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a b s t r a c t 

Incorporation of more sophisticated human factors (HF) in mathematical models for driv- 

ing behavior has become an increasingly popular and important research direction in the 

last few years. Such models enable us to simulate under which conditions perception er- 

rors and risk-taking lead to interactions that result in unsafe traffic conditions and ulti- 

mately accidents. In this paper, we present a generic multi-level microscopic traffic mod- 

elling and simulation framework that supports this important line of research. In this 

framework, the driving task is modeled in a multi-layered fashion. At the highest level, 

we have idealized (collision-free) models for car following and other driving tasks. These 

models typically contain HF parameters that exogenously “govern the human factor”, such 

as reaction time, sensitivities to stimuli, desired speed, etc. At the lowest level, we define 

HF variables (task demand and capacity, awareness) with which we maintain what the in- 

formation processing costs are of performing driving tasks as well as non-driving related 

tasks such as distractions. We model these costs using so-called fundamental diagrams of 

task demand. In between, we define functions that govern the dynamics of the high-level 

HF parameters with these HF variables as inputs. When total task demand increases be- 

yond task capacity, first awareness may deteriorate, where we use Endsley’s three-level 

awareness construct to differentiate between effects on perception, comprehension, antic- 

ipation and reaction time. Secondly, drivers may adapt their response in line with Fullers 

risk allostasis theory to reduce risk to acceptable levels. This framework can be viewed as 

a meta model, that provides the analyst possibilities to combine and mix a wide variety 

of microscopic models for driving behavior at different levels of sophistication, depending 

on which HF are studied, and which phenomena need to be reproduced. We illustrate the 

framework with a distraction (rubbernecking) case. Our results show that the framework 

results in endogenous mechanisms for inter- and intra-driver differences in driving behav- 

ior and can generate multiple plausible HF mechanisms to explain the same observable 

traffic phenomena and congestion patterns that arise due to the distraction. We believe 

our framework can serve as a valuable tool in testing hypotheses related to the effects of 

HF on traffic efficiency and traffic safety in a systematic way for both the traffic flow and 

HF community. 
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1. Introduction 

Incorporation of human factors (HF) in mathematical models for driving behavior has become an increasingly popular

research direction in the traffic flow theory community the last decade. One may argue, however, that HF have always been

at the core of traffic flow modelling. Since the pioneering work of ( Greenshields, 1934,Lighthill and Whitham, 1955; Richards,

1956 and many others) on the fundamental relation and the fluid dynamical description of traffic, many schools of thought

have emerged, each characterized by different behavioral assumptions on how drivers respond to stimuli—and which stimuli

they respond to; and by different ranges of descriptive and (partial) explanatory power for the resulting phenomena. For

example, safe-distance car following (CF) models ( Laval and Leclercq, 2010a; Newell, 2002; Pipes, 1953 ) assume that drivers

maintain a large enough distance headway in case the leader brakes at maximum deceleration; optimal velocity models

( Bando et al., 1998; Davis, 2003 ) assume that drivers accelerate to their optimal velocity as a function of the distance

headway; whereas approaches in the more general group of stimulus-response models ( Gazis et al., 1961; Kerner and Klenov,

2006; Treiber et al., 2000 ) make assumptions on how drivers adapt their response (acceleration) to a range of different

stimuli (distance headway, speed differences). Over the years, many approaches to incorporate more (HF) sophistication have

been proposed. So-called psycho-spacing (or action point) models ( Fritzsche, 1994; Wiedemann, 1974 ) incorporate drivers’

inertia to observe and respond to small changes in stimuli; whereas for example multi-anticipatory models ( Hoogendoorn

et al., 20 06,20 07; Treiber et al., 20 06 ) include terms for anticipation of drivers to traffic conditions further downstream.

What “classic” (or as Saifuzzaman and Zheng, 2014 ) put it: “engineering” models) for car following (CF) have in common is

that they are—by design—collision-free. This is no longer guaranteed, however, if we incorporate reaction times, i.e. delayed

stimuli, and/or perception errors in these stimuli (headways, relative speeds) or both ( Hamdar and Mahmassani, 2008;

Treiber et al., 2006 ). An even wider diversity of behavioral assumptions and modelling approaches can be found for lateral

driving behavior that governs when drivers change lanes, diverge, and merge ( Choudhury, 20 08; Cohen, 20 04; Kesting et al.,

2007; Laval and Daganzo, 2006; Schakel et al., 2012; Wei et al., 20 0 0; Zheng, 2014 ). In most cases here, the underlying

theory is based on conditional decision-making. The corresponding models usually incorporate decision trees, and models

assessing the conditions (availability of gaps) and the appropriate response (intention and execution of crossings or lane

changes). Also models for lateral driving are—in principle—collision free. Like CF models, the inclusion of reaction times

and/or perception errors in lane changing (LC) models relaxes that assumption. 

There are several good reasons why research has accelerated into more sophisticated and systematic approaches to in-

corporate HF in microscopic traffic flow models. First, there still are many phenomena in current traffic that we do not fully

understand, such as the capacity drop, traffic hysteresis, and many phenomena related to lateral movement ( Saifuzzaman

and Zheng, 2014; Zheng, 2014 ). Second, we are at the start of a major transition towards higher levels of vehicle automa-

tion (VA). Paradoxically, traffic simulation models have always been capable of simulating automated vehicles; now that VA

becomes a reality, we need to increase the HF sophistication in our human driver models. Since traffic flow operations are

governed by interaction processes, we cannot predict the changes in those interactions and their consequences based on

knowledge of the behavior of just one of the ‘players’ (the automated vehicle)—the human player may also fundamentally

change in ways not catered for (sufficiently) by existing models. Third, whereas most emphasis of microscopic traffic mod-

elling has been on reproducing safe traffic operations and the corresponding emerging phenomena (e.g. capacities, wave

patterns), an increased need emerges to use these models to realistically predict also potentially unsafe traffic operations,

and the corresponding indicators (statistics of accidents and surrogate safety measures) ( Hamdar and Mahmassani, 2009;

Hamdar et al., 2015b ). These conditions are relevant not just in studying vehicle automation, but also in the here and now.

To assess whether safety is at risk, explanatory psychological constructs are needed that can endogenously predict under

which circumstances drivers take risks and/or make perception and judgement errors that may lead to unsafe situations and

ultimately accidents. Several approaches have already been proposed in this direction, e.g. using prospect theory (in which

drivers way faster travel time against the risk of rear-end crashes ( Hamdar et al., 2015a, 2008 ); and using Fullers’ Risk Al-

lostasis Theory ( Fuller, 2011 ) (in which risk taking and driver response is considered a result of comparing subjective task

demand and task capacity using the so-called Task-Capacity-Interface model (e.g. Hoogendoorn et al., 2013; Saifuzzaman

et al., 2015, 2017 ). However, more behavioral sophistication comes at a methodological and computational price, in terms of

model identification, calibration and validation effort s; and comput ational efficiency. Theref ore, the challenge f or our com-

munity in the coming years, is to augment existing CF and LC models with a range of explanatory (HF) mechanisms that

(a) endogenously predict where and under which circumstances drivers e.g. make errors, take more (or less) risks, suffer

from longer reaction times; using (b) mathematics and simulation logic that is tractable and simple enough so that large-

scale simulation is (still) possible; while (c) still reproducing plausible vehicle trajectories and (by implication) plausible

macroscopic traffic patterns. There is an additional practical, but nonetheless important design criterion that relates to the

(software) development of traffic simulation models. Such new additions to the already broad family of micro-simulation

models need to find their way into both commercial (closed-source) (e.g. Casas et al., 2010; Fellendorf and Vortisch, 2009;

Mahut and Florian, 2010; Sykes, 2010 ) and open-source ( Krajzewicz et al., 2012; Treiber and Kesting, 2010; van Lint et al.,

2016 ) traffic microsimulation packages. This requires a generic modelling framework that allows combination of different

modelling approaches and implementations that are modular and maintainable. 

The central contribution of this paper is such a generic multi-level modelling and simulation framework that supports

this research challenge and that generalizes existing approaches to incorporate human factors in models for driving behav-

ior. In this paper we focus on car following (CF) only, however, the framework can be naturally extended to support lane
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Fig. 1. Driving as a control task. For clarity, the many external factors affecting perception, response and driver characteristics (e.g. traffic conditions, 

environment, control, etc.) are not drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

changing (LC) or other driving behaviors (crossing, merging, etc). The paper is outlined as follows. In Section 2 we discuss

human factors in CF models along two dimensions: the what (HF process is modelled) and the how (this is done). On the ba-

sis thereof we then present our conceptual framework and the theory behind it In Section 3 . In Section 4 we operationalize

this framework in a simulation case, and in section 5 we present the results. In Sections 4 and 7 , we respectively synthesize

and critically discuss these results and close with conclusions and an outlook for further research. 

2. Human factors in car following models 

There are many excellent reviews and taxonomies of longitudinal driving available in the literature, e.g. ( Brackstone

and McDonald, 1999; Saifuzzaman and Zheng, 2014; van Wageningen-Kessels et al., 2014 ), of which Saifuzzaman and

Zheng (2014) specifically discuss HF in car following models. This section is not intended as an additional review, but as

a motivation and underpinning for the framework we present in the next section. To this end, we review the literature

along two dimensions that we informally depict as the what (process is modeled) and the how (this is done). 

2.1. What (HF) processes are modeled 

To explain the “what” dimension of human factors modeling in traffic, consider Fig. 1 , in which the driving task is stylized

as a control task. The figure highlights the two main processes to perform this control task, and HF plays a fundamental role

in both. First, there is a perception process, in which the (observed) environment is recognized, understood and translated

into (possibly predicted) stimuli, such as distance gaps and speed differences. This process is subject to driver traits, which

encompass all relevant mental states, attitudes, preferences, skills, etc., and to the mechanical characteristics (inertia) of

the vehicle. Second, there is a response process, in which drivers act based on the perceived and possibly predicted stimuli.

Clearly, also the response process is subject to driver traits. In this paper, we consider the perception and response processes

at the tactical (maneuver) and operational (control) level only, as described by Michon (1985) as illustrated in Fig. 2 . 

We prefer to use the terms tactical and operational for these levels, since also maneuvers and strategic behaviors are

control processes that involve perception and response as well—albeit with longer control time-steps and -spans. Perception

and response on the tactical and operational levels are both influenced by strategical (route- and path-planning) behaviors—

these relationships are beyond the scope of this paper. Fig. 2 further highlights that tactical and operational driving are

affected by the driving environment. These include traffic conditions, road lay-out, traffic rules and control, weather, and also

distractions and technology ( Farah et al., 2018 ). Finally, drivers also perform other tasks than driving (distractions), which

may affect their perceptions, responses and ultimately driving performance. Note that some behaviors may be categorized at

more than one level, e.g. path choice may emerge from maneuvering (rather than from active decision making) and speed

choice may similarly emerge from control actions. 

In Table 1 , we have adapted the list of HF used in the review by Saifuzzaman and Zheng (2014) by structuring it along

the “what” (perception and response) dimension. Note that contrary to other more detailed paths of thought in cognitive

science, this classification simplifies the general flow of information processing to these two central aspects, which can be

associated with input and output. The authors are well aware of the existence of intermediate constructs; however, these

are not sufficiently understood to allow detailed application in the traffic modelling at this time and are therefore omitted. 
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Fig. 2. The hierarchical structure of the road user task. Performance is structured at three intertwined levels. (Source: Michon, 1985 , yellow “post-its” are 

added). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. How (HF) processes are modelled 

The second dimension relates to “how” HF are incorporated in CF models mathematically. To streamline the discussion,

we frame CF models using the following general functional: 

a i ( t + τi ( t ) ) = f ( S i ( t ) , θi ( t ) , ω i ( t ) ) (1) 

in which a i ( t ) denotes acceleration; τ i ( t ) reaction time; S i ( t ) a set of available stimuli e.g. speeds, speed differences, distance

gaps with respect to the ego-vehicle i and its leader(s); θ i a set of driver preferences (e.g. car following parameters), amongst

which his/her sensitivity to these stimuli; ω i ( t ) a set of characteristics of the (perceivable) world PW i ( t ) for driver i that may

affect the response (e.g. control, visibility, etc). In these variables, the subscript i denotes driver ( i ) specifity, and t denotes

(continuous) time. 

We can distinguish between two main approaches of how HF processes are modelled. The first, and most common, is

that HF processes are incorporated exogenously by means of fixed parameters in the (core) stimulus-response car following

logic, which in the simplest case are deterministic (i.e. mean values), or drawn from some (known) distribution, that is 

θi ∼ g θ ( μθ , σθ ) (2) 

The same holds for reaction time, e.g., τ i ∼ g τ ( μτ , σ τ ). This approach allows one to vary both response (behavior) and

reaction time over drivers, but this approach cannot explain the dynamics of that behavior over time for the same driver.

Ossen and Hoogendoorn (2011) show that both distributions (inter-driver and intra-driver, i.e. dynamics over time) are wide.

The differences between drivers pertain not just to parameter distributions (i.e. trajectories of different drivers are best

described with different sets of parameters fitted for the same car following models); but also to (car following) model

distributions (i.e. trajectories of different drivers are best described with different car following logic; Ossen and Hoogen-

doorn, 2011 ). Perception errors, i.e. errors in stimuli input to car following models, can also be modelled exogenously. The

challenge here is that such errors are typically auto-correlated. Treiber et al. (2006) suggest a Wiener process (with known

parameters) to simulate consecutive perception errors. The same technique for exogenous modeling of perception errors is

used in Van Lint et al. (2018) . Exogenous modelling of perception errors allows one to study the robustness to erroneous

inputs of the assumed control laws with which drivers follow leading vehicles, but do not reveal the mechanisms that may

cause these errors. In sum, exogenous modelling of HF factors can be used to cater for inter-driver differences; and allow

for “what-if” type analysis, but they do not provide insight in what causes intra-driver differences (dynamics over time) in

the HF mechanisms governing perception, anticipation or response. 

The second “how” approach overcomes this limitation and incorporates HF endogenously, by means of (dynamic) func-

tions or algorithms that explain both dynamics in reaction time and response parameters, as well as inter-driver differences.

These dynamics can be formulated in general as 

d 

dt 
γi ( t ) = h ( γi ( t ) , S i ( t ) , ω i ( t ) ) , with γi = [ τi , θi ] (3) 

in which the change in driver state (i.e. his/her reaction time and response parameters) is a function of their cur-

rent state, the stimuli at hand and the environment. The perception threshold mechanism in the Wiedemann model

( Wiedemann, 1974 ), the prospect theory based risk-taking mechanism in Hamdar and Mahmassani (2008) , Hamdar et al.

(2015a ) and the task capability interface model implementations in Hoogendoorn et al. (2013) , Saifuzzaman et al. (2017,

2015 ) are examples of such an approach (we discuss the TCI model of Fuller (2011) in more detail in Section 3.3.2 ). In
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Table 1 

HF modelling in car following along the “what” (process is modelled) dimension, adapted from ( Saifuzzaman and Zheng, 2014 ). 

What (process) Aspects and driver traits ∗ Examples 

Perception 

How drivers 

translate signals 

from the 

environment to 

(anticipated) 

stimuli. 

Reaction time. This involves the 

physical delay between observing (a 

braking light) and responding 

(braking), and the delay caused by 

diverted attention. 

Most CF models have been extended with reaction time, e.g. ( Davis, 2003; 

Gazis et al., 1961; Treiber et al., 2006 ). By and large, only for small reaction 

times do car following laws result in stable dynamics. 

Estimation errors. Humans observe 

stimuli with a limited accuracy as a 

function of distance and visibility 

conditions. 

There is abundant evidence that drivers have systematic biases in judging both 

distances and speeds ( Castro et al., 2005; Nilsson, 2000; Thiffault and 

Bergeron, 2003 ), and several CF models have been extensively tested under 

such errors, which are generally modelled as (auto-correlated) noise processes 

( Hamdar and Mahmassani, 2008; Treiber et al., 2006; Van Lint et al., 2018 ). No 

attempts have been made to our knowledge in modelling these errors 

endogenously (i.e. as the result of a HF process). 

Perception thresholds. Humans cannot 

perceive small changes in stimuli. 

Wiedemann was among the first to formalize driver inertia to small stimuli in 

CF models ( Wiedemann, 1974 ), after which various adaptations followed 

( Fritzsche, 1994 ). See also driver inertia 

Spatial anticipation. Drivers look ahead 

(downstream). 

Spatial adaptation is usually modelled by incorporating gaps between 

leader-follower pairs further downstream (i.e. downstream density), e.g. 

( Hoogendoorn et al., 2006; Ossen and Hoogendoorn, 2011; Treiber et al., 2006, 

2007; Van Lint et al., 2018 ). In general, spatial anticipation counter-effects the 

destabilizing effects of reaction times. 

Temporal anticipation. Drivers 

extrapolate conditions (over space and 

time). 

Typically, some form of dead-reckoning (using constant speed or acceleration) 

is adopted ( Treiber et al., 2006; Van Lint et al., 2018 ). Temporal anticipation 

also counter-effects reaction times. 

Distractions. Competing information 

processing activities affect perception 

Distractions, and particularly visual distractions are detrimental for the driving 

task ( Precht et al., 2017a , b; Rebecca et al., 2008 ). Various researchers have 

experimented with distractions in terms of consequences for the car following 

task ( Chan and Singhal, 2015; Hansen et al., 2017; Hoogendoorn et al., 2010; 

Hoogendoorn et al., 2011; Kaber et al., 2012b; Saifuzzaman et al., 2015; 

Schömig and Metz, 2013 ) and the modelling thereof. 

Response 

How drivers 

dynamically and 

context-specifically 

respond to these 

stimuli. 

Sensitivity to stimuli (relative speed, 

position, etc) 

Every CF model contains parameters that govern the degree in which drivers 

respond to stimuli. These may dynamically change due to circumstances (see 

context sensitivity) 

Preferences. Drivers’ desired speed, 

spacing, headway, etc. 

Similarly, most CF models contain one or more parameters describing driver 

preferences. In exploring inter-driver heterogeneity, these are typically 

modelled as distributions over drivers ( Montanino and Punzo, 2015; Ossen and 

Hoogendoorn, 2011 ). 

Context sensitivity. Different contexts 

may (dynamically) affect driving 

response. 

It is widely recognized that parameters in CF models are both driver and 

context dependent, e.g. ( Laval and Leclercq, 2010a; Ossen and Hoogendoorn, 

2011; Zheng et al., 2013 ). Clearly, as contexts dynamically change, so should 

the parameters. 

Inertia. Even if drivers perceive (small) 

stimuli, they may not respond to these. 

Wiedemann-type models ( Fritzsche, 1994; Wiedemann, 1974 ) are also termed 

action point models, since drivers are assumed to change their responses at 

discrete time instants (and continue according to the last response in between) 

rather than continuously. 

Aggressiveness or risk-taking 

propensity 

Laval and Leclercq (2010b) show how even in very simple CF models 

differentiating between timid and aggressive drivers complex but realistic 

stop-and-go patterns can be reproduced. More generally, there is rich literature 

on the driver- and context specific role of risk taking in various driving tasks 

( Farah et al., 2008; Jamson et al., 2012; Michaels et al., 2017; Precht et al., 

2017b ), and a few attempts to explicitly model this endogenously in CF models 

( Hamdar et al., 2015a, 2008 ). 

 

 

 

 

 

 

 

 

 

Saifuzzaman et al. (2015) , for example, the Gibbs and IDM CF models are augmented with a dynamic term for task difficulty

to adapt the acceleration response. The idea is that drivers increase their desired headway under conditions where the driv-

ing task becomes too difficult, which they assume is the case when their actual headway becomes too small. Task difficulty

TD i is considered proportional to the ratio of a driver’s desired time headway T i and the actual headway �v i ( t )/ s i ( t ), i.e. 

T D i ( t + τi ) = 

(
�v i ( t ) T i 

( 1 − δi ) s i ( t ) 

)γ

(4)

In which δi is a driver specific risk factor (the larger it is, the higher task difficulty) and γ a scaling factor (again, the

larger it is, the higher task difficulty under similar circumstances). Saifuzzaman et al. (2015) estimate the scaling factor δi

along with other model parameters using driving simulator data and show how incorporation of this dynamic term gives

a (potential) explanatory mechanism for trajectories of aggressive (small or negative δi ) and timid (large δi ) drivers. In

Saifuzzaman et al. (2017) the same idea is used as an explanatory mechanism for traffic hysteresis and traffic oscillations.

As we will show further below, there are many other possible HF mechanisms that could explain such dynamics. 
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2.3. Synthesis 

As argued in the introduction, there is already a huge diversity in models for driving behavior characterized by different

assumptions on how drivers respond to stimuli—and which stimuli they respond to. Table 1 illustrates that the amount

of assumptions and modelling approaches will most likely steeply increase once we start to incorporate more realistic HF

processes into these different models. We propose a framework, with which it becomes possible to do this in a highly

systematic way. This requires us to go one step further than the endogenous modelling examples above, in which a selection

of HF parameters (e.g. task difficulty or risk propensity) are first endogenously computed and then embedded in the core car

following logic. We generalize these approaches, by decoupling idealized and HF driving completely. We propose a multi-

level representation of the driving task, with a “coarser level” in which idealized (collision-free) behavior is modeled; and

an explanatory (HF) layer underneath that governs the dynamics of the inputs and parameters of this “idealized” level, and

hence relaxes the collision-free assumption. By separating these layers completely, we allow analysts to mix a wide range

models for driving behavior with a wide range of models for the underlying HF processes. In the remainder of this paper,

we further detail this framework and explore its properties in a case where drivers are distracted. 

3. Multi-level modelling and simulation framework 

3.1. Scope and overall idea 

We propose a modeling and simulation framework for operational driving (contingent to tactical and strategical driving

as depicted in Fig. 1 ) in which we maintain the tasks a driver executes and the effects these tasks have on the two main

HF processes considered while driving: perception and response. Most importantly, there is the driving task itself, which

for now we restrict to just car following and free driving. We discuss possible generalization to other driving tasks such as

lateral movement and conflict negotiation in the discussion section. Secondly, there are secondary tasks, that do not (di-

rectly) contribute to driving, but that may affect perception and response, for example in-vehicle or outside distractions.

This effect is due to the fact that all tasks consume information processing capacity through the perception and interpre-

tation of the driving environment as well as responding to these (car following, lane changing, etc.). To allow their effects

on driving to be quantified, we propose to maintain a (minimal) set of key mental state variables, which are based on

psychological constructs that are found in HF literature (e.g. ( Endsley, 20 0 0; Fuller, 20 05 , 2011; Kaber et al., 2012a; Teh

et al., 2014 )) and are used to describe operational perception and response processes in the context of driving behavior.

These are situational awareness SA ( t ), which encapsulates multiple dimensions of perception (including focus / distraction)

( Endsley, 1995; Wickens, 2008 ); and driver task demand TD ( t ), which is used in many studies as (one of the) explanatory

concepts when it comes to explaining driving performance ( Precht et al., 2017b; Teh et al., 2014 ) under a broad range of

conditions. In simple terms, TD ( t ) describes the cumulative workload of each cognitive task that a driver is subjected to,

whereas SA ( t ) describes how well a driver is aware of their environment, particularly of those stimuli in the environment

that a driver needs to safely and efficiently perform the driving task. The manner in which information is processed from

perception through to the cognitive decision process is caught within the SA construct and depends on a drivers’ traits and

current state but goes beyond the scope of this contribution. In our framework, both TD ( t ) and SA ( t ) are dynamic (i.e. they

change over time and space); and they affect driving parameters (reaction time, frequency and magnitude of perception

errors) and the response of drivers (sensitivities to e.g. distance gaps). We describe this in more detail below. Clearly, many

more social/psychological/physiological factors (e.g. interaction with passengers, emotional state, fatigue, etc) are relevant 

in describing (and simulating) perception and response processes. However, it is important to stress that we need to strike

balance between a description that is 

• sufficiently accurate, so that valid inference is possible of both the efficiency and safety effects of the traffic operations

resulting from interactions between drivers; 
• sufficiently generic, so that many different approaches to modelling HF processes in models for driving behavior can be

cast in the framework (directly or via natural extensions); 
• sufficiently simple (mathematically / computationally), so that simulation in large congested networks is still possible.

Simplicity also relates to the level of detail with which non-driving tasks are modelled. For our purposes, we do not care

about the details of the HF processes involved in non-driving tasks (in this paper we consider e.g. distractions); we care

only for the net result in terms of how much information processing these tasks consume and how that affects driving

behavior. 

We make two more overall points. Firstly, the word description here above is in italics because the models cast in this

framework may not provide causal explanations as to WHY (or how) driving performance deteriorates. What we want is a

descriptive model that—using variables available in the simulation only —is able to predict THAT this happens under certain

conditions, analogously to how in a macroscopic traffic flow model the fundamental diagram is not a causal model relating
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Fig. 3. Conceptual modelling & simulation framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

speed to density, but a descriptive (statistical) model that describes that speed drops with increasing density. 1 Secondly,

the framework outlined in this paper is a theoretical framework. We provide some face-validation in this (and a follow-

up) paper, but virtually every component and relationship in it ( Fig. 3 ) constitutes of many hypotheses that require testing

with elaborate experimental methods (driving simulator or field research, mathematical analysis, simulation, etc.) to result

in valid mathematical and simulation models. However, due to the multi-level structure, the framework allows researchers

to do this in a systematic way. 

Fig. 3 outlines the main mechanisms in our framework, using the functional in Eq. (1) . First total task demands are

computed using (a) so-called fundamental diagrams of task demand and (b) task demand aggregation. Then the effect of

those accumulated task demands is computed on (c) personal traits (desired speed, headway, etc.); on (d) situational aware-

ness and as a consequence on (e) perception errors and (f) reaction time dynamics. Below we elaborate on each of these

components. 

3.2. State variables & basic relationships 

3.2.1. Task demand and task capacity 

In our simulation framework we define task demand as the amount of information processing effort (per unit time) needed

to fulfill a task (i.e. to reach an objective such as not colliding into the leading vehicle) 2 We define the following variables: 

TC Nominal Task Capacity Information processing capacity a nominal (standard) driver has available to execute tasks safely 

and efficiently. TC = 1 ( or 100%). 

TC i ( t ) Driver Task Capacity Information processing capacity for driver i in units of TC 

T D a 
i 
(t) Driver Task Demand Variable that describes how much information processing effort driver i requires performing a 

particular task a (safely and/or satisfactorily) in units of TC 

TD i ( t ) Total Driver Task demand Sum of all task demands for driver i , that is, 

T D i ( t ) = 

∑ 

a 

T D 

a 
i ( t ) . (5)

TS i ( t ) Driver Task Saturation Variable that expresses total driver task demand TD i ( t ) relative to TC i ( t ), that is, 

T S i ( t ) = 

T D i ( t ) 

T C i ( t ) 
. (6)

Clearly, in cases when driver task saturation TS i ( t ) is close to (or larger than) 1 the performance of a driver deteriorates.

This performance deterioration may take the form of changes in awareness (larger perception errors, longer reaction times);
1 In free flow drivers may reduce their speed based on decreasing distance gaps, whereas in congestion, drivers may adjust their distance gaps based 

on decreasing speeds. The direction of causality does not matter for the validity of the predicted traffic conditions with macroscopic traffic flow theory. A 

descriptive (statistical) model suffices. 
2 We realize this definition differs from what is commonly used in the HF field; e.g. De Waard (2002) defines task demand in terms of goals that have 

to be reached and (mental) workload as the proportion of a drivers mental processing capacity that is allocated for task performance (such that those 

task demands are met). However, for simplicity reasons, and because of the intuitive analogy with traffic flow modelling, we prefer to define driver task 

demand as a variable that expresses how much mental processing is demanded by a task versus driver task capacity that expresses how much processing 

“power” a driver has available for it. 
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changes in responses (smaller or larger sensitivities) and driver state (changes in other driver traits). These effects and how

to model them are discussed in the following sub-sections. We first focus on how to maintain total driver task demand as

a state variable, which requires that it can be endogenously computed within the simulation, using whatever information is

available in the simulation 

3.2.2. Fundamental diagrams of task demand 

Consider a car following task as in Fig. 3 (a). In the limit, with very short time headways under dense near capacity condi-

tions, this task will require virtually all (driver specific) information processing capacity, i.e. T D 

CF 
i 

(t) ≈ T C i (t) , whereas with

longer headways under light(er) conditions, this task may consume not only a fraction of a drivers’ information processing

capacity, with some steep transition beyond a critical time headway value. This idea, a so-called “fundamental diagram of

task demand” (FDTD) for car following, is illustrated in the example in Fig. 3 (a), in which the relationship between task

demand and time headway of a driver is depicted under two different circumstances—say rainy and dry weather. Note that

in the figure, driver task capacity TC i ( t ) is slightly below nominal task capacity TC ( t ), implying this driver has car following

skills slightly below average. We propose the following requirements for FDTD’s: 

Req. 1. Task demand is expressed in units of “nominal” task capacity—this is an arbitrary “red line of workload”

( Rebecca et al., 2008 ) beyond which additional task demand results in performance degradation (we return to this

further below) 

Req. 2. Task demand must be expressed as a function of variables (made) available in the simulation. 

For car following time headway seems a logical choice, for lane change maneuvers a combination of headway, den-

sity, and available gaps may work whereas for merging additionally distance / time to diverge point may provide a

good basis. Possibly, variables (constructs) derived from these primary variables may be used such as measures for

complexity of the driving task (e.g. Hoogendoorn et al., 2013; Teh et al., 2014 ). See also Req. 4. 

For non-driving tasks, FDTD’s could be expressed as function of the location, time duration or severity of the dis-

traction (see the example below). It is important to note that we exclusively consider secondary tasks that affect

information processing capacity required for safe and efficient driving. Precht et al. (2017a) for example conclude

that particularly high-risk visually/visual-manually distracting secondary tasks (looking away because of distractions 

outside or inside the vehicle) result in aberrant driving behavior. They also point out that some distractions (e.g. con-

versations) may distract the driver under some conditions (e.g. at decision points); but may actually support safe(r)

driving under other conditions (in case of fatigue). Both such tasks could fit in the framework, however, the direction

in which a secondary task interferes with the driving task (positive or negative) is considered input to our framework.

Although we restrict the discussion in this paper to the car following task only, we believe that in principle, driver

trait and circumstance-specific FDTD’s can be formulated for a wider selection of relevant operational and tactical driving

tasks (e.g. overtaking, weaving, responding to signaling, etc.), in which task demand and task saturation play a role in the

performance of executing such tasks. We return to this claim in the discussion and synthesis section. To cater for that

discussion, we do propose a third requirement: 

Req. 3. FDTD’s that express task demand at the tactical (maneuver) level prevail over (are considered to subsume) task

demands at the operational (control) level. For example, a FDTD for executing a lane change maneuver should incor-

porate task demand for the inherent car following subtasks within that maneuver. 

Req. 3 is important for two reasons. First, the amount of information processing for a task is context sensitive. Very

short headways may be comfortable during a lane change maneuver, but highly uncomfortable when following a truck

on a narrow freeway lane. Second, it seems a priori very difficult (if not impossible) to empirically validate a model that

disentangles a lane change move into all its constituent subtasks and to quantify separate task demands for each along the

maneuver. It makes more sense to keep it simple and formulate a FDTD for different maneuvers (free driving, car following,

lane changing, merging, etc) in terms of their total driver task demand. 

There is good reason, however, to consider separation between secondary tasks such as distractions, particularly those

that require visual perception ( Precht et al., 2017a , b; Rebecca et al., 2008 ), since these all utilize the same information

processing channel (vision). Whether or not multiple distractions have an additive effect (as in Eq. (5) ) is a hypothesis that

requires testing. For lack of evidence otherwise, in this paper we assume an additive effect, so that given a stack of tasks one

can—as often as deemed necessary (in the limit at every simulation time step)—compute a drivers’ total task demand and

task saturation ( Fig. 3 (b)) and consequently, the resulting performance deterioration (if any). This deterioration may involve

two things: 

• Deterioration in awareness in terms of increased reaction time and increased perception errors ( Fig. 3 (d)–(f)) 
• Response adaptation in terms of changes in preferences (desired speed, headway, etc) and other personal traits ( Fig. 3 (c))

Before discussing both with an illustrative example, we first further detail a conceptual model for awareness. 

3.2.3. Conceptual model for situational awareness 

Following Endsleys’ dynamic situational awareness model ( Endsley, 1995; Wickens, 2008 ), we consider three levels of SA.

These are (1) sensing the relevant objects and information; (2) comprehension (i.e. correctly interpreting this information);
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Fig. 4. Conceptual model for awareness based on Endsley ( Endsley, 1995; Wickens, 2008 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and (3) anticipation (making short term predictions for decision making). These three levels of awareness constitute three

stages in the perception process, as schematically outlined in Fig. 4 . In SA step 1 (sensing), a driver perceives a selection of

the available pieces of information from the total perceivable world ( PW i , i.e. everything a driver could physically observe)

needed to perform the driving task (other vehicles, traffic signs, control signals, geometry, etc) and stores these in its mental

world ( MW i ). In SA, step 2 (comprehension), the driver derives from these objects the set of stimuli s i ( t ) with which it

can make decisions (overtake, brake, etc). Depending on the (CF, LC and other) models used, s i ( t ) may include (relative

differences in) gap, and speed; traffic signals, etc. In SA step 3 (anticipation), finally, a (time series) prediction S i ( t ) = { s i ( t ),…,

s i ( t + T )} of these stimuli is made. We thus define three levels: 

SA n 
i 
(t) Situational Awareness Level 

1 (sensing) 

Variable that describes how aware a driver i is of all the objects (other traffic participants and 

information sources) required for performing the driving task. 

SA c 
i 
(t) Situational Awareness Level 

2 (comprehension) 

Variable that describes how well (in terms of accuracy and efficiency) a driver is able to translate 

this information into stimuli. 

SA a 
i 
(t) Situational Awareness Level 

3 (anticipation, prediction) 

Variable that describes how well (in terms of accuracy and efficiency) a driver is able to anticipate 

(predict) the future evolution of these stimuli. 

Fig. 4 also illustrates that in our framework we distinguish between a physical reaction time τ p 
i 

, which is the result of

the three-stage perception process; and an attention time lag τ a 
i 

, which is the result of competing (secondary) information

processing activities while driving. The total reaction time that is ultimately used in the upper-level models for CF (LC, GA,

etc), equals the sum of both components, i.e. 

τi = τ a 
i + τ p 

i 
(7)

Like task demand, the SA variables may be chosen as continuous values (e.g. between 0 and 1), but one may equally

argue for categorical, ordinal or fuzzy values (e.g. “bad”, “moderate”, “good”), or whatever parameterization works in a

particular case. These three aspects affect driving performance in different ways and may also be (positively or negatively)

influenced in different ways. For example, drivers behind a large truck have limited sensory awareness: they will miss

relevant downstream information but may still have an excellent comprehension and prediction on the basis of what they

can notice (and perhaps have noticed in the past). Under adverse weather conditions drivers may still notice all relevant

aspects of the environment, but the conditions may affect com prehension (level 2 awareness), because it’s more difficult to

judge distances in heavy rain. Their anticipation/prediction skills may not suffer directly, although indirect predictions based

on erroneous inputs may be less reliable. Adverse weather may also increase physical reaction time (the duration of the

perception process) because it takes more “processing time” under limited visibility to judge distances and relative speeds. 

3.3. Conceptual framework using an example 

We now discuss the conceptual framework of Fig. 3 on the basis of the illustrative example in Fig. 5 , in which we

follow (through a sequence of events) a particular nominal driver i ( TC i ( t ) = TC ) who is car following. At time t 1 , a vehicle

merges in front of vehicle i , significantly decreasing the headway. A little later at t 2 , driver i receives a telephone call, which

(s)he finishes at time t 6 . First note that we propose two FDTD’s, one for the car following task ( Fig. 5 (a)-left) and one

for a distraction: making a telephone call ( Fig. 5 (a)-right). For the former, we consider a simple linear function in which
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Fig. 5. Illustrative example dynamics task demand and the use of fundamental diagrams of task demand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T D 

CF 
i 

(t) = T C i (t) for headways near zero seconds ( h ↓ 0) and T D 

CF 
i 

(t) = 0 for say h > 4 seconds. For the latter, we consider a

function with a short peak at the start (hearing and accepting the call) and a constant task demand during the rest of the

conversation. At every stage in the sequence of events, the task demand level for both activities are indicated with a thick

circle in each FDTD graph. Under Fig. 5 (b), total task demand is drawn at each time instant, computed according to Eq. (5) ;

under Fig. 5 (c), the vehicle positions are schematically drawn and under Fig. 5 (d) a narrative to the example is provided. 

3.3.1. Initial state(s) of the driver 

At t 0 , the driver follows the leader at a comfortable time headway (e.g. h = 3 s). This consumes some cognitive informa-

tion processing capacity but has no detrimental effect on either perception or response—the driver operates according to his

base level parameters (reaction time, sensitivities, SA levels, etc). In the period [ t 0 , t 1 ], a vehicle merges onto the roadway

and becomes the new leader. Time headway now decreases ( h = 2 s) and the car following task demand increases accord-

ingly. Possibly, we see a small effect (increased perception errors), although these may be counter effected by appropriate

anticipation strategies ( Treiber et al., 2006; Van Lint et al., 2018 ). 

3.3.2. Effects of a distraction 

At t 2 , the driver receives a telephone call. This results in a steep increase in total task demand due to an additional

task T D 

call 
i 

, such that TD i ( t ) > TC i ( t ) (i.e. TS i ( t ) > 1). The driver is now oversaturated, which will (immediately) result in a

deterioration of perception / awareness levels on an operational level: 

• Deterioration in sensing: the driver may miss relevant information (e.g. a vehicle on an adjacent lane). This in a sense

is the worst possible effect (overlooking vehicles or other safety critical information), which in this simple car following

case will not occur. 
• Deterioration in comprehension: the driver will increasingly misjudge relative distances and speeds. There is much

evidence in terms of which factors cause drivers to make errors, and visual distractions form an important category

( Precht et al., 2017a , b; Wickens et al., 2008 ). There is also evidence in terms of the direction of specific perception biases

that affect driving. For example, the findings in Nilsson (20 0 0) suggest that gaps (perceived while driving at 80 km/h)

are generally underestimated, and that the front gap is more underestimated than the rear gap. Additionally, humans

typically find it even more difficult to judge speed differences than distance gaps ( Hunt et al., 2011 ), and also here, the

bias is towards underestimation. There is also some evidence for distance overestimation under specific circumstances

and conditions (e.g. gap assessment, night time driving ( Castro et al., 2005; Lee and Sheppard, 2017 )). We will vary with

both biases in the simulations. 
• Deterioration in anticipation, either directly (the driver resorts to simpler more erroneous anticipation strategies) or

indirectly (since the input to a drivers’ “anticipation algorithm” is now more unreliable) 
• A possible increase in overall reaction time. One may argue this increase relates to attention time-lag (the driver looks

at the phone regularly) or to physical reaction time (the conversation eats up cognitive processing, so particularly com-
prehension and anticipation take more time), or to a combination of the two. The net result is the same. 
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Fig. 6. Central ideas of Fullers’ task capability interface model (based on Fuller, 2011 ) for operational driving. Note that in this paper we use the term 

driver task capacity (instead of capability)—the reader may interpret these as synonyms (see running text). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A second effect takes place on a tactical level: the driver will adapt his/her driving behavior to accommodate for the

increase in task demand. This behavioral adaptation is the key principle in Fuller’s task capability interface (TCI) model

( Fuller, 2005 , 2011) and is illustrated in Fig. 6 . Note that in this paper we use the term driver task capacity instead of

capability , the reader may interpret these as synonyms (the Cambridge dictionary defines capability as “the ability to do

something”, and capacity as “the ability to do a particular thing”). We prefer the term capacity for its second connotation

as a quantitative measure (for how much ability someone has “to do a particular thing”). When discussing Fuller, we use his

term (capability), but in the ensuing we will stick to our term (capacity). Fuller conceptualizes driving as a control task, in

which drivers at the operational level at the very least avoid collisions. According to his theory drivers monitor the difference

between (perceived) task demand and task capability. This results in a perceived safety margin: the difference between what

a driver believes (s)he is capable of handling and the perceived demands of a particular task ( Fig. 6 right). The smaller this

safety margin, the higher the risk and level of arousal drivers experience. In the original paper ( Fuller, 2005 ), the theoretical

background is that of task difficulty homeostasis, i.e. drivers seek for and return to a constant level of risk (arousal). Later

( Fuller, 2011 ) Fuller relaxes the theory with a risk allostasis principle, in which drivers dynamically adapt their “risk set-

point”. Either way, whereas a driver reacts on a perceived risk, the actual consequences follow from the objective safety

margin, which is typically smaller, since drivers typically overestimate their capabilities and underestimate the actual task

demand. In our framework, the difference between perceived and objective task demand and capacity can be easily catered

for, but even if we grant drivers an objective judgement about both, their decisions will be based on perceived stimuli (L2

awareness) and derived anticipation thereof (L3 awareness), which can be wrong as outlined above. 

Returning to the example of Fig. 5 , the driver in this simple car following case has one choice to return to an acceptable

risk level (safety margin), and that is (between t 3 and t 4 ) to decrease speed and (as a result) to increase time headway.

Both can be achieved in various ways in different car following models (e.g. by reducing desired speed, increasing desired

headway, etc.). Despite this adaptation, the driver in this example still operates in an oversaturated state, which implies

considerable perception errors and—depending on the characteristics of the distraction—increased reaction time. When the

call finishes at t 5 we assume the driver responds again by returning to (e.g.) a desired speed preference slightly above his

base level resulting in a level of risk slightly higher than just before the call. 

3.4. Summary 

The proposed conceptual framework models the driving task in a multi-layered fashion. At the highest level, we have

ideal (in principle collision-free) models for car following and other driving tasks. These models typically have reaction

times and a set of other high-level HF parameters that exogenously “govern the human factor” (typically sensitivities to

stimuli, desired speed, etc). At the lowest level, we define state variables that maintain how many tasks drivers execute and

what the information processing costs are of performing these tasks—this we model using so-called fundamental diagrams

of task demand ( Fig. 3 (a)). In between these two, we define functions that govern the dynamics of high-level HF parameters
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with these state variables as inputs. When total task demand ( Fig. 3 (b)) increases beyond task capacity two processes take

place: 

• Firstly, different levels of awareness (based on Endsley) may deteriorate ( Fig. 3 (d)): reaction time may increase ( Fig. 3 (e))

and perception errors may become more severe ( Fig. 3 (f)) 
• Secondly, drivers adapt their response in line with Fullers risk allostasis theory to reduce risk to acceptable levels

( Fig. 3 (c)), where “acceptable” may be driver, circumstance and maneuver specific. During a lane change manoeuver

temporarily very short headways will not result in such high task saturations (recall Req 4 in Section 3.2.2 ) 
• Thirdly, over time other driver specific traits may experience a (temporary) temporal adjustment. In the example, the

driver increased desired speed after finishing a phone call to make up for lost time. Any hypothesis on longer term

feedback between increased levels of task demand and behavioral response could be incorporated. 

Finally note that whereas very high task saturation may reduce awareness, the same may be true for very low task

saturation (e.g. Thiffault and Bergeron, 2003 ), which is why relationship (d) in Fig. 3 has the characteristic “reverse U”

shape. In this case, we would most likely observe sensing (SA level 1) errors and long(er) attention time-lags. We will not

further elaborate on this issue, other than that it is possible to incorporate this behavior in the framework. 

4. Case: simulating driver distraction 

The conceptual framework that we presented in the previous sections is demonstrated in a simulation case in which

we apply different task demand components and sensitivities to these components. Our aim is twofold. First we want to

verify that implementation of the mechanisms in Fig. 3 indeed result in plausible changes (deterioration) of performance in

driving ability, which aligns to that found in literature (e.g. Hoogendoorn et al., 2010; Saifuzzaman et al., 2017 ). Second, and

related, we want to explore the sensitivity of those results with respect to our (many) assumptions. 

4.1. Case description and applied traffic model 

We consider car-following only and use the IDM + Schakel et al., 2012 ) for this purpose, which is an adaptation of the

Intelligent Driver Model (IDM) ( Treiber et al., 20 0 0 ). The IDM + separates the free and car-following terms and takes the

minimum, rather than superimposing the terms. This allows more realistic capacity values under reasonable parameter

values. The car-following acceleration is determined using Eqs. (8) and ( (9) , where τ i denotes the reaction time; parameter

a i max is the maximum acceleration; b i 
com f 

the maximum comfortable deceleration (expressed as a positive number); v i 
0 

the

desired speed; T i the desired headway, and s i 
0 

is the stopping distance. Furthermore, we have three stimuli, these are the

prevailing speed v i ( t ) of driver i ; speed difference with the leader �v i ( t ) = v i − 1 ( t ) − v i ( t ) and (net distance) gap with the

leader s i (t) = x i −1 (t) + s i −1 
0 

− x i (t) . For the base case we choose the following values: τ i = 0; a i max = 3 m/s 2 ; b i 
com f 

= 3 m/s 2 ;

ν i 
0 

= 35 m / s ; s i 
0 

= 8 m and T i = 1.2 s. Finally, for parameter δ we use a standard value of 4, which reduces the maximum

acceleration as speed increases. 

a i ( t + τi ) = a i max min 

( 

1 −
(

v i ( t ) 
v i 

0 

)δ

, 1 −
(

s i ( t ) 

s ∗
i ( t ) 

)2 
) 

(8) 

s ∗i ( t ) = s i 0 + v i ( t ) · T i + 

v i ( t ) · �v i ( t ) 

2 

√ 

a i max b i 
com f 

(9) 

We consider an arbitrary homogeneous single lane road corridor of L = 3 km, without ramps or any other infrastructural

disturbances. At a certain location x acc an incident is presumed on the opposite carriageway that causes a distraction (rub-

bernecking) as schematically sketched in Fig. 7 (a). Traffic is generated during 15 minutes (900 seconds) upstream according

to a demand profile with a pulse of high (near capacity) demand after 100 seconds ( Fig. 7 (c)), which leads to the supply

pattern as in Fig. 7 (b) (dashed line indicates incident location). The total time spent (TTS) in this case equals 451 minutes

(see further below). 

4.2. Specification relationships for task demand and awareness 

Fig. 7 (d) and (e) depict the fundamental diagrams of task demand for the car following and distraction tasks, respectively.

Our (arbitrary) assumption is that a driver who is car following with headways smaller than h i 
min 

requires some maximum

level of information processing capacity ( T D 

CF 
i 

= T D 

i 
max,CF 

) to drive as an “ideal driver” Eqs. (8) and ( (9) ); whereas from

headways larger than h i 
0 

seconds, (s)he requires a much lower level ( T D 

CF 
i 

= T D 

i 
0 ,CF 

). In between, we assume a linear de-

crease in task demand. Specifically, we specify the FDTD for car following as a function of time headway h = v ( t ) �s ( t ) as
i i 
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Fig. 7. Base case lay-out, base demand and supply pattern and HF functions for drivers with nominal task capacity. In this case the total time spent (TTS) 

by all vehicles in the simulation is 456 min. 

 

 

 

 

 

 

 

 

 

follows (see Fig. 7 (c)) 

T D 

CF 
i ( h ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

T D 

i 
max,CF h ≤ h 

i 
min ( a ) 

T D 

i 
max,CF −

h − h 

i 
0 

h 

i 
min ( a ) − h 

i 
0 

(
T D 

i 
max,CF − T D 

i 
0 ,CF 

)
h 

i 
min ( a ) < h ≤ h 

i 
0 

T D 

i 
0 ,CF h > h 

i 
0 

, (10)

In which T D 

i 
0 ,CF 

= 0 . 5 ; T D 

i 
max,CF 

= 1 (100%) are the minimum and maximum task demand level while car following and

h i 
0 

= 3 (in seconds) and h i 
min 

(a ) the associated maximum and minimum threshold headway values respectively. We express

the minimum headway as a function of deceleration a = a i ( t ), to account for the effect that task demand specifically increases

in case of strong decelerations (emergency braking). We propose 

h 

i 
min ( a ) = 

⎧ ⎨ 

⎩ 

(
1 + 

a + b i 
com f 

b i max − b i 
com f 

)
h 

i 
min 

a < −b i 
com f 

h 

i 
min 

otherwise 

, (11)

In which b i max = 8 m/ s 2 represents the maximum braking acceleration we assume in this paper. Recall that b i 
com f 

is a

deceleration expressed as a positive value (in our case 3 m/s 2 ) 

For the distraction task ( Fig. 7 (e)), the assumption is that this distraction “eats up” task capacity along the same lines

as in the example in the previous paragraph. We (again arbitrarily) assume a linear increase in task demand from 400 m

towards the distraction until some maximum level ( T D 

ACC 
i 

= T D 

i 
max,ACC 

), after which a driver maintains this level for 200 m
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and then recuperates again. We specify the FDTD for the distraction task thus as a function of distance to the distraction

d = x i ( t ) − x acc as follows (see Fig. 7 (e)) 

T D 

acc 
i ( d ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

T D 

i 
max,ACC 

(
max 

(
0 , 1 − d 

d i 
min 

))
d < 0 

T D 

i 
max,ACC 

0 ≤ d < d i 
med 

T D 

i 
max,ACC 

(
1 − min 

(
1 , 

d − d i 
med 

d i max − d i 
med 

))
d i 

med 
≤ d < d i max 

, (12) 

In which T D 

i 
max = 0 . 8 (80%) is the maximum task demand level; and d i 

min 
= −40 0 ; d i 

med 
= 20 0 ; and d i max = 40 0 (all in

meters) are the three distance parameters in the FDTD function respectively. A possible way to interpret this maximum task

demand of 80% while passing the distraction is that the driver takes prolonged glances at the accident with brief looks

straight-ahead with a ratio of about 4:1 (80/20). Since both visual tasks use the same information channel (vision) they are

mutually exclusive. The distance values are a reasonable estimate of where (at high speed) a driver may feel compelled to

look at the accident. 

Filling in Eqs. (10) and (12) in (5) and (6) gives us total task demand TD i ( t ) and task saturation TS i ( t ) (which as long as

task capacity TC i ( t ) = 1 are equal). A third relation between awareness SA i ( t ) and task saturation ts = TS i ( t ) ( Fig. 7 (f)) now

governs the effect on awareness. We specify this relation as follows 

SA ( ts ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

SA 

i 
max ts < T S i 

crit 

S A 

i 
max −

ts − T S i 
crit 

T S i max − T S i 
crit 

(
SA 

i 
max − SA 

i 
min 

)
T S i 

crit 
≤ ts < T S i max 

S A 

i 
min 

ts ≥ T S i max 

, (13) 

In which SA 

i 
max = 1 ; SA 

i 
min 

= 0 . 5 are the maximum and minimum SA levels; T S i 
crit 

= 0 . 8 the critical task saturation above

which awareness decreases; and T S i max = 2 . 0 the maximum task saturation level beyond which awareness no further de-

teriorates. Clearly, both the shape and the parameters values in Eqs. (10) , (12) , and (13) are arbitrary; we choose them to

accommodate the main assumed tendencies. 

4.3. Scenarios, hypotheses and specification of effects on perception & response 

We consider four behavioral scenarios, in which we explore increasingly complex combinations of HF effects as a result

of the distraction: 

I. Distraction with effects on perception errors, i.e. errors in distance gaps, speed differences and both 

II. Distraction with effects on perception errors and reaction time 

II. Distraction with effects on perception errors, reaction time and response adaptation in desired speed, desired headway

and both 

V. Same as 3, now with driver heterogeneity (varying task capacities) 

We describe them in the subsections further below. In each of these four scenarios, we consider four physical reaction

times: τ p 
i 

= { 0 , 0 . 2 , 0 . 5 , 1 } seconds. Clearly, setting physical reaction time to zero is an idealisation; however, one could

interpret this idealisation as follows. In the case τ i = 0, we implicitly assume that drivers are able to fully compensate their

physical reaction time due to the information processing for sensing, comprehension and anticipation, with the result of that

very same perception process: an adequate anticipation strategy. Put differently, τ i = 0 reflects a net result of the perception

process. Even under dense traffic conditions, this is a reasonable assumption to make, in line with e.g. ( Treiber et al., 2006;

Van Lint et al., 2018 ). Similarly, τ p 
i 

= 0 . 2 , 0 . 5 , 1 represent cases in which drivers are not able to fully compensate physical

reaction time with an adequate anticipation strategy. 

4.3.1. Scenario I: effects on perception errors 

In this scenario, we consider effects on level 2 awareness (comprehension) errors, which result in incorrect stimuli. The

assumption is that reduced awareness exacerbates known perception biases, that is, either an under- or overestimation of

both distance gaps and (relative) speeds (see Section 3.3.2 ). We propose 

s percei v ed 
i ( t ) = 

(
1 + δi ε

SA 
i ( t ) 

)
s i ( t ) (14) 

�v percei v ed 
i ( t ) = 

(
1 + δi ε

SA 
i ( t ) 

)
�v i ( t ) (15) 

in which 

εSA ( t ) = SA 

i 
max − S A i ( t ) 
i 
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is a factor between 0 and ( SA 

i 
max − SA 

i 
min 

) that determines the magnitude of the perception error, and 

T δi = 

{
−1 Driver i systematically underestimates gaps and speeds 
1 Driver i systematically overestimates gaps and speeds 

represents a factor that governs the direction of the perception bias. Note that we assume that a single driver has a fixed

direction toward either under- or overestimating both distance and speed differences. We consider three driver populations

such that 

δi = sign ( D − ν) 

with ν a random variable drawn from a uniform distribution over [0, 1], and 

D = 

{ 

0 δi = −1 , ∀ i. (all drivers underestimate) 
0 . 5 50 − 50 mix 
1 δi = 1 , ∀ i. (all drivers overrestimate) 

4.3.2. Scenario II: effects on perception and reaction time 

In this scenario, we do consider an increase in (net) reaction time with an attention time-lag, again proportional to the

decrease in awareness, that is, 

τ a 
i ( t ) = εSA 

i ( t ) τ a,max 
i 

in which τ a,max 
i 

= 2 s depicts the maximum attention time lag we consider for this case. Clearly the (arbitrary) setting of

τ a,max 
i 

determines the magnitude of the effect. For the total reaction time ( Eq. (7) ) we then have 

τi ( t ) = εSA 
i ( t ) τ a,max 

i 
+ τ p 

i 
(16)

With τ p 
i 

= { 0 , 0 . 2 , 0 . 5 , 1 } as discussed above. Note that since we do not implement spatial or temporal anticipation,

drivers thus simply base their responses on stimuli of τ i ( t ) seconds ago, and they do this every simulation time step. 

4.3.3. Scenario III: effects on perception, reaction time & response 

In this scenario, we additionally consider two kinds of response adaptations that both result in larger gaps; but which

may have different consequences for the resulting traffic operations. First, we assume drivers increase their desired speed,

and second, we assume an increase in desired time headway, which in the IDM + case boils down to an increase in desired

distance gap ( Eq. (9) ). To this end, we propose a reduction factor similar to the one in Eq. (16) : 

v 0 i ( t ) = 

(
1 − βv 0 

i 
εT S 

i ( t ) 
)
v 0 i (17)

in which β
v 0 
i 

is a scaling parameter that governs the maximum reduction effect (e.g. β
v 0 
i 

= 0 . 9 implies a maximum reduction

of 90% in desired speed), and 

εT S 
i ( t ) = min 

(
1 , max 

(
0 , T S i ( t ) − T S i crit 

))
is a factor between 0 and 1 that in this case depends on the prevailing driver task saturation. The higher task saturation,

the larger the response adaptation. This rationale is in line with Fullers TCI model ( Fuller, 2011 ); we essentially use εT S 
i 

(t)

as a proxy for perceived risk. The higher it is, the stronger the behavioural adaptation in the direction of a safer gap and

speed difference. Analogously to Eq. (17) we have for desired time headway 

T i ( t ) = 

(
1 − βT 

i ε
T S 
i ( t ) 

)
T 0 i (18)

4.3.4. Scenario IV: driver heterogeneity (varying task capacities) 

In the final scenario, we look at the effects of driver heterogeneity. By varying driver task capacities TC i ( t ) (and thereby

task saturation) in units of nominal task capacity ( Section 3.2.1 ), we effectively vary driver skill level with just a single

parameter. This parameter affects the fundamental diagrams of task demands, leading to lower (higher) task saturations

for more (less) skilled drivers (for whatever reasons) under similar conditions. Task saturation, in turn, serves as input for

the awareness relation ( Eq. (13) ), implying also awareness deteriorates with lower driver task capacity. At the start of the

simulation we generate task capacity values as follows 

T C i ( t ) = min ( T C max , max ( T C min , T C + ψ i ) ) , ψ i ∼ N ( 0 , 0 . 1 ) (19)

In which TC min and TC max are set to 0.8 and 1.2 respectively. Clearly, one could vary with many more parameters and

driver characteristics, and we return to this in the discussion section. 
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Table 2 

Overview of simulation scenarios. For each scenario we vary over 4 physical reaction times. “AND/OR” means that within a scenario we consider varying 

with and without the particular effect. 

Perception errors Response adaptation Heterogeneity 

s (14) �v (15) τ (16) v 0 (17) T (18) TC (19) 

Scenario I AND/OR D= 0.5, 0, 1 AND/OR D= 0.5, 0, 1 

Scenario II AND/OR D= 0.5, 0, 1 AND/OR D= 0.5, 0, 1 AND 

Scenario III AND/OR D= 0.5 AND AND/OR AND/OR 

Scenario IV AND D= 0.5 AND AND AND AND 

Table 3 

Quantitative results over all simulations in terms of total time spent (TTS) and number of accidents. The shaded cells depict scenarios in which disturbances 

caused (light or severe) congestion; the numbers in red indicate scenarios in which rear-end collisions took place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Summary and assessment criteria 

Table 2 summarizes the scenarios we consider. The header row depicts for each scenario witch variables are affected by

HF (with reference to the governing equations). The words “AND/OR” mean that within a scenario we consider varying with

and without the particular HF effect on either perception or response. For example, in Scenario III, we consider response

adaptation in v 0 and T separately as well as combined (denoted with AND/OR), in scenario IV only the combined case

(denoted with AND). Additionally, in scenario I we consider under- and overestimation biases in s and �v separately as well

as combined (50–50 mix); in all other scenarios we consider a 50–50 mix (of “over- and underestimators”) only. In total we

consider 72 scenarios, see Table 3 

As overall indicators per scenario, we consider total time spent (TTS), which is defined as the total amount of time

spent by all vehicles on the road stretch during the simulation run, i.e. T T S = 

∑ 

i T S i ; with TS i the time spent by driver

i on the road stretch during the simulation. We also keep track whether and how much rear-end collisions take place

in each simulation. If a collision takes place the followers’ speed remains zero for the remainder of the simulation. For

a selection of scenarios, we then qualitatively discuss the resulting traffic dynamics in terms of trajectory patterns and

resulting fundamental diagrams; the driver dynamics in terms of individual speed, acceleration and time-to-collision (TTC)

profiles, and the HF dynamics in terms of total task demand, SA level and reaction time dynamics. TTC is defined as the

time instant at which a follower would collide onto his leader given the speeds of both vehicles stay constant, i.e. 

T T C i ( t ) = 

s i ( t ) 

�v i ( t ) 
, �v i ( t ) > 0 

5. Results 

We first make some overall observations on the basis of the quantitative results listed in Table 3 , in which the grey cells

depict scenarios with disturbances that lead to (mild to severe) congestion, with TTS values > 456 minutes (see the base

case in Fig. 7 ), and the red text indicates those scenarios in which rear-end collisions took place. The first overall remark is

that there is a large variation in TTS results. Clearly, it is possible to generate a wide variety of congested patterns by varying

with the proposed HF mechanisms—we will analyze these in more detail below. Secondly, and expectedly, we are able to

generate rear-end collisions in scenarios with disturbances and reaction times τ i > 0. A large enough fixed reaction time and

the additional HF dynamics can easily push the model out of the controllable input/parameter region. In our simulations,

collisions occur in all cases with a base reaction times of 1 s, and in some cases—with large enough perturbations and a

dynamic reaction time component—also with base reaction times of 0.2 and 0.5 s. We return to this point in the discussion

section. We first present the results in more detail per scenario. 
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Fig. 8. Effects of HF dynamics on perception (Scenario I): (a)–(d) show results of a case with 50–50% mix of over- and under-estimators (of gaps and speed 

differences); (e)–(h) shows the results of 100% under-estimators. From top to bottom rows we see the resulting traffic conditions (a), (e); and the dynamics 

of total driver task demand and awareness (b), (f); the speed and acceleration (c), (g); and the reaction time and TTC profile (d), (h) of driver 160 (colored 

blue in (a) and (e)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Scenario I: perception errors 

From Table 3 we immediately see that disturbances occur only (a) in scenarios with perception errors in distance gaps;

and (b) given (at least some) drivers have a bias towards underestimation , that is δi = −1 in Eqs. (14) (systematic error

in gaps). Both perception errors in s i ( t ) and �v i ( t ) affect the term 1 − ( s i (t) /s ∗
i 
(t) ) 2 in IDM Eq. (8) , but in different di-

rections and with different magnitudes. In case of an underestimation bias we find that smaller s i ( t ) values affect the

numerator, implying smaller accelerations (more conservative driving); whereas smaller �v i ( t ) values affect the denomi-

nator implying larger resulting accelerations (more aggressive driving). Vice versa, an overestimation bias in s i ( t ) will yield

larger accelerations, whereas overestimating �v i ( t ) leads to more conservative acceleration. Put simply, only underestimat-

ing gaps or overestimating speed differences lead to more conservative driving, larger headways and thus disturbances that

propagate upstream. However, in our simulations only gap underestimation leads to disturbances; overestimation of speed

differences does not. This also can be explained by looking at the IDM + equations. Since εSA 
i 

(t) ∈ [ 0 , SA 

i 
max − SA 

i 
min 

] and

SA 

i 
max − SA 

i 
min 

= 0 . 5 (see Fig. 7 (f)), the maximum perception error in s i ( t ) equals 50% due to (14) . This effect does not depend

on prevailing speed or speed differences and will cause a driver to decelerate thus causing disturbances. The mechanism for

errors in �v i ( t ) does depend on the prevailing speed and speed difference. Substituting (15) with δi = 1 (overestimation

speed difference) and εSA 
i 

(t)= 0.5 into IDM Eq. (9) (computing s ∗
i 
(t) ) gives 

s ∗i ( t ) = s i 0 + v i ( t ) 

⎛ 

⎝ T i + 

⎛ 

⎝ 

1 + εSA 
i ( t ) 

2 

√ 

a i max b i 
com f 

⎞ 

⎠ �v i ( t ) 

⎞ 

⎠ (20)

As long as the actual speed difference �v i ( t ) is small, even a large error factor (e.g. εSA 
i 

= 0 . 5 ) has very little or no effect.

But even with larger speed differences (due to e.g. an external disturbance we did not consider in our simulations) of say

5 km/h, the effect of errors in gaps is larger than those in speed differences. Filling the IDM parameter values Section 4.1 )

into ( (20) yields a maximum error in s ∗
i 
(t) of about 20%, which is much smaller than the maximum effect in s i ( t ) (which is

50%). Note however, that both direction and magnitude of these effects are model-specific. 
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Fig. 9. Scenario II (a-d) reaction time dynamics with τ p 

i 
= 0 . 5 , D = 0 . 5 (mix of over- and under estimators of distance gaps)—note that collisions occur in 

this scenario; and scenario III (e)–(h) with adaptation of both v i 0 and T i and no perception errors or reaction time dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 shows two examples of Scenario I simulations. Fig. 8 (a)–(d) show the results of a sub-scenario with just errors

in s i ( t ) ( D = 0 . 5 : 50–50% mix of over- and under-estimators) and τ p 
i 

= 0 . 5 s; whereas Fig. 8 (e)–(f) show the results of a

sub-scenario with underestimation errors only ( D = 0 ) in both s i ( t ) and �v i ( t ), also with τ p 
i 

= 0 . 5 s. Fig. 8 (a) illustrates how

with a mix of perception biases, small disturbances at the distraction site occur that only slightly increase delays (TTS = 486);

whereas Fig. 8 (e) shows that in case all drivers have a bias towards underestimation the distraction acts as a regular bottle-

neck. As explained above, underestimation of �v potentially yields more aggressive accelerations in the presence of larger

speed differences, and it turns out that this indeed results in more oscillatory dynamics than in case of just underestimation

in s i ( t ) (TTS = 660 versus 604 minutes—see Table 3 ). As a result, Fig. 8 (e) also shows the emergence of stop-and-go waves. In

Fig. 8 (a) and (e) one vehicle trajectory is highlighted (vehicle 160). For this vehicle, Fig. 8 (b) and (f) show the corresponding

dynamics in task demand TD 160 ( t ) and awareness SA 160 ( t ). Clearly, TD 160 ( t ) increases as the distraction task starts to con-

sume workload around the distraction area, which simultaneously results in a decrease of awareness. In Fig. 8 (f) at around

x = 200, we see a small increase and then a sharp dip in TD 160 ( t ) as a consequence of the disturbance (a jam wave) driver

160 encounters—which is also clearly visible in the speed and acceleration dynamics Fig. 8 (g) and in the occurrence of a

few small TTC values in Fig. 8 (h). The initial increase in TD 160 ( t ) is due to these short time headways Eqs. (10) , ( (11) ), the

decrease thereafter is due to the associated increase in time headway in the jam wave. 

5.2. Scenario II: perception errors and reaction time dynamics 

With HF effects on perception (and fixed reaction times) we thus obtain already rich and diverse traffic dynamics. We

now add a dynamic component of reaction time ( Eq. (16) ) to the mix. Fig. 9 (a)–(d) show the traffic conditions (a); HF

dynamics (b); speed and acceleration profile (c); and reaction time and TTC profile of a scenario II case, with τ p 
i 

= 0 . 5 ,

D = 0 . 5 (mix of over- and under estimators) and we consider errors in s i ( t ) (gaps) only this time. We follow driver 204,

a systematic under-estimator of gaps, who passes the distraction area just before a collision takes place, and the driver

(HF) dynamics explain why this happens. Due to Eq. (16) τ 204 increases to well over 1 s around the distraction. Structural

underestimation of leading gap s 204 ( t ) essentially countereffects the high reaction time. The rear-end collision that occurred

between driver 206 and 205 is caused by overestimating s 206 ( t ) around the distraction. From a TTC perspective, the collision

may come at a surprise—driver 206 in principle had enough time to respond. However, the combination of a long reaction

time and an unfortunate perception bias results in—as it turns out—a chain of rear-end collisions. This is an interesting

finding. TTC is an intuitive surrogate safety measure, but small TTC values are neither a necessary nor a sufficient condition
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Fig. 10. Scenario III: combination of all HF effects (a)–(d); and scenario IV: same combination but with heterogeneity in terms of driver task capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the occurrence of rear-end collisions. This is nicely illustrated by Fig. 9 (e)–(h), that shows the results for one of the

scenario III cases. 

5.3. Scenario III & IV: perception errors, reaction time, response adaptation and driver heterogeneity 

We first look at the effects of response adaptation without perception errors or dynamic reaction time, illustrated using

the familiar graphs in Fig. 9 (e)–(h). Here we consider a scenario in which drivers adapt both v i 
0 

and T i . Again, by looking

at the IDM + model Eqs. (8) , (9) , the results are predictable. A reduction in v i 
0 

decreases the term 1 − ( v i (t) / v i 
0 
) δ in Eq. (8) ;

whereas an increase in T i reduces the second term 1 − ( s i (t) /s ∗
i 
(t) ) 2 . Both adaptations thus lead to smaller accelerations,

and safer, but less efficient driving, and thus congestion. The effect on v i 
0 

in our case is larger than on T i (compare the

first and second columns of scenario III in Table 3 ). This finding is a product of the specific model used (the IDM + ), as

well as the parameters chosen in both model and task demand relations. The combined response adaptation leads to highly

congested traffic conditions Fig. 9 (e) and to oscillatory dynamics of HF variables Fig. 9 (f); speed and acceleration Fig. 9 (g)

and reaction time and TTC Fig. 9 (h). 

In the final two scenarios in Fig. 10 , we now combine all HF effects, with τ p 
i 

= 0 . 2 , and again D = 0 . 5 . Clearly, combining

all effects has the most severe effect in terms of delays. Varying with driver task capacity (effectively: skill level) is most

visible at the distraction site, where—as one of the anonymous reviewers put it—the distraction now effectively works as

a “floodgate”, with small platoons separated by larger gaps driving by the distraction. The reason is that the variation in

TC i causes a variation in response adaptation. The differences in adaptation of v i 
0 

then result in this phenomenon, which in

itself is plausible. A distraction likely does cause an uneven spread in accelerations away from the distraction simply because

some drivers are more and/or longer distracted than others. 

Fig. 11 finally shows the state trajectories of two vehicles, each from one of last two scenarios, expressed in flow

q ( t ) = 1/ h i ( t ), density ρ( t ) = 1/ s i ( t ), and speed v ( t ) = v i ( t ). The state trajectories are plotted in the equilibrium fundamental

diagrams of the IDM + model (see Appendix A ). 

Fig. 11 clearly shows similar hysteretic patterns as in ( Saifuzzaman et al., 2017 ), in which the recovery paths out of

congestion waves lie under the paths with which drivers move into disturbances. This is particularly well visible for driver

204 in the Q 

e ( ρ) plot ( Fig. 11 left). Note also that due to the HF effects, both drivers perform way under the “ideal” driver. 
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Fig. 11. Equilibrium flow-density and speed–density relations (dotted) and state trajectories of two drivers. Driver 204 comes from scenario IV, and driver 

205 from scenario IV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Discussion 

First, a genuine disclaimer. In the previous section, we demonstrated the proposed framework by applying plausible

behavioral mechanisms. Many such relationships are known to exist between different dimensions of driving behavior (per-

ception, response, driver traits and attitudes) and a wide range of influencing factors, such as distractions, fatigue, environ-

mental conditions, et cetera, but they are typically very case specific and rarely generic. This means that we have to make

(many) assumptions on the generic influence of these factors. Errors can be made in defining the correct relationship mech-

anism and response (e.g. the FDTD and awareness functions in Fig. 7 ), while errors can also be made in the strength or

direction of an effect. Below we synthesize our main findings and discuss the assumptions and limitations of our approach,

and thus possible sources of errors. 

6.1. Main findings and implications 

The first main finding is that the idea of using fundamental diagrams of task demand, and functions that relate awareness

and driver traits to the resulting total task demand, results in plausible and explainable traffic patterns. By varying a single

parameter (task capacity) over the driver population, we effectively vary over car following skills, which results not just in

inter-driver differences, but also in intra-driver differences (dynamics) in behavior. This makes our framework a powerful

tool. To increase heterogeneity, we could vary over many more parameters, including the CF logic itself (i.e. vary with differ-

ent CF models). To this end, we could even formulate endogenous HF models that govern under what circumstances a driver

would switch from one CF logic to the next. The second main finding is that—given our assumptions—both perception errors

and response adaptations may result in similar, and plausible mechanisms that both explain (a) how a distraction may cause

a bottleneck under high demand; and (b) how an increase in reaction time around such a distraction does not necessarily

lead to accidents. That perception errors may be a cause of congestion seems logical, and in our simulations (and in reality)

they also cause rear-end collisions. Counter-intuitively, they may also be a blessing in disguise when it comes to safety. Gap

underestimation results in more conservative driving, which counter-balances the increased risk due to larger reaction times.

As noted in ( Treiber et al., 2006 ), even small reaction times in ideal car following models like the IDM( + ) may cause an

unreasonable amount of accidents. However, in combination with “favorable” perception biases (underestimation of distance 

gaps) and/or response adaptations (e.g. larger desired headway), we were able to run several simulations in which serious

disturbances occurred without accidents occurring even though reaction times went up to a second and more. The HF model

essentially “forces” the driver to operate within larger safety margins. In other scenarios with less favorable settings (e.g.

where we considered gap over-estimation), the HF model does the opposite with many rear-end collisions as a consequence,

in line with ( Treiber et al., 2006 ). This we believe is also a powerful aspect of our multi-level framework: the HF models

essentially control the driver-specific safety (and stability) margins within which the (chosen) CF models operate, and this

provides a mechanism to test the face validity of both the HF models (e.g. do they result in reasonable traffic conditions?);

and of the CF models (e.g. do the parameters represent quantities that can be related to HF aspects of driving behavior in a

meaningful way?) 
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6.2. Limitations 

However, many implementation details of our framework in this paper are speculative. First, the assumption that drivers

reduce their speed and/or increase their headway when task saturation is too high has a solid theoretical basis in Fullers

TCI model ( Fuller, 2011 ). In the distraction case there is also ample empirical underpinning that drivers do this; bottlenecks

due to rubbernecking are a well-known phenomenon. However, there are multiple ways in which this relationship can be

formalized. Do drivers adapt their desired speed or do they adapt their desired headway (or both)? Desired speed adaptation

seems to be the most straightforward interpretation of Fullers theory. Reducing (increasing) desired speed then is a proxy

(conceptualization) for dynamically reducing (or increasing) acceptable risk level. Note, however, that this interpretation of

the desired speed parameter is very different than that of a maximum speed which drivers are inclined to maintain while

driving freely. More generally, the desired speed and headway parameters are both abstractions and it is unclear whether

drivers really work with these constructs as decision variables. Second, there is evidence in the literature for different per-

ception biases under different circumstances (under- and over estimation, e.g. Nilsson, 20 0 0; Thiffault and Bergeron, 2003 ,

and Castro et al., 2005; Lee and Sheppard, 2017 , respectively). However, the assumption that task oversaturation exacerbates

these perception biases is tentative at best. We have no empirical evidence to support this. Quantitative empirical research

into perception error dynamics is needed to shed light on this issue. Third, a clear limitation in our simulations is that we

do not explicitly consider spatial and/or temporal anticipation, which would have provided yet an additional mechanism to

counter-effect the destabilizing effects of reaction times ( Treiber et al., 2006 ) at the distraction location. In fact, one could

come up with many more behavioral hypotheses and mechanisms that lead to a (net) increase in time headway around the

distraction and extend our framework with additional psychological/physiological constructs (e.g. risk attitude, emotional

and physical state) which may be relevant in describing (and simulating) perception and response processes. 

6.3. Synthesis 

The strength of the proposed framework is that it provides a means to test the consequences of these many different

possible hypotheses related to how HF affect perception and response, including those already reported in the literature. The

multi-level conceptualization is generic in the sense that it makes it possible to mix a variety of CF models with different HF

mechanisms, depending on which HF are studied, and which phenomena need to be reproduced and explained. Therefore, it

is possible to compare the same HF models in terms of descriptive and explanatory power on the same cases, using different

idealized CF logic, or vice versa, using different HF mechanisms with the same core CF logic. Moreover, decoupling idealized

models from the underlying HF models, makes it possible to more systematically calibrate and validate HF models—one HF

effect at a time. 

These two arguments support our belief that this multi-level structure can also work for lane changing (or more generally

movement in a 2D or even 3D space), in the sense that also these behaviors can be formalized as a system of idealized

models on top, and HF mechanisms that govern the dynamics of the parameters underneath. We realize that idealized

models for such tactical behaviors are much more complex than idealized CF models, and that many more sophisticated

HF mechanisms and constructs need to be specified that describe aspects of tactical decision making that do not play

a role in acceleration modeling. These include gap acceptance, cooperation between drivers, relationships with strategical

(planned) behavior (this exit or the next?), and many more. One can argue that the distinction between idealized models

and HF models in itself is much more diffuse in lateral behavior than in acceleration modelling. However, also in lateral

behavior, perception and judgement errors can be separated from the actual decision logic, and, as with CF models, also

lateral models contain parameters that may dynamically change due to HF. The point is that the multi-level framework offers

a possibility to abstract driving behaviors along hierarchical levels, which allows the analyst to systematically disentangle

the complexity, and to introduce HF sophistication step-by-step. This in turn leads to better structured and more easily

maintainable simulation software. 

7. Conclusions and outlook 

The central contribution of this paper is a generic multi-level modelling and simulation framework that supports the in-

clusion of Human Factors (HF) in simulating driving behavior. The performed simulation cases demonstrate the frameworks’

ability to allow specific aspects of driver psychology to be included in traffic simulation, resulting in feasible and face-valid

results. Our results show how the framework results in endogenous mechanisms for inter- and intra-driver differences in

driving behavior, and in multiple plausible HF mechanisms that may explain the same observable traffic phenomena. Full

verification of the framework is virtually impossible at the moment, due to limitations in generic empirical evidence of

behavioral mechanisms and parameter values. However, making use of reasonable assumptions based on the evidence and

literature that is available makes the step-by-step development, and the rigorous analysis and comparison of new mathe-

matical models for driving behavior possible. This process will only accelerate as more empirical evidence for calibration

and validation becomes available in time. 

This multi-level framework fits well within a more general agent-based framework in which an agent executes opera-

tional (driving), tactical (maneuvering) and strategical (decision-making) tasks. Unravelling these different modelling compo-

nents makes it easier to collaborate interdisciplinary (traffic flow, choice modelling and HF scientists)—a key prerequisite to
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make progress in this area. Finally, from a simulation software design perspective, multi-scaling enables a rigorous modular

design, in which it becomes much easier to define generic classes for response, perception, anticipation, and specific classes

of CF and LC approaches, which leads to a natural hierarchy of classes and a disentanglement of driving and traveling pro-

cesses. We argue this is beneficial for developing next-generation microscopic traffic simulation models and ultimately for

how these tools are going to be used. 

Acknowledgment 

This research is supported in part by the Strategic Research Support programme of the Amsterdam Institute of Advanced

Metropolitan Solutions (AMS; ams-institute.org). 

Appendix A. Equilibrium solution IDM + 

Filling in a i ( t + τ i ) = 0 and �v i ( t ) = 0 in Eqs. (8) and (9) leads to a simple speed-spacing relation 

V 

e ( s ) = 

{ 

min 

(
v 0 , 

s − s 0 
T 

)
s > s 0 

0 otherwise 

With ρ = 1/ s , ρmax = 1/ s 0 , and q max = 1/ T we have for the equilibrium speed-density relation 

V 

e ( ρ) = 

{ 

min 

(
v 0 , q max 

(
1 

ρ
− 1 

ρmax 

))
ρ < ρmax 

0 otherwise 

And for the equilibrium flow density relation 

Q 

e ( ρ) = ρV 

e ( ρ) 

Appendix B. Additional material 

As additional material we provide the Matlab scripts and functions with which all simulations and visualizations in this

paper are conducted, so researchers can reproduce and extend our results. We are also implementing the framework in

OpenTrafficSim (opentrafficsim.org: our open source micro simulation environment), so we can test more sophisticated sce-

narios including those involving lateral behavior. What we hope is that these tools are going to be used in interdisciplinary

research that involves (a) the (step-by-step) development and validation of the lower level HF hypotheses and resulting

models, and (b) a move towards convergence in terms of which of the higher level (idealized) models are more effective

and realistic in simulating (car) traffic. Both are needed to bring our discipline forwards. 
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