
A heuristic-guided constraint programming
approach to PRCPSP-ST

Using priority-rules to guide constraint solvers

Codrin Ogreanu1

Supervisor(s): Emir Demirović1, Imko Marijnissen1, Maarten Flippo1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Codrin Ogreanu
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Imko Marijnissen, Maarten Flippo, Julia Olkhovskaia

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

This paper introduces a new approach to the Preemptive Resource Constrained
Project Scheduling Problem with setup times. The method makes use of a Constraint
Optimization Problem solver, which has been modified to use priority-rule-based heuris-
tics in its variable and value selection procedures. An alternative implementation which
uses a combination of a priority-rule heuristic and a domain-independent solver heuris-
tic has also been investigated. Both methods were tested on four well-known problem
sets against a problem-independent solver configuration. Experimental results show a
significant reduction in the time needed to find optimal solutions for the new methods.

1 Introduction
The Resource Constrained Project Scheduling Problem (RCPSP) is a well-known problem
in Operations Research (OR). It involves scheduling a set of activities, subject to resource
and precedence constraints, in order to minimize an objective function, such as the duration
of the project from the start of the first activity to the end of the last, commonly referred
to as the makespan. Due to the problem being NP-Hard [1], and having applications in
project management and industrial processes, it has been widely studied [2].

There are many variants to RCPSP, all representing different constraints or liberties
that are allowed during the scheduling process. One particular extension to RCPSP is
preemptive RCPSP with setup times, or PRCPSP-ST [3, 4]. In this version, activities can
be stopped and resumed at a later point. This can result in more efficient final schedules,
with the caveat that a setup time is required before a preempted activity can be resumed.
An example of pre-emptability allowing for better schedules is splitting up long activities
to fill gaps in the schedule. This extension has largely been ignored until recently, despite
pre-emtability being a feature of many project management tools [5]. It has been argued
that accounting for pre-emption is inevitable, and indeed beneficial in areas such as the
textile industry, or multiprocessor scheduling [6].

Over the past few decades, there have been multiple approaches to the base problem
and its extensions. These include exhaustive search methods, such as boolean satisfiability
solvers [7, 8], Constraint Programming (CP) [9], or branch-and-bound methods [6, 10].
Others focus on heuristic and meta-heuristic algorithms, such as schedule generation schemes
with priority rules [11], genetic algorithms [12, 13], simulated annealing [14], and tabu search
[11]. The state-of-the-art approach to PRCPSP-ST involves alternating between a boolean
satisfiability solver and a genetic scheduling algorithm [8].

However, one approach that has not been fully explored for PRCPSP-ST specifically is
using exhaustive search methods, such as Constraint Programming. This can be attributed
to the significantly larger search space that pre-emptability causes. As a result, hybrid
methods that use both exhaustive search and metaheuristics are often preferred [8]. While
for this purpose, techniques such as genetic algorithms have been the preferred approach,
Ruiz and Stützle argue that even simple heuristics can outperform complex metaheuristics
[15]. In this paper, we show that such heuristics can help quickly guide solvers towards
satisfiable and even optimal solutions, mitigating the issues caused by the increased search
space.

To this end, this paper presents two main contributions. Firstly, the inclusion of domain-
specific information into a constraint solver is investigated. To achieve this, two priority rule
heuristics, Greatest Resource Demand (GRD) and dynamic Earliest Start Time (dEST),
were used. Both are already established in the context of RCPSP [16, 11]. They are used

1



in the value and variable selection procedures of the constraint solver. They are used to
guide the solver into scheduling activities which are more expensive to pre-empt first, which
allows smaller activities to fill in gaps in the schedule. Secondly, the resulting method is
applied to the PRCPSP-ST problem.

We compared our method against a baseline solver configuration, which uses two problem-
independent CP branching heuristics, Variable State Independent Decaying Sum (VSIDS)
[17] and solution-guided Phase Saving [18]. We also introduce an additional method, which
uses VSIDS and dEST as its selection procedures, and which we compare against our two
previous methods. We show that the constraint solver configurations which incorporate
domain-specific information outperform the baseline by multiple metrics.

The outline of the paper is as follows. In section 2, the formulation for the RCPSP
and PRCPSP-ST problems is provided. Section 3 gives an overview of the previous work
on PRCPSP-ST. In section 4, any preliminaries required for the main method are covered.
Section 5 presents the algorithmic details of the heuristics, with the experimental setup
and results being discussed in section 6. The ethical aspects of this research are covered
in section 7. Finally, section 8 contains the concluding remarks of the paper and potential
future work.

2 Problem Description
In section 2.1, we provide a mathematical formulation of RCPSP and PRCPSP-ST. The
latter is discussed in more detail in section 2.2, where the methods by which pre-emptability
can be formulated are covered.

2.1 Formal Description
RCPSP can be formulated as an activity-on-node problem: there is a set of activities
J = {j0, j1, j2, . . . , jn, jn + 1} which need to be scheduled. Activities j0 and jn + 1 are fake
activities that act as the source and sink of the project. There is also a set of activity
pairs P that represents the precedence constraints between activities. Together these sets
form an acyclic graph G(J, P ). Finally, there is a global pool of renewable resources R =
{r1, r2, . . . , rk}.

Each resource has a maximum capacity ar. Every activity j uses ujr resources for the
duration dj it is being processed, for every r ∈ R. For every activity pair (a, b) ∈ P , the
end-time of the first activity must come before the start time of the second activity, i.e.
sa+da ≤ sb. Finally, during every time unit of the project, for any given resource, the total
use must not exceed the capacity:

∀t ∈ M, ∀r ∈ R :
∑
j∈J

i<sj+dj∑
i=sj

δti · ujr ≤ ar

, where M is the makespan of the project, and δti is the Kronecker delta. The goal is to
schedule every activity such that the project makespan is minimized. This is equivalent
to minimizing the finish time of jn+1. A glossary of all of the acronyms used to formally
describe the problem can be seen in table 1.

An example of an RCPSP instance can be seen in fig. 1. The problem has 4 activities
and one resource type with capacity 2. The precedence constraints, activity durations and
resource consumptions are illustrated in fig. 1a. An optimal schedule is constructed in

2



Table 1: Glossary of used acronyms.

Acronyms Definitions

dj Duration of activity j
ar Maximum capacity of resource r
ujr Amount of resource r needed by j
sj Scheduled start time of activity j
ej Scheduled end time of activity j

J Set of all activities
P Set of precedence constraints between activities
R Set of all resources
Sj Set of scheduled activities
M The makespan of the project
Tj The tuple of task slices assigned to activity j

fig. 1c. Without pre-emption, the resource usage cannot be fully optimized, resulting in a
project makespan of 6.

PRCPSP-ST includes the following extensions to the original formulation: each activity
ji may be split at any integer point into two sub-activities, j0i and j1i . If activity j0i has
the duration d0i < di, then j1i has d1i = di − d0i + ts, where ts is the setup-time needed to
resume the preempted activity. Both activities have the same resource requirements as the
original activity. Additionally, a new precedence relationship is introduced, with j0i having
to precede j1i . These sub-activities can, in turn, be split again, as long as the resulting
sub-activities have non-unit durations.

An optimal schedule of the problem in fig. 1 can be seen in fig. 1b. Because activity 1
can be split into activities 1a and 1b, the project makespan can be lowered to 5, even when
accounting for setup times.

(a) Activity graph. Activities 0
and 5 are the mock "source" and
"sink" activities. Arcs indicate
precedence constraints. Dura-
tion and resource constraints for
each activity are located above
the nodes.

(b) Project schedule under
PRCPSP-ST. Activity 1 is pre-
empted, which results in a sched-
ule with a makespan of 5.

(c) Project schedule under
RCPSP. Without pre-emption,
the available resources cannot
be fully utilized, resulting in a
schedule with a makespan of 6

Figure 1: A project instance with 4 activities and a single resource type with a capacity of
2.

3



2.2 Representing Pre-emptability
One possible encoding of the pre-emptability of activities is to represent them as activity
segments [8]. In this representation, every possible sub-activity is enumerated, with setup
times being added to every sub-activity not containing the start of the original activity.
As these setup times are static during the scheduling process, this representation will be
referred to as static encoding. Finally, new precedence relations are drawn between the
sub-activities, such that any valid path reconstructs the original activity. An example can
be seen in fig. 2a.

One advantage of this method is its simplicity; after all of the activities are encoded
this way, the problem can be treated as an RCPSP instance. The downside is the greatly
increased activity count, as every activity generates

∑i≤dj

i=1 i sub-activities. For instances
with long activities, this increase in the search space becomes prohibitive.

Another encoding was introduced by Dr. Emir Demirović, Imko Marijnissen and
Maarten Flippo, and is implemented in the constraint solver used in the experimental setup.
It instead splits every activity into dj task slices, each with a duration of 1, forming a chain
using the added precedence constraints. Whether pre-emption occurs under this encoding
is instead decided during the runtime of the scheduling algorithm: if two sub-activities are
scheduled next to each other, the setup time is ignored. For this reason, the encoding will
be referred to as dynamic encoding. An example of this can be seen in fig. 2b.

While this representation incurs a runtime overhead for deciding if the setup time needs
to be accounted for, it ultimately leads to a significantly smaller search space. For this
reason, this will be the encoding method used for the rest of this paper.

(a) The static activity segment representation
[8]

(b) The dynamic activity segment representa-
tion

Figure 2: An activity with dj = 3 encoded in static and dynamic forms. The setup times
are represented by the filled rectangles preceding activities.

3 Related Work
Blazewicz et al. were the first to prove that the base problem of RCPSP was NP-Hard
[1]. Kaplan was the first to discuss the problem of preemptive RCPSP in her doctoral
dissertation [3], and later the problem of RCPSP with setup times [4]. She formulated the

4



problem of PRCPSP as a dynamic programming one, which incorporated lower and upper
bounds.

Demeulemeester and Herroelen proved that Kaplan had made an incorrect assumption,
which caused her algorithm to miss the optimal solution on certain problem instances [10].
They instead proposed a branch-and-bound procedure that made use of five dominance
rules. Their experiments on the Patterson problem instance set showed a 33-fold increase
in computation time compared to the non-preemptive variant, with minimal makespan
improvements. Because of this, they concluded that preemption had a negligible effect,
even if setup times are not included.

However, it was shown that the Patterson set had two main flaws: the instances were
not consistent, and in particular some instances with the same number of activities greatly
differed in how difficult they were to solve [19]. This made the set unsuitable for experiments,
in particular regarding PRCPSP [5]. This suggested that the previous assumptions about
PRCPSP could have been incorrect, and should be re-evaluated. Indeed, Ballestín et al.
[5], using schedule generation scheme methods showed that preemption led to a significant
decrease in the project makespan, even with a maximum of only one interruption per
activity.

Following this, multiple techniques for optimizing PRCPSP were investigated. Peteghem
and Vanhoucke [12] developed a bi-population genetic algorithm for the multi-mode exten-
sions of PRCPSP to great results. Moukrim et al. [6] introduce a branch-and-price approach,
which includes an antichain linear program [20], a method similar to Constraint Program-
ming. It additionally incorporated an Interval Order Enumeration algorithm, and constraint
propagation. They were able to solve multiple datasets to optimality, as well as improve the
lower bounds for some unsolved instances.

Constraint Programming based approaches have been largely foregone in the context
of PRCPSP. This can be attributed to the large increase in the total search space which
activity pre-emption introduces. Because of this, "pure" CP methods have been primarily
applied to the base problem of RCPSP. As an example, Schutt et al. [9] use a constraint
solver implementing the "cumulative" propagator and VSIDS variable selection heuristic in
the context of RCPSP. They conclude that the obtained results show that their method can
"compete with highly specialised Rcpsp solving approaches".

Heuristic-based approaches to RCPSP come primarily in the form of priority-rule-based
heuristics. These are combined with schedule generation schemes (SGSs) in order to con-
struct efficient schedules. Kolisch and Hartmann [11] provide an overview of different sched-
ule generation schemes, while Klein [16] discusses 25 common priority-rule heuristics used
in RCPSP. However, experimental results show that, by themselves, priority-rule heuristics
cannot compete with approaches such as simulated annealing [11].

As far as the author is aware, the current state of the art for PRPCPS-ST was introduced
by Vanhoucke and Coelho [8]. In their paper, they first introduce five different setup
time types. They then propose an algorithm that, broadly, splits PRCPSP-ST into 2
subproblems: the activity selection problem, and the activity scheduling problem. The
former uses a genetic algorithm to select the optimal activity to schedule at every iteration.
In contrast, the latter uses a boolean satisfiability solver to generate a feasible schedule
using the newly chosen activity. They also conclude that, contrary to prior beliefs, allowing
preemption did not result in unrealistic schedules with many interruptions, due to the
inclusion of setup times. Their technique has shown that combining metaheuristic and
exhaustive search methods can be used to blend the problem-specific search performance of
the former with the ease of modelling of the latter.

5



To summarize, both PRCPSP-ST and RCPSP have seen many approaches since they
were originally introduced. While both purely heuristic and exhaustive search-based meth-
ods have been applied to the problems, combining both currently appears to be the way of
moving forward. This lays the foundation of our contribution, described in section 5, where
we introduce elements of two priority-rule heuristics, GRD and dEST, into a Constraint
Programming solver.

4 Preliminaries
This section introduces the preliminaries necessary for understanding the main method of
this paper. It is structured as follows: In section 4.1, priority rule-based heuristics are
discussed, and the most common ones are presented. Section 4.2 introduces concepts of
constraint optimisation problems and solvers. Finally, how PRCPSP-ST is modelled as a
constraint optimisation problem is covered in section 4.3.

4.1 Priority Rule Heuristics
Priority rules-based heuristics are commonly used in combination with schedule generation
schemes (SGSs). They assign a value p(j) for each activity j ∈ J . If there are multiple
eligible activities during any iteration of the SGS, these heuristics are used to select the one
that maximizes (or minimizes) p(j).

They can primarily be classified into static and dynamic heuristics. For static heuris-
tics, the value p(j) is only calculated at the start of the algorithm and therefore remains
unchanged during the runtime. In the case of dynamic heuristics, p(j) is re-computed after
every iteration. The former are typically very inexpensive to evaluate, while the latter
generally provide a more accurate approximation of the quality of scheduling each activity.

Priority rules can broadly be broken down into four further categories [21, 16]:

• Network-based rules use the information within the overall network, such as activity
durations, or the number of successors and predecessors.

• Critical path-based rules primarily use the earliest or latest start/finish times of ac-
tivities.

• Resource-based rules take the resource consumption and availability of activities into
account.

• Composite rules make use of multiple information types, in order to overcome their
individual weaknesses.

We introduce some common priority rules, and how their p(j) value is computed in
table 2. Klein [16], and Kolisch and Hartmann [11] provide a more complete overview of
other priority rules used with SGSs.

4.2 Constraint Programming
Constraint Programming (CP) is an exhaustive search technique. It involves modelling the
problem as a set of decision variables, whose values represent the state of the search. Each
decision variable has a domain, which contains what values it can be assigned. Constraints
are then placed on these variables, which limit the set of acceptable solutions. During every

6



Table 2: Some common priority rules.

Priority Rule Category Priority Value p(j)

Greatest Rank Positional Weight (GRPW) Network-Based dj +
∑

k∀(j,k)∈P dk
Shortest Processing Time (SPT) Network-Based min dj
Earliest Start Time (EST) Path-Based min ESj

dynamic Earliest Start Time (dEST) Path-Based min ESj(PS)
Latest Finish Time (LFT) Path-Based min LFj

Greatest Resource Demand (GRD) Resource-Based max dj ∗
∑

r∈R ujr

iteration of the solver, the domain of one or multiple decision variables is shrunk, until
all of the domains only contain one possible value, representing a satisfiable assignment.
This solution is recorded, and the solver continues searching for an optimal solution by
re-expanding some of the domains. Finally, the optimality of the assignments is evaluated
using a given objective function over the decision variables.

An important component of CP solvers is the branching strategy. It defines how the
search space of the problem is explored during each iteration of the search procedure.
Branching strategies are composed of variable and value selection strategies. The former
represents which of the unassigned variables should be considered next. The latter instead
decides which value in the variable’s domain should be assigned to it, or how the domain
should be shrunk. These strategies usually utilize problem-independent information, such
as the size of the variable’s domains. This is one strength of CP solvers, as they can easily
be applied to different problem types.

4.3 Constraint Solver Formulation
The decision variables used to encode PRCPSP-ST are as follows:

• The resource usage of each activity is represented as a vector of decision variables, one
for each resource: [R1

j , R
2
j , . . . , R

n
j ]. As the resource usage remains static, this is done

primarily for ease of use with the cumulative constraint [9].

• Each task slice sx ∈ Tj is represented as three decision variables: Sx
j , D

x
j , E

x
j . They

represent the start time, duration, and end time of the slice.

• The task slices sx ∈ T−1
j , where T−1

j refers to the tuple containing every slice of j
except for the last, are assigned another decision variable, Cx

j . It is used to encode
whether slices sx and sx+1 have been scheduled such that they are next to each other,
therefore not incurring any setup penalty.

• The makespan is represented by one additional decision variable M .

Before the constraints used to model the problem can be discussed, one special constraint
must be introduced: Cumulative(S,D,RR, c). This constraint was introduced specifically
for scheduling problems [9]. It takes three vectors S,D,RR representing the start times,
durations, and resource requirements of each activity, and a scalar c representing the total
capacity. It enforces that for any time unit, the total resource use does not exceed the
capacity. This constraint allows for a large part of PRCPSP-ST, and RCPSP in general, to
be easily modelled.

7



The necessary constraints can then be represented as follows:

Sx
j +Dx

j = Ex
j ∀j ∈ J,∀x ∈ Tj (1)

Ex
j ≤ Sx+1

j ∀j ∈ J,∀x ∈ T−1
j (2)

Cx
j ↔ Ex

j = Sx+1
j ∀j ∈ J,∀x ∈ T−1

j (3)

¬Cx
j ↔ Dx+1

j ≥ 1 ∀j ∈ J,∀x ∈ T−1
j (4)

Cumulative(S,D,RR, ar) ∀r ∈ R (5)

En
j ≤ S0

k ∀(j, k) ∈ P (6)

M ≥ En
j ∀j ∈ J (7)

Finally, the objective function of the formulation is simply the minimization of the
makespan:

Obj = min(M) (8)

5 Main Contributions
We present the method we applied to the preemptive resource-constrained project scheduling
problem with setup times. It involves integrating two priority-rule heuristics, Greatest
Resource Demand and dynamic Earliest Starting Time, into the variable and value selection
processes of the solver. In section 5.1 the motivation behind using the two heuristics is
discussed. How these priority rules are implemented in the solver is covered in section 5.2.
Finally, the combination of the VSIDS heuristic with dEST is examined in section 5.3

5.1 GRD/dEST heuristic
The reasoning behind the composite GRD/dEST heuristic is to exploit the pre-emptability
of activities, specific to PRCPSP-ST. After the most demanding activities are scheduled,
there will inevitably be gaps in the schedule. While under normal RCPSP these gaps can
generally not always be filled due to activity durations being either too long or too short,
activity pre-emption can allow us to fit in activities exactly.

Both GRD and dEST, and their priority values, have been shown in table 2. GRD works
by scheduling activities which require the most resources first. dEST prioritizes activities
which can be scheduled first. This changes as activities are scheduled, which makes this
heuristic dynamic.

Our use of dEST differs from ordinary priority-rule-based heuristics in that it is used in
the value selection process, instead of the variable selection one. Instead of selecting which
activity should be next inserted into the schedule, it decides where this activity should be
placed.

The GRD heuristic was included in the variable selection process. By prioritizing the
scheduling of variables with high resource demands, we benefit twofold: the first advantage
is that the gaps left in the schedule can be filled afterwards by "smaller" activities. In
ordinary RCPSP, this is not usually possible, but pre-emptability allows for more flexibility
when completing these gaps. Secondly, more demanding activities are more expensive to
pre-empt, due to the setup time scaling linearly with resource requirements. By prioritizing
them, we avoid this cost as much as possible.

8



One alternative way to prioritize filling in gaps in the schedule, which had been initially
considered instead of dEST, is to compute a map of the remaining resources available
throughout the project. It would then schedule activities such that the remaining resources
would be minimized. Mathematically, its priority value could be described as p(j) = min

t∈D
rrt,

where D is the set of all timeslots when j can be scheduled, and rrt represents the total
amount of resources still available in the time interval t, t+ 1. The value rrt could be
computed in the following way, where δti is the Kronecker delta:

rrt =
∑
r∈R

ar −
∑
j∈Sj

i<sj+dj∑
i=sj

δti · ujr

In practice, however, this method would incur a large computational overhead, as the
resource map would be re-computed for every value selection step. dEST achieves a similar
effect of filling in as many gaps in the schedule as possible while being considerably less
expensive to evaluate.

5.2 Implementation in the constraint solver
As mentioned in section 4.2, constraint solvers use a branching strategy to define how the
search process progresses. In our implementation, the two main components, namely the
variable and value selection strategies, work independently.

In the implementation of the GRD heuristic as the variable selection strategy, only two
decision variable types are considered: the start and end times of the task slices, Sx

j , E
x
j . This

is because once both the start and end of a slice is assigned, the duration can be inferred by
the solver automatically. During the selection process, we consider the unassigned variables
and select the one containing the largest total resource requirement. While this incurs a
runtime overhead, it is lessened by pre-computing the total resource requirements

∑
r∈R ujr

for each task slice.
The value selection process using dEST is dynamic. One advantage provided by the

use of CP solvers is that the lower and upper bounds of the decision variables are updated
regardless, and so selecting the smallest value can be done with almost no overhead. By
prioritizing the smallest available values for the start and end times, the number of pre-
emptions is also kept to a minimum.

5.3 Integration with VSIDS
VSIDS is a recent problem-independent variable selection heuristic, normally used in SAT
solvers [22]. The main idea is to maintain counters of many times each variable was assigned,
while periodically dividing them by a constant. Then, variables with the highest counters
are selected. Essentially, VSIDS can infer which variables are the most important to assign
first due to the large number of conflicts they have recently generated.

Because of the ease with which variable and value selection strategies can be combined
into different branching strategies, we incorporated VSIDS with dEST into the VS/dEST
strategy. The rationale was to utilize the performance of VSIDS, while also making use of
domain-specific information.

9



Table 3: Datasets statistics. #Inst, #Act, #Res and Dur refer to the number of instances,
activities, types of resources and the median duration of the activities, respectively.

Dataset #Inst #Act #Res Dur Makespan Bounds

Lower Upper

J30 480 30 4 5 34 129
J60 480 60 4 6 44 154
J90 480 90 4 6 69 174
J120 600 120 4 5 66 234

6 Experimental Results
In section 6.1, the main characteristics of our experimental setup are discussed, such as the
solver configurations, and the metrics used to quantify their performance. The obtained
results are covered in section 6.2 .

6.1 Experimental Setup
Datasets: Our algorithm was tested against various instances from four well-known

datasets: J30, J60, J90 and J120 [23]. The number of activities in the instances ranges from
30 to 120. These datasets have all been previously used in recent approaches to PRCPSP-
ST [8, 6]. The characteristics of these datasets are shown in table 3.

Metrics: Multiple metrics were used to evaluate the performance of the solver. The
first, %DEV, measures the percentage deviation of the makespan our solution found from
the makespan of the optimal solution for the problem instance. Since the used optimals
are for non-preemptive RCPSP, it is possible to obtain makespans that are lower than the
known optimals. It was computed according to %DEV = (Mopt −Mobs)/Mopt ∗ 100, where
Mobs is the recorded makespan, and Mopt is the optimal makespan. This means that positive
values of %DEV show an improvement over the optimal makespan. Negative values occur
when the solver could only find a satisfiable assignment within the set timeout. A related
metric is #Imp, which measures the number of instances for which a positive %DEV was
found.

Another metric, %RU, represents the resource utilization of the schedule. That is,
for every time step we divide the used resources by the total resources, and sum up the
results. Because our method is designed to minimize unused resources, this metric can help
verify that there exists a correlation between maximized resource usage and lowered project
makespans.

The number of pre-emptions #PRE was used to quantify how efficiently the different
methods made use of pre-emptability, as this number is directly proportional to the setup
cost incurred by the schedule. It is also desirable in practice to maintain a realistic number
of pre-emptions, such as in the case of project management.

Finally, we measure how quickly each method reached either the optimal solution or
the best satisfiable assignment it could find. This is done through two metrics: the time
T spent in the solver, measured in seconds, and the number of decisions made by the con-
straint solver, #DC. The latter allows for a more objective evaluation of how efficiently
the solver explores the search space, independent of the quality of the heuristics’ actual

10



implementations.

Missing Optimal Solutions: Due to the hardness of RCPSP, some of the used in-
stances do not have any known optimal solutions, only known upper and lower bounds for
the makespan. These cases were ignored from the main analysis, due to the possibility of
skewing data. Tables for where the upper and lower bounds were instead considered as
optimals can be found in appendix A.

It is also possible for the different methods to not find optimal or satisfiable assignments
for the same instances. The main analysis considers the results from all instances, as it pro-
vides a more complete overview of the performance of the different methods. Tables where
the experiments had the same outcomes for the same instances can be found in appendix A.

Runtime: Due to the nature of PRCPSP-ST, the search space is many times larger
when compared to the base problem of RCPSP. In order to gather experimental data even
for prohibitively large instances, a timeout of 10 minutes was added to the solver. Metrics
were collected every time a new solution was found by the solver.

All computational experiments were run using the DelftBlue supercomputer [24], on
an Intel Xeon E5-6248R 24C 3.0GHz processor. The Constraint Programming solver the
heuristics were implemented on, Pumpkin, was developed by Dr. Emir Demirović, Imko
Marijnissen and Maarten Flippo.

Setup times: For all experiments, a static setup time of 1 was used. While previous
works on PRCPSP-ST use non-integer setup times [8], most constraint solvers, including
Pumpkin, do not directly allow the use of continuous variables. Larger setup times were
not considered, as the ratio between the average activity duration and the setup penalty
generally made pre-emption impractical.

Algorithms: Three main constraint solver configurations were tested: the first, serving
as the baseline, is the unmodified solver, which uses VSIDS and solution-guided phase saving
(VS/SG). The second replaces both heuristics with the GRD/dEST composite heuristic
method introduced in section 5.1. Finally, the third configuration uses VS/dEST, introduced
in section 5.3.

6.2 Results
The metrics were computed separately for the cases where the optimal solution was found,
and those where only a satisfiable assignment was reached. In both cases, the means for
the %DEV, %RU, #Imp, T, #PRE and #DC metrics can be seen in table 4 and table 5,
respectively. The tables also include the number of instances for which an optimal /
satisfiable assignment was reached.

Only the final results for each instance were considered in the metric mean calculations,
in order to prevent skewed results due to one of the methods finding more intermediary
solutions compared to the rest. The complete intermediary results can be accessed at the
code repository associated with this paper [25].

An overview of the number of decisions each method required to find either an optimal
solution or the first satisfiable assignment, can be seen in fig. 3a and fig. 3b. Similar
histograms plotted against the time needed to find these assignments yielded similar results
and can be seen in appendix B.

11



Table 4: The means of the metrics when an optimal solution was found, considered per
dataset and over all datasets. The final column contains the total number of optimal
solutions found for each group. Significant differences between methods are marked.

Dataset Method Metrics

%DEV %RU #Imp #DC T #PRE #Ins

J30
VS/SG 0.65 48.81 107 161050 23.87 12 404

GRD/dEST 0.54 44.52 79 30676 14.10 2 366
VS/dEST 0.64 46.53 106 11685 6.42 2 407

J60
VS/SG 0.31 48.40 38 618776 156.44 28 342

GRD/dEST 0.28 44.16 31 26202 13.09 5 333
VS/dEST 0.30 46.24 39 6279 6.61 7 362

J90
VS/SG 0.11 46.47 10 890968 286.16 42 207

GRD/dEST 0.09 43.28 13 17385 16.54 8 313
VS/dEST 0.12 46.52 21 8079 13.06 13 361

J120
VS/SG 0.40 56.66 4 975005 366.55 65 40

GRD/dEST 0.06 51.43 2 65982 50.99 22 113
VS/dEST 0.18 57.42 5 22998 45.07 35 176

All
VS/SG 0.42 48.49 159 503642 138.01 26 993

GRD/dEST 0.31 44.76 125 29200 18.19 6 1125
VS/dEST 0.36 47.91 171 10714 13.52 11 1306

In general, from the results obtained for %DEV, it can be observed that pre-emptability
does lead to more efficient schedules. While the improvement is smaller compared to that
obtained in previous studies [8], this can be attributed to the larger setup time relative to
the average activity durations shown in table 3. VS/SG is able to reach larger makespan
improvements, especially for the J120 instances, despite finding fewer optimal solutions.
VS/SG also generated more resource-efficient schedules.

(a) Number of decisions to find an optimal solu-
tion.

(b) Number of decisions to find a satisfiable as-
signment.

Figure 3: An overview of the methods’ progress over the

12



Table 5: The means of the metrics when only a satisfiable assignment was found, considered
per dataset and over all datasets. The final column contains the total number of satisfiable
assignments found for each group.

Dataset Method Metrics

%DEV %RU #Imp #DC T #PRE #Ins

J30
VS/SG -1.24 66.19 19 512743 233.61 6 76

GRD/dEST -5.00 62.11 11 247915 171.53 4 95
VS/dEST -1.47 66.54 12 290754 259.14 5 73

J60
VS/SG -39.24 66.40 12 951112 461.58 35 103

GRD/dEST -8.58 64.25 2 215589 226.93 13 73
VS/dEST -6.17 70.32 2 203985 347.98 21 118

J90
VS/SG -304.06 38.64 4 1169319 541.88 69 84

GRD/dEST -7.10 61.96 1 219438 278.74 22 46
VS/dEST -7.62 72.29 2 141516 367.29 43 119

J120
VS/SG -617.67 30.02 0 1554786 566.68 90 61

GRD/dEST -9.82 61.05 2 274184 294.86 32 84
VS/dEST -6.41 72.37 0 113001 363.67 66 424

All
VS/SG -148.01 52.30 35 1018511 448.71 48 324

GRD/dEST -7.01 62.31 16 243005 236.42 17 298
VS/dEST -4.82 71.45 16 149929 351.34 49 734

Three significant improvements of both GRD/dEST and VS/dEST over the baseline can
be identified: #DC and T are significantly lower, and the number of instances solved to
optimality is higher. This is also the case for finding the first satisfiable assignment, as can
be seen in table 5. Notably, VS/dEST was able to find at least one satisfiable assignment
within the time limit for all 2040 instances.

Finally, the histogram plots in fig. 4 show that both GRD/dEST and VS/SG find
optimal, or satisfiable, solutions relatively early into the solving process. They then continue
to find solutions at a relatively uniform pace. In contrast, VS/SG makes ≈105 decisions
before reaching any optimal or satisfiable assignments.

7 Responsible Research
We present the steps taken to ensure that the research carried out for this paper was con-
ducted responsibly. In section 7.1, information about the datasets used in the Experimental
Results section is presented, while in section 7.2 the steps taken to ensure the reproducibility
of the results are laid out.

7.1 Dataset Availability
All four of the problem instances used in the Experimental Results section are publicly
available to download from PSPLIB [26]. They do not contain any personal information, as
they were automatically generated using the standard project generator ProGen [19]. The
raw data collected from the solver used to compute the metrics in section 6.2 are available
at the GitHub repository associated with this paper [25].

13



7.2 Reproducibility
The constraint programming solver used in this paper, Pumpkin, is not publicly available
at the time of writing. Once it is published, the Pumpkin code containing the GRD and
LW selection strategies used in this paper will then be available on the "prcpsp_rp" branch
of the repository containing the solver. The scripts used to parse and process the data
collected from the solver are available at the previously mentioned GitHub repository.

8 Conclusion and Future Work
In this paper, the inclusion of PRCPSP-ST-specific information into a Constraint Program-
ming solver was examined. This was done through the use of two simple heuristics, GRD
and dEST. They were compared against two state-of-the-art problem-independent heuris-
tics for CP solvers, VSIDS and Solution-guided phase saving. Our results have shown that,
especially during the value selection process, scheduling activities at the earliest possible
time can lead to a significantly more efficient search procedure. This can be attributed
to two main factors: by its nature, PRCPSP-ST has a larger time window during which
activities may be scheduled (horizon) compared to ordinary RCPSP. This is because the
solver assumes that, in the worst case, all activities are constantly pre-empted. Secondly, as
activities can be pre-empted, it becomes much more unlikely for large gaps in the schedule
to form.

There are many potential avenues for future work:

• As mentioned earlier in this paper, five different types of setup times which are
common in practice have been identified [8]. Our recommendation for modelling these
fractional setup times is to scale both the activity durations and the setup times by
a factor of 5. This should allow for how dynamic setup time durations influence the
search process, while not making the search space prohibitively large.

• Examining fig. 3a, it can be seen that VS/SG takes longer to begin finding satisfiable
assignments, but following this, it is quickly able to begin finding optimal solutions.
This may indicate that VS/SG may be more suitable if a small number of instances
can be evaluated with longer timeouts. This could be explored by running the three
methods on a smaller subset of instances, with a timeout of 20 to 30 minutes.

• More priority-rule-based heuristics could be considered. In his paper on bidirectional
planning [16], Klein identified 23 other priority rules commonly used in RCPSP. It
would be worthwhile to investigate if a combination of these can guide the search
process of CP solvers more efficiently.

References
[1] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to

resource constraints: classification and complexity. Discrete Applied Mathemat-
ics, 5(1):11–24, January 1983. URL: https://www.sciencedirect.com/science/
article/pii/0166218X83900124, doi:10.1016/0166-218X(83)90012-4.

[2] Robert Pellerin, Nathalie Perrier, and François Berthaut. A survey of hybrid
metaheuristics for the resource-constrained project scheduling problem. European

14

https://www.sciencedirect.com/science/article/pii/0166218X83900124
https://www.sciencedirect.com/science/article/pii/0166218X83900124
https://doi.org/10.1016/0166-218X(83)90012-4


Journal of Operational Research, 280(2):395–416, January 2020. URL: https://
www.sciencedirect.com/science/article/pii/S0377221719300980, doi:10.1016/
j.ejor.2019.01.063.

[3] Lori Ann Kaplan. Resource-constrained project scheduling with preemption of jobs.
University of Michigan, 1988. URL: https://search.proquest.com/openview/
b5c8d82606761df056bf9f8427f9e8b3/1?pq-origsite=gscholar&cbl=18750&diss=
y.

[4] Lori Ann Kaplan. Resource-constrained project scheduling with setup times.
1990. ISSN: ,. URL: http://pascal-francis.inist.fr/vibad/index.php?action=
getRecordDetail&idt=11890205.

[5] Francisco Ballestín, Vicente Valls, and Sacramento Quintanilla. Pre-emption in
resource-constrained project scheduling. European Journal of Operational Re-
search, 189(3):1136–1152, September 2008. URL: https://www.sciencedirect.com/
science/article/pii/S0377221707005905, doi:10.1016/j.ejor.2006.07.052.

[6] Aziz Moukrim, Alain Quilliot, and Hélène Toussaint. An effective branch-and-
price algorithm for the Preemptive Resource Constrained Project Scheduling Problem
based on minimal Interval Order Enumeration. European Journal of Operational Re-
search, 244(2):360–368, July 2015. URL: https://www.sciencedirect.com/science/
article/pii/S0377221714010558, doi:10.1016/j.ejor.2014.12.037.

[7] José Coelho and Mario Vanhoucke. Multi-mode resource-constrained project schedul-
ing using RCPSP and SAT solvers. European Journal of Operational Research,
213(1):73–82, August 2011. URL: https://www.sciencedirect.com/science/
article/pii/S037722171100230X, doi:10.1016/j.ejor.2011.03.019.

[8] Mario Vanhoucke and José Coelho. Resource-constrained project scheduling
with activity splitting and setup times. Computers & Operations Research,
109:230–249, September 2019. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0305054819301170, doi:10.1016/j.cor.2019.05.004.

[9] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Explaining
the cumulative propagator. Constraints, 16(3):250–282, July 2011. doi:10.1007/
s10601-010-9103-2.

[10] Erik L. Demeulemeester and Willy S. Herroelen. An efficient optimal solu-
tion procedure for the preemptive resource-constrained project scheduling prob-
lem. European Journal of Operational Research, 90(2):334–348, April 1996.
URL: https://linkinghub.elsevier.com/retrieve/pii/0377221795003584, doi:
10.1016/0377-2217(95)00358-4.

[11] Rainer Kolisch and Sönke Hartmann. Heuristic Algorithms for the Resource-
Constrained Project Scheduling Problem: Classification and Computational Analysis.
In Jan Wglarz, editor, Project Scheduling: Recent Models, Algorithms and Applications,
pages 147–178. Springer US, Boston, MA, 1999. doi:10.1007/978-1-4615-5533-9_7.

[12] Vincent Van Peteghem and Mario Vanhoucke. A genetic algorithm for the preemp-
tive and non-preemptive multi-mode resource-constrained project scheduling prob-
lem. European Journal of Operational Research, 201(2):409–418, March 2010. URL:

15

https://www.sciencedirect.com/science/article/pii/S0377221719300980
https://www.sciencedirect.com/science/article/pii/S0377221719300980
https://doi.org/10.1016/j.ejor.2019.01.063
https://doi.org/10.1016/j.ejor.2019.01.063
https://search.proquest.com/openview/b5c8d82606761df056bf9f8427f9e8b3/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/b5c8d82606761df056bf9f8427f9e8b3/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/b5c8d82606761df056bf9f8427f9e8b3/1?pq-origsite=gscholar&cbl=18750&diss=y
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=11890205
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=11890205
https://www.sciencedirect.com/science/article/pii/S0377221707005905
https://www.sciencedirect.com/science/article/pii/S0377221707005905
https://doi.org/10.1016/j.ejor.2006.07.052
https://www.sciencedirect.com/science/article/pii/S0377221714010558
https://www.sciencedirect.com/science/article/pii/S0377221714010558
https://doi.org/10.1016/j.ejor.2014.12.037
https://www.sciencedirect.com/science/article/pii/S037722171100230X
https://www.sciencedirect.com/science/article/pii/S037722171100230X
https://doi.org/10.1016/j.ejor.2011.03.019
https://linkinghub.elsevier.com/retrieve/pii/S0305054819301170
https://linkinghub.elsevier.com/retrieve/pii/S0305054819301170
https://doi.org/10.1016/j.cor.2019.05.004
https://doi.org/10.1007/s10601-010-9103-2
https://doi.org/10.1007/s10601-010-9103-2
https://linkinghub.elsevier.com/retrieve/pii/0377221795003584
https://doi.org/10.1016/0377-2217(95)00358-4
https://doi.org/10.1016/0377-2217(95)00358-4
https://doi.org/10.1007/978-1-4615-5533-9_7


https://www.sciencedirect.com/science/article/pii/S037722170900191X, doi:
10.1016/j.ejor.2009.03.034.

[13] Sönke Hartmann. A competitive genetic algorithm for resource-constrained
project scheduling. Naval Research Logistics (NRL), 45(7):733–750, 1998.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291520-
6750%28199810%2945%3A7%3C733%3A%3AAID-NAV5%3E3.0.CO%3B2-
C. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%
291520-6750%28199810%2945%3A7%3C733%3A%3AAID-NAV5%3E3.0.CO%3B2-C,
doi:10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C.

[14] K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm for
the resource-constrained project scheduling problem and its multiple mode version.
European Journal of Operational Research, 149(2):268–281, September 2003. URL:
https://www.sciencedirect.com/science/article/pii/S0377221702007610, doi:
10.1016/S0377-2217(02)00761-0.

[15] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European Journal of Operational
Research, 177(3):2033–2049, March 2007. URL: https://www.sciencedirect.com/
science/article/pii/S0377221705008507, doi:10.1016/j.ejor.2005.12.009.

[16] Robert Klein. Bidirectional planning: improving priority rule-based heuristics for
scheduling resource-constrained projects. European Journal of Operational Research,
127(3):619–638, December 2000. URL: https://www.sciencedirect.com/science/
article/pii/S0377221799003471, doi:10.1016/S0377-2217(99)00347-1.

[17] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Chapter 4. Conflict-Driven Clause
Learning SAT Solvers. In Armin Biere, Marijn Heule, Hans Van Maaren, and Toby
Walsh, editors, Frontiers in Artificial Intelligence and Applications. IOS Press, February
2021. URL: http://ebooks.iospress.nl/doi/10.3233/FAIA200987, doi:10.3233/
FAIA200987.

[18] Emir Demirovic, Geoffrey Chu, and Peter J. Stuckey. Solution-Based Phase Saving
for CP: A Value-Selection Heuristic to Simulate Local Search Behavior in Complete
Solvers. In John Hooker, editor, Principles and Practice of Constraint Programming,
volume 11008, pages 99–108. Springer International Publishing, Cham, 2018. Series
Title: Lecture Notes in Computer Science. URL: http://link.springer.com/10.
1007/978-3-319-98334-9_7, doi:10.1007/978-3-319-98334-9_7.

[19] Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characterization and Generation
of a General Class of Resource-Constrained Project Scheduling Problems. Management
Science, 41(10):1693–1703, October 1995. Publisher: INFORMS. URL: https://
pubsonline.informs.org/doi/abs/10.1287/mnsc.41.10.1693, doi:10.1287/mnsc.
41.10.1693.

[20] Aristide Mingozzi, Vittorio Maniezzo, Salvatore Ricciardelli, and Lucio Bianco. An
Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based
on a New Mathematical Formulation. Management Science, 44(5):714–729, May
1998. URL: https://pubsonline.informs.org/doi/10.1287/mnsc.44.5.714, doi:
10.1287/mnsc.44.5.714.

16

https://www.sciencedirect.com/science/article/pii/S037722170900191X
https://doi.org/10.1016/j.ejor.2009.03.034
https://doi.org/10.1016/j.ejor.2009.03.034
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291520-6750%28199810%2945%3A7%3C733%3A%3AAID-NAV5%3E3.0.CO%3B2-C
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291520-6750%28199810%2945%3A7%3C733%3A%3AAID-NAV5%3E3.0.CO%3B2-C
https://doi.org/10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C
https://www.sciencedirect.com/science/article/pii/S0377221702007610
https://doi.org/10.1016/S0377-2217(02)00761-0
https://doi.org/10.1016/S0377-2217(02)00761-0
https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://doi.org/10.1016/j.ejor.2005.12.009
https://www.sciencedirect.com/science/article/pii/S0377221799003471
https://www.sciencedirect.com/science/article/pii/S0377221799003471
https://doi.org/10.1016/S0377-2217(99)00347-1
http://ebooks.iospress.nl/doi/10.3233/FAIA200987
https://doi.org/10.3233/FAIA200987
https://doi.org/10.3233/FAIA200987
http://link.springer.com/10.1007/978-3-319-98334-9_7
http://link.springer.com/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.41.10.1693
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.41.10.1693
https://doi.org/10.1287/mnsc.41.10.1693
https://doi.org/10.1287/mnsc.41.10.1693
https://pubsonline.informs.org/doi/10.1287/mnsc.44.5.714
https://doi.org/10.1287/mnsc.44.5.714
https://doi.org/10.1287/mnsc.44.5.714


[21] R. Alvares-Valdes and J. M. Tamarit. Heuristic algorithms for resource-constrained
project scheduling: a review and an empirical analysis, 1989. Pages: 113134 Publication
Title: Advances in project scheduling.

[22] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient SAT solver. In Proceedings of the 38th annual
Design Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, June
2001. Association for Computing Machinery. URL: https://dl.acm.org/doi/10.
1145/378239.379017, doi:10.1145/378239.379017.

[23] Mario Vanhoucke, José Coelho, and Jordy Batselier. An overview of project data for
integrated project management and control. The Journal of Modern Project Manage-
ment, 3(3):158–158, 2016. URL: https://journalmodernpm.com/manuscript/index.
php/jmpm/article/download/218/217.

[24] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase
2), 2024. tex.ark: ark:/44463/DelftBluePhase2. URL: https://www.tudelft.nl/
dhpc/ark:/44463/DelftBluePhase2.

[25] Codrin Ogreanu. PRCPSP-ST_cp, June 2024. URL: https://github.com/cogreanu/
PRCPSP-ST_CP.

[26] The Library PSPLIB. URL: https://www.om-db.wi.tum.de/psplib/library.html.

17

https://dl.acm.org/doi/10.1145/378239.379017
https://dl.acm.org/doi/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://journalmodernpm.com/manuscript/index.php/jmpm/article/download/218/217
https://journalmodernpm.com/manuscript/index.php/jmpm/article/download/218/217
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://github.com/cogreanu/PRCPSP-ST_CP
https://github.com/cogreanu/PRCPSP-ST_CP
https://www.om-db.wi.tum.de/psplib/library.html


A Additional Tables

Table 6: The means of the metrics when an optimal result was found, adjusted to consider
only cases where all methods found optimal solutions for the same instances.

Dataset Method Metrics

%DEV %RU #Imp #DC T #PRE #Ins

J30
VS/SG 0.54 47.15 79 155036 19.83 13 366

GRD/dEST 0.54 44.52 79 30676 14.10 2 366
VS/dEST 0.54 44.71 79 2741 1.25 2 366

J60
VS/SG 0.29 46.91 31 621940 150.47 28 318

GRD/dEST 0.29 43.92 31 27184 13.51 5 318
VS/dEST 0.29 44.25 31 1548 1.59 6 318

J90
VS/SG 0.12 44.40 10 899965 280.22 42 187

GRD/dEST 0.12 41.48 10 12925 10.19 7 187
VS/dEST 0.12 41.85 10 1705 2.14 10 187

J120
VS/SG 0.17 54.01 2 1023394 345.56 65 30

GRD/dEST 0.17 50.53 2 40543 27.75 22 30
VS/dEST 0.17 51.54 2 8557 10.90 30 30

All
VS/SG 0.36 46.72 122 503347 130.83 26 901

GRD/dEST 0.36 43.88 122 26088 13.54 5 901
VS/dEST 0.36 44.18 122 2298 1.87 6 901

Table 7: The means of the metrics when only satisfiable assignments were found, adjusted to
consider only cases where all methods found satisfiable assignments for the same instances.

Dataset Method Metrics

%DEV %RU #Imp #DC T #PRE #Ins

J30
VS/SG -1.05 67.24 15 533721 235.13 6 53

GRD/dEST -7.00 63.13 2 232997 183.43 4 53
VS/dEST -1.27 66.58 10 281736 238.09 4 53

J60
VS/SG -23.30 67.81 8 990642 442.06 30 46

GRD/dEST -9.74 64.90 1 199002 241.39 14 46
VS/dEST -4.73 68.04 2 222890 321.13 17 46

J90
VS/SG -181.16 52.09 3 1300706 500.25 58 14

GRD/dEST -9.49 62.92 0 262850 313.45 23 14
VS/dEST -3.99 66.41 2 246482 363.47 32 14

J120
VS/SG -396.72 40.74 0 1707920 551.48 84 13

GRD/dEST -14.52 61.04 1 361882 323.17 30 13
VS/dEST -5.32 64.25 0 210585 360.55 36 13

All
VS/SG -45.96 63.03 26 906901 372.77 29 126

GRD/dEST -8.58 63.54 4 237201 233.45 13 126
VS/dEST -2.97 66.85 14 248995 294.97 15 126

18



Table 8: The means of the metrics when only satisfiable assignments were found, adjusted
to take the upper bound of the makespans as the optimal solution.

Dataset Method Metrics

%DEV %RU #Imp #DC T #PRE #Ins

J30
VS/SG -1.24 66.19 19 512743 233.61 6 76

GRD/dEST -5.00 62.11 11 247915 171.53 4 95
VS/dEST -1.47 66.54 12 290754 259.14 5 73

J60
VS/SG -42.02 66.40 12 951112 461.58 35 103

GRD/dEST -9.12 64.25 2 215589 226.93 13 73
VS/dEST -9.13 70.32 2 203985 347.98 21 118

J90
VS/SG -269.65 38.64 4 1169319 541.88 69 84

GRD/dEST -8.29 61.96 1 219438 278.74 22 46
VS/dEST -15.48 72.29 2 141516 367.29 43 119

J120
VS/SG -545.36 30.02 0 1554786 566.68 90 61

GRD/dEST -10.83 61.05 2 274184 294.86 32 84
VS/dEST -18.36 72.37 0 113001 363.67 66 424

All
VS/SG -143.39 52.30 35 1018511 448.71 48 324

GRD/dEST -7.66 62.31 16 243005 236.42 17 298
VS/dEST -12.37 71.45 16 149929 351.34 49 734

Table 9: The means of the metrics when only satisfiable assignments were found, adjusted
to take the lower bound of the makespans as the optimal solution.

Dataset Method Metrics

%DEV %RU #Imp #DC T #PRE #Ins

J30
VS/SG -1.24 66.19 19 512743 233.61 6 76

GRD/dEST -5.00 62.11 11 247915 171.53 4 95
VS/dEST -1.47 66.54 12 290754 259.14 5 73

J60
VS/SG -44.07 66.40 12 951112 461.58 35 103

GRD/dEST -9.69 64.25 2 215589 226.93 13 73
VS/dEST -11.33 70.32 2 203985 347.98 21 118

J90
VS/SG -272.45 38.64 4 1169319 541.88 69 84

GRD/dEST -9.34 61.96 1 219438 278.74 22 46
VS/dEST -20.34 72.29 2 141516 367.29 43 119

J120
VS/SG -546.86 30.02 0 1554786 566.68 90 61

GRD/dEST -11.74 61.05 2 274184 294.86 32 84
VS/dEST -23.28 72.37 0 113001 363.67 66 424

All
VS/SG -145.02 52.30 35 1018511 448.71 48 324

GRD/dEST -8.16 62.31 16 243005 236.42 17 298
VS/dEST -15.74 71.45 16 149929 351.34 49 734

19



B Additional Figures

(a) Time to find an optimal solution. (b) Time to find a satisfiable assignment.

Figure 4: An overview of the methods’ progress over the duration of the solving process.

20


	Introduction
	Problem Description
	Formal Description
	Representing Pre-emptability

	Related Work
	Preliminaries
	Priority Rule Heuristics
	Constraint Programming
	Constraint Solver Formulation

	Main Contributions
	GRD/dEST heuristic
	Implementation in the constraint solver
	Integration with VSIDS

	Experimental Results
	Experimental Setup
	Results

	Responsible Research
	Dataset Availability
	Reproducibility

	Conclusion and Future Work
	Additional Tables
	Additional Figures

