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Abstract
In this paper, we revisit a well-known formulation of temperature structure parameter ( C2

T
 ), 

originally proposed by V. I. Tatarskii. We point out its limitations and propose a revised 
formulation based on turbulence variance and flux budget equations. Our formulation 
includes a novel physically-based outer length scale which can be estimated from routine 
meteorological data.

Keywords  Bolgiano scaling · Buoyancy-range · Inertial-convective-range · Optical 
turbulence · Outer length scale

1  Introduction

According to the hypothesis by Kolmogorov–Obukhov–Corrsin [KOC; 8, 17, 24] within 
the inertial-convective range, the second-order structure function ( SKOC

2�
 ) of potential tem-

perature ( � ) in the vertical direction (z) should behave as follows:

Here �z is a separation distance that varies within the inertial-convective range 
l0 ≪ 𝛥z ≪ 𝛬0 . The inner and outer scales of turbulence are denoted by l0 and �0 , respec-
tively. The angular bracket and overlines denote ensemble averaging. The dissipation rates 
of turbulence kinetic energy (TKE; e ) and variance of temperature ( �2

�
 ) are denoted by � 

and �� , respectively.
In the literature, Eq. (1) is commonly re-written as follows: 

(1)SKOC
2�

=
⟨
(��)2

⟩
=
⟨
(�(z + �z) − �(z))2

⟩
∼
(
�
)−1∕3

��(�z)
2∕3

.
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where C2

T
 is the so-called temperature structure parameter which is commonly expressed as 

[37]:

 The variable N� is simply one half of �� and has been used instead of �� in a number 
of publications (including by Tatarskii [30]). The proportionality constant c is typically 
assumed to be in the range of 2.8–3.2 [32, 34, 37].

Direct measurement of � , �� (or, N� ), and C2

T
 is difficult in the atmosphere as it involves 

computations of fine-scale velocity and temperature gradients with spatial resolutions of a few 
mm (i.e., on the order of l0 ). As a viable alternative, 50 years ago, Tatarskii [30] formulated 
the following equation:

where �  is the gradient of mean potential temperature (i.e., ��∕�z ). L0 is a characteristic 
length scale; its relationship with �0 will be discussed later. Prt is known as the turbulent 
Prandtl number. For simplicity, several studies [e.g., 4, 32, 34] in the past have (incor-
rectly) assumed Prt to be equal to unity.

According to Eq. (3), if L0 and �  can be reliably measured, estimated or prescribed, then 
C2

T
 values can be computed directly. Since it is relatively straightforward to measure or esti-

mate �  in the atmosphere, over the past decades, several studies focused on the estimation of 
L0 . Some of these studies [e.g., 11, 13, 32] proposed empirical regression equations. Others 
[1, 36] recommended usage of certain well-known length scales (e.g., Thorpe scale, Ellison 
scale) as surrogates of L0.

The purpose of the present study is two-fold. First, we revisit the derivation of Eq. (3) fol-
lowing the footsteps of Tatarskii [30]. Unfortunately, his original derivation was somewhat 
cryptic and included various implicit assumptions. We have attempted to elucidate on the deri-
vation and the assumptions to the best of our abilities. In addition, we have made a sincere 
effort to point out some fundamental limitations of Tatarskii’s assumptions in the context of 
atmospheric flows. Next, by relaxing some of these assumptions, we have derived an alterna-
tive to Eq.  (3) from fundamental budget equations of stably stratified flows. In our formu-
lation, L0 is directly related to common meteorological variables (e.g., variance of potential 
temperature) and does not require any ad-hoc prescription.

The structure of the paper is as follows. In Sect. 2, we delve into the original derivation 
of Eq. (3). Its association with turbulence scaling laws in the buoyancy-range is explored in 
Sect. 3. Our proposed formulation is documented in Sect. 4. The limitations of both Tatarskii’s 
and our proposed formulations for convective mixed layer are discussed in Sect. 5. The find-
ings of this study are summarized in Sect. 6. Finally, in Appendix 1, we derive formal relation-
ships among certain length scales.

(2a)SKOC
2�

= C2

T
(�z)2∕3,

(2b)C2

T
=
(
c

2

) (
�
)−1∕3

�� = c
(
�
)−1∕3

N� .

(3)C2

T
=

(
c

Prt

)
L
4∕3

0
� 2,
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2 � Derivation of Tatarskii’s C2

T
 formulation

Tatarskii utilized both heuristic arguments and turbulence variance budget equations for 
the derivation of Eq.  (3). They are documented in sections 14 and 15 of [30]. At the 
outset, it is important to note that these derivations do not account for the buoyancy 
effects (discussed below). However, in section  17 of [30], buoyancy effects are men-
tioned in a different context; there, Tatarskii derived a diagnostic relationship between 
L0 and �0 following a formalism by Bolgiano [6, 7] and Obukhov [25]. In this paper, 
we elaborate on all these derivations albeit with additional clarifications. Furthermore, 
we have slightly changed some of the notations used by Tatarskii to be consistent with 
the contemporary literature and also with the rest of our manuscript. For better logical 
reasoning, we have also changed the sequential ordering of equations used by Tatarskii.

2.1 � Heuristic arguments

The following text has been taken verbatim from Section 14 (page 73) of [30]:

“A gradient of mean temperatures will result in a systematic temperature differ-
ence between any two points at different heights. This temperature difference �� 
is approximately given by �� ≈ ��z , and its square is (��)2 ≈ � 2(�z)2 . There is 
also a random temperature difference between these points, whose mean square 
value is C2

T
(�z)2∕3 . For small �z , C2

T
(�z)2∕3 is much greater than the gradient term 

� 2(�z)2 (i.e., the random temperature differences are much greater than the sys-
tematic ones). There is however a certain �z0 when the two factors become com-
parable, and for 𝛥z > 𝛥z0 the mean temperature difference is greater than the ran-
dom difference. This �z0 is interpreted as the vertical mixing scale. Clearly the 
“2/3 law” is applicable only over distances �z not greater than this mixing scale. 
Therefore �z0 may be taken equal to the outer scale of turbulence.”

Essentially, Tatarskii suggested equating the inertial-range term (‘random’) with a 
larger-scale term (‘systematic’) as follows: 

 It is needless to say that Eq.  (4b) is virtually identical to Eq.  (3) as long as �z0 is pro-
portional to L0 . In a latter section of this paper, we will show that an equation similar to 
Eq. (4b) can also be derived by making use of the vertical scaling characteristics of tem-
perature and wind speed in the buoyancy-range ( 𝛥z ≫ 𝛬0).

Even though the heuristic arguments can in general provide valuable insights, in tur-
bulence research, more rigorous results can be obtained via variance and flux budget 
equations. Tatarskii [30] made great strides in this direction as discussed next.

(4a)C2

T

(
�z0

)2∕3
= � 2

(
�z0

)2
,

(4b)or, C2

T
=
(
�z0

)4∕3
� 2.
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2.2 � Turbulence variance budget equations

Tatarskii’s derivation for Eq. (3) is for a specific type of turbulent flow: uniform shear 
flow with an imposed temperature gradient. He further (implicitly) considered temper-
ature to be a passive scalar. This assumption implies that the dynamical evolution of 
temperature is driven by the velocity field; however, temperature does not modulate the 
velocity field in any manner. A direct consequence of this assumption is that the buoy-
ancy terms are neglected in the Navier-Stokes momentum and TKE equations.

In line with non-buoyant, shear flow turbulence literature, Tatarskii assumed the inverse of 
velocity shear to be a characteristic time-scale; where, velocity shear (S) is:

Here, u is the velocity component along the mean wind direction. If L0 is the characteristic 
length scale, then the velocity scale is simply: L0S . Then, the eddy viscosity coefficient 
( KM ), commonly parameterized as a product of characteristic length and velocity scales, 
can be expressed as:

This is Eq. (14.23) of [30].
Under the assumption of steady-state and horizontal homogeneity, the simplified budget 

equation for TKE ( e ) can be written as:

Here, the left hand and right hand sides of this equation represent (molecular) dissipa-
tion and shear production of turbulence, respectively. The along-wind component of the 
momentum flux is u′w′ . As mentioned earlier, owing to the passive scalar assumption, the 
buoyancy term is not included in Eq. (7). Furthermore, the terms with secondary impor-
tance (e.g., turbulent transport) are neglected.

According to the K-theory, based on the celebrated hypothesis of Boussinesq in 1877, the 
momentum flux can be approximated as follows:

By combining Eqs. (7) and (8), we get:

This is Eq. (14.21) of [30].
Similar to Eq. (7), the simplified budget equation of potential temperature variance ( �2

�
 ) can 

be written as follows:

where w′�′ denotes the sensible heat flux. Once again, by using the K-theory, we can write:

(5)S =

(
�u

�z

)
.

(6)KM = L0
(
L0S

)
= L2

0
S.

(7)� = −
(
u�w�

)
S.

(8)u�w� = −KMS.

(9)� = KMS
2.

(10)N� = −
(
w���

)
� ,

(11)w��� = −KH� .
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Here KH is the eddy-diffusivity coefficient and the ratio of KM and KH is called the turbu-
lent Prandtl number ( Prt ). By combining Eqs. (10) and (11), we get:

This is Eq. (14.20) of [30].
Now, via Eqs. (2b), (6), (9), and (12), we can deduce Eq. (3) as follows:

These equations are documented as Eqs. (14.22) and (14.24) in [30].
It is well accepted in turbulence literature that both shear and buoyancy deform the 

larger eddies more compared to the smaller ones [e.g., 3, 29]. Corrsin [9] postulated that 
the eddies smaller than LC =

(
�

S3

)1∕2

 are not affected by shear. It is important to recognize 
that Tatarskii’s length scale L0 is actually Corrsin’s length scale LC . Based on Eqs. (6) and 
(9), we can show that:

In shear flow turbulence, the eddies can be assumed to be isotropic if they are smaller 
than LC [3, 9]. However, for buoyancy-dominated flows, LC (and L0 ) may not be a relevant 
length scale. Tatarskii realized this possibility and advocated for a specific buoyancy length 
scale in Section 17 of [30]. In the following section, we discuss Tatarskii’s strategy and 
point out its limitations.

3 � Buoyancy‑range scaling

3.1 � Hypotheses of Bolgiano and Obukhov

Over the years, various scaling-based hypotheses have been proposed for the buoyancy-
range (scales larger than the inertial-range) of turbulence. One popular hypothesis was 
independently formulated by Bolgiano [6, 7] and Obukhov [25]. They (henceforth Bol-
giano–Obukhov or BO) postulated that in the buoyancy range (i.e., 𝛥z ≫ 𝛬0 ), the relevant 
variables are N� , and � ; where the buoyancy parameter ( � ) is defined as follows:

Here the gravitational acceleration is denoted by g and �0 is a reference potential tempera-
ture. Via simple dimensional analysis, BO derived the following relationship for second-
order structure function of potential temperature in the buoyancy range:

(12)N� = KH�
2 =

(
KM

Prt

)
� 2.

(13)C2

T
= c

(
KMS

2
)−1∕3(KM

Prt

)
� 2 =

(
c

Prt

)(
KM

S

)2∕3

� 2 =

(
c

Prt

)
L
4∕3

0
� 2.

(14)L0 =

(
KM

S

)1∕2

=

(
�

S3

)1∕2

= LC.

(15)� =

(
g

�0

)
.

(16)SBO
2�

∼
(
N�

)4∕5

(�)−2∕5(�z)2∕5.
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A schematic of this relationship is shown in the left panel of Fig. 1. In the right panel of 
this figure, the BO formulation for potential temperature spectra is depicted.

From the schematics in Fig. 1, it is evident that at the cross-over point between the 
inertial-convective-range and the buoyancy-range (i.e., �z = �BO

0
 ), both Eqs.  (1) and 

(16) should hold. As a result, we have: 

By algebraic manipulation, we get a length scale:

 In the literature, this specific length scale is known as the Bolgiano-Obukhov length scale. 
Tatarskii referred to this (buoyancy) length scale in Eq. (17.1) of [30].

Tatarskii [30] recognized that L0 is essentially a free parameter in his formulation 
[i.e., Eq. (3)] and should be prescribed or estimated separately. In order to circumvent 
this limitation, Tatarskii derived a formal relationship between L0 and a more phys-
ically-based length scale �BO

0
 as discussed below. Since Eq.  (7) does not include the 

buoyancy term, as a first step, Tatarskii used a revised budget equation: 

The second term on the right hand side signifies production (unstable condition) or dissipa-
tion (stably stratified condition) of TKE due to the buoyancy effects. Using the K-theory 
[refer to Eqs. (8) and (11)] and the definition of turbulent Prandtl number ( Prt ), this equa-
tion can be rewritten as follows:

(17a)
(
�
)−1∕3

N�

(
�BO

0

)2∕3
∼
(
N�

)4∕5

(�)−2∕5
(
�BO

0

)2∕5
.

(17b)�BO
0

≡

(
�
)5∕4(

N�

)−3∕4

(�)−3∕2.

(18a)� = −
(
u�w�

)
S +

(
w���

)
�.

Fig. 1   Scaling regimes of atmospheric turbulence. The left and right panels represent second-order struc-
ture function and spectra of potential temperature, respectively. The scaling hypothesis by Kolmogorov–
Obukhov–Corrsin (KOC) holds in the inertial-convective-range. However, various competing hypotheses 
exist for the buoyancy range. The scaling relationships by Bolgiano–Obukhov (BO) and Shur–Lumley (SL) 
are compared in these schematics
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 where Rig
(
= ��∕S2

)
 is the gradient Richardson number. It is a non-dimensional variable 

which quantifies the strength of atmospheric stability. Non-buoyant conditions are charac-
terized by Rig = 0.

Now, by utilizing Eqs. (12), (14), (17b), and (18b), the length scale �BO
0

 can be re-writ-
ten as: 

or,

 This is essentially Eq. (17.10) of [30].
In principle, if one can measure �BO

0
 , then L0 can be estimated via Eq.  (19b). How-

ever, direct estimation of �BO
0

 , in our atmosphere, is challenging (if not impossible) since it 
requires reliable estimates of both � and N� . Apart from this practical limitation, there are 
more fundamental issues.

In the literature, only a handful of laboratory and numerical studies of idealized flows 
[e.g., 5, 18, 23, 33] have ever documented the existence of the BO scaling. However, to the 
best of our knowledge, the observational support for this scaling hypothesis in our atmos-
phere is non-existent. Thus, the usage of �BO

0
 as an outer (cross-over) scale is questionable.

Another critical issue is the incompatibility of �BO
0

 with Eq.  (3). Using Eq.  (2b), it is 
straightforward to manipulate Eq. (17b) to arrive at:

It is needless to say that this equation is distinctively different from Eq. (3). In other words, 
Tatarskii’s strategy to couple the BO hypothesis with his own C2

T
 formulation is question-

able. However, we can make use of a different scaling formalism to resolve this inconsist-
ency as elaborated below.

3.2 � Hypotheses of Shur, Lumley, Monin, and Weinstock

In the past, several studies [e.g., 10, 15, 22, 31] have performed 1-D spectral and structure 
function analyses of vertical (potential) temperature and wind speed profiles measured by 
radiosondes and dropsondes in the atmosphere. They often reported a quasi-universal �−3

z
 

spectral scaling behavior over extended vertical ranges; where �z is the vertical wavenum-
ber. Similarly, in the physical space, the second-order structure function was found to scale 
as (�z)2 . Please refer to the schematics in Fig. 1 for a summary of various scaling regimes 
and associated hypotheses.

To explain the observed vertical scaling behaviors of (potential) temperature and 
wind speed profiles, several competing hypotheses have been proposed in the literature 

(18b)� = KM

(
S2 −

��

Prt

)
= KMS

2

(
1 −

Rig

Prt

)
,

(19a)�BO
0

=

�
KM

S

�1∕2⎡⎢⎢⎣
Pr

3∕4
t

�
1 − Rig∕Prt

�5∕4

Ri
3∕2
g

⎤⎥⎥⎦
= L0

⎡⎢⎢⎣
Pr

3∕4
t

�
1 − Rig∕Prt

�5∕4

Ri
3∕2
g

⎤⎥⎥⎦
,

(19b)L0 = �BO
0

⎡⎢⎢⎣
Ri

3∕2
g

Pr
3∕4
t

�
1 − Rig∕Prt

�5∕4
⎤⎥⎥⎦
.

(20)C2

T
=
(
N�

)4∕5

(�)−2∕5
(
�BO

0

)−4∕15
.
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[e.g., 12, 20, 21, 28, 35]. In this paper, we discuss the hypothesis of Shur [28] and Lum-
ley [20] (henceforth the SL hypothesis) because of its simplicity. Monin [21] further 
simplified the SL hypothesis by using dimensional analysis and we follow his approach. 
He assumed that, in the buoyancy-range of turbulence, � and �  are the only relevant 
variables. Then, via dimensional analysis, it is trivial to show that the second-order 
structure functions should behave as follows: 

 According to Kolmogorov’s hypothesis [17], the following relationship holds in the 
inertial-range:

By matching Eq. (21a) with Eq. (22) at the cross-over point (i.e., �z = �SL
0

 ), we get: 

 Here NBV is the so-called Brunt–Väisälä frequency. The length scale LOZ was first pro-
posed by Ozmidov [26].

In a similar manner, by matching Eq. (21b) against Eq. (2a) at �SL
0

 , one can deduce: 

Thus,

 This scaling-based equation is almost identical to Eq. (3) if L0 is proportional to LOZ and 
Prt is on the order of one.

In summary, the Bolgiano-Obukhov scaling is not in agreement with Tatarskii’s C2

T
 

formulation. Instead, in a non-rigorous manner, Tatarskii’s formulation can be deduced 
from the well-known vertical scaling characteristics of (potential) temperature and wind 
speed profiles. In the following section, we will take a completely different route. Based 
on the rigorous turbulence variance and flux budget equations, we will derive a revised 
C2

T
 formulation along with a physically-based length scale formulation. We want to 

emphasize that in contrast to Tatarskii’s approach, our formulation does not require an 
ad-hoc prescription of an outer length scale; the length scale is an integral part of our 
analytical derivations.

(21a)SSL
2u

∼ �� (�z)2,

(21b)SSL
2�

∼ �0� 2(�z)2 = � 2(�z)2.

(22)SK41
2u

∼ �2∕3(�z)2∕3.

(23a)��
(
�SL

0

)2
≡ �2∕3

(
�SL

0

)2∕3
,

(23b)or ,
(
�SL

0

)4∕3
≡

(
�2∕3

��

)
=

(
�2∕3

N2

BV

)
,

(23c)Therefore , �SL
0

≡

(
�

N3

BV

)1∕2

= LOZ .

(24a)C2

T

(
�SL

0

)2∕3
≡ � 2

(
�SL

0

)2
.

(24b)C2

T
≡

(
�SL

0

)4∕3
� 2 =

(
LOZ

)4∕3
� 2.
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4 � Revised C2

T
 formulation

In a recent study [2], we have derived closed-form solutions for a characteristic length 
scale (denoted as LX ) and turbulent Prandtl number ( Prt ) based on the conventional 
budget equations. For brevity, we only report the key findings from [2] which are 
directly relevant for the present paper. In [2], we used Eqs.  (10), (18b), and an addi-
tional budget equation for sensible heat flux to deduce:

where LX is the characteristic length scale for stably stratified flows. The standard devia-
tion of potential temperature is �� . The turbulent Prandtl number for non-buoyant flows is 
denoted by Prt0 ; it is typically assumed to be equal to 0.85. The coefficient c� is approxi-
mately equal to 2.

In [2], the dissipation rates of TKE ( e ) and variance of temperature ( �2

�
 ) are derived 

to be respectively as follows: 

and

 Here the standard deviation of vertical velocity is �w . The coefficient cw is approximately 
equal to 1.25. From Eqs. (2b), (26a), and (26b), we get:

By substituting �� from Eq. (25) to Eq. (27), we find:

This equation is identical to Eq. (3) with one important difference. Here the length scale 
LX is defined by Eq. (25), and is not a free parameter. Several well-known length scales are 
explicitly related to LX ; please refer to Appendix 1 and [2] for further details.

Earlier, we mentioned that in the atmospheric optics literature the value of Prt is 
frequently assumed to be equal to unity. However, there is ample evidence in the fluid 
dynamics and atmospheric turbulence literature that Prt monotonically increases with 
increasing values of Rig . In this context, a physically-based formulation was derived by 
[2].

(25)LX =

�√
Prt0Prt

c�

����
�

�
,

(26a)� =

(
�3
w

c3
w
LX

)
,

(26b)�� =

(
2Prt0

cwc
2

�

)(
�w�

2

�

LX

)
.

(27)C2

T
=
(
c

2

)(cwL
1∕3

X

�w

)(
2Prt0

cwc
2

�

)(
�w�

2

�

LX

)
=

(
cPrt0

c2
�

)(
�2

�

L
2∕3

X

)
.

(28)C2

T
=

(
cPrt0

c2
�

)
L
4∕3

X
� 2 =

(
c

Prt

)
L
4∕3

X
� 2.
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5 � C2

T
 in convective mixed layer

Convective (unstable) condition typically occur over land during daytime conditions. At off-
shore locations, such conditions prevail when air temperature is colder than the underlying 
sea-surface temperature. Under convective conditions, due to intense turbulent diffusion, the 
so-called ‘mixed’ layer (ML) develops a few tens of meters above the land or sea-surface. Due 
to turbulent mixing, (potential) temperature, moisture, and other meteorological variables 
become uniformly distributed in the ML. In other words, in the ML, � =

��

�z
≈ 0 . As a result, 

Tatarskii’s equation [i.e., Eq. (3)] and our proposed formulation [i.e., Eq. (28)] incorrectly pre-
dict C2

T
≈ 0 in the ML. The reasons behind this unphysical prediction are discussed below.

In the ML, large coherent structures (called thermals, plumes) are primarily responsible for 
turbulent mixing. These structures originate near the surface and can reach the top of the ML 
(on the order of a km or so) in a matter of 10 to 15 min. During their ascent, these structures 
cause ‘non-local’ mixing. As a result, turbulent fluxes are no longer proportional to the local 
mean gradients. In other words, the application of K-theory is not tenable in the ML. Hence, 
Eqs. (8) and (11) are not valid in the ML [14]. Furthermore, the simplified variance and flux 
budget equations [e.g., Eq. (18b)] are not suitable for the ML. Additional non-local transport 
terms should be included in them. Unfortunately, such modifications make these equations 
analytically intractable.

We recommend the readers to use Eq. (3) and/or Eq. (28) only for stably stratified condi-
tions. Such conditions are omni-present in the free atmosphere (i.e., the layer above the atmos-
pheric boundary layer). Also, nocturnal boundary layers over land are commonly stably strati-
fied. For convective ML, a similarity-based formulation by Kaimal et al. [16] or its variants 
could be used. On this topic, an interesting study was recently published by [19]. However, 
more research is highly desired in this arena.

6 � Concluding remarks

Fifty years ago, Tatarskii developed a simple C2

T
 formulation which has found wide usage in 

a range of scientific and engineering disciplines, from astronomy to free-space optical com-
munication. In this paper, we revisit this formulation and point out its limitations. We then 
propose a revised C2

T
 formulation based on turbulence variance and flux budget equations. In 

contrast to Tatarskii’s equation, our formulation includes a novel length scale which is phys-
ically-based. Since this length scale is simply dependent on certain variances and mean gra-
dients, it can be estimated from observational data. Such applications will be reported in a 
separate publication.

Appendix 1: Inter‑relationships of length scales

In addition to Eq. (25), two alternative definitions of LX were proposed by [2]: 

(29a)LX = cH

��w
S

�⎛⎜⎜⎜⎝
1�

1∕G − Rig∕Prt

⎞⎟⎟⎟⎠
,
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 Where the coefficient cH is approximately equal to 0.8. The term G, called a ‘growth fac-
tor’ [2, 27], represents the ratio of the production and dissipation terms of the TKE equa-
tion. For weakly/moderately stable condition, G equals to one. Under strongly stratified 
condition G is expected to be smaller than one. Basu and Holtslag [2] proposed the follow-
ing heuristic parameterization for G:

An unique relationship between LX and the Corrsin’s length scale ( LC ) can be established 
by utilizing Eqs. (14), (26a) and (29a):

When Rig → 0 , G = 1 and LX → LC.
A different relationship can be deduced between the Ozmidov length scale ( LOZ ) and LX 

via Eqs. (23a), (26a) and (29b):

For Rig ≫ 1 , if G is proportional to Ri−1
g

 , then LX → LOZ.
In summary, the length scale LX acts as a smooth interpolator between two limiting 

length scales: LC and LOZ . For this reason, it has been called a hybrid length scale.
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