section 5.3, the AMCL algorithm can control the
uncertainty along the y-axis by taking in the ultrasonic range data but is not able to
calibrate the estimated pose along the x-axis by using metal markers. Therefore, the
uncertainty along the y-axis is well controlled but not the x-axis. Moreover, Figure 7.7
presents the evolution of the position values on the x-axis and the y-axis over time. We
can see that the estimated pose along the y-axis is quite close to the real one; however,
along the x-axis, the pose error keeps growing without bounds.

Similarly, Figure 7.6 depicts the evolution of the SAMCL particle set at five time points.
As shown in the figure, the uncertainty of pose estimate along the y-axis is small and
meanwhile, the uncertainty along the x-axis is reduced twice by the calibration with
the stripe markers. Furthermore, it is clearly seen from Figure 7.7 that the pose error
along the x-axis is corrected at the point A and the point B (marked in the figure) that
correspond to the first stripe marker and the second stripe marker, respectively. By this
way, the pose error is controlled within a reasonable range.

Hence, this experiment proves that the SAMCL algorithm outperforms the AMCL algo-
rithm in this project with stripe markers properly set.

Figure 7.5: The uncertainties of AMCL pose estimate over time

build 0.18

7.4. EXPERIMENT 3: HYBRID NAVIGATION 53

Figure 7.6: The uncertainties of SAMCL pose estimate over time

Figure 7.7: Comparison between the pose estimated by AMCL and the real pose
provided by V-REP

Figure 7.8: Comparison between the pose estimated by SAMCL and the real pose
provided by V-REP

7.4 Experiment 3: Hybrid Navigation

In this experiment, the proposed navigation system is tested in both the error-free barn
environment (see Figure 7.1) and the barn environment with errors (see Figure 7.2).
Starting from the charging pole, MFR automatically navigates for feed distribution and

build 0.18

54 CHAPTER 7. SIMULATED EXPERIMENTS AND RESULTS

drives back after it is done.

7.4.1 Navigation in the Error-free Environment

As shown in Figure 7.9, the yellow route is the trajectory MFR has finished in the
error-free environment. To be noted, MFR’s job is to distribute feed along the feeding
fence for cows. The trajectory shows that MFR follows the fences well with the pre-
determined distance, so it means this navigation system is able to finish feed distribution
task accurately. To navigate to the fences, MFR should also be able to drive in a straight
line, turn for a certain degree, and follow metal stripes, which is proved by the successful
navigation as the trajectory shows. By now, the hybrid navigation system has performed
all the navigation tasks that the current navigation system can do, which is mentioned
in Section 1.1.3. More importantly, MFR is able to drive from the point A to the point
B directly, unlike the process mentioned in Section 1.1.3 that MFR should follow the
wall till No.8 metal stripe is detected and then follow the stripe till its end. Obviously,
this kind of free navigation provides a more efficient route. Moreover, with the proposed
navigation system, MFR is able to take different routes to the same goal with more
flexibility via different sets of waypoints (see the free navigation mode in Section 6.6). To
conclude, the hybrid navigation system can not only fulfill all the tasks that the current
navigation system can perform, but also reduce MFR’s dependence on long metal stripes
in navigation that is one of the problems mentioned in Section 1.2.

Figure 7.9: Trajectory in error-free environment

build 0.18

7.4. EXPERIMENT 3: HYBRID NAVIGATION 55

7.4.2 Navigation in the Environment with Errors

In this section, MFR automatically navigates in the environment with errors (see Figure
7.2) and the finished trajectory is shown in Figure 7.10. It is clear that the trajectory is
complete, that is to say, MFR’s navigation in this environment is as successful as that in
the last environment (see Figure 7.1). Considering the existence of three errors described
in Section 7.1.2, it is sufficient to prove that the proposed navigation system is capable
of tolerating these three errors.

Figure 7.10: Trajectory in the environment with errors

• Around the corner A, the valid ultrasonic signal is lost temporarily. According to
the analysis in Section 1.2, with the current system, MFR will just stop if no fence
can be found again by in-place rotation. However, with the proposed navigation
system, MFR tolerate this error. Even though the distance between MFR and the
fence is not kept as well as that during fence following, the more important thing
is that MFR does not fail in this area and can continue to distribute feed along
the next fence.

• In the area B, part of the fence is removed and the ultrasonic sensors cannot
detect anything. Unlike the current navigation described in Section 1.2, the hybrid
navigation tolerates this error, which is similar to the error in the area A.

• In the area C, MFR loses track of the metal stripe, so MFR switches from the
stripe following to the map-based navigation and continues driving. Then MFR
detects the metal stripe again and follows it to the end. However, for the current

build 0.18

56 CHAPTER 7. SIMULATED EXPERIMENTS AND RESULTS

version of MFR, it will stop if the stripe cannot be found by in-space rotation, as
described in Section 1.2.

7.5 Summary of Experiments

In the first experiment, an accurate grid map is constructed by the gmapping package
based on laser range data. The second experiment proves that the SAMCL algorithm
is capable of controlling the pose estimate error within a reasonable range depending
on the density of stripe markers that are set. Further, the third experiment shows that
the proposed hybrid navigation system has two obvious advantages over the current
navigation system:

• The errors mentioned in Section 7.1.2 can be well tolerated.

• MFR is given more intelligence and flexibility in the aspect of navigation.

build 0.18

Conclusions and Future Work 8
This chapter finalizes this thesis project. In Section 8.1, the conclusions of this project are
presented. Then Section 8.2 lists the main contributions. In Section 8.3, the proposals
for future work are suggested.

8.1 Conclusions

Utilizing a reactive approach, the current navigation system running on MFR is
susceptible to errors in the environment and has a limited navigation capacity. To
improve MFR’s error-tolerant capacity and navigation performance, a hybrid navigation
system is proposed in this project combining the reactive navigation and the map-based
navigation.

First, with the robotics simulator V-REP, a simulation model (see Chapter 4) is built
for MFR based on the robot’s configuration (see Chapter 3). Since the real robot is
not ready for running ROS system, the simulation model is used as the platform for
developing and verifying the proposed navigation system.

As the key to the map-based navigation, the localization algorithm is explored in
Chapter 5. The AMCL algorithm targets at mobile robots equipped with a laser
scanner, so it is not fully suitable for MFR with limited range data from the two
ultrasonic sensors. Hence, the SAMCL algorithm is put forward for localization by
fusing ultrasonic information and inductive information. To make the localization work,
an accelerometer is added in the simulation model.

Moreover, Chapter 6 describes the proposed hybrid navigation system mainly including
map module, localization module, and hybrid control module. The map module is
responsible for offering map data to other modules. If the map is not ready, it can
be constructed by the map building system. Since it fails to build a good map with
the current sensors, a laser scanner is added for map building. Further, based on the
SAMCL algorithm, the localization module is set up to estimate MFR’s pose in the
environment. Besides, the hybrid control module chooses to follow the map-based
control strategy or the reactive control strategy and publishes the corresponding velocity
commands for the motors.

Besides, the performance of the proposed navigation system is evaluated in the
simulation model. As a result, the SAMCL algorithm could provide a reasonably good
pose estimate if stripe markers are properly set. Further, compared with the current
navigation system running on MFR, the proposed navigation system is able to tolerate

57

58 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the errors like the temporary loss of valid ultrasonic or inductive signal; meanwhile, it
enables MFR to navigate without following a long metal stripe for general cases. Hence,
it can be concluded that the proposed navigation system improves MFR’s error-tolerant
capacity and navigation performance.

However, the proposed navigation system additional requirements on the barn environ-
ment it could work. Due to the limited detection range of ultrasonic sensors mentioned
in Section 3.3.1, MFR is not able to free navigate for a long distance (eg. more than 5
meters) in a relatively large empty area without objects around. Additionally, stripe
markers should be set properly according to how fast the pose error grows. Therefore,
a barn environment should be well set in advance.

Obviously, the proposed navigation system cannot compete with the state-of-the-art nav-
igation systems using laser scanners, 3D cameras, or other advanced sensors. However,
it does achieve a good navigation performance with relatively low-cost sensors. More im-
portantly, this project opens the door of map-based navigation and further improvement
in navigation to MFR.

8.2 Main Contributions

The first contribution of this thesis is the simulation model of MFR and barn environ-
ments, which makes it possible to develop and test algorithms and navigation systems
without a real MFR. In the model, sensors and actuators are simulated according to
MFR’ configuration. Moreover, the model is made controllable by ROS nodes, therefore,
the simulation model is just used to obtain sensor information from the simulated
environment and actuate the motors, and the development of the navigation system can
be all done in ROS.

The second contribution lies in localization. Due to the lack of a laser scanner, the
AMCL fails to control the growth of pose error. Hence, the SAMCL algorithm is put
forward calibrating MFR’s pose estimate with stripe markers on the floor. As shown in
Experiment 2 in Chapter 7, the SAMCL algorithm can control the pose error within
a reasonable range according to the density of stripe markers. To make the SAMCL
work, mfr wheel odom package is developed to estimate wheel encoder odometry from
MFR’s two wheel encoders.

The third contribution is the exploration of map building. Due to the limited range data
from the two ultrasonic sensors, MFR is not able to do scan matching, which is a key
reason for the failure of mapping. Instead, a financially feasible alternative is proposed
that a laser scanner is just installed for map building process and will be removed after
that.

The fourth contribution is the hybrid control module combining the reactive navigation
and the map-based navigation. By the hybrid control strategy, MFR is able to tolerate
errors mentioned in Section 1.2; MFR is also able to navigate without following long

build 0.18

8.3. FUTURE WORK 59

metal stripes if the environment is well constructed.

The fifth contribution is that different modules are connected working as a navigation
system, including V-REP module, map module, localization module and hybrid control
module, etc. The proposed navigation system achieves a better navigation performance
than the current one.

8.3 Future Work

This project can be extended in the following aspects.

First, the proposed navigation system should be further tested on the real MFR. Even
though V-REP is a powerful simulator, it still cannot simulate all the scenarios in the
real barn environments. Meanwhile, V-REP does not add any noise, so noises from
the real environment and within the real robot should be fully studied to make the
navigation work on the real MFR.

Theoretically, the SAMCL algorithm has a capacity to recover from wheel slip to some
extent. However, it is not an easy job to simulate and test it in V-REP. Considering the
dirty and wet floor in barns, this is an important aspect to explore for a more robust
navigation system.

Also, the navigation system should be developed with the ability to avoid dynamical
obstacles. In barns, it happens that people or objects unexpectedly stay on the route
MFR drives. However, MFR is not able to avoid obstacles dynamically and instead will
stop after bumps. For dynamical obstacle avoidance, there should be extra sensors to
observe the environment around the robot. For example, several ultrasonic sensors can
be installed on the front part of MFR.

In addition, learning algorithms could be introduced to provide a more intelligent
navigation. It would be interesting to investigate how to learn from the previous routes
and generate a better path. For example, if MFR bumps into obstacles frequently in a
certain region, the robot should learn that it is a dangerous area and take another route
to avoid that area. Moreover, the waypoints and goals for navigation are manually set
in this project, so it is worth exploring how to obtain waypoints and goals automatically
by driving around under the manual control.

Besides, it is also very useful if the navigation system could be extended to a multi-robot
system. In some barns, there are two MFRs. Currently, they cannot work together in
the same barn, so when one MFR is working, the other must wait in the charging area
to avoid bumping into each other. However, it would be a nice feature that two MFRs
can work together, providing more flexibility for feed distribution. Hence, multi-robot
navigation system could be another exciting plan.

build 0.18

60 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

build 0.18

Bibliography

[1] D. Filliat and J.-A. Meyer, “Map-based Navigation in Mobile Robots:: I. A Re-
view of Localization Strategies,” Cognitive Systems Research, vol. 4, pp. 243–282,
December 2003.

[2] Ultrasonic Sensing. [Online]. Available: http://www.ab.com/en/epub/catalogs/
12772/6543185/12041221/12041229/print.html

[3] R. A. Brooks and J. H. Connell, “Asynchronous Distributed Control System for a
Mobile Robot,” in Proc. SPIE, vol. 0727, February 1987, pp. 77–84.

[4] P. E. Agre and D. Chapman, “Pengi: An Implementation of a Theory of Activity,”
in Proc. AAAI-87, vol. 1, July 1987, pp. 268–272.

[5] J. H. Connell, “Minimalist Mobile Robotics: A Colony-Style Architecture for an
Artificial Creature,” SIAM Rev., vol. 34, no. 2, pp. 329–330, September 1992.

[6] T. S. Levitt and D. T. Lawton, “Qualitative Navigation for Mobile Robots,” Arti-
ficial Intelligence, vol. 44, no. 3, pp. 305–360, August 1990.

[7] K. Balakrishnan, O. Bousquet, and V. Honavar, “Spatial Learning and Localization
in Rodents : A Computation Model of the Hippocampus and Its Implications for
Mobile Robots,” Adaptive Behavior, vol. 7, no. 2, pp. 173–216, March 1999.

[8] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. the MIT Press, Septem-
ber 2005.

[9] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localization: Effi-
cient Position Estimation for Mobile Robots,” in IN PROC. OF THE NATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI), 1999, pp. 343–349.

[10] D. Fox, “KLD-Sampling: Adaptive Particle Filters,” in Advances in Neural Infor-
mation Processing Systems 14. MIT Press, 2001.

[11] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping
with Rao-Blackwellized Particle Filters,” IEEE Transactions on Robotics, vol. 23,
pp. 34–46, 2007.

[12] ——, “Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by
Adaptive Proposals and Selective Resampling,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), April 2005, pp. 2443–2448.

[13] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal of
Robotics and Automation, vol. 3, no. 3, pp. 249–265, June 1987.

[14] ——, “Occupancy Grids: A Probabilistic Framework for Robot Perception and Nav-
igation,” Ph.D. dissertation, Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA, 1989.

61

http://www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/print.html
http://www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/print.html

62 BIBLIOGRAPHY

[15] H. P. Moravec, “Sensor Fusion in Certainty Grids for Mobile Robots,” AI Magazine,
vol. 9, no. 2, pp. 61–74, July/August 1988.

[16] S. Se, D. G. Lowe, and J. J. Little, “Mobile Robot Localization and Mapping with
Uncertainty using Scale-Invariant Visual Landmarks,” I. J. Robotic Res., vol. 21,
no. 8, pp. 735–760, 2002.

[17] H. Choset and K. Nagatani, “Topological Simultaneous Localization and Mapping
(SLAM): Toward Exact Localization Without Explicit Localization,” IEEE Trans-
actions on Robotics and Automation, vol. 17, pp. 125–137, 2001.

[18] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The SLAM Problem: A Survey,” in
Proceedings of the 2008 Conference on Artificial Intelligence Research and Develop-
ment: Proceedings of the 11th International Conference of the Catalan Association
for Artificial Intelligence. Amsterdam, The Netherlands, The Netherlands: IOS
Press, 2008, pp. 363–371.

[19] OpenSLAM. [Online]. Available: http://openslam.org/

[20] K. Murphy, “Bayesian Map Learning in Dynamic Environments,” in In Neural Info.
Proc. Systems (NIPS). MIT Press, 1999, pp. 1015–1021.

[21] A. Doucet, “On Sequential Simulation-based Methods for Bayesian Filtering,” Uni-
versity of Cambridge, Tech. Rep., 1998.

[22] R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan, “The Unscented Parti-
cle Filter,” Cambridge University Engineering Department, Tech. Rep. CUED/F-
INENG/TR 380, August 2000.

[23] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” NU-
MERISCHE MATHEMATIK, vol. 1, no. 1, pp. 269–271, 1959.

[24] N. J. N. P. E. Hart and B. Raphael, “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Transactions on Systems, Science, and Cybernetics,
vol. SSC-4, no. 2, pp. 100–107, 1968.

[25] J.-A. Meyer and D. Filliat, “Map-based Navigation in Mobile Robots:: II. A Review
of Map-learning and Path-planning Strategies,” Cognitive Systems Research, vol. 4,
pp. 283–317, December 2003.

[26] ROS Documentation. [Online]. Available: http://wiki.ros.org/

[27] J. M. O’Kane, A Gentle Introduction to ROS. Independently published, October
2013, available at http://www.cse.sc.edu/∼jokane/agitr/.

[28] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with ROS. O’Reilly
Media Inc., July 2015.

[29] L. Joseph, Learning Robotics Using Python. Packt Publishing Ltd., May 2015.

build 0.18

http://openslam.org/
http://wiki.ros.org/
http://www.cse.sc.edu/~jokane/agitr/

BIBLIOGRAPHY 63

[30] E. Fernández, L. S. Crespo, A. Mahtani, and A. Martinez, Learning ROS for
Robotics Programming. Packt Publishing Ltd., August 2015.

[31] T. Foote, “tf: The Transform Library,” in Technologies for Practical Robot Applica-
tions (TePRA), 2013 IEEE International Conference on, ser. Open-Source Software
workshop, April 2013, pp. 1–6.

[32] H. Adam and J. M. Conard, “Survey of Popular Robotics Simulators, Frameworks,
and Toolkits,” in Southeastcon, 2011 Proceedings of IEEE, March 2011, pp. 243–249.

[33] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU
and MARG orientation using a gradient descent algorithm,” in Proceedings of the
IEEE International Conference on Rehabilitation Robotics (ICORR), June 2011,
pp. 1–7.

[34] T. Moore and D. Stouch, “A Generalized Extended Kalman Filter Implementation
for the Robot Operating System,” in Intelligent Autonomous Systems 13, vol. 302,
September 2015, pp. 335–348.

build 0.18

64 BIBLIOGRAPHY

build 0.18

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Lely MFR
	Sample Barn Environment
	Feed Distribution Process

	Problem Description
	Objectives
	Overview

	Background
	Recursive State Estimation
	Robot Environment Interaction
	Bayes Filter

	Map-based Navigation
	Localization
	Mapping
	Path planning

	ROS
	General Concepts
	Navigation Stack
	Frames and Transforms

	Robotics Simulators

	Robot Configuration
	Basic Specifications
	Drive System
	Sensors
	Ultrasonic Sensors
	Inductive Sensors
	IMU
	Wheel Encoders
	Laser Scanner

	Simulation Model
	Body Part Importation
	Drive System Simulation
	Sensor Simulation
	Ultrasonic Sensor Simulation
	Inductive Sensor Simulation
	IMU Simulation
	Wheel Encoder Simulation
	Laser Scanner Simulation

	Charger Detector and Charging Pole Simulation

	SAMCL Algorithm
	Reference Frame
	Laser Scanner Faking
	Insufficiency of the AMCL Algorithm
	The SAMCL Algorithm
	Set-up of Calibration Metal Stripes
	Description of the SAMCL Algorithm

	Hybrid Navigation System
	Architecture
	V-REP Module
	Time Source Module
	Map Module
	Localization Module
	Hybrid Control Module

	Simulated Experiments and Results
	Environment Set-up
	Barn Environment
	Barn Environment with Errors
	Test Environment for Localization

	Experiment 1: Map Building
	Experiment 2: Localization
	Experiment 3: Hybrid Navigation
	Navigation in the Error-free Environment
	Navigation in the Environment with Errors

	Summary of Experiments

	Conclusions and Future Work
	Conclusions
	Main Contributions
	Future Work

	Bibliography

