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Abstract—Smart Grid scheduling problems are characterized
by quickly changing situations and multiple external factors that
cannot be controlled. Most smart grid research applies stochastic
models over the total power consumption of a household or
system to find a schedule that achieves an optimization, a
balancing, or constraint satisfaction. While these solutions are
able to efficiently capture the unpredictability in the problem,
they only make use of a limited amount of information. These
models are not yet able to make flawless decisions, so we try
to optimize this by using a model that is able to use more
information. A different scheduling model that is able to do so is
the Temporal Constraint Satisfaction Problem (TCSP). However,
the information that this model needs requires substantial effort
to obtain in smart grid environments, especially for academic
purposes. For this reason, research into the benefits of doing so
is scarce.

In this paper we attempt to use this model with detailed
environmental information, specifically the activation of electric
devices in households, to better optimize a motivating smart grid
scheduling problem. We find that problems with characteristics
typical in smart grids are difficult to express as TCSP. We discuss
these characteristics and provide the concept of non-binary
conditions and conditional preference to solve these difficulties and
provide more expressive conditional reasoning about optimality
in TCSP.

1. INTRODUCTION

Smart grid research consists of managing the electricity
grid to retain a balance in the production and consumption of
electricity. To this end, most smart grid problems deal with
finding a schedule that achieves such a balance, based on
temporal information about the electricity grid.

The scheduling problems in smart grids are typically com-
plicated by large fluctuations and sudden changes in the
environment, as well as the unpredictable (human) behaviour
of multiple stakeholders in the electricity grid.

Most research on such scheduling problems uses probabilis-
tic models to decide a planning that is able to foresee and adapt
to these situations. This approach is able to model the envi-
ronment in terms of stochastic distributions, therefore reducing
the complexity of all its components. This results in only using
global, high-level information, such as total consumption and
production patterns. While this is effective, a natural question
that arises is whether more detailed information about the
environment can be utilized to achieve a better optimization.

A model that is able to capture and reason about detailed
temporal information to produce a schedule is the Temporal
Constraint Satisfaction Problem (TCSP), often referred to as
Temporal Constraint Satisfaction Network (TCSN), because

of its graphical representation. The model is commonly used
in AI task scheduling, because it can guarantee correctness
(safety) of a schedule, even with complex constraints or on-
the-fly changes to the schedule or its constraints.

In this paper we look into the usefulness of temporal net-
works for smart grid applications, by modelling a motivating
smart grid scheduling problem as a temporal network. We dis-
cuss the various extensions and what is needed to sufficiently
capture the information about the scheduling problem.

In section 2, we provide an overview of the various temporal
problem classes and discuss the expressive powers they each
provide. In section 3, we describe the motivating smart grid
scheduling problem, and we show how its various aspects can
be modelled in section 4. Section 5 discusses the benefits and
weaknesses of the different approaches that we can take, and
section 6 shows what extensions can be defined to improve
the model.

2. BACKGROUND

The Temporal Constraint Satisfaction Problem (TCSP) [1]
is a popular model for verifying constraints in a temporal plan-
ning system. It is a pair 〈T , C〉, where T is a set of variables
called time-points that denote an instantaneous event occurring
at a certain time, and C is a set of binary constraints, that can
be described as a set of intervals that bounds the difference
between two time-points. The model can be described and
solved as a graph, where T are vertices and C are edges, in
which case it is often called a Temporal Constraint Network
(TCN), and the two terminologies are used interchangeably.
If an assignment exists to all time-points in T that respects
all constraints in C, the network is considered consistent. The
model’s strength lies herein, that any solution is guaranteed to
satisfy all constraints. In practical application, this means that
the model can be used to verify the feasibility of a planning.

2.1. Types of Temporal Constraints

The constraints in TCSP can be described as a set of
intervals, such that the difference between two time-points Xj

and Xi is within one of these intervals, see Figure 1a.

{I1, ..., In} = {[a1, b1], . . . , [an, bn]}
(ai ≤ Xj −Xi ≤ b1) ∨ · · · ∨ (an ≤ Xj −Xi ≤ bn)

The Simple Temporal Problem (STP / STN) [1] is a well-
studied subclass that allows for at most one constraint interval
between two nodes, see Figure 1b. Such an interval is called
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(c) Disjunctive temporal con-
straint between multiple nodes.
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(d) A contingent (simple con-
straint) link. j is assigned by
Nature.

Figure 1: Temporal constraint types.

simple. Checking the consistency of an STN can be done in
polynomial time [1], in contrast to that of a TCN, which is
known to be NP-Complete [1]. We give the formal definition
of an STP in Definition 1.

Definition 1 (STP [1]). A Simple Temporal Problem (STP)
is a pair 〈T , C〉, where T is a set of variables in R called
time-points and C is a set of binary constraints, specifying a
single interval [a, b] between two variables Y,X ∈ T , so that
a ≤ Y −X ≤ b. An STP is consistent if an assignment to all
variables in T exists that satisfies all constraints in C.

A third type of constraint is the disjunctive constraint. These
constraints are not binary, but n-ary. They effectively consist
of disjunctions of simple constraints, allowing the network to
express such things as ‘either Xi and Xj are constrained, or
Xk and Xl are’. The example in Figure 1c shows such a
constraint for two edges. In general, a disjunctive constraint
is described as follows.

(a1 ≤ Xj1 −Xi1 ≤ b1) ∨ · · · ∨ (an ≤ Xjn −Xin ≤ bn)

TCSPs containing such constraints are called Disjunctive
Temporal Problems (DTP). DTNs are consistent if at least
one disjunct can be satisfied for each constraint. They are NP-
Hard, but have practical applications.

The STP class has been extended in various orthogonal
ways to enhance its expressiveness, because many practical
problems deal with more complex situations than a definitive
set of events and completely controllable relations. This has
led to various properties, which will be discussed below.
Similar extensions have been defined for DTP and the general
TCSP, which we do not discuss in detail.

2.2. Conditionality

Not always should all events be executed. In some situa-
tions, the choice for executing some events depends on an
external factor, called an observation. The observation is a
boolean proposition that describes some state, and is only ob-
served at some time point, described by an observation node.
For instance, there might be two routes to some destination,
but the shorter route might be blocked. This cannot be known

P?
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(a) An observation node P?.
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(b) A decision node D!.

Figure 2: Two concepts of conditionality

before departure, but only observed when arriving at the junc-
tion of the two routes. The event for taking the shorter route
should only be executed if it is not blocked, and vice versa.
Solving the network results in an assignment of time values,
but only to the set of events that are executed. Observation
nodes are denoted by a question mark, as seen in Figure 2a.
In this example, i and its corresponding constraint are only
considered if p holds, while instead j and its corresponding
constraint are considered when ¬p holds. A ‘�’ symbol is
used to denote an empty label, meaning that the variable is
always executed. In this text we omit the label entirely if it is
empty.

Definition 2 (Observation node). An observation node is a
variable in T that, at the moment of its execution, uncovers
the truth value of some proposition p. The value of p is decided
by an external factor (Nature).

Definition 3 (Label). A label is a conjunction of literals
(including negations) that is attached to a variable v ∈ T .
v should only be executed if the label’s value becomes true.

Definition 4 (CSTP). A Conditional Simple Temporal Prob-
lem is a tuple 〈T , C,P, L,O〉, where T and C are defined as in
an STP, but T contains a subset of observation nodes To ⊆ T .
Furthermore, P is a finite set of propositions and L and O are
functions.
L : V → P ∗ is a function assigning a label to each node in
T .
O : P → To is a bijective function associating a proposition
with an observation node, so that O(A) is the node that
provides the truth-value for proposition A.

When conditionality is introduced, the concept of con-
sistency changes slightly. In STP, consistency means that a
valid assignment to all time-points exists, but this is not the
case in CSTP. The Agent only executes those variables that
have a valid label. Instead, a network is consistent if, given
a certain knowledge about the uncontrollable conditions, a
valid assignment exists to all remaining variables, leading
to three notions of consistency: Strong, Weak, and Dynamic
consistency. [2]

2.2.1) Strong consistency (SC): When a single assignment
exists that makes the network consistent for all possible out-
comes of the observations, the network is strongly consistent.
In other words, the network can be solved with one schedule
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without knowing anything beforehand. This is a very strong
property, and few networks are strongly consistent in realistic
settings.

2.2.2) Weak consistency (WC): When a valid assignment
exists for every possible situation, but the assignment is
different per situation, the network is weakly consistent. In
other words, if the uncertain parts of the network are fully
known beforehand, a valid schedule can be determined. This
property has unpractical requirements, because the point of
uncertainty is generally that these values are not known.

2.2.3) Dynamic consistency (DC): Since neither hard nor
weak consistency captures the ability to find a solution in
a practical environment, a third type of consistency is con-
sidered. A network is dynamically consistent if, during the
execution of the schedule, at each point t in time there exists
a valid schedule for the remaining network. The agent is able
to use the history of all events and observations happening
before t, but has no knowledge over the future events. This
is common in realistic settings, because the Agent is usually
able to adapt its behaviour during execution.

2.3. Decisions

Following conditionality property, the model has also been
extended with decisions, a property that is also known as
controllable conditionality. Whereas the observations are un-
covered by the Agent outside of its control, controllable
observations, or decision nodes, let the Agent itself decide a
value for propositions. They are represented by an exclamation
mark, as seen in Figure 2b.

The addition of such observations and decisions, and execu-
tion of events based on these conditions, combines the schedul-
ing aspects of STPs with planning. This is a particularly
strong extension, because the executability of the schedule is
considered while making planning choices.

Definition 5 (Decision node). A decision node is a variable
in T that, at the moment of its execution, sets the truth value
for some proposition p. In contrast to observation nodes, the
value of p is decided by the Agent.

2.4. Uncertainty

While the STP assumes that every event’s time value is
freely assignable, this is often not the case in reality. An
example of this is commuting time: while the departure time
can be decided by the commuter, the exact arrival time
depends on external factors (Nature), such as the amount
of traffic on the journey. The arrival time is considered a
contingent event. Its time value will be decided by a contingent
relation with some other non-contingent event (such as the
departure time). Contingent links are graphically represented
by open arrow heads, as shown in Figure 1d. Their definition
is given in Definition 6. The concept of strong, weak and
dynamic consistency is renamed to strong, weak and dynamic
controllability when the network contains uncertainty.

Definition 6 (Contingent link). A contingent link is an uncon-
trollable constraint of the form (A, `, u, C), where A,C ∈ T ,
but C is not freely assignable. [`, u] denotes the interval that
the constraint is bounded by, such that C − A ∈ [`, u] and
` > 0.

Definition 7 (STPU [2]). A Simple Temporal Problem with
Uncertainty is a tuple 〈T , C,L〉 where T and C are defined as
in an STP, T is further partitioned into two disjunctive sets Ta

and Tc representing assignable variables and contingent vari-
ables. L is a set of contingent links, as defined in Definition 6.

2.5. Preferences

The constraints in TCSP are very strict: they may not be
violated even slightly. However, many temporal relations are
not so strictly defined. While the exact time difference between
two events has a desired value, deviating slightly from this
ideal value is not impossible, and can be allowed. An example
of such a situation is the constraint of taking medication ten
minutes after exercise. While ten minutes is optimal, nine or
eleven minutes is not much worse.

To express such softer constraints, and preference of certain
time points over others, a preference function is introduced,
that maps the range of time values in the constraint interval to
a preference value. Solving the STP is then not only concerned
with finding a valid assignment, but also with achieving the
highest possible total preference value.

Definition 8 (Soft constraint). A soft constraint is a temporal
constraint 〈I, f〉, where I = [l, u] is an interval, restricting
the difference between two time-points as in the classical
constraint definition, and f : I → A is a preference function,
mapping each value in I to a preference value a ∈ A. A has
a total order that is imposed by a semiring.

2.6. Existing Extensions

The above properties have been captured in various class
definitions, that combine one or multiple properties. Liter-
ature has taken orthogonal paths with conditional and non-
conditional variants of the temporal problem. Defining classes
is not always a simple matter of adding the specific relations or
nodes to the model, although it can be, because the interplay
between them sometimes conflicts. See Table I for a summary
of the currently defined classes that implement these four
properties.

2.7. Solvability and practical application

Although we do not go into detail about all aspects of the
solvability of the classes and the complexity thereof, it is
relevant to know the general complexity of the various classes.
The complexities are given in Table I as well. For the classes
that differentiate between SC, WC and DC, we talk about
dynamic consistency only, because this is the most valuable
and practically useful property. Also, this is the property that
we require in our motivating problem in section 3.

The earlier branch of classes, that lack conditionality, have
been shown to be solvable in polynomial time. The relatively
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Name Conditionality Uncertainty Decisions Preferences Complexity
TCSP [1] - - - - NP-Hard [1]
DTP [1] - - - - NP-Hard [1] [3]

STP/STN [1] - - - - P [1]
STPP [4] - - - Yes P [4]
STPU [2] - Yes - - P [5] [6]

STPPU [7] - Yes - Yes P [7]
CSTP [8] Yes - - - EXP [9] [10]

CSTPP [11] Yes - - Yes NP-Hard [12]
CSTNU [13] Yes Yes - - EXP-Complete [14]
CSTND [15] Yes - Yes - EXP-Complete [14]

CSTNUD [16] Yes Yes Yes - EXP-Complete [14]

Table I: Defined problem classes and their properties.

newer branch of extensions is based on CTP (and CSTP for
its analogue with STP) [8]. In two orthogonal directions, CTP
has been extended with preferences, and with uncertainty. The
latter has been further extended with decisions. While practical
algorithms exist for CSTP and CSTPP, there are currently no
reasonably tractable solutions for CSTNU, CSTND, and CST-
NUD. There exist a sound, but not complete propagation-based
algorithm based on [10] for CSTNU [13]. These classes have
also been translated into a Timed-Game Automaton (TGA)
[17], where dynamic consistency/controllability is translated to
a state reachability problem. While this is the only sound and
complete solution for these classes, this problem is extremely
difficult as well.

3. MOTIVATING PROBLEM

The motivating problem is an optimization of a photo-
voltaic (PV) system. In shared-roof housing, one such system
is used to provide multiple households with solar energy. Be-
cause a PV system can generally only supply one household at
a time, the generated electricity must be distributed somehow
by time-sharing the PV system. One way to do this, is to
provide every household with an (approximately) equal share
of solar energy, calculated over the course of a year.

While this approach is reasonable, it does not encompass the
optimality of self-consumption. Self-consumption is the ratio
of produced solar energy that is instantaneously consumed by
the connected household, thereby preventing feed-in into the
electricity grid. A higher rate of self-consumption is beneficial
to the household, because it is cheaper to use the electricity
than to sell it to the energy provider, as well as to the network
operator, because the reduced feed-in causes less strain on the
peak capacity of the grid.

self-consumption =
min(Eused, Egenerated)

Egenerated

In a single-household setting, the only way to manipulate
the self-consumption is by adapting the consumption pattern
of the household to the PV production, or by using batteries to
store excess solar energy during peaks in production for later
consumption. In a multi-household setting, we have the extra
option of switching the PV system to another household, that
is consuming more energy and could therefore utilize more of
the solar energy. The times-sharing schedule for the PV system

can exploit this to optimize the self-consumption without any
investment costs or adapted consumption behaviour.

The motivating problem thus is to find a schedule that
equally shares the produced solar energy among the house-
holds, while achieving the highest possible self-consumption.

To aid the optimization, monitoring devices have been in-
stalled on major energy consumers in each household, such as
whitegood appliances like washers and dryers, and heatpumps.
These devices can detect when a device turns on or off, and
measure the power drawn during an active cycle of each
appliance. Furthermore, these measurements are aggregated in
a central system that has a live communication with the PV
system and can signal a command to switch its connection in
real time.

Definition 9 (Problem instance). The problem input is defined
by the tuple 〈D,C,E〉, where D is the set of devices, C is
the set of households, called channels. Each device belongs to
exactly one channel as defined by C(di) = cj where di ∈ D
and cj ∈ C. E is the set of activation and deactivation events,
generically called device events. We describe the events for
device i ∈ D at some time t as oni,t and offi,t respectively,
and omit the timestamp in the remaining text when it is
unambiguous. We call the currently connected channel the
active channel. The active channel (cact) at some time t is
described by the function act(t). We call the moment at which
the active channel changes a switch, and again implicitly
denote a switch at time t by st. Because a slight cost is
incurred for every switch, the system should only switch if
a significant increase can be achieved.

The solution is a schedule of switches, each describing a
time and a channel.

4. MODELLING

We now discuss various approaches to modelling the prob-
lem. We present two network models, and multiple ways to
reason about the optimality of a switch decision. We postpone
the comparison of the different options to section 5.

It becomes clear that we need variables (nodes) for the
device events and the switching events, since these can be
represented as instantaneous points in time. We also define a
start node X0, representing absolute time.
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4.1. Structure of the problem

The problem scenario changes only when a device event
occurs. Such an event can therefore lead to a switch. This
results in a sequence of two steps that is repeated.

1) A device event happens.
2) The scheduler decides to switch

Because of a finite space and the online nature of the problem,
we use a sliding window to look ahead a limited amount
of time. We define the window size as [0,MAX], making a
constraint with this interval effectively unconstrained. We now
describe various approaches to modelling these two steps.

4.2. Modelling device events

We first present two representations for the general structure
of the network, which is heavily influenced by the way device
events are modelled. The first model uses conditionality to
capture the possibility of an event happening, and the second
does not, instead attempting to be as simple as possible.

4.2.1) Conditional model: The relation between oni and offi
is a well-defined contingent link: there is some estimate of the
duration of the activation cycle, but the assignment of offi is
not under the Agent’s control. However, oni is not controllable
either. Furthermore, nothing accurate can be said about its
constraint with regards to another time-point, or which of the
devices is expected first.

We can capture the lack of control over the time-point with
yet another contingent link, this time one with the interval
[0,MAX]. We can use an observation node D? to model the
uncertainty of which device activates next. Figure 3a shows
an example of this.

X0 D?
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[d]
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[d]

on2

[?]
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[?]

onn

[¬d]

offn

[¬d]
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[0
, 0
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[30, 90]

[0, 0] [30, 90]

[0, 0]

[120, 150]

(a) One observation for n de-
vice events cannot capture all
options.
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D?1
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. . .
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[d1]

onn

[dn]

. . .
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. . .

[0,
M
AX

]

[0, 0] [30, 90]

[0,M
AX

]

[0, 0] [120, 150]

[0, 0]

(b) Using multiple observation
nodes.

Figure 3: Modelling the device activation events

The observed proposition is a boolean value, meaning that
it cannot express |D| different observations. To solve this, we
can instead define a separate proposition for each device. We
observe these at the same instant, and set all propositions to
false, except for the device that activated. This network is
shown in Figure 3b.

Lastly, we must repeat this for the next device event, as
shown in Figure 4a. The next event can occur in two ways. It
can occur (1) after offi or (2) before offi (but still after oni).
In the first case, the solution is trivial: we simply connect offi
to the next dummy node X1 and repeat the graph structure.
In the second case, we get overlap between the structures,
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M
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(a) Conditional model including simultaneously active devices.
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[0, 0]

[0,
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(b) Non-conditional model using sliding window.

Figure 4: Two ways of modelling device activations.

because the device from the first loop is still active, and its
deactivation time-point has not been executed yet. Using d1 as
an example, we solve this by introducing a negative constraint
between from offi to X1. In the worst case, a new device
activates immediately after the first. X1 is then executed to
enter the second repetition, but we still have to wait at most
90 minutes for d1 to turn off. In the best case, offi = X1,
meaning that no device turned on during the activation cycle
of d1.

4.2.2) Non-conditional model: A second approach, which will
prove to have some merit, is to not consider any conditionality.
We instead assume that every device event occurs at some
point, however far away that may be in the future. If it happens
outside the sliding window, that is not a problem, because the
window will progress and eventually reach the event.

We do not create a repetition of activation cycles, but instead
describe all events that are expected within the horizon. Each
path from X0 to MAX describes the activation cycles of one
device and is independent of the other paths.

4.3. Modelling channel switch decisions

To enable reasoning about switching, we introduce ex-
tra time-points that denote the switch. We first make some
observations about how the device events affect the choice
for active channel. Each device activation increases the self-
consumption on its respective channel. This means that the
only resulting action (other than not doing anything) of a
device activation might be to switch to that channel. Inversely,
when a device turns off, the self-consumption of its respective
channel decreases, and a resulting action can be to switch
to another channel. Note that because not doing anything is
always an option, the deactivation of a device can effectively
cause a switch to any channel.

Following a greedy logic, we see that a switch should
always occur immediately after observing a device event. We
therefore add switch nodes exactly after the device events.
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(a) Switch decision nodes (S!) in one event cycle of the conditional
model.
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(b) Unconstrained switch nodes in the non-conditional model.

Figure 5: Adding sets of |C| switch nodes to both models.

For the conditional model we use decision nodes, as intro-
duced in Definition 5. We quickly find that we need a separate
decision node for each channel, just as with the observation
nodes for device events. For sake of readability, we denote the
set of |C| decision nodes at each location with just one node
S!. The result is shown in Figure 5a.

For the non-conditional model, we do not have the concept
of a decision. Instead, we must pre-define the decision in each
node, so that executing a node is equivalent to switching to its
associated channel. We get, similar to the set of decision nodes
in Figure 5a, a set of switch nodes that each represent a switch
to one channel. However, contrary to the conditional model,
we cannot put these sets after every device event, because in
a non-conditional STP, all nodes are executed. What we then
get is an unconstrained (unconnected) set of nodes, as shown
in Figure 5b. While this is valid, we lose some control, since
we no longer have [0, 0] constraints between a device event
and a switch. We will need to add other logic that reasons
about their execution time.

4.4. Decision-making

While the moment of switching can be greedily decided,
the less trivial question is what channel to switch to. This
choice depends on a lot of factors, but it is not temporally
constrained: the system can switch to any channel at any time.
Three major factors that influence the optimal decision are (1)
the PV production forecast, (2) the energy consumption in
each channel, and (3) the balance of the energy distribution
between the channels.

We now discuss two possible ways of deciding an optimal
choice and apply these to both models.

4.4.1) Temporal constraint relations: The three factors de-
scribed above are not temporal constraints, but they can be
described as a function over time. Based on the PV production
forecast, we can estimate how much time a channel needs to

be active to catch up with the energy distribution. Based on
the active devices, we can estimate for each household how
long this consumption will stay active.

We can use this temporal information to create temporal
constraints in the network. This is most clear in the non-
conditional model, since we can constrain the switch to one
channel by the time difference with some other channel.

In the conditional model, we have already fixed the time
values for the switches, making this approach less feasible.
However, we can still apply this logic across the event cy-
cles. What we get are constraints that cross the event cycle
boundary. In the next cycle, the decision for a channel can
then only be made if the constraints with previous decisions
are satisfiable. To prevent the network from always becoming
inconsistent, this approach requires the notion of conditional
constraints, which was introduced in the framework of the
streamlined CSTN [18] and is a rather simple variation of the
original CSTN model. In this framework the edges are labelled
instead of the nodes. If so desired, the original node-labelled
definition can be used, but this requires some dummy nodes
to express such a conditional constraint.

4.4.2) Preference function: As described in Definition 8, a
soft constraint contains a preference function that can describe
better and worse (temporal) assignments. We would like a
similar concept, but instead for assigning a truth value to a
decision proposition.

We can use the sliding window concept to choose to ‘delay’
a switch node. The channels that are not preferred get a low
preference value in the near future, but a higher preference
in the later future. The most preferred channel gets a high
preference value at t = 0. The general idea of such functions
is shown in Figure 6.
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(a) Preference to switch later.
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(b) Preference to switch now.

Figure 6: Temporal preference functions that determine a
switch decision.

This approach only works when using the non-conditional
model, because the execution moment of those switch nodes
is not fixed yet. In the conditional model, we execute all
switch decision nodes, so reasoning about their temporal
execution does not work. We can, however, still use temporal
preference to differentiate our choices. Rather than applying
a preference function on the decision nodes, we introduce an
extra node after each switch decision. This ‘profit’ node is
only executed if the corresponding channel was activated, that
is: the corresponding proposition is true (and the propositions
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for other switches are not). We can then apply the preference
function for that channel to this profit node. We demonstrate
such a system for one set of three decision nodes.
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Figure 7: Profit nodes (pi) for one set of switch decisions after
one event (on1). Each has a preference function pf(t).

5. COMPARISON & LIMITATIONS

We now compare the various options, which are summarized
in Table II, along with the class that implements the necessary
concepts to define them. As can be seen, no class actually
implements conditions and preferences, making this option
impossible.

Device event model Decision-making Class Complexity
Non-conditional Temporal constraints STPU P
Non-conditional Preference function STPPU P

Conditional Temporal constraints CSTNUD1 EXP [14]
Conditional Preference function - -

Table II: Proposed solutions and problem class they belong to.

5.1. Comparison of network models

Disregarding the decision-making, the conditional model
can be implemented using a CSTNUD, while the non-
conditional version can be modelled by STPU. The non-
conditional model is therefore less complex, as practical
algorithms for STPU do exist, in contrast to CSTNUD. The
downside of the STPU network for our problem is its lack
of conditional expressions, which are useful throughout the
network to reason about history in a more intuitive manner.
The lack of conditionality also leads to an awkward way of
reasoning about the future, since we effectively keep widening
the constraints of future device events by using a sliding
window. Another example of these limitations is the inability
to create a [0, 0] constraint between switches and device events
in an STPU.

CSTNUD is by definition the more expressive class, and
provides concepts that are key in our problem. This makes
the problem more intuitive to model, and allows us to express
more accurate and detailed constraints. However, even this
model becomes unintuitive when trying to express conditions
that are non-boolean, such as in our motivating problem.
Furthermore there are a few practical issues. Firstly, CSTNUD
with preferences does not exist and the extension is not
trivial. Furthermore CSTNUD has no sound and complete

1The streamlined version by [18] is preferred.

propagation-based algorithm. It should be noted that sound
but incomplete propagation rules do exist, and that the dy-
namic controllability of a CSTNU(D) can be translated into
a reachability question by means of a timed-game automaton
(TGA), for which sound and complete solutions exist, but are
too difficult to solve in practical settings.

5.2. Comparison of decision-making strategies

The approach of using temporal constraints is beneficial,
because it uses the strength of TCSPs, namely to reason about
temporal constraints. However, the abstraction leads to some
problems. The most problematic is that using these constraints
can easily lead to an inconsistent network. We can only extract
an interval based on a target amount of PV production or
self-consumption. If this amount is unreachable, no switch
whatsoever will be allowed. This type of problem is normally
solved by lowering the target optimality, and thus loosening
the constraints, until a consistent solution is found. However,
since the constraints are independent of each other, and the
global optimality is based on their combination, there is no
clear strategy for relaxing the constraints.

A second problem is that defining the constraints itself is
non-trivial as well. To a degree, deciding on the optimal set
of constraints is already solving the scheduling problem.

Using a preference function is more intuitive, since it makes
a distinction between hard constraints and soft constraints,
and the algorithms solving networks with soft constraints do
have the ability to iteratively lower the target preference value.
Furthermore, a function is better able to describe the non-
temporal aspects of the optimization, since it does not to
translate them into constraint intervals.

The downside to this approach is that defining the function
becomes a complicated task. Almost all of the optimality is
contained in a function that must be designed by a knowledge
engineer, while the network does no reasoning about the
optimality of a decision, except picking the highest-valued
solution. Also, we see that the soft constraints do not directly
express the problem of interest, namely the value of decisions,
making them still unintuitive to use.

5.3. General problems in modelling

We can state a few general problems that arise when using
TCSPs, based on the above observations.

Firstly, we see that TCSPs are only able to express well-
defined uncertainties. As the uncertainty becomes vaguer, such
as when little can be said about what exactly is going to
happen, or about the temporal relations thereof with other
events, it becomes more difficult to model it.

Secondly, we find that expressing optimality in TCSP is dif-
ficult. The main purpose of a TCN is to check its consistency,
which only decides whether any solution exists (and gives it).
The model only provides little notion of optimality at all, and
only does so for the assignment of time-points.

For this reason, we can conclude that TCSP does not provide
the required notions for expressing the motivating problem.
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6. SUGGESTED EXTENSIONS

We now present two possible extensions to the TCSP model:
non-boolean conditions and conditional preference. These aim
to solve the problems observed in the previous section. We
explain their concepts and give a definition, but do not discuss
how these can be added to existing models or algorithms, as
that is outside the scope of this paper.

6.1. Non-boolean conditions

We first address the issue observed in section 4.2.1 that
an observation can only distinguish two situations. We solved
this by grouping multiple observations together. The same
problem occurs with decision nodes, for the same reason. In
CTPP, defined by [11], the boolean propositions are replaced
by fuzzy propositions, which can take a truth value anywhere
in the domain [0, 1] ∈ R. We use this concepts as inspiration,
and also replace boolean propositions with fuzzy propositions.
However, rather than expressing a finer-grained truth degree of
some proposition, we discretize the range to express multiple,
but exclusive disjunctive propositions. This applies to the
problem of observing the activation of |D| devices, since only
one device can turn on at one time (and the future devices
that turn on are observed by the next cycle). The extension
is shown in Figure 8 for the original problem. We define the
same idea for non-boolean decisions.
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Figure 8: Original boolean observations and discretized fuzzy
observations.

The benefit of this is mostly semantics and elegance. A
fuzzy condition can express exclusive disjuncts, and prevents
the need for |D| nodes. It does not provide additional ex-
pressiveness, since multiple boolean conditions can express a
single fuzzy condition too. However, we should observe that
the lack of multiple nodes can have an impact on preference
functions and temporal constraints. This impact can be pos-
itive, requiring only a single function over multiple ones, or
worse, not being able to bind a temporal constraint to a specific
observation.

6.2. Conditional Preference

the second issue is a lack of reasoning about decisions.
Since the original temporal preference functions only define
preference over time, they do not have direct influence on the
decision that is made. It can however be that one decision is
preferred over the other for non-temporal reasons. To express

such cases, we define the notion of conditional preference,
that is similar to the way the temporal preference function is
defined.

Definition 10. A conditional preference function is a function
cp : [0, 1] → [0, 1] associated with a decision node D!. The
preference function takes any valid decision option of D! and
returns a preference value for this decision.

In this problem, we could exploit the greedy temporal
relation of switching decisions with device events to achieve
the result of conditional preference. However, when the deci-
sion nodes are not so tightly constrained—a situation that is
common in TCSPs—we cannot do this. This extension then
enables expressions that are otherwise not possible.

7. RELATED WORK

Using TCSP to optimize smart grid scheduling has, to the
best of our knowledge, not been attempted before. However,
STNU optimization has been done with various notions of
optimality [19] and this has led to reformulating the optimiza-
tion problem as MILP, MINLP, or Conflict-Directed Search.
There is a broad range of methods for decision making under
uncertainty in smart grids [20]. Globally speaking, some of the
directions of research are probabilistic analysis, possibilistic
analysis, and robust optimization.

Different definitions of conditionality exist, that we have not
discussed here, such as the Simple Temporal Network with
Alternatives (STNA) [21]. It uses a concept of branching to
express different choices, which is unsuitable for the less well-
defined decision paths in our problem, and does not deal with
external factors (observations). The propositional system of
CTP provides much more expressiveness.

A different branch of TCSP research explores the flexibility
and relaxation strategies for decisions in the network [22]
[23]. These models mostly deal with decision-making in con-
trollable environments, which is not relevant to our problem,
because of its high uncontrollability.

Various other approaches to temporal reasoning and
scheduling exist, that do not use temporal constraint networks,
but instead use logical languages, such as PPLAN [24], SMTL
[25], and PDDL [26]. We do not consider these in this paper,
but future work could investigate their merit for expressing
detailed information and reasoning about it.

8. CONCLUSIONS

We have attempted to model a smart grid problem in a
TCSP in various ways. This has illuminated some limitations
in the existing models with regards to modelling uncertainty
and defining optimality. We have discussed advantages and
drawbacks of the different approaches, concluding that a non-
conditional model is not able to give an accurate enough
description of the problem, but a conditional model is too
complex to be practically solved. Furthermore, using temporal
constraints to enforce preferences in the network is undesir-
able, but using preference functions still requires substantial
effort and does not fully capture the exact notion of preference
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that we look for. This leads us to conclude that TCSP is not
suitable for our problem, and in general was not meant for the
kind of problems that often occur in smart grids.

To solve these issues, we have defined two extensions: non-
boolean (fuzzy) conditions that can express more than one
proposition when the propositions are exclusive disjunctive,
and conditional preferences that define how optimal one deci-
sion is over another.

While these have merit in this problem and also in other
problems, we are unsure whether they are sufficient to enable
modelling the motivating problem in a TCSP. This is because
of various properties of the TCSP model.

Firstly, temporal networks require a well-defined set of
events. In the case that there are uncertainties, their possible
outcome and the resulting effect on the network must be
clearly defined. When the future is too vague, the network
has no ways to reason about it.

Secondly, TCSP is primarily intended for constraint satis-
faction. In the context of scheduling this means guaranteeing
correctness of the schedule. However, in our problem the
correctness is not an issue, but optimality is, something that
is only a limited secondary concept in temporal constraint
problems.

Our motivating problem furthermore does not deal with
complicated temporal assignments, something that TCSN con-
sistency solving automatically produces. Instead its most com-
plicated aspect is decision-making, something that is much less
sophisticated in TCSP when not clearly defined by temporal
relations.

While we cannot evaluate the merit of detailed information
in smart grid scheduling, we can see that TCSP does not
provide a straightforward answer for solving problems in this
domain.

9. FUTURE WORK

For future work we suggest to implement the proposed
extensions, and look at optimization models that can be used
in the preference function. Based on those results, a more
definitive conclusion can be made regarding the feasibility of
using temporal networks for smart grids problems.

Other work can be done in finding different models that
can use detailed information, but are also able to handle high
levels of uncertainty and uncontrollability.
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