
FPGAs in Big
Data

On the transparent and efficient acceleration
of big data frameworks

by

Bob Luppes
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday July 28, 2021 at 1:00 PM.

Student number: 4370236
Project duration: November 1, 2020 – August 1, 2021
Thesis committee: Dr. Zaid Al-Ars, TU Delft, supervisor

Matthijs Brobbel, Teratide, supervisor
Dr. Asterios Katsifodimos, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ii

Intentionally left blank

Abstract

The increasing volume and latency requirements of big data impose challenges on the processing capacity of
existing computing systems. FPGA accelerators can be leveraged to overcome these challenges, but questions
remain as to how these accelerators are best deployed to accelerate big data frameworks. This work investi-
gates how future big data frameworks should be designed such that they facilitate transparent and efficient
integration with FPGA accelerators in the context of SQL workloads. Three big data frameworks are accel-
erated to answer this question. These implementations offload the evaluation of a regular expression filter
to Tidre, an FPGA-based regular expression matcher. First, Dremio is accelerated to obtain a 1750x speedup
of the filter operator. Second, Dask is accelerated and a speedup of 92x is achieved for the same operator.
Lastly, an accelerated version of Dask distributed is implemented. This implementation is deployed in a clus-
ter environment to attain an end-to-end speedup of 3.6x as well as a reduction of the total cost per query
by 23%. It is identified that query exploration phases could be used to increase the impact of existing FPGA
kernels. In addition, it is found that the batch size of batch-processing frameworks has a significant impact
on the performance of FPGA accelerated big data frameworks in distributed setups. Tuning this batch size
can increase end-to-end query throughput up to 2.1x. Finally, future big data frameworks should make use of
hardware-friendly and language-independent in-memory formats such as Apache Arrow. Correct alignment
of the memory buffers of this data format can further increase the throughput of the system by 2.5x.

iii

Preface

This thesis is carried out at the Accelerated Big Data Systems group as part of an internship at Teratide.

I would like to express my thanks to everyone that supported me during the MSc thesis project. Over the
course of nine months, I have received excellent guidance from the staff at the Accelerated Big Data Systems
group as well as from my colleagues at Teratide. The weekly meetings and numerous Discord calls have been
a key motivator and have directly attributed to the success of this thesis.

Special thanks go out to Dr. Zaid Al-Ars, my supervisor at Delft University of Technology, and Matthijs
Brobbel, my supervisor at Teratide. Zaid’s enthusiasm during all stages of the project has never failed to
inspire me. At the same time, Matthijs’ in-depth knowledge regarding all facets of the project has proven
invaluable. During the full length of these nine months I have not been able to come up with a single problem
that cannot be solved by Matthijs or his colleagues.

Lastly, I would like to thank my peers at the Accelerated Big Data Systems group, with whom I have had
interesting discussions related to the subject of this work. The same holds true for my family and friends, who
were forced to listen to me talking about this project whenever I found the opportunity to do so. Their input
has helped shape this thesis as it lies before you today.

Bob Luppes
Den Haag, July 2021

iv

Contents

List of Figures vii

List of Tables ix

List of Listings x

List of Acronyms xi

1 Introduction 1
1.1 Context . 1
1.2 Challenges . 2
1.3 Problem statement and research questions . 3
1.4 Contribution . 4
1.5 Thesis outline . 4

2 Background 5
2.1 Big data . 5

2.1.1 Data engineering workflow . 5
2.1.2 Trends in big data computing . 6

2.2 Big data architecures . 8
2.2.1 Distributed file systems . 8
2.2.2 Compute frameworks . 8
2.2.3 SQL workloads . 10
2.2.4 Cluster setups . 12

2.3 Apache Arrow . 12
2.3.1 Columnar data formats . 13
2.3.2 Specification . 14
2.3.3 Gandiva . 14

2.4 FPGA accelerators. 15
2.4.1 The field-programmable gate array . 16
2.4.2 FPGAs in big data . 16
2.4.3 Tidre . 17

2.5 Related work . 17

3 Alternative solutions 19
3.1 Method of analysis . 19
3.2 Speedup methods. 20

3.2.1 CPU optimization . 20
3.2.2 GPU accelerators. 21
3.2.3 FPGA accelerators . 21
3.2.4 Comparison . 22

3.3 Big data frameworks . 23
3.3.1 Batch-processing frameworks . 23
3.3.2 Streaming frameworks . 23
3.3.3 Index-based frameworks . 23
3.3.4 Comparison . 24

3.4 Deployment methods . 25
3.4.1 Single node . 25
3.4.2 Acceleration aware scheduler . 26
3.4.3 Acceleration aware worker . 26
3.4.4 Comparison . 26

3.5 Proposed solutions . 27

v

vi Contents

4 Dremio integration 29
4.1 Implementation . 29

4.1.1 Architectural details . 29
4.1.2 FPGA acceleration planning . 30
4.1.3 Accelerated filter operator . 31

4.2 Experimental setup . 32
4.2.1 Regular expression usecase . 33
4.2.2 Dataset. 33
4.2.3 Input size benchmark . 33
4.2.4 Batch size benchmark . 33
4.2.5 Measurement setup . 33

4.3 Results . 34
4.3.1 Accelerating the query . 34
4.3.2 RE2 acceleration . 34
4.3.3 Tidre acceleration . 35
4.3.4 Optimizer exploration . 38

4.4 Preliminary conclusion . 39

5 Dask integration 41
5.1 Implementation . 41

5.1.1 Architectural details . 41
5.1.2 FPGA acceleration planning . 42
5.1.3 Selection vector to bitmap . 43
5.1.4 Accelerated operators . 44

5.2 Experimental setup . 44
5.2.1 Regular expression usecase . 45
5.2.2 Input size benchmark . 45
5.2.3 Batch size benchmark . 45
5.2.4 Measurement setup . 46

5.3 Results . 46
5.3.1 Accelerating the query . 46
5.3.2 RE2 acceleration . 46
5.3.3 Tidre acceleration . 46

5.4 Preliminary conclusion . 51

6 Dask distributed integration 53
6.1 Implementation . 53

6.1.1 Architectural details . 53
6.1.2 Accelerated worker. 53

6.2 Experimental setup . 55
6.2.1 Cluster setup. 55
6.2.2 Input size benchmark . 55
6.2.3 Batch size benchmark . 55
6.2.4 Measurement setup . 55

6.3 Results . 55
6.3.1 Accelerating the query . 56
6.3.2 Tidre acceleration . 56

6.4 Preliminary conclusion . 59

7 Conclusions and recommendations 61
7.1 Conclusions. 61
7.2 Recommendations . 63

Bibliography 65

A Analysis of big data frameworks 73

B Measurement data 77

List of Figures

1.1 Laney’s 3V model for big data . 1
1.2 A fraction of Matt Turck’s big data landscape . 2

2.1 The AI hierarchy of needs . 6
2.2 Microprocessor trends as predicted in 2005 . 7
2.3 Bandwidth trends for DRAM, PCIe, Network, and Storage . 7
2.4 Example of an Hadoop MapReduce application . 9
2.5 Resilient distributed datasets in Apache Spark . 9
2.6 Apache Spark’s directed acyclic graph . 10
2.7 Example of a logical optimization rule in Catalyst . 11
2.8 Communication between different applications without Apache Arrow 12
2.9 Communication between different applications with Apache Arrow 13
2.10 Row-oriented versus column-oriented in-memory data formats 13
2.11 An example of the Apache Arrow in-memory specification . 15
2.12 Overview of the Gandiva system . 15
2.13 Different architectural configurations for FPGA accelerators . 16

3.1 Classification tree for speedup methods . 20
3.2 Classification tree for big data frameworks . 23
3.3 Classification tree for deployment methods . 25

4.1 Overview of the accelerated version of Dremio . 30
4.2 Sabot planner phases including the new FPGA acceleration planning phase 30
4.3 Sequence diagram illustrating the interactions of the accelerated operator in Dremio 32
4.4 Execution plan transformation for the regular expression usecase in Dremio 34
4.5 Operator runtimes for the input size benchmark on the RE2 accelerated version of Dremio . . . 35
4.6 Operator runtimes for the batch size benchmark on the RE2 accelerated version of Dremio . . . 35
4.7 Filter runtime, speedup, throughput, and cost per query for the input size benchmark on both

the RE2 and Tidre accelerated versions of Dremio . 36
4.8 Filter runtime, speedup, throughput, and cost per query for the batch size benchmark on both

the RE2 and Tidre accelerated versions of Dremio . 38
4.9 Operator runtime for optimizer exploration . 39

5.1 Overview of the accelerated version of Dask . 42
5.2 Sequence diagram illustrating the interactions of the accelerated operator in Dask 45
5.3 Task graph transformation for the regular expression usecase in Dask 47
5.4 Filter operator runtime for the input size benchmark on the RE2 accelerated version of Dask . . 48
5.5 Filter operator runtime for the batch size benchmark on the RE2 accelerated version of Dask . . 48
5.6 Filter operator runtime, speedup, throughput, and cost for the input size benchmark on the

Tidre accelerated version of Dask . 49
5.7 Filter operator runtime, speedup, throughput, and cost for the batch size benchmark on the

Tidre accelerated version of Dask . 50
5.8 Tidre filter operator throughput for the batch size benchmark on the Tidre accelerated version

of Dask . 51

6.1 Overview of the accelerated version of Dask distributed . 54
6.2 System architecture of Dask distributed including the accelerated worker nodes 54
6.3 Task transformation for the regular expression usecase in Dask distributed 56

vii

viii List of Figures

6.4 Total query runtime, speedup, throughput, and cost per query for the input size benchmark on
the accelerated version of Dask distributed . 57

6.5 Total query runtime, speedup, throughput, and cost per query for the batch size benchmark on
the accelerated version of Dask distributed . 58

List of Tables

3.1 Decision matrix for the speedup methods in the context of big data 22
3.2 Decision matrix for the feasibility of FPGA integration into different big data frameworks 24
3.3 Decision matrix for the deployment methods in the context of FPGA accelerated big data frame-

works . 27

B.1 Parquet scan operator runtimes in seconds for the input size benchmark on vanilla Dremio . . . 77
B.2 Filter operator runtimes in seconds for the input size benchmark on vanilla Dremio 78
B.3 Total query runtimes in milliseconds for the input size benchmark on vanilla Dremio 78
B.4 Parquet scan operator runtimes in seconds for the input size benchmark on the RE2 accelerated

version of Dremio . 79
B.5 Filter operator runtimes in seconds for the input size benchmark on the RE2 accelerated version

of Dremio . 79
B.6 Total query runtimes in milliseconds for the input size benchmark on the RE2 accelerated ver-

sion of Dremio . 80
B.7 Parquet scan operator runtimes in seconds for the input size benchmark on the Tidre acceler-

ated version of Dremio . 80
B.8 Filter operator runtimes in seconds for the input size benchmark on the Tidre accelerated ver-

sion of Dremio . 81
B.9 Total query runtimes in milliseconds for the input size benchmark on the Tidre accelerated

version of Dremio . 81
B.10 Parquet scan operator runtimes in seconds for the batch size benchmark on vanilla Dremio . . 82
B.11 Filter operator runtimes in seconds for the batch size benchmark on vanilla Dremio 82
B.12 Total query runtimes in milliseconds for the batch size benchmark on vanilla Dremio 83
B.13 Parquet scan operator runtimes in seconds for the batch size benchmark on the RE2 accelerated

version of Dremio . 83
B.14 Filter operator runtimes in seconds for the batch size benchmark on the RE2 accelerated version

of Dremio . 83
B.15 Total query runtimes in milliseconds for the batch size benchmark on the RE2 accelerated ver-

sion of Dremio . 84
B.16 Parquet scan operator runtimes in seconds for the batch size benchmark on the Tidre acceler-

ated version of Dremio . 84
B.17 Filter operator runtimes in seconds for the batch size benchmark on the Tidre accelerated ver-

sion of Dremio . 85
B.18 Total query runtimes in milliseconds for the batch size benchmark on the Tidre accelerated

version of Dremio . 85
B.19 Filter operator runtimes in seconds for the input size benchmark on vanilla Dask, the RE2 ac-

celerated version of Dask, and the Tidre accelerated version of Dask 86
B.20 Filter operator runtimes in seconds for the batch size benchmark on vanilla Dask, the RE2 ac-

celerated version of Dask, and the Tidre accelerated version of Dask 87
B.21 Total query runtimes in seconds for the input size benchmark on the accelerated version of

Dask distributed . 87
B.22 Total query runtimes in seconds for the batch size benchmark on the accelerated version of

Dask distributed . 88

ix

List of Listings

2.1 A simple Catalyst expression tree . 10
2.2 A Catalyst optimization rule . 11
4.1 A Sabot optimization rule that targets a filter operator and substitutes an accelerated operator . 31
4.2 Schema of the regular expression usecase dataset . 33
4.3 Chosen SQL query for the regular expression usecase . 33
4.4 SQL query that makes use of the SQL LIKE operator . 38
4.5 Equivalent regular expression for the SQL LIKE expression . 38
5.1 Pseudocode of the str-match operator’s SubgraphCallable . 43
5.2 Simple algorithm to convert a selection vector to a bitmap . 43
5.3 Chosen SQL query ported to the Pandas API . 45

x

List of Acronyms

ABS Accelerated Big Data Systems

API Application Programming Interface

AWS Amazon Web Services

BI Business Intelligence

CAPI Coherent Accelerator Processor Interface

CPU Central Processing Unit

CuDF CUDA DataFrame

CXL Compute Express Link

DAG Directed Acyclic Graph

EC2 Elastic Compute Cloud

ETL Extract, Transform, Load

FPGA Field-Programmable Gate Array

GFS Google File System

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HDFS Hadoop File System

HLS High-Level Synthesis

IC Integrated Circuit

ILP Instruction-Level Parallelism

JIT Just-in-Time

JNI Java Native Interface

JVM Java Virtual Machine

JSON JavaScript Object Notation

LLVM Low Level Virtual Machine

MSc Master of Science

NIC-QF Network Interface Card with Query Filter

PhD Philosophiae Doctor

PoC Proof of Concept

RDBMS Relational Database Managemen System

RDD Resilient Distributed Dataset

xi

xii 0. List of Acronyms

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SLA Service-Level Agreement

SQL Structured Query Language

SSD Solid-State Drive

UTF-8 Unicode Transformation Format - 8-bit

XRT Xilinx Run Time

1
Introduction

1.1. Context
The sheer scale of big data is often emphasized by Laney’s 3V model, representing the volume, velocity, and
variety of data [1]. An overview of this model can be seen in Figure 1.1. The volume indicates the amount of
data that is generated. It is estimated that 90% of all data worldwide has been created in the last two years
alone [2]. The velocity is used to indicate the increasing latency requirements for time-sensitive data, while
the variety indicates the wide range in which this data can be encoded.

Figure 1.1: Laney’s 3V model for big data [3].

These trends impose challenges on how to store and process this data. This work focuses on the latter of these
two; processing capacity.

Increasing the processing capacity has been a popular subject of prior research. Examples include CPU op-
timizations and the use of dedicated hardware accelerators such as GPUs. Another accelerator is the field-
programmable gate array or FPGA. These FPGAs consist of a re-configurable fabric that can be programmed
to implement custom integrated circuit (IC) designs. This work investigates how these FPGA accelerators can
be efficiently deployed to increase processing capacity in a big data context.

For this purpose, it is important to understand how conventional big data applications perform their
computations. Because of the enormous variety of big data, there is no one-size-fits-all solution. As a result,
the big data landscape is fractured. Figure 1.2 shows a small fragment of the entire big data landscape as
identified by Matt Turck. It can be seen that there is a large number of big data frameworks, all specializing in
different areas of big data.

1

2 1. Introduction

Figure 1.2: A fraction of Matt Turck’s big data landscape [4].

Different aspects of these frameworks play an important role on the effectiveness of FPGA acceleration. Fur-
thermore, not all frameworks are designed with heterogeneous computing concepts in mind. This compli-
cates FPGA integration. This work therefore investigates which aspects of big data frameworks are important
when considering FPGA acceleration. In addition, the impact these aspects have on the eventual perfor-
mance of the system is investigated.

The project is carried out as part of an internship at Teratide. Teratide is a high-tech spin-off from Delft Uni-
versity of Technology, specialized in the acceleration of high performance analytics application in the context
of big data. Their vision aligns with that of the Accelerated Big Data Systems (ABS) group at Delft University of
Technology. Both these organisations envision a future big data system that is able to offload computations
to different accelerators in a heterogeneous cluster [5].

Nowadays, it is virtually impossible to imagine any field of industry that does not makes use of some form
of data analytics. The impact and possibilities of efficient and transparent integration of FPGAs in big data
frameworks are therefore limitless. One could distinguish three areas of applications that could substan-
tially benefit from FPGA accelerated big data frameworks; applications with long-running queries, latency-
sensitive applications, and applications that aim to achieve a high energy efficiency.

Business intelligence (BI) applications are an example of applications with long-running queries. BI ap-
plications aim to support corporate decision making by providing insights into the vast amount of data a com-
pany might have acquired. One way of providing these insights is by running SQL workloads, from which the
results can be presented on a dashboard or in a report. The runtime of these queries grows with the amount
of data on which they operate. Tech companies generally aim for short development cycles, but the length
of these cycles is partly governed by the runtime of their BI queries [6]. In these cases, accelerated big data
frameworks could allow companies to achieve shorter development cycles.

Second, when considering latency-sensitive applications, one example is a fraud detection system as used
by payment processors such as Adyen [7]. These systems are responsible for processing large amounts of pay-
ment data in order to filter out fraudulent transactions. These computations are latency-sensitive because in
most cases the payment processor has a service-level agreement (SLA) with their customers that obliges them
to adhere to certain latency constraints. Effectively, these latency constraints provide an upper bound for the
runtime of the processing algorithm. With FPGA acceleration, these systems could therefore perform more
compute intensive operations while the original latency constraints are adhered to. These more complex
algorithms could result in better fraud detection rates.

Finally, another identified area of impact is the power consumption of datacenters. FPGA accelerators
are known for their high energy efficiency, which results from their low operating frequencies as compared
to CPUs. In 2018, the world’s datacenters consumed an estimated 200 terrawatt hours, which is roughly 70%
more than the yearly Dutch energy consumption [8, 9]. FPGA accelerated and energy efficient big data frame-
works could reduce this power consumption and hence contribute to the realization of a ’green datacenter’.

1.2. Challenges
Two of the main challenges in integrating FPGA accelerators with big data frameworks are transparency and
efficiency.

The acceleration should be transparent for the end user. This means that the user should not be aware of
the FPGA acceleration and does not have to tune certain parameters in the framework. This is important
because transparent integration lowers the barrier to adopt these technologies. To achieve transparent accel-

1.3. Problem statement and research questions 3

eration, the system should autonomously identify where and when certain parts of the computation can be
accelerated.

In terms of efficiency, it is important that the acceleration does not introduce additional overheads and/or
costs that can lower the overall efficiency of the system.

Sharing data between processes, in this case between the big data framework and the software that in-
terfaces with the FPGA accelerator, typically introduces serialization overheads. Different programming lan-
guages have their own definition of how a data structure is laid out in memory. Serialization and deserializa-
tion can be used to bridge this gap, but this is paired with significant overheads. An upcoming technology that
overcomes this problem is Apache Arrow. Apache Arrow is an in-memory data specification that is language-
independent [10]. By making use of Apache Arrow, data can be shared between the big data framework and
the software interfacing with the accelerator without introducing serialization overheads. In addition, this
memory format is hardware-friendly. This enables data to be copied between the accelerator and the host
machine more efficiently.

In terms of cost efficiency, there are two factors that play a role in the context of FPGA accelerators. First,
there is the initial cost of developing an FPGA kernel. This is generally more time consuming than software
development for CPUs and GPUs, and requires in-depth knowledge about circuit design. Frameworks such
as Fletcher exist to reduce this development time and there even exist high-level synthesis (HLS) tools that
can synthesize FPGA kernels from C code [11–13]. However, these HLS tools are unable to generate opti-
mized code and thus force the developer to manually optimize the generated code. This optimization in turn
requires in-depth knowledge. The amount of effort and specialized knowledge required to develop these
kernels is expected to reduce in the future, as frameworks such as Fletcher and HLS tools become more so-
phisticated.

Lastly, these FPGA accelerators are expensive. Fortunately, the industry standard is to run big data ap-
plications in a cloud environment so there is no need for end-users to buy any specialized hardware. Still,
cloud instances that have these FPGA accelerators are significantly more expensive than regular compute
instances. It is a matter of time before this technology is more widely adopted and these instances become
cheaper. This can already be seen at services such as Microsoft Azure, that recently added the NP-instance
family which can be rented for a fraction of the regular price using spot pricing [14].

With the emergence of Apache Arrow, frameworks such as Fletcher, and more options for affordable FPGA
instances in the cloud, this is the perfect moment to further investigate the integration of FPGAs in big data
and to lay the foundation for future research.

1.3. Problem statement and research questions
This work investigates the integration of FPGA accelerators and big data frameworks in the context of SQL
workloads. The aims is to provide recommendations for the design of future ’accelerator ready’ frameworks.
The problem statement is formulated as follows:

How should future big data frameworks be designed such that they facilitate transparent and efficient
integration with FPGA accelerators in the context of SQL workloads?

To solve this problem, different research questions are posed:

1. Where in the system should FPGA accelerators be placed in order to accelerate SQL workloads?

2. Which features of big data frameworks are required to facilitate efficient integration and what is their
impact on the overall performance of the system?

3. Which parts of the big data framework need to be aware of the acceleration such that the system can
be transparently deployed in a heterogeneous setting?

4. Which part of the workload should be accelerated such that the average speedup within the application
domain is maximized?

4 1. Introduction

1.4. Contribution
In this work, several software implementations are developed with the goal of answering the research ques-
tions as stated above. These development efforts align with the vision of the ABS group and Teratide. The
FPGA accelerator, which could be deployed in such a future heterogeneous big data system, is the main ob-
ject of study. Different FPGA kernels have been developed by MSc and PhD students of the ABS group. These
kernels implement file readers, decompression algorithms, and a number of SQL operators [15]. Addition-
ally, previous research has been done regarding the integration of these kernels in Apache Spark, serving as a
proof of concept (PoC) for the future system as described above [16].

This work contributes three additional integrations with different big data frameworks. As seen in Figure 1.2,
different frameworks have different specializations and it is likely that new challenges arise when integrating
FPGA accelerators. The FPGA kernel that is integrated in this work is developed by Teratide and implements
a regular expression matcher. First, this kernel is integrated in Dremio, an upcoming big data framework, for
a SQL workload featuring a regular expression based filter operator. Second, the same kernel is integrated in
Dask, another popular big data framework. Finally, the kernel is integrated with Dask distributed, a separate
version of the Dask framework that is designed to run in a cluster setting.

1.5. Thesis outline
Chapter 2 provides all background information necessary to understand the choices that are made in the
integration of FPGA accelerators in big data frameworks. In Chapter 3, an overview of the alternative solutions
related to three parts of the project is presented. First, the different ways to speed up big data computations
are considered. Second, multiple big data frameworks are examined for integration with FPGA accelerators.
And lastly, the ways in which these accelerated solutions can be deployed are considered. This is followed
by three chapters presenting the implementation, experimental setup, and results of the three frameworks
in which FPGA accelerators are integrated. Chapter 4 shows the integration with Dremio, Chapter 5 shows
the integration with Dask, and Chapter 6 shows the integration with Dask distributed. Finally, Chapter 7
concludes the project and provides recommendations for future research.

2
Background

This work builds on the work of F. Nonnenmacher, in which transparent FPGA acceleration is implemented in
Apache Spark SQL [16]. Nonnenmacher’s work introduces multiple software components in order to support
the acceleration. At the time of his work, there was no native support for Apache Arrow based recordbatches
in Apache Spark. Therefore, a custom implementation of the datareader had to be introduced in order to read
parquet files into an Apache Arrow format. Additionally, his work implements the Gandiva execution engine
to support SIMD execution on Apache Arrow based recordbatches. Finally, his work integrates a Fletcher
based kernel in Apache Spark SQL in order to offload the evaluation of SQL operators to an FPGA accelerator.

Technologies used in the computer engineering field tend to change fast, and indeed a lot of the tech-
nologies used in Nonnenmacher’s work have undergone changes. There is a trend in big data frameworks to
provide native support for columnar and Apache Arrow based in-memory formats. Furthermore, the Gandiva
execution engine has become more established within the Apache Arrow project. These recent developments
potentially eliminate some of the hurdles encountered in the work of Nonnenmacher. At the same time, the
integration of FPGA accelerators in different big data frameworks could potentially give rise to new challenges
as seen in Section 1.4.

This chapter provides background information about all involved technologies in order to understand these
new challenges that may arise. Section 2.1 provides a high level overview of the general data engineering
workflow and the trends in big data. Section 2.2 explains how modern big data frameworks are organized.
Section 2.3 presents background information about the Apache Arrow in-memory format, while Section 2.4
provides details on the use of FPGA accelerators in a big data context. Finally, Section 2.5 presents the related
work.

2.1. Big data
This section aims to provide a high level overview of how data is typically used in industry and how this is
influenced by the trends in big data. This information provides the context for the subsequent background
sections.

2.1.1. Data engineering workflow
In order to get a better understanding of the context in which big data frameworks are used, a closer look
is taken at the general data engineering workflow. As mentioned in Section 1.1, it is hard to find a field of
industry that doesn’t use some form of data analytics. Larger companies often have complicated extract,
transform, and load (ETL) pipelines. These ETL pipelines can consist of multiple big data frameworks as
seen in Figure 1.2. Companies typically direct their engineering effort towards further automating these ETL
processes [17–19].

This is however often the situation at larger companies. In general, data engineering encompasses much
more than automating ETL pipelines. Mason provides a taxonomy of data science, which describes the differ-
ent responsibilities of a data engineer [20]. In short, these responsibilities are obtaining data, cleaning data,
exploring data, modeling data, and interpreting data.

5

6 2. Background

A similar decomposition of these responsibilities in the context of artificial intelligence can be found in
Rogati’s AI hierarchy of needs. This hierarchy is shown in Figure 2.1.

Figure 2.1: The AI hierarchy of needs [21].

This hierarchy displays the different needs of a data-oriented company. In this hierarchy, younger compa-
nies typically focus more on the bottom of the pyramid, while more mature companies move towards higher
segments.

This aligns with the observation that the needs of data-oriented companies change over time. The process
of moving up in this pyramid is described as an iterative process, indicating that data engineers often revisit
lower segments of the pyramid after working on a higher segment.

A natural workflow for such an iterative process is to start with processing smaller datasets and gradually
move up to larger ones. In early stages of such a project, the computational requirements are typically sat-
isfied by working on a desktop computer or on a powerful laptop. When the computational needs increase,
data engineers can move to server environments that run a Jupyter notebook server. There are numerous
commercial companies that offer these services such as Google Colaboratory and Deepnote [22, 23]. Apart
from normal server nodes running Jupyter kernels, these companies also offer more powerful and GPU accel-
erated nodes for users that require more compute. Finally, data scientists that need to scale up even further
typically move to cluster environments, in which a big data framework can be configured to run in a dis-
tributed setting.

2.1.2. Trends in big data computing
The trends in computing systems are considered as to obtain a better understanding of computing in the
context of big data. A figure that predicted these trends in computing systems in 2005 by Hofstee can be seen
in Figure 2.2.
At that time, single tread performance was stagnating for three reasons [24]. First, Dennard scaling broke
down. Originally published in 1974, Dennard introduced a relationship between the size of MOSFET tran-
sistors and their power density [25]. Dennard scaling, which is derived from this observation, states that
the power density of transistors remains constant as they become smaller. This means that the current
through and the voltage over these transistors needs to scale down in accordance with the size of the transis-
tor. Around 2005, this scaling principle broke down as the static power consumption became dominant over
the dynamic power consumption of a transistor. Further scaling down the operating voltage increases this
static power consumption. This effect is known as the power wall and imposes limits on the clock-frequency
of CPUs.

Second, instruction-level parallelism (ILP) was deployed in order to achieve small grained parallelism
amongst instructions in CPU pipelines. There is however a limited amount of parallelism that can be reached
on this granularity for a single core. This effect is known as the ILP wall.

Finally, the performance of main memory was not increasing as fast as the performance of the CPU core.
This is known as the memory wall.

At the same time, Moore’s law continued to hold true with the number of transistors on a microchip dou-
bling roughly every 24 months. These performance walls that plagued single core CPUs and the availability

2.1. Big data 7

Figure 2.2: Microprocessor trends as predicted in 2005 [24].

of more transistors drove the industry into multi-core CPUs.

This multi-core trend was expected to stagnate at around 2020 because of the power limitations related to
more active transistors. A solution was predicted in which hybrid or heterogeneous cores are leveraged. In-
stead of all transistors being active, they are configured in such a way that they form a set of heterogeneous
and specialized compute units. Even this trend is expected to end because of Moore’s law breaking down,
which imposes limits on the complexity of these specialized compute units on a single microchip. Without
more available transistors per chip, specialized and self-contained compute units will need to be realized..

More recently, the lacking performance increase of main memory as identified in the memory wall becomes
even more prominent when considering the performance of network and storage. Figure 2.3 shows that the
bandwidth of network and storage increases much faster that the bandwidth of main memory. Note the log-
arithmic y-axis.

Figure 2.3: Bandwidth trends for DRAM, PCIe, Network, and Storage. DRAM bandwidth is a proxy for CPU throughput
[26, 27].

In this figure, the DRAM bandwidth per CPU socket is interpreted as a proxy for CPU throughput [27]. Ex-
trapolating this graph shows that the CPU will form the bottleneck for storage performance in the near future.

8 2. Background

All these trends encourage the move towards distributed and heterogeneous compute units.

2.2. Big data architecures
This section takes a closer look at the architecture of the aforementioned big data frameworks. A closer look
is taken at the technologies which enable these frameworks to function in order to get a better understanding
of why these frameworks are designed in the way that they are.

2.2.1. Distributed file systems
Distributed file systems lie at the foundation of big data frameworks. Popular examples include the Hadoop
Distributed File System (HDFS), Google File System (GFS), and cloud blob storage such as Amazon’s S3 or
Azure Blob Store. The workings of these distributed file systems are explained by exploring the mechanics
behind HDFS.

HDFS is the file storage solution of the Hadoop project [28]. HDFS is used in big data settings and is designed
to be highly fault-tolerant. This fault-tolerance is very important in big data settings, as the probability of
machines failing in large-scale clusters is significant. The focus of HDFS is on batch-processing, meaning
that the system is optimized for high throughput data reads instead of low latency [29].

The simplest setup of an HDFS cluster consists of two types of nodes; the NameNode and the DataNode
[30]. The NameNode stores all metadata associated to the files stored on the HDFS cluster. This metadata
includes parameters such as the block-size and replication factor, as well as where in the cluster the data of a
specific file is stored. The DataNodes handle the actual storage of the files. The NameNode receives regular
heartbeats from the DataNodes such that it is able to identify when a node has failed.

As mentioned before, each file is configured with a block-size and a replication factor. Since the size of
the files stored on an HDFS cluster is typically in the order of gigabytes or terabytes, a single file can easily
exceed the storage capacity of a single DataNode. In order to store the file, it is broken down into multiple
blocks, from which the size is configured with the block-size parameter. To enable fault-tolerance, each block
is replicated on the cluster. A typical replication factor is equal to three, in which a single block is stored on
three DataNodes; two blocks are stored on nodes in the same physical rack, while a third block is stored on a
node in a different rack. This protects the block in case an entire rack fails.

2.2.2. Compute frameworks
When considering different compute frameworks for big data, one can distinguish three different classes of
frameworks; batch-processing frameworks, streaming frameworks, and index-based frameworks. This sec-
tion examines the workings of batch-processing frameworks, which are built on top of distributed file systems
in order to allow the data to be processed. Background information on streaming and index-based big data
frameworks is provided in Section 3.3, in which the alternative solution classes are analyzed.

Batch-processing frameworks process the underlying dataset in multiple batches. Aggregating the results
of these individual batches yields the result for the entire dataset. Hadoop MapReduce and the more modern
Apache Spark are explored in order to gain a better understanding of how these and other batch-processing
big data frameworks function.

Hadoop MapReduce Hadoop MapReduce is the most popular implementation of the MapReduce frame-
work, originally proposed by Google [31]. In this framework, users can define map and reduce functions,
which operate on key-value pairs [32]. The map functions produce new key-value pairs from the input,
which can be aggregated by use of reduce functions [33]. An example of such an application can be seen
in Figure 2.4.

These functions are executed on the DataNodes of the HDFS cluster. This practice brings the computa-
tions close to the data, instead of gathering the data near a single node that performs the computations. This
reduces the need to transfer the data blocks over the network (known as shuffling). The map functions oper-
ate on data on the local node and produce new data on the same local node, this does therefore not require a
data shuffle. Reduce functions do require a shuffle, since an aggregation function operates on multiple values
with the same key, which can reside on multiple DataNodes.

2.2. Big data architecures 9

Map()

Map()

Map()

Reduce()

Reduce()

In
pu

t d
at

a

O
ut

pu
t d

at
a

Figure 2.4: Example of an Hadoop MapReduce application with a map function being executed on three DataNodes and
a reduce function being executed on two DataNodes. The arrows between the map and reduce functions represent a

data shuffle [34].

Apache Spark Apache Spark is a more modern framework as compared to Hadoop MapReduce. One of the
most pronounced differences between Apache Spark and Hadoop MapReduce is that Apache Spark enables
computations to be performed in-memory. Hadoop MapReduce, on the contrary, stores all intermediate
results to disk. This allows Apache Spark to have a much higher throughput. In the case where the dataset on
which to operate exceeds the size of memory available on a machine, this advantage diminishes [35].

While the Hadoop ecosystem is designed to be used on low-cost hardware, Apache Spark typically runs
on higher-end systems due to its memory requirements.

Apart from this difference in memory usage, Apache Spark provides a higher level API as compared to the
relatively simple MapReduce framework. This higher level language enables developers to express complex
operations more clearly. This Spark API can be extended through libraries related to machine learning and
graph processing, increasing the range of usecases for which the framework can be used.

Figure 2.5: Resilient distributed datasets in Apache Spark [36].

Although Spark can operate on data stored in HDFS, Spark is not limited to this file system. Spark makes use
of an abstraction called a resilient distributed dataset (RDD). This resembles an immutable collection of data
stored on multiple nodes in a cluster. The fact that this datastructure is immutable means that performing
a transformation on an RDD creates a new one. In this way, all previous versions from which the new RDD
is derived are preserved in what is called the lineage of the RDD. RDDs in Apache Spark are lazily evaluated,
meaning the computation is only performed once the result is needed. Lazy evaluation allows for optimiza-
tions at runtime by removing the immediate computation of results.

Operations that trigger the evaluation of an RDD are known as actions in Apache Spark. All operations can
be divided in two categories; operations with narrow dependencies and operations with wide dependencies.
Operations with a narrow dependency do not require a data shuffle, while operations with a wide dependency
do. An overview of performing transformations and actions on an RDD is shown in Figure 2.5.

10 2. Background

These RDD operations are being tracked in a directed acyclic graph (DAG). As the name suggests, edges in
this graph have a direction associated with them and the graph does not contain any cycles. An example of
what such a DAG looks like can be seen in Figure 2.6. This DAG, together with the initial dataset, can be used
to reconstruct intermediate or final results in case of a node failure.

Figure 2.6: Apache Spark’s directed acyclic graph [34].

A more complete analysis of these and other batch-processing big data frameworks is performed in Sec-
tion 3.3.

2.2.3. SQL workloads
In the previous section, it is shown how big data frameworks use different programming paradigms such as
MapReduce or higher level APIs to perform operations on large datasets. On a smaller scale, such as relational
database management systems (RDBMS), the domain-specific SQL language is often used to query datasets.
Certain big data frameworks also support the SQL syntax to allow for a more expressive API. Examples are
Apache Spark’s SQL module and Apache Hive, which provides a SQL-like layer on top of the MapReduce
framework [37–39]. Apart from simply parsing the SQL query, these modules perform extra optimization and
planning steps in order to efficiently perform the computation. The specific implementation is different for
each big data framework, but the paragraphs below provide a general overview of the steps involved.

SQL parsing The first step in the execution of a SQL query on a big data framework is to parse the SQL query.
Queries are parsed into a format that can be understood by the framework. This output format is typically a
tree of logical operators. In the case of Apache Spark SQL, which uses the internal Catalyst SQL optimizer, the
query is parsed into Catalyst expressions [37].

Logical optimization The logical operators as produced by the SQL parser are not optimized for execution
in a big data setting. Rather, their ordering depends on the way the user of the application has written the
SQL query. There are numerous opportunities for optimization. An example of such an unoptimized logical
expression tree is shown in Figure 2.7a. In this case, the expression tree is evaluated in the context of Apache
Arrow’s Catalyst optimizer, but the principles remain the same for any framework that performs optimiza-
tions on SQL queries [37]. In Catalyst, which is written in scala, this expression tree can be represented as
shown in Listing 2.1.

0 Add(Attr ibute (x) , Add(L i t e r a l (1) , L i t e r a l (2)))

Listing 2.1: A simple Catalyst expression tree [37].

It becomes clear that this expression tree adds a value of (1+2) to an attribute x. since the value of the literals
does not depend on the value of attribute x, a more efficient way to produce the same result would be to add
the number 3 to attribute x. Catalyst makes use of optimization rules such as the one shown in Listing 2.2.

2.2. Big data architecures 11

This rule is passed as an argument to the transform method of the aforementioned expression tree and re-
places any sum of two literals by a single literal with the summed value. The result of this transformation can
be seen in Figure 2.7b.

0 tree . transform {
case Add(L i t e r a l (c1) , L i t e r a l (c2)) => L i t e r a l (c1+c2)

2 }

Listing 2.2: A Catalyst optimization rule [37].

More complex optimizations can be made as well. It is seen that some operations in big data frameworks trig-
ger a shuffle, forcing data to be sent over the network between nodes. Since this shuffling of data introduces
a significant overhead, it is beneficial to keep the amount of data to be shuffled to a minimum. It is there-
fore common practice to push down filter operators in order to reduce the amount of data in downstream
operators.

Add

Attribute(x) Add

Literal(1) Literal(2)

(a) Before

Add

Attribute(x) Literal(3)

(b) After

Figure 2.7: Example of a logical optimization rule in Catalyst [37].

These and other optimization are performed in the logical optimization phase. Most modern optimizers,
such as Apache Calicte, Apache Spark’s Catalyst optimizer, and Orca are based on the Cascades framework
[40–42]. These optimizers rewrite query plans during an exploration phase using equivalence rules. Equiv-
alence rules include, but are not limited to, commutativity, associativity, physical implementation rewriting,
magic set rewriting, homomorphism, indices, and super operators [41, 43–46].

Physical planning The logical plan that results from the previous phase is merely a tree of logical opera-
tions that form the correct result when evaluated. However, these logical operators cannot be evaluated as
is, because there is no notion of the actual implementation of the operator. A logical operation can have
multiple physical implementations that all lead to the correct result. The join operator, for example, can be
implemented with a hash join as well as a sort merge join implementation [47]. The physical planning phase
can therefore produce multiple semantically equivalent physical plans.

This physical planning phase can additionally perform rule-based optimizations, similar to the logical
planning phase. The difference is that, at this point in the optimization process, the optimizer is aware of the
underlying systems on which the plan is to be executed. With certain external storage systems or local file
reader implementations, it is possible to push down filter operators into the data reader. These are optimiza-
tions that cannot be made without knowing whether the underlying systems supports this.

Optimal plan selection The previous planning phase outputs a collection of plans, as a single logical oper-
ator can have multiple physical implementations. Whether this collection exists of a single plan or multiple
plans is determined by the operator types in the underlying logical plan and the number of physical imple-
mentations that the optimizer considers.

In case there are multiple plans in the collection, a decision has to be made as to which plan gets selected
for execution. The optimal plan is selected based on a cost model, which is generally expressed in time units
and provides an indication of the total runtime of the physical plan [48, 49]. These cost models might incor-
porate read and write times, data shuffles, operator processing times, and statistical models of the database.

These cost models are not limited to time units, but can also incorporate other indicators for the effec-
tiveness of the physical plan. One such indicator that is gaining interest is a measure for the energy efficiency
of the resulting evaluation of the physical plan [48].

12 2. Background

Code generation The selected physical plan can be directly executed in a suitable execution engine. How-
ever, depending on the environment on which the big data framework is executed, an additional optimization
in the form of code generation can be performed.

The Apache Spark SQL module, which is executed on the Java virtual machine (JVM), generates opti-
mized Java bytecode using quasiquotes [37, 50]. Dremio, a big data framework that is executed on the JVM as
well, makes use the low level virtual machine (LLVM) compiler to provide just-in-time (JIT) compilation into
highly optimized bytecode that can be executed on the Gandiva execution engine [51]. This Gandiva engine
is explained in more detail in the next section.

2.2.4. Cluster setups
When deploying big data frameworks in a cluster environment, two different types of nodes can be distin-
guished; the scheduler node and the worker node.

First, the scheduler node is used to perform all planning algorithms. In the case of SQL queries, the sched-
uler node performs all steps as described above. The scheduler node then sends the resulting execution plan
to multiple worker nodes.

The worker nodes are used to evaluate the operations in this execution plan. Typically, the worker nodes
are implemented on the same physical machines as the DataNodes in a distributed file system. This allows
the worker nodes to perform operations with narrow dependencies on local data. The final result, as aggre-
gated on the worker nodes, is then returned to the scheduler node.

2.3. Apache Arrow
The aforementioned Gandiva execution engine does not run on the JVM, but it is instead implemented in
C++. In general, there are numerous situations in which a big data application implemented in one language
is integrates with an application implemented in a different language. Consider the small fraction of Matt
Turck’s big data landscape as shown in Figure 1.2, which lists multiple applications that are typically linked
together in a pipeline fashion.

The challenge in working with applications implemented in different languages is that each language has
its own definition of how a datastructure is laid out in memory. Sharing data between such applications
would therefore require serialization of the object into a bytestream, after which the receiving application
reconstructs the object using a process called deserialization. This introduces data copies. An example is
shown in Figure 2.8. Serialization and deserialization introduces an overhead associated with the data trans-
fers between different applications.

Figure 2.8: Communication between different applications without Apache Arrow [52].

Apache Arrow is a project announced by The Apache Software Foundation in 2016 to address this problem
[53]. Apache Arrow is a language-independent in-memory columnar data specification. Because of the lan-
guage independence, the need for serialization and deserialization is eliminated as shown in Figure 2.9. A
column-oriented format is chosen over a row-oriented format because it offers greater performance in big
data settings. This columnar format is explored further in the next subsection.
Apart from solving serialization overheads when working with applications in different languages, Apache Ar-
row is also a hardware-friendly format. When implementing hardware accelerators such as GPUs and FPGAs,

2.3. Apache Arrow 13

Figure 2.9: Communication between different applications with Apache Arrow [52].

data needs to be copied to and from the accelerator. Apache Arrow enables these copies to be as efficient as
possible by minimizing the need for bytes that hold metadata about the datastructure. This metadata is not
of interest to the accelerator [54].

Apache Arrow is a rapidly evolving project and as such its version has been increased from 1.0.1 to 4.0.1
during the span of this project. All implementations are based on Apache Arrow version 3.0.0, since this is the
most recent release that was available during the development phase of the project. However, all principles
used apply to Apache Arrow version 4.0.1 as well.

2.3.1. Columnar data formats
The Apache Arrow specification is used to represent structured and table-like datasets. These datasets consist
of fields that can be identified by their associated row and column. Such data can be laid out in memory in
two distinct ways; consecutive memory addresses can hold data grouped per row, or the data can be grouped
per column. This is shown in Figure 2.10.

Figure 2.10: Row-oriented versus column-oriented in-memory data formats [52].

The row-oriented format performs well when entire rows of the dataset have to be materialized. Since all

14 2. Background

fields in the row are required for this operation, a block of memory can simply be read sequentially in order
to obtain the required data. However, typical modern big data applications don’t often materialize entire rows
from the dataset. Instead they often operate on a small subset of columns. Examples are filter or aggregation
operators that target a single field. In this case, there is no need to read all other fields of the row, as they
are not used by the operation. If the data were laid out in-memory in a column-oriented format, blocks of
memory could still be read sequentially to produce the relevant fields for the operation.

Another advocate for columnar data formats is the additional benefit it has when considering vectorized
computing. Vectorized computing can be classified as single instruction, multiple data (SIMD), indicating
that the same instruction is executed in parallel on a collection of data. This can be achieved by making
use of GPU’s, which incorporate many stream processors in parallel, or by using Intel’s intrinsic AVX instruc-
tions, which perform the same operation on an array of data [55, 56]. This programming model fits well with
columnar data formats, as entire consecutive sections of memory can be read as the operand of the SIMD
instruction.

Lastly, the columnar format contributes to the aforementioned hardware-friendliness of Apache Arrow. Send-
ing buffers with values contained in the same column to an FPGA accelerator eliminates the need for com-
plex decoding algorithms on the FPGA side. Instead, these values can be directly streamed into the functional
units as implemented on the accelerator [5].

2.3.2. Specification
As mentioned, the Apache Arrow specification defines a column-oriented in-memory format for table-like
datasets. These datasets come with metadata known as a schema, which defines the structure of the dataset
and the datatypes of the columns. When such a dataset is processed in a batch-processing framework, this is
not done at once. Rather, it is split up into multiple recordbatches, which are processed individually. A record-
batch holds all fields related to a subset of the dataset. Each column in the recordbatch abstraction stores its
data in an Arrow array, which in turn consists of multiple Arrow buffers [57]. These Arrow arrays and Arrow
buffers are explained in more detail below.

An Arrow array can store both primitive types as well as more complex nested types. The Arrow array holds
different Arrow buffers based on the type of data stored in the array and the associated metadata as specified
by the schema. The Arrow buffers are stored sequentially in a memory region. Apache Arrow specifies three
types of Arrow buffers; the validity buffer, the offset buffer, and the value buffer.

The validity buffer holds a sequence of i bits to indicate whether the i th record in the recordbatch holds
a valid value or whether it holds the null value. This validity buffer is only used for fields that are nullable as
specified by the associated metadata. The offset buffer is used for fields with variable length, such as strings.
The i th element in the offset buffer points to the element in the value buffer at which the i th value is located.
The length of a value can therefore be obtained by computing the distance between its own offset and the
offset of the next element in the offset buffer. Finally, the value buffer holds the actual fixed length values
of the column in the recordbatch. An example of the Arrow buffers for a simple recordbatch can be seen in
Figure 2.11.
The Apache Arrow specification dictates that all Arrow buffers should be aligned to 64 bytes. This means that
the starting address of the Arrow buffers should be a multiple of 64. However, not all language specific Arrow
libraries adhere to this part of the specification. The Java Arrow library, for instance, aligns its Arrow buffers
to 8 bytes instead of 64.

2.3.3. Gandiva
Gandiva is originally developed as an open-source project by Dremio, an upcoming big data framework, and
is donated to the Apache Arrow project in 2018 [58]. Gandiva is designed to efficiently perform operations
on Arrow recordbatches. Gandiva consists of two major components; the Gandiva compiler, and the Gandiva
execution kernel. These two components are explained in more detail below. An overview of the system can
be seen in Figure 2.12.
The Gandiva compiler is based on the LLVM and is able to JIT compile an expression tree of operations to be
performed on an Arrow recordbatch into highly optimized native code [51]. This native code is then evaluated
on the Gandiva execution kernel, which in turn consumes and produces Arrow recordbatches. This kernel
leverages optimizations such as Intel’s AVX based vectorization when the execution environment supports

2.4. FPGA accelerators 15

Figure 2.11: An example of the Apache Arrow in-memory specification [57].

Figure 2.12: Overview of the Gandiva system [51].

this [56]. Another optimization is to use the Arrow validity buffers to determine whether the outcome of an
operation results in a null value, resulting in better branch prediction.

2.4. FPGA accelerators
Apart from serialization posing limits on the computational abilities of big data frameworks, Oosterhout et al.
found that the BDBench and TPC-DS benchmarks are CPU bound in Apache Spark [59]. This is contrary to the
previous belief that the performance of these industry standard benchmarks is limited by network bandwidth
and I/O.

Algorithms that are compute bound can be accelerated by the use of hardware accelerators. The GPU is
one such hardware accelerator that can be used for this purpose. However, the programming model of the
GPU does not fit all problems that arise in big data applications. Another option is to use FPGA accelerators.

Layered run-time systems, hardware-unfriendly data structures, and serialization overheads are identified
as three challenges related to big data systems [57]. The Apache Arrow in-memory format is able to overcome
the latter two challenges. The first can potentially be overcome by making use of FPGA accelerators. These
accelerators have a greater computational performance as compared to layered run-time systems executing
on a CPU [57].

This section briefly explains how an FPGA accelerator works and how it can be used in the context of big

16 2. Background

data.

2.4.1. The field-programmable gate array
The field-programmable gate array, or FPGA, is an IC from which the internal logic design can be config-
ured after manufacturing. This allows the programmer to implement different IC designs without having to
go through the manufacturing process, which is expensive and time consuming. This reconfiguration of the
FPGA is done using a hardware description language, such as VHDL or Verilog. Data on the FPGA is processed
in a dataflow manner.

It is found that developing FPGA kernels is a time-consuming process. Additionally, in-depth knowledge
about circuit design in required. Apart from the significant development time associated with the design and
implementation of the kernel, an interface between the kernel and the incoming and outgoing data needs to
be established.

The Fletcher toolchain can be used to automatically generate this interface in the context of Apache Arrow
recordbatches [11–13]. This interface is constructed based on the metadata of the underlying recordbatch.
Fletcher thereby greatly reduces the development effort required to create an FPGA kernel.

Furthermore, the reuse of existing FPGA kernels is low. It is found that connecting existing hardware
components is a labor intensive process. This can be attributed to the low abstraction level of the connections
between the components. These connections need to be changed by the hardware developer based on the
context in which the hardware component is to be deployed. Tydi provides a high level abstraction for these
connections and thereby facilitates kernel reuse [60]. This is done by defining existing hardware components
as streamlets, which transform streams of data [57].

Instead of developing a custom kernel, high-level synthesis (HLS) tools could be used instead. These
tools typically compile compiled languages into a register transfer level (RTL) hardware description. The
resulting design, albeit functional, is not optimized for execution. These designs can be manually optimized,
but this process is again time consuming and requires in-depth knowledge about circuit design [47]. These
HLS tools do not support the compilation of managed languages [61]. Papadimitriou et al. therefore proposes
an extension of TornadoVM that is able to JIT compile Java code to an FPGA bitstream.

2.4.2. FPGAs in big data
When considering ways as to how FPGA accelerators can be integrated into big data systems, one can dis-
tinguish three configurations of the FPGA in the computing system. The accelerator can either be placed
in the data path between network or storage and the CPU, as seen in Figure 2.13a, or it can be integrated
as an additional processor [47, 62, 63]. In this latter case, a further distinction can be made between an IO-
attached accelerator, where the FPGA has its own memory space, and a co-processor, in which the FPGA and
the CPU communicate through shared memory [47, 64]. These configurations are shown in Figure 2.13b and
Figure 2.13c respectively.

Storage/
Network FPGA CPU

(a) Data path

FPGA CPU

Host memory

D
ev

ic
e

m
em

or
y

(b) IO attached

FPGA CPU

Host memory

D
ev

ic
e

m
em

or
y

(c) Co-processor

Figure 2.13: Different architectural configurations for FPGA accelerators [47].

SQL workloads It is identified in a survey that multi-pass database queries are able to benefit most from
FPGA accelerators, because of the high computational intensity of the resulting operators [47]. Addition-

2.5. Related work 17

ally, when comparing FPGAs with GPUs, latency-sensitive streaming applications are better suited for FPGA
acceleration because of the batch-processing nature of GPUs.

This survey also stresses the importance of good query optimization when considering new accelerators.
Query optimizers have been studied extensively in the context of CPU architectures, but the optimization be-
comes more challenging when FPGA accelerators are considered. In this new situation, the optimizer should
take FPGA reconfiguration times into account as well as whether the query is long- or short-running. Not tak-
ing these aspects into account when optimizing the query could potentially prove wasteful, as a subobtimal
query plan can waste system resources.

2.4.3. Tidre
Tidre is a regular expression matching engine for FPGA accelerators and is developed by Teratide [65]. Tidre is
based on VHDRE, a generator for regular expression matcher FPGA kernels [66]. These kernels, as generated
by VHDRE, can process batches of UTF-8 strings and can indicate which records in the recordbatch match
the given regular expression. This regular expression is hard-coded in the design. Therefore, changing the
target regular expression requires resynthesis of the hardware design, which typically takes multiple hours to
complete.

Tidre wraps this VHDRE kernel with Fletcher-generated interfaces. Furthermore, it provides a native in-
terface that can be used to upload recordbatches to the accelerator and to download the results.

2.5. Related work
When considering related work, GPU accelerators prove to be of interest. GPU accelerators have been avail-
able for a longer amount of time than FPGA accelerators. As a result, there exists a considerable amount of
research related to the integration of GPU accelerators in big data frameworks. Apache Spark, as one of the
most popular big data frameworks, has been the subject of various integration projects with GPU accelerators
[67].

HeteroSpark provides an integration between GPUs and Apache Spark [68]. The acceleration is integrated
into the Spark Core and as an effect, the acceleration is made transparent to the developer. The GPUs are
leveraged to accelerate compute intensive algorithms such as the ones found in typical machine learning ap-
plications. A drawback of HeteroSpark is that serialization and deserialization is required when transmitting
data to and from the accelerator, as there is no integration with Apache Arrow. HeteroSpark demonstrates
that a speedup of 18x can be achieved for various machine learning applications.

Spark-GPU is another project that integrates GPU accelerators in Apache Spark [69]. Apart from targeting
machine learning algorithms, SQL operators can be offloaded to the GPU as well. A task scheduling system is
implemented to autonomously select tasks that can be offloaded to the accelerator. The speedup for various
machine learning workloads is shown to be 16.13x, while the speedup for various SQL queries is found to be
at most 4.83x.

BlazingSQL is a SQL engine built on the RAPIDS stack [70]. A common in-memory data layer is con-
structed based on the CUDA dataframe (CuDF). This CuDF aims to overcome the same serialization chal-
lenges as Apache Arrow. This implementation targets SQL based ETL oprations as used in data preparation
stage for machine learning algorithms. It is shown that BlazingSQL can achieve 20-100x speedups as com-
pared to equivelent Apache Spark clusters at price parity.

It is seen that GPUs can be effectively deployed in big data frameworks to achieve high speedups for applica-
tions that are related to machine learning. Projects such as Spark-GPU however report diminishing returns
when considering pure SQL workloads. FPGA accelerators could potentially be leveraged in these situations
to push towards greater speedups.

Nonnenmacher integrates a Fletcher based FPGA kernel into Apache Spark [16]. It is shown that a speedup
of up to 13x can be achieved when considering a SQL workload that features a regular expression filter opera-
tor. The work of Nonnenmacher contributes to the work of the ABS group, in which an FPGA accelerated big
data system is designed [5].

Li et al. propose an FPGA based Network Interface Card with Query Filter (NIC-QF) that is able to perform
SQL filtering in the storage nodes of big data frameworks [71]. This approach is able to speed up queries in
the TPC-H benchmark suite by 1.9x.

Ziener et al. propose an FPGA based system that accelerates SQL query processing [72]. Based on the SQL

18 2. Background

query, an accelerator pipeline is constructed based on on a set of presynthesized and partially reconfigurable
hardware modules. A similar system is presented by Becher et al., in which SQL pipelines are constructed
from a library of partially reconfigurable hardware designs [73]. The focus here is on energy efficiency. It is
shown that the performance of the system matches high-end database servers, while the energy consumption
can be reduced by up to 95%.

Lee et al. propose a SQL acceleration solution based on SmartSSDs; A solid-state drive (SSD) with inte-
grated FPGA fabric [74]. An analysis is performed to show that such a system could potentially accelerate
queries in Spark SQL by 3x, while only consuming 46% of the energy that is required by an equivalent CPU
solution.

Apart from the integration between FPGA accelerators and big data frameworks, various works consider the
optimization steps required to accelerate SQL workloads. Effectively optimizing FPGA accelerated execution
plans requires new cost models that take these accelerators into account in order to be able to select the
optimal plan as seen in Section 2.2.

Wang et al. propose a model for SQL operator processing time on FPGA accelerators [75]. Becher et al.
identify that more research regarding a novel cost model is required if fast and energy efficient execution is
desired in the context of hardware accelerators [76]. Fang et al. identify that query optimization regarding
FPGA accelerators is not as well studied as with CPU [47]. SQL engines that consider FPGA accelerators exist
but generally do not consider energy efficiency, one of the big advantages of FPGAs, in the optimization step
[77, 78].

3
Alternative solutions

As stated in Section 1.3, this project investigates how big data frameworks should be designed such that they
can be transparently and efficiently accelerated by use of FPGA accelerators. As seen in Section 2.5, the chal-
lenge of accelerating big data frameworks in general has been a popular research subject. In this research,
the implementation of FPGA accelerators is not the only identified solution to speed up computations in a
big data context. Additionally, the choice of which big data framework to accelerate is not trivial. As seen in
Figure 1.2, there are numerous frameworks, all of which specialize in a different area of big data. It is possible
that there are certain frameworks that lend themselves better for transparent acceleration. Finally, there are
different contexts in which this big data framework can be deployed. As seen in Subsection 2.1.1, it is com-
mon for data engineers to run said frameworks on their local machine as well as on a more powerful server
node or in a distributed setting on a cluster.

This chapter explores the alternative solutions for each of these three cases and provides multiple pro-
posed solutions based on this analysis.

Section 3.1 elaborates on the method of analysis as used in the evaluation of these alternative solutions. Sec-
tion 3.2 investigates the different speedup methods in the context of big data. Section 3.3 explores different
big data frameworks and identifies the most promising candidates for acceleration. Next, Section 3.4 inves-
tigates the different contexts in which these accelerated frameworks can be deployed. Finally, Section 3.5
presents the proposed solutions.

3.1. Method of analysis
This section presents the method of analysis that is used to analyze the alternative solutions in the consec-
utive sections. Each alternative solution class is scored on several criteria in three categories; effort, perfor-
mance, and impact.

First, criteria in the effort category are a proxy for the development effort. This effort is an important aspect
when accelerating big data applications. It is noted that the integration of accelerator kernels into frameworks
is non-trivial and a time consuming process [5]. Special care needs to be taken to make sure all necessary im-
plementations required to answer the research questions as stated in Section 1.3 can be implemented within
the time frame of the MSc thesis project.

Second, criteria in the performance category are equally important. These criteria aim to provide a mea-
sure for the performance increase as can be achieved with the alternative solution. The criteria are derived
from prior research and the theory as provided in Chapter 2.

Finally, criteria in the impact category provide a measure for the potential impact and relevance within the
big data community. Building a solution that is extremely fast for specific situations is interesting from an
academic perspective. However, if these situations only occur in simulated environments, the impact of the
solution in the real world is poor.

19

20 3. Alternative solutions

It is difficult to give each of the identified alternative solutions an absolute score based on the criteria in
these three categories. However, an effort is made to quantize the findings for each of the criteria by means of
a score of 1 to 5. The general motivation behind each score is shown below but this might change depending
on the context in which it is used.

1. Bad. Completely unsuitable and/or infeasible, would require a major software rewrite or is otherwise a
bad solution for the criterion.

2. Not ideal. Requires significant effort or is otherwise a less ideal solution for the criterion.

3. Neutral.

4. Good. Requires some modification of existing software or is otherwise a good fit for the criterion.

5. Excellent. Requires little to no modification of software or is otherwise an excellent fit for the criterion.

3.2. Speedup methods
This section considers the different methods that can be used to achieve a computational speedup in big
data settings. Even though the scope of this project is bound to the use of FPGA accelerators, it is good to
know how this technology relates to other speedup methods that can be deployed in the same setting. The
identified alternative solutions can be seen in Figure 3.1.

Speedup
methods

CPU
optimization

Dedicated
accelerators

Vectorization FPGAGPU

Data path Processor

IO-attached
processor Co-processor

Parallelization

Co-processorIO-attached
processor

Figure 3.1: Classification tree for speedup methods.

Either CPU optimization methods or dedicated accelerators can be leveraged in order to accelerate big data
applications. Dedicated accelerators are further subdivided into GPU accelerators and FPGA accelerators.
These three main classes of speedup methods are further discussed below.

3.2.1. CPU optimization
This class contains optimizations based on the available CPU hardware.

Vectorization Most modern CPUs offer support for vectorized operations, an example of which is Intel’s
AVX [56]. These operations perform a single instruction on a vector that holds multiple values. The size of
this vector is dependent on the underlying support in hardware.

This allows computations to be accelerated by evaluating operations on multiple values at once. The
speedup is determined by the size of the vector.

An example of this acceleration method is the Gandiva execution engine as seen in Section 2.3. The Gan-
diva engine makes use of vectorized operations to perform computations on a vector of Apache Arrow data.

3.2. Speedup methods 21

Parallelization Parallelization can be deployed in the form of multithreading. In multi-core CPUs, these
threads can be executed on multiple cores, increasing the effective throughput. It is important to select the
correct granularity when implementing a multithreading solution, as an overhead is associated with the cre-
ation and the management of multiple threads. The nature of big data allows parallel processing at a high
granularity, in which multiple threads operate on separate recordbatches.

Such an implementation is standard in modern big data frameworks such as Apache Spark, Dremio, and
Dask [79–81]. An example of how an operation can be performed on multiple threads is the computation of
the sum of all values in a dataset. Each thread can be programmed to compute the partial sum of a record-
batch, after which these partial sums are added to obtain the final result.

3.2.2. GPU accelerators
The GPU, or graphics processing unit, is the most widespread hardware accelerator. Originally, GPUs are
designed to accelerate graphics processing, but nowadays they can also be deployed for scientific purposes.
All modern GPUs can therefore also be classified as a general-purpose graphics processing unit (GPGPU).
In short, a GPU encompasses many small and simple processors, enabling it to perform highly parallelized
arithmetic operations.

A distinction can be made between GPUs configured as IO-attached processors and GPUs configured as co-
processors.

IO-attached processor GPUS that are configured as an IO-attached processor operate in their own memory
space, separated from the memory space of the CPU. Sharing data between the host and the GPU accelerator
requires the data to be copied between the two memory spaces.

Co-processor GPUs that are configured as a co-processor share their memory space with the CPU. The ac-
celerator can therefore access data in the main memory without the need to copy this data.

An example of such a system is the Intel Graphics Technology, in which a GPU is manufactured on the same
die as the CPU. In this case, memory coherence is handled by the hardware on the die.

Another possibility is to connect the GPU accelerator through a coherent IO interface. Examples of such
interfaces include IBM’s Coherent Accelerator Processor Interface (CAPI) or Intel’s Compute Express Link (CXL)
[47]. The compute system has to offer additional hardware support in order to enforce the memory coherence
[47].

3.2.3. FPGA accelerators
As seen in Section 2.4, FPGA accelerators can be configured to process streams of data in a dataflow manner.
This configuration, based on the usecase, enables greater performance than general purpose solutions. It is
identified that the design and implementation of an FPGA kernel is time consuming. Three FPGA classifica-
tions are identified based on the placement in the system.

Data path FPGAs in tha data path are placed between network or storage and the CPU. These FPGAs can
perform preprocessing operations, such as parquet decompression, which effectively increases the band-
width between network or storage and the CPU [82].

Examples include the SSD’s from Samsung and Xilinx [83]. These SSD’s have an FPGA directly attached to
the storage unit.

IO-attached processor In this configuration, the FPGA accelerator acts as another processor in parallel
with the CPU. The FPGA has it’s own memory space, requiring data to be copied between the CPU and the
accelerator.

Another drawback of such a system, apart from the required data copies, is the limited capacity of local
memory that is available on the FPGA. Because of this limitation, applications that run on FPGA accelerators
can potentially only access a fraction of the entire dataset at the same time.

22 3. Alternative solutions

Co-processor In this configuration, the FPGA accelerator acts as a processor and shares it’s memory space
with the CPU. This eliminates the need for data copies and makes the FPGA accelerator a ’first class citizen’
of the system.

Similar to GPU accelerators configured as co-processors, this can be realized by leveraging systems such as
CAPI and CXL. Additionally, hybrid microchips exist that integrate FPGA fabric on the same die on which the
CPU is implemented.

3.2.4. Comparison
When comparing these alternative solutions, the resulting performance is highly dependent on the system
on which the solution is deployed and on the specific usecase that is accelerated. Therefore, the alternative
speedup methods are only analyzed based on the required development effort and the expected impact.

The resulting decision making matrix of this analysis can be seen in Figure 3.1.

Effort Impact

To
tal

Initial implementation Extensibility Availability

C
P

U Vectorization 3 4 5 12

Parallelization 3 2 5 10

G
P

U IO-attached 2 4 4 10

Co-processor 2 4 3 9

F
P

G
A

Data path 2 1 1 4

IO-attached 1 1 2 4

Co-processor 1 1 1 3

Table 3.1: Decision matrix for the speedup methods in the context of big data.

It can be seen that the impact of the CPU-based speedup methods is high. Most modern CPUs are multi-core
processors and come with support for vectorized instructions, this makes the availability of these speedup
methods very high. The scores for the criteria related to the development effort of these methods is relatively
high when compared to the GPU- and FPGA-based speedup methods.

The availability of GPU accelerators is somewhat lower than the CPU speedup methods but still very
high. GPU accelerators configured as co-processors have a slightly lower availability due to the additional
required hardware support. GPU speedup methods require a little more development effort for the initial
implementation because of the challenges associated to integrating hardware accelerators in existing big data
frameworks. Writing GPU kernels is however done at a relatively high abstraction level, making extensions to
the system straightforward once the integration is complete.

The availability of FPGA accelerators is very low, while the availability of FPGAs in the datapath is even
lower. It can be seen that the development effort required for the initial implementation and the extension of
existing systems is significant. This can be explained due to the in-depth knowledge about circuit design that
is required in order to design and implement FPGA solutions.

As mentioned, the performance of the solution is highly dependent on the underlying system and the specific
usecase. It is however perfectly possible to combine these alternative solutions. An example could be a sys-
tem that offloads certain computations to both GPU and FPGA accelerators, depending on which accelerator
is most suitable for that particular computation. At the same time, this system could perform computations
on the CPU with vectorized instructions for operations for which there is no accelerator kernel available.

3.3. Big data frameworks 23

3.3. Big data frameworks
This section investigates different big data frameworks and identifies which frameworks are most suitable for
transparent and efficient integration with FPGA accelerators. There is a vast number of different frameworks
that all specialize in a different part of big data. In Section 2.2, differences such as in-memory versus on-disk
processing and row-based versus column-based formats are identified.

In order to provide a good analysis of the wide selection of frameworks, a high-level classification is de-
rived. This classification does by no means encompass all differences between each framework, but it pro-
vides a good starting point for the analysis.

The classification can be seen in Figure 3.2. Big data frameworks are divided into batch-processing frame-
works, streaming frameworks, and index-based frameworks. These classifications are further discussed in
the sections below. A more in-depth analysis of individual frameworks within these classifications can be
found in Appendix A.

Batch-processing Streaming

Big data
frameworks

Index-based

Figure 3.2: Classification tree for big data frameworks.

3.3.1. Batch-processing frameworks
Big data frameworks in this class process their data in batches. For large datasets, multiple batches need to
be evaluated in order to process the entire set. These batches can either be in a row-based format or in a
column-based format.

This way of processing fits well with distributed file systems as described in Subsection 2.2.1. Multiple
batches can be processed in parallel, in which each node in the cluster works on a batch for which the data
is present in the local machine until a shuffle is needed. Typically, this batch size is equal to the chunk size
of the data stored in the distributed file system. Most modern big data frameworks allow this batch size to be
changed, regardless of the chunk size.

Many batch-processing big data frameworks feature additional SQL modules that translate SQL queries into a
tree of operations as described in Section 2.2. Here, it is common to see either custom made query optimizers
or optimizers based on large open-source projects such as Apache Calcite [40].

3.3.2. Streaming frameworks
Streaming big data frameworks, on the other hand, excel in processing real-time data. Instead of processing
large batches, which introduces latency, individual records can be processed as they come in. Alternatively,
the data can be processed in micro-batches.

Processing individual records as they come in ensures the lowest possible latency. However, providing fault-
tolerance in such a system can be challenging [84].

Processing the data in micro-batches allows for better fault-tolerance. Micro-batches are typically created
by convolving an incoming record stream with a sliding window. Processing micro-batches does introduce a
higher latency than processing individual records.

3.3.3. Index-based frameworks
Index-based big data frameworks are completely different from batch-processing and streaming frameworks.
Instead of processing datasets, the focus is on performing search operations. A typical usecase for an index-

24 3. Alternative solutions

based framework is a string search that queries a large set of text documents.

These frameworks then search the underlying data by means of an inverted index. This inverted index is
a datastructure that holds an index for each word in the underlying data. The value associated to this index
then lists the positions of all occurrences of the word. This is typically implemented by a hashmap, where the
index is given by the hash value of a particular word. The time-complexity for a lookup on such a hashmap
implementation is O(1), which enables searches to be very fast.

To allow this inverted index search to work, the underlying data first needs to be preprocessed to build
the inverted index. This preprocessing might be time consuming, depending on the size of the dataset to be
processed and the algorithm that is used to compute the indices.

3.3.4. Comparison
Individual frameworks within these classes are analyzed based on the estimated development effort, the ex-
pected performance, and their potential impact. These findings are summarized in a decision matrix which
can be found in Table 3.2.

Effort Performance Impact

To
tal

Planner
Extensibil-
ity

Mem.
Structure

Mem.
Alignment

Max.
Batch Size

Community
size

Typical ap-
plications

B
at

ch

Dask (distr.) 4 5 5 5 4 general,
machine
learning

23

OmniSciDB 5 5 5 5 2 heterogeneous,
BI, GIS

22

Spark SQL 4 4 3 5 5 general 21

InfluxDB IOx 4 5 4 5 1 timeseries,
streaming

19

Apache Hive 5 3 3 5 3 general,
mapreduce

19

Ballista 4 5 4 4 2 WIP, TPC-H 19

Presto 5 1 3 5 4 general 18

Dremio 5 5 3 2 2 preprocessing,
data lake en-
gine

17

St
re

am

Spark Streaming 4 4 3 2 4 streaming 17

Apache Kafka 3 3 3 1 5 streaming,
latency-
sensitive

15

In
d

ex Elasticsearch SQL 3 2 3 1 5 (text) search 14

Apache Lucene 1 2 3 1 1 search
algorithms

8

Table 3.2: Decision matrix for the feasibility of FPGA integration into different big data frameworks. The typical
applications column lists typical uses of the frameworks such as business intelligence (BI), geographic information
systems (GIS), or industry standard benchmark suites such as TPC-H. In addition, it is listed when a framework is

considered a work-in-progress (WIP) at the time of writing.

3.4. Deployment methods 25

In general, it can be seen that batch-processing frameworks score higher on the selected criteria than stream-
ing and index-based frameworks. The scoring in the development effort category is high, since most of these
batch-processing frameworks offer some form of SQL optimization module. These optimization modules
provide a good starting point for integration with FPGA accelerators. One of the selected criteria for the es-
timated performance is the maximum batch size. Based on prior research, it is found that a high batch size
is beneficial when integrating FPGA accelerators configured as IO-attached processors or as co-processors
[16]. It is expected that this maximum batch size does not impose significant limitations for integrations with
FPGA accelerators in the datapath.

The development effort for streaming frameworks is mostly related to the availability of extensible SQL
modules. The maximum batch size of these frameworks is smaller than that of batch-processing framework.
A distinction is made between the maximum batch size in frameworks that process individual records and
frameworks that process micro-batches.

Finally, index-based big data frameworks score low on criteria in all three categories. These frameworks
are already able to evaluate queries very fast by means of their reverse index algorithms. Instead of acceler-
ating the queries, it could be possible to target the preprocessing stage at which the indices are constructed.
However, this is outside of the scope of this work.

3.4. Deployment methods
This section analyzes the different deployment options for the FPGA accelerated big data framework. As seen
in Subsection 2.1.1, data engineering is an iterative process in which engineers typically start with relatively
small datasets on single node systems before moving to more advanced setups. This observation is reflected
in the classification of the different deployment methods as seen in Figure 3.3.

Deployment
methods

Single node

Cluster

Acceleration aware
worker

Acceleration aware
scheduler

Figure 3.3: Classification tree for deployment methods.

The deployment methods are divided into two main classes; deployment on a single node and deployment in
a cluster. The single node class encompasses both workstations such as a desktop or single nodes in a server.
When considering deployment in a cluster, either the scheduler node or the worker node can be made aware
of the acceleration. Both of these options have their own advantages and disadvantages.

3.4.1. Single node
Due to the iterative nature of data engineering, the single node deployment is the most common deployment
of a big data framework. This can be explained by the fact that it is used by companies on all levels of the AI
hierarchy of needs as presented in Figure 2.1. As mentioned, this class encompasses both single workstations
as well as single nodes in a server. However, since a physical FPGA accelerator is required for the deployment
of the accelerated framework, single node setups in a server will most likely be the common case. This holds
especially true when considering the ease at which an FPGA instance can be provisioned in popular cloud
services [14, 85]. It is not likely that users running a big data framework on their local machine will be able to
locally deploy an FPGA accelerated framework.

The planning in terms of which parts of the execution graph are to be accelerated can be performed once
per query during the query optimization phase as described in Section 2.2.

26 3. Alternative solutions

Finally, apart from accelerating operators with a narrow dependency, it is also feasible to offload the com-
putation of operators with a wide dependency. Since there is only a single node, no data needs to be shuffled
over the network as all chunks are available locally. Allowing operators with a wide dependency to be evalu-
ated on an FPGA accelerator results in more acceleration opportunities.

3.4.2. Acceleration aware scheduler
In contrast to a single node deployment, a cluster deployment has a smaller community size because typi-
cally only companies in the higher sections of the AI hierarchy of needs can benefit from such an advanced
setup.

When considering a cluster deployment of an accelerated framework, the most straightforward way would
be to make the scheduler node aware of the acceleration. This means that the scheduler node performs all
necessary transformations of the execution plan in order to offload part of the computation to an FPGA ac-
celerator.

However, if the scheduler node is not aware of the worker node’s capabilities, the implication of perform-
ing this acceleration planning in the scheduler node means that all worker nodes should be able to execute
the new execution graph. Since this new graph contains FPGA accelerated operations, all worker nodes in
the cluster should be equipped with an FPGA accelerator. This raises the barrier to adopt such an accelerated
framework, as substituting all nodes in an existing compute cluster for FPGA accelerated nodes is costly.

Similar to single node deployments, acceleration aware scheduler deployments are able to perform the
acceleration planning once per query in the query optimization phase which runs on the scheduler node.

In contrast to the single node deployment, operators with wide dependencies do require a network shuf-
fle in a cluster deployment. Therefore, the focus is only on accelerating operators with narrow dependencies
[5]. This results in less opportunities for acceleration.

3.4.3. Acceleration aware worker
Another option for the deployment of an accelerated big data framework in a cluster setting is to make the
worker node aware of the acceleration, instead of the scheduler node. This overcomes the problem of having
to substitute all nodes in the cluster by FPGA nodes, because in this case the scheduler node will submit the
original execution execution plan to all workers. This lowers the barrier for adoption in industry, because it
allows existing nodes in the cluster to remain unchanged when FPGA accelerated worker nodes are added.

Since the scheduler node does not perform the acceleration planning, the accelerated worker node needs to
perform this planning for all incoming execution plans. Depending on the implementation of the distributed
framework, the scheduler node can send the execution plan to the worker nodes in the form of multiple sub-
trees of the execution plan. In this case, instead of performing the acceleration planning once on the entire
execution plan, it now has to be performed for each subtree of the plan. Having to perform the acceleration
planning multiple times for a single query incurs additional overhead when compared to the single node
deployment and the acceleration aware scheduler deployment.

Like the acceleration aware scheduler option, the acceleration aware worker is only able to offload the
computation of operators with a narrow dependency. Additionally, performing the acceleration planning on
subtrees of the execution plan imposes limits on the granularity of the operations that can be accelerated. In
the other deployments that were considered, the entire execution plan is guaranteed to be available during
the acceleration planning phase. It is therefore possible to offload computations on a higher granularity; for
example, targeting a sequence of specific operators. If this sequence spans multiple subtrees of the execution
plan, the acceleration planning phase of the worker node is not able to recognize it as a candidate for accel-
eration. As an effect, there are less opportunities for acceleration when considering an acceleration aware
worker deployment.

3.4.4. Comparison
The development effort of implementing the three deployment options as described above is expected to be
the same, as the semantics of performing the acceleration planning remain unchanged. The only difference is
the location in which they are implemented. For this reason, only criteria related to the expected performance
and potential impact of the system are analyzed. The results of this analysis can be seen in Table 3.3.

3.5. Proposed solutions 27

Performance Impact

To
tal

Planning efficiency Acceleration op-
portunities

Community size Ease of adoption

Single node 5 5 5 3 18

Accelerated worker 4 3 3 5 15

Accelerated scheduler 5 4 3 2 14

Table 3.3: Decision matrix for the deployment methods in the context of FPGA accelerated big data frameworks.

When considering the total score of each deployment method, the single node option is the best option with
18 points. This is mainly due to the community size of single node deployments being larger than cluster
deployments. Apart from this, it is expected that a single node deployment is able to achieve excellent perfor-
mance. The only problem with this solution class is that is has a relatively high barrier of adoption in industry.
The reason for this is twofold. First, it is expensive and unpractical for users to upgrade their local machine
with an FPGA accelerator. Second, for users that run a single node deployment on a server, although it is
relatively easy to provision an FPGA instance, the cost associated to this is still significantly higher than that
of a normal instance.

When considering cluster deployments, the accelerated worker option is the best option with 15 points,
closely followed by the accelerated scheduler option with 14 points. Although the accelerated worker op-
tion has the lowest score in terms of acceleration opportunities, it has by far the highest score in terms of
adoption.

3.5. Proposed solutions
An important observation is that the speedup methods analyzed in Section 3.2 are not mutually exclusive. An
accelerated big data framework that utilizes vectorization in combination with GPU and FPGA acceleration
is a perfectly viable solution. The scope of this project is however limited to the implementation of FPGA
accelerators, but it is good to know what the strengths of other speedup methods are. The processor class
solution is chosen for implementation, due to it’s slightly higher availability. In addition, it’s strengths best fit
the acceleration needs of SQL operators. This class is further subdivided into FPGA processors that act as a
co-processor or IO-attached processor. The availability of running as a co-processor is heavily dependent on
the support of the underlying system such as OpenCAPI [86]. Therefore, a configuration in which the FPGA
processor can run as a co-processor is preferred but not required.

From the frameworks that are considered for integration, frameworks within the batch-processing class
best fit acceleration with FPGA accelerators deployed as a processor. Dask and Dask distributed (as the name
suggests, this is a version of Dask designed to run in a distributed setting) hold the highest total score of
all batch-processing frameworks. However, another bound of this project is that an implementation with
Dremio should be provided, as this is described in the original project description. From Section 3.3, it can be
seen that the Dremio framework is interesting because of the low development effort required for integration,
but the performance and impact leave something to be desired.

Finally, Section 3.4 shows that deploying the accelerated framework as a single node deployment or as an
acceleration aware worker in a cluster setting are the two most interesting choices. Both these options have
a considerable higher impact than accelerating the scheduler node in a cluster setting. The single node de-
ployment option has the greatest potential performance, while the accelerated worker option has the lowest
barrier of adoption in industry.

Based on these options, three different solutions are proposed that all contributed to answering the research
questions as stated in Section 1.3. These solutions are briefly presented below. Subsequent chapters elabo-
rate on the implementation and results of these solutions.

All of the proposed solutions make use of FPGA accelerators configured as an IO-attached processor, since the
FPGA kernel as deployed on Amazon Web Services (AWS) does not support the co-processor configuration at
the time of writing.

28 3. Alternative solutions

Dremio integration Dremio is selected for integration because of the original project description. All data
structures in Dremio are stored using the Apache Arrow in-memory format. Additionally, Dremio incorpo-
rates the Gandiva execution engine. An implementation that utilizes both CPU optimization methods as
well as FPGA accelerators is a good demonstration of multiple big data speedup methods working together.
Dremio’s internal query optimizer is based on the Apache Calcite framework, which enables optimization
rules to be used in other Apache Calcite based frameworks as well. A single node deployment is chosen for
Dremio in order to investigate the best performance that can be achieved.

Dask integration Apart from Dremio, Dask is chosen as the second framework for acceleration with FPGA
accelerators configured as processors. Both Dask and Dask distributed are identified as the most promising
candidates for integration based on the required development effort, expected performance, and potential
impact. A single node deployment is chosen, as vanilla Dask is not suitable for deployment in a cluster.
Therefore, both the Dask and the Dremio implementations are deployed on a single node. This allows for
a good comparison of the effect the different characteristics of these two big data frameworks have on the
performance of FPGA integration.

Dask distributed integration Finally, Dask distributed is selected for the third integration. This version of
Dask is specifically designed to run in a cluster setting and is therefore the perfect candidate to investigate
a cluster deployment with an acceleration aware worker node. Since Dask and Dask distributed are so sim-
ilar, this allows for a good comparison between the single node and acceleration aware worker deployment
options.

4
Dremio integration

Dremio is an open-source data lake engine developed by the commercial company Dremio and written in
Java. The developers at Dremio have also created Gandiva, a native execution engine for Apache Arrow data.
Additionally, they have contributed to various other modules in the Apache Arrow project. Dremio is a com-
mercial product that aims to accelerate corporate BI queries.

The in-memory format of data in Dremio is completely based on the Apache Arrow format. Together with
the incorporated Gandiva engine, this allows Dremio to evaluate queries very fast.

4.1. Implementation

Dremio includes it’s own SQL planner which is called Sabot. This Sabot planner is based on the open-source
Apache Calcite SQL optimizer [40]. The integration of Dremio with FPGA accelerators is mainly concerned
with extending this Sabot planner.

An FPGA kernel that can perform regular expression matching is selected for integration. This kernel is able
to evaluate regular expression based filter operations, as discussed in Subsection 2.4.3. For this reason, the
architectural details of the integration are presented in the context of accelerating filter operators. The details
of this implementation can be found below.

4.1.1. Architectural details

Dremio’s Sabot planner is extended in two places. First, the planner package is extended by introducing an
additional FPGA acceleration planning phase. Second, the operator package is extended by adding a new op-
erator that is able to offload filter evaluations to a native package by use of the Java Native Interface (JNI). The
native-op package is implemented in C++ and receives these JNI calls. A Tidre-based filter implementation
as well as an RE2-based implementation is included in this package. The Tidre-based evaluation offloads the
computation to an FPGA accelerator, while the RE2-based implementation evaluates the regular expression
on the CPU using Google’s RE2 library [87].

An overview of this system can be seen in Figure 4.1. All individual components are discussed in the following
sections.

29

30 4. Dremio integration

«interface»
Filterer

AcceleratedFilter-
Template

FPGA
Acceleration
Planning

SingleInputOperator
{abstract}

AcceleratedFilter-
Operator

sabot-planner sabot-op

PlannerPhase

native-op tidre

TidreFilter

RE2Filter

«driver»
SmartOp

Native-
Filter Tidre

Fletcher
stack

SqlTo-
PlanHandler

JNI

Figure 4.1: Overview of the accelerated version of Dremio. The contributions of this project are shown in blue with bold
borders. The diagram is inspired by UML but does not follow all UML practices.

4.1.2. FPGA acceleration planning
Dremio’s internal Sabot planner implements a number of planning phases. Each phase transforms the in-
coming execution tree by use of a number of optimization rules. An overview of the most important planning
phases for this integration effort can be seen in Figure 4.2.

Validation Convert to
Rel

Logical
Planning

Physical
Planning

FPGA
Acceleration

Planning

Physical
Heuristic
Planning... ...

Figure 4.2: Sabot planner phases including the new FPGA acceleration planning phase.

The validation phase validates the query based on the schema of the dataset. In the next phase, the SQL
query is parsed and converted to an expression tree of logical operations. This tree is then optimized in a
number of logical planning phases. The pre- and post-logical phases are omitted in the figure. These logical
planning phases perform optimizations such as filter pushdown and projection merging. The subsequent
physical planning phase converts all logical operations in the expression tree to a physical implementation
as described in Section 2.2.

The resulting expression tree of physical operators is used as an input for the added FPGA acceleration
planning phase. Adding this new phase after the logical and physical planning phases ensures that the frame-
work is able to perform important optimizations. The new planning phase incorporates optimization rules
which target physical operators that are semantically equivalent to a given FPGA implementation. Matching
physical operators are substituted by an accelerated operator. An example of such an optimization rule that
transforms a filter operator to an AcceleratedFilter operator can be seen in Listing 4.1.

Finally, the physical heuristic planning phase performs additional heuristic optimizations regarding nested
loop joins.

Apache Calcite’s RelOptHelper is used on line 8 of Listing 4.1 to specify which operators in the incoming ex-
ecution tree this optimization rule matches on. Additionally, it also provides methods to target a specific
sequence of operators. This allows for the construction of more complex optimization rules.

As noted in Section 2.4, developing an efficient FPGA implementation of a SQL operator is labor intensive.
In order to increase the impact of such a kernel, operators in the execution plan can be rewritten during the
FPGA acceleration planning phase such that they can match the optimization rules in cases where they nor-
mally would not. This increases the number of usecases for which a given FPGA kernel can be used. For
instance, a SQL LIKE based filter operator could be rewritten to a regular expression based filter operator if
the predicate can be evaluated on an accelerated regular expression engine. Rewriting these operators to se-
mantically equivalent ones is known as query exploration and can result in a set of multiple execution plans
that yield the same correct result. As seen in Section 2.2, cost models are required to select the optimal plan
from this set.

4.1. Implementation 31

0 public c l a s s AcceleratedFi l terPrule extends RelOptRule {

2 public s t a t i c f i n a l RelOptRule INSTANCE = new AcceleratedFi l terPrule () ;

4 // Match on any f i l t e r prel
private AcceleratedFi l terPrule () {

6

// More s p e c i f i c rules could be added to match s p e c i f i c f i l t e r conditions
8 super (RelOptHelper . any (F i l t e r P r e l . c l a s s) , " AcceleratedFi l terPrule ") ;

10 }

12 @Override
public void onMatch(RelOptRuleCall c a l l) {

14

f i n a l F i l t e r P r e l f i l t e r = (F i l t e r P r e l) c a l l . r e l (0) ;
16

// Transform the operator to the FPGA based f i l t e r operator with the same parameters
18 c a l l . transformTo (

new A c c e l e r a t e d F i l t e r P r e l (
20 f i l t e r . getCluster () ,

f i l t e r . getInput () . g e t T r a i t S e t () ,
22 f i l t e r . getInput () ,

f i l t e r . getCondition ()
24)

) ;
26

}
28

}

Listing 4.1: A Sabot optimization rule that targets a filter operator and substitutes an accelerated operator.

4.1.3. Accelerated filter operator
The accelerated physical operator that substitutes the matching physical operators in the FPGA planning
phase needs to match with an operator implementation as defined in the Sabot op package. In this case,
an accelerated filter operator is added that implements the abstract SingleInputOperator class. The actual
evaluation of the recordbatch based on the filter predicate is performed in the AcceleratedFilterTemplate class,
which implements the Filterer interface. The vanilla filter template class normally offloads it’s computation
to the Gandiva engine when this is supported, but the new accelerated class offloads the evaluation to the
newly introduced native filter package.

This native filter package has support for evaluation of the recordbatch on an FPGA accelerater through
the Tidre package. Additionally, the evaluation can be performed on the CPU by use of the Google RE2 frame-
work, which is a regular expression evaluation framework written in C++.

A sequence diagram of these interactions in the case where the evaluation is performed on an FPGA acceler-
ator can be seen in Figure 4.3.
SmartOp is the driver in the Sabot planner which coordinates the execution of the different operators in the
execution plan. This driver additionally checks whether the operator behaves as expected. One example of
such a check is to verify whether the schema of the resulting recordbatch matches the expected schema of the
next operator in the plan. SmartOp calls the setup() method of all operators. Normally, this triggers Gandiva
code generation, but in case of the accelerated filter operator this is not necessary. The setup method then
returns a VectorContainer, which holds the Arrow buffers in which the resulting recordbatch is to be written.
The setup also sets the state of the operator to CAN_CONSUME.

Tidre evaluation After the accelerated filter operator is set up, SmartOp repeatedly calls the consumeData()
method until the state of the accelerated filter operator no longer is set to CAN_CONSUME. This method is
where the filter evaluation happens. The filterBatch() method is called on the accelerated filter template,
which invokes a call to filterBatchSV() or filterBatchNoSV() depending on whether the incoming recordbatch
has a selection vector specified. This selection vector is a vector that holds indices of records in the record-
batch that matched an upstream filter. In this case, it is assumed that there are no upstream filters and

32 4. Dremio integration

:AcceleratedFilterOperator :AcceleratedFilterTemplate :NativeFilter :Tidre:SmartOp

setup()

VectorContainer

* consumeData()

filterBatch()

filterBatchNoSV()

<<jni>>
doTidreEval()

initializePlatform()

status

runRaw()

matching_indices,
number_of_matches

<<jni>>
number_of_matches

number_of_matches

doTransfers()

Method called
repeatedly until state
of operator changes

Figure 4.3: Sequence diagram illustrating the interactions of the accelerated operator in Dremio.

the accelerated filter template invokes the filterBatchNoSV() method. This assumption hold true as the se-
lected usecase, which is further explained in Subsection 4.2.1, only contains a single filter operator. The
filterBatchNoSV() method offloads the evaluation to the native filter package by calling the doTidreEval()
method through the JNI. Pointers to the Arrow buffers of the input recordbatch and outgoing selection vector
are passed as arguments. The doTidreEval() method only returns the number of matches, as the indices of
records that match the filter predicate are written to the Arrow buffer of the outgoing selection vector. Since
the native filter package already holds a pointer to this Arrow buffer, this does not need to be returned by the
doTidreEval() function.

The native filter package in turn initializes the Fletcher platform through the Tidre package and offloads
the evaluation by invocation of the runRaw() method.

RE2 evaluation In case the evaluation is to be performed using the RE2 library, the accelerated filter tem-
plate invokes the doRE2Eval() method instead of the doTidreEval() method.

Unlike evaluation using the Tidre kernel, in which the regular expression that is to be evaluated is hard-
coded in the FPGA design, the RE2 libary offers more flexibility here. In this case, the regular expression string
is passed as an additional argument in the doRE2Eval() method. The native function then pre-compiles this
regular expression in the RE2 library and evaluates the records in the incoming recordbatch.

4.2. Experimental setup
All experiments are performed on the Elastic Compute Cloud (EC2) of AWS and are run on an f1.2xlarge
instance (FPGA accelerated machine), unless stated otherwise. This machine type has 8 virtual cores and
features the high frequency Intel Xeon E5-2686 v4 (Broadwell) processor [88]. In addition, these instances are
equipped with a 16nm Xilinx UltraScale Plus FPGA. The f1.2xlarge machine type has 122 GiB memory. The
Centos 7 based FPGA developer AMI is used for the machine image.

The codebase of the accelerated version of Dremio can be found on GitHub [89]. This repository contains

4.2. Experimental setup 33

a detailed installation guide with instructions on how to deploy the framework on AWS.

Two simple benchmarks are written to assess the performance of the accelerated version of the framework.
These benchmarks are based on the regular expression usecase as described below.

4.2.1. Regular expression usecase
A usecase is selected where a regular expression filter is applied to a dataset containing tweet-like strings.
Apart from these tweet-like strings, the dataset also contains a column of integer values, which can be used
for various aggregation operations. The schema of this dataset can be seen in Listing 4.2.

0 {
"value_column" : Int32 ,

2 " string_column " : L i s t (Char)
}

Listing 4.2: Schema of the regular expression usecase dataset.

The query for this usecase can be seen in Listing 4.3. This query features a sum aggregation and a regular
expression filter.

0 SELECT SUM("value_column") FROM " tweet− l i k e − s t r i n g s . parquet " WHERE REGEXP_LIKE(" string_column " , ’ . * [tT
] [eE] [rR] [aA] [tT] [i I] [dD] [eE] [\ t \n] + [dD] [i I] [vV] [i I] [nN] [gG] [\ t \n] + ([sS] [uU] [bB]) +[sS] [uU] [rR] [fF] [
aA] [cC] [eE] . * ’)

Listing 4.3: Chosen SQL query for the regular expression usecase.

4.2.2. Dataset
The dataset is generated by means of a Python script, which can be found on GitHub [90]. This generator
is able to generate datasets with a variable number of records. The schema of the dataset can be seen in
Listing 4.2. Fields in the value_column contain a randomly generated integer between 1 and 100. Fields
in the string_column contain strings of 100 characters consisting of upper- and lowercase ASCII characters,
digits, and whitespaces. Of these strings, 5% match the selected regular expression as seen in Listing 4.3. The
content of these matching strings is generated using the Xeger library and padded to 100 characters [91]. The
remaining 95% of strings are randomly generated. The resulting dataset is stored in a parquet file.

4.2.3. Input size benchmark
This is the first benchmark constructed for the regular expression usecase. The benchmark tests how the
system behaves for a varying number of input records. The number of records in the dataset range from
1,000 records up to 512,000 records, increasing by factors of two. The batch size is kept constant at 64,000
records, the maximum value in the case of Dremio.

This benchmark therefore spans two interesting regions; the input datasets of 1,000 records up to 64,000
records can be evaluated in a single recordbatch, while the datasets of 128,000 up to 512,000 records have to
be evaluated in multiple.

4.2.4. Batch size benchmark
This benchmark tests how the system behaves for a varying number of records in the recordbatch. The input
size is kept constant at 32,000 records, while the batch size varies from 1,000 to 64,000 records, increasing by
factors of two.

Therefore, the smaller batch sizes require the dataset to be evaluated in multiple batches, while the largest
batch sizes of 32,000 and 64,000 records allow the dataset to be evaluated in a single batch. The largest batch
size is interesting as it is bigger than the input size and is therefore not expected to behave different compared
to the batch size of 32,000 records.

4.2.5. Measurement setup
The first run for each configuration in an experiment is discarded in order to mitigate cache warming effects.
After this first run, ten consecutive runs are performed and the measured runtimes are averaged to obtain the
final result for that configuration. The experiments measure the runtime of the filter operator, as well as the
total query runtime.

34 4. Dremio integration

4.3. Results
The results in terms of the input size and batch size benchmarks are presented in this section. Additionally,
an experiment regarding query exploration is considered.

4.3.1. Accelerating the query
The query as seen in Listing 4.3 is executed on the accelerated version of Dremio. The FPGA acceleration
planning phase transforms the physical execution plan by substituting the filter operator with the accelerated
version. This can be seen in Figure 4.4. As described in Section 4.1, this accelerated operator can either offload
the evaluation of the filter to the RE2 library or to an FPGA accelerator through the Tidre package.

ScreenProjectStream
Aggregate

Union
ExchangeProjectFilterParquet

Scan

ScreenProjectStream
Aggregate

Union
ExchangeProjectAccelerated

Filter
Parquet
Scan

Figure 4.4: Execution plan transformation for the regular expression usecase in Dremio.

4.3.2. RE2 acceleration
This section shows the results of accelerating Dremio with the RE2 library, which implements a regular ex-
pression engine optimized for the CPU.

It was found that performing the vanilla Dremio benchmarks on an f1.2xlarge instance type would induce
costs out of budget for this project. This is due to the significantly higher runtimes of the vanilla Dremio
implementation as compared to the accelerated versions of the framework, as well as the high cost of the
f1.2xlarge instance type itself. Therefore, the r4.2xlarge instance type is used for benchmarks performed on
the vanilla Dremio implementation. These machines feature the same processor as the f1.2xlarge machine
types. Instead of 122 GiB memory, these machines have 61 GiB installed. All benchmarks as performed on
the RE2 accelerated version of Dremio are run on an f1.2xlarge instance as described in Section 4.2.

The results in this section are presented per benchmark as described in Subsection 4.2.3 and Subsec-
tion 4.2.4.

Input size benchmark The runtimes of the parquet scan and filter operators for the input size benchmark
on vanilla Dremio and the RE2 accelerated version of Dremio can be seen in Figure 4.5. The x-axis shows the
number of records in the input file, while the y-axis shows the operator runtime in seconds.
It can be seen that the runtime of the parquet scan operators remains roughly the same for both the vanilla
Dremio and RE2 accelerated version of Dremio. This is expected since the implementation of the parquet
scan operator is left unchanged. This differs from the work of Nonnenmacher in which the parquet scan
operator had to be changed in order to convert the data into an Arrow format. This resulted in higher parquet
read times for accelerated version of the framework [16].

Looking at the filter operators, it can be seen that the filter operator in the RE2 accelerated implementa-
tion is ∼ 66x faster than the filter operator in the vanilla Dremio implementation. The figure also shows the
linear relationship between the filter runtime and number of input records, indicating a time complexity of
O(n). For low input sizes this linearity breaks down for the RE2 based filter operator. It is expected that this
occurs due to the overhead associated with the JNI calls.

Batch size benchmark The runtimes of the parquet scan and filter operators for the batch size benchmark
on vanilla Dremio and the RE2 accelerated version of Dremio can be seen in Figure 4.6. The x-axis shows the
number of records in the recordbatch, while the y-axis shows the operator runtime in seconds.
Again, it can be seen that the runtimes of the parquet scan operators are roughly the same. The differences
between the two are slightly more distinct than in Figure 4.5, but these differences remain in the order of 10−2.

4.3. Results 35

103 104 105

input size (records)

10 2

10 1

100

101

102

ru
nt

im
e

(s
ec

on
ds

)

vanilla parquet
vanilla filter
re2 parquet
re2 filter

Figure 4.5: Parquet scan and filter operator runtimes for the input size benchmark on vanilla Dremio and the RE2
accelerated version of Dremio. The batch size is set to 64,000 records.

103 104

batch size (records)

10 2

10 1

100

ru
nt

im
e

(s
ec

on
ds

)

vanilla parquet
vanilla filter
re2 parquet
re2 filter

Figure 4.6: Parquet scan and filter operator runtimes for the batch size benchmark on vanilla Dremio and the RE2
accelerated version of Dremio. Input size is set to 32,000 records.

As expected, the runtime of the vanilla Dremio filter operator remains constant for all batch sizes. In
the case of the RE2 accelerated version of Dremio, the runtime of the filter operator is reduced by ∼ 37% by
increasing the batch size from 1,000 records to 64,000 records. This is likely due to an overhead associated
with the invocation of the native filter operator through the JNI, which has to be done more often for smaller
batch sizes.

Contrary to the expectations, increasing the batch size above 32,000 records further reduces the runtime
of the RE2 based filter operator. It is possible that there are still deviations in the recorded runtimes after
averaging 10 consecutive runs.

4.3.3. Tidre acceleration
In this section, the results of accelerating Dremio with Tidre are presented. These results are compared with
both the vanilla Dremio implementation and the RE2 accelerated implementation. All measurements re-
lated to the Tidre accelerated version of Dremio are performed on an f1.2xlarge machine type as described in

36 4. Dremio integration

Section 4.2.

Input size benchmark The results of the input size benchmark for vanilla Dremio, the RE2 accelerated
version of Dremio, and the Tidre accelerated version of Dremio can be seen in Figure 4.7. The filter operator
runtime, speedup relative to the vanilla operator, throughput, and cost per query can be seen in Figure 4.7a,
Figure 4.7b, Figure 4.7c, Figure 4.7d respectively.

The speedup and throughput are computed based on the measured runtime of the filter operator. The
cost per query is computed based on the runtime of the entire query.

103 104 105

input size (records)

10 3

10 2

10 1

100

101

102

ru
nt

im
e

(s
ec

on
ds

)

vanilla filter
re2 filter
tidre filter

(a) Runtime

103 104 105

input size (records)

100

101

102

103

sp
ee

du
p

vanilla filter
re2 filter
tidre filter

(b) Speedup

103 104 105

input size (records)

106

107

108

109

th
ro

ug
hp

ut
 (b

yt
es

/s
)

vanilla filter
re2 filter
tidre filter

(c) Throughput

103 104 105

input size (records)

10 5

10 4

10 3

10 2

co
st

 p
er

 q
ue

ry
 (U

SD
)

vanilla dremio
dremio + re2
dremio + tidre
dremio + re2
(r4)

(d) Cost per query

Figure 4.7: Filter runtime, speedup, throughput, and cost per query for the input size benchmark on both the RE2 and
Tidre accelerated versions of Dremio. The batch size is set to 64,000 records.

From Figure 4.7a, it can be seen that the runtime of the filter operator in the Tidre accelerated version of
Dremio is roughly three orders of magnitude lower than the runtime of the filter operator in the vanilla version
of Dremio. When compared to the RE2 accelerated version of Dremio, the runtime of this Tidre based filter
operator is roughly one order of magnitude lower.

Interestingly enough, the runtime of the Tidre based filter operator decreases for increasing input sizes
up to 8,000 records. It was found that the measurements in this region contained several outliers, resulting
in this strange behaviour. The raw data of these measurements can be found in Appendix B. It is suspected
that the timer implementation as found in Dremio’s OperatorStats package, which is used to perform these
measurements, is not suited for measuring operators with such low runtimes. As applications in a big data
context typically involve greater datasets than input files with a mere 8,000 records, this inaccuracy for lower
input sizes is considered acceptable. When considering the trend of the filter operator runtimes for input
sizes above 8,000 records, there appears to be a linear relation between the runtime of the operator and the
input size.

4.3. Results 37

Figure 4.7b shows the speedup of the filter operators as compared to the filter operator in the vanilla Dremio
implementation. It can be seen that the Tidre based filter operator provides a speedup of ∼ 1750x as com-
pared to the vanilla implementation. This is an additional speedup of ∼ 26x compared to the RE2 based filter
implementation.

The throughput as computed from the measured runtime of these filter operators can be seen in Figure 4.7c.
It can be seen that the vanilla Dremio filter only reaches a throughput of ∼ 600kB/s. This throughput is very
low and signifies the great difficulty Dremio has in evaluating the massive regular expression as shown in
Listing 4.3. The RE2 based filter operator reaches ∼ 40MB/s, while the Tidre based filter operator reaches as
throughput of ∼ 1GB/s.

Finally, Figure 4.7d shows the cost per query for the input benchmark. This cost is shown in USD. The cost
is derived by interpolating the hourly costs of the used instance types. The resulting cost per second is then
multiplied by the average runtime of the total query.

Again, outliers were found in the measurements of the total query runtimes. This is also the case for
measurements performed with the RE2 accelerated version of Dremio. Similar to the measurements of the
individual filter operators, these outliers only occur for input sizes up to 8,000 records.

Apart from this lower region of the plot, which is plagued by these outliers, queries performed on the RE2
and Tidre accelerated versions of Dremio are always cheaper than queries performed on the vanilla version.
Since the RE2 accelerated version is run on an f1.2xlarge instance without requiring an FPGA accelerator, it
could also be deployed on an r4.2xlarge machine. A fourth line is added that projects the cost per query of
the RE2 accelerated version of Dremio if it were to be run on this cheaper machine type. The assumption is
made that switching to this machine type does not affect the performance of the RE2 accelerated framework.

Batch size benchmark The results of the batch size benchmark for vanilla Dremio, the RE2 accelerated
version of Dremio, and the Tidre accelerated version of Dremio can be seen in Figure 4.8. The filter operator
runtime, speedup relative to the vanilla operator, throughput, and cost per query can be seen in Figure 4.8a,
Figure 4.8b, Figure 4.8c, and Figure 4.8d respectively.

Again, the speedup and throughput are computed based on the measured runtime of the filter operator.
The cost per query is computed based on the runtime of the entire query.

Figure 4.8a shows the runtime of the filter operators. For the RE2 accelerated version of the framework, it was
seen that increasing the batch size up to 64,000 records decreases the filter operator runtime by ∼ 37%. In
the case of the Tidre based filter operator, this effect is more significant and the runtime of the filter operator
is almost reduced by an order of magnitude. Apart from the overhead associated to setting up multiple JNI
calls, there is an overhead associated to copying data to and from the FPGA accelerator. Smaller batch sizes
result in more data copies to and from the accelerator, as there are more recordbatches to evaluate.

The speedup as compared to the vanilla filter operator can be seen in Figure 4.8b. It can be seen that in-
creasing the batch size from 1,000 records to 64,000 records increases the speedup of the Tidre based filter
operator from ∼ 450x to ∼ 1750x. The line showing the speedup of the Tidre based filter operator for increas-
ing batch sizes is steeper than the line showing the speedup of the RE2 based filter operator. This can be
explained by the fact that increasing the batch size not only mitigates the overhead associated to the JNI calls,
but it also reduces the overhead associated to the data copies to and from the accelerator.

The throughput of the filter operators can be seen in Figure 4.8c. The throughput of filter operator in the
vanilla framework remains constant at ∼ 600kB/s and is not affected by the batch size. The RE2 based fil-
ter operator is able to achieve a throughput of ∼ 40MB/s, while the Tidre based filter operator reaches a
throughput of ∼ 1GB/s for the largest batch size. Increasing the batch size for the Tidre based filter operator
from 1,000 records to 64,000 records yields an increase in throughput of ∼ 2.6x.

From Figure 4.8d, it can be seen that the batch size has a smaller effect on the cost per query of the Tidre
based filter operator as compared to the RE2 based filter operator. This does not align with the expectations,
as the runtime of the Tidre filter shows greater decrease for increasing batch size.

It is expected that this can be accounted to the Dremio framework not being able to measure the total
execution time of very short running queries accurately. This aligns with the observations made for the input

38 4. Dremio integration

103 104

batch size (records)

10 2

10 1

100

ru
nt

im
e

(s
ec

on
ds

)

vanilla filter
re2 filter
tidre filter

(a) Runtime

103 104

batch size (records)

100

101

102

103

sp
ee

du
p

vanilla filter
re2 filter
tidre filter

(b) Speedup

103 104

batch size (records)

106

107

108

109

th
ro

ug
hp

ut
 (b

yt
es

/s
)

vanilla filter
re2 filter
tidre filter

(c) Throughput

103 104

batch size (records)

10 4
co

st
 p

er
 q

ue
ry

 (U
SD

)

vanilla dremio
dremio + re2
dremio + tidre
dremio + re2
(r4)

(d) Cost per query

Figure 4.8: Filter runtime, speedup, throughput, and cost per query for the batch size benchmark on both the RE2 and
Tidre accelerated versions of Dremio. The input size is set to 32,000 records.

size benchmark.

4.3.4. Optimizer exploration
In order to increase the impact a given FPGA kernel has, the number of usecases in which it can be deployed
should be maximized. This can be achieved in an optimization exploration phase, in which an execution plan
is rewritten such that it contains the sequence of target operators of the FPGA kernel.
In this experiment, an additional rule is added to the FPGA acceleration phase that targets all SQL LIKE filter
operators from which the filter predicate only consists of character sequences and wildcards. This operator
is then rewritten as a regular expression filter.

The filter operator as resulting from the query shown in Listing 4.4 is rewritten to a regular expression based
filter. The resulting regular expression can be seen in Listing 4.5. The data generator as described in Sec-
tion 4.2 is configured to produce matching records for this regular expression with a match frequency of 5%.

0 SELECT SUM("value_column") FROM " tweet− l i k e − s t r i n g s . parquet " WHERE " string_column " LIKE ’%Taxi%Taxi%’

Listing 4.4: SQL query that makes use of the SQL LIKE operator instead of the regular expression based filter operator.

0 " . * Taxi . * Taxi . * "

Listing 4.5: Equivalent regular expression for the SQL LIKE expression.

4.4. Preliminary conclusion 39

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
input size (records) 1e8

10 1

100

101

ru
nt

im
e

(s
ec

on
ds

)

vanilla parquet
vanilla filter
re2 parquet
re2 filter

Figure 4.9: Optimizer exploration SQL LIKE to regex

The result of evaluating the resulting execution plan on the RE2 accelerated version of Dremio can be seen in
Figure 4.9.
This figure only includes results for the acceleration with the RE2 framework, as there was no FPGA kernel
available for this particular regular expression usecase at the time of writing. In this experiment, the vanilla
implementation of the SQL LIKE filter is much faster than the vanilla regular expression filter implementa-
tion. It can be seen that the total query runtime for the RE2 accelerated version of Dremio is slightly higher
than that of the vanilla Dremio version. This difference can be explained by the overhead associated to setting
up the required JNI calls.

The parquet scan operators for both versions of the framework differ slightly, but this difference is exag-
gerated by the logarithmic scale of the y-axis.

Even though the RE2 based filter operator has a slightly higher runtime than the filter operator in the vanilla
framework, acceleration on an FPGA accelerator could achieve additional speedup. However, as the runtime
of the filter operator in the vanilla framework is in the same order of magnitude as that of the RE2 based fil-
ter operator, acceleration with an FPGA is expected to yield diminished returns as compared to the regular
expression usecase.

4.4. Preliminary conclusion
Dremio’s regular expression query is not optimized for the given regular expression usecase. In such a situa-
tion, moving to a highly optimized native implementation of the specific operator can already show a signif-
icant performance increase. In the case where the evaluation of a regular expression filter is offloaded to the
RE2 framework, a speedup of ∼ 66x can be achieved. FPGA accelerators can achieve an additional speedup
of ∼ 26x, resulting in a total speedup of ∼ 1750x as compared to the vanilla framework.

Increasing the batch size up to 64,000 records in a single node setup increases the throughput of the Tidre
accelerated version of the framework by up to 2.6x. This can be attributed to a reduced overhead associated
with memory copies to and from the accelerator as well as a reduced overhead associated with setting up
JNI calls. Other frameworks need to be considered in order to draw conclusions regarding batch sizes greater
than 64,000 records.

Finally, it is possible to rewrite the execution plan during an exploration phase such that the impact of a
given FPGA kernel is increased. In practice, the performance gain for these new usecases is expected to be
lower than the gain for the original target usecase of the FPGA kernel.

Accelerated kernels are typically written for compute intensive operators. Similar operators that can be
rewritten to these target operators of the FPGA kernel do not need to have an equally high computational in-

40 4. Dremio integration

tensity. As the evaluation of these operators on a CPU is performed faster than their computationally intense
counterparts, the performance gain as achieved by FPGA acceleration is diminished.

5
Dask integration

Dask is another big data framework and is written in Python [81]. Dask is very flexible and includes the
DataFrame API, which is based around the popular Pandas framework [92]. The underlying data is stored
based on the Apache Arrow in-memory format. Unlike the Arrow Java API, all Arrow buffers as allocated by the
Arrow Python API are aligned to 64 bytes. Another difference with Dremio is that Dask allows the batch size to
be set to an arbitrary number of records, where Dremio is limited to a mere 64,000 records per recordbatch.
Integration with Dask is expected to have a high impact in the big data community, as the userbase of Dask is
significantly greater than that of Dremio.

Dask SQL is a module developed to parse and optimize SQL queries such that they can be planned and
executed on the Dask engine. At the time of writing however, this module is still in development and does
not support the full SQL syntax. Additionally, it is not optimized, resulting in execution plans from which the
performance is not comparable to Dremio. An alternative is to map SQL queries to the Pandas API, which is
fully supported in Dask. This latter approach is chosen over the Dask SQL module.

5.1. Implementation
The system architecture of Dask differs from Dremio. The most significant differences are the representation
of the execution plan and the way in which this plan can be optimized.

The execution plan in Dask is called a task graph and is stored in a Python dictionary. Each operation in
the graph has an associated key in this dictionary. The value that is associated to that key holds information
regarding the operator itself. This includes its operands, as well as the keys of all operators it depends on.

Optimization and manipulation of this task graph can be done through Dask’s optimization package. This
package allows the task graph to be transformed using simple rewrite rules. At the time of writing, this op-
timization engine is however not as far developed as Apache Calcite’s optimization engine. Transforming
simple task graphs that result from toy examples in Dask presents no difficulties. However, moving to more
complex task graphs can be complicated. These complex graphs can be the result of performing operations
on a parquet file with multiple chunks. The resulting graph is known in Dask as a high-level graph. High-level
graphs provide an additional layer of abstraction on top of a task graph, such that all operations in the graph
are grouped by the chunk of data on which they operate. The optimization package does not directly support
the transformation of high-level graphs. Since these graphs are implemented using a Python dictionary, nor-
mal Python operations can be used to manipulate the high-level graph.

As a result, the implementation of the accelerated version of Dask differs from the implementation of the
accelerated version of Dremio in these places. Where possible, implementations that can remain the same
are left unchanged. The following subsections describe the design and implementation of the accelerated
version of Dask.

5.1.1. Architectural details
The implementation of the accelerated version of Dask follows a similar structure as the implementation of
the accelerated version of Dremio. First, an FPGA acceleration planning stage is introduced. This planning

41

42 5. Dask integration

stage is implemented in a different way than the acceleration planning phase in Dremio, as it is not based on
Apache Calcite optimization rules. Instead, it makes use of Dask’s own optimization module.

Second, different accelerated operators are implemented. These operators are used by the FPGA accel-
eration planning stage to offload the computation of filter operators to Tidre as well as the RE2 library. A
distinction is made between operators with Arrow buffers aligned to 64 bytes and operators with unaligned
Arrow buffers.

Furthermore, the native-op package remains largely the same as in the accelerated version of Dremio. The
only difference is the added functionality to convert a selection vector, as returned by the Tidre interface, to
a bitmap. Lastly, instead of using the JNI to invoke this native package, Python bindings are used. This is
achieved by means of the Pybind11 library [93].

These additions can be seen in Figure 5.1. Individual components are further discussed below.

dask

Optimization

FPGA
Acceleration

Planning

accelerated-operators

RE2 Filter

Tidre Filter

Tidre Filter
Unaligned

RE2 Filter
Unaligned

native-op tidre

TidreFilter

RE2Filter

Native-
Filter Tidre

Fletcher
stack

pybind11

SVToBitmap

Figure 5.1: Overview of the accelerated version of Dask. The contributions of this project are shown in blue with bold
borders. Contributions that remain unchanged as compared to the accelerated version of Dremio are grayed out. The

diagram is inspired by UML but does not follow all UML practices.

5.1.2. FPGA acceleration planning
As mentioned, the datastructure of a task graph in Dask differs from that in Dremio. The most important
dependency of the FPGA acceleration planning stage is the SubgraphCallable class. Each operator in the task
graph holds a SubgraphCallable which defines how the operator is to be executed. The structure of this class,
in pseudocode, can be seen in Listing 5.1. This pseudocode lists an instance of the SubgraphCallable object
for a string match operator in Dask.

On line 1, the dsk attribute holds a dictionary that defines the execution of the string match operator. This
string match operator is used to perform the regular expression filtering in Dask. On line 3 and 4, it can be
seen that the functions apply() and apply_and_enforce() are specified. These are funtions in the Dask utils
and Dask core packages respectively that handle the execution of most operators. Line 5 specifies which
indices of the input tuple are to be passed as arguments to the operator. The input tuple itself is given on line
14, indicated by the inkeys attribute. The interesting part of this SubgraphCallable is shown on lines 6 to 12.
Here, the specific function that is to be executed and the metadata of the result can be seen.

When accelerating this part of the execution plan, the metadata of the result remains unchanged. The
function that produces this result is however substituted for the accelerated function.

5.1. Implementation 43

0 subgraph_callable :
dsk = {

2 ’ s tr −match−7357e89bd7a48e889528f4dcac2a81e6 ’ : (
<function apply at 0x7fe38b29a5e0 > ,

4 <function apply_and_enforce at 0x7fe370df2a60 > ,
[’ _0 ’ , ’ _1 ’ , ’ _2 ’ , ’ _3 ’ , ’ _4 ’] ,

6 (
< c l a s s ’ d i c t ’ > ,

8 [
[’ _func ’ , <function Accessor . _delegate_method at 0x7fe370e44700 >] ,

10 [’_meta ’ , Series ([] , Name: str ing , dtype : bool)]
]

12)
)

14 }
inkeys = (’ _0 ’ , ’ _1 ’ , ’ _2 ’ , ’ _3 ’ , ’ _4 ’ , ’ _5 ’)

16 name = ’ subgraph_callable ’
outkey = ’ str −match−7357e89bd7a48e889528f4dcac2a81e6 ’

Listing 5.1: Pseudocode of the str-match operator’s SubgraphCallable.

The FPGA acceleration planning stage therefore unwraps the SubgraphCallable object of the operation to
be accelerated and substitutes the _func variable for the accelerated operator.

5.1.3. Selection vector to bitmap
Another difference between the Dask and Dremio frameworks is the way in which records that match the filter
predicate are recorded. Where Dremio makes use of a selection vector that holds all indices of the matching
records, Dask works with a bitmap. This bitmap holds a boolean value for each record that speciefies whether
it matches the predicate.

By default, the Tidre framework returns a selection vector. This is a more efficient way of transferring the
matching records between the accelerator and the host machine in case the fraction of matching records is
limited to a small amount (a sparse matching recordbatch). When all records in the recordbatch match the
filter predicate (a dense matching recordbatch), it is more efficient to transfer a bitmap instead of a vector
that holds all indices in the recordbatch. As seen in Section 4.2, only 5% of the records in the dataset of the
regular expression usecase match the filter predicate. Therefore, transferring a selection vector between ac-
celerator and host machine is a solid choice.

However, for Dask to function correctly, this selection vector needs to be converted to a bitmap. This is done
in the native-filter package on the CPU. A simple algorithm is constructed that loops over all matching in-
dices and builds the equivalent bitmap. Special care needs to be taken to determine the byte and bit position
within this byte that corresponds with the matching index. The resulting algorithm can be seen in Listing 5.2.

0 i n t matching_index ;
i n t sv_byte ; // The byte in the select ion vector buffer

2 i n t sv_bit ; // The s p e c i f i c b i t within t h i s byte that corresponds to the matching index

4 // Loop over a l l matching indices as returned by the Tidre framework
for (i n t i = 0 ; i < number_of_matches ; i ++) {

6 matching_index = matching_indices [i] ;

8 // Compute the corresponding byte and b i t in the select ion vector
sv_byte = f l o o r ((f l o a t) matching_index / (f l o a t) 8) ;

10 sv_bit = matching_index % 8 ;

12 // Set t h i s b i t to 1 to indicate a matching record
out_values [sv_byte] | = 1UL << sv_bit ;

14 }

Listing 5.2: Simple algorithm to convert a selection vector to a bitmap.

The computation of the equivalent byte and bit of the matching index on lines 9 and 10 is independent of
the number of indices in the selection vector. It can be seen that the time-complexity of this algorithm is
therefore equal to O(n), where n indicates the number of matching records. With this linear time-complexity,

44 5. Dask integration

it is assumed that this conversion is favorable to constructing the bitmap in hardware and introducing a larger
memory transfer between accelerator and host. The statistics of the underlying dataset determine whether
this assumption holds true or not. Finding the statistical details that govern which solution is optimal is left
for future research.

5.1.4. Accelerated operators
Four accelerated operators are implemented in the accelerated version of Dask. Each of these operators
performs the evaluation of a regular expression filter. Similar to which is the case in the accelerated version
of Dremio, a distinction is made between evaluation using Google’s RE2 library and evaluation using Tidre.
Additionally, separate implementations are provided for filter operators with unaligned Arrow buffers

RE2 evaluation Similar to the accelerated version of Dremio, the RE2 library is used for the evaluation of
the regular expression on the CPU. The regular expression string is passed as an argument to the accelerated
operator and is forwarded to the native operator through the Pybind11 package.

The RE2 accelerated filter operators are mainly concerned with unwrapping the incoming Pandas object
such that its underlying Arrow buffers are exposed. The pointers to these buffers are then passed as argu-
ments to the native operator.

By default, unlike Arrow buffers as allocated with Arrow’s Java API, Arrow buffers that are allocated using
the Python API are aligned to 64 bytes. In order to investigate the effect that this alignment difference has on
the performance of the resulting system, an unaligned version of the operator is implemented in the acceler-
ated version of Dask. The unaligned Arrow buffers are obtained by prepending some garbage data to the the
incoming Pandas object. This garbage data is then discarded by taking a slice of the underlying Arrow buffers
that only contain the original data. In this way, the data of the Arrow buffers is conserved while the starting
memory address is offset by the length of the garbage data. It was found that this conversion takes less than
1ms. However, the duration of this conversion has no effect on the measured duration of the filter operator,
as it is performed outside of the timed code.

After evaluation on the CPU using the RE2 library, the resulting Arrow buffer is wrapped in a Pandas object
and returned to Dask.

Tidre evaluation Just like the RE2 accelerated operators, the Tidre operators unwrap the incoming Pan-
das object and extract the pointers to the underlying Arrow buffers. These pointers are passed to the native
operator such that they can be evaluated using the Tidre framework.

The unaligned version of this operator changes the alignment of the Arrow buffers in a similar way as to
how it is done in the RE2 accelerated operator.

After evaluation of the regular expression on the Tidre framework, the resulting Arrow buffer is wrapped
in a Pandas object and returned to Dask.

The sequence diagram that illustrates the evaluation of the string match operator using this Tidre filter im-
plementation can be seen in Figure 5.2.

The workings of the NativeFilter and Tidre packages are identical to their counterparts in the acccelerated
verion of Dremio. As mentioned, the TidreFilter operator wraps the resulting Arrow buffer into a Pandas
object. This is done using the maybe_wrap_pandas() method. The apply_and_enforce() method in Dask core
then calls the _rename() method to enforce the metadata of the resulting dataframe.

5.2. Experimental setup
The experimental setup is largely the same as in Section 4.2. This section is used to describe the differences
between these two setups.

The codebase of the accelerated version of Dask can be found on GitHub [94]. This repository contains a
detailed installation guide with instructions on how to deploy this framework on AWS.

5.2. Experimental setup 45

:DaskCore :TidreFilter :NativeFilter :Tidre:DaskUtils

apply_and_enforce

func() <<pybind11>>
doTidreEval()

initializePlatform()

status

runRaw()

matching_indices,
number_of_matches

df

_rename()

Method called
for each task in
task graph

func is
extracted from
subgraph callable
in task graph. In
this example, func
is equal to
TidreFilter

SVToBitmap

<<pybind11>>
number_of_matches

maybe_wrap_pandas()

df

Figure 5.2: Sequence diagram illustrating the interactions of the accelerated operator in Dask.

5.2.1. Regular expression usecase
The selected regular expression usecase remains the same as in Subsection 4.2.1. In the case of Dask, the SQL
query is ported to the Pandas API. The result can be seen in Listing 5.3.

0 regex = ’
. * [tT] [eE] [rR] [aA] [tT] [i I] [dD] [eE] [\ t \n]+

2 [dD] [i I] [vV] [i I] [nN] [gG] [\ t \n]+
([sS] [uU] [bB]) +[sS] [uU] [rR] [fF] [aA] [cC] [eE] . *

4 ’
res = df [df [" s t r i n g "] . s t r . match(regex)] [" value "] . sum()

Listing 5.3: Chosen SQL query ported to the Pandas API.

In this code listing, the df variable on line 5 holds the dataframe that results from Dask’s read_parquet()
method.

5.2.2. Input size benchmark
The parameters of the input size benchmark for the accelerated version of Dask span a larger range. The
input sizes range from 1,000 records to 4,096,000 records, increasing by factors of two. The range is widened
such that it accomodates Dask’s support for larger batch sizes. This batch size is set to 1,024,000 records.

The input size benchmark therefore spans two interesting regions; the input datasets of 1,000 records
up to 1,024,000 records can be evaluated in a single recordbatch, while the input datasets of 2,048,000 up to
4,096,000 records have to be evaluated in multiple.

5.2.3. Batch size benchmark
The configurations of the batch size benchmark are changed such that it includes greater batch sizes. These
batch sizes range from 64,000 records up to 8,192,000 records per recordbatch. The input size is kept constant
to 4,096,000 records.

Therefore, the smaller batch sizes require the dataset to be evaluated in multiple recordbatches, while the
largest batch sizes of 4,096,000 and 8,192,000 records allow the dataset to be evaluated in a single recordbatch.

46 5. Dask integration

The largest batch size is interesting, as it is bigger than the input size and is therefore not expected to behave
different as compared to the batch size of 4,096,000 records.

5.2.4. Measurement setup
The first run for each configuration in an experiment is discarded in order to mitigate cache warming effects.
After this first run, ten consecutive runs are performed and the measured runtimes are averaged to obtain the
final result for that configuration. The experiments measure the runtime of the filter operator.

5.3. Results
The results in terms of the input size and batch size benchmarks are presented in the following subsections.

5.3.1. Accelerating the query
The new FPGA acceleration planning stage is used to transform the task graph in the accelerated version of
Dask. This planning stage substitutes the string match operator for its accelerated version. The original task
graph and the accelerated task graph can be seen in Figure 5.3.
The accelerated str-match operator can either offload the evaluation to the RE2 based filter implementation
or to the Tidre based filter implementation.

5.3.2. RE2 acceleration
This section shows the results of accelerating Dask with the RE2 library. Both the 64 byte aligned version
as well as the unaligned version of the operator are considered. All measurements are performed on an
f1.2xlarge instance.

Input size benchmark Dask’s vanilla implementation of the string match operator is based on the imple-
mentation in Pandas, which in turn uses Secret Labs’ regular expression engine in CPython [95]. This imple-
mentation is very similar to the Google RE2 implementation. Figure 5.4 shows the results for the input size
benchmark. The x-axis shows the number of records in the input dataset, while the y-axis shows the runtime
in seconds.
This is a big difference as compared to the results of the RE2 acceleration in the accelerated version of Dremio.
In this case, using the RE2 library does not yield lower runtimes as compared to the vanilla filter implemen-
tation. It can be seen that for input sizes of 1,000 and 2,000 records, the runtime of the RE2 accelerated is
slightly higher than for the vanilla filter operator. It is expected that this is the case due to an overhead asso-
ciated with the invocation of the native operator package through the Pybind11 library. For low input sizes,
this overhead could be significant when compared to the runtime of the filter evaluation. For higher input
sizes, this evaluation becomes dominant over the aforementioned overhead.

Batch size benchmark The results of the batch size benchmark can be seen in Figure 5.5. The x-axis shows
the number of records in the recordbatch, while the y-axis shows the runtime in seconds.

For this large input size of 4096,000 records, it becomes clear that the RE2 accelerated version of the filter
operator is only able to reduce the runtime by ∼ 6%. As expected, increasing the batch size does not have a
significant impact on the runtime of the filter operator.

5.3.3. Tidre acceleration
The results of accelerating Dask with Tidre are presented in this section. These results are compared with
both the vanilla Dask implementation as well as the RE2 accelerated implementation. All measurements are
performed on an f1.2xlarge machine type conform the measurement setup in Section 4.2.

Input size benchmark The results of the input size benchmark for vanilla Dask, the RE2 accelerated version
of Dask, and the Tidre accelerated version of Dask can be seen in Figure 5.6. The runtime of the filter oper-
ator, speedup relative to the vanilla operator, throughput, and cost per operation can be seen in Figure 5.6a,
Figure 5.6b, Figure 5.6c, and Figure 5.6d respectively.

The speedup, throughput, and cost per operation are computed based on the measured runtime of the
filter operator.

5.3. Results 47

read-parquet

getitem

str-match

getitem

getitem

series-sum-chunk

series-sum-agg

0

(0, 0, 0)

0

0

0

0

0

read-parquet

getitem

str-match

getitem

getitem

series-sum-chunk

(0, 1, 0)

1

1

1

1

1

read-parquet

getitem

str-match

getitem

getitem

series-sum-chunk

(0, 2, 0)

2

2

2

2

2

read-parquet

getitem

accelerated
str-match

getitem

getitem

series-sum-chunk

series-sum-agg

0

(0, 0, 0)

0

0

0

0

0

read-parquet

getitem

accelerated
str-match

getitem

getitem

series-sum-chunk

(0, 1, 0)

1

1

1

1

1

read-parquet

getitem

accelerated
str-match

getitem

getitem

series-sum-chunk

(0, 2, 0)

2

2

2

2

2

Figure 5.3: Task graph for the regular expression usecase in Dask. In this example, the input size is set to 3,000,000
records with a parquet chunksize of 1,000,000 records.

From Figure 5.6a, it can be seen that the runtime of the Tidre based filter operator is roughly two orders of
magnitude lower than the runtime of the vanilla filter and RE2 based filter operators. Furthermore, it can
be seen that the 64 byte aligned version of the Tidre based filter operator is ∼ 2.5x faster as compared to the
unaligned operator.

A dashed line is added to the figure to signify the runtime of the Tidre based filter operator when a single
record is processed. This provides an indication of the overhead associated with offloading the evaluation of
the filter operator to the FPGA accelerator. Therefore, this line can be seen as a proxy for the absolute mini-
mum runtime that is achievable with this implementation.

The speedup of the filter operators as compared to the filter operator in the vanilla Dask framework is shown

48 5. Dask integration

103 104 105 106

input size (records)

10 2

10 1

100

ru
nt

im
e(

se
co

nd
s)

vanilla filter
re2 filter

Figure 5.4: Filter operator runtime for the input size benchmark on the RE2 accelerated version of Dask. The batch size is
set to 1,024,000 records.

105 106 107

batch size (records)

5.0

5.5

6.0

6.5

7.0

7.5

ru
nt

im
e

(s
ec

on
ds

)

vanilla filter
re2 filter

Figure 5.5: Filter operator runtime for the batch size benchmark on the RE2 accelerated version of Dask. The input size is
set to 4096,000 records.

in Figure 5.6b. As seen in the previous section, the RE2 based filter operator has larger runtimes for small
input sizes as compared to the vanilla filter. This is reflected in this figure, as the speedup of this RE2 based
filter operator is smaller than one for input sizes under 16,000 records.

The Tidre based filter operator achieves a speedup of ∼ 92x as compared to the vanilla filter implemen-
tation. The unaligned version of this Tidre based filter operator achieves a speedup of ∼ 35x. It can be seen
that this speedup increases for increasing input sizes up to roughly 512,000 records, after which it remains
relatively stable. It is therefore suspected that an input size of 512,000 records is the configuration for this
usecase at which the speedup related to the evaluation time of the filter operator dominates the overhead
associated to memory copies to and from the accelerator.

The throughput of these filter operators can be seen in Figure 5.6c. The vanilla filter implementation and
the RE2 based filter implementation are limited to a throughput of ∼ 35− 40MB/s respectively. The Tidre

5.3. Results 49

103 104 105 106

input size (records)

10 3

10 2

10 1

100

101

ru
nt

im
e

(s
ec

on
ds

)

vanilla filter
re2 filter
tidre filter
(unaligned)
tidre filter
tidre single
record

(a) Runtime

103 104 105 106

input size (records)

100

101

102

sp
ee

du
p

vanilla filter
re2 filter
tidre filter
(unaligned)
tidre filter

(b) Speedup

10
3

10
4

10
5

10
6

input size (records)

108

109

th
ro

ug
hp

ut
 (b

yt
es

/s
)

vanilla filter
re2 filter
tidre filter
(unaligned)
tidre filter
tidre 10M
records

(c) Throughput

103 104 105 106

input size (records)

10 7

10 6

10 5

10 4

10 3

co
st

 p
er

 o
pe

ra
tio

n
(U

SD
)

vanilla filter
vanilla filter
(r4)
re2 filter
re2 filter
(r4)
tidre filter
(unaligned)
tidre filter

(d) Cost per operation

Figure 5.6: Filter operator runtime, speedup, throughput, and cost for the input size benchmark on the Tidre accelerated
version of Dask. The batch size is set to 1,024,000 records.

based filter operator however reaches a throughput of ∼ 3.4GB/s, while the unaligned version of this opera-
tor reaches ∼ 1.3GB/s.

A dashed line is added to the figure to indicate the throughput of the Tidre based filter operator if an
dataset with 10,000,000 records is processed in a single recordbatch. This line is seen as a proxy for the
maximum achievable throughput of the Tidre based filter operator. It can be seen that with a batch size
of 1,024,000 records and an input size of equal size, the Tidre based filter operator is able to reach this maxi-
mum throughput.

The cost per operation can be seen in Figure 5.6d. All measurements are run on an f1.2xlarge instance type.
Projections are added that estimate the resulting cost per operation of running the vanilla filter implementa-
tion and the RE2 based filter implementation on an r4.2xlarge instance.

It can be seen that the cost per operation for both the aligned and unaligned versions of the Tidre based
filter operator is always lower than that of the vanilla based filter operator. This remains true regardless of
whether the vanilla implementation is run on an f1.2xlarge or on the more economical r4.2xlarge machine
type.

Batch size benchmark The results of the batch size benchmark for vanilla Dask, the RE2 accelerated ver-
sion of Dask, and the Tidre accelerated version of Dask can be seen in Figure 5.7. The runtime of the filter
operator, speedup relative to the vanilla operator, throughput, and cost per operation can be seen in Fig-
ure 5.7a, Figure 5.7b, Figure 5.7c, and Figure 5.7d respectively. The filter operator runtime and throughput of
the Tidre accelerated implementations are shown again in Figure 5.8. This figure does not contain the run-
time and throughput of the other implementations of this filter operator. The speedup, throughput, and cost
per operation are computed based on the measured runtime of the filter operator.

50 5. Dask integration

105 106 107

batch size (records)

10 1

100

101

ru
nt

im
e

(s
ec

on
ds

)

vanilla filter
re2 filter
tidre filter
(unaligned)
tidre filter

(a) Runtime

105 106 107

batch size (records)

100

101

102

sp
ee

du
p

vanilla filter
re2 filter
tidre filter
(unaligned)
tidre filter

(b) Speedup

105 106 107

batch size (records)

108

109

th
ro

ug
hp

ut
 (b

yt
es

/s
)

vanilla filter
re2 filter
tidre filter
(unaligned)
tidre filter
tidre 10M
records

(c) Throughput

105 106 107

batch size (records)

10 4

10 3

co
st

 p
er

 o
pe

ra
tio

n
(U

SD
)

vanilla filter
vanilla filter
(r4)
re2 filter
re2 filter
(r4)
tidre filter
(unaligned)
tidre filter

(d) Cost per operation

Figure 5.7: Filter operator runtime, speedup, throughput, and cost for the batch size benchmark on the Tidre accelerated
version of Dask. The input size is set to 4,096,000 records.

The runtime of the filter operators can be seen in Figure 5.7a. It can be seen that the runtime of the Tidre
based filter operator is roughly 2 orders of magnitude lower than the runtime of the vanilla filter implemen-
tation. This hold true regardless of the chosen batch size. It can be seen that the runtimes of both the aligned
and unaligned Tidre operators only decreases marginally for increasing batch sizes. In the case of the aligned
operator, increasing the batch size from 64,000 to 512,000 records, the runtime is decreased by ∼ 12%. For
batch sizes above 512,000 records, the reduction is negligible.

This can be seen more clearly in Figure 5.8a, in which only the runtimes of the Tidre based filter im-
plementations are shown. A dashed line is added that shows the runtime of the aligned Tidre based filter
operator when an input dataset of a single record is processed.

A peak can be seen at the runtime of the aligned version of the Tidre based filter operator for a batch size
of 256,000 records. It is expected that this can be attributed to an outlier in the measurements. However, this
cannot be confirmed, as only the average runtime of the 10 consecutive runs is recorded.

The speedup of these filter operators can be seen in Figure 5.7b. As expected after the discussion of the
last figure, it can be seen that the speedup of the Tidre based filter operators only increases marginally for
increasing batch sizes. For batch sizes above 512,000 records, this speedup remains more or less stable.

This same conclusion can be drawn when considering the throughput of these filter operators in Figure 5.7c
and Figure 5.8b.

Again, a dashed line is added that acts as a proxy for the maximum achievable throughput. This through-
put is achieved by evaluating a dataset containing 10,000,000 records in a single recordbatch. It can be seen
that the 64 byte aligned version of the Tidre based filter operator exceeds this estimated maximum through-
put of ∼ 3.4GB/s for batch sizes greater than or equal to 512,000 records.

5.4. Preliminary conclusion 51

The fact that this estimate for the maximum throughput is exceeded by a small amount could indicate
that after 10 runs, there are still fluctuations in the runtime of the filter operator. Potentially, more consecu-
tive runs are require to obtain a better estimate for the maximum achievable throughput of the Tidre based
filter operator.

Finally, Figure 5.7d shows the cost per operation for the filter operators. As seen in the input size benchmark,
both the aligned and unaligned versions of the Tidre based filter operator have a lower cost per operation
than the vanilla filter implementation. This cost per operation reduces marginally for increasing batch sizes.

105 106 107

batch size (records)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ru
nt

im
e

(s
ec

on
ds

)

tidre filter
(unaligned)
tidre filter
tidre single
record

(a) Runtime

105 106 107

batch size (records)

1.5

2.0

2.5

3.0

3.5

th
ro

ug
hp

ut
 (b

yt
es

/s
)

1e9
tidre filter
(unaligned)
tidre filter
tidre 10M
records

(b) Throughput

Figure 5.8: Tidre filter operator throughput for the batch size benchmark on the Tidre accelerated version of Dask. The
input size is set to 4,096,000 records.

5.4. Preliminary conclusion
Operators in the vanilla framework that are already optimized for performance do not benefit from moving
to a native implementation such as the Google RE2 library for regular expression operators. In these cases,
FPGA accelerators can be leveraged to increase the performance of the system. For the regular expression
usecase, FPGA acceleration is able to achieve a speedup of the filter operator of ∼ 92x as compared to the
vanilla filter implementation.

Memory alignment of the underlying Arrow buffers is an important parameter and can be attributed to
roughly 2.5x of the aforementioned speedup. It is therefore important to align the Arrow buffers of operators
that are to be accelerated on an FPGA to 64 bytes.

When the runtime for different batch sizes is considered, only a marginal decrease is found for increasing
batch sizes above 64,000 records. This decrease is significantly lower when compared to the experiments as
performed on the accelerated version of Dremio, in which increasing the batch size from 1,000 records up
to 64,000 records decreases the runtime of the Tidre accelerated filter operator by ∼ 37%. In this implemen-
tation, it is found that further increasing the batch size to 512,000 records only yields a additional decrease
in runtime of ∼ 12%. It is therefore concluded that increasing the batch size for this usecase above 64,000
records yields diminishing returns.

Lastly, it is found that the maximum throughput is achieved when the input size is equal to or larger than
the batch size. However, increasing the batch size above 512,000 records does not yield additional through-
put. It is expected that this threshold is highly dependent on the size of the data that is to be copied to and
from the accelerator per recordbatch, as well as on the computational complexity of the evaluation of the
filter operation. This threshold can therefore change for different usecases.

6
Dask distributed integration

Dask distributed is a separate version of Dask that is specifically designed for distributed computing. Accord-
ing to its documentation, Dask distributed extends the Dask API such that it can be deployed in moderate size
compute clusters [96]. All characteristics of the underlying Dask framework remain the same, which makes
Dask distributed an excellent candidate for acceleration.

The most significant differences with vanilla Dask are the implementation of the scheduler and worker
classes. The new scheduler implementation is capable of distributed scheduling and accounts for data lo-
cality. The distributed worker classes support peer-to-peer data sharing, which allows them to resolve data
shuffles without the need for central coordination.

6.1. Implementation
Dask distributed is a version of Dask that can be run on a cluster. This provides the potential for added com-
pute power and paralellization, but at the same time it also adds additional complexity. To orchestrate these
computations on a distributed cluster, different types of nodes are defined. The client node is controlled by
the end-user and is used for all interactions with the cluster. The client communicates with the scheduler
node, which keeps track of all worker nodes in the cluster. These worker nodes are held in an abstraction
known as the worker pool. The scheduler performs the planning and optimization steps for the queries it
receives from the client node. The resulting task graph is then distributed amongst the workers in its worker
pool.

The accelerated version of this framework is deployed as an acceleration aware worker setup, as identified
in Section 3.4. This differs from the single node deployments as used for the accelerated version of Dremio
and the accelerated version of vanilla Dask. The following sections elaborate on the design and implementa-
tion of the accelerated version of Dask distributed.

6.1.1. Architectural details
An accelerated worker node is implemented in order to leverage FPGA accelerators within the Dask cluster.
From the scheduler’s point of view, the behaviour of this new worker implementation is identical to that of
the original workers in the framework. The acceleration is therefore transparent to the scheduler node.

The contributions that are made in order to realize the accelerated version of Dask distributed can be seen
in Figure 6.1. The AcceleratedWorker class is the only new implementation. This class depends on the exist-
ing packages as implemented in the accelerated version of vanilla Dask. The subsection below describes the
implementation of this new AcceleratedWorker class.

6.1.2. Accelerated worker
The accelerated worker implementation is the only new contribution required to accelerate Dask distributed.
The FPGA acceleration planning stage and the accelerated operator implementations can be imported from
the accelerated version of vanilla Dask.

53

54 6. Dask distributed integration

dask

Optimization

FPGA
Acceleration

Planning

accelerated-operators

RE2 Filter

Tidre Filter

native-op tidre

TidreFilter

RE2Filter

Native-
Filter Tidre

Fletcher
stack

pybind11

SVToBitmap

dask-distributed

Worker

Accelerated
Worker

Figure 6.1: Overview of the accelerated version of Dask distributed. The contributions of this project are shown in blue
with bold borders. Contributions that remain unchanged as compared to the accelerated version of vanilla Dask are

grayed out. The diagram is inspired by UML but does not follow all UML practices.

This new accelerated worker is designed to be run in the worker pool of a Dask distributed cluster, as can
be seen in Figure 6.2.

Distributed
Scheduler

Worker
Worker

Worker

worker pool

Client

Accelerated
Worker

FPGA

Accelerated
Worker

FPGA

Accelerated
Worker

FPGA

dask-distributed accelerated

data
task graph

Figure 6.2: System architecture of Dask distributed including the accelerated worker nodes.

The client node can submit a dataset to the cluster via the scheduler, such that it is scattered over the worker
pool. Additionally, this connection is used to submit queries. The scheduler plans these queries and sends
the resulting task graph to the worker nodes in the worker pool. This task graph is not send as a whole, but
rather, individual tasks are submitted to the workers.

The worker nodes then execute these tasks, which can be seen as subgraphs of the original task graph. The
worker nodes send data between each other in order to satisfy the missing dependencies of these tasks. The
accelerated worker node implementation performs the FPGA acceleration stage on all incoming subgraphs
of the task graph. Therefore, only accelerated worker nodes require an FPGA accelerator to be installed, as
the vanilla worker implementations execute the original task subgraphs without any accelerated operators.

The AcceleratedWorker class extends the default Worker class in Dask distributed. The accelerated worker
overrides the add_task() method of the parent class. This method is invoked every time the scheduler sub-
mits a new task to the worker.

The new implementation of the add_task() method checks to see if any key in the newly submitted sub-

6.2. Experimental setup 55

graph matches an operation for which there is an accelerated version. If a key matches, the underlying _func
variable is changed to the implementation of the specific accelerated function. This is done using the same
implementation of the FPGA acceleration planning stage as used in the accelerated version of vanilla Dask.
The parent implementation of the add_task() method is then called with the new accelerated subgraph as its
argument.

6.2. Experimental setup
The experimental setup remains largely the same as the setup in Section 5.2. The regular expression usecase
and selected dataset remain unchanged. The differences between the two setups are described below.

The codebase of the accelerated version of Dask distributed can be found on GitHub [97]. This repository
contains a detailed installation guide with instructions on how to deploy this framework on AWS.

6.2.1. Cluster setup
Unlike the previous two implementations which are deployed on a single node, the accelerated version of
Dask distributed is deployed on a cluster. All worker nodes in the cluster, both vanilla workers and accelerated
workers, run on an f1.2xlarge instance. The scheduler is deployed on an m4.2xlarge instance.

The cluster that is provisioned for these experiments contains three worker nodes in the worker pool.
Therefore, there are four configurations of this cluster; each with a different fraction of accelerated workers in
the pool. Because of the size of the worker pool is set to three, there can be 0, 1, 2, or 3 accelerated workers in
the pool. In each configuration, a number of vanilla workers is added such that the total number of workers
in the pool is equal to three.

Each benchmark is run for all configurations of this cluster.

6.2.2. Input size benchmark
The parameters of the input size benchmark for the accelerated version of Dask distributed range from
256,000 records to 4,096,000 records, increasing by factors of two. The batch size is fixed to 1,024,000 records.

This benchmark therefore spans two interesting regions; the input datasets of 256,000 records up to
1,024,000 records can be evaluated in a single recordbatch, while the datasets of 2,048,000 up to 4,096,000
records have to be evaluated in multiple.

6.2.3. Batch size benchmark
The configurations of the batch size benchmark are left unchanged. These batch sizes range from 64,000
records up to 8,192,000 records per recordbatch. The input size is kept constant to 4,096,000 records.

Therefore, the smaller batch sizes require the dataset to be evaluated in multiple batches, while the largest
batch sizes of 4,096,000 and 8,192,000 records allow the dataset to be evaluated in a single batch. The largest
batch size is interesting, since it is bigger than the input size and is therefore not expected to behave different
as compared to the batch size of 4,096,000 records.

6.2.4. Measurement setup
Similar to the previous experimental setups, the measurements from the first run are discarded to mitigate
cache warming effects. Next, 9 consecutive are performed after which the average of the measurements is
recorded.

The input dataset is scattered over the worker pool before running these experiments, this ensures that
the input data is available to all worker nodes before the query is submitted. All measurements record the
total query runtime, as opposed to the runtime of the filter operator.

6.3. Results
This section presents the results as obtained for the accelerated version of Dask distributed. The performed
benchmarks only consider acceleration by means of the Tidre based filter operator, as it is found that the RE2
based filter operator does not yield additional performance in Dask.

56 6. Dask distributed integration

6.3.1. Accelerating the query
The query is accelerated by manipulating individual tasks as they are submitted to the accelerated worker
nodes. This can be seen in Figure 6.3. Only the function attribute of the task is changed to match the new
accelerated implementation of the operator.

:Task

+ key: string
+ function: bytes-like object
+ args: tuple
+ who_has: string
+ nbytes: integer

:Task

+ key: string
+ function: bytes-like object
+ args: tuple
+ who_has: string
+ nbytes: integer

Figure 6.3: Task transformation for the regular expression usecase in Dask distributed.

To accelerate the regular expression usecase, the incoming string match task is targeted by the FPGA accel-
eration planning stage. The function attribute is substituted for the Tidre accelerated version of the string
match operator.

6.3.2. Tidre acceleration
The results from the input size benchmark and the batch size benchmark are discussed below. As is specified
in Section 6.2, these benchmarks measure the total query runtime on the Dask distributed cluster.

Input size benchmark The results of the input size benchmark for the four cluster configurations of the
accelerated version of Dask distributed can be seen in Figure 6.4. The total query runtime, speedup relative
to the cluster configuration without any accelerated workers, throughput, and cost per query can be seen in
Figure 6.4a, Figure 6.4b, Figure 6.4c, and Figure 6.4d respectively.

The total query runtime for the four configurations can be seen in Figure 6.4a. It can be seen that the config-
uration with 3 accelerated workers achieves a runtime that is ∼ 3.5x lower as compared to the runtime of the
configuration with 0 accelerated workers. This is confirmed in Figure 6.4b.

Furthermore, it can be seen that only substituting a fraction of the vanilla workers in the worker pool
by accelerated workers yields diminishing returns. Input sizes up to 1,024,000 records can be evaluated in a
single recordbatch. Since the distributed scheduler node makes use of round-robin scheduling, this record-
batch is in turn evaluated on a different worker in the pool for the first 3 repeats of the experiment. This cycle
is repeated for successive runs. As these results show the average performance of the system for 9 consecutive
runs, the recordbatch is evaluated on an accelerated worker in 33% of the cases. This is reflected in Figure 6.4a
and Figure 6.4b, in which the configurations with 1 and 2 accelerated workers show an average performance
increase.

Input sizes greater than the batch size of 1,024,000 records yield lower speedups. This can be explained
by the fact that one of the recordbatches to be evaluated can be scheduled on a vanilla worker implementa-
tion. For multiple recordbatches, this is always the case for the configuration with only a single accelerated
worker. When the accelerated worker is done processing its assigned recordbatch, the vanilla worker is still
processing. It is therefore stated that the performance in the accelerated Dask distributed cluster is bound by
the fraction of non-accelerated workers.

Figure 6.4c shows the throughput of this system. It can be seen that the configuration with 3 accelerated
workers reaches a throughput of ∼ 190MB/s for an input size of 4,096,000 records.

At this input size, the configuration with 0 accelerated workers reaches a throughput of ∼ 55MB/s. This
holds true as well for the configuration with a single accelerated worker. The configuration with 2 accelerated
workers reaches the slightly higher throughput of ∼ 75MB/s.

The cost of running a query on this cluster can be seen in Figure 6.4d. This cost includes the cost of the
worker nodes as well as the cost of the scheduler node. The assumption is made that the vanilla worker
implementations can be run on an r4.2xlarge instance without suffering a decrease in performance.

6.3. Results 57

106

input size (records)

0

1

2

3

4

5

6

7

ru
nt

im
e

(s
ec

on
ds

)

0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(a) Runtime

106

input size (records)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
ee

du
p

0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(b) Speedup

106

input size (records)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

th
ro

ug
hp

ut
 (b

yt
es

/s
)

1e8
0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(c) Throughput

106

input size (records)

0.001

0.002

0.003

0.004

0.005

0.006

co
st

 p
er

 q
ue

ry
 (U

SD
)

0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(d) Cost per query

Figure 6.4: Total query runtime, speedup, throughput, and cost per query for the input size benchmark on the
accelerated version of Dask distributed. The batch size is set to 1,024,000 records.

It can be seen that the configurations with 1 and 2 accelerated workers in the worker pool are more expensive
than the configuration with 0 accelerated workers for all input sizes. The marginal speedup as achieved with
these configurations does not outweigh the increased costs of the f1.2xlarge instance type.

It is observed that the configuration with 3 accelerated workers is slightly cheaper than the configuration
of 0 accelerated workers for input sizes above 256,000 records. At an input size of 4,096,000 records, this
configuration is roughly 25% less expensive.

Batch size benchmark The results of the batch size benchmark for the four cluster configurations of the
accelerated version of Dask distributed can be seen in Figure 6.5. The total query runtime, speedup relative
to the cluster configuration without any accelerated workers, throughput, and cost per query can be seen in
Figure 6.5a, Figure 6.5b, Figure 6.5c, and Figure 6.5d, respectively.

The runtimes of the four configurations can be seen in Figure 6.5a. Interestingly enough, increasing the batch
size yields greater runtimes for all configurations of the cluster. Larger batch sizes increase the granularity at
which operations can be parallelized over the worker pool. When the two largest batch sizes of 4,096,000 and
8,192,000 records are considered, the dataset is evaluated in a single batch. As an effect, only one worker in the
worker pool is able to perform this evaluation. This completely nullifies the parallel computing capabilities
of the distributed environment in which the framework is deployed. Furthermore, when only a fraction of the
worker pool is accelerated, the entire worker pool can be kept waiting on the result as computed by a non-
accelerated worker. Large batch sizes increase the evaluation time of the operator on these non-accelerated
worker implementations.

These effects outweigh the positive impact greater batch sizes have on the overhead associated with data
copies to and from the accelerator and the overhead associated to Pybind11 invocations.

58 6. Dask distributed integration

105 106 107

batch size (records)

2

4

6

8

10

12

14

ru
nt

im
e

(s
ec

on
ds

)

0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(a) Runtime

105 106 107

batch size (records)

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(b) Speedup

105 106 107

batch size (records)

0.5

1.0

1.5

2.0

2.5

th
ro

ug
hp

ut
 (b

yt
es

/s
)

1e8
0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(c) Throughput

105 106 107

batch size (records)

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

co
st

 p
er

 q
ue

ry
 (U

SD
)

0 / 3 acc.
workers
1 / 3 acc.
workers
2 / 3 acc.
workers
3 / 3 acc.
workers

(d) Cost per query

Figure 6.5: Total query runtime, speedup, throughput, and cost per query for the batch size benchmark on the
accelerated version of Dask distributed. The input size is set to 4,096,000 records.

The speedup of these configurations as compared to the configuration without any accelerated workers can
be seen in Figure 6.5b. The same observation as made for the input size benchmark can be made here. The
speedup of the query is bound by the number of non-accelerated workers in the worker pool.

The configuration with 3 accelerated workers reaches its maximum speedup of ∼ 3.6x for a batch size of
256,000 records. This appears to be the optimal batch size as well for the configuration with 2 accelerated
workers. However, increasing the batch size for the configuration with a single accelerated worker does not
yield an increase in performance.

It is possible that the peak at a batch size of 256,000 records for the configuration with 2 accelerated work-
ers is caused by an outlier in the measurement data. Unfortunately, this cannot be confirmed as only the
average runtime of the consecutive runs is recorded.

From Figure 6.5c, it can be observed that the maximum throughput for the configuration with three accel-
erated workers is reached at a batch size of 128,000 records. At this batch size, a throughput of ∼ 280MB/s
is reached. Increasing this batch size to 8,192,000 records drastically reduces this throughput down to ∼
90MB/s. Therefore, tuning this batch size to the optimal value can increase the throughput of the system by
up to ∼ 2.1x.

At this batch size, the configuration without any accelerated workers reaches a throughput of ∼ 70MB/s,
the configuration with a single accelerated worker reaches ∼ 140MB/s, while the configuration with 2 accel-
erated workers reaches ∼ 170MB/s.

Finally, the total cost per query for these configurations is seen in Figure 6.5d. As expected after the ob-

6.4. Preliminary conclusion 59

servations from the previous figures, increasing the batch size results in a higher cost per query for all config-
urations. For batch sizes of 512,000 and higher, the configurations with 1 and 2 accelerated workers become
more expensive as compared to the configuration without any accelerated workers. For batch sizes under
512,000 records, these configurations yield a marginally lower cost per query.

The configuration with three accelerated workers is cheaper for all batch sizes when compared to the
configuration without any accelerated workers. The lowest total cost per query for this configuration is found
at a batch size of 128,000 records. This cost per query is roughly 23% lower as compared to the configuration
without any accelerated workers.

6.4. Preliminary conclusion
It is found that the speedup is bound by the fraction of non-accelerated workers in the worker pool. Only
accelerating a fraction of the workers yield diminishing returns as compared to accelerating the entire worker
pool.

Furthermore, the speedup of the entire query is much lower when compared to the speedup of the filter
operator as seen in the acceleration of vanilla Dask. This can be attributed to parquet read operators, which
take up a significant portion of the runtime of the query. Additionally, data shuffles pose a significant over-
head in cluster setups and are not present in single node deployments.

From the previous two implementations, it is found that increasing the batch size leads to in increase in
performance. These previous implementations shown that increasing the batch size above 64,000 records
yields diminishing returns, while the optimum performance of the system is reached at a batch size equal to
or greater than 512,000 records. However, this does not hold true when considering a cluster deployment.

In a cluster deployment, increasing the batch size increases the granularity at which operations can be
parallelized on the cluster. Additionally, larger batch sizes can increase the evaluation time on the fraction of
non-accelerated workers in a worker pool, resulting in larger end-to-end runtimes. For all tested configura-
tions of the cluster, increasing the batch size above 512,000 records leads to a decrease in performance. For
the configuration in which all workers in the pool are accelerated, the maximum throughput is achieved at
a batch size of 128,000 records. The maximum speedup as compared to the configuration without any ac-
celerated workers is achieved at a batch size of 512,000 records. It is expected that these thresholds change
depending on the underlying statistics of the usecase.

For batch sizes above 512,000 records, it only makes sense to accelerate the entire worker pool from an eco-
nomical point of view. However, at lower batch sizes, only accelerating a fraction of the worker pool leads
to a minor decrease of the total cost per query. A cost reduction of roughly 23% is obtained when the entire
worker pool is accelerated and the batch size is set to 128,000 records.

7
Conclusions and recommendations

7.1. Conclusions
This work set out to find an answer to the following problem statement. How should future big data frame-
works be designed such that they facilitate transparent and efficient integration with FPGA accelerators in the
context of SQL workloads?

Three different implementations of FPGA accelerated big data frameworks are presented in this work. The
results obtained from these integration efforts are used to answer the research questions as derived from the
problem statement. The conclusions can be found in the paragraphs below.

Where in the system should FPGA accelerators be placed in order to accelerate SQL workloads? It is iden-
tified that FPGA accelerators can either be placed in the data path or attached as a processor. The latter, FPGA
accelerators attached as a processor, is best suited for the acceleration of individual SQL operators in an ex-
isting big data framework. A distinction is made between FPGA accelerators configured as an IO-attached
processor and FPGA accelerators configured as a co-processor. From these two configurations, FPGA accel-
erators configured as a co-processor are preferable, but this configuration is only available if the underlying
compute system supports this.

This work integrates FPGA accelerators configured as an IO-attached processor into three batch-processing
big data frameworks. It is found that such an acceleration is able to achieve a speedup of 1750x for a regular
expression filter operator as implemented in Dremio. In Dask, this acceleration produces a speedup of 92x
for the same regular expression filter operator. In the latter case, this speedup of the filter operator yields an
end-to-end speedup of 3.6x when the runtime of the entire query is considered in a distributed setup. This
leads to a reduction of the cost per query of 23%.

Additionally, it is found that reading data from disk takes up a significant portion of the runtime of a SQL
workload. In this case, FPGA accelerators can be placed in between storage and the CPU. These accelerators
could perform algorithms such as parquet decompression, projection, or filtering to reduce the runtime of
these operations. Such an implementation is however not provided in the current work and poses an inter-
esting opportunity for future research.

Which features of big data frameworks are required to facilitate efficient integration and what is their im-
pact on the overall performance of the system? Two absolute requirements for the efficient integration of
FPGA accelerator in big data frameworks are the presence of a flexible API for the manipulation of execution
plans and the use of a hardware-friendly and language-independent in-memory data format such as Apache
Arrow.

Furthermore, the batch size of a batch-processing framework is an important parameter which should be
set by the developer or the end-user. Some big data frameworks impose limits on the maximum value of this
batch size, but this could lead to suboptimal solutions.

The optimal batch size is heavily dependent on the deployment of the big data framework and the spe-
cific workload that is to be evaluated. It is found that the regular expression usecase as presented in this

61

62 7. Conclusions and recommendations

work is best evaluated with a batch size of at least 512,000 records when the accelerated big data framework
is deployed on a single node in a compute cluster. On the contrary, when the framework is deployed in a
distributed setup, a trade-off related to this batch size is found. Considering the overhead related to memory
copies to and from the accelerator, as well as the overhead associated to the invocation of the native interface
that communicates with this accelerator, larger batch sizes are beneficial. At the same time, when consider-
ing the granularity at which operations can be parallelized on the cluster, as well as idle time of accelerated
workers resulting from larger evaluation times of the fraction of non-accelerated workers in the worker pool,
lower batch sizes are preferred. For the regular expression usecase as evaluated on an accelerated framework
deployed in a distributed setup, a batch size of 128,000 records is found to be optimal.

Additionally, for this usecase as evaluated in a distributed setup, tuning this batch size can result in an
increase of end-to-end query throughput of up to 2.1x. When the throughput of the individual SQL opera-
tor is considered in a single node deployment, this tuning of the batch size is accountable for an increase in
throughput of up to 2.6x.

Finally, all memory buffers of the hardware-friendly in-memory format should be aligned to 64 bytes. Mis-
alignment of these buffers can decrease the throughput of a specific SQL operator by 2.5x.

Which parts of the big data framework need to be aware of the acceleration such that the system can be
transparently deployed in a heterogeneous setting? This research question cannot be satisfied with a sin-
gle answer. There are multiple system architectures that facilitate the transparent deployment of an acceler-
ated big data system. Each of these architectures has its own advantages and disadvantages depending on
the deployment context.

For frameworks deployed on a single node in a compute cluster, the scheduler class needs to be aware of
the acceleration. This ensures that the acceleration planning is performed in an efficient way, as this plan-
ning needs to be performed only once.

In addition, this solution achieves the greatest number of acceleration opportunities. This observation is
supported by two findings. First, it is guaranteed that the entire execution plan is available during the accel-
eration planning phase, allowing for the acceleration of sequences of operators spanning multiple subgraphs
of this execution plan. Second, both operators with a narrow dependency as well as operators with a wide
dependency can be accelerated, as data shuffles do not occur on single node deployments.

Big data frameworks deployed in a distributed environment can be accelerated by two distinct approaches.
Either the scheduler node or the worker node can be made aware of the acceleration. The optimal implemen-
tation depends on the specific usecase and underlying statistics of the dataset, as well as a trade-off between
speedup and incurred cost.

System architectures that make the scheduler node aware of the acceleration achieve the same planning
efficiency as the single node deployment as discussed above. In this case, only operators with narrow de-
pendencies are accelerated. However, the resulting number of acceleration opportunities remains higher
than is the case for implementations that perform the acceleration in the worker node. This can be attributed
to the guarantee that the entire execution plan is available at the start of the acceleration planning phase.

A drawback of this architecture is that all workers in the worker pool are required to have an FPGA accel-
erator installed unless the scheduler node is aware of the capabilities of all workers in the worker pool. This
can impose challenges on the ease of deployment and the resulting cost of such a system. If the scheduler
node is aware of the different capabilities of the workers in the pool, different versions of the execution plan
are to be established and distributed.

System architectures that make the worker node aware of the acceleration achieve a slightly lower planning
efficiency as compared to the previous system architecture. This can be attributed to the fact that this plan-
ning is now performed in parallel on each worker node. Furthermore, when the execution plan is submitted
to the worker nodes as multiple subgraphs, each worker node has to perform the planning for each incoming
subgraph.

When considering the number of acceleration opportunities, this is lower as compared to the other avail-
able system architectures. Performing the acceleration planning on subgraphs of the original execution plan
makes it impossible to accelerate sequences of operators that span multiple subgraphs.

7.2. Recommendations 63

It is found that the acceleration is bound by the fraction of non-accelerated workers in the worker pool.
Depending on the specific usecase, statistics of the dataset, and configured batch size, such a configuration
with a partially accelerated worker pool can induce greater costs per query as compared to a non-accelerated
worker pool. In these cases, the attained speedup does not outweigh the increased cost of the added FPGA
instances. Configurations in which the entire worker pool consists of accelerated workers are found to reduce
the cost per query for the regular expression usecase.

Which part of the workload should be accelerated such that the average speedup within the application
domain is maximized? The design and implementation of an FPGA kernel is found to be time consuming.
It is therefore important to maximize the impact a given kernel has on queries within an application domain.

Each FPGA kernel targets a specific sequence of operators. In order to maximize the impact of the ker-
nel, different queries within the application domain should be rewritten in such a way that they feature this
specific sequence. Such a rewrite of the execution plan can be performed during the exploration phase of the
query optimizer.

It is likely that the acceleration of these semantically equivalent sequences of operators yields lower per-
formance improvements. Hence, it is necessary to evaluate whether the accelerated execution plan is ex-
pected to perform better than the original execution plan. This can be achieved through the use of cost-
based query optimization, utilizing FPGA-specific cost models to evaluate the different execution plans. This
remains an open challenge for future research.

7.2. Recommendations
Multiple opportunities for potential performance improvements are identified over the course of this project.
These opportunities are either outside of the scope of this work or they do not fit within the allocated time-
frame of the MSc thesis project. As such, they are not acted upon. Instead, recommendations for future work
are provided. These recommendations can be found below.

• The acceleration efforts in this work make use of FPGA accelerators configured as processors. This
proves to be effective for the acceleration of SQL operators. However, as it is found that the speedup of
these SQL workloads is partly limited by the significant runtimes of file reader implementations, FPGA
accelerators in the data path could be deployed alongside the implemented FPGA processors.

Such a system could make use of SmartSSDs, which integrate FPGA fabric into the package of the stor-
age medium [83]. The overall performance of the system could be increased by the implementation of
parquet decompression, projection, and filter algorithms on these accelerators.

• The regular expression usecase as constructed in this work is not used in industry. Therefore, the
benchmarks that are derived from this usecase are not fully representative for real world problems.
A more conventional and industry-recongnized set of benchmarks is the TPC-H benchmark suite [98].
This benchmark suite provides a set of business oriented decision support queries.

An integration effort is performed regarding the integration of an existing FPGA kernel that targets the
SQL operators resulting from TPC-H query 1 into Dremio. This integration is not completed due to
time limitations. Therefore, benchmarking of the accelerated systems by use of an industry-standard
benchmark suite is left for future research.

• The present work does not implement a fully functional query exploration phase in which execution
plans are rewritten to accommodate FPGA acceleration. Instead, a simple PoC implementation is real-
ized. This implementation could be extended by means of cost-based query optimization.

In addition, FPGA-specific cost models could be considered that take performance indicators related
to energy efficiency into account. This research direction could pave the way towards the realization of
’green datacenters’ as described in Section 1.1.

• The implementations as presented in this work only consider the acceleration of batch-processing big
data frameworks. More research could be done regarding the integration of FPGA accelerators into
streaming big data frameworks. Cluster deployments of these streaming frameworks could benefit from
FPGA accelerators directly attached to the network interface. This is another realization of FPGA accel-
erators deployed in the data path and could be accomplished with the use of SmartNICs.

64 7. Conclusions and recommendations

• The current implementation of the accelerated operator initializes the Tidre platform for each record-
batch evaluation. As this platform only needs to be initialized once, this initialization could be moved
to a setup method. Only invoking this method once per operator instead of once per recordbatch is
expected to yield additional performance.

This improvement could be made in a future and more general implementation of the accelerated oper-
ator. Completely basing this new operator on Apache Calcite and Apache Arrow could make it useful for
a wide range of big data frameworks. In addition to the invocation of the platform initialization in the
setup method, generalizations could be made regarding the consume data and output data methods.
These generalizations should enable the acceleration of different sequences of SQL operators without
the need for manual interference from the developer.

• The implementation of the FPGA accelerated regular expression matcher returns a selection vector
containing the indices of matching records in the recordbatch. The kernel has built-in support for the
computation of a bitmap instead of a selection vector.

A distinction is made between sparse matching recordbatches and dense matching recordbatches.
Based on these underlying statistics of the dataset, the accelerated operator should configure the FPGA
kernel to either return a selection vector or a bitmap. If this returned format does not match the ex-
pected format in the big data framework, an additional conversion is required at the software side. A
cost model could be developed to identify which format to use in a specific context.

• At the time of writing, the FPGA kernel as deployed on AWS did not offer support for the co-processor
configuration. However, this could change as AWS F1 instances now support the Xilinx Run Time (XRT),
which enables FPGA kernels to directly access main memory. How this XRT support could be leveraged
to enable to deployment of big data frameworks accelerated with FPGA co-processors is left for future
research.

• The regular expression matcher kernel as used in this work is used to target one of many existing SQL
operators. In order to fully realize the future big data framework as envisioned by Teratide and the ABS
group, a complete library containing the FPGA bitstreams for these SQL operators is required.

The design and implementation of these kernels is an ongoing effort and as such is listed as future
research.

Bibliography

[1] Doug Laney. Deja vvvu: Gartner’s original "volume-velocity-variety" definition of
big data. URL https://community.aiim.org/blogs/doug-laney/2012/08/25/
deja-vvvu-gartners-original-volume-velocity-variety-definition-of-big-data. ac-
cessed on 2021-06-08.

[2] Zaid Al-Ars Delft University of Technology. Sbd lecture 1: The new age of big data, Sep 2020. Super-
computing for Big Data.

[3] Tianqi Yu and Xianbin Wang. Real-Time Data Analytics in Internet of Things Systems, pages 1–28. 01
2020. ISBN 978-981-4585-87-3. doi: 10.1007/978-981-4585-87-3_38-1.

[4] Matt Turck. Resilience and vibrancy: The 2020 data ai landscape. URL https://mattturck.com/
data2020/. accessed on 2021-06-08.

[5] Joost Hoozemans, Johan Peltenburg, Fabian Nonnemacher, Akos Hadnagy, Zaid Al-Ars, and H Peter
Hofstee. Fpga acceleration for big data analytics: Challenges and opportunities. IEEE Circuits and
Systems Magazine, 21(2):30–47, 2021.

[6] Eric Ries. The lean startup : how constant innovation creates radically successful busi-
nesses. Portfolio Penguin, London; New York, 2011. ISBN 9780670921607 0670921602. URL
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=
sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries.

[7] Adyen. Adyen | the payments platform built for growth. URL https://www.adyen.com. accessed on
2021-06-27.

[8] Nicola Jones. How to stop data centres from gobbling up the world’s electricity. URL https://www.
nature.com/articles/d41586-018-06610-y. accessed on 2021-07-05.

[9] International Energy Agency. The netherlands - key energy statistics, 2018. URL https://www.iea.
org/countries/the-netherlands. accessed on 2021-07-05.

[10] The Apache Software Foundation. Apache arrow | apache arrow, . URL https://arrow.apache.org/.
accessed on 2021-02-09.

[11] ABS TU Delft. abs-tudelft/fletcher: Fletcher: A framework to integrate fpga accelerators with apache
arrow on github. URL https://github.com/abs-tudelft/fletcher. accessed on 2021-02-09.

[12] Johan Peltenburg, Jeroen Van Straten, Lars Wijtemans, Lars Van Leeuwen, Zaid Al-Ars, and Peter Hof-
stee. Fletcher: A framework to efficiently integrate fpga accelerators with apache arrow. In 2019 29th
International Conference on Field Programmable Logic and Applications (FPL), pages 270–277. IEEE,
2019.

[13] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, H Peter Hofstee, Zaid Al-Ars, C Hochberger,
B Nelson, A Koch, R Woods, and P Diniz. Supporting columnar in-memory formats on fpga: The hard-
ware design of fletcher for apache arrow. In ARC, pages 32–47, 2019.

[14] Microsoft. Linux virtual machines pricing. URL https://azure.microsoft.com/en-us/pricing/
details/virtual-machines/linux/. accessed on 2021-06-08.

[15] Johan Peltenburg, Lars TJ van Leeuwen, Joost Hoozemans, Jian Fang, Zaid Al-Ars, and H Peter Hofstee.
Battling the cpu bottleneck in apache parquet to arrow conversion using fpga. In 2020 international
conference on Field-Programmable technology (ICFPT), pages 281–286. IEEE, 2020.

65

https://community.aiim.org/blogs/doug-laney/2012/08/25/deja-vvvu-gartners-original-volume-velocity-variety-definition-of-big-data
https://community.aiim.org/blogs/doug-laney/2012/08/25/deja-vvvu-gartners-original-volume-velocity-variety-definition-of-big-data
https://mattturck.com/data2020/
https://mattturck.com/data2020/
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries
https://www.adyen.com
https://www.nature.com/articles/d41586-018-06610-y
https://www.nature.com/articles/d41586-018-06610-y
https://www.iea.org/countries/the-netherlands
https://www.iea.org/countries/the-netherlands
https://arrow.apache.org/
https://github.com/abs-tudelft/fletcher
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

66 Bibliography

[16] F. Nonnenmacher. Transparently accelerating spark sql code on computing hardware. Master’s thesis,
Delft University of Technology, the Netherlands, 2020.

[17] Robert Chang. A beginner’s guide to data engineering — part i, . URL https://medium.com/@rchang/
a-beginners-guide-to-data-engineering-part-i-4227c5c457d7. accessed on 2021-06-09.

[18] Robert Chang. A beginner’s guide to data engineering — part ii, . URL https://medium.
com/@rchang/a-beginners-guide-to-data-engineering-part-ii-47c4e7cbda71. accessed
on 2021-06-09.

[19] Robert Chang. A beginner’s guide to data engineering — the series finale, . URL https://medium.com/
@rchang/a-beginners-guide-to-data-engineering-the-series-finale-2cc92ff14b0. ac-
cessed on 2021-06-09.

[20] Hilary Mason. A taxonomy of data science. URL http://www.dataists.com/2010/09/
a-taxonomy-of-data-science/. accessed on 2021-06-09.

[21] Monica Rogati. The ai hierarchy of needs. URL https://hackernoon.com/
the-ai-hierarchy-of-needs-18f111fcc007. accessed on 2021-06-09.

[22] Google Inc. Welcome to colaboratory, . URL https://colab.research.google.com7. accessed on
2021-06-17.

[23] Deepnote. Deepnote - data science notebooks for teams. URL https://deepnote.com/. accessed on
2021-06-17.

[24] Zaid Al-Ars Delft University of Technology. Acs lecture 1: Trends in computing systems, Sep 2020.
Advanced Computing Systems.

[25] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest Bassous, and Andre R
LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-
State Circuits, 9(5):256–268, 1974.

[26] Y.T.B. Mulder. Feeding high-bandwidth streaming-based fpga accelerators. Master’s thesis, Delft Uni-
versity of Technology, the Netherlands, 2018.

[27] Fritz Kruger. Cpu bandwidth – the worrisome 2020 trend. URL https://blog.westerndigital.
com/cpu-bandwidth-the-worrisome-2020-trend/. accessed on 2021-06-25.

[28] The Apache Software Foundation. Apache hadoop, . URL https://hadoop.apache.org/. accessed
on 2021-06-17.

[29] The Apache Software Foundation. Hdfs architecture guide, . URL https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html. accessed on 2021-06-17.

[30] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop distributed file
system. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pages 1–10,
2010. doi: 10.1109/MSST.2010.5496972.

[31] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Communications of
the ACM, 53(1):72–77, 2010.

[32] The Apache Software Foundation. Apache hadoop 3.3.1 - mapreduce tutorial, . URL https://hadoop.
apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html. accessed on 2021-06-17.

[33] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient big data processing in hadoop mapreduce. Proc.
VLDB Endow., 5(12):2014–2015, August 2012. ISSN 2150-8097. doi: 10.14778/2367502.2367562. URL
https://doi.org/10.14778/2367502.2367562.

[34] Zaid Al-Ars Delft University of Technology. Sbd lecture 2: Apache spark: High-performance big data
framework, Sep 2020. Supercomputing for Big Data.

https://medium.com/@rchang/a-beginners-guide-to-data-engineering-part-i-4227c5c457d7
https://medium.com/@rchang/a-beginners-guide-to-data-engineering-part-i-4227c5c457d7
https://medium.com/@rchang/a-beginners-guide-to-data-engineering-part-ii-47c4e7cbda71
https://medium.com/@rchang/a-beginners-guide-to-data-engineering-part-ii-47c4e7cbda71
https://medium.com/@rchang/a-beginners-guide-to-data-engineering-the-series-finale-2cc92ff14b0
https://medium.com/@rchang/a-beginners-guide-to-data-engineering-the-series-finale-2cc92ff14b0
http://www.dataists.com/2010/09/a-taxonomy-of-data-science/
http://www.dataists.com/2010/09/a-taxonomy-of-data-science/
https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007
https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007
https://colab.research.google.com7
https://deepnote.com/
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://doi.org/10.14778/2367502.2367562

Bibliography 67

[35] G. Jevtic. Hadoop vs spark – detailed comparison. URL https://phoenixnap.com/kb/
hadoop-vs-spark. accessed on 2021-06-17.

[36] Barbatunde Towards Data Science. Introduction to apache spark with scala. URL https://
towardsdatascience.com/introduction-to-apache-spark-with-scala-ed31d8300fe4. ac-
cessed on 2021-06-22.

[37] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD international conference on management of data, pages 1383–
1394, 2015.

[38] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu,
Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629, 2009.

[39] Jesús Camacho-Rodríguez, Ashutosh Chauhan, Alan Gates, Eugene Koifman, Owen O’Malley, Vineet
Garg, Zoltan Haindrich, Sergey Shelukhin, Prasanth Jayachandran, Siddharth Seth, et al. Apache hive:
From mapreduce to enterprise-grade big data warehousing. In Proceedings of the 2019 International
Conference on Management of Data, pages 1773–1786, 2019.

[40] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and Daniel Lemire. Apache
calcite: A foundational framework for optimized query processing over heterogeneous data sources. In
Proceedings of the 2018 International Conference on Management of Data, pages 221–230, 2018.

[41] Mohamed A Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw, Zhongxian Gu, Entong
Shen, George C Caragea, Carlos Garcia-Alvarado, Foyzur Rahman, Michalis Petropoulos, et al. Orca:
a modular query optimizer architecture for big data. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 337–348, 2014.

[42] Goetz Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):19–29, 1995.

[43] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. Hottsql: Proving query rewrites with
univalent sql semantics. ACM SIGPLAN Notices, 52(6):510–524, 2017.

[44] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. Axiomatic foundations and
algorithms for deciding semantic equivalences of sql queries. arXiv preprint arXiv:1802.02229, 2018.

[45] Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and Malavika Samak. Optimizing big-data queries using
program synthesis. In Proceedings of the 26th Symposium on Operating Systems Principles, pages 631–
646, 2017.

[46] Jyoti Leeka and Kaushik Rajan. Incorporating super-operators in big-data query optimizers. Proceed-
ings of the VLDB Endowment, 13(3):348–361, 2019.

[47] J. Hidders J. Lee H. P. Hofstee J. Fang, Y. T. B. Mulder. In-memory database acceleration on fpgas: a
survey. The VLDB Journal, 29:33–59, 2020.

[48] R. Singh M. Sharma, G. Singh. A review of different cost-based distributed query optimizers. Progress
in Artificial Intelligence, 8:45–62, 2019.

[49] M Tamer Özsu and Patrick Valduriez. Principles of distributed database systems, volume 2. Springer,
1999.

[50] Denys Shabalin, Eugene Burmako, and Martin Odersky. Quasiquotes for scala. Technical report, 2013.

[51] Ravindra Pindikura. Introducing the gandiva initiative for apache arrow. URL https://www.dremio.
com/announcing-gandiva-initiative-for-apache-arrow. accessed on 2021-06-18.

[52] The Apache Software Foundation. Apache arrow overview, . URL https://arrow.apache.org/
overview/. accessed on 2021-06-20.

https://phoenixnap.com/kb/hadoop-vs-spark
https://phoenixnap.com/kb/hadoop-vs-spark
https://towardsdatascience.com/introduction-to-apache-spark-with-scala-ed31d8300fe4
https://towardsdatascience.com/introduction-to-apache-spark-with-scala-ed31d8300fe4
https://www.dremio.com/announcing-gandiva-initiative-for-apache-arrow
https://www.dremio.com/announcing-gandiva-initiative-for-apache-arrow
https://arrow.apache.org/overview/
https://arrow.apache.org/overview/

68 Bibliography

[53] The Apache Software Foundation. The apache® software foundation announces apache arrow™ as a
top-level project, . URL https://blogs.apache.org/foundation/entry/the_apache_software_
foundation_announces87. accessed on 2021-06-20.

[54] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, Zaid Al-Ars, and H Peter Hofstee. Generat-
ing high-performance fpga accelerator designs for big data analytics with fletcher and apache arrow.
Journal of Signal Processing Systems, 93(5):565–586, 2021.

[55] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2010. Version 3.2.

[56] Intel. Intel intrinsics guide. URL https://software.intel.com/sites/landingpage/
IntrinsicsGuide/#techs=AVX_512. accessed on 2021-06-20.

[57] J. W. Peltenburg. Methods for Efficient Integration of FPGA Accelerators with Big Data Systems. PhD
thesis, Delft University of Technology, 2020.

[58] Jacques Nadeau. Gandiva: A llvm-based analytical expression compiler for apache arrow. URL https:
//arrow.apache.org/blog/2018/12/05/gandiva-donation/. accessed on 2021-06-21.

[59] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. Making sense of
performance in data analytics frameworks. In 12th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 15), pages 293–307, 2015.

[60] Johan Peltenburg, Jeroen Van Straten, Matthijs Brobbel, Zaid Al-Ars, and H Peter Hofstee. Tydi: an open
specification for complex data structures over hardware streams. IEEE Micro, 40(4):120–130, 2020.

[61] A. Stratikopoulos F.S. Zakkak C. Kotselidis M. Papadimitriou, J. Fumero. Transparent compiler and
runtime specializations for accelerating managed languages on fpgas. The Art, Science, and Engineering
of Programming, 5(2), 11 2020.

[62] Rene Mueller and Jens Teubner. Fpga: What’s in it for a database? In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09, page 999–1004, New York,
NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585512. doi: 10.1145/1559845.
1559965. URL https://doi.org/10.1145/1559845.1559965.

[63] Rene Mueller and Jens Teubner. Fpgas: A new point in the database design space. In Proceedings of the
13th International Conference on Extending Database Technology, EDBT ’10, page 721–723, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781605589459. doi: 10.1145/1739041.
1739137. URL https://doi.org/10.1145/1739041.1739137.

[64] Z. István. The glass half full: Using programmable hardware accelerators in analytics. IEEE Data Eng.
Bull., 42:49–60, 2019.

[65] Teratide. teratide/tidre-demo: Demo application for the tidre regular expression accelerator, . URL
https://github.com/teratide/tidre-demo. accessed on 2021-02-18.

[66] Teratide. vhdre: a vhdl regex matcher generator, . URL https://github.com/abs-tudelft/vhdre.
accessed on 2021-07-05.

[67] Dieudonne Manzi and David Tompkins. Exploring gpu acceleration of apache spark. In 2016 IEEE
International Conference on Cloud Engineering (IC2E), pages 222–223. IEEE, 2016.

[68] Peilong Li, Yan Luo, Ning Zhang, and Yu Cao. Heterospark: A heterogeneous cpu/gpu spark platform
for machine learning algorithms. In 2015 IEEE International Conference on Networking, Architecture
and Storage (NAS), pages 347–348. IEEE, 2015.

[69] Yuan Yuan, Meisam Fathi Salmi, Yin Huai, Kaibo Wang, Rubao Lee, and Xiaodong Zhang. Spark-gpu:
An accelerated in-memory data processing engine on clusters. In 2016 IEEE International Conference
on Big Data (Big Data), pages 273–283. IEEE, 2016.

[70] Alexander Ocsa. Sql for gpu data frames in rapids accelerating end-to-end data science workflows using
gpus. In LatinX in AI Research at ICML 2019, 2019.

https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces87
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces87
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX_512
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX_512
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://doi.org/10.1145/1559845.1559965
https://doi.org/10.1145/1739041.1739137
https://github.com/teratide/tidre-demo
https://github.com/abs-tudelft/vhdre

Bibliography 69

[71] Ying Li, Jinyu Zhan, Wei Jiang, Junting Wu, and Jianping Zhu. An fpga based network interface card
with query filter for storage nodes of big data systems. In 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 556–561. IEEE, 2020.

[72] Daniel Ziener, Florian Bauer, Andreas Becher, Christopher Dennl, Klaus Meyer-Wegener, Ute Schürfeld,
Jürgen Teich, Jörg-Stephan Vogt, and Helmut Weber. Fpga-based dynamically reconfigurable sql query
processing. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 9(4):1–24, 2016.

[73] Andreas Becher, Florian Bauer, Daniel Ziener, and Jürgen Teich. Energy-aware sql query acceleration
through fpga-based dynamic partial reconfiguration. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2014.

[74] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xiaodong Zhao, and Yang Seok
Ki. Smartssd: Fpga accelerated near-storage data analytics on ssd. IEEE Computer architecture letters,
19(2):110–113, 2020.

[75] Zeke Wang, Johns Paul, Hui Yan Cheah, Bingsheng He, and Wei Zhang. Relational query processing on
opencl-based fpgas. In 2016 26th International Conference on Field Programmable Logic and Applica-
tions (FPL), pages 1–10. IEEE, 2016.

[76] Andreas Becher, BG Lekshmi, David Broneske, Tobias Drewes, Bala Gurumurthy, Klaus Meyer-Wegener,
Thilo Pionteck, Gunter Saake, Jürgen Teich, and Stefan Wildermann. Integration of fpgas in database
management systems: challenges and opportunities. Datenbank-Spektrum, 18(3):145–156, 2018.

[77] Andreas Becher, Achim Herrmann, Stefan Wildermann, and Jürgen Teich. Reprovide: Towards utilizing
heterogeneous partially reconfigurable architectures for near-memory data processing. BTW 2019–
Workshopband, 2019.

[78] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur: A framework for hybrid cpu-
fpga databases. In 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 211–218. IEEE, 2017.

[79] The Apache Software Foundation. Apache spark - unified analytics engine for big data, . URL https:
//spark.apache.org/. accessed on 2021-02-16.

[80] Dremio. Introduction - dremio, 2020. URL https://docs.dremio.com/. accessed on 2020-11-06.

[81] Dask. Dask: Scalable analytics in python, . URL https://dask.org/. accessed on 2021-07-16.

[82] Jian Fang, Jianyu Chen, Zaid Al-Ars, Peter Hofstee, and Jan Hidders. Work-in-progress: A high-
bandwidth snappy decompressor in reconfigurable logic. In 2018 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), pages 1–2. IEEE, 2018.

[83] Xilinx. The first and only adaptive computational storage platform. URL https://www.xilinx.com/
applications/data-center/computational-storage/smartssd.html. accessed on 2021-07-02.

[84] Zaid Al-Ars Delft University of Technology. Sbd lecture 3: Spark libraries and apache kafka, Sep 2020.
Supercomputing for Big Data.

[85] Amazon. Amazon ec2 f1 instances. URL https://aws.amazon.com/ec2/instance-types/f1/. ac-
cessed on 2021-06-29.

[86] OpenCAPI Consortium. Opencapi consortium: Official site. URL https://opencapi.org/. accessed
on 2021-06-30.

[87] Google. google/re2: Re2 is a fast, safe, thread-friendly alternative to backtracking regular expression en-
gines like those used in pcre, perl, and python. it is a c++ library. URL https://github.com/google/
re2. accessed on 2021-02-18.

[88] Amazon. Amazon ec2 instance types. URL https://aws.amazon.com/ec2/instance-types/. ac-
cessed on 2021-07-02.

https://spark.apache.org/
https://spark.apache.org/
https://docs.dremio.com/
https://dask.org/
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://aws.amazon.com/ec2/instance-types/f1/
https://opencapi.org/
https://github.com/google/re2
https://github.com/google/re2
https://aws.amazon.com/ec2/instance-types/

70 Bibliography

[89] Bob Luppes Teratide. Dremio accelerated, . URL https://github.com/teratide/
dremio-accelerated. accessed on 2021-07-01.

[90] Bob Luppes Teratide. Data generator, . URL https://github.com/teratide/data-generator. ac-
cessed on 2021-07-01.

[91] Colm O’Connor. xeger 0.3.5. URL https://pypi.org/project/xeger/. accessed on 2021-07-04.

[92] Pydata.org. Pandas. URL https://pandas.pydata.org/. accessed on 2021-07-22.

[93] Pybind. pybind11 — seamless operability between c++11 and python. URL https://github.com/
pybind/pybind11. accessed on 2021-07-15.

[94] Bob Luppes Teratide. Dask accelerated, . URL https://github.com/teratide/dask-accelerated.
accessed on 2021-07-01.

[95] Secret Labs. Secret labs’ regular expression engine. URL https://github.com/python/cpython/
blob/main/Modules/sre.h. accessed on 2021-07-15.

[96] Dask. Dask distributed, . URL https://distributed.dask.org/en/latest/. accessed on 2021-02-
16.

[97] Bob Luppes Teratide. Dask distributed accelerated, . URL https://github.com/teratide/
dask-accelerated/tree/worker-optimization. accessed on 2021-07-01.

[98] TPC. Tpc-h vesion 2 and version 3. URL http://www.tpc.org/tpch/. accessed on 2021-07-17.

[99] The Pandas Development Team. Comparison with sql - pandas 1.2.2 documentation. URL https:
//pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html. ac-
cessed on 2021-02-17.

[100] OmniSci Inc. Accelerated analytics platform | omnisci, . URL https://www.omnisci.com/. accessed
on 2021-02-16.

[101] Influxdata. Influxdata/influxdb_iox: Pronounced (influxdb eye-ox), short for iron oxide. this is the new
core of influxdb written in rust on top of apache arrow. URL https://github.com/influxdata/
influxdb_iox. accessed on 2021-02-16.

[102] The Apache Software Foundation. Datafusion: A rust-native query engine for apache arrow | apache
arrow, . URL https://arrow.apache.org/blog/2019/02/04/datafusion-donation/. accessed
on 2021-02-16.

[103] The Apache Software Foundation. apache/hive: Apache hive, . URL https://github.com/apache/
hive. accessed on 2021-02-18.

[104] Ballista Compute. Ballista: Distributed compute platform. URL https://github.com/
ballista-compute/ballista. accessed on 2021-07-17.

[105] PrestoDB. prestodb/presto: The official home of the presto distributed sql query engine for big data, .
URL https://github.com/prestodb/presto. accessed on 2021-02-18.

[106] PrestoDB. Apache arrow connector - issue 12201, . URL https://github.com/prestodb/presto/
issues/12201. accessed on 2021-02-18.

[107] FASTDATAio. Homepage - fastdataio. URL https://fastdata.io/. accessed on 2021-02-16.

[108] TileDB Inc. Tiledb | tiledb, . URL https://tiledb.com/. accessed on 2021-02-16.

[109] Turbodbc. Turbodbc - turbocharged database access for data scientists - turbodbc latest documenta-
tion. URL https://turbodbc.readthedocs.io/en/latest/. accessed on 2021-02-16.

[110] Cylon. Cylon | cylon. URL https://cylondata.org/. accessed on 2021-02-16.

https://github.com/teratide/dremio-accelerated
https://github.com/teratide/dremio-accelerated
https://github.com/teratide/data-generator
https://pypi.org/project/xeger/
https://pandas.pydata.org/
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://github.com/teratide/dask-accelerated
https://github.com/python/cpython/blob/main/Modules/sre.h
https://github.com/python/cpython/blob/main/Modules/sre.h
https://distributed.dask.org/en/latest/
https://github.com/teratide/dask-accelerated/tree/worker-optimization
https://github.com/teratide/dask-accelerated/tree/worker-optimization
http://www.tpc.org/tpch/
https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html
https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html
https://www.omnisci.com/
https://github.com/influxdata/influxdb_iox
https://github.com/influxdata/influxdb_iox
https://arrow.apache.org/blog/2019/02/04/datafusion-donation/
https://github.com/apache/hive
https://github.com/apache/hive
https://github.com/ballista-compute/ballista
https://github.com/ballista-compute/ballista
https://github.com/prestodb/presto
https://github.com/prestodb/presto/issues/12201
https://github.com/prestodb/presto/issues/12201
https://fastdata.io/
https://tiledb.com/
https://turbodbc.readthedocs.io/en/latest/
https://cylondata.org/

Bibliography 71

[111] Kinetica. Kinetica docs home - kinetica documentation 7.1.1 documentation. URL https://www.
kinetica.com/docs/. accessed on 2021-02-18.

[112] The Apache Software Foundation. Apache kafka, . URL https://kafka.apache.org/
documentation/. accessed on 2021-06-29.

[113] Neha Narkhede. Introducing ksql: Streaming sql for apache kafka. URL https://www.confluent.
io/blog/ksql-streaming-sql-for-apache-kafka/. accessed on 2021-06-29.

[114] Elasticsearch B.V. Elasticsearch sql: Query elasticsearch indices with sql | elastic. URL https://www.
elastic.co/what-is/elasticsearch-sql. accessed on 2021-02-16.

https://www.kinetica.com/docs/
https://www.kinetica.com/docs/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://www.confluent.io/blog/ksql-streaming-sql-for-apache-kafka/
https://www.confluent.io/blog/ksql-streaming-sql-for-apache-kafka/
https://www.elastic.co/what-is/elasticsearch-sql
https://www.elastic.co/what-is/elasticsearch-sql

A
Analysis of big data frameworks

A.1. Batch-processing frameworks
This section provides the analysis of individual batch-processing big data frameworks. Several frameworks
are analyzes but were not found to be suitable for acceleration. Therefore, a distinction is made between
frameworks that are and frameworks that are not considered for acceleration.

A.1.1. Considered for acceleration

Dask and Dask distributed Dask has no internal parser and planner for SQL queries [81]. Instead, the
Pandas API is used to perform all SQL-like operations [99]. The execution plan is represented as a Task Graph
in Dask, which can be modified using rewrite rules in the Dask API. Pyarrow is supported when accessing
parquet files. By default, buffers allocated by the Python API of Apache Arrow are 64-byte aligned. Batch size
is referred to as the chunk size in Dask and can be set to an arbitrary number.

In addition, Dask distributed is a separate version of this framework specifically designed to run in dis-
tributed setups. The scheduler and worker implementations are modified to support these deployments. All
other characteristics of the underlying framework remain unchanged.

Dask has 8k stars, 1.2k forks, 237 watchers, and 82 open pull-requests on Github. The sum of these num-
bers is used as a proxy for the community size of this big data framework.

OmniSciDB OmniSciDB, formerly MapD Core, is a SQL based database engine that is designed to run on
hybrid CPU/GPU systems [100]. All query parsing and optimization is offloaded to Apache Calcite, which
can be easily extended by adding new planning phases and optimizer rules. Apache Arrow is used as the
internal memory format. OmniSciDB has a custom Data Manager impelementation which is used to allocate
memory buffers. These memory addresses are 512-byte aligned. Columns are divided into fragments and
chunks, which can be set to an arbitrary number. Together, these parameters determine the batch size, which
by default is set to 1GB.

Typical application domains include business intelligence tools (BI) and geographic information systems
(GIS).

OmniSciDB has 2.4k stars, 352 forks, 144 watchers, and 23 open pull-requests on Github. The sum of these
numbers is used as a proxy for the community size of this big data framework.

Spark SQL Spark SQL makes use of the catalyst optimizer, which can be easily extended by adding new
optimization rules. At the time of Nonnenmacher’s work, Apache Arrow is not the default memory structure,
but there is support for columnar data formats [16]. The JVM aligns all memory addresses to 8 bytes. By
default the batch size is set to 10,000 records, but this can be increased manually and is uncapped.

Apache Spark, which incorporates Spark SQL, has 28.9k stars, 23.4k forks, 2.1k watchers, and 225 open
pull-requests on Github. The sum of these numbers is used as a proxy for the community size of this big data
framework.

73

74 A. Analysis of big data frameworks

InfluxDB IOx InfluxDB IOx uses DataFusion as the in-memory query engine [101, 102]. SQL queries are
planned and optimized, but no separate planner stages are identified. Apache Arrow is used as the default
in-memory structure. The Rust API of Apache Arrow provides methods that allow users to specify their own
memory alignment constraints. The default batch size is set to 1,000 records but it seems that this can be
increased manually.

InfluxDB IOx has 522 stars, 46 forks, 40 watchers, and 6 open pull-requests on Github. The sum of these
numbers is used as a proxy for the community size of this big data framework.

Apache Hive As identified in Section 2.2, Apache Hive provides a SQL-like layer over the MapReduce frame-
work [38, 39]. In the newest version of Apache Hive, SQL queries can be evaluated on Apache Hadoop
MapReduce, Apache Tez, or Apache Spark [103]. Apache Hive incorporates the Apache Calcite query op-
timizer, which can be easily extended by adding new optimization rules. There appears to be support for
Apache Arrow, but it is not the default in-memory structure. The maximum batch size in Apache Hive is set
to 2,147,483,647 records.

Apache Hive has 3.6k stars, 3.4k forks, 327 watchers, and 94 open pull-requests on Github. The sum of
these numbers is used as a proxy for the community size of this big data framework.

Ballista Ballista is a distributed compute engine based on Apache arrow and DataFusion [102, 104]. The
project is a work in progress, but there is support to run TCP-H queries 1, 3, 5, 6, 10, and 12. As is the case for
InfluxDB IOx, the Rust API of Apache Arrow allows users to specify their own memory alignment constraints.
The maximum batch size is hard coded to 32,768 records at various locations in the framework, but this could
be increased manually.

Ballista has 2.1k stars, 126 forks, 72 watchers, and 3 open pull-requests on Github. The sum of these
numbers is used as a proxy for the community size of this big data framework.

Presto Presto is an open-source distributed SQL query engine [105]. Presto includes a full-fledged query
planner and optimizer. This optimizer can be extended by adding optimization rules. The underlying in-
memory structure is managed by the JVM, which by default aligns memory addresses to 8 bytes. There is an
open issue regarding Apache Arrow support in Presto. At the time of writing, nobody has been assigned to
this issue [106]. By default, the batch size is set to 1,000 records, but this can be increased manually.

Presto has 11.7k stars, 4k forks, 889 watchers, and 125 open pull-requests on Github. The sum of these
numbers is used as a proxy for the community size of this big data framework.

Dremio Dremio’s internal query engine, the Sabot engine, is based on Apache Calcite. It is therefore highly
extendable and features multiple planning phases. Apache Arrow is used as the default memory structure.
The java API of Apache Arrow aligns memory addresses on 8 bytes. The maximum batch size for narrow
recordbatches (records with up to 100 fields) is set to 64,000 records. This maximum batch size is even lower
for wide recordbatches (records with over 100 fields).

Dremio has 849 stars, 263 forks, 99 watchers, and 27 open pull-requests on Github. The sum of these
numbers is used as a proxy for the community size of this big data framework.

A.1.2. Not considered for acceleration

Fastdata.io Fastdata.io is an Apache Arrow based extension to Apache Spark that enables evaluation on
GPU accelerators [107]. At the time of writing, their code is not open-source and thus cannot be evaluated.

TileDB TileDB is a storage engine for multi-dimensional arrays that uses the Apache Arrow in-memory data
format [108]. It does not include a query parser or optimizer, instead it relies on tools such as Apache Spark
and Dask to query their underlying storage engine. TileDB could potentially benefit from an accelerator in
the data path. As TileDB does not include a query engine, it is not considered for acceleration.

Turbodbc Turbodbc is a Python module that can access external databases over ODBC [109]. It does not
include a query parser or optimizer and as such is not considered for acceleration.

75

Cylon Cylon is a library for processing structured data, written in C++ [110]. Python and Java language in-
terfaces are provided. Cylon uses Apache Arrow as the in-memory structure. The C++ API of Apache Arrow
allows buffers to be allocated with an alignment of 64 bytes. Cylon merely provides implementations of re-
lational operators and can therefore not be used as a standalone big data framework. Cylon is therefore not
considered for acceleration.

Kinetica Kinetica is a database engine with support for many-core devices such as GPUs [111]. The Kinetica
framework is however not open-source and is therefore not considered for acceleration.

A.2. Streaming frameworks
Two streaming big data frameworks are considered for acceleration. A brief analysis of their characteristics
can be found below.

Spark Streaming Spark Streaming is a module that extends the Spark Core in order to support stream pro-
cessing. It does so by evaluating micro-batches. These micro-batches are obtained by convolving a record
stream with a sliding window. All characteristics of the underlying Spark Core remain unchanged.

Spark Streaming is contained in the official Spark repository on Github. As not all Spark users are expected
to make use of the Spark Streaming module, it’s community size is expected to be smaller than or equal to the
community size of Apache Spark.

Apache Kafka Streaming SQL engines exist for Apache Kafka such as KSQL [112, 113]. KSQL differs from
database SQL engines in the sense that it runs continuous queries on streams of data. SQL queries are trans-
lated to transformations in Apache Kafka by use of a custom SQL parser. Apache Kafka uses a standardized
binary format that differs from Apache Arrow. It is not known whether this format is hardware-friendly like
Apache Arrow.

Apache Kafka has 19.3k stars, 10.2k forks, 1.1k watchers, and 908 open pull-requests on Github. The sum
of these numbers is used as a proxy for the community size of this big data framework.

A.3. Index-based frameworks
Finally, two index-based big data frameworks are considered for acceleration. A brief analysis of their char-
acteristics can be found below.

Elasticsearch SQL Elasticsearch SQL is an index-based search engine that provides a SQL plugin [114]. This
plugin parses SQL queries and translates them to operations in the Elasticsearch framework, which requires
all underlying data to be indexed. Since SQL queries are not the main focus, the planner is implemented in a
very simple way and does not feature multiple extendible stages. The framework uses JSON as an underlying
data format. Memory addresses are aligned to 8 bytes by default in the JVM. Batch size is not a thing in
Elasticsearch SQL since there are no records to be processed. Instead, all data is retrieved by performing a
reverse lookup of a given index.

It is identified that this is not a computationally heavy operation that could benefit from FPGA accelera-
tion. The framework could potentially benefit from an accelerator in the data path during the indexing phase,
but this is out of scope for this project.

Elasticsearch, which incorporates the Elasticsearch SQL plugin, has 53.9k stars, 19.3k forks, 2.8k watchers,
and 415 open pull-requests on Github. The sum of these numbers is used as a proxy for the community size
of this big data framework.

Apache Lucene Apache Lucene is another index-based big data framework. Lucene implements various
algorithms that are based on reversed index lookups. There is no support for parsing and optimizing SQL
queries. Just like Elasticsearch, JSON is used as an underlying data format.

Apache Lucene has 337 stars, 186 forks, 39 watchers, and 32 open pull-requests on GitHub. The sum of
these numbers is used as a proxy for the community size of this big data framework.

B
Measurement data

B.1. Dremio integration
This section provides the raw measurement data of the benchmarks as performed on vanilla Dremio, the RE2
accelerated version of Dremio, and the Tidre accelerated version of Dremio. Separate data is presented for
each repeat of the experiments. Only the runtime of the operators and the runtime of the total query are
shown, as the throughput, speedup, and cost can be derived from these figures.

B.1.1. Input size benchmark

vanilla Dremio

input
size

1 2 3 4 5 6 7 8 9 10

1,000 0.005 0.005 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.002

2,000 0.003 0.004 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002

4,000 0.003 0.003 0.004 0.003 0.002 0.003 0.004 0.002 0.004 0.004

8,000 0.006 0.003 0.003 0.003 0.004 0.003 0.003 0.002 0.002 0.002

16,000 0.009 0.005 0.004 0.004 0.005 0.004 0.003 0.005 0.004 0.003

32,000 0.005 0.007 0.005 0.005 0.005 0.004 0.004 0.005 0.005 0.006

64,000 0.014 0.013 0.013 0.014 0.013 0.013 0.014 0.013 0.013 0.014

128,000 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.018 0.018 0.018

256,000 0.027 0.027 0.026 0.026 0.027 0.026 0.026 0.026 0.026 0.027

512,000 0.044 0.043 0.043 0.043 0.043 0.043 0.045 0.043 0.043 0.044

Table B.1: Parquet scan operator runtimes in seconds for the input size benchmark on vanilla Dremio. The
measurement data is shown for 10 consecutive repeats.

77

78 B. Measurement data

input
size

1 2 3 4 5 6 7 8 9 10

1,000 0.166 0.166 0.164 0.164 0.173 0.167 0.164 0.257 0.179 0.163

2,000 0.343 0.349 0.346 0.344 0.328 0.327 0.327 0.329 0.327 0.327

4,000 0.653 0.67 0.739 0.653 0.652 0.652 0.705 0.667 0.66 0.652

8,000 1.313 1.301 1.306 1.417 1.306 1.304 1.304 1.305 1.303 1.303

16,000 2.616 2.711 2.605 2.606 2.642 2.606 2.621 2.62 2.859 2.659

32,000 5.218 5.225 5.213 5.232 5.207 5.207 5.209 5.368 5.353 5.216

64,000 10.43 10.415 10.416 10.434 10.424 10.418 10.43 10.422 10.602 10.431

128,000 20.822 20.834 20.819 20.834 21.375 22.033 20.82 21.119 20.842 20.831

256,000 41.678 42.43 41.65 41.751 42.065 41.762 41.688 42.237 41.67 41.66

512,000 83.305 83.97 83.324 83.881 83.346 83.69 83.959 83.493 83.504 83.39

Table B.2: Filter operator runtimes in seconds for the input size benchmark on vanilla Dremio. The measurement data is
shown for 10 consecutive repeats.

input
size

1 2 3 4 5 6 7 8 9 10

1,000 296 297 294 289 279 257 262 343 261 231

2,000 432 432 437 415 396 478 406 405 401 398

4,000 735 735 800 714 712 709 769 723 733 715

8,000 1373 1373 1366 1482 1373 1364 1362 1362 1359 1360

16,000 2829 2829 2712 2701 2739 2702 2715 2714 2950 2749

32,000 5368 5368 5362 5368 5348 5340 5345 5499 5481 5422

64,000 10642 10642 10636 10660 10657 10638 10714 10640 10824 10652

128,000 21225 21225 21217 21229 21822 22433 21212 21511 21269 21228

256,000 43175 43175 42403 42550 42810 42552 42435 42982 42410 42403

512,000 85453 85453 84761 85314 84813 85199 85405 84965 84969 84840

Table B.3: Total query runtimes in milliseconds for the input size benchmark on vanilla Dremio. The measurement data
is shown for 10 consecutive repeats.

79

RE2 accelerated version of Dremio

input
size

1 2 3 4 5 6 7 8 9 10

1,000 0.004 0.005 0.003 0.003 0.003 0.004 0.004 0.003 0.004 0.002

2,000 0.003 0.003 0.002 0.002 0.003 0.002 0.003 0.003 0.002 0.003

4,000 0.004 0.003 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003

8,000 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.003 0.003

16,000 0.01 0.004 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.003

32,000 0.005 0.006 0.005 0.005 0.005 0.005 0.007 0.006 0.006 0.005

64,000 0.013 0.014 0.014 0.014 0.013 0.013 0.014 0.014 0.013 0.015

128,000 0.018 0.018 0.019 0.018 0.018 0.017 0.019 0.017 0.018 0.021

256,000 0.027 0.027 0.026 0.025 0.027 0.025 0.025 0.025 0.026 0.025

512,000 0.044 0.043 0.042 0.041 0.046 0.042 0.043 0.044 0.043 0.042

Table B.4: Parquet scan operator runtimes in seconds for the input size benchmark on the RE2 accelerated version of
Dremio. The measurement data is shown for 10 consecutive repeats.

input
size

1 2 3 4 5 6 7 8 9 10

1,000 0.006 0.006 0.004 0.004 0.004 0.006 0.007 0.006 0.022 0.004

2,000 0.007 0.007 0.007 0.007 0.011 0.007 0.007 0.008 0.007 0.011

4,000 0.011 0.011 0.011 0.012 0.011 0.016 0.012 0.011 0.012 0.012

8,000 0.022 0.021 0.023 0.021 0.021 0.022 0.022 0.021 0.021 0.022

16,000 0.043 0.041 0.041 0.042 0.045 0.042 0.041 0.042 0.041 0.041

32,000 0.08 0.082 0.08 0.08 0.079 0.081 0.082 0.08 0.08 0.08

64,000 0.158 0.159 0.16 0.161 0.159 0.16 0.159 0.159 0.16 0.159

128,000 0.316 0.314 0.314 0.32 0.314 0.314 0.314 0.315 0.318 0.315

256,000 0.629 0.625 0.625 0.625 0.633 0.626 0.625 0.626 0.633 0.626

512,000 1.253 1.249 1.248 1.252 1.271 1.252 1.251 1.261 1.254 1.256

Table B.5: Filter operator runtimes in seconds for the input size benchmark on the RE2 accelerated version of Dremio.
The measurement data is shown for 10 consecutive repeats.

80 B. Measurement data

input
size

1 2 3 4 5 6 7 8 9 10

1,000 142 144 117 135 96 114 99 103 174 83

2,000 82 82 82 78 105 104 92 90 80 89

4,000 74 74 75 90 76 100 80 80 86 87

8,000 91 91 100 92 80 85 82 83 94 95

16,000 141 141 152 150 142 150 135 137 133 132

32,000 222 222 219 231 219 224 225 225 222 220

64,000 391 391 383 400 382 383 395 386 387 386

128,000 799 799 711 718 711 706 715 710 715 771

256,000 1369 1369 1377 1377 1378 1373 1387 1384 1449 1376

512,000 2700 2700 2707 2821 2731 2737 2826 2708 2698 2756

Table B.6: Total query runtimes in milliseconds for the input size benchmark on the RE2 accelerated version of Dremio.
The measurement data is shown for 10 consecutive repeats.

Tidre accelerated version of Dremio

input
size

1 2 3 4 5 6 7 8 9 10

1,000 0.003 0.005 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002

2,000 0.004 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.003

4,000 0.004 0.003 0.004 0.003 0.003 0.002 0.003 0.004 0.002 0.003

8,000 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.002 0.002 0.002

16,000 0.008 0.004 0.004 0.003 0.003 0.005 0.005 0.004 0.004 0.004

32,000 0.005 0.005 0.006 0.005 0.005 0.007 0.006 0.004 0.006 0.004

64,000 0.013 0.013 0.013 0.013 0.015 0.014 0.013 0.013 0.013 0.013

128,000 0.02 0.021 0.019 0.017 0.017 0.017 0.018 0.017 0.017 0.017

256,000 0.025 0.025 0.025 0.026 0.026 0.025 0.025 0.026 0.026 0.026

512,000 0.042 0.058 0.041 0.043 0.04 0.041 0.041 0.042 0.044 0.043

Table B.7: Parquet scan operator runtimes in seconds for the input size benchmark on the Tidre accelerated version of
Dremio. The measurement data is shown for 10 consecutive repeats.

81

input
size

1 2 3 4 5 6 7 8 9 10

1,000 0.001 0.001 0.003 0.001 0.001 0.009 0.001 0.007 0.001 0.001

2,000 0.001 0.001 0.001 0.002 0.001 0.001 0.005 0.003 0.003 0.002

4,000 0.001 0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.003

8,000 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

16,000 0.002 0.002 0.002 0.006 0.002 0.002 0.002 0.002 0.002 0.002

32,000 0.003 0.008 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

64,000 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

128,000 0.012 0.012 0.014 0.013 0.012 0.012 0.012 0.017 0.012 0.012

256,000 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024

512,000 0.048 0.048 0.047 0.047 0.047 0.052 0.047 0.047 0.047 0.047

Table B.8: Filter operator runtimes in seconds for the input size benchmark on the Tidre accelerated version of Dremio.
The measurement data is shown for 10 consecutive repeats.

input
size

1 2 3 4 5 6 7 8 9 10

1,000 131 131 143 99 88 116 106 111 83 81

2,000 91 91 86 67 82 87 68 68 71 70

4,000 72 72 70 81 79 61 80 79 73 62

8,000 64 64 59 57 61 62 75 57 56 59

16,000 96 96 111 103 93 105 99 94 104 105

32,000 145 145 141 146 139 174 182 137 136 135

64,000 232 232 231 236 236 232 228 224 239 231

128,000 407 407 412 405 407 402 406 411 468 398

256,000 759 759 762 769 768 764 762 851 773 761

512,000 1507 1507 1472 1473 1471 1522 1536 1489 1549 1491

Table B.9: Total query runtimes in milliseconds for the input size benchmark on the Tidre accelerated version of Dremio.
The measurement data is shown for 10 consecutive repeats.

82 B. Measurement data

B.1.2. Batch size benchmark

Vanilla Dremio

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 0.021 0.021 0.021 0.014 0.011 0.011 0.011 0.01 0.01 0.01

2,000 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.007

4,000 0.006 0.006 0.005 0.006 0.005 0.006 0.006 0.006 0.006 0.005

8,000 0.006 0.007 0.005 0.005 0.005 0.005 0.006 0.005 0.005 0.005

16,000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.005

32,000 0.005 0.005 0.007 0.005 0.007 0.005 0.005 0.005 0.005 0.005

64,000 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.063 0.005

Table B.10: Parquet scan operator runtimes in seconds for the batch size benchmark on vanilla Dremio. The
measurement data is shown for 10 consecutive repeats.

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 5.469 5.342 5.467 5.331 5.405 5.285 5.289 5.296 5.333 5.322

2,000 5.315 5.282 5.282 5.604 5.352 5.337 5.333 5.559 5.444 5.336

4,000 5.33 5.324 5.322 5.371 5.683 5.319 5.359 5.316 5.387 5.341

8,000 5.327 5.442 5.518 5.322 5.316 5.314 5.344 5.406 5.343 5.325

16,000 5.319 5.317 5.361 5.465 5.42 5.326 5.387 5.322 5.618 5.497

32,000 5.332 5.316 5.626 5.318 5.316 5.315 5.317 5.324 5.314 5.314

64,000 5.321 5.368 5.323 5.322 5.864 5.318 5.315 5.316 5.315 5.318

Table B.11: Filter operator runtimes in seconds for the batch size benchmark on vanilla Dremio. The measurement data
is shown for 10 consecutive repeats.

83

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 5545 5624 5738 5545 5630 5502 5547 5486 5523 5505

2,000 5489 5466 5455 5795 5526 5519 5504 5720 5609 5499

4,000 5488 5495 5490 5529 5846 5493 5519 5483 5600 5491

8,000 5478 5598 5674 5473 5467 5462 5504 5557 5493 5472

16,000 5466 5463 5520 5661 5567 5470 5537 5466 5768 5650

32,000 5476 5463 5804 5472 5475 5457 5456 5467 5451 5453

64,000 5457 5514 5461 5465 6002 5455 5453 5455 5512 5454

Table B.12: Total query runtimes in milliseconds for the batch size benchmark on vanilla Dremio. The measurement
data is shown for 10 consecutive repeats.

RE2 accelerated version of Dremio

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

2,000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

4,000 0.003 0.004 0.004 0.003 0.003 0.004 0.003 0.006 0.004 0.003

8,000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

16,000 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.004 0.004

32,000 0.006 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.004

64,000 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Table B.13: Parquet scan operator runtimes in seconds for the batch size benchmark on the RE2 accelerated version of
Dremio. The measurement data is shown for 10 consecutive repeats.

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 0.127 0.126 0.127 0.126 0.126 0.126 0.126 0.129 0.126 0.126

2,000 0.104 0.104 0.103 0.106 0.104 0.106 0.104 0.104 0.104 0.104

4,000 0.093 0.093 0.092 0.092 0.092 0.094 0.093 0.144 0.092 0.093

8,000 0.086 0.086 0.086 0.088 0.086 0.086 0.086 0.086 0.086 0.086

16,000 0.084 0.083 0.082 0.083 0.083 0.083 0.083 0.083 0.085 0.083

32,000 0.085 0.081 0.081 0.08 0.081 0.08 0.08 0.081 0.126 0.084

64,000 0.079 0.079 0.079 0.079 0.079 0.08 0.08 0.079 0.079 0.081

Table B.14: Filter operator runtimes in seconds for the batch size benchmark on the RE2 accelerated version of Dremio.
The measurement data is shown for 10 consecutive repeats.

84 B. Measurement data

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 251 250 251 249 249 252 251 254 248 248

2,000 225 228 226 230 228 229 226 226 233 226

4,000 216 217 216 219 213 216 214 311 216 215

8,000 212 208 207 212 212 206 210 210 207 207

16,000 206 202 203 204 208 204 204 203 206 203

32,000 206 200 200 202 201 201 201 203 289 230

64,000 202 200 204 257 211 200 202 202 198 201

Table B.15: Total query runtimes in milliseconds for the batch size benchmark on the RE2 accelerated version of Dremio.
The measurement data is shown for 10 consecutive repeats.

Tidre accelerated version of Dremio

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 0.004 0.004 0.005 0.003 0.004 0.004 0.004 0.004 0.004 0.003

2,000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

4,000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

8,000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005

16,000 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

32,000 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

64,000 0.004 0.004 0.006 0.006 0.004 0.004 0.004 0.004 0.004 0.004

Table B.16: Parquet scan operator runtimes in seconds for the batch size benchmark on the Tidre accelerated version of
Dremio. The measurement data is shown for 10 consecutive repeats.

85

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 0.012 0.012 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.011

2,000 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007

4,000 0.005 0.006 0.005 0.005 0.005 0.011 0.005 0.005 0.006 0.005

8,000 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.005

16,000 0.004 0.004 0.004 0.004 0.004 0.009 0.004 0.008 0.004 0.004

32,000 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.004 0.004 0.003

64,000 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003

Table B.17: Filter operator runtimes in seconds for the batch size benchmark on the Tidre accelerated version of Dremio.
The measurement data is shown for 10 consecutive repeats.

batch
size

1 2 3 4 5 6 7 8 9 10

1,000 136 132 136 130 132 134 134 133 140 130

2,000 126 130 128 127 127 128 129 127 126 131

4,000 127 123 129 128 125 130 126 132 125 123

8,000 123 134 122 128 126 122 122 124 123 126

16,000 156 153 124 178 121 127 122 135 129 123

32,000 123 122 122 123 121 120 123 124 125 125

64,000 130 122 163 153 142 122 121 127 124 122

Table B.18: Total query runtimes in milliseconds for the batch size benchmark on the Tidre accelerated version of
Dremio. The measurement data is shown for 10 consecutive repeats.

86 B. Measurement data

B.2. Dask integration

This section provides the measurement data of the benchmarks as performed on vanilla Dask, the RE2 accel-
erated version of Dask, and the Tidre accelerated version of Dask. The measurement values for each repeat
of the experiment are averaged before the result is recorded. As such, only the average runtime per configu-
ration of the benchmark is shown.

B.2.1. Input size benchmark

input size vanilla filter re2 filter tidre filter (un-
aligned)

tidre filter
(aligned)

1,000 0.002956151 0.003961324 0.000338633 0.000299215

2,000 0.005610624 0.007038831 0.000467936 0.000365177

4,000 0.011072556 0.011637210 0.000563383 0.000410079

8,000 0.021036148 0.022220611 0.000975131 0.000575462

16,000 0.041970411 0.041655460 0.001475413 0.000755469

32,000 0.085360527 0.083416541 0.003065347 0.001402139

64,000 0.165530045 0.164292891 0.005296150 0.002300977

128,000 0.330947081 0.325950702 0.010447104 0.004223585

256,000 0.667097171 0.647831678 0.020582278 0.007971366

512,000 1.350455919 1.287713050 0.038978179 0.015311320

1,024,000 2.636155525 2.539052804 0.080622911 0.029798428

2,048,000 5.390320936 5.136881192 0.155350526 0.060254335

4,096,000 11.20614918 10.32821965 0.318155924 0.122184117

Table B.19: Filter operator runtimes in seconds for the input size benchmark on vanilla Dask, the RE2 accelerated
version of Dask, and the Tidre accelerated version of Dask.

87

B.2.2. Batch size benchmark

batch size vanilla filter re2 filter tidre filter (un-
aligned)

tidre filter
(aligned)

64,000 10.40990583 10.20908530 0.327896753 0.139211813

128,000 10.32164494 10.14421232 0.324502706 0.130489905

256,000 10.44996277 10.13163725 0.317209084 0.161064863

512,000 10.54750529 10.08743151 0.308020035 0.121752500

1,024,000 10.53775946 10.08665307 0.313249429 0.118306795

2,048,000 10.94178239 10.03863088 0.307125488 0.115442832

4,096,000 10.50310659 10.01158491 0.317032019 0.116899013

8,192,000 11.04190683 11.55125530 0.300794839 0.116959571

Table B.20: Filter operator runtimes in seconds for the batch size benchmark on vanilla Dask, the RE2 accelerated
version of Dask, and the Tidre accelerated version of Dask.

B.3. Dask distributed integration

This section presents the measurement data of the benchmarks as performed on Dask distributed. These
experiments records the end-to-end runtime of the query.

B.3.1. Input size benchmark

input size 0 / 3 acc. workers 1 / 3 acc. workers 2 / 3 acc. workers 3 / 3 acc. workers

256,000 0.792335669 0.719644268 0.621766328 0.281761566

512,000 1.932520270 1.443918704 0.995650529 0.566291173

1,024,000 3.574651559 2.812757293 1.925983707 0.911388675

2,048,000 3.674423217 3.690255522 2.799145738 1.126245737

4,096,000 7.352140386 7.128950277 5.511878490 2.112696448

Table B.21: Total query runtimes in seconds for the input size benchmark on the accelerated version of Dask distributed.
A worker pool with a size of three is configured. Four configurations with different fractions of accelerated workers in the

pool are considered.

88 B. Measurement data

B.3.2. Batch size benchmark

batch size 0 / 3 acc. workers 1 / 3 acc. workers 2 / 3 acc. workers 3 / 3 acc. workers

64,000 5.211608012 3.179878354 2.461477398 1.669256130

128,000 5.015094598 3.055605371 2.392320315 1.447363575

256,000 5.437679171 3.425900141 1.957973798 1.504485567

512,000 5.666631658 4.829833467 4.162257154 1.623860279

1,024,000 7.146155277 5.840875784 5.125004649 2.000774780

2,048,000 7.453825195 7.449797232 5.615672389 2.283123970

4,096,000 14.41515847 11.35234797 7.963922739 4.584929863

8,192,000 14.55684224 11.68263487 8.152046481 4.678944428

Table B.22: Total query runtimes in seconds for the batch size benchmark on the accelerated version of Dask distributed.
A worker pool with a size of three is configured. Four configurations with different fractions of accelerated workers in the

pool are considered.

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Context
	Challenges
	Problem statement and research questions
	Contribution
	Thesis outline

	Background
	Big data
	Data engineering workflow
	Trends in big data computing

	Big data architecures
	Distributed file systems
	Compute frameworks
	SQL workloads
	Cluster setups

	Apache Arrow
	Columnar data formats
	Specification
	Gandiva

	FPGA accelerators
	The field-programmable gate array
	FPGAs in big data
	Tidre

	Related work

	Alternative solutions
	Method of analysis
	Speedup methods
	CPU optimization
	GPU accelerators
	FPGA accelerators
	Comparison

	Big data frameworks
	Batch-processing frameworks
	Streaming frameworks
	Index-based frameworks
	Comparison

	Deployment methods
	Single node
	Acceleration aware scheduler
	Acceleration aware worker
	Comparison

	Proposed solutions

	Dremio integration
	Implementation
	Architectural details
	FPGA acceleration planning
	Accelerated filter operator

	Experimental setup
	Regular expression usecase
	Dataset
	Input size benchmark
	Batch size benchmark
	Measurement setup

	Results
	Accelerating the query
	RE2 acceleration
	Tidre acceleration
	Optimizer exploration

	Preliminary conclusion

	Dask integration
	Implementation
	Architectural details
	FPGA acceleration planning
	Selection vector to bitmap
	Accelerated operators

	Experimental setup
	Regular expression usecase
	Input size benchmark
	Batch size benchmark
	Measurement setup

	Results
	Accelerating the query
	RE2 acceleration
	Tidre acceleration

	Preliminary conclusion

	Dask distributed integration
	Implementation
	Architectural details
	Accelerated worker

	Experimental setup
	Cluster setup
	Input size benchmark
	Batch size benchmark
	Measurement setup

	Results
	Accelerating the query
	Tidre acceleration

	Preliminary conclusion

	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography
	Analysis of big data frameworks
	Measurement data

