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Abstract

With the proliferation of multicore platforms, the embedded systems world has
shifted more and more towards multiprocessing to make use of high comput-
ing power and increased cyber functionalities. Although today multiprocessor
platforms have been extensively adopted by real-time embedded systems, there
exists a need for tools and techniques that can accurately assess the temporal
correctness of a system. In terms of multiprocessor systems, this is coupled with
fundamental challenges, since these systems, as we find them today, make use
of complex hardware components, resource sharing and memory architectures,
which negatively affect the timing predictability of such systems. Spin-based
locking protocols, which are used to ensure mutual exclusion when sharing re-
sources in a system, and a non-preemptive execution model have been found
to help mitigate the adverse effect on the timing predictability, since they al-
low for less interruptions, which results in reduced cache evictions and a better
estimate of worst-case execution times. While this improves the overall timing
predictability of such systems, to date, there exists no response-time analysis
that can analyze multiprocessor systems that globally execute non-preemptive
tasks sharing resources protected by spin locks.

Motivated by the lack of analysis tools for systems that consider non-preemptive
global scheduling and the access to shared resources, this work provides the first
analysis for global job-level fixed-priority (JLFP) scheduling policies and FIFO-
or priority-ordered spin locks. To do so, it extends the family of schedule-
abstraction-based analysis to model the access to shared resources in a highly
accurate manner. The proposed analysis computes response-time bounds for
a set of resource-sharing jobs subject to release jitter and execution-time un-
certainties by implicitly exploring all possible execution scenarios using state-
abstraction and state-pruning techniques. A large-scale empirical evaluation of
the proposed analysis shows it to be substantially less pessimistic than simple
execution-time inflation methods (i.e., a straightforward extension of existing
response-time analysis tools for non-preemptive tasks that do not share re-
sources), thanks to the explicit modeling of contention for shared resources and
a scenario-aware blocking analysis.
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Chapter 1

Introduction

Over the past decade, multicore processing platforms have been extensively
adopted by the real-time embedded systems industry in order to provide high
computing power and deliver more cyber functionalities than ever before. These
platforms allow a parallel execution of applications, which improves their re-
sponse time while reducing the power consumption of the system. For example,
in the automotive industry multicore processing platforms have been adopted
for more than six years already [33].

For such multicore platforms, we use multiprocessor scheduling to coordinate
how the workload is distributed over the available cores. We generally differen-
tiate between three approaches namely global scheduling, partitioned scheduling
and hybrid scheduling. In this work we focus on global scheduling, which is
known to have a more efficient utilization of the platform resources [28]. Global
scheduling is more flexible compared to the alternatives and can adapt better
to dynamic changes (e.g. varying execution times), which are not rare in real
applications found in the industry.

Generally, the industry deals with critical and complex applications that are
divided into several components, which share data between each other. Hence,
an essential capability provided by virtually all multitasking real-time operat-
ing systems (or runtime environments) is the ability to share data, software or
hardware resources without compromising functional correctness (e.g., avoiding
race conditions). In real-time systems, this is usually done by using locking
protocols. Essentially, there are two types of locking protocols for this pur-
pose: suspension-based and spin-based protocols. Using suspension-based locks,
an executing system functionality (a.k.a a task) self-suspends when it is not
granted access to the resource, meaning that it yields the processor making it
available for other tasks to execute on. Spin-based locks, on the other hand,
allow the task to spin (busy-wait) on the core and to keep it occupied until
the task is granted the access to the resource. Each approach offers different
trade-offs. Conceptually, suspension can be more efficient, since tasks yield the
processor, instead of busy-waiting (spinning), such that the core can be util-
ized for useful computation of another task. However, suspension comes with
increased analysis complexity, for example, it is notoriously difficult to pre-
dict cache contents after suspensions and usually it is pessimistically assumed
that any suspension results in a complete loss of cache affinity. On the other
hand, spinning is relatively simple to implement and analyze, requires virtually
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no OS support and incurs significantly lower runtime overheads (compared to
suspension-based locking protocols) [11]. This means that if the code section of
a task that requires to access a shared resource (a.k.a the critical section) is rel-
atively short, the cost of suspending and resuming the task can easily outweigh
the cost of busy-waiting. This makes spinning more efficient and an attractive
choice when critical sections are short, which they ideally are in well designed
multiprocessor systems, in order to prevent significant delays when tasks share
resources between each other. Throughout this thesis, we will focus on systems
in which spin locks are used to enforce mutual exclusion.

Common multiprocessor systems, as we find them today, use complex inter-
connected hardware and multi-level caches to ensure a high performance [4].
However, this has been proven to negatively affect the predictability of the sys-
tem, due to an increased interference coming from the access to shared hardware
resources. An effective approach to make the hardware platform more predict-
able is by utilizing a non-preemptive execution model. A non-preemptive ex-
ecution model forbids that any instance of a task (a.k.a a job) is preempted
(interrupted), which eliminates job migration overheads and avoids that cache
contents regarding an unfinished job are lost due to the execution of a different
job on the core (intra-core cache interference). Essentially, this allows for a more
accurate estimation of the worst-case execution time (WCET), which improves
the overall timing predictability of the application.

Timing predictability is a significant requirement for real-time safety-critical
applications, i.e., in such systems, the worst-case response time of the task must
be bounded despite uncertainties that may happen in the system at runtime. To
ensure timing predictability, a real-time system typically undergoes a response-
time analysis, whose goal is to determine whether or not the worst-case response
time (WCRT) of a workload complies with its timing constraints.

While the literature provides ample analyses of both, suspension- and spin-
based approaches for globally scheduled preemptive tasks (e.g., see a recent
survey [11]), to the best of our knowledge there exists no response-time analysis
for globally scheduled non-preemptive tasks that share resources protected by
spin locks.

1.1 Research Question

Despite favorable timing analysis properties that come with a non-preemptive
execution model and spin-based locking protocols (i.e., less interruptions, less
cache evictions, better worst-case execution time estimates), to date, no ana-
lysis has been proposed in the literature that addresses the problem of analyzing
workloads that share resources protected by spin locks and that are sched-
uled on a multicore platform using a global non-preemptive scheduler.

Motivated by this lack of analysis tools for such systems, our work deals with
the following key research question:

How to find highly accurate upper (and lower) bounds on the worst-case (and
best-case) response time of jobs scheduled by a global non-preemptive scheduling
policy upon multiprocessor platforms where the access to shared resources is
managed by first-in first-out (FIFO)- or priority-ordered spin locks?
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1.2 Solution Approach and Contributions

In this work, we propose a new sufficient response-time analysis for periodic
tasks and other workloads with a repeating pattern of job releases (such as
periodic, burtsy or multi-frame tasks) based on the notion of schedule abstrac-
tion, a concept initially introduced by Nasri et al. [31–33]. However, whereas
Nasri et al.’s prior analyses do not consider locking-induced delays, we assume—
and model in detail—that tasks coordinate mutually exclusive access to shared
resources by means of FIFO- or priority-ordered spin locks. Our analysis is gen-
eric in nature and covers all work-conserving (i.e., no core is left idle if there is
a pending job that is waiting to be executed) global non-preemptive job-level
fixed-priority (JLFP) scheduling policies. JLFP policies are a wide range of
scheduling policies, in which each job has a fixed priority and the scheduler
always executes the highest priority jobs first. They include well-known policies
such as earliest deadline first (EDF) and fixed-priority (FP) scheduling.

Our proposed analysis implicitly explores all possible orders of job start times
as well as their accesses to shared resources in a schedule-abstraction graph [31–
33]. The efficiency (in terms of runtime and memory footprint) and accuracy of
this exploration depends on the level of abstraction used to encode the system
states and the input tasks. Hence, to design an efficient and scalable analysis, we
propose a completely new system-state abstraction that models shared resource
accesses by means of FIFO- or priority-ordered spin locks in a highly accurate
manner. This new system state representation requires to design (and a proof
of soundness of) a whole new set of expansion and merging rules, which are
used to build the schedule-abstraction graph. Ultimately, our analysis yields
a safe worst-case response time bound for each job that reflects the worst-case
blocking possible.

The proposed analysis has shown significant accuracy gains compared to the
state of the art and has been competitive with (or even superior to) solutions
designed for preemptive systems (see Section 6.3). Furthermore, our work has
highlighted the pessimism that we find in currently existing blocking analyses
and has shown that using a schedule-abstraction graph is a promising approach
to mitigate this pessimism.

Finally, we present two extensions for our work. The first covers partial order
reduction techniques to smartly prune the schedule-abstraction graph in order
to delay a state space explosion and improve the scalability of the analysis.
Lastly, the analysis has been extended by making it compatible with multi-unit
resources and k-exclusion locking protocols (see Section 7.2), which is motivated
by the fact that in real-time systems it is common to find multiple similar units
of a resource which are handled by k-exclusion locking protocols.

1.3 Summary of Achievements

The key idea of a schedule-abstraction-based response-time analysis considering
the access to shared resources protected by FIFO-ordered spin locks, as intro-
duced in this master thesis, has been presented at the workshop for sCalable
And PrecIse Timing AnaLysis for multicore platforms (CAPITAL) in Brussels,
Belgium in February 2020.

Furthermore, a paper has been written covering the response-time analysis
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considering FIFO-ordered spin locks and has been submitted to the Real-Time
Systems Symposium (RTSS), the premier conference in the field of real-time
systems. Since this paper did not comprise all the contributions presented
in this thesis, it is planned to write a second paper based on the remaining
contributions, namely the response-time analysis considering priority-ordered
spin locks as well as the extensions considering k-exclusion protocols and partial
order reduction techniques. It is planned to submit these to the next possible
conference or as a journal paper.

1.4 Thesis Organization

In Chapter 2, we introduce the necessary background and concepts needed to be
able to follow this research and the design of the analysis. Chapter 3 provides
an overview of the closest related work to our research topic. In Chapter 4,
the system model and the problem are defined and all underlying assumptions
are stated. Subsequently, Chapter 5 proposes our schedulability analysis. Here,
we introduce all the notions and definitions related to the schedule-abstraction
graph. Furthermore, the generation of the graph is explained by describing
sound expansion and merge rules in detail. Towards the end of Chapter 5, we
prove the correctness of the analysis. In Chapter 6 we showcase an empirical
evaluation of the work. We extend our work in Chapter 7 by considering multi-
unit resources and we introduce partial order reduction techniques to reduce
the number of system states that are explored during the analysis. Finally, we
draw our conclusion and provide an insight into the future work in Chapter 8.
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Chapter 2

Background

This chapter provides a description of the general concepts that will be used
throughout this thesis. However, it does not define the problem, assumptions,
or the system model. These will be discussed in Chapter 4.

2.1 Definitions

In this work we consider real-time systems. A real-time system is a system whose
correctness depends not only on the correctness of logical results, but also on
the time at which these results are produced [14]. We find such systems as
part of many applications for example in fields like the automotive, industrial
automation, medical or aircraft industry. In the following, we will introduce
some of the common terms and explain the concepts behind them.

2.1.1 Tasks and Jobs

In real-time systems, a task is defined as a process that represents one of the
system functionalities. For a system to operate correctly such tasks need to be
processed by considering that no timing requirements are violated. To know
if this condition is met, each instance of a task (a.k.a a job) has a number of
properties. Each job has a release time, that defines the time at which it becomes
available for execution in the system. Furthermore, a job has a computation
load, called execution time, which tells how much time is needed to process
it. Another property is the deadline, which specifies the time by which the
processing of the job should be finished in order to ensure temporal correctness.
A job can also have additional properties for example a priority that decides
how important it is. Finally, real world systems usually deal with a collection
of many tasks and jobs, which is called task set [14].

The concept of a task can be visualized in the example shown in Fig. 2.1. In
the example, we see a task, called Task 1, that releases three jobs. A new job
of the task is released regularly every 4 time units, which means that the period
of the task is 4. Furthermore, we see that the deadlines of any job aligns with
the release of the next job. We call these implicit deadlines. Every job needs
to finish its workload before the next instance of the task is released. In this
example every job has an execution time of 2 time units.
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Task 1:
0               2 4               6               8             10  

First Job 
Release

Second Job 
Release &
First Job 
Deadline

Third Job 
Release &
Second Job 
Deadline

Job Executions

Time

Figure 2.1: Example of a task.

2.1.2 Scheduler and Execution Model

In real-time systems, the entity that decides when and where a job can start
executing or needs to be interrupted is called the scheduler. Schedulers make
these decisions by following scheduling policies. These policies decide which of
the released jobs is chosen to execute next considering the underlying execu-
tion model. In terms of execution models, we mainly differentiate between a
preemptive, a non-preemptive and a limited-preemptive model. A preemptive
execution model allows the scheduler to interrupt a running process on a core
and schedule a different job while the current job has not completed its execu-
tion yet. If we consider a non-preemptive execution, a job that has started to
execute on a core will certainly run to completion without being interrupted by
the scheduler. Finally, there exists the limited-preemptive model, which, as the
name implies, allows preemptions by the scheduler only at (usually predeter-
mined) specific points in the execution of a job or when the job has executed
for at least a minimum amount of time [14].

2.2 Global Multiprocessor Scheduling

In global scheduling, we consider one ready queue which accommodates all jobs
of every task that have arrived to the system and that can start to execute (ready
jobs). Jobs are scheduled according to a global scheduler during runtime, which
considers all available cores. Global scheduling allows for migration between the
cores, meaning that tasks are not limited to execute on preassigned cores, but
can use the full set of available processors to execute their workload. Hence,
there is no task-to-core binding (usually known as core affinity) and jobs that
have started running on a specific processor can even finish their execution on a
different core if the system is preemptive. A global scheduler for multiprocessors
picks the m-highest priority jobs and schedules them on the m available cores [2].
Then, each dispatched job starts to execute on the core it was dispatched to.
The concept of global scheduling can be visualised in Fig. 2.2.

2.2.1 Global Job-Level Fixed-Priority Scheduling

Job-level fixed-priority scheduling covers a wide range of scheduling policies in
which each job has a fixed priority. This includes policies such as earliest dead-
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Figure 2.2: Example of global scheduling.
[2]

line first (EDF) and fixed-priority (FP) scheduling, which are among the most
widely implemented policies in real-time operating systems. At any decision
point, a global JLFP scheduler picks the m-highest priority jobs and dispatches
them to execute next on the m-available processors.

In fixed-priority scheduling, priorities are usually assigned following a priority
assignment method. Common methods are rate monotonic (RM) and deadline
monotonic (DM). In rate monotonic, priorities are assigned according to the
period of the task, where a smaller period equates to a higher priority.

On the other hand, deadline monotonic assigns priorities according to relative
deadlines, where an earlier deadline leads to a higher priority. If we deal with
implicit deadlines, meaning that the relative deadline is equal to the period, RM
and DM fixed-priority scheduling produce the same schedule.

While fixed-priority scheduling is a task-level fixed-priority scheduler, earliest
deadline first is a task-level dynamic-priority scheduling policy. This means that
different jobs of the same task can have different priorities. EDF scheduling
assigns higher priorities to the jobs with an earlier absolute deadline.

As discussed next, one can use schedulability analyses to check whether a
system respects its timing constraints under a given scheduling policy.

2.3 Schedulability Analysis

A schedulability analysis for real-time systems is an analysis that checks whether
a given workload respects its timing constraints under any valid execution scen-
ario that may happen in the system at runtime. If the analysis finds that the
timing constraints are met, we say the workload is schedulable. If we predict
that a job deadline may be missed, the workload is deemed non-schedulable.

Schedulability analyses are of great importance as they help us predict the
worst-case timing behavior of a system, which allows us to confirm the temporal
requirements of an application. As real-time systems handle critical and some-
times even vital tasks, it is of utmost importance to be able to understand and
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predict the behavior of the application and to ensure a correct working. There-
fore, a schedulability analysis is conducted at design time (offline), because it
is typically required by the certification authorities in the process of certifying
the system.

Generally we can categorize any schedulability analysis into one of the follow-
ing three types: exact, necessary or sufficient analysis.

If an exact schedulability analysis accepts the task set, the task set is certainly
schedulable by the underlying policy. If a task set is rejected by an exact test,
the task set is certainly not schedulable by the given algorithm. Therefore, an
exact analysis can explicitly identify if a workload fulfills its timing requirements
or not.

On the other hand, if a necessary test accepts a task set, the workload is
not necessarily schedulable under the underlying policy. However, if a task set
does not pass a necessary test, we are certain that it is not schedulable. As the
name implies, the necessary test does not provide us with information about
schedulable workloads, because it does not safely identify them. It is essentially
used to detect which task sets are not schedulable.

Finally, we have sufficient analyses. Task sets that pass a sufficient test are
certainly schedulable under the given scheduling policy. However, if a work-
load does not pass the analysis it is not necessarily unschedulable. Therefore,
sufficient analyses do not provide us with information about certainly non-
schedulable task sets, but are used to safely identify workloads that meet their
timing requirements.

Scheduling workloads can be affected by many factors, which need to be
accounted for by an accurate schedulability analysis. An example of such a
factor is the access to shared resources, which can introduce additional delays
that might lead to timing requirements not being met. In the following we will
dive deeper into shared resources and related design choices that can affect the
schedulability of a workload.

2.4 Shared Resources

A shared resource is a resource that is used by two or more tasks. Such a
resource can be software (e.g., data structure or a set of global variables) but
it can also be hardware (e.g., a timer or a display unit). Resources that do not
allow for concurrent accesses need to be protected to ensure mutual exclusion
and a correct working of the application. Shared resources are protected using
so-called locks, which means that a job has to acquire a lock first, in order to use
the resource. The workload of a job that is executed under mutual exclusion
when utilizing a shared resource is called critical section. The use of shared
resources in a system comes with several design choices. These choices will be
discussed further in the following.

First, a serialization order has to be specified, meaning that rules have to
be defined that determine, which job is allowed to access the resource next in
case two or more requests are simultaneously issued (conflicting requests). The
most common design choices are a FIFO queue and a priority queue. While
a FIFO queue focuses on fairness (i.e., the access of lower-priority jobs is not
continuously delayed with the arrival of higher-priority jobs), a priority queue
allows control over the amount of blocking experienced by higher-priority jobs
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because of lower-priority ones [11].
Another important design choice is how to handle the waiting of a job in

case of contention. Here we differentiate between two techniques: spinning and
suspending. Spinning, also known as busy-waiting, describes the process that if
a job is blocked due to a resource being used, the job continues to occupy its
assigned core and waits until it is granted the access to the resource. Suspending
on the other hand, removes the blocked job from the core making the processor
available to other jobs. The blocked job has to wait until it is granted the
access to the resource. While suspension seems more efficient because it allows
cores to execute relevant workload instead of busy-waiting on a resource, it
can be less efficient than spinning if the cost of suspending and resuming a
job outweighs the cost of busy-waiting, which occurs when the critical section
is short. Furthermore, suspension requires more OS support and is relatively
harder to implement and analyze [11].

Another major design choice is the progress mechanism, which describes the
way a lock-holding job executes its critical section. If a lock-holding job is
allowed to be preempted by higher-priority jobs (preemptable locks), we deal
with the (potential) problem of unbounded delays, which must be avoided in
real-time systems. Therefore, there are so called progress mechanisms that
(partially) force the execution of a lock-holding job. For example, this can be
achieved by boosting a job’s priority when it enters its critical section or by
making the execution non-preemptive altogether [11].

Support for nesting is another design choice when working with shared re-
sources on multiprocessors. It describes whether the system allows a job to
acquire multiple locks in a nested manner. This can be a considerable source of
increased complexity from both an implementation and analysis point of view.
Specifically, there is the risk of running into a deadlock situation, hence it be-
comes extremely difficult to accurately analyze such systems efficiently [11].

The final design choice that we discuss related to shared resources is where a
job executes its critical section once it has acquired the protecting lock. Here
we usually differentiate between an in place and a centralized critical section
execution. An in place execution describes the principle that a job executes its
critical section as part of its normal execution on the assigned core. A cent-
ralized critical section execution describes the method that all critical sections
related to a particular resource are executed on an a priori chosen synchron-
ization processor. While an in place execution is the natural choice for spin
locks, a centralized critical section execution can provide analytical benefits
when dealing with suspension-based locks [11].
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Chapter 3

Related Work

In the following, we divide the first half of the related work into two broad
categories, namely spinning-based analyses and suspension-based analyses. In
the second half, we present the state of the art regarding schedule-abstraction-
based analyses, since our work extends specifically this family of analyses to
accurately model the access to shared resources.

3.1 Spinning-Based Analyses

Spin locks distinguish themselves from suspension-based locks by allowing jobs
to spin on a core while waiting on a resource instead of voluntarily yielding it.
This means that there are no additional context switches when using spin-based
locks.

The following gives an overview of spinning-based analyses that can be found
in the literature for both global and partitioned scheduling [11].

3.1.1 Global Scheduling

In this section, we look at works that have considered spin locks under global
scheduling. In [24–26], Holman and Anderson present one of the early works
on spin-based real-time locking protocols under global scheduling. They intro-
duce two protocols (skip protocol and rollback protocol) that focus on FIFO
spin locks in systems using optimal proportional fair (Pfair) schedulers, which
is a quantum-based scheduler. This means that there exists a system quantum
and at each multiple of this quantum, tasks are regularly rescheduled. In their
study, Holman and Anderson introduce and address the important distinction
between long and short shared resources. A shared resource is considered to be
short, if all critical sections related to the resource are ”relatively” short. A re-
source is considered long if there exists a critical section that is ”relatively” long.
The exact threshold that determines if a resource is considered short or long
is application- and system-specific. Holman and Anderson’s works distinguish
long and short resources by relating the critical sections to the length of the
system quantum. Finally, for both their protocols, they have designed blocking
analyses. However, nowadays Pfair scheduling is not widely found in practice,
as it induces a lot of overhead (due to frequent synchronization that leads to
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many context switches) that result in a relatively poor performance compared
to other algorithms.

Later, Devi et al. [18] and Chang et al. [15] have studied spin locks under
more common scheduling policies, namely global preemptive EDF and global
preemptive FP considering FIFO-ordered spin locks.

Finally in [7], Block et al. have introduced the Flexible Multiprocessor Lock-
ing Protocol (FMLP), which is a family of protocols that covers different sched-
ulers and critical section lengths. Similar to Holman and Anderson, FMLP
adopts a distinction between short and long shared resources. In addition, it
is compatible with both global and partitioned scheduling and for each of the
combinations, there exists an analysis that considers a specific variant of the
protocol. For long resources, FMLP adopts semaphores which will be discussed
in Section 3.2. In terms of global scheduling and short resources, FMLP relies
on Devi et al.’s analysis [18]. However, a more accurate analysis considering
FMLP with short resources has been provided by Brandenburg’s holistic ana-
lysis [8], which considers FIFO spin locks. In fact, this analysis is compatible
with global and partitioned scheduling and relies on execution-time inflation. As
the name implies, it ”inflates” a tasks execution time, meaning a task’s worst
case execution time becomes the sum of its original worst case execution time
and the maximum blocking time on the resource due to other task(s) that re-
quest(s) the same resource. The analysis has been found to provide an improved
performance compared to prior analyses of spin locks [8].

Summing up, while prior works have studied the problem of analyzing the
schedulability of systems using spin locks under global scheduling, their focus,
so far, has been on preemptive scheduling. The most interesting analysis (in
terms of performance) provided in this section is Brandeburg’s holistic analysis
of FMLP with short resources and will therefore be considered further in our
empirical evaluation in Chapter 6.

3.1.2 Partitioned Scheduling

An early blocking analysis has been presented by Gai et al. [22], which uses the,
now classic, Multiprocessor Stack Resource Policy (MSRP). MSRP is a policy for
partitioned scheduling, which is compatible with both fixed priority and earliest
deadline first scheduling. It differentiates between local and global resources,
where local resources are resources that are only accessed by tasks on a specific
core and global resources can be accessed by any task in the system. These global
resources are protected by non-preemptive FIFO spin locks and in fact, Gai et
al.’s work was the first to leverage non-preemptive FIFO spin locks by providing
a sound protocol and introduce a corresponding schedulability analysis [11]. The
analysis is also compatible with both fixed priority and earliest deadline first
schedulers and relies on execution-time inflation (as discussed in Section 3.1.1).
While this analysis is simple in nature, it also introduces pessimism. A major
source of this pessimism is that the analysis considers that every critical section
that contributes to the blocking has the length of the longest critical section
regarding the particular resource. Clearly, this is pessimistic for shared resources
that allow multiple operations with various costs and therefore this analysis
would overestimate the final blocking bound.

To reduce this pessimism Brandenburg [8] designed a holistic blocking ana-
lysis (as discussed in Section 3.1.1) for MSRP by deriving per-task blocking
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bounds, which prevent considering the same long critical sections multiple times.
However, the analysis still overestimates bounds when multiple tasks that are
assigned to the same core request the same global resource. As the analysis
always considers the maximum blocking that can occur on a core, the longest
critical section will be considered in multiple inflated worst case execution times,
which is not possible and therefore introduces pessimism.

To counter the pessimism found in inflation-based solutions, Wieder and
Brandenburg [39] introduced a Mixed Integer Linear Programming (MILP)-
based analysis for spin locks under partitioned fixed priority scheduling. This
work models direct blocking by solving an MILP optimization problem. Later,
the work has been extended by Biondi and Brandenburg [5] to support parti-
tioned earliest deadline first scheduling.

In summary, the scientific literature has studied the schedulability of systems
that use spin locks. However, these prior work focus on partitioned scheduling
and mostly consider preemptive systems.

3.2 Suspension-Based Analyses

In the following, we discuss existing suspension-based analyses for both global
and partitioned scheduling [11]. For each of these sections we differentiate
between suspension-oblivious and suspension-aware analyses. Suspension-oblivious
analyses are relatively simpler and model self-suspension as inflated execution
times (processor demand). Suspension-aware solutions, on the other hand, aim
to explicitly model self-suspension (yielding the processor) to bound potential
blocking as tight as possible and to reduce pessimism. As before we look at
analyses designed for global and partitioned scheduling.

3.2.1 Global Scheduling

For long resources under global scheduling, Block et al. [7] provide one of the
earliest analyses that uses a variant of the FMLP and a simple FIFO queue
to investigate systems using semaphores in a suspension-oblivious fashion. The
analysis aims for simplicity and therefore does not take specific shared resource
request patterns into account. Furthermore, there is another family of protocols
which is compatible with global and partitioned scheduling, namely the Optimal
Locking Protocol (OMLP) [13]. In contrast to FMLP, OMLP ensures a tighter
bound on the blocking by using a hybrid queue instead of FMLP’s simple FIFO
queue. The hybrid queue consists of a bounded FIFO segment of length m
(number of cores in the system) and a priority-ordered tail which leads into
the FIFO segment. For global OMLP, a suspension-oblivious analysis [12] that
considers execution-time inflation has been introduced to accurately model and
bound blocking.

In terms of suspension-aware analyses, Yang et al. [41] have presented an
analysis under global fixed priority scheduling, which makes use of Block et al’s
FMLP [7] variant for long resources. The analysis finds a safe response-time
bound by making use of a linear programming (LP) approach. Essentially it
solves a linear optimization problem to rule out impossible scenarios. To identify
these impossible scenarios, a number of constraints are applied that are invari-
ant to the underlying locking protocol and a global fixed priority scheduler.
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In the same paper, they have also presented an analysis (again based on lin-
ear programming) considering Easwaran and Andersson’s Priority Inheritance
Protocol (PIP) [38]. The priority inheritance protocol boosts the priority of a
lock-holding task by considering the maximum of its own base priority and any
priority of a task that is waiting to acquire the lock. Yang et al.’s survey [41] has
shown that the long FMLP and the PIP analyses are incomparable in terms of
performance and preference should be given based on the workload. When the
workload requires fairness, FMLP’s FIFO queue would perform slightly better
than PIP. On the other hand, if we deal with real-time workloads that need pri-
oritization of urgent jobs, PIP’s priority-ordered wait queues would be of more
advantage. Finally, yang et al.’s analyses of the long FMLP and the PIP also
introduce a source of pessimism. The analyses assume discrete time and while
this is a safe relaxation (safe bounds are estimated), the actual response-time
bound can be over-approximated [41].

Summing up, the scientific literature has studied the analysis of workloads
that share resources under global scheduling. However, these works focus on
suspension-based locks and a preemptive execution model. The most interesting
work (in terms of performance) is given by the inflation based analysis for global
OMLP and yang et al.’s LP-based analysis for long FMLP and PIP. Hence, we
will consider these analyses in our empirical evaluation in Chapter 6.

3.2.2 Partitioned Scheduling

To date, various prior work for multiprocessor synchronization is found consid-
ering real-time suspension-based protocols for partitioned scheduling. Block et
al’s FMLP [7] for long resources is one of the early protocols that also supported
the analysis of systems using semaphores in a suspension-oblivious fashion. Fur-
thermore, a variant of the OMLP, called partitioned OMLP, has been presented
in [12], which was able to restrict the maximum delay more accurately com-
pared to the previous FMLP. Fined-grained analyses of the partitioned OMLP
are available in [8,13].

In terms of suspension-aware analyses, early work includes Rajkumar’s Multi-
processor Priority Ceiling Protocol (MPCP) [36,37] for partitioned fixed priority
scheduling. While the classic MPCP uses a priority queue, Lortz and Shin have
found in their work [29] that by using a FIFO queue instead, a significant im-
provement in schedulability can be achieved. Considering the various flavors of
MPCP, several blocking analyses have been introduced in [9,27,35,37]. To date,
the most accurate analysis of the MPCP is given in [9] which uses a linear pro-
gramming approach to accurately model critical sections. Block et al.’s family of
FMLP also includes a variant for partitioned scheduling [7]. Later, it has been
refined and a partitioned FMLP+ has been introduced in [8]. In comparison to
prior semaphore protocols, partitioned FMLP+ allows for a tighter and more
accurate bound on the blocking. Several blocking analyses considering FMLP+
have been presented in [8–10] where the LP-based approach [9] provided the
most promising results. The LP-based analysis has been extended by Ma et al.
and presented in [30] to increase the accuracy even further.

Finally, the literature studies schedulability analyses considering shared re-
sources, but the focus lies on partitioned scheduling and suspension-based locks.
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3.3 Schedule-Abstraction-Based Analysis

Generally, in terms of schedulability analyses, there are essentially three frame-
works that have been introduced until today. The first family covers closed-form
analyses which are classic sufficient analyses that are based on the standard
response-time analysis paradigm. Although these tests are usually fast, they
introduce a lot of pessimism and are hard to extend.

The second family covers exact solutions that are based on model checkers
or constrained programming such as Uppaal. Although these tests are highly
accurate and are in fact easy to extend, they severly fail in terms of scalability
[40].

The lack of scalability and the amount of pessimism that has been intro-
duced by these previous frameworks, question the utility of such tests in in-
dustrial settings. Hence, another family has been introduced which represents
the third framework. It covers response-time analyses that explore all possible
schedules by utilizing a schedule-abstraction graph [31–33]. To date, three main
works have been published on schedule-abstraction-based analyses. The first
one [31] is an exact analysis for uniprocessor systems. It considers independent
non-preemptive jobs that are scheduled under a work-conserving or non-work-
conserving job-level fixed-priority scheduling policy. Nasri et al.’s second work
on schedule-abstraction-based analyses is an extension to the previous work and
designed for multiprocessor systems. Unlike the previous exact analysis [31],
this work [32] provides a sufficient analysis, due to the increased complexity
that comes with investigating multiprocessor systems. Furthermore, it con-
siders independent non-preemptive jobs and a global work-conserving job-level
fixed-priority scheduler. Finally, the work from [32] has been extended to also
account for directed acyclic graph (DAG) tasks with precedence constraints and
has been presented in [33]. Interestingly, while [33] resembles [32] in terms of sys-
tem assumptions, Nasri et al. have proposed a significantly different approach.
In [33] a novel system state representation has been introduced, which reduces
the number of states, delays a state-space explosion and essentially improves
scalability.

In terms of analyzing multiprocessor systems, the work presnted in [33] per-
forms very well and provides a reasonable trade-off solution in terms of run time
and accuracy. However, it is based on the assumption that any delays regarding
shared resources are accounted by the WCET provided to the system, which
simplifies the problem. Therefore, the analysis ignores the existing timing prob-
lem related to shared resource accesses, making the solution less representative
of real systems we find in the industry.

3.4 Summary

In summary, currently we are not aware of any prior response-time analysis with
a comparable level of accuracy in the accounting of synchronization delays for
systems that consider global non-preemptive scheduling and shared resources
protected by spin locks. In fact, somewhat surprisingly, we found that there is
hardly any directly related prior work according to a recent survey of Branden-
burg on multiprocessor real-time locking protocols and related analyses [11].
While spin locks have long been recognized to have favorable properties for
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worst-case timing analysis [3,5–8,15,16,18,22,24,39] (e.g. protecting the state
of core and cache and incuring relatively low runtime overhead), prior work in
this space has focused on either preemptive global scheduling [3,7,8,15,18,24] or
partitioned scheduling [5–8,22,39].

In the context of preemptive global scheduling, the most relevant locking
protocols and blocking analyses are Brandenburg’s holistic blocking analysis of
non-preemptive FIFO spin locks [8] as used in Block et al.’s FMLP for short
critical sections [7] as well as the suspension-based global OMLP [12] and Yang
et al.’s LP-based analysis of FMLP for long critical sections [7,41], and PIP [19,
38,41]. We compare against each of these in our evaluation (Chapter 6).

For a review of real-time locking in general, we refer the reader to Branden-
burg’s comprehensive survey of the area [11].
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Chapter 4

System Model and Problem
Definition

We consider a work-conserving global JLFP scheduling policy to schedule a set
of non-preemptive tasks on a multicore platform with m identical cores. Each
task releases jobs according to a specific pattern (e.g., periodic, rate-based or
bursty), and each job has a fixed priority. The JLFP scheduler dispatches ready
jobs in order of decreasing priority.

4.1 Workload Model

A job Ji = ([rmin
i , rmax

i ], di, pi, 〈Ji,1, . . . , Ji,ni
〉) is defined by an earliest release

time rmin
i , a latest release time rmax

i , an absolute deadline di, and a priority
pi. We assume that timing parameters are discrete, i.e., integer multiples of a
clock tick.

A job’s execution is modeled by its sequence of job segments 〈Ji,1, . . . , Ji,ni〉,
where Ji,1 and Ji,ni are its first and last segment, respectively. Each job seg-
ment Ji,j is identified by Ji,j = ([Cmin

i,j , Cmax
i,j ], ηi,j , [L

min
i,j , Lmax

i,j ]), where Cmin
i,j

is the best-case execution time (BCET), Cmax
i,j is the worst-case execution time

(WCET), ηi,j is the set of resources that the segment requests, and Lmin
i,j and

Lmax
i,j are the minimum and maximum length of the critical section associ-

ated with ηi,j , respectively. We obviously must have that Lmin
i,j ≤ Cmin

i,j and
Lmax
i,j ≤ Cmax

i,j since the critical section length is part of the execution time of
the segment. In this work, we assume that each segment Ji,j can access at most
one resource protected by a lock (i.e., |ηi,j | is equal to 0 or 1). Without any loss
of generality, we further assume that the critical section of a segment is located
at the beginning of the segment. That is, the segment must first be granted the
lock protecting the shared resource in ηi,j (if any) to start executing.

All segments of a job inherit the job priority. For ease of notation, we use
hp(Ji,j) to refer to the set of segments with a higher priority than Ji,j . We
assume that ties in priority are broken arbitrarily but consistently.

Each job must execute sequentially (on one core) with run-to-completion se-
mantics, but may compete for shared resources with other jobs running in par-
allel on other cores. We do not consider inter-job precedence constraints in
this paper.
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4.2 Shared Resources

We let L denote the set of shared resources protected by locks. A shared resource
`x ∈ L is available if and only if no job is currently accessing it. When a job
segment Ji,j is given access to a resource, we say that the resource is granted
to Ji,j . A segment Ji,j cannot start executing until the resource `x ∈ ηi,j (if
any) is granted to Ji,j . Resource `x will be released as soon as the segment’s
critical section completes (i.e., within [Lmin

i,j , Lmax
i,j ] time units after the resource

was granted). If a segment Ji,j requests access to a resource `x that is already
granted to another job, we say that Ji is blocked on `x. The job Ji busy-waits
(i.e., spins) until it is granted `x.

In this work, we cover both FIFO- and priority-ordered spin locks, i.e., re-
sources are either granted in the order in which requests arrive or they are
granted to the job with the highest priority. Under FIFO-ordered spin locks,
if two jobs request the same resource at the exact same time, we assume that
the tie is broken arbitrarily but consistently (e.g., in our experiments, ties are
broken in favor of lower job IDs). Same holds if two or more jobs have the same
priority under priority-ordered spin locks.

4.3 Execution Model

A job is ready at time t if it has been released and has not yet started executing.
Due to the non-preemptive execution model, a job must run to completion
without preemption once it has started execution. Thus, once the first segment
Ji,1 of a job Ji begins its execution on a core, the core is exclusively serving Ji
until Ji completes its execution, including during any blocking delays. We say
that a job Ji has claimed a core if it started executing and has not finished yet.
Upon completion we say that Ji releases the core, making it again available to
other jobs. Hence, a core is either claimed (busy executing a job) or free for a
new job to start execution.

Given the finish time fi and the release time ri of Ji, we compute the response
time of the job as fi − ri.

4.4 Problem Definition

We seek to bound the worst-case response time of each member of a finite set
of non-preemptive jobs J that can access shared resources. The job set J is
the set of all jobs released in an a priori computed observation window. The
input job set in the observation window must be a representative workload for
the system, namely, either because the observation window is long enough to
capture the whole workload (e.g., in batch scheduling), or because the release
patterns of the jobs in the observation window repeats for the rest of the lifetime
of the system so that it is sufficient to only analyze one instance. For example,
the observation window of synchronous periodic task sets with implicit deadlines
that exhibit no deadline misses is one hyperperiod (i.e., the least integer multiple
of the periods); further safe observation windows for various types of periodic
(or multi-frame) task models can be found in [23,31,34].

Our analysis deems a job set J schedulable only if no execution scenario of
J (Definition 1 below) leads to some job exhibiting a response time exceeding
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its deadline.

Definition 1. An execution scenario γ is a mapping of jobs to release times,
segment execution times, and critical-section lengths such that ∀Ji,∈ J , ri ∈
[rmin

i , rmax
i ] and ∀j, 1 ≤ j ≤ ni, Ci,j ∈ [Cmin

i,j , Cmax
i,j ] and Li,j ∈ [Lmin

i,j , Lmax
i,j ].
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Chapter 5

Schedulability Analysis

The proposed schedulability analysis builds a schedule-abstraction graph (SAG) [31]
to implicitly explore all possible execution scenarios of a job set. In this section,
we define our notion of a resource-aware SAG and explain its construction and
use in bounding each job’s worst-case response time.

5.1 Schedule-Abstraction Graph

A SAG is a directed acyclic graph G = (V,E), where V indicates the set of
(abstract) states reachable by the system and E represents the set of scheduling
decisions leading from one (abstract) system state to another. An edge e =
(vp, vq, Ji,j) from vp to vq with label Ji,j indicates that executing Ji,j in state vp
evolves the system to state vq. We say that a job segment Ji,j starts executing
next in state vp (or succeeds vp) if there exists an outgoing edge from vp with
label Ji,j .

By convention [31], state v1 represents the initial state of the system at time
zero, where every core is idle and no segment has started executing yet. A
path P from v1 to a state vp represents a possible job-segment start order that
results in system state vp. The length of such a path P indicates the number
of segments that have started (and potentially already finished) their execution
when the system reaches state vp, i.e., |P | , |JP |, where JP denotes the set
of labels on the edges of path P . If a vertex vp has multiple incoming edges,
then the scheduling decisions that lead to vp must involve the same set of job
segments on any two paths from v1 to vp.

Property 1. (adapted from [33]) For any two paths P and Q, if both P and Q
start at v1 and end in vp, then JP = JQ.

5.2 System State Representation

As previously stated, we consider that jobs can be subject to release jitter
and that there can be variations in the execution times of its segments. As
a consequence of this uncertainty, we must compute a finish time interval
[EFT i,j ,LFT i,j ] for each segment Ji,j of a job Ji after a sequence of scheduling
decisions taken by the scheduler. This interval is bounded by the job segment’s
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earliest and latest finish times EFT i,j and LFT i,j in any execution scenario
that complies with the assumed sequence of scheduling decisions. Thus, we say
that a job segment Ji,j of job Ji can possibly finish at or after EFT i,j and is
certainly finished at LFT i,j . This uncertainty in the finish times of segments
introduces a challenge as it also means that we have uncertainty in processor
and shared-resource availability times, which then affect the finish time intervals
of subsequent job segments.

To address this challenge, we develop a new abstraction to encode information
about the system state. In each vertex vp, the system state abstraction records
the availability of the cores and shared resources for any execution scenario that
complies with the sequence of scheduling decisions modeled by the edges on the
paths leading to vp.

As discussed in Section 4.3, a core is either free to execute a ready job or
claimed by a job that was previously dispatched by the scheduler, i.e., a job
has started executing on the core and not all of its segments have finished
executing yet. Thus, let C(vp) denote the set of jobs that claimed a core (where
|C(vp)| ≤ m). A system state is then modeled as follows:

• Claimed-core availability intervals. For each job Ji ∈ C(vp), we
record the interval [Clmin

i (vp),Clmax
i (vp)] where Clmin

i (vp) and Clmax
i (vp)

indicate when the core claimed by job Ji becomes possibly and certainly
available to execute the next segment of Ji, respectively.

• Free-core availability intervals. We recordm−|C(vp)| intervalsAx(vp) =
[Amin

x (vp), Amax
x (vp)] such that 1 ≤ x ≤ m− |C(vp)| indicating when one,

two, three, . . . , m− |C(vp)| cores become possibly and certainly available
to execute ready jobs.

• Shared-resource availability intervals. For each shared resource `x ∈
L, a state records the interval [SRmin

x (vp), SRmax
x (vp)] where SRmin

x (vp)
and SRmax

x (vp) denote the times at which `x become possibly and certainly
available to be accessed by a new job segment, respectively.

For ease of reference, we also introduce the two notations SRmin
i,j (vp) and

SRmax
i,j (vp) to refer to the availability interval of the resource requested by seg-

ment Ji,j (if any). Hence, if Ji,j requests a shared resource (i.e., ∃`x ∈ ηi,j),
then SRmin

i,j (vp) and SRmax
i,j (vp) are the earliest and latest availability time

SRmin
x (vp) and SRmax

x (vp) of the resource `x requested by Ji,j . If Ji,j does not
request a resource, then simply SRmin

i,j (vp) = SRmax
i,j (vp) = 0.

Example. Fig. 5.1 shows how an abstract state vp in the SAG evolves into a
new state vq when a ready job segment Jk,2 is scheduled. On the left, we show
the status of the cores before and after scheduling Jk,2. The right side shows
the contents of the abstract state vp and how it evolves after scheduling Jk,2.

Since Ji has only one segment, its start time defines its finish time interval
and thus the time at which Core 1 may become available for ready jobs (between
times 4 and 8). Thus, vp records that one core is free for a ready job to execute
within the interval [4, 8] (i.e., A1(vp) = [4, 8]). State vp also records that one
core is claimed by job Jk whose first segment Jk,1 will potentially and certainly
complete by time 3 (i.e., Clk = [3, 3]). Moreover, since none of the two segments
executing in vp access a shared resource, the shared resource `1 is certainly
available from time 0 (i.e., SR1 = [0, 0]).
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Figure 5.1: Evolving a state vp to vq.
Two successive system states for m = 2 and two jobs Ji (with one segment) and Jk
(with two segments) released at time 0. Only the second segment of Jk requests a

shared resource `1 with a critical section length Lk,2 ∈ [2, 3]. The execution times of

the segments are Ci,1 ∈ [4, 8], Ck,1 ∈ [3, 3] and Ck,2 ∈ [3, 4].

Prior to executing Jk,2, the lock protecting its required shared resource must
be acquired. Since the shared resource is available, the resource is granted to
Jk,2 as soon as the core already claimed by job Jk becomes available, i.e., at
time 3. Since Jk,2’s critical section has a variable execution time, it may release
the lock any time in the interval [5, 6]. This is recorded in the state vq with
the interval SR1 = [5, 6]. Moreover, since Jk,2 is the last segment of its job,
as soon as it finishes, Core 2 is released and becomes available for other jobs.
Hence, in state vq, no core is claimed anymore. Since the execution time of Jk,2
ranges from 3 to 4 time units, the core claimed by Jk,2 will become available
in the interval [6, 7]. This means that one core becomes possibly available at
time 4 (Core 1), one core is certainly available at time 7 (Core 2), two cores
are possibly available at time 6, and two cores are certainly available at time 8.
Thus, vq records the availability intervals A1(vq) = [4, 7] and A2(vq) = [6, 8].

5.3 Schedule-Abstraction Graph Generation

The SAG is built iteratively. Each iteration comprises two phases, namely the
expansion phase and the merge phase. In the expansion phase, (one of) the
shortest path(s) P in the graph is picked and expanded for every job segment
that can possibly start executing next in the state vp at the end of P . Our model
considers a JLFP scheduling policy, but we expand the schedule abstraction
graph on a segment level. To recreate the behavior of a JLFP scheduler, in
every state, we choose the highest priority ready segment (i.e., segment-level
fixed priority) that can start executing at the given time. For every such job
segment Ji,j , we create a new vertex v′p in the graph, which represents a new
system state and is connected to vp via a directed edge labeled with Ji,j . The
information encoded in the new state v′p contains an updated version of the free
cores, claimed cores and shared-resource availability intervals reflecting that Ji,j
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Algorithm 1: Construction of the SAG for job set J .

Inputs : Job set J
Output: Bounds on the BCRT and WCRT of every job in J

1 ∀J ∈ J ,BRi ←∞,WRi ← 0 ;
2 Initialize G by adding v1 = ({[0, 0], ..., [0, 0]}, {[0, 0], ..., [0, 0]}) ;
3 while ∃ path P from v1 to a leaf vertex such that P 6= J do
4 P ← the shortest path from v1 to a leaf vertex vp ;

5 RP ← set of potentially ready segments obtained with Eq. (5.1);

6 for each segment Ji,j ∈ RP do
7 if Ji,j can start executing after vp (Theorem 1 or 2) then
8 Build v ′

p using Algorithm 2;

9 if Ji,j = Ji,ni then
10 BRi ← min{EFT (v ′

p)− rmin
i ,BRi} ;

11 WRi ← max{LFT (v ′
p)− rmax

i ,WRi} ;

12 end
13 Connect vp to v ′

p with an edge labeled Ji,j ;

14 if ∃ path Q that ends in vq such that Rule 1 is satisfied for v ′
p and vq

then
15 Merge v ′

p and vq in vz using Eq. (5.21)-(5.23);

16 Redirect all incoming edges of vq and v ′
p to vz ;

17 Remove vq and v ′
p from G;

18 end

19 end

20 end

21 end

has now started to execute.

After the graph has been expanded with new states, the merge phase com-
mences. The purpose of the merge phase is to slow down the growth of the
graph, to postpone a potential state space explosion for as long as possible.
This is achieved by merging any two “similar” states that terminate paths with
identical sets of job segments. To preserve soundness, every system state that
is reachable from any of the two original states must also be reachable from the
merged state, which ensures that no possible execution scenario is discarded.

The exploration completes when no vertex remains to be expanded, i.e., all job
segments have been included on every path. At this point, each path represents
a set of valid execution scenarios and every possible schedule has been explored.

The complete SAG construction procedure is given in Algorithm 1. Note
that it uses two variables (WRi and BRi) for each job in J to keep track of
its worst-case (WCRT) and best-case response time (BCRT) on any path in
the graph. Those bounds are updated (lines 10–11) whenever the last segment
of a job is scheduled on a path, hence indicating the completion of that job in
that execution scenario. If, by the end of the exploration, no job has a WCRT
exceeding its deadline, then the analysis deems the job set schedulable.

5.4 Expansion Phase

We now consider the expansion and merge phases and show how a path ending
in state vp is expanded to a new state vq.
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5.4.1 Overview

First, we build a set of potentially ready job segments in state vp, i.e., the
segments that have not started executing on path P and for which all preceding
segments have started and potentially completed. For each such segment Ji,j ,
we compute the earliest and latest time EST i,j(vp) and LST i,j(vp) at which
the segment can start executing in vp. That is, EST i,j(vp) denotes the earliest
time at which a global work-conserving JLFP scheduler would allow Ji,j to start
in vp. Similarly, LST i,j(vp) indicates the latest time at which Ji,j must have
certainly started executing if it is the next segment to succeed vp. If Ji,j has not
started by LST i,j(vp), a different segment must have started to execute after
vp. Hence, a segment is said to be eligible to be a successor of vp only if its
earliest start time EST i,j(vp) is no later than its latest start time LST i,j(vp).
For each eligible job segment, a new vertex v′p is added to the graph, where v′p
encodes the system state after Ji,j started executing. In addition to deciding
whether a job segment is eligible to start executing after state vp, EST i,j(vp)
and LST i,j(vp) also help compute the earliest and latest finish times EFT i,j(vp)
and LFT i,j(vp) of Ji,j .

Next, each step of the expansion phase is explained in detail.

5.4.2 Set of Potentially Ready Job Segments

We consider that a job segment is ready if the job has been released and all its
preceding segments have completed. Thus, we define the set of potentially ready
segments RP for path P to be the set of segments that have not yet started
to execute (i.e., Ji,j 6∈ J P) and whose predecessor (if any) has already started
and potentially completed its execution (i.e., either Ji,j is the first segment of
its job Ji, thereby meaning j = 1, or Ji,j−1 ⊆ J P).

RP , {Ji,j | Ji,j 6∈ J P ∧ (j = 1 ∨ Ji,j−1 ⊆ J P)} (5.1)

5.4.3 Earliest Start Time

Since we consider that jobs may suffer from release jitter and execution-time
variation the exact finishing times of preceding job segments cannot be known.
Therefore, the exact time at which a segment Ji,j may start to execute is also
unknown. For each segment Ji,j in RP , we prove a lower bound EST i,j(vp) and
an upper bound LST i,j(vp) on the time at which Ji,j may start executing in vp
(Equations (5.2) and (5.10), respectively).

EST i,j(vp) =


∞ if j = 1 ∧ |C(vp)| = m

max{rmin
i , Amin

1 (vp), SRmin
i,j (vp)} if j = 1 ∧ |C(vp)| < m

max{Clmin
i (vp), SRmin

i,j (vp)} if j > 1

(5.2)

Lemma 1. Segment Ji,j ∈ RP cannot start executing (as a successor of state
vp) before EST i,j(vp).

Proof. The first segment Ji,1 of a job Ji can start its execution only if (i) it is
released, (ii) the shared resource `x it requests (if any) is available and (iii) a
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core is available. Thus, if all cores have already been claimed by other jobs (i.e.,
|C(vp)| = m|) then Ji,1 cannot be a successor of vp and EST i,j(vp) =∞. This
proves the first case of Eq. (5.2).

However, if there is a free core (i.e., |C(vp)| < m|), then, by definition, Amin
1

is the earliest time at which a core can potentially become available. Fur-
thermore, rmin

i is the earliest release time of Ji and SRmin
i,j (vp) is the earli-

est time at which the shared resource accessed by Ji,j may become avail-
able. Thus, the earliest time at which Ji,1 may start to execute is given by
EST i,j(vp) = max{rmin

i , Amin
1 (vp), SRmin

i,j (vp)} if j = 1. This proves the
second case of Eq. (5.2).

Any segment that is not the first segment of a job (i.e., a segment Ji,j with
j > 1) can start its execution only if (i) the core claimed by the preceding
segments belonging to the same job is available, and (ii) the shared resource
it requests (if any) is also available. Since Ji,j is in RP , all the segments of Ji

that precede Ji,j must have started (and potentially finished) executing on the
core claimed by Ji. Thus, the earliest time at which the core claimed by Ji may
become available for Ji,j is given by Clmin

i (vp). Therefore, the earliest time at
which Ji,j may start to execute is max{Clmin

i (vp), SRmin
i,j (vp)} if j > 1. This

proves the last case of Eq. (5.2).

5.4.4 Latest Start Time

The latest start time LST i,j(vp) of segment Ji,j is computed considering that
the scheduler is (i) work-conserving and (ii) that it follows a non-preemptive
JLFP scheduling policy.

First, focus on (i). By definition, a work-conserving scheduler must execute
a segment as soon as the segment is certainly ready and a core is certainly free.
We can thus prove the following two lemmas and their corollary.

Lemma 2. An upper bound on the time at which a segment Jy,z can certainly
start executing (as a successor of state vp) is given by

twy,z =


∞ if z = 1 ∧ |C(vp)| = m;

max{rmax
y , Amax

1 , SRmax
y,z (vp)} if z = 1 ∧ |C(vp)| < m;

max{Clmax
y (vp), SRmax

y,z (vp)} if z > 1.

(5.3)

Proof. Infinity is an obvious upper bound on the start time of Jy,z. Therefore,
in this proof, we only focus on the cases where twy,z 6=∞.

A starting segment Jy,1 must start to execute as soon as (i) it is released, (ii)
the resource `x it requests (if any) is available and (iii) a core is available. By
definition, rmax

y is an upper bound on the release time of Jy,1, SRmax
y,z (vp) is an

upper bound on the availability time of the shared resource accessed by Jy,z (if
any) and Amax

1 (vp) denotes the time at which a core is certainly available in state
vp. Thus, Jy,1 can certainly start executing at max{rmax

y , Amax
1 , SRmax

y,1 (vp)}
when z = 1 and there is at least one free core in vp.

Any segment Jy,z that is not the first segment of Jy,z (i.e., with z > 1) can
certainly start executing when (i) the resource it requests (if any) is available,
and (ii) the segments of Jy that precede Jy,z have all completed their execution
on the core claimed by Jy . Since Jy,z is in RP , all the segments of Jy preceding
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Figure 5.2: Computing twc.
Determining twc by comparing the different tw’s in a system with 2 cores (m = 2) and

three jobs Ji (with one segment), Jk (with one segment) and Jy (with two segments).

The relevant properties of the jobs are given as follows: Jy has a release time of

ry ∈ [0, 0], while Ji is released within ri ∈ [1, 5] and Jk arrives to the system in the

interval of rk ∈ [2, 3]. The first segment of Jy has an execution time of Cy,1 ∈ [2, 4]

and therefore a core is claimed in vp for that period. We assume that none of the jobs

request shared resources. We further assume equal priorities between the jobs, i.e.,

py = pi = pk.

Jy,z have already started (and potentially finished) executing on the core claimed
by Jy , and because Clmax

y (vp) is an upper bound on the time at which the core
claimed by Jy becomes available to execute the next segment of Jy, we have
that Jy,z certainly starts at max{Clmax

y (vp), SRmax
y,z (vp)} when z > 1.

Lemma 3. A work-conserving scheduler will start executing a job segment no
later than 1

twc = min
∞
{twy,z | Jy,z ∈ RP } (5.4)

Proof. By Lemma 2, a job segment Jy,z ∈ RP is certainly ready to start ex-
ecuting at time twy,z. Thus there is at least one job segment that is ready to
execute at min∞{twy,z | Jy,z ∈ RP }. Thus, twc is an upper-bound on the time
at which a work-conserving scheduler will start executing a job segment.

Corollary 1. A segment Ji,j ∈ RP cannot be a direct successor of a state vp if
it starts executing any later than twc.

Proof. Since the scheduler will certainly allow a job segment to execute by time
twc , Ji,j must start executing at or before twc if it is the segment to succeed
vp .

Example 1. Fig. 5.2 shows a system state vp, where one of the three considered
jobs (Jy) has claimed core 1 and started executing its workload. In this example,
we consider the scenario in which Ji,1 succeeds state vp, i.e., it is the next
segment to start executing after vp. In order to calculate the latest start time

1min
∞
{X} = min{X ∪ {∞}} where X is a set of positive values.
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(LST) of Jy,1, we first need to determine the time at which the scheduler will
certainly allow a segment to start executing due to work conservation (twc).
Ji’s latest release time is at time 5, however we can see that Jy,2 and Jk,1 are
certainly ready before that time. This means that in order for Ji,1 to evolve
state vp to vq by being the next segment on the path, it cannot start later than
the earliest time at which a segment of a different job is certainly ready and
a core is available to execute it. We investigate the other job segments and
we see that by time 4, Jy,1 has certainly finished executing, meaning that Jy,2
will certainly be ready to start its workload. Furthermore, Jk’s latest release
(rmax

k ) is at time 3, which means that the scheduler will certainly dispatch Jk
at that time. Hence, it is not possible for Ji,1 to start executing next at time 5
(rmax

i ) in vp, because Jy,2 and Jk,1 would have certainly started by time 4 and
3 respectively. Therefore, if we consider the path P where Ji,1 succeeds system
state vp, the latest time at which Ji,1 can start to execute is twc = 3, because
by time 3 we are certain that Jk,1 will start its execution if Ji,1 did not.

Now that we covered work conservation, we consider the impact of the JLFP
scheduling policy. In the following we derive the time thigh at which a considered
segment Ji,j is certainly not the highest-priority segment anymore in state vp.
This means that Ji,j cannot be a successor in state vp, if it has not started
executing before thigh. The actual value of thigh depends on the specific resource
access policy (FIFO- or priority-ordered) used by the spin-locking protocol.
Thus, we first discuss how to compute it for FIFO-ordered spin locks, and then
for priority-ordered ones.

FIFO-Ordered Spin Locks

First, assume that two segments Ji,j and Jy,z request the same resource. Since
a FIFO spin lock provides access to the shared resource based on the order in
which requests were made, the order in which those segments will start executing
does not depend on their priority. Therefore, the JLFP scheduling policy does
not impact the start time of segments that share the same resource. Then, let
H denote the set of segments with a higher priority than Ji,j that do not share
a resource with Ji,j , i.e., H = {Jy,z | Jy,z ∈ {RP ∩ hp(Ji,j)} ∧ ηy,z ∩ ηi,j = ∅}.
Let tFIFO

high be an upper-bound on the time at which a considered segment Ji,j
is certainly not the highest-priority segment in state vp anymore. For FIFO-
ordered spin locks, this means that any segment in H will certainly be ready
to execute at tFIFO

high . We prove (Lemmas 4 and 5) that tFIFO
high can be computed

with Eq. (5.5).

tFIFO
high = min

∞
{thFIFO

y,z (Ji,j) | Jy,z ∈ H} (5.5)

where

thFIFO
y,z (Ji,j) =


max{rmax

y , SRmax
y,z (vp)} if z = j = 1

max{Amax
1 (vp), rmax

y , SRmax
y,z (vp)} if z = 1 ∧ j > 1

max{Clmax
y (vp), SRmax

y,z (vp)} if z > 1

(5.6)

Lemma 4. Let Jy,z be a segment in H . If Ji,j did not start to execute before
thFIFO

y,z (Ji,j), then Jy,z will start before Ji,j.
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Proof. We analyze the three cases of Eq. (5.6).
Case 1. Assume that both Ji,j and Jy,z are the first segment of their respective
job (i.e., j = z = 1). For a starting segment to be able to execute, it needs to
be (1) released, (2) the resource it requests (if it requests one) must be available
and (3) a core must be available for it to execute on. By definition, rmax

y is
an upper bound on (1) and SRmax

y,z (vp) is an upper bound on (2). Regarding
(3), we note that because Jy,1 and Ji,1 are both starting segments, they both
compete for the same available cores. Since Jy,1 has a higher priority than Ji,j ,
if both Jy,1 and Ji,j are ready and have their shared resources available at the
same time, then Jy,1 will certainly start before Ji,j . Therefore, only (1) and (2)
decide whether Jy,1 will start to execute before Ji,j . Thus, if Ji,j did not start
before max{rmax

y , SRmax
y,z (vp)} when z = j = 1, then Jy,1 will be dispatched

before Ji,j .
If Ji,j is not a starting segment (i.e., j > 1), then it already has a reserved

core. Therefore, it does not compete with Jy,z for the same core (i.e., we must
account for (3)).
Case 2. If Jy,z is the first segment of the higher priority job Jy, then, by
definition, Amax

1 (vp) is a safe upper bound on (3). Thus, because Jy,z has
higher priority than Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start
to execute before max{Amax

1 (vp), rmax
y , SRmax

y,z (vp)} when z = 1 ∧ j > 1.
Case 3. If Jy,z is not the first segment of the higher priority job Jy, then
job Jy is already released and it already claimed a core. Thus, by definition,
Clmax

y (vp) is an upper bound on (3). Hence, as Jy,z has higher priority than
Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start to execute before
max{Clmax

y (vp), SRmax
y,z (vp)} when z > 1.

Lemma 5. A segment Ji,j ∈ RP cannot be the direct successor of a state vp if
it starts executing later than tFIFO

high − 1, in a system using FIFO-ordered spin
locks.

Proof. According to Lemma 4, ∀Jy,z ∈ H , Jy,z will start before Ji,j if Ji,j
did not start before thFIFO

y,z (Ji,j). Then, Ji,j will not be the next segment to
succeed vp , if Ji,j did not start before any segment Jy,z becomes certainly ready
to execute i.e., min∞{thFIFO

y,z (Ji,j) | Jy,z ∈ H}.

Example 2. Fig. 5.3 shows a system state vp, where two of the three considered
jobs (Jy and Ji) have claimed cores and started executing their workload. In
this example, we consider the scenario where Ji,2 succeeds state vp, i.e., it is the
next segment to start executing after vp. In addition to the work conserving
behavior of the scheduler, we need to determine the earliest time at which a
higher priority segment is certainly ready to execute (tFIFO

high ), because we are
sure that by that time, Ji,2 cannot be the next segment to start after state
vp. We investigate the two higher priority jobs in the system (Jy and Jk) and
we see that Jk is certainly released at time 6 and Jy’s claimed core becomes
certainly available for Jy,2 at time 4. Hence, the higher priority segments Jk,1
and Jy,2 will certainly start to execute at time 6 and 4 respectively. In vp, the
core claimed by Ji becomes available for our considered job segment Ji,2 in the
interval of [3, 5]. While this interval represents a possible start time for Ji,2
when we only consider Jk,1 (since Jk,1 could start at time 6), we see that it is
impossible for Ji,2 to start at time 5 if we also take into account Jy,2. In fact,
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Figure 5.3: Computing tFIFO
high for FIFO-ordered spin locks.

Determining tFIFO
high by comparing the different thFIFO

y,z (Ji,j)’s in a system with 3 cores

(m = 3) and three jobs Ji (with two segments), Jk (with one segment) and Jy (with

two segments). The relevant properties for this example are given as follows: Jy has a

release time of ry ∈ [0, 0], while Ji is released at ri ∈ [1, 1] and Jk arrives to the system

in the interval of rk ∈ [2, 6]. The first segments of Jy and Ji have an execution time of

Cy,1 ∈ [2, 4] and Ci,1 ∈ [3, 5] respectively. A core for each of these two jobs is claimed

in vp since they consist of multiple segments. We assume that both jobs Jy and Jk
have a higher priority than Ji, i.e., py < pi and pk < pi. We further assume that no

shared resource availability affects the starting of the considered job segments.

considering the scenario where Ji,2 is the next segment to start executing after
vp, Ji,2 must start prior to time 4, because at that point in time Jy,2 becomes
certainly ready to execute. Recalling that a JLFP scheduler always starts to
execute the highest priority ready segment first, Ji,2 cannot succeed vp if it has
not started prior to time tFIFO

high = 4, since by that time, Ji,2 is no longer the
highest priority ready segment in the system.

Priority-Ordered Spin Locks

For priority-ordered spin locks, the equation to compute tpriohigh differs from the
solution we have just presented for FIFO-based spin locks. Here, a higher prior-
ity segment Jy,z can in fact impact the execution of another segment Ji,j even

when they share the same resource. Lemmas 6 and 7 prove that tpriohigh can be
computed as in Eq. (5.7) if a priority-based locking protocol is used.

tpriohigh = min
∞
{thprioy,z (Ji,j) | Jy,z ∈ {RP ∩ hp(Ji,j)}} (5.7)

where

thprioy,z (Ji,j) =


max{rmax

y , tr} if z = j = 1

max{Amax
1 (vp), rmax

y , tr} if z = 1 ∧ j > 1

max{Clmax
y (vp), tr} if z > 1

(5.8)
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with

tr =

{
SRmax

y,z (vp) if ηy,z 6= ηi,j

0 otherwise.
(5.9)

Lemma 6. Let Jy,z ∈ {RP ∩ hp(Ji,j)} be a segment that has a higher pri-
ority than the considered segment Ji,j. If Ji,j did not start to execute before
thprioy,z (Ji,j), then Jy,z will start before Ji,j.

Proof. We analyze the three cases of Eq. (5.8).

Case 1. Assume that both Ji,j and Jy,z are the first segment of their respective
job (i.e., j = z = 1). For a starting segment to be able to execute, it needs to
be (1) released, (2) the resource it requests (if it requests one) must be available
and (3) a core must be available for it to execute on. By definition, rmax

y is
an upper bound on (1) and SRmax

y,z (vp) is an upper bound on (2). Regarding
(3), we note that because Jy,1 and Ji,1 are both starting segments, they both
compete for the same available cores. Since Jy,1 has a higher priority than Ji,1,
if both Jy,1 and Ji,1 are ready and have their shared resources available at the
same time, then Jy,1 will certainly start before Ji,1. Therefore, only (1) and (2)
decide whether Jy,1 will start to execute before Ji,1. Similarly, we only consider
tr = SRmax

y,z (vp) in (2) if Jy,z does not request the same resource as Ji,j (i.e.,
ηy,z 6= ηi,j), because otherwise it would mean that they compete for the same
resource in which case Jy,1 will certainly start before Ji,1, due to its higher
priority, if they are both ready and a core is available. If they do share the
same resource or any of the segments is resource-independent, we simply ignore
(2) (i.e., set tr = 0). Thus, if Ji,j did not start before max{rmax

y , tr} when
z = j = 1, then Jy,z will be dispatched before Ji,j .

If Ji,j is not a starting segment (i.e., j > 1), then it already has a reserved
core. Therefore, it does not compete with Jy,z for the same core (i.e., we must
account for (3)).

Case 2. If Jy,z is the first segment of the higher priority job Jy, then, by
definition, Amax

1 (vp) is a safe upper bound on (3). Thus, because Jy,z has
higher priority than Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start
to execute before max{Amax

1 (vp), rmax
y , tr} when z = 1 ∧ j > 1.

Case 3. If Jy,z is not the first segment of the higher priority job Jy, then
job Jy is already released and it already claimed a core. Thus, by definition,
Clmax

y (vp) is an upper bound on (3). Hence, as Jy,z has a higher priority than
Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start to execute before
max{Clmax

y (vp), tr} when z > 1.

Lemma 7. A segment Ji,j ∈ RP cannot be the direct successor of a state vp if

it starts executing later than tpriohigh − 1, in a system using priority-ordered spin
locks.

Proof. According to Lemma 6, ∀Jy,z ∈ {RP ∩ hp(Ji,j)}, Jy,z will start before
Ji,j if Ji,j did not start before thprioy,z (Ji,j). Then, Ji,j will not be the next

segment to succeed vp if Ji,j did not start before min∞{thprioy,z (Ji,j) | Jy,z ∈
{RP ∩ hp(Ji,j)}}.
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Figure 5.4: Computing tpriohigh for priority-ordered spin locks.

Determining tpriohigh in state vp by comparing the different thprio
y,z (Ji,j)’s in a system with

3 cores (m = 3) and three jobs Ji (with two segments), Jk (with one segment) and

Jy (with two segments). All the jobs are released at time 0 (ry = rk = ri ∈ [0, 0]).

Jy,1 has an execution time of Cy,1 ∈ [3, 5] and occupies core 1 for that period in vp.

Similarly, Jk,1 executes on core 2 in the interval of Ck,1 ∈ [4, 6] with Lk,1 ∈ [4, 6].

Jk,1 accesses resource 1 (`1). Ji,1, which is the predecessor of our considered segment

(Ji,2), occupies core 3 for Ci,1 ∈ [1, 2]. Both remaining segments (Jy,2 and Ji,2) request

resource 1 (`1) and are therefore dependent on its availability. We assume that both

jobs Jy and Jk have a higher priority than Ji, i.e., py < pi and pk < pi.

Example 3. Fig. 5.4 shows a system state vp, where all three cores are occupied
by the three jobs in the system. In this example, we consider the scenario where
Ji,2 succeeds state vp, i.e., it is the next segment to start executing after vp.
In contrast to the example shown in Fig. 5.3, due to the priority queue, we
must also consider higher priority jobs that access the same resource as Ji,2
when computing tpriohigh. First, we note that Jk,1 keeps the resource `1 in use
and releases it between time 4 and 6. Considering the remaining segments, Ji,2
becomes certainly ready by time 2, while Jy,2 can start executing between time
3 and 5. Using a FIFO queue, we would be certain that Ji,2 will definitely have
access granted to the resource next, since its latest request time is still earlier
than Jy,2’s earliest request time. This means that in this example, Jy,2 would
not affect the start time of Ji,2 considering we have a FIFO queue. However, as
we deal with a priority queue, as soon as Jy,2 becomes ready while Ji,2 has not
started to execute yet, the resource will be granted to Jy,2. Since Jy,2 becomes

certainly ready at time 5, Ji,2 must execute prior to tpriohigh = 5, otherwise it will
certainly not be the highest ready segment anymore to be granted the resource
and to succeed state vp.

Considering both computations of thigh (tFIFO
high for FIFO-ordered spin locks

and tpriohigh for priority-ordered spin locks), it directly follows that an upper bound
on the start time of Ji,j can be computed according to Lemma 8.

Lemma 8. A segment Ji,j ∈ RP can be the first segment to start executing in
state vp only if it starts no later than

LST i,j = min{twc , thigh − 1} (5.10)
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Figure 5.5: Computing ESTi,j and LSTi,j.

Proof. Since LST i,j ≤ twc (by Cor. 1) and LST i,j ≤ thigh − 1 (by Lemma 5 and

Lemma 7), where thigh = tFIFO
high or thigh = tpriohigh depending on whether FIFO-

or priority-ordered spin locks are used, the claim holds.

Example 4. Fig. 5.5 considers a state vp in a system with two cores (m = 2)
and three jobs (Jk, Ji and Jy). For this example we assume that shared resources
are protected using priority-ordered spin locks. Job Jk has the highest priority
and consists of one segment (Jk,1), which requests shared resource `1. Job
Ji has a medium priority and also consist of one segment (Ji,1), which is our
considered successor in this example. We assume that Ji,1 also requests the
shared resource `1. Finally, Job Jy has the lowest priority and comprises two
segments (which do not access `1) out of which the first one (Jy,1) has already
started executing in state vp. Hence, Jy has a claimed core which becomes
possibly available at time 9 and certainly available at time 14. Furthermore,
one core becomes available between time 8 and 13 for any new job. The lock
protecting the shared resource `1 is released between time 12 and 17. Ji is
potentially released at time 7 and the earliest time at which a core becomes
possibly available is at Amin

1 = 8. However, since Ji,1 accesses `1, it needs to
wait until the resource is possibly available which happens at SRmin

i,1 = 12 at the
earliest. Therefore, ESTi,1 = 12 marks the earliest time at which all necessary
conditions (job is released and core and shared resource are available) are met.
The higher priority job Jk is certainly released by time 16, meaning that Ji
must start to execute prior to thigh = 16. Furthermore, by work conservation,
Jy,2 will certainly start executing by time 14, which means that Ji,1 must not
start later than twc = 14, otherwise it cannot be the successor in state vp. Since
twc < thigh − 1, LSTi,1 = 14 is bounded by twc.

5.4.5 Eligibility Condition

Priority-Ordered Spin Locks

Now that we computed a lower bound EST i,j(vp) on the earliest start time and
an upper bound LST i,j(vp) on the latest start time of Ji,j in state vp, it is rather

31



obvious that Ji,j can be a successor to vp only if

EST i,j(vp) ≤ LST i,j(vp). (5.11)

Theorem 1. A segment Ji,j is a direct successor of vp only if EST i,j(vp) <∞
and Inequality (5.11) holds.

Proof. According to Eq. (5.2), if EST i,j(vp) =∞ then Ji,j is the first segment
of job Ji and no free core is available to start to execute Ji,j (i.e., every core is
claimed by an unfinished job). Since we assume a non-preemptive system, the
scheduler cannot dispatch Ji,j on a core in vp. Further, from Lemma 1, we know
that EST i,j(vp) is a lower bound on the earliest time at which Ji,j can start
executing in vp. From Lemma 8, we have that LST i,j(vp) is an upper bound
on the time at which Ji,j can start executing in vp. Hence, if EST i,j > LST i,j ,
it creates a contradiction, thereby meaning that Ji,j cannot start to execute in
vp and thus cannot be a successor to vp.

FIFO-Ordered Spin Locks

While systems using priority-ordered locks only need to consider Eq. (5.11) as
an eligibility condition, systems using FIFO spin locks need to fulfill a second
condition.

Consider the case where two segments Ji,j and Jy,z compete for the same
shared resource. Since access to the resource is granted in FIFO order, the
order in which those job segments will start to execute depends on the order of
their requests. Assume that we know a lower bound on the earliest time at which
Ji,j may request its shared resource, and that we further have an upper bound
on the latest time at which Jy,z may request the resource. We refer to those
bounds as ERTi,j(vp) and LRTy,z(vp), respectively. We prove in Theorem 2
that if ERTi,j(vp) > LRTy,z(vp), then Jy,z must execute before Ji,j , thereby
implying that Ji,j cannot be the first segment dispatched in state vp.

To prove Theorem 2, we first prove a lower and an upper bound on ERTi,j(vp)
and LRTy,z(vp), respectively.

Lemma 9. Segment Ji,j ∈ RP cannot request a shared resource in vp earlier
than

ERTi,j(vp) =

{
max{rmin

i ,Amin
1 (vp)} if j = 1;

Clmin
i (vp) if j > 1.

(5.12)

Proof. The first segment Ji,1 of job Ji cannot request a resource prior to its
release, i.e., not before rmin

i , nor can it request a resource prior to the earliest
time at which a core may become available to start its execution, i.e., not before
Amin

1 (vp). Thus, the earliest time at which Ji,1 may request its resource is lower-
bounded by max{rmin

i ,Amin
1 (vp)} (hence case 1 of Eq. (5.12)). If Ji,j is not the

first segment of Ji, then Ji is already released and Ji,j requests the resource
as soon as preceding segment completes, which is lower-bounded by Clmin

i (vp)
(hence case 2 of Eq. (5.12)).

Lemma 10. A job segment Jy,z ∈ RP will have certainly requested its shared
resource by time

LRTy,z(vp) =

{
max{rmax

y ,Amax
1 (vp)} if j = 1;

Clmax
y (vp) if j > 1.

(5.13)
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Proof. A segment Jy,z will certainly request its shared resource when (1) the
job it belongs to has been released and (2) the segment has a core to execute
on.

By definition, the first segment Jy,1 of a job Jy is certainly released at time
rmax
y and a core is certainly available by time Amax

1 (vp). Thus, Jy,1 will have
certainly requested its resource by time max{rmax

y ,Amax
1 (vp)} (hence case 1 of

Eq. (5.13)).
If Jy,z is not the first segment of job Jy, then, because Jy,z ∈ RP , the pre-

decessor of Jy,z must have started to execute. Hence, Jy is already certainly
released, and LRTy,1(vp) is only bounded by the time at which the core claimed
by the segment of Jy that precedes Jy,z becomes available to execute Jy,z. That
time is upper-bounded by Clmax

y (vp). Therefore, segment Jy,z will have cer-
tainly requested its resource by time Clmax

y (vp) (hence case 2 of Eq. (5.13)).

Now that the earliest time ERTi,j(vp) at which Ji,j may request its resource,
and the latest time LRTy,z(vp) at which another segment Jy,z has certainly
requested its resource have been bounded, we can prove the following condition
for Ji,j to possibly be the next segment to start executing in state vp.

Theorem 2. In a system that uses FIFO-ordered spin locks, a segment Ji,j is
a direct successor of vp only if EST i,j(vp) <∞, Condition (5.11) holds and

∀Jy,z ∈ RP s.t. ηy,z = ηi,j 6= ∅, ERTi,j(vp) ≤ LRTy,z(vp). (5.14)

Proof. The EST i,j(vp) <∞ and Condition (5.11) parts were already proven in
Theorem 1. Therefore, we focus on proving Condition (5.14). From Lemma 9,
we know that ERTi,j(vp) is the earliest time at which a job Ji,j can request its
shared resource. Similarly, from Lemma 10, we know that the latest time at
which a different segment Jy,z requests its own resource is given by LRTy,z(vp).
Therefore, if Ji,j and Jy,z request the same resource `x and ERTi,j(vp) >
LRTy,z(vp), Jy,z must certainly be in front of Ji,j in the FIFO queue regu-
lating access to `x. In this case, Jy,z will certainly execute before Ji,j and Ji,j
cannot be a direct successor of vp.

5.4.6 Earliest and Latest Finish Times

Since segments execute non-preemptively, if Ji,j is the segment dispatched in
system state vp, then its earliest finish time (EFT i,j(vp)) and latest finish time
(LFT i,j(vp)) are:

EFT i,j(vp) = EST i,j(vp) + Cmin
i,j (vp), (5.15)

LFT i,j(vp) = LST i,j(vp) + Cmax
i,j (vp). (5.16)

5.4.7 Creating a New State

As discussed in Section 5.3, we expand the SAG for every segment Ji,j that is
eligible according to Theorem 1 or 2 (depending on whether priority-ordered
or FIFO-ordered spin locks are used, respectively). For each such segment, we
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Algorithm 2: Create a new state v ′p by executing job segment Ji,j

after vp .

1 if Ji,j is the first segment of Ji then
2 if Ji,j is not the last segment of Ji then

// Ji claims a core

3 Create the interval Cli = [EFT i,j(vp),LFT i,j(vp)];
4 C(v′p)← C(vp) ∪ Cli ;

5 end

6 else
7 if Ji,j is the last segment of Ji then

// the core claimed by Ji is released

8 C(v′p)← C(vp) \ Cli ;

9 else
// update the core claimed by Ji

10 Cli = [EFT i,j(vp),LFT i,j(vp)];
11 C(v′p)← C(vp);
12 end

13 end
14 Update C using Eqs. (5.17) and (5.18);

// Update the shared resource availability

15 if ηi,j 6= ∅ then
16 Let `x = ηi,j ;

17 SRmin
x (v′p) = EST i,j(vp) + Lmin

i,j ;

18 SRmax
x (v′p) = LST i,j(vp) + Lmax

i,j ;

19 end
// Update the free cores availability intervals

20 Initialize PA and CA using Lemma 12 ;
21 Sort PA and CA in non-decreasing order;
22 ∀1 ≤ x ≤ m− |C(v′p)|, Ax (v ′

p)← [PAx, CAx];

create a new node v′p that represents the new state after dispatching Ji,j , as
described in Algorithm 2.

First, depending on whether Ji,j is the first, last or an intermediate segment
of job Ji, it will claim a core, release the core it previously claimed or keep
executing on its claimed core, respectively. Therefore, in lines 1–13, Algorithm 2
updates the set of claimed cores C by either adding, removing or updating the
claimed-core availability interval associated with job Ji. If a core is claimed
or was claimed, then its availability interval is set to the finish time interval
[EFT i,j ,LFT i,j ] of the segment Ji,j that starts to execute on it (Lines 3 and 10).

For all other claimed cores in C, their availability interval is updated according
to Equations (5.17) and (5.18) below.

Lemma 11. If the first segment executed in system state vp starts executing no
later than EST i,j(vp), then

Clmin
y (v ′p) = max{EST i,j(vp),Clmin

y (vp)} (5.17)

Clmax
y (v ′p) = max{EST i,j(vp),Clmax

y (vp)} (5.18)

Proof. Since the first segment that starts to execute in system state vp does so
no later than EST i,j(vp), the earliest time at which the next segment may start
to execute is not before EST i,j(vp). Thus, the cores are not available to execute
other segments before EST i,j(vp). This proves the lemma.
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Thereafter, the availability interval of the resource accessed by Ji,j (if any)
is updated to align with the end of Ji,j ’s critical section, i.e., Lmin

i,j time units
after it started executing at the earliest, and Lmax

i,j time units after it started at
the latest.

Finally, Algorithm 2 uses Lemma 12 to create two sets PA and CA that store
the times at which each free core becomes possibly and certainly available after
Ji,j started to execute (Line 20). Then, as discussed in Section 5.2, the free
cores availability intervals can be computed by sorting the sets PA and CA in
a non-decreasing order and picking the xth element of the sorted set PA (CA,
respectively) as the lower bound (upper bound, respectively) on the availability
interval Ax (Line 22).

Lemma 12. The times at which each free core becomes possibly and certainly
available in v′p are contained in the sets PA and CA and are respectively, com-
puted as follows.

PA =



{
max{EST i,j ,A

min
x } | 2 ≤ x ≤ m− |C|

}
if j = 1 6= ni{

max{EST i,j ,A
min
x } | 2 ≤ x ≤ m− |C|

}
∪
{

EFTi,ni

}
if j = 1 = ni{

max{EST i,j ,A
min
x } | 1 ≤ x ≤ m− |C|

}
if 1 < j < ni{

max{EST i,j ,A
min
x } | 1 ≤ x ≤ m− |C|

}
∪
{

EFTi,ni

}
if j = ni > 1

(5.19)

CA =



{
max{EST i,j ,A

max
x } | 2 ≤ x ≤ m− |C|

}
if j = 1 6= ni{

max{EST i,j ,A
max
x } | 2 ≤ x ≤ m− |C|

}
∪
{

LFTi,ni

}
if j = 1 = ni{

max{EST i,j ,A
max
x } | 1 ≤ x ≤ m− |C|

}
if 1 < j < ni{

max{EST i,j ,A
max
x } | 1 ≤ x ≤ m− |C|

}
∪
{

LFTi,ni

}
if j = ni > 1

(5.20)

Proof. We use the following facts.

Fact 1. As already proven for Lemma 11, because EST i,j(vp) is the earliest
time at which Ji,j starts to execute in system state vp, no segment dispatched
after Ji,j may start to execute prior to EST i,j(vp). Therefore, no core may be
available to execute new jobs before EST i,j(vp). Thus, EST i,j(vp) is a lower
bound on the availability time of any free core in v′p.

Fact 2. If Ji,j is not the first segment of job Ji (i.e., j > 1), then it already
has a claimed core and does not execute on a free core. Thus, the availability
of each free core in vp remains the same in v′p. In combination with Fact 1,

we get PA ⊇
{

max{EST i,j(vp),Amin
x (vp)} | 1 ≤ x ≤ m − |C(vp)|

}
and CA ⊇{

max{EST i,j(vp),Amax
x (vp)} | 1 ≤ x ≤ m− |C(vp)|

}
.

Fact 3. Because we assume a work-conserving scheduler, if Ji,j is the first
segment of Ji (i.e., j = 1), it will start executing on the first available free core in
vp. All the other cores will thus keep the same availability interval. Therefore, in
combination with Fact 1, we get that PA ⊇

{
max{EST i,j(vp),Amin

x (vp)} | 2 ≤
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x ≤ m − |C(vp)|
}

and CA ⊇
{

max{EST i,j(vp),Amax
x (vp)} | 2 ≤ x ≤ m −

|C(vp)|
}

.

Fact 4. If Ji,j is not the first or last segment of job Ji (i.e., 1 < j < ni), then
it does not release the core claimed by Ji. Thus, the set of free core in v′p is the
same as in vp.

Fact 5. If Ji,j is the last segment of Ji (i.e., j = ni), then it releases the core
claimed by Ji at the end of its execution. Thus, the core that was claimed by
Ji in vp becomes free for other jobs to execute on in v′p. That released core is
available at the earliest at the EFT of Ji,j , and at the latest at the LFT of Ji,j .
Hence, PA ⊇ EFT i,j(vp) and CA ⊇ LFT i,j(vp).

Fact 3 proves the first case in the definitions of PA and CA. The combination
of Facts 3 and 5 prove the second cases. Fact 4 proves the third cases, and the
combination of Facts 2 and 5 proves the fourth cases.

5.5 Merge Phase

In order to delay a potential state space explosion by considering every execution
scenario on a different path of the SAG, we introduce Rule 1 that merges two
nodes of the graph into a single node that covers all states covered by the initial
two nodes. This slows down the growth of the SAG (in terms of the number of
nodes) while maintaining soundness.

Rule 1 (Merge rule). Two nodes vp and vq are merged if JP = JQ and
∀x, 1 ≤ x ≤ m− |C|, Ax (vp) ∩Ax (vq) 6= ∅.

When two states vp and vq are merged into vz, each free-core availability
interval Ax (vz), claimed core availability interval Clx(vz) and shared resource
availability interval SRx (vz) in the merged state vz is computed so as to fully
cover the intervals of the initial states vp and vq .

Ax (vz) = [ min{Amin
x (vp), Amin

x (vq)}, max{Amax
x (vp),Amax

x (vq)}] (5.21)

Clx (vz ) = [ min{Clmin
x (vp), Clmin

x (vq)}, max{Clmax
x (vp),Clmax

x (vq)}]
(5.22)

SRx (vz ) = [ min{SRmin
x (vp), SRmin

x (vq)}, max{SRmax
x (vp), SRmax

x (vq)}]
(5.23)

We now prove that a merge maintains soundness.

Lemma 13. For two states vp and vq merged according to Rule 1, the set of
claimed cores in vp and vq are assigned to the same job segments.

Proof. Every job that has started and did not yet finish its execution until
reaching state vp has a claimed core in vp . Since by Rule 1, the set of job
segments in the path to vp and vq are identical (i.e., JP = JQ), all jobs that
claimed a core in vp must also have a claimed core in vq , and all jobs that
claimed a core in vq must also have claimed a core in vp .
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Figure 5.6: States vp and vq before and after merging.

Lemma 14. For two states vp and vq merged according to Rule 1, the number
of free-core availability intervals are the same in vp and vq .

Proof. Lemma 13 proves that the claimed cores in vp and vq are assigned to the
same job segments. Thus, the number of claimed cores must be the same in vp
and vq . Hence, the number of free cores must also be the same since the sum
of claimed and free cores is always equal to m. It results that we have as many
free-core availability intervals in vp as in vq .

Theorem 3. Merging two states vp and vq according to Rule 1 and Equations
5.21, 5.22 and 5.23 is safe, i.e., it does not remove any potentially reachable
system state from the graph.

Proof. Rule 1 forces that the sets of segments that have started executing on
the path to vp and vq are identical for vp and vq . Hence, the set of segments
that still need to execute in the merged state vz is the same as in vp and vq .
According to Lemma 13 and 14, the set of claimed cores and the number of free
cores in state vp and vq are the same, and are thus the same in the merged state
too. Since the availability interval of shared resources and free and claimed
cores in the merged state vz are the union of those in vp and vq, any possible
combination of a given number of cores and set of resources becoming available
at a given time that is possible in either state vp or vq is also possible in the
merged state vz . Hence, all sequences of segment executions that may follow
from vp and vq are also possible in vz and the set of all system states reachable
from vz includes every state that is reachable from the original states vp and
vq .

Example 5. Figure 5.6 shows two states (vp and vq) before and after merging
them into state vz according to Theorem 3. In vp and vq, we consider two
cores where one is free for any new job segment to execute on and the other
is claimed by a job Jy. Furthermore, we consider a shared resource `x in the
system. Figure 5.6 (b) shows that in vz the availabilities for the free core,
the claimed core and the shared resource cover all of their respective intervals
found in the original states vp and vq. Therefore, it can be visualized that every
possible scenario in either of the original states is also possible in the merged
state meaning that we do not discard any scenario and that the merge is safe.
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5.6 Correctness

We now put all the pieces together and establish soundness.

Theorem 4. For any execution scenario such that segment Ji,j completes at t,
there is a path 〈v1, ..., vp, v′p〉 in the SAG such that Ji,j is the label of the edge
connecting vp to v′p and t ∈ [EFT i,j(vp),LFT i,j(vp)].

Proof. Assume that there is a path 〈v1, ..., vp〉 such that the claim is respected
for all segments that started to execute before Ji,j in the execution scenario that
led Ji,j to finish at time t. Furthermore, assume that the availability intervals
of state vp correctly bound the actual availability times of the shared resources,
free and claimed cores.

We prove that t ∈ [EFT i,j(vp),LFT i,j(vp)], that a new system state v′p is
created from scheduling Ji,j in vp and that the availability intervals of state v′p
correctly bound the actual availability times of the shared resources, free and
claimed cores after executing Ji,j .

Under the inductive assumption stated above, Lemma 1 and Lemma 8 prove
that EST i,j(vp) and LST i,j(vp) are safe lower- and upper-bounds on the start
time of Ji,j , respectively. Because segments execute non-preemptively, Equa-
tions (5.15) and (5.16) are thus safe lower- and upper-bounds on t (i.e., we proved
that t ∈ [EFT i,j(vp),LFT i,j(vp)]). Further, by the inductive assumption, the
condition of Theorem 1 or Theorem 2 (depending on whether the systems uses
priority-ordered or FIFO-ordered spin locks, respectively) must hold for Ji,j and
Line 7 of Alg. 1 ensures that the graph is expanded with a new node v′p. Then,
by Lemmas 11 and 12 and the discussion of Alg. 2, the availability intervals of
v′p correctly bound the actual availability of shared resources and cores after
executing Ji,j . Therefore, the inductive assumption is respected for v′p. Finally,
according to Theorem 3, potentially merging v′p with another node (lines 14
to 18 of Alg. 1) maintains the validity of the inductive assumption.

Crucially, the inductive assumption (i.e., correct availability intervals) obvi-
ously holds for v1 (in which all cores and shared resources are supposed to be
available) and thus follows by induction on all the states created by Alg. 1.
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Chapter 6

Empirical Evaluation

We have conducted a large-scale schedulability study to evaluate the accuracy
and runtime and to test for scalability limitations of our proposed analyses. In
this chapter, we discuss our experimental setup and workloads (6.1), the imple-
mentation and the baselines (6.2) as well as the results (6.3) of the experiments.

6.1 Setup and Workloads

To obtain a large corpus of diverse workloads with varied contention character-
istics, we generated task sets as follows. For a given number of cores m ∈ {2, 4},
we generated n ∈ {m+1, 2m, 3m, 5m} periodic tasks that shared nr ∈ {2m, 5m}
resources. Each task was configured to have a number of critical sections chosen
uniformly at random from {0, 1, . . . , ncs}, for ncs ∈ {5, 15}. The length of
each critical section was drawn uniformly at random from either [1µs, 15µs],
[10µs, 50µs], or [50µs, 150µs] (short, intermediate, or long critical sections, re-
spectively). Additionally, to obtain Fig. 6.1b, task sets for a specific setup with
m = 6, n = 12, ncs = 5 and nr = 12 were generated as well.

For each considered combination of m, n, nr, ncs, and critical section lengths,
we varied the total utilization U from 5% to 95% in steps of 5, and for each U ,
we generated 250 task sets, for a total of more than 450,000 task sets.

For a given U and n, we generated n per-task utilizations u1, u2, u3, . . . that
sum to U using Emberson et al.’s RandFixedSum method [21]. To reflect that
non-preemptive scheduling is used in practice only for workloads with short jobs,
for each task, an initial cost value C ′i was drawn from a normal distribution
with mean 3ms and standard deviation 1.5ms (values of less than 10µs were re-
drawn). To avoid unrealistic periods, we then selected the task period Ti ∈ {5,
8, 10, 12, 15, 20, 25, 30, 50, 75, 100, 150, 200, 250, 300, 500}ms closest to
C ′i/ui and set the task’s WCET to ui ·Ti (but no less than the sum of maximum
critical section lengths).

The total WCET was randomly distributed across the task’s segments Cmax
i,1 ,

Cmax
i,2 , . . . while respecting the corresponding maximum critical-section lengths

(if any). Each segment was assigned a BCET Cmin
i,j by drawing a value uni-

formly at random from [0.1Cmax
i,j , 0.5Cmax

i,j ]. Each critical section was assigned
a minimum length of 0µs with probability 0.25, and otherwise chosen at random
as Lmin

i,j ∈ [0.1Lmax
i,j , 0.5Lmax

i,j ].
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Finally, tasks were assigned unique priorities using the DkC heuristic for
fixed-priority scheduling [17]. Afterwards, as a necessary test, one hyperperiod
of the task set was simulated assuming that each job executes for its WCET
(without any blocking). If the simulation already exhibited a deadline miss,
then the task set was discarded to avoid generating task sets that are obviously
infeasible under non-preemptive scheduling.

For our experiments, we include an investigation of the runtime of our pro-
posed solution, however our empirical evaluation mainly focuses on the perform-
ance metric called the schedulability ratio. It defines the ratio of schedulable task
sets, i.e., task sets where all jobs meet their timing requirements (no deadline
miss), to the total number of generated task sets.

6.2 Implementation and Baselines

We implemented the proposed analysis, which we denote as {EDF, FP}-SAG-
SR-{FIFO, PRIO} in the following (under global non-preemptive EDF and
FP scheduling, respectively), considering either the usage of FIFO-ordered or
priority-ordered spin locks.

As there exist no directly comparable analysis to compare against (the pro-
posed solution is the first of its kind), we further considered the following loosely
related baselines to provide context: 1. {EDF, FP}-SAG-NO-BLOCKING:
Nasri et al.’s analysis [33] without any blocking as provided in the open-source
SchedCAT library [1]. This analysis is not sound in the presence of shared
resources; it merely serves to indicate an upper bound on attainable schedulab-
ility. 2. {EDF, FP}-SAG-INF-{FIFO, PRIO}: Nasri et al.’s analysis [33]
with an inflation-based blocking analysis where each job’s WCET is increased
prior to response-time analysis to account for possible blocking based on the
holistic blocking approach [8, Ch. 5.4]. This analysis is sound, but structur-
ally pessimistic (not scenario-aware), and thus provides a simple lower bound
on schedulability that the proposed analysis exceeds. 3. EDF-NO-BLOCK-
ING: the schedulability tests for preemptive global EDF provided in Sched-
CAT without any blocking, as an upper bound on schedulability under preempt-
ive EDF scheduling. 4. FP-NO-BLOCKING: similarly, the schedulability
tests for preemptive global FP scheduling without any blocking. 5. {EDF,
FP}-FMLP-SHORT: inflation-based holistic blocking analysis [8] of non–
preemptive FIFO-ordered spin locks (i.e., “FMLP for short resources” [7]), as
provided in SchedCAT. 6. {EDF, FP}-OMLP: inflation-based holistic block-
ing analysis of the suspension-based global OMLP locking protocol [12], as
provided in SchedCAT. 7. FP-FMLP-LONG: Yang et al.’s analysis [41] of
the suspension-based “FMLP for long resources” [7]. 8. FP-PIP: similarly,
Yang et al.’s analysis [41] of the suspension-based PIP [19,38].
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(a) comparison of SAG analyses for m = 4 (b) comparison of EDF analyses for m = 6

(c) comparison of EDF analyses for m = 4 (d) comparison of FP analyses for m = 4

(e) schedulability for varying n (f) schedulability for varying m

Figure 6.1 Schedulability results.

6.3 Results

In total, our experimental setup considered 18 individual analyses for over 95
different scenarios (i.e., parameter combinations). A representative selection of
our results is shown in Figs. 6.1 and 6.2 with the specific parameter choices
given in each plot. To avoid clutter, only a subset of the 18 curves is shown in
each graph.

Figure 6.1a shows a comparison of the various SAG analyses for m = 4. First,
there is little difference with regard to whether jobs are prioritized according to
fixed task-level priorities [17] or by job-level EDF priorities. More importantly,
however, the results show a large gain in schedulability relative to the inflation-
based baseline. We see this trend for both, FIFO- and priority-ordered spin
locks. For example, while FP-SAG-INF-FIFO only deems about 15% of the
task sets to be schedulable at 45% total utilization, although FP-SAG-SR-FIFO
shows that more than 60% of the tested task sets are actually schedulable.
Furthermore, we see that slightly higher gains are achieved when using priority-
ordered spin locks, as FP-SAG-INF-PRIO detects even less schedulable task sets
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(< 10%) than FP-SAG-INF-FIFO at 45% utilization, while FP-SAG-SR-PRIO
detects slightly more than FP-SAG-SR-FIFO. In this experiment, an average
gain ranging from 18% − 25% in schedulability ratio has been achieved where
FP-SAG-SR-PRIO provided the largest benefits. Overall, the proposed analysis
closes more than half of the gap between the inflation-based baseline and the
upper bound on attainable schedulability represented by {EDF, FP}-SAG-NO-
BLOCKING, which highlights a significant reduction in pessimism.

Figure 6.1b focuses on EDF scheduling and shows similar trends for m = 6,
with EDF-SAG-SR-{FIFO, PRIO} attaining much higher schedulability than
EDF-SAG-INF-{FIFO, PRIO}. Furthermore, a comparison with EDF-OMLP
and EDF-FMLP-SHORT shows the proposed analysis to be competitive with
the state of the art for preemptive systems (for the considered workloads), espe-
cially considering that the EDF-NO-BLOCKING baseline reveals that preempt-
ive scheduling has a slight advantage in this scenario. Note that our evaluation
does not reflect any differences in scheduling and runtime overheads, which can
be expected to be (much) lower under non-preemptive scheduling. Figure 6.1c
shows largely identical trends for m = 4.

Figure 6.1d shows an analogous comparison for FP scheduling; here preempt-
ive scheduling has a significant advantage and Yang et al.’s suspension-aware
analysis [41] of the PIP stands out as particularly effective. However, note
again that this is a somewhat lopsided comparison due to workload differences
(preemptive vs. non-preemptive) and since we are discounting lower spin-lock
overheads.

Figure 6.1e shows the effect of increasing the number of tasks. Generally,
schedulability drops as n increases, which is unsurprising as an increase in tasks
is correlated with an increase in contention. Nonetheless, significant accuracy
gains are apparent compared to the inflation-based baseline. For example, for
n = 5 and U = 60%, FP-SAG-SR-FIFO shows more than 50% of the workloads
to be schedulable in this experiment, whereas FP-SAG-INF-FIFO deems less
than 20% of the workload to be schedulable.

In Fig. 6.1f, we look at the effect of varying the number of cores. Here we
clearly see that, for all investigated values of m, the proposed analysis performs
better than the inflation-based baseline. Schedulability drops with increasing m
since an increase in parallelism corresponds to an increase in contention (since
n = 2m in the shown scenarios).

Finally, Figs. 6.2a to 6.2d show the average runtime (in seconds) of our ana-
lysis. For these results, it has to be noted that due to the limited access to
servers, experiments were conducted on different machines. Consequently, indi-
vidual points are not comparable, which is why we focus on the general trend
of the graphs. We use Fig. 6.2a as our default and vary different parameters
to investigate the general effect on the runtime. First, we inspect the effect
of considering long [50µs, 150µs] instead of short [1µs, 15µs] critical section by
comparing Fig. 6.2b to our default in Fig. 6.2a. We can see that there is hardly
an effect on the runtime. Both plots stay within the range of about 0 − 0.2
seconds. Next, we compare Figs. 6.2a and 6.2c to see how the runtime be-
haves when increasing the number of tasks from 5 to 8. Here we observe a
more prominent change in the runtime, where the average runtime grew above
1 second. This is an expected behavior, as an increase in the number of tasks
allows for more contention and essentially more execution scenarios that need
to be analysed. More execution scenarios mean that our analysis will create

42



and investigate more states, which results in a longer duration of the analysis
and hence increased runtime. Lastly and most interestingly, we have analyzed
the effect of increasing the maximum number of critical sections per task from
5 to 15 by comparing Figs. 6.2a and 6.2d. We notice a significant increase in
the average runtime. While Fig. 6.2a shows that on average, experiments have
finished in less than a second, we can see in Fig. 6.2d that experiments have
taken far longer and almost reaching up to 40 seconds in average. Increasing
the number of per task critical sections while keeping the number of shared re-
sources constant means that many tasks compete for the same resources. This
increased contention leads to a significant rise in the number of execution scen-
arios as we now consider all possible combinations of access orderings for each
critical section of a task and build full paths for each of them. Essentially
this leads to a remarkable increase in the number of investigated states and
hence leads to a rise in the runtime. Furthermore, to investigate the collected
runtime data from a different angle, we have plotted the 95th and 98th per-
centiles for EDF-SAG-SR-PRIO and EDF-SAG-SR-FIFO in Figs. 6.2e to 6.2h.
First, Figs. 6.2e and 6.2f show that in fact 95% of the experiments finished in
less than 100 seconds for EDF-SAG-SR-PRIO and in less than 200 seconds for
EDF-SAG-SR-FIFO. They also show that the FIFO variant is more costly in
terms of runtime and experiences more timeouts (here shown by the timeout
limit 7200 seconds) compared to the priority variant. The 98th percentiles given
in Figs. 6.2e and 6.2f show that especially around 30% to 50% utilization both
variants experience an increase in the runtime. This is also a trend that we can
observe in the plots shown in Figs. 6.2a to 6.2d and therefore, in the following
we will discuss the general trends observed regarding all runtime experiments.

First, the average runtime and the scatter plots portraying the 95th and 98th
percentiles revealed that our analysis considering priority-ordered spin locks
performed better in our runtime experiments than the analysis using FIFO-
ordered spin locks. This is an unsurprising result, since the analysis for FIFO-
ordered spin locks is more extensive and has to compute additional parameters
such as the earliest and latest request time. Finally, for all the runtime-related
experiments, we see a another general trend. As the utilization increases and
roughly approaches the middle range (30% - 50%), we see an increase in the
average runtime and from 50% onwards, we observe a decline. This behavior
follows from the fact that with increased utilization, there is an increase in
contention. Increased contention means that it is more difficult to schedule a
job set and that we have a higher chance of interleaving intervals. An increase in
interleaving intervals results in increased branching and the creation of multiple
states since we have to consider all possible execution scenarios for the analysis
to be sound. This is directly coupled with an increase in average runtime.
However, if we increase the total utilization even further, the considered job set
becomes even more difficult to schedule and the likelihood of a deadline miss
increases. Since in each state of the exploration, our analysis checks if timing
requirements are respected, a deadline miss would instantly stop the exploration
and the job set would be deemed unschedulable. This also means that the
runtime of the analysis declines with a further increase in utilization since more
job sets are found to be unschedulable at an early stage of the analysis.

Finally, our evaluation also revealed some limitations. First, note how in
Fig. 6.1e the results for FP-SAG-SR-FIFO for n = 20 tasks are worse than
for the baseline FP-SAG-INF-FIFO, but not for lower task counts. This is a
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result of the increased runtime of the proposed analysis. In our experiments,
we configured a timeout per job set. As the runtime of the analysis increases
with n, especially FP-SAG-SR-FIFO started to exhibit a significant number of
timeouts for n = 20. Scalability limitations also meant that while it is certainly
possible to analyze a given system and even perform experiments for a chosen
range of parameters when m > 4 (e.g., Fig. 6.1b shows results for m = 6),
the general increase in runtime made an evaluation across the entire parameter
space (i.e., hundreds of thousands of workloads, recall Section 6.1) impractical
for m ≥ 6.

Surprisingly, we also found some rare cases where EDF, FP-SAG-SR-{FIFO,
PRIO} perform (slightly) worse than the corresponding EDF, FP-SAG-INF-
{FIFO, PRIO} analyses even when there is no timeout. Further investigations
led us to discover a source of pessimism related to the way shared-resource avail-
abilities are encoded. Our current state abstraction assumes that the resource
remains locked (and thus unavailable) during the whole time between SRmin

and SRmax in the worst case. Although accurate in most cases, this interval
may become very long in comparison to the actual critical section length in
some cases. Therefore, there are rare situations where even an inflation based
test may perform better. Such occasional instances can be easily handled by
running both analyses and retaining the better result.

Nonetheless, we overall conclude that almost always the proposed analysis
shows substantial accuracy gains in comparison to the state of the art and, for
the considered workloads, is competitive with (or even superior to) solutions
designed for preemptive systems.

44



(a) runtime for n = 5, ncs = 5,
Lmax ∈ [1µs, 15µs]

(b) runtime for n = 5, ncs = 15,
Lmax ∈ [50µs, 150µs]

(c) runtime for n = 8, ncs = 5,
Lmax ∈ [1µs, 15µs]

(d) runtime for n = 8, ncs = 15,
Lmax ∈ [1µs, 15µs]

(e) runtime 95th percentile PRIO (f) runtime 95th percentile FIFO

(g) runtime 98th percentile PRIO (h) runtime 98th percentile FIFO

Figure 6.2 Runtime results.
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Chapter 7

Extensions of the Work

7.1 Partial Order Reduction Techniques

In our proposed analysis, we cover every execution scenario of a job set by build-
ing the schedule abstraction graph. For large job sets with many interleaving
intervals, this results in the creation of a lot of states. One of the sub-goals of
this project is to delay a potential state space explosion and improve scalability,
which has already been partially achieved by choosing a smart representation
of the workload (Section 4.1) and the system states (Section 5.2), but also by
merging similar states (Section 5.5). As an extension, we propose a further
reduction in the number of states created, by applying so called partial order
reduction techniques, which allow the smart pruning of the schedule abstrac-
tion graph while maintaining soundness. The key idea of partial order reduction
techniques is that we eliminate redundant branches when building the graph.
At this point, a natural question is, when is branching redundant? Branching
is redundant if at any given state there exists an eligible job segment whose
execution is not impacted by any present or future segment (i.e., any segment
that has not started to execute yet), nor does it impact any segment that is not
yet in the path. In such a case, the state can be extended by only considering a
segment that fulfills these conditions, as it does not discard any possible execu-
tion scenario and at the same time prevents the redundant creation of additional
states. Therefore, we have designed partial order reduction rules that check for
segments that fulfill the stated conditions.

In the following, we give an idea about the designed rules and provide visual
examples to support the explanation. The formal proofs of the rules can be
found in Appendix A.

7.1.1 Non-Starting Segments

First, we look at a non-starting segments, i.e., an intermediate or finishing seg-
ment. In order for a segment Ji,j in vp to be eligible for partial order reduction,
no execution scenario should be discarded when extending the state vp by Ji,j
without branching. This is the case, if the execution of Ji,j is not impacted by
nor does it impact any segment that still has to execute. Therefore, the key idea
for a non-starting segment to be considered for partial order reduction is, that
(i) there is no segment that can start prior to the earliest start time of Ji,j in vp,
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Figure 7.1: Partial Order Reduction: Non-Starting Segment.
Two schedule-abstraction graphs that display the effect of partial order reduction using

a non-starting segment for a system with m = 2 and two remaining segments Ji,2
(finishing segment of job Ji) and Jy,1 (only segment of job Jy released at ry ∈ [5, 5]).

Only Ji,2 requests the resource `x with a critical section length Li,2 ∈ [3, 3]. The

execution times of the segments are Ci,2 ∈ [3, 3] and Cy,1 ∈ [4, 4]. We assume that Jy
has a higher priority than Ji, i.e., py < pi.

and (ii) there is no segment that can potentially request the same resource as
Ji,j prior to the latest finish time of Ji,j . Hence, we write the following claims,
for which proofs are given in Appendix A.1.

Lemma 15. The start time of a non-starting segment Ji,j ∈ RP in vp is not
impacted by any segment Jy,z 6∈ J P if

LSTi,j(vp) < ERTy,z | ηi,j ∩ ηy,z 6= ∅ (7.1)

Lemma 16. The execution of a non-starting segment Ji,j ∈ RP in vp does not
impact the start time of any segment that requests the same resource as Ji,j,
i.e., Jy,z 6∈ J P ∧ ηi,j ∩ ηy,z 6= ∅ if

LFTi,j(vp) < ERTy,z (7.2)

Lemma 17. A state vp for which there exists a non-starting segment Ji,j that
can potentially start to execute at EST (vp) = ESTi,j and for which Eqs. (7.1)
and (7.2) hold, can be expanded by one edge labeled Ji,j without discarding any
execution scenario.
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Example 6. Fig. 7.1 shows two schedule-abstraction graphs, one with and one
without applying partial order reduction in a system with two cores (m = 2)
and two remaining segments (Ji,2 and Jy,1). In Fig. 7.1 (a), we see that state
vp can be expanded considering both segments, which leads to the creation of
multiple states. However in terms of the actual schedule, both segments do not
impact each other, because they do not compete for the same core or resources.
This means that as long as no scenario is discarded in the graph due to updating
core availabilities according to EST , we can decide not to branch in vp. Hence,
we summarize both edges of Ji,2 in Fig. 7.1 (a) and replace it with one edge in
Fig. 7.1 (b). While Ji,2 leads to availabilities of [7, 7] and [8, 8] in Fig. 7.1 (a),
we consider both cases in Fig. 7.1 (b) as Ji,2 results in an availability interval
of [7, 8]. Note that we could not expand vp with Jy,1 in Fig. 7.1 (b) as it would
discard the scenario (due to core updating according to ESTy,1) where Ji,2
starts to execute at time 4.

7.1.2 Starting Segments

For a starting segment Ji,j that does not access any resources, we have designed a
rule that ensures that by extending a state vp only considering Ji,j , no execution
scenario is discarded. This presumes that the execution of Ji,j is not impacted by
nor does it impact any segment that still has to execute. Since Ji,j is a starting
segment that does not require a resource, it only competes and affects (or can
be affected) by other starting segments. The key idea is that a starting segment
can be considered for partial order reduction if (i) there is no segment that can
start prior to the earliest start time of Ji,j in vp and (ii) in every instance of Ji,j ’s
release interval ( [rmin

i , rmax
i ] ), the number of k certainly available cores |Amax

k |
is larger or equal to the number of possibly released starting segments. Hence,
we write the following claims, for which formal proofs are given in Appendix A.2.

Lemma 18. The start time of a starting segment Ji,j in vp that does not access
a resource, is not impacted by any present or future segment, if in every instance
of Ji,j’s release interval ( [rmin

i , rmax
i ] ), the number of k certainly available cores

|Amax
k | is larger or equal to the number of possibly released starting segments.

Lemma 19. The start time of any starting segment Jy,z that has not yet started
to execute, is not impacted by a considered starting segment Ji,j in vp that does
not access any resource, if EST (vp) = ESTi,j and in every instance of Ji,j’s
release interval ( [rmin

i , rmax
i ] ), the number of k certainly available cores |Amax

k |
is larger or equal to the number of possibly released starting segments.

Lemma 20. Expanding state vp in the schedule abstraction graph without branch-
ing, considering a starting segment Ji,j, that does not access a resource, does not
discard any execution scenario if, EST (vp) = ESTi,j and in every instance of
Ji,j’s release interval ( [rmin

i , rmax
i ] ), the number of k certainly available cores

|Amax
k | is larger or equal to the number of possibly released starting segments.

Example 7. In Fig. 7.2 (a), we see that state vp can be expanded considering
both segments, which leads to the creation of multiple states. Since Ji,1 and
Jy,1 are both starting segments, they both compete for a free core. However, by
the time both segments are potentially released, they will both certainly have
a core to execute on meaning that they do not impact each other in any way.
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Figure 7.2: Partial Order Reduction: Starting Segment.
Two schedule-abstraction graphs that display the effect of partial order reduction using

a starting segment for a system with m = 2 and two remaining segments Ji,1 (only

segment of job Ji released at ri ∈ [3, 5]) and Jy,1 (only segment of job Jy released at

ry ∈ [4, 6]) that do not request a resource. The execution times of the segments are

Ci,1 ∈ [2, 2] and Cy,1 ∈ [3, 3].We assume that Jy has a higher priority than Ji, i.e.,

py < pi.

This means that we can decide not to branch in vp and instead summarize both
edges of Ji,1 in Fig. 7.2 (a) by replacing it with one edge in 7.2 (b). While Ji,1
leads to availabilities of [5, 7] and [6, 7] in Fig. 7.1 (a), we consider both cases
in Fig. 7.1 (b) as Ji,2 results in an availability interval of [5, 7]. Note that we
could not expand vp with Jy,1 in Fig. 7.1 (b) as it would discard the scenario
(due to ESTy,1) where Ji,1 starts to execute at time 3.

7.2 Multi-Unit Resources

As a further addition to this thesis, we have extended the newly proposed ana-
lysis, by providing a solution to make it compatible with multi-unit resources
and k-exclusion locking protocols.

As the name implies, a multi-unit resource is a resource that can be accessed
by more than one task simultaneously. Such a resource consists of k (usually)
similar or identical units that can be accessed at most by k tasks at the same
time. The resource is protected by a lock with k tokens, meaning that once k
tasks access the resource, it becomes unavailable (locked) for any additional job
that requests it. This means, that any new job can only be granted access to a
multi-unit resource if we have one or more token(s) available. An examples of
multi-unit resources could be execution threads in thread-pools, communication
channels, I/O buffers or just plain memory space.
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The extension is motivated by the fact that it is very common in real-time
systems to find, so called, resource pools, which are multiple similar units of a
resource. Another motivation is the inclusion of k-exclusion protocols in new
technologies such as general-purpose and real-time computation on graphics
processing units [20].

In the following, we dive into how the existing analysis has been modified
in order to support systems with multi-unit resources handled by k-exclusion
locking protocols.

7.2.1 Shared Resource Representation

The access to multi-unit resources could be modeled by accounting for each
resource unit specifically and keeping track of when each of the units becomes
possibly and certainly available. Building the graph using this representation,
however, would lead to an exploration where we consider every possible combin-
ation of job accesses to specific resource units. Assuming that a job that requests
a resource `x only requires any one of the k tokens to access the resource, it is not
of significant importance to model which particular resource unit has been used.
Keeping in mind scalability and the aim of delaying a potential state space ex-
plosion as much as possible, we have designed a smarter solution. For each multi-
unit resource `x,k where k denotes the total number of tokens associated with
the resource, we keep track of k intervals SRx,q(vp) = [SRmin

x,q (vp), SRmax
x,q (vp)]

such that 1 ≤ q ≤ k indicating when one, two, three, . . . , k resource units of `x
become possibly and certainly available to be granted to a ready job segment.

Furthermore, in Section 5.2 we have introduced the notions of SRmin
i,j (vp)

and SRmax
i,j (vp) to refer to the availability of the resource accessed by segment

Ji,j . Since we now deal with multi-unit resources, we have to redefine these
notions. SRmin

i,j (vp) and SRmax
i,j (vp) for a job segment Ji,j that requests a multi-

unit resource `x,k, now represent the time at which one resource unit becomes
possibly and certainly available, respectively, i.e., SRmin

i,j (vp) = SRmin
x,1 (vp) and

SRmax
i,j (vp) = SRmax

x,1 (vp) for `x,k ∈ ηi,j .

7.2.2 Earliest and Latest Start Time

We have introduced the use of multi-unit resources and we were able to consider
the new model by keeping the same equations and redefining SRmin

i,j (vp) and
SRmax

i,j (vp). The lemmas and proofs that ensure a correct computation of the
earliest and latest start times (EST and LST ) have to be revisited to prove
the soundness of the analysis when considering the extension. These proofs
represent a modified version of the already introduced proofs in Section 5.4.3
and 5.4.3 and can be found in Appendix B.1. While in our original analysis, a
job segment is dependent on the one availability of the resource it requests, in
this extension a job segment can start to execute once all resource-independent
conditions are met and at least one token of the resource (requested by a con-
sidered job segment Ji,j) is available meaning that at least one resource unit
can be used by Ji,j .
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7.2.3 Store and Update Multi-Unit Resource Availability

Since we keep track of when k resource units of a resource `x,k become possibly
and certainly available in a state, the intervals need to be updated appropriately
to be used in the subsequent state(s). Similar to the procedure of the free core
availabilities, we create two sets RPA and RCA for each multi-unit resource
`x,k that store the times at which each resource unit becomes possibly and
certainly available after Ji,j has started to execute. The times are sorted in
non-decreasing order and the qth element of RPA (RCA, respectively) provides
the lower bound (upper bound, respectively) on the availability interval SRx,q.
This is done for each multi-unit resource `x,k ∈ L.

Lemma 21. The times at which each resource unit of `x,k becomes possibly and
certainly available in v′p are contained in the sets RPAx and RCAx , respectively
and are computed as follows.

RPAx =


{

max{EST i,j , SR
min
x,q } | 1 ≤ q ≤ k

}
if `x,k 6∈ ηi,j{

max{EST i,j , SR
min
x,q } | 2 ≤ q ≤ k

}
∪
{

EST i,j + Lmin
i,j

}
if `x,k ∈ ηi,j

(7.3)

RCAx =


{

max{EST i,j , SR
max
x,q } | 1 ≤ q ≤ k

}
if `x,k 6∈ ηi,j{

max{EST i,j , SR
max
x,q } | 2 ≤ q ≤ k

}
∪
{

LST i,j + Lmax
i,j

}
if `x,k ∈ ηi,j

(7.4)

Proof. We use the following facts.

Fact 6. As already proven for Lemma 11, because EST i,j(vp) is the earliest time
at which Ji,j starts to execute in system state vp, no segment dispatched after
Ji,j may start to execute prior to EST i,j(vp). Therefore, no resource (including
`x,k) may be available for any job before EST i,j(vp). Thus, EST i,j(vp) is a
lower bound on the availability time of any resource in v′p.

Fact 7. If Ji,j does not access multi-unit resource `x,k, the resource units are
not used by Ji,j . Therefore, the resource availability SRx,q for each q in v′p is
bounded by the resource availability SRx,q in the previous state vp. Since, from
Fact 6, we also know that EST i,j(vp) is a lower bound, the resource availability
SRx,q for each q in v′p is given by {max{EST i,j , SRx,q} |1 ≤ q ≤ k. This proves
the first case of Eq. (7.3) and Eq. (7.4).

Fact 8. If Ji,j does access multi-unit resource `x,k, it will access the first avail-
able unit (between time SRmin

x,1 and SRmax
x,1 ). Since the other resource units are

not used by Ji,j , they are updated according to {max{EST i,j , SRx,q} as ex-
plained in Fact 7. On the other hand, the resource unit that has been used
for Ji,j ’s execution is updated considering the start time (EST and LST )
and the critical section length (Li,j) of Ji,j . The resource unit granted to
Ji,j is therefore possibly available from time EST + Lmin

i,j and certainly avail-
able at time LST + Lmax

i,j in state v′p. Therefore, considering that job seg-
ment Ji,j accesses a multi-unit resource `x,k and starts executing in system
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state vp , we update the earliest and latest availabilities for each k of `x,k

according to
{

max{EST i,j , SR
min
x,q } | 2 ≤ q ≤ k

}
∪
{

EST i,j + Lmin
i,j

}
and{

max{EST i,j , SR
max
x,q } | 2 ≤ q ≤ k

}
∪
{

LST i,j + Lmax
i,j

}
, respectively. This

proves the second case of Eq. (7.3) and Eq. (7.4).

7.2.4 Merging

Since the representation of a shared resource has changed, the rule for merging
shared resource availabilities in our extension also needs to change. In Eq. (5.23)
we merge two different availability intervals of a shared resource `x of state vp
and vq into one interval in state vz, that covers both intervals of the initial states.
For this multi-unit resource extension, we merge shared resource availabilities
considering the interval of each unit belonging to the multi-unit resource `x,k.
This means that in the merged state vz, every q where 1 ≤ q ≤ k in `x,k has an
availability interval SRx,q(vz) that comprises both availabilities SRx,q(vp) and
SRx,q(vq). Hence we write the modified merge rule as follows.

SRx,q(vz ) = [ min{SRmin
x,q (vp), SRmin

x,q (vq)}, max{SRmax
x,q (vp), SRmax

x,q (vq)}]
(7.5)
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Chapter 8

Conclusions

8.1 Summary

In this work, we presented a novel worst-case response time (WCRT) analysis
for global job-level fixed-priority (JLFP) scheduling and non-preemptive tasks
with repeating job-release patterns that share resources protected by FIFO- or
priority-ordered spin locks. To the best of our knowledge, it is the first solution
to this problem. Furthermore, it extends the family of schedule-abstraction-
based analysis to support and model the access to shared resources in a highly
accurate manner. Our analysis implicitly explores all possible execution and
resource access orderings using a novel system-state abstraction that explicitly
models resource contention.

A comparison with inflation-based analyses has shown that our work is sub-
stantially less pessimistic. The empirical evaluation has also shown, that for
the type of workloads considered in the experiments, our solution comes much
closer to the hypothetical blocking-free upper bounds and is competitive even
with solutions for preemptive systems. This suggests that our analysis suc-
cessfully discards many more scenarios that reflect impossible combinations of
shared resource access orders, low-priority blocking and/or high-priority inter-
ference.

We proposed steps for improving the scalability of the analysis by introdu-
cing partial order reduction techniques that aim to smartly discard redundant
branches of the schedule abstraction graph. While these techniques improve
scalability by reducing the total number of states, this reduction is expected to
also improve the performance of the analysis in terms of runtime. Finally, we
have extended the work even further by making the analysis compatible with
multi-unit resources and k-exclusion locking protocols. This has been achieved
by modifying our notions of shared resource availabilities to account for the
multiple tokens belonging to a particular resource class.

Finally, we conclude that the positive results of our work virtually across the
board provide ample motivation to further improve accuracy and scalability of
this promising schedule-abstraction-based approach in future work.
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8.2 Future Work

Since the work has been extended to consider partial order reduction, we believe
that there is a potential for additional partial order reduction rules that can
improve scalability even further.

Furthermore, our investigation, as discussed in Section 6.3, has shown that
there exists a source of pessimism related to the encoding of shared resource
availabilities in a state. Hence, it would be interesting to investigate even further
and find a solution that can reduce or even erase this source of pessimism.

Our line of research, namely schedule-abstraction-based analysis, allows for
many interesting future works. Since the work presented in this thesis opens
the doors to the explicit analysis of shared resource accesses using schedule-
abstraction graphs, an interesting extension for our model would be the con-
sideration of parallel DAG tasks, which are known to be favorable for multi-
processor platforms. Such workloads could be considered by our analysis by
introducing precedence constraints to our model. Furthermore, another inter-
esting extension to our work could be considering nested locks in the analysis.

Finally, since our analysis focuses on spin-based locks, an interesting future
work would be designing a schedule-abstraction-based analysis that considers
suspension-based locks.
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Appendix A

Partial Order Reduction
Proofs

A.1 Non-Starting Segments

Lemma 15 The start time of a non-starting segment Ji,j ∈ RP in vp is not
impacted by any segment Jy,z 6∈ J P if LSTi,j(vp) < ERTy,z | ηi,j ∩ ηy,z 6= ∅

Proof. Following the workload model from Section 4.1, we know that every non-
starting segment accesses a resource, meaning that its start time is dependent
on the availability of the shared resource. Since Ji,j is not the first segment of
a job, it has a claimed core and its start time is therefore affected by when its
claimed core becomes available. Hence, the start time of a non-starting segment
Ji,j in state vp is dependent on its claimed core availability and the resource
availability as described by Equations (5.2), (5.3), (5.6) and (5.8). Since Ji,j
has a reserved core for its execution, it does not compete for one, meaning
that no present or future segment (of another job) can affect the claimed core
availability. Furthermore, if the latest start time of Ji,j is earlier than the earliest
time at which any remaining segment Jy,z that needs the same resource `x can
request `x, then Ji,j will certainly get the next access to the resource. This
means that its start time is not impacted by any other segment that requires
the same resource and has not executed yet.

Lemma 16 The execution of a non-starting segment Ji,j ∈ RP in vp does not
impact the start time of any segment that requests the same resource as Ji,j,
i.e., Jy,z 6∈ J P ∧ ηi,j ∩ ηy,z 6= ∅ if LFTi,j(vp) < ERTy,z

Proof. Ji,j has a reserved core and therefore only competes with job segments
that request the same resource. Hence, its execution can impact the start time of
such segments. However, if by the latest time at which Ji,j finishes its execution,
no other segment has potentially requested the used resource, we are certain
that Ji,j ’s execution has not delayed or impacted the start time of any other
job segment that shares the same resource. This follows from the fact that if
the condition holds, then any remaining job segment that requests the same
resource will do so after Ji,j has certainly finished, meaning it is not impacted
by Ji,j .
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Lemma 17 A state vp for which there exists a non-starting segment Ji,j that
can potentially start to execute at EST (vp) = ESTi,j and for which Eqs. (7.1)
and (7.2) hold, can be expanded by one edge labeled Ji,j without discarding any
execution scenario.

Proof. EST (vp) represents the earliest time at which any segment could poten-
tially start executing in state vp. Since EST (vp) = ESTi,j , no job segment can
start prior to ESTi,j meaning that no potential start time scenario is discarded
in the graph by updating availabilities according to Eqs. (5.17) to (5.20). Since
Eq. (7.1) holds, Ji,j ’s start time is not affected by any present or future segment,
which means that its start time interval in vp covers any other start time inter-
val of Ji,j that would have resulted from branching in state vp. Furthermore,
since Eq. (7.2) holds, the execution of Ji,j does not impact the start time of any
other segment that has not yet finished. This means that in a subsequent state
v′p after Ji,j has started executing, every scenario that was possible in vp is still
possible in v′p (obviously except for executing Ji,j), meaning that we have not
discarded any execution scenario.

A.2 Starting Segments

Lemma 18 The start time of a starting segment Ji,j in vp that does not access
a resource, is not impacted by any present or future segment, if in every instance
of Ji,j’s release interval ( [rmin

i , rmax
i ] ), the number of k certainly available cores

|Amax
k | is larger or equal to the number of possibly released starting segments.

Proof. The execution of a considered starting segment Ji,j in vp, which does not
request a resource, depends on the availability of a core. Jobs that have already
started in vp have a claimed core and since Ji,j does not access a resource,
segments belonging to such jobs do not affect the start time of Ji,j . Since Ji,j
competes with other starting segments for a free core in order to execute, its
start time is not impacted, if in every possible instance of Ji,j ’s release interval
there is a free core for it to execute on. Given that in every instance of Ji,j ’s
release interval the number of jobs that possibly try to claim a free core is
smaller or equal to the number of certainly available cores, Ji,j will definitely
have a core to execute on, which means that in this execution scenario it is not
impacted or delayed by any other segment. This proves the given lemma.

Lemma 19 The start time of any starting segment Jy,z that has not yet started
to execute, is not impacted by a considered starting segment Ji,j in vp that does
not access any resource, if EST (vp) = ESTi,j and in every instance of Ji,j’s
release interval ( [rmin

i , rmax
i ] ), the number of k certainly available cores |Amax

k |
is larger or equal to the number of possibly released starting segments.

Proof. EST (vp) represents the earliest time at which any segment could poten-
tially start executing in state vp. Since EST (vp) = ESTi,j , no job segment can
start prior to ESTi,j meaning that no potential start time scenario is discarded
in the graph by updating availabilities according to Eqs. (5.17) to (5.20). Fur-
thermore, since at every time instance of Ji,j ’s release interval the amount of
certainly available cores is larger or equal to the number of jobs that potentially
want to claim a core, Ji,j ’s execution will not impact or delay the potential start
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time of any other starting segment. Finally, all non-starting segment are not
impacted since they already have a claimed core and Ji,j does not access any
resource.

Lemma 20 Expanding state vp in the schedule abstraction graph without branch-
ing, considering a starting segment Ji,j, that does not access a resource, does not
discard any execution scenario if, EST (vp) = ESTi,j and in every instance of
Ji,j’s release interval ( [rmin

i , rmax
i ] ), the number of k certainly available cores

|Amax
k | is larger or equal to the number of possibly released starting segments.

Proof. No execution scenario is discarded from the schedule abstraction graph,
if the considered segment Ji,j is not impacted by any other present or future
segment and the execution of Ji,j does not impact any other segment that is
not in the path yet. Since, we have proven in Lemmas 18 and 19 that under
these conditions Ji,j is not impacted by and does not impact any segment that
still needs to execute, this lemma holds.
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Appendix B

Modified Rules for
Multi-Unit Resources

B.1 Earliest and Latest Start Time

Lemma 1 (b). Segment Ji,j ∈ RP cannot start executing (as a successor of
state vp) before EST i,j(vp).

Proof. The first segment Ji,1 of a job Ji can start its execution only if (i) it is
released, (ii) the shared resource `x,k it requests (if any) is available and (iii)
a core is available. Thus, if all cores have already been claimed by other jobs
(i.e., |C(vp)| = m|) then Ji,1 cannot be a successor of vp and EST i,j(vp) = ∞.
This proves the first case of Eq. (5.2).

However, if there is a free core (i.e., |C(vp)| < m|), then, by definition, Amin
1 is

the earliest time at which a core can potentially become available. Furthermore,
rmin
i is the earliest release time of Ji and SRmin

i,j (vp) is the earliest time at
which one token of shared multi-unit resource `x,k accessed by Ji,j may become
available. Thus, the earliest time at which Ji,1 may start to execute is given
by EST i,j(vp) = max{rmin

i , Amin
1 (vp), SRmin

i,j (vp)} if j = 1. This proves the
second case of Eq. (5.2).

Any segment that is not the first segment of a job (i.e., a segment Ji,j with
j > 1) can start its execution only if (i) the core claimed by the preceding
segments belonging to the same job is available, and (ii) the multi-unit resource
it requests (if any) is also available. Since Ji,j is in RP , all the segments of Ji

that precede Ji,j must have started (and potentially finished) executing on the
core claimed by Ji. Thus, the earliest time at which the core claimed by Ji may
become available for Ji,j is given by Clmin

i (vp). Therefore, the earliest time at
which Ji,j may start to execute is max{Clmin

i (vp), SRmin
i,j (vp)} if j > 1. This

proves the last case of Eq. (5.2).

Lemma 2 (b). An upper bound on the time at which a segment Jy,z can
certainly start executing (as a successor of state vp) is given by twy,z.

Proof. Infinity is an obvious upper bound on the start time of Jy,z. Therefore,
in this proof, we only focus on the cases where twy,z 6=∞.
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A starting segment Jy,1 must start to execute as soon as (i) it is released,
(ii) the multi-unit resource `x,k it requests (if any) is available and (iii) a core
is available. By definition, rmax

y is an upper bound on the release time of Jy,1,
SRmax

y,z (vp) is an upper bound on the availability time of one shared resource
unit (of `x,k) accessed by Jy,z (if any) and Amax

1 (vp) denotes the time at which
a core is certainly available in state vp. Thus, Jy,1 can certainly start executing
at max{rmax

y , Amax
1 , SRmax

y,1 (vp)} when z = 1 and there is at least one free core
in vp.

Any segment Jy,z that is not the first segment of Jy,z (i.e., with z > 1) can
certainly start executing when (i) one roken of the resource it requests (if any) is
available, and (ii) the segments of Jy that precede Jy,z have all completed their
execution on the core claimed by Jy . Since Jy,z is in RP , all the segments of
Jy,z preceding Jy,z have already started (and potentially finished) executing on
the core claimed by Jy , and because Clmax

y (vp) is an upper bound on the time
at which the core claimed by Jy becomes available to execute the next segment
of Jy, we have that Jy,z certainly starts at max{Clmax

y (vp), SRmax
y,z (vp)} when

z > 1.

Lemma 4 (b). Let Jy,z be a segment in H . If Ji,j did not start to execute before
thy,z (Ji,j ), then Jy,z will start before Ji,j in a system considering FIFO-ordered
spin locks.

Proof. We analyze the three cases of Eq. (5.6).
Case 1. Assume that both Ji,j and Jy,z are the first segment of their respective
job (i.e., j = z = 1). For a starting segment to be able to execute, it needs to
be (1) released, (2) at least one token of the resource it requests (if it requests
one) must be available and (3) a core must be available for it to execute on. By
definition, rmax

y is an upper bound on (1) and SRmax
y,z (vp) is an upper bound

on (2). Regarding (3), we note that because Jy,1 and Ji,1 are both starting
segments, they both compete for the same available cores. Since Jy,1 has a
higher priority than Ji,j , if both Jy,1 and Ji,j are ready and have their shared
resources available at the same time, then Jy,1 will certainly start before Ji,j .
Therefore, only (1) and (2) decide whether Jy,1 will start to execute before Ji,j .
Thus, if Ji,j did not start before max{rmax

y , SRmax
y,z (vp)} when z = j = 1, then

Jy,1 will be dispatched before Ji,j .
If Ji,j is not a starting segment (i.e., j > 1), then it already has a reserved

core. Therefore, it does not compete with Jy,z for the same core (i.e., we must
account for (3)).
Case 2. If Jy,z is the first segment of the higher priority job Jy, then, by
definition, Amax

1 (vp) is a safe upper bound on (3). Thus, because Jy,z has
higher priority than Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start
to execute before max{Amax

1 (vp), rmax
y , SRmax

y,z (vp)} when z = 1 ∧ j > 1.
Case 3. If Jy,z is not the first segment of the higher priority job Jy, then
job Jy is already released and it already claimed a core. Thus, by definition,
Clmax

y (vp) is an upper bound on (3). Hence, as Jy,z has higher priority than
Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start to execute before
max{Clmax

y (vp), SRmax
y,z (vp)} when z > 1 ∧ j > 1.

Lemma 6 (b). Let Jy,z ∈ {RP ∩ hp(Ji,j)} be a segment that has a higher
priority than the considered segment Ji,j. If Ji,j did not start to execute before
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thy,z(Ji,j), then Jy,z will start before Ji,j in a system with priority-ordered spin
locks.

Proof. We analyze the three cases of Eq. (5.8).
Case 1. Assume that both Ji,j and Jy,z are the first segment of their respective
job (i.e., j = z = 1). For a starting segment to be able to execute, it needs to
be (1) released, (2) at least one token of the resource it requests (if it requests
one) must be available and (3) a core must be available for it to execute on. By
definition, rmax

y is an upper bound on (1) and SRmax
y,z (vp) is an upper bound

on (2). Regarding (3), we note that because Jy,1 and Ji,1 are both starting
segments, they both compete for the same available cores. Since Jy,1 has a
higher priority than Ji,1, if both Jy,1 and Ji,1 are ready and have their shared
resources available at the same time, then Jy,1 will certainly start before Ji,1.
Therefore, only (1) and (2) decide whether Jy,1 will start to execute before Ji,1.
Similarly, we only consider tr = SRmax

y,z (vp) in (2) if Jy,z does not request the
same multi-unit resource as Ji,j (i.e., ηy,z 6= ηi,j), because otherwise it would
mean that they compete for the same resource in which case Jy,1 will certainly
start before Ji,1, due to its higher priority, if they are both ready and a core is
available. If they do share the same resource or any of the segments is resource-
independent, we simply ignore (2) (i.e., set tr = 0). Thus, if Ji,j did not start
before max{rmax

y , tr} when z = j = 1, then Jy,z will be dispatched before Ji,j .
If Ji,j is not a starting segment (i.e., j > 1), then it already has a reserved

core. Therefore, it does not compete with Jy,z for the same core (i.e., we must
account for (3)).
Case 2. If Jy,z is the first segment of the higher priority job Jy, then, by
definition, Amax

1 (vp) is a safe upper bound on (3). Thus, because Jy,z has
higher priority than Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start
to execute before max{Amax

1 (vp), rmax
y , tr} when z = 1 ∧ j > 1.

Case 3. If Jy,z is not the first segment of the higher priority job Jy, then
job Jy is already released and it already claimed a core. Thus, by definition,
Clmax

y (vp) is an upper bound on (3). Hence, as Jy,z has higher priority than
Ji,j , Jy,z will be dispatched before Ji,j if Ji,j did not start to execute before
max{Clmax

y (vp), tr} when z > 1 ∧ j > 1.
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