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Abstract

In storage and communication systems, noise is not the only disturbance dur-
ing data transmission. Sometimes the error performance can also be seriously
degraded by offset and/or gain mismatch. This paper derives a maximum like-
lihood decoding criterion using intersection distance for channels with uniform
noise and offset distribution in the absence of gain mismatch. Under this frame-
work, zero word error rate performance is achievable for various decoding criteria
by different standard deviation constraints on noise and offset. Our results show
that the intersection distance decoding criterion incorporates the advantageous
perks from two pre-existing methods: the immunity to offset mismatch that high-
lights Pearson distance decoding as well as the higher noise resistance brought
by Euclidean distance decoding.

1 Introduction

We consider transmitting a codeword x = (x1, x2, . . . , xn) from a codebook S, where
n, the length of x, is a positive integer. It is assumed that the received vector

r = a(x + v) + b1

is hampered not only by noise v = (v1, v2, . . . , vn) but also by gain a and/or offset
b, where 1 is the real all-one vector (1, 1, . . . , 1) of length n. The channels with gain
and/or offset mismatch can commonly be found in storage and communication systems.
Some examples are optical discs with fingerprints and scratches which may result in
gain and offset variations of the retrieved signal [1], and charge leakage induced cell
voltage shift in flash memory [2].

Traditional Euclidean distance decoding has been shown poor performances under
such mismatches. Pearson distance decoding was proposed as an alternative to counter
the effects of gain and/or offset mismatch [3]. Blackburn [4] investigated a maximum
likelihood (ML) criterion for the channel with Gaussian noise and unknown gain and
offset mismatch. In some applications, it is reasonable to assume a priori knowledge
of the offset distribution. In [5], ML decision criteria are derived for Gaussian noise
channels assuming the Gaussian or uniform distribution for the offset in the absence
of gain mismatch. For Gaussian offset, the ML criterion turns out to be a weighted
average of the Euclidean distance and the modified Pearson distance.

In this paper, we assume the absence of gain mismatch (a = 1), i.e.,

r = x + v + b1,

as well as the uniform distribution of both the noise and the offset. For this channel
model, we propose a maximum likelihood decoding criterion based on intersection
distance (ISD), that possesses a property for countering both noise and offset mismatch.
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Essentially, we combine the immunity to offset mismatch of Pearson distance decoding
and the higher noise resistance of Euclidean distance decoding. We further show that,
in this channel, zero word error rate (WER) performance is achievable by a small
standard deviation of noise and/or offset.

The remainder of this paper is organized as follows. We start in Section 2 with a
discussion of the prior art of decoding criteria. In Section 3, the ISD decoding criterion
is presented. Zero WER performance is analyzed for Euclidean decoding, Pearson
decoding, and intersection decoding in Section 4. Finally, we draw our conclusions in
Section 5.

2 Preliminaries

For the noise vector v = (v1, ..., vn), assume the vi are independently uniformly
distributed with mean 0 and variance σ2 > 0, i.e.,

φ(v) =
n∏
i=1

φ(vi) =
1

(2σ
√

3)
n , − σ

√
3 < vi < σ

√
3. (1)

We assume that the offset b has a uniform probability density function ζ with mean
µ and variance β2 > 0. Since a receiver can subtract µ1 from r if the expected offset
value is not equal to zero, we may assume µ = 0 without loss of generality, which we
will do throughout the rest of this paper. The probability density function of the offset
is

ζ(b) =
1

2β
√

3
, − β

√
3 < b < β

√
3. (2)

We use a codebook S which is a finite subset of Rn. The receiver decodes the
received vector r to a codeword which optimizes a certain criterion. Two well-known
criteria are based on the (squared) Euclidean distance and the Pearson distance.

The classical squared Euclidean distance between the received vector r and a code-
word x̂ ∈ S is defined as

δE(r, x̂) =
n∑
i=1

(ri − x̂i)2. (3)

A Euclidean decoder chooses a codeword minimizing this distance. It is known to be
optimal with regard to handling Gaussian noise.

The Pearson distance measure is used in situations which require resistance towards
both offset and/or gain mismatch. For any vector u ∈ Rn, let ū = (1/n)

∑n
i=1 ui denote

the average symbol value, and let σu = (
∑n

i=1 (ui − ū)2)
1/2

denote the unnormalized
symbol standard deviation. The Pearson distance between the received vector r and
codewords x̂ ∈ S is defined as

δP (r, x̂) = 1− ρr,x̂ = 1−

n∑
i=1

(ri − r̄)(x̂i − ¯̂x)

σrσx̂
, (4)

where ρr,x̂ is the well-known Pearson correlation coefficient. A Pearson decoder chooses
a codeword minimizing this distance. As shown in [3], when there is no gain mismatch,
i.e., a = 1, a modified Pearson distance criterion is obtained by removing the division
by σx̂ and the irrelevant components r̄ and σr in the optimization process, i.e.,

δ′P (r, x̂) =
n∑
i=1

(ri − x̂i + ¯̂x)
2
. (5)
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3 Maximum Intersection Distance Decoding

In this section, we present a ML decoding criterion for channels with uniform noise
and offset mismatch. For a codeword x̂ = (x̂1, ..., x̂n) ∈ S, we define its noise environ-
ment

Ux̂ = {y = (y1, ..., yn) ∈ Rn : x̂i − σ
√

3 < yi < x̂i + σ
√

3}.
For a vector r ∈ Rn, we write

Lr = {r− b1 : b ∈ (−β
√

3, β
√

3)}

for the line segment centered at r with length 2β
√

3 and direction 1.
In order to achieve ML decoding, we need to choose the codeword of maximum

probability given the received vector. Assuming all codewords are equally likely, this
is equivalent to maximizing the probability density value of the received vector r given
the candidate codeword x̂. From the channel model it easily follows that we should
thus maximize ∫ β

√
3

−β
√
3

φ(r− x̂− b1)ζ(b)db. (6)

Because of the uniform nature of both φ and ζ, this is tantamount to choosing a
codeword x̂ for which the noise environment Ux̂ has the largest intersection with the
line segment Lr. Therefore, define the intersection distance ISD(r, x̂) between r and
x̂ as the length of the intersection between the noise environment Ux̂ and the line
segment Lr. The most likely candidate codeword xo for a received vector has the
largest intersection distance, that is

xo = arg max
x̂∈S

ISD(r, x̂). (7)

Note that a point r− t1 of Lr is in Ux̂ if and only if t satisfies{
ri − x̂i − σ

√
3 < t < ri − x̂i + σ

√
3,∀i = 1, ..., n,

−β
√

3 < t < β
√

3.
(8)

Defining
t0(r, x̂) = min

(
{ri − x̂i + σ

√
3 |i = 1, ..., n} ∪ {β

√
3}
)
,

t1(r, x̂) = max
(
{ri − x̂i − σ

√
3 |i = 1, ..., n} ∪ {−β

√
3}
)
,

(9)

we can express the intersection distance between r and x̂ as

ISD(r, x̂) =
√
n(max{t0(r, x̂)− t1(r, x̂), 0})2. (10)

Note that maximizing ISD(r, x̂) is equivalent to maximizing the simplified measure

ISD′(r, x̂) = max{t0(r, x̂)− t1(r, x̂), 0}. (11)

In Figure 1, we give simulation results for WER of the code

S1 = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
of length n = 3 and size 4, with different detectors and various values of the offset
standard deviation β, while fixing the noise standard deviation σ = 0.15. Note that
the Pearson decoder has stable performances because of its inherent resistance to offset
mismatch, while performances of the Euclidean decoder get worse for increasing values
of β. Further, note that in case neither the noise nor the offset is strongly dominating
the other, the intersection distance based decoder is clearly outperforming both the
Euclidean decoder and the Pearson decoder. For small values of β, the performance
curves of the intersection decoder and the Euclidean decoder are gone, which suggests
zero WER. This will be further investigated in the next section.
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Figure 1: Simulated WER of Euclidean decoding, Pearson decoding, and intersection
decoding for the code S1 without gain mismatch (a = 1), uniform offset mismatch with
standard deviation β, and uniform noise with standard deviation σ = 0.15.

4 Zero WER Analysis

Since the noise and the offset are both assumed to be uniformly distributed, it is
clear that a WER of zero will be achieved if σ and β are sufficiently small. In this
section we present bounds on σ and β guaranteeing zero WER for Euclidean, Pearson,
and intersection decoders.

4.1 Euclidean Decoder

When the sum of the noise and offset standard deviations is sufficiently small, the
Euclidean decoder can achieve zero WER performance, as shown in the following result.

Theorem 1. If

σ + β ≤ min
s,c∈S,s6=c


n∑
i=1

(si − ci)2

2
√

3
n∑
i=1

|si − ci|

 , (12)

then the Euclidean decoder achieves a WER equal to zero.

Proof. Assume that x ∈ S is sent and r = x + v + b1 is received. Then, for all
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codewords x̂ 6= x, it holds that

δE(r, x̂)− δE(r,x)

=
n∑
i=1

(ri − x̂i)2 −
n∑
i=1

(ri − xi)2

=
n∑
i=1

(ri − xi − x̂i + xi)
2 −

n∑
i=1

(ri − xi)2

=
n∑
i=1

(x̂i − xi)2 − 2
n∑
i=1

(x̂i − xi)(ri − xi)

=
n∑
i=1

(x̂i − xi)2 − 2
n∑
i=1

(x̂i − xi)(vi + b)

≥ 2(σ + β)
√

3
n∑
i=1

|x̂i − xi| − 2
n∑
i=1

|x̂i − xi| |vi + b|

= 2
n∑
i=1

|x̂i − xi| (σ
√

3 + β
√

3− |vi + b|)

> 0,

where the first inequality follows from (12) and the last inequality from the fact that
|vi + b| ≤ |vi| + |b| < σ

√
3 + β

√
3 for all i. Hence, if decoding is based on minimizing

(3), the transmitted codeword is always chosen as the decoding result, leading to a
WER equal to zero.

4.2 Pearson Decoder

Since Pearson distance decoding features its immunity to offset mismatch, zero
WER performance only requires a limited value of σ, as shown in the next theorem.

Theorem 2. If

σ < min
s,c∈S,s6=c


n∑
i=1

(si − s̄− ci + c̄)2

n−1
n

4
√

3
n∑
i=1

|si − s̄− ci + c̄|

 , (13)

then the Pearson decoder achieves a WER equal to zero.

Proof. Assume that x ∈ S is sent and r = x + v + b1 is received. Then, for all
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codewords x̂ 6= x, it holds that

δ′P (r, x̂)− δ′P (r,x)

=
n∑
i=1

(ri − x̂i + ¯̂x)2 −
n∑
i=1

(ri − xi + x̄)2

=
n∑
i=1

(ri − x̂i + ¯̂x− r̄)2 −
n∑
i=1

(ri − xi + x̄− r̄)2

=
n∑
i=1

(ri − xi + x̄− r̄ + xi − x̄− x̂i + ¯̂x)2 −
n∑
i=1

(ri − xi + x̄− r̄)2

=
n∑
i=1

(xi − x̄− x̂i + ¯̂x)2 + 2
n∑
i=1

(xi − x̄− x̂i + ¯̂x)(ri − xi + x̄− r̄)

=
n∑
i=1

(xi − x̄− x̂i + ¯̂x)2 + 2
n∑
i=1

(xi − x̄− x̂i + ¯̂x)(xi + vi + b− xi + x̄− x̄− v̄ − b)

=
n∑
i=1

(xi − x̄− x̂i + ¯̂x)2 + 2
n∑
i=1

(xi − x̄− x̂i + ¯̂x)(vi − v̄)

> n−1
n

4σ
√

3
n∑
i=1

∣∣xi − x̄− x̂i + ¯̂x
∣∣− 2

n∑
i=1

∣∣xi − x̄− x̂i + ¯̂x
∣∣ |vi − v̄|

= 2
n∑
i=1

∣∣xi − x̄− x̂i + ¯̂x
∣∣ (n−1

n
2σ
√

3− |vi − v̄|)

≥ 0.

where the first inequality follows from (13) and the last inequality from the fact that
|vi − v̄| < n−1

n
2σ
√

3 for all i. Hence, if decoding is based on minimizing (5), the
transmitted codeword is always chosen as the decoding result, leading to a WER equal
to zero.

4.3 Intersection Decoder

In this subsection, we show that zero WER is achieved for the intersection decoder
in the case that σ or σ + β is sufficiently small.

Theorem 3. If

σ ≤ min
s,c∈S,s6=c

 max
1≤i,j≤n

{(si − ci)− (sj − cj)}

4
√

3

 (14)

or

σ + β ≤ min
s,c∈S,s6=c

 max
i=1,...,n

(|si − ci|)

2
√

3

 (15)

then the intersection decoder achieves a WER equal to zero.

Proof. Assume that x ∈ S is sent and r = x + v + b1 is received. We will show that if
(14) or (15) holds, then ISD′(r, x̂) = 0 for all codewords x̂ 6= x. First of all, note that

t0(r, x̂)− t1(r, x̂)

= min
(
{ri − x̂i + σ

√
3 |i = 1, . . . , n} ∪ {β

√
3}
)

−max
(
{ri − x̂i − σ

√
3 |i = 1, . . . , n} ∪ {−β

√
3}
)

= min
(
{ri − x̂i + σ

√
3 |i = 1, . . . , n} ∪ {β

√
3}
)

+ min
(
{−(ri − x̂i) + σ

√
3 |i = 1, . . . , n} ∪ {β

√
3}
)

= min({2β
√

3} ∪ { min
i=1,...,n

{− |ri − x̂i|}+ σ
√

3 + β
√

3}

∪{ min
1≤i,j≤n

{(ri − x̂i)− (rj − x̂j)}+ 2σ
√

3}).

(16)
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Next, we will show that if (14) or (15) holds, this expression is negative whenever
x̂ 6= x.

If (14) holds, then

min
1≤i,j≤n

{(ri − x̂i)− (rj − x̂j)}+ 2σ
√

3

= min
1≤i,j≤n

{(ri − x̂i)− (rj − x̂j)} − 2σ
√

3 + 4σ
√

3

< min
1≤i,j≤n

{(ri − x̂i)− (rj − x̂j)− (vi − vj)}+ 4σ
√

3

= min
1≤i,j≤n

{[(ri − x̂i)− (rj − x̂j)]− [(ri − xi − b)− (rj − xj − b)]}+ 4σ
√

3

= min
1≤i,j≤n

{(xi − x̂i)− (xj − x̂j)}+ 4σ
√

3

= − max
1≤i,j≤n

{(x̂i − xi)− (x̂j − xj)}+ 4σ
√

3

≤ 0.

(17)

where the first inequality follows from the fact that vi − vj ≤ |vi| + |vj| < 2σ
√

3 and
the second inequality from (14).

If (15) holds, then

min
i=1,...,n

{− |ri − x̂i|}+ σ
√

3 + β
√

3

= min
i=1,...,n

{− |ri − x̂i|} − σ
√

3− β
√

3 + 2
√

3(σ + β)

< min
i=1,...,n

{− |ri − x̂i| − |vi + b|}+ 2
√

3(σ + β)

= min
i=1,...,n

{− |ri − x̂i| − |ri − xi|}+ 2
√

3(σ + β)

≤ min
i=1,...,n

{− |xi − x̂i|}+ 2
√

3(σ + β)

= − max
i=1,...,n

{|xi − x̂i|}+ 2
√

3(σ + β)

≤ 0

(18)

where the first inequality follows from the fact that |vi + b| ≤ |vi| + |b| < σ
√

3 + β
√

3
and the last inequality from (15).

Combining (11), (16), (17), and (18), we find that indeed ISD′(r, x̂) = 0 for all
codewords x̂ 6= x. By definition, ISD′(r,x) > 0. This implies that if decoding is based
on maximizing (11), the transmitted codeword is always chosen as the decoding result,
leading to a WER equal to zero.

Simulated WER with various values of σ and β for the example code S1 from the
previous section are shown in Fig.2. On one hand, we find for β = 0.2 and β = 0.15
that zero WER is achieved when σ < 1/(4

√
3) = 0.144, which agrees with the bound

from (14). On the other hand, we find for β = 0.1 and β = 0.05 that zero WER is
achieved when σ + β < 1/(2

√
3) = 0.288, which agrees with the bound from (15).

5 Conclusion

In this paper, maximum likelihood decoding for channels with uniform noise and
offset mismatch has been presented. This method, which is based on the intersection
distance, combines the immunity to offset mismatch of Pearson distance decoding and
the higher noise resistance of Euclidean distance decoding. It has been shown that
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Figure 2: Simulated WER of intersection decoding for the code S1 in the case no gain
mismatch (a = 1), uniform offset mismatch with standard deviation β, and uniform
noise with standard deviation σ.

for sufficiently small standard deviations of the noise and/or offset zero WER can be
achieved.

For future work, we are interested in investigating maximum likelihood decoding
for noise channels with known distribution of both offset and gain mismatch.
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