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Samenvatting.

Twee zuiver elastische, volkomen gladde omwentelingslichamen
worden op elkaar gedrukt, zodat een eindig contactgebied ontstaat.
Vervolgens worden zij om hun assen gewenteld zodat zij over elkaar
rollen. Indien men een koppel aanbrengt op het ene lichaam en af-
neemt van het andere, dan blijken de omtreksnelheden van de lichamen
niet gelijk te zijn, zelfs indien de overgebrachte kracht kleiner is
dan het produkt van wrijvingsco&€ffici&nt en normaalkracht. Dit ver-
schijnsel wordt de "gemiddelde slip" (Engels: creepage) van de
lichamen genoemd. Is er loodrecht op het contactvlak een component
van rotatie van de lichamen ten opzichte van elkaar, dan spreekt men
van "spin". In deze dissertatie worden de verschijnselen in het con-
tactvlak bestudeerd; in het bijzonder wordt de_betrekking gezocht
die het verband aangeeft tussen de éemiddelde slip en spin enerzijds
en de totale tangentié&le kracht, die de lichamen op elkaar uitoefenen,
anderzijds.

Na een historische inleiding in Hoofdstuk 1, worden in Hoofdstuk
2 en Hoofdstuk 3 een aantal wiskundige hulpmiddelen besproken, die
voor de hier gegeven behandeling van het probleem noodzakelijk zijn.
Wat betreft het elastische gedrag worden de omwentelingslichamen door
elastische halfruimten benaderd en wij zullen dus de elastische ver-
plaatsingen onderzoeken, die worden teweeggebracht door verdeelde
belastingen van verschillende aard, die aangrijpen in een elliptisch
gebied gelegen in het overigens spanningsvrije oppervlak van een
elastische halfruimte. Dit onderzoek leidt tot het opstellen van een
stelsel lineaire vergelijkingen waarmee de verplaatsingen in de be-
lasting kunnen worden uitgedrukt., Dit stelsel is geschikt om de
randvoorwaardeproblemen uit de elasticiteitstheorie op te lossen,
waartoe sommige contactproblemen aanleiding geven.

In Hoofdstuk U4 keren wij terug tot het oorspronkelijke probleem.
De randvoorwaarden worden opgesteld, en het aantal parameters dat het
probleem bepaalt, wordt tot vijf teruggebracht. Tevens worden een aan-
tal symmetrie eigenschappen besproken, Hoofdstuk U4 is verder gewijd
aan de theorie van twee grensgevallen, t.w, het geval van zeer kleine

(infinitesimale) gemiddelde slip en spin, en het geval van zeer grote
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gemiddelde slip en spin (volledig doorglijden). De behandelings-
methode van het eerste geval is afkomstig van DE PATER [1], en werd
door KAIKER [1] toegepast op cirkelvormige contactgebieden. De
methode wordt hier toegepast op elliptische contactgebieden, waarbi]j
de theorie van Hoofdstuk 2 wordt gebruikt. Het geval van volledig
doorglijden werd reeds behandeld door LUTZ [1,2,3] en WERNITZ [1,2].
Zij losten het probleem op voor het geval dat de gemiddelde slip de
richting van een der hoofdassen van de contactellips heeft. De
theorie van Hoofdstuk U4 is niet aan deze beperking onderhevig.

In Hoofdstuk 5 wordt een numerieke methode beschreven voor het
algemene geval van eindige gemiddelde slip en spin, waarbij al dan
niet volledig doorglijden optreedt. Het probleem wordt eerst terugge-
bracht tot de minimalisatie van een oppervlakte-integraal. Daarna
wordt een numerieke methode besproken waarmee de integraal kan worden
geminimaliseerd. Er wordt vervolgens uitvoerig ingegaan op het reken-
machineprogramma dat de numerieke methode verwezenlijkt en tenslotte
worden de resultaten toegelicht. Er bestaat een redelijke overeen-
stemming met het experiment.

In Hoofdstuk 6 worden een aantal conclusies getrokken en enige

projecten voor nader onderzoek aangeduid.




Summarx.

Two purely elastic, perfectly smooth bodies of revolution are
pressed together, so that a finite contact area forms. Then they are
rotated about their axes, so that they roll over each other. If a
couple is applied to one body and taken from the other, the
circumferential velocities of the bodies appear to be no longer
equal, even in case the force transmitted is smaller than the product
of the coefficient of friction and the normal force. This phenomenon
was called "creepage" by CARTER [1]. If there is, perpendicular to
the contact area, a component of rotation of the bodies with respect
to each other, "spin" is said to be present. In this thesis, the
phenomena in the contact area are studied and in particular the
relationship is sought which connects the creepage and the spin on
the one hand, and the total tangential force which the bodies exert
upon each other on the other hand.

After a historical introduction in chapter 1, we discuss in
chapter 2 and chapter 3 a number of mathematical tools which are
needed for our treatment of the problem. As far as the elastic
behaviour is concerned, the bodies are approximated by elastic half-
spaces. S0 we investigate the elastic displacements which are due to
distributed loads of different types acting in an elliptical area of
the surface of an elastic half-space, while outside the elliptical
area the surface is free of traction. This investigation leads to the
construction of a system of linear equations by means of which the
displacements can be expressed in terms of the surface tractions.
This system enables us to solve the boundary value problems of the
theory of elasticity which correspond to several contact problems.
Chapter 3 finishes with an application of this method to a number of
well-known contact problems.

In chapter 4 we return to the original problem. The boundary
conditions are set up, and the number of parameters defining the
problem is reduced to five. Also, a number of symmetry properties is
discussed. The remainder of chapter 4 contains the theory of two
limiting cases, viz. the case of very small (infinitesimal) creepage

and spin, and the case of very large creepage and spin (bodily
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sliding). The method of treatment of the former case is due to DE
PATER [1], and it was applied by KALKER [1] to circular contact
areas., Here, the method is applied to elliptical contact areas, using
the theory of chapter 2. The case of bodily sliding has been treated
by LUTZ [1,2,3] and WERNITZ [1,2]. They solved the problem for the
case that the creepage has the direction of one of the principal

axes of the contact ellipse. In chapter 4, this restriction is
removed.

In chapter 5 a numerical method is given for the general case of

finite creepage and spin, with or without bodily sliding. The problem
is first reduced to the minimalisation of s surface integral. Next,
8 numerical method is discussed by means of which the integral can be
minimized. Then we consider the computer programme which realises the
numerical method, and finally we discuss the results. These appear to
agree reasonably well with the experimental evidence.

In chapter 6 certain conclusions are drawn, and some projects

for further research are indicated.
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1. Introduction.

Consider two purely elastic, perfectly smooth bodies of

revolution, see Fig. 1. They are pressed together with a force N,
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Fig. 1. Two bodies rolling over each other.

as & consequence of which a contact area comes into being along
which the bodies touch. According to the theory of HERTZ (see
LOVE [1], pg. 193 sqq.), this contact area is an ellipse when
the bodies are counterformal. Subsequently, the bodies are
rotated about their axes, so that they roll over each other. As
a consequence of dry friction, the bodies can exert tangential
forces upon each other at the contact area. If a couple is
exerted on one body, and taken off from the other, it is found
that the circumferential velocities of the bodies are no longer
' the same, without the occurrence of gross sliding. This
difference in the circumferential velocities of the bodies,
divided by the rolling velocity, is called the creepage of the
bodies. If also the rotations of the bodies gbout an axis

perpendicular to the contact area are different, we speak of




spin. The problem is, to investigate what tekes place in the
contact area, and in particular to find the connection between
the two components of creepage (one in the direction of rolling:
longitudinal creepage, and one in a direction perpendicular to
the rolling direction: lsteral creepage) and the spin on the
one hand, and the two components of the total tangential force
and the moment about an axis perpendicular to the contact area
on the other hand.

It is assumed in this work that the law of dry friction
(COULOMB's law) with constant coefficient of friction comnects
the tangential traction at a point of the contact area, and the
local velocity of the bodies with respect to each other (the
slip), and that a steady state is reached.

1.1. Historical outline.

The problem which we just stated was treated first by
CARTER [ﬁ] in 1926. He considered the case of two cylinders with
parallel axes, in which creepage only occurs in the direction of
rolling, and he gave a complete solution of the problem. The
tangential stress distribution is found as the difference of two
stress distributions which are semicircular when the scale is
properly chosen, see fig. 2. One of the stress distributions is
acting over the whole contact width, and the other over a part

of the contact width, viz. over the region where the local slip

is zero: the area of adhesion, or locked area Eh. The area of

adhesion is determined by the creepage, here defined as

- +
T A1 . (1.1)

* vt

where V' and V_ are the circumferential velocities of the
rolling cylinders. The velocity -%(V++V’) which occurs in the
denominator of (1.1), is the rolling velocity. The semicircular
traction distribution over the whole contact area equals MZ,
where Z is the normal pressure distribution and u is the

coefficient of friction. It is a consequence of the semicircular
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Fig. 2. The tangential stress distribution according to CARTER.

traction distribution over the area of adhesion, that the slip
vanishes in the area of adhesion, while the total tangential
traction falls below the bound uZ given by the law of friction.
It is seen from Fig. 2 that the adhesion area borders on the
leading edge x = a of the contact area. No explanation of this
phenomenon was given by CARTER, but it was supplied in 1950 by
CAIN [1] in a discussion of a paper by PORITSKY. If the area
of adhesion does not border on the leading edge, there would be
an area of slip therej; but CAIN showed that in that area of slip,
the slip does not match the tangential traction as far as the
direction is concerned, so that it cannot occur. In the area of
slip behind the adhesion area, slip and traction do match in
that respect.
The coordinate b of the trailing edge of the contact area
is given by
lv,le

b/a = .

- 1, a: half width of the contact area,

](1.2)
+ - - 2
g %- l: +-l: s R 4 R ¢ radiai of cylinders,
e R R positive when they are convex.
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It is seen from (1.2) that when the creepage vanishes, then

b/a = -1, so that the area of adhesion covers the whole contact
area, and the tangential traction vanishes, This is called free
rolling, in which there is no dissipation by surface friction.
There can be dissipation by elastic hysteresis, but such effects
are not considered in this work. When the creepage increases,
b/a increases, so that the area of adhesion diminishes. When
[uxlp/ua = b, b reaches the leading edge of the contact area,
and when the creepage increases further, b passes the leading
edge. This should be interpreted as follows: no area of adhesion
forms at all. The tangential traction equals uZ everywhere, and
the slip matches it. This is called gross sliding.

We will give some impression of the magnitude of the
creepage in the range we are interested in. When the cylinders
have the same radius, then the characteristic length p is the
diameter of the cylinders. In that case, a representative value
of p/a is 200, the contact width being dependent on the normal
load. A representative value of the coefficient of friction is
0.3. 30, when i1 this example [uxl = 0,003, the adhesion area
covers half of the contact area, and gross sliding sets in when
lu | = 0.006.

In the region between free rolling and the first onset of
gross sliding, the total force Fx exerted on the lower body is
given by a parabola which is tangent to the line Fx = uN, see
Fig. 3. In the region of gross sliding, Fx has the maximum value

ulN.

K v lo, le ~lule
= Wi\ge ) 0"/ 2 e S
(1.3)
= uN if gl > b
HIN na =
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Fig. 3. The total force Fx/uN vs. the creepage . according to
CARTER.

Progress was made by JOHNSON in a number of papers. JOHNSON
performed a number of experiments in order to determine the
connection between the total tangential force and the torsional
moment on the one hand, and creepage and spin on the other hand.
In [1] and [5] he also gives a theory of creepage without

spin, which is a direct generalisation of CARTER's theory. In
this theory, JOHNSON approximates the area of adhesion by an
elliptical area which is similar to the contact area, and is
similarly oriented. It touches the boundary of the contact area
at its foremost point, see Fig. 4. Here also the traction
distribution is found in the form of a difference between a
semi-ellipsoidal traction distribution acting over the entire
contact area, and another, which acts over the adhesion area
alone. However, there is a serious flaw in this theory: in the
region showh shaded in Fig. 4, the slip and the tangential
traction do not match. In fact, if we define the slip as the
local velocity of the upper body with respect to the lower,

and consider the traction exerted on the lower body, the slip
and traction are almost opposite in the shaded area, violating
the friction law. In the slip region outside the shaded area,
the traction and the slip are almost in the same sensej; in fact,

they make a small angle, and this is another, smaller, objection
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Fig. 4. Areas of adhesion and slip according to JOHNSON.

against the theory. The conclusion we draw from the shaded area
of error is, that the area of adhesion is given incorrectly in
JOHNSON's theory. If JOHNSON's theoretical results are compared
with the experiment, it appears that the theoretical value of the
creepage at a certain value of the total force parameter

(P
is at most 25%, so that JOHNSON's theory can be used very well as

Fy)/uN is lower than the experimental value. This difference

an approximative theory, especially since the values of the
coefficient of friction u differ considerably from one case to
another.

Another theory is given by HAINES and OLLERTON [1]. Only
creepage in the rolling direction is taken into consideration,
and it is assumed that in narrow strips parallel to the rolling
direction, CARTER's traction distribution is valid. It then
appears that the area of adhesion is given by a lemon shaped
area the leading edge of which coincides with the leading edge
of the contact area, see Fig. 5. The trailing edge of the
adhesion is an arc which, measured along the rolling direction,
has a constant distance to the trailing edge of the contact

area, in other terms, it is the trailing edge of the contact
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area area of

adhesion Eh

slip Eg

Fig. 5. Areas of adhesion and slip according to HAINES and
OLLERTON.

area shifted parallel to itself in the rolling direction. This
theory can in principle be used only for contact areas which are
slender, with the minor axis in the rolling direction. However,
HAINES and OLLERTON have also done photoelastic work from which
it appeared that the theoretical form of the area of adhesion
was in good agreement with practice, also when the contact area
was not slender.

Recently, the theory of HAINES and OLLERTON was generalized
by KALKER Bﬂ so, that lateral creepage and, to a limited extent,
also spin can be accounted for. In this theory, the elasticity
equations are integrated approximately. This approximation is
best when the contact ellipse is slender, with the minor
semi-axis in the direction of rolling. With this approximate
solution of the elasticity equations it is accomplished that
1°. there is no slip in the adhesion area; 2°. that the
tangential traction in the slip area has the value uZj; but 3°.
there generally remains an angle between traction and slip in
the slip area. This angle is small almost everywhere in case of

pure creepage and when the spin is small, but deteriorates when

T'




the spin increases. When for a slender contact ellipse the total
force is compared with the results of ch. 5 of this dissertation,
it is found that there is excellent agreement in the case of pure
creepage, but in pure spin there are relative errors of up to 20%.

For spin there is a smaller smount of theory than for pure
creepage. We just mentioned the theory of KAIKER &ﬂ. Aside from
that, there are only theories on the two asymptotic cases, viz.
very large creepage and spin, and infinitesimal creepage and
spin. Experimental work on spin has been done by JOHNSON [é, 3]
both on pure spin and on spin in combination with lateral
creepage, by LEE and OLLERTON [1], and by PoON [1].

The case of very large creepage and spin was treated by LUTZ
[1, 2, 3] and WERNITZ [1, 2]. In their theory, they assume that
the creepage and spin are so large, that the influence of the
elastic deformation on the local slip can be neglected. As a
consequence, there is no area of adhesion, and the local slip is
completely specified by creepage and spin alone: there is no
effect of the tangential traction on the slip. So, the direction
of the local slip is known, and hence the direction of the local
traction, its magnitude being given by uZ. The total tangential
force and the torsional moment follow from integration. LUTZ [?]
treated the case of a circular contact area, and WERNITZ [1] the
case of an elliptical area. The latter case was treated, however,
with a restriction on the components (ux, uy) of the creepage:
either v, = 0, or vy = 0, This is the case in friction drive;
which LUTZ and WERNITZ considered, We will treat the case of
very large creepage and spin without this restriction in sec.
L4 of this dissertation.

The opposite case is the case of infinitesimal creepage and
spin. Here it is assumed that the adhesion area covers the
entire contact area. For a circular contact area, this case was
treated by DE PATER BJ for POISSON's ratio o = 0, and by KAIKER
[1] without this restriction on ¢. In sec. 4.3 sqq. of this
dissertation, this theory is generalized to elliptical contact

areas. Earlier, JOHNSON [2] treated the case of infinitesimal
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spin for a circular contact area and arbitrary POISSON's ratio.
In KAIKER [1], a comparison is made between the theories of
KAIKER [1], JOHNSON [2], and JOHNSON's experiments [2]. There
appears to be a fairly large discrepancy between the theories,
and KAIKER's theory was found to be most in agreement with the
experimental results.

In chapter 5 of this dissertation, a numerical theory is
developed which can be used for arbitrary creepage and spin.
This theory is mainly of academic interest in the case of pure
creepage, owing to the fact that the approximative theories are
of good quality. In the case of non-vanishing spin, the theory
of chapter 5 provides the comparison needed for the safe use of
the strip theory; such a comparison is made in KAIKER Eﬂ. For
values of the spin not covered by the strip theory, the numerical
theory of chapter 5 is the only one available. It can also be
used to judge, when creepage and spin are large enough so that
the theory of LUTZ [1, 2,3] and WERNITZ [j, 2] can be used.

1.2, Two simplifying assumptions. Outline of the thesis.

As far as the theory elasticity is concerned, the lower and
the upper body are approximated by half-spaces. In the Cartesian
coordinate system (0, x, y, z) which we will adopt, the lower
body occupies the half-space z > 0, and the upper occupies z < 0.
Quantities pertaining to the lower body are distinguished by a
superscript ¥ added to the symbol from the analogous quantity of
the upper body which carries a superscript ~. The normal
pressure is denoted by Z, while we define the tangential
tractions (X, Y) as the local tangential (frictional) force per
unit area exerted on the lower body by the upper body.

The contact area E and the distribution of normal pressure
Z are determined by the boundary conditions of the HERTZ theory;
see LOVE [1] pg. 193 sqq.:

w+(x,y,0)-w_(x,y,0)= -Ax2-By?+a, Z > O inside E, (1.ka)
w+(x,y,0)-w—(x,y,0)> -Ax2-By?+a, Z=0 on z=0,
outside E, (1.4p)

w(x,y) =
w(x,y) =




where w* is the displacement component in the z-direction, while
w(x,y) is called the displacement difference in the z-direction.
A and B are determined by the radii of curvature of the bodies,
see (3.38), and o is the penetration of the bodies.

In the first place, we will assume that the tangential
traction distribution (X,Y) acting between the bodies does not
disturb the displacement difference w(x,y). Such an assumption
was already made by MINDLIN []] in 1949. It was shown by DE PATER
D] pg. 33, that the assumption is completely correct in the case
that both bodies have the same elastic constants. A discussion of
the error of the approximation when the elastic constants are
different will be given in sec. 2.1. The assumption implies that
neither the contact area E nor the normal pressure Z are disturbed
by the tangential tractions. Consequently, E and Z are given by
the HERTZ theory of frictionless contact. According to that
theory, which is treated in some detail in sec. 3.221, the
contact area E is elliptical in shape, so that we can choose our

origin and x and y axes so that
E={x,y,2: z=0, (x/a)2 + (y/b)2 <11}, (1.5a)

while the normal pressure Z is given by

._3N 2 2
. 2mab /q-(x/a) - (y/v) inside E,

=0 on z = 0, outside E, (1.5b)
N: total normal load.

The local slip at a point is defined as the local velocity
of the upper body with respect to the lower body. We ordinarily
use the relative slip (sx’sy)’ which is equal to the local slip
divided by the rolling velocity. We will show in sec. 4.1 of this
dissertation that when steady rolling takes place in the x-
direction, the relative slip is given by (4.15):

=y - du . v
N 8, = utex + 50, (1.6a)

with

10.




(Ux, uy): the creepage, ¢: the spin,
u = {u+(x,y,0)-u'(x,y,0)}, v = {v+(x,y,0)-v_(x,y,0)} (1'6b)

ut, vt: (x,y) displacement components in lower/upper body.

We will also assume that the normal pressure distribution Z
does not disturb the displacement differences (u,v). Such an
assumption was made by MINDLIN D] in 1949. It was shown by DE
PATER [1], pg. 33 that this second assumption is completely
correct in the case that the bodies have the same elastic
constants. A discussion of the error of the approximation when
the elastic constants are different will be given in sec. 2.1.

As a consequence of the assumed independence of w on (X,Y),
the problem falls apart into a normal problem which completely
determines the normal pressure and the contact area, and a
tangential problem which uses the results of the normal problem
as data. The reason for the assumed independence of (u,v) on Z
lies in the fact that the case of equal elastic constants is
technically the most important, while the theory becomes somewhat
simpler, and the coefficient of friction does not figure as an
independent parameter in the calculation.

A method to obtain a better approximation was indicated by
JOHNSON [4], pg. 18 sqq. JOHNSON proposes to retain the
assumption that w is independent of (X,Y), but to take the
dependence of (u,v) on Z into account. The value of this method
consists of the fact that the dependence of (u,v) on Z is much
more important than the dependence of w on (X,Y), especially when
the coefficient of friction p is small, see sec. 2.1. The
advantage over the rigorous theory is, that the normal problem
remains the same, and that the tangential problem changes only
in that a term is added to the formula for the relative slip,
the term being explicitly known, and being independent of the
creepage and the spin. This method is not investigated further
in this thesis, where we will retain the two assumptions of
MINDLIN,

1.




The tangential problem is determined by the following conditions.

(X,Y) and (u,v) are connected by the elasticity equations
for the half-space, in which stresses and displacements (1.7)

vanish at infinity, while X = Y = 0 on z = 0, outside E;

(X,Y) = uZ(wX,wy), v, =s./s, vy, = sy/s, 8 = Vsi + s§

%
in the area of slip Eg; (1.8a)
5, = 5, =0 |(X,Y) |2 uZ in the area of adhesion E, . (1.8Db)

We see from (1.7) and (1.8) that the tangential problem naturally
falls into two parts. In the first part, we must study the effect
of the traction distribution (X,Y) on the displacement differences
(u,v), in order to get the connection between the traction and the
slip. We solve this problem by giving this connection for certain
standard traction distributions which form a complete system. In
the second part we superimpose the standard tractions so as to fit
(approximately) the boundary conditions (1.8). It should be noted
that the division of the contact area into areas of slip and
adhesion is not known beforehand, but must result from the
calculations.

In chapters 2 and 3 of the thesis, we attack the first sub-
problem, viz. finding a complete set of tractions with their
corresponding displacements differences. Apart from the
tangential problem in which (X,Y) are given and Z is unimportant
as we have here, we also treat the normal problem where &5Y) are
unimportant, Z is arbitrarily prescribed. This is done because it
widens the scope of chapters 2 and 3, while it is done without
much trouble, since a normal problem is equivalent to a
tangential problem in which POISSON's ratio o vanishes.

In chapter 2, we give the theory of tractions of the form

£ )xPyd. (1.9)

1 M
= T4 2 29~2
(X,Y,2) = {1=-(x/a)2-(y/b)2} ) (dpq,epq, -

p+q=0
It is shown in 2.2 that to the tractions (1.9) surface displace-

ment differences belong
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M

(u,v,w) = m§n=0 (amn b s m.n)x y® if (x,y) in E. (1.10)

The remainder of chapter 2 is devoted to the connection between
the (a. sbp s ) and the (d.pq - qu). This connection is given
in the form of a square set of linear equations, which we call

ad-di i .
the load-displacement equations. They express (amn,bmn,cmn)

explicitly in (d_ ,e
= ¥ 5 4 pa’ pq’ pq)

In chapter 3, we treat special cases of the load displace-
ment equations. In 3.1, we consider the special case that (X,Y,Z)

vanish at the edge of the contact area, and have the form

2 2 ; q
(X,Y,2)={1-(x/a)2-(y/b)2}" pgq-o(dpq oq? Pq)xpy (1.11)

Again, (u,v,w) are given by (1.10). The coefficients of the load-
displacement equations appear to undergo only minor changes. In
3.2, we treat a number of examples, viz. a rigid, flat die of
elliptic circumference pressed into a half-space (3.211), the
problem of CATTANEO and MINDLIN without slip (3.212), the problem
of HERTZ, fairly detailed because it is used later on (3.221),
and finally the problem of CATTANEO and MINDLIN with slip,
without twist (3.222).

In chapters 4 and 5, we attack the second subproblem, viz.
the fitting of the boundary conditions (1.8), by means of the
theory of chapters 2 and 3. In 4.1, the boundary conditions are
derived; this is followed by considerations of symmetry in L4.2.
The remainder of chapter U4 is devoted to the two limiting cases,
viz. infinitesimal creepage and spin (sec. 4.3), and very large
creepage and spin (sec. L4.l4). The case of infinitesimal creepage
and spin, which was treated before by DE PATER [1] and KAIKER [1]
is extended to the case of an elliptical contact area. Tractions
of the form (1.9) are used. The case of very large creepage and
spin, which was treated by WERNITZ for elliptical areas only
when ux=0 or uy=0, is here extended to the case of arbitrary
creepage. The method of LUTZ and WERNITZ is retained, and the
theory of chapters 2 and 3 is not used.

13.




In chapter 5 we treat the case of arbitrary creepage and
spin. The procedure is, to write the boundary conditions (1.8)
in the form
I=[[ {1-(x/a)2-(y/b)2HX '~w_)2+(Y'=w_)2Hs_2+s_2 }axdy=0

B x v Tx Uy

1:12
kel LRI I e

with (X,Y) = wzZ(X',Y')= g%%; {1-(x/a)2-(y/b)2}+% & L% L3 W

(1.12p)

M
(X',Y') = Z ( )xpyq’ M> o,

d_ ,e
ptg=0 P3’ Pd
It should be observed that (1.12a) can only be satisfied if at
every point of the contact area at least one of the factors of
the integrand vanishes. The first factor does not vanish except

on the edge of the contact areaj; if the second factor vanishes,
(1.8a) is satisfied, and the point belongs to the area of slip; if
the second factor vanishes, then (1.8b) is satisfied, and the
point belongs to the area of adhesion. The inequality |(X',Y')|<1
ensures that the maximum pZ of the tangential traction is not
exceeded. We see from (1.12b) that the tractions (1.11) of sec.
3.1 are used. This is done with the purpose to enter a rudiment

of the inequality into the integral. In practice, we take M = 3

in (1.12b), and minimize I with respect to (d

e
Pa’ P
positive definite integral I vanishes only for infinite M. The

since the
q)’

inequality of (1.12a) will be verified afterwards. It is seen
that in this method the difference between the locked areas Eh
and the slip areas Eg disappears fram the problem. The domain

of slip can, however, be identified with the area in which
{(X'-wx)2+(Y'-w )2}<<(sx2+sy2), and the domain of adhesion E,

is that in which {(X'—wx)2+(Y'-wy)2}>>(sx2+sy2). This distinction
is especially sharp in the case of pure creepage. The calculations
were performed for a large number of parameter combinations Voo
Vys ¢, and a/b (= ratio of the axes of the contact ellipse). In
5.1 sqq, the theory is discussed; in 5.2 sqq, we present some
considerations on the computer programme with special emphasis on

the optimalisation of the programme and the verification of the

1k,




inequality, and in 5.3 sqq. we devote our attention to the
numerical results.

The dissertation finishes with a conclusion in which the
results achieved are summarized, and in which we make some

remarks regarding further research.
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2. Two elastic half-spaces under normal and shearing loads acting

in an elliptical contact area.

In the present chapter, we will consider the stresses and
displacement differences that arise when two half-spaces are in
contact. Throughout the chapter we assume that contact takes
place along an elliptical contact area E.

We introduce a cartesian coordinate system (0,x,y,z), the
origin of which lies in the centre of the contact ellipse. The
directions of x and y are the axes of the ellipse, and the axis
of z is directed along the inner normal of the lower half-space.
We denote the surface tractions by (X,Y,Z), the elastic displace-
ment in the lower half-space z > 0 by (u+,v+,w+), and the elastic
displacement in the upper half-space z < 0 by (u ,v ,w ).

We saw in the previous chapter that as a consequence of our
assumptions.we could decompose the problem into two partial
problems, viz. the normal and the tangential problem.

The normal problem has to be solved first, and it is
equivalent to a contact problem without friction. Its boundary
conditions are formulated in terms of Z and the displacement
difference w(x,y)=w+(x,y,0)—w-(x,y,O), and the most important
condition is that w(x,y) takes on a prescribed value in E. We
can schematize the elasticity part of the problem by solving the
following

Normal problem: The shear tractions (X,Y) vanish identically

on the whole of the boundary z = 0, and the normal traction
Z vanishes outside the elliptical area E. The surface dis-
placement difference w(x,y) is given at E as a polynomial of
degree M in x and y:

M M-m .
wixyy) = J ) c Xy inside E. (2.1)
m=0 n=0

Find the normal traction Z acting at the area E.

This problem seems to be artificial. The reason why we
restrict ourselves to polynomial displacement differences is,
that for such a displacement we can find the normal traction Z

by solving a finite set of linear equations. Moreover, we observe
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that the polynomials are complete in the sense that they can
approximate any continuous function as well as one likes.
Finally, in several problems, e.g. the problem of HERTZ (sec.
3.221), and the problem of a flat rigid die of elliptical
circumference that is pressed into a half-space (sec. 3.211),
the displacement difference w is actually a polynomial.

Making use of the results of the normal problem, we proceed
to solve the tangential problem. From a point of view of elastic-
ity alone, this problem is equivalent to a problem in which there
is no normal load at the boundary, as a consequence of the second
assumption of MINDLIN, see sec. 1.2. The most important boundary
condition in the area of adhesion is the (almost complete) pre-
seription of (u(x,y), vix,y)) = (u+(x,y,0)-u_(x,y,0), v+(x,y,0)+
-v (%x,y,0)) in it. Hence it is desirable to solve the following

Tangential Problem: The normal traction Z vanishes

identically on the entire boundary z = 0, and the
tangential surface traction (X,Y) vanishes outside
the elliptical area E. The displacement differences
(u(x,y), v(x,y)) are given in E as polynomials of
degree M in x and y:

M M-m

(u(x,y), vixyy)) = } 1 (amn,b )xmyn inside E. (2.2)
m=0 n=0 e

Find the tangential traction (X,Y) acting at E.

This problem, too, can be solved explicity, in the same way
as the normal problem. As in the normal problem, there is an
example in which (u,v) are actually polynomials: it is the
problem of CATTANEO [1] and MINDLIN [1], in which two bodies are
pressed together and then are shifted or twisted, while slip is
assumed to be absent. This problem is treated in sec. 3.212.

We finally observe that both problems reduce o problems of
the single half-space, when one of the two elastic half-spaces is

assumed to be perfectly rigid.

2.1. Formulation of the problems as integral equations.

The connection of the surface tractions and the displacement
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of a half-space can be given by an integral representation. In order

to find it, we observe that the displacement in the lower half-space

due to a concentrated load of magnitude Z acting at the origin in the
direction of the positive z-axis is given by LOVE [1], par. 135, pg.

191, as follows:

gt e o X2 & X
by 3 bn(a+p) r(z+r)
B 5 e I o et e , (2.3)

1&1’ru r3 hn()d—u) r(z+r)

2
W+ = —Z- z—- + Z_(ﬂ.)_.l r = Vx2+y2+zz

bry r3 bop(+n) ¢ ’

where A and p are LAME's constants, which are connected with the
modulus of rigidity G and POISSON's ratio o by the relations
260G G _ 26(1-0) (2.1)

M= Gy A =9755 s MU= 9755 s M2u = =Ta

So, (2.3) becomes

& 3
+ _ Z xz (1-20 )x
P T - G-
LnG r3 r(z+r)
+
V+=: Z+{E__(~1_M}. (2.5)
hrG rd r(z+r) F
2 +
. % . { B . 2(1=0) }o.
hnG r3 r J

The displacement in the lower body due to a distributed pressure

Z(x,y) in the z-direction is then given by superposition:

N

+

e o 1 i [f 20z 3] (x=x")z _ (1-20 ) (x-x') } ax'ay

WnG E r3 r(z+r)
v (rraate =[] ae yo{ Lrie | (=20 0Gev) gy

hng' E r3 r(z+r) (2.6)

= .

w+(x,y,z)= L = fj Z(x',y'){ -Z—z + .?.Q;o__)_ } ax'dy', (

hnG E r3 r
r = /(x-x")2+(y-y") 2422, 2 > 0. J

We must also have the displacement in the upper body. [t is due to
the reaction of Z(x,y), and consequently it is given by the same
equations, but in a coordinate system (x,y,z'), where z' = -z. To

find it in our coordinate system (x,y,z), we must change z to |z|,
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+ - ” R . :
and w to -w everywhere. This gives for the displacement 1n both

half-spaces: _

u;(x'y’z)= 1 II Z(x',y'){ (x-x") |z ] _ (1—20+)(x—x') } ax'dy’,
bnGt B r? r(|z|+r)

Flaagyae o [ ate | Srlel | O2000er) gy,
hnG; = r’ r(|z|+r) >

- - ¥

W+(X,y,Z)= +1 II Z(X',y'){ Ei e gil:l_l } dx'dy',
M‘ITG; E 1‘3 r '

r = V(x-x")2+(y-y')2+2z2, upper and lower sign as z < 0, z > O. )
(2.7)
From this we see that in case G and ¢ are the same in both bodies
(elastic symmetry),

¥ =

U (X,¥52) = U (X,¥5=2),

+ - .

v (X,¥52) = Vv (X,7,-2), ifX=Y=0 (2.8)

+ -

w (an:z)= =W (an:'z)’

a result due to DE PATER [1], pg. 33.
The displacement differences, which are prescribed in the normal

and tangential problems, are:

u(X,y) - {u+(x93'a0)‘u-(x,y’O)} =

_1 g 1=20"  1-20” Voo X=X
'H{ > _—G_ }f}{:z(x ') . dx'dy',
v(x,y) = {v+(x,y,0)-v’(x,y,0)} =
+= | = } fé Z(x',y") = (2.9)
W(xsy) = {W+(x,y,0)-w-(x,y,0)} =

i » 1 '
= (L 2y ) ate ) AT
G G E R

X=Y=0, R= V(x-x")2+(y-y')2.

s + - - ;
We combine 0 , ¢ and G+, G 1in the following manner:

i -

1 1 1 1 g (o] 1
= —-( —_—t — ) = = (——-+ — K =70G
RYg ¢ 2 ¢t o Js nel ¢ G

1267 1-2¢"

Qla

). (2.10)

Q=




4 5 + - 2
It is easy to see that G lies between G and G , and that o lies
+ - %
between 0 and o 3 1n the case of elastic symmetry,

G=0¢ =¢", 0= o = o, k = 0. (2.10a)

The constant k vanishes in case of elastic symmetry, and also when
both bodies are incompressible. Its maximum is 0.5, but in practice
it is mostly small, e.g. 0.03 for steel on brass, and 0.09 for steel
on aluminium. In terms of the constants of (2.10), the displacement

differences hecome

' )
u(x,y) = - == [[ 2(x',y") === ax'ay', (a)
™ g R2
vixy) = - 55 [ oy ey, () ¢ (2.11)
E R
w(x,y) = %ég f% Zilx" ;3") 95%QXL . (e)

If w is prescribed in the contact area E, (2.11c) is an integral
equation for the unknown normal pressure Z(x,y).

The procedure for the tangential problem is very nearly the
same. We start with the displacement in the lower body due to a
concentrated load of magnitude X acting at the origin in the

direction of the positive x-axis, see LOVE D], par. 166, pg. 243,

b ML, €)X 1, _x (1 2
U STl e T w8 2n(A+p) r ho(Mp) N z4r T p(z4r)2 77
+ X xy X Xy
v o= = .
Iy 73 hy(a+u) * r(z+r)? ? ;2.12)
w* _ X Xz " X 'l
by r3 bn(A+n)  r(z+r) ’
r = Vx2+y2+22, J

The effect of a distributed shear stress X(x,y) in the x-direction is
found by superposition. The displacement due to a load Y in the y-
direction is found from (2.12) by cyclic interchange of x and y, u
and v, X and Y, The displacement in the upper half-space is given by
(2.12) in a coordinate system (x,y,z'), with z' = -z. However, we
must take into account that the shearing traction on the upper body
has the opposite sign. So we find the displacement in the coordinate
system (x,y,z) by replacing X by -X, Y by -Y, z by Iz], w+ by -w ,
and it is for both half-spaces
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u:(xQ"z) =

=7 ff [Xx',y) {1+
FE .

1-20% 5 (x=x')2 (1-20;)(x-x')2 }
|z ]+ r3 r(|z|+r)?

e G (ey) | (1267 (e (gey)
P < x-x') (y=-y" 1-20" ) (x=x") (y=y' S
+ Y(x oy ){ 1‘3 - r(|z|+r)2 }] dx dy ’
v (x,7,2) =

=7 ff [xlxt,y){ d2x0my) (1-20%) (x=x") (y=y") } o+

wet £ 3 2(|2[+r)?
» -
1ot 1 1-20 (Y'Y')Z " (1‘2°+)(Y'Y')2 1 3t

* Yty r ’ |z |+r . rd r(|z|+r)? H axtay,
w;(x,y,z) =

- o ) ey Ltllal, Ooe)Gaen)

e E x r(|z|+r)
v y(aryy{ Dmlal (=20 Greyt) 4 gy,
r3 r(|z|+r)

r = /(x-x")2+(y-y')2+22, 7 = 0.
Upper sign: upper half-space, lower sign: lower half-space. )

(2.13)
From this we see that in case G and ¢ are the same in both bodies

(elastic symmetry),

u+(x,y,z) = -u-(xsy"'z) ’

v (x,y,2) =¥ (x,75=2)s7p if %@ = 0, (2.14)

w+(x,y,z) =+ (X,¥,-2),
a result due to DE PATER [1], pg. 33.
The displacement differences u(x,y), v(x,y), w(x,y), which are
prescribed in the normal and tangential problems, become with the

definition (2.10) of G, o, and k,

u(x,y) =
" II EX(X' Y|)11-U + G(X-X')2}+Y(x, ) o(;—x')(z—x')] ax'dy’
G B % t R R3 2 R3 » |
= ot _1 92R U _xpif ._aZ_R o
= — fé [x(x',y ){R -0 ax'2} -0 Y(x',y") ax'ay'] ax'dy', |
(2.15a)
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N

v(x,y) =
T I) ey LX) vy (1224 20 gy
E

R3
1 - 92R Voot 1 32R VA f
=-1T—G-'ff ['UX(X,}’)W+Y(x,y){g—cay'2 }]dx‘i'.Y9
(2.150)
w(x,y) = 56 fé EX(xv’yv) x;; + Y(x',y") X;%l ]dx'dy', (2.15¢)
Z =0, R=/(x-x")2+(y-y"')2. (2.16)

If Z = 0, and u and v are prescribed in the contact area, (2.15a) and
(2.15b) are two . imultaneous integral equations for the unknown
tangential tractions (X,Y).

According to (2.11) and (2.15), we see that a rough estimate of

(u,v,w) in the con' act area is

u = O(Fx/Gs) + O(cFy/Gs) + 0(kN/Gs),
v= o(oFx/Gs) + O(F‘y/Gs) + 0(kN/Gs),
W =

O(KFX/GS) * O(KFy/Gs) + 0((1—0)N/Gs), . (2.17)

Fx’ Fy’ N: total force in the x,y,z-directions,

s: half diameter of the contact area. J

Throughout the present work we will neglect the influence of the
small constant k. This leads to exact results in the technically
important case of elastic symmetry, and also when both bodies are
incompressible.

It would seem that our approximation leads to a high precision
in the case of w, since Fx and Fy are the most of the order pN
(u: coefficient of friction), so that the influence of X and Y on w
is of 0(ukN/Gs), which seems to be negligible with respect to the
influence of Z, which is of O((1-0)N/Gs). But neglecting the
influence of 2 on (u,v) can lead to serious errors: this influence
can be of 0(kN/Gs), while the influence of the tangential traction
is of O(uN/Gs). Hence we would obtain a good second approximation by
taking the influence of Z on (u,v) into account, and neglecting the
influence of (X,Y) on w. The division of the problems into a normal

and a tangential problem is then retained. This second approximation
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was worked out by JOHNSON [4] for CARTER's problem, and he compared
his results with the exact theory (see JOHNSON [4], fig. 7), from
which it appeared that the error of the second approximation is small.
We finally observe that the problem is governed by three elastic
constants, viz. G, o, and k. That is one less than one would expect,
since in principle the four constants G, G, o+, o~ can be
arbitrarily chosen. We also see that G can be eliminated by
introducing dimensionless tractions. So the elastic properties are
taken into account by the two dimensionless parameters k and o, one

of which we set equal to zero.

2.2. The fundamental lemma.

As we saw in the previous section, the normal and tangential
problems can be formulated as the integral equations (2.11c¢) and
(2.15a,b). They are

u(x,y) = .
1 v ey g1=0 , o(x-x')2 voory O(x=X")(y=") Y2 as
==z [ [z sy 1=+ b+ ov(xt,yr) SEEIIY Jygyprgy,

™ g R R3 w3

V(x’y) = q
=1_.G. J'J' [X(x',y') U_(".”‘_')(I:L)+ Y(x',y'){ﬂ*'o—(t'L)z'}]dx'dy',J

L R3 R R3
(2.18)

w(x,y) = ;—52 Ié’ z(x',y') %EL' " (2.19)

with

R = /(x=x")2+(y-y")2, E = {x,y: x?/a? + y2/v2 < 1}. (2.10)

Lers: (2,2)

We will now prove the following

Fundamental Lemma:

Ilet
H(x,y) = xk'yZE-k/R2l+1, k and % positive integers, 22 > k;
T(xyy) = {1-(x/2)2 = (y/0)2}72; B2 = x2ay2;
K(x,y) = % MEP d_ xy%, 4 arbitrary constants;
p=0 g=0 e

(2.21a)
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I(xsy) = ,ff J(X'sY')K(x'oy' )H(x‘x"y'y')d-x'dy';
E
then, if (x,y) lies in E = {x,y: x2/a2+y2/p? < 1}
M M-m o (2.21p)

I(x,y) = I % a X v,
m=0 n=0 J

that is, I(x,y) is a polynomial in x,v of the same degree

as K(x,y).

The lemma was established by GALIN [1], ch. 2, sec. 8, in the
special case that k=2=0, by means of LAME's functions. Its
significance for the solution of the integral equations (2.18) and
(2.19) is the following. We see that all functions of (x-x') and
(y-y') that occur in the integrands of (2.18) and (2.19) are of the
form H(x-x',y-y'). If we suppose that the tractions X,Y,Z are of the
form J(x,y)K(x,y), then it follows that the displacement differences
u,v,w inside the elliptical area are polynomials in x and y of the
same degree as that of K(x,y). But that means that there are as many
parameters in the displacement differences as there are in the

x)

tractions. There is a strong presumption s borne out by our
numerical work, that the displacement fields are independent of each
other. It follows that we may invert the argument, and say that when
u, v and w are given as polynomials inside E, the tractions X,Y,Z
must be of the form J(x,y)K(x,y). Clearly, the connection between
the constants dpq and &n is linear, owing to the linearity of the
equations. Summarizing, we see that the lemma presumably implies

that

M M-m

(uyvow) = ¢ Z (a_,b _,c ) xmyn inside E

mn® mn® mn
m=0 n=0
M Mep b (2.22)
S (X,Y,2)=3(x,y)G © I (d sepgrf )xPyd,
=0 q=0 P’ Pa’Pa
where the constants (amn’bmn’cmn) are connected with (dpq’epq’qu)

x) KIRCHHOFF's uniqueness theorem does not hold when the stresses

go to infinity, as they do here.
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by linear equations.

We now turn to the

Proof of the Lemma.

Consider a typical term of the polynomial K(x,y), viz. xpyq.
Then the lemma is proved, if we can show that

[ 3t ,y)x Pyt ® H(x-x' ,y-y")ax'ay" = Porg(Xo¥)s (2.23)

E

where Pm(x,y) denotes an arbitrary polynomial in x,y of degree m. We

introduce polar coordinates R, ¢ about the point (x,y):
x'-x = Reosy, y'-y = Rsiny, dx'dy' = RARdy, (2.24)

and we introduce a new notation: Fm(w) is an unspecified function of

Y, independent of R, x, and y, for which
. m
F (yp#m) = (=1)7 F (¥). (2.25)

For example, siny = F1(¢), cosy = F1(w). Multiplication of functions

Fm(w) is governed by the law that Fm(w)Fn(w) = Fm+n(1p). Now,
H(x-x',y-y') = (x_x,)k(y_y,)ZJL-k/REZH’ o
H(x-x",y-y") ='% Fo(w). (2.26)

We must write the factor 1-(x'/a)2-(y'/b)? in polar coordinates:
(ReosP+x)? _ (Rsiny+y)?2 _

1-(x"/a)2-(y"/0)2 = 1 -

a2 b2
- (1_x_2_ﬁ)_2R(m+m)_Rz(m+M)=
a2 b2 a2 b2 a? b2
= = A {R2+2DR-C} = - A {(R+D)2-C-D?} = A {B2-(R+D)2},
with
A:LSZIE.;.iin_zw.:F(w)>o )
a2 12 o *
C =% {1-x2/a2-y2/b?},
_ 1 ( xcos sin
D"T\(?‘E“YTZE)’ s (2.27)
= N =, S i | = 2 1 XCOS sinyy2 -
B = B(y) = /B2 = /A (1 - = _yt)T_)+F (__a_z.‘2+}’_b_2‘£)
= B(m+y),
1 = (x'/a)?=(y"/b)? = A{B2-(R+D)2},




As to the limits of integration, y goes from O to 2m, since
(x,y) lies inside the area of integration, and R goes from O to the
positive zero of 1-(x'/a)2-(y'/b)2, that is, to -D+B. So we get from
(2.24), (2.26), and (2.27) that (2.23) becomes

J’f J(x' ' )x'py'qﬁ(x'x' -y )dx'dY' =
E

= IZTr F_(v)ay jB-D (x+Rcosy) P (y+Rsiny)® Rieels T (2.28)
o ° o V/B2-(R+D)2 ptq 2

where the factor 1/VA and RH(x-x',y-y') have been taken together
into the single term Fo(w).

We can expand the term (x+Rcosw)p(y+Rsin1p)q to a finite double
sum by means of the blnomlal theorem, twice applied. A typlcal term

is A Rl pr-l a-= Js:.n wcos ¥, which can be written as R* JF .(w) x

xp-lyq J. Inserting this into the integral (2.28), we see that it
is sufficient to prove that
’ s O B-D _i+]
1 - R dR
Ly R (Way [ ——=—— =P, (x,y). (2.29)

g ~H 0 /R2_(reD)2 P*¢

Setting i+j=m, we see that (2.29) is satisfied when

2m B-D m
] Flyay [ E & _ . P (x,y).

m
0 0  VB2-(R+D)?

Now we introduce the variable t=R+D instead of R. Then, dR=dt, and

the limits are from D to B:

2n B m
[ mynan | %t— = P_(x,3). (2.30)
0 -t

We evaluate the term (t-D)m again with the binomial theorem. A
typical term is Aqtqu—q. If into this we introduce the value of D
from (2.27), we obtain

—
AtID™Y = p (y)td (XSO, YSing )
q (o] &2 b2

Here again we evaluate the right-hand side with the binomial

theorem; a typical term is

F (w)A thp g pcospwsnx ~p- qw_ (w)thpym-p-q
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Inserting this in (2.30), we get for a typical term:

2m B q
Ly [ R (Pay [ = = P (x,),
o ¢ D "

éz_tz

and this is satisfied if

2T B q
7R (pay [ =2

0 q D v/B2-t2

Now there are two possibilities: either q is odd, or q is even.

q=2m+1 is odd. (2.31) becomes then

= Pq(x,y). (2.31)

2m B ,2m+1

F,(y)dy - dat _
{) : ]j; VB2-12

f2 BZm
= F
o WL e
B
- [ (e ? Ma ik
[ ([, T

since by (2.27),
D2 (y+m) = D2(y), B2(y+m) = B2(v). So, the odd values of q do not

contribute at all to the integral.

g=2m is even. (2.31) becomes then

2m B .2m 2m 1 2mB2m
" (w)dw r at _ 7 (q,)dw X B dt =
(J; e 1{ /B2-12 é = 11;/3 /112

2m 1 .2m m D/B  -D/B .2m
= F(B®ay [ 2 _ [ F ()3T + =,
({ © c{ /1-t2 (IJ © { E,; ({ } /1-12

and the latter two terms vanish, because tzm/ﬂ-t2 is an even
function of t. As to the first term,

1 .2m
| L —

0 Vi1-t2
is a constant, so that we must consider

2m
[ F (v)3%ay;
0 (o]

but B2 is a second degree polynomial in x and y, with coefficients

depending upon Y. So BZm is a (2m)-degree polynomial in x and y,

2T,




and (2.31) becomes

2n
2m
({ Fo(W)B7aY = B, (x,¥),

which establishes the lemma.

2.3. DOVWNOROVICH's method.

In the previous section we showed that if

M M-p
(X,Y,2) = GI(x,y) pgo qZ (dpq - pq)xpy "

-1
with J(x,y) = /1-(x/a.)2—(y/b)2 , then and (presumably)

only then (2.32)

(u,v,w) = Z Z (a__ b _,c )x"y™ inside E,
m=0 n=0 ™

with E = {x,y: (x/a)?+(y/p)? < 1},

where the coefficients (d,e,f) on the one hand, and (a,b,c) on the
other hand are connected with each other by the integral represent-
ations (2.15a,b) and (2.11c). In order to find the equations
connecting (a,b,c) and (d,e,f) explicitly, it is, of course,
possible to follow exactly the road indicated by the proof of the
fundamental lemma. However, we prefer the road followed by
DOVNOROVICH [1] in his treatment of the normal problem. DOVNOROVICH
uses the lemma only in the form proved by GALIN, that is for
H(x,y) = 1/R. He calculates Con O differentiating the integral
representation (2.11¢c) m tlmes with respect to x and n times with

respect to y, and then he sets x = y = 0:

+ -3 .
minle = —Bm—n- %:4 MZJ c. nyk =
mn Jk < &

meayn J=0 k=0 y=0
m+n
P = '
[—— 2 ager ) 20| =
ax™ ay e} R x=y=0
m+n
9 dx'dy"
ol Z Z £ ff I(x',y )X'py'q—y—] ’
axTay" m p=0 g=0 P9 R Jx=y=0

Since the values of p and a for which p+q < mtn give rise to
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polynomials of a degree lower than m+n, these values do not give any

contribution to Cpn» hence

m+n M
P
=J[3_m7 z . If J(x' WY )xuqu _dL_] .
ox 9y ptq2m+n,p>0,920 P x=y=0

As we will prove later in this section, we may interchange different- °

iation and integration in this expression, so that

minlc = )
mn
B M a am+n R—1
el | T ff I(x,y)x' Py —— dxdy =
p+q>min, d ax'" dy' |x'=y'=0
p20,920
M min -1 r (2.33)
1- mt 9
=T° ) (=" g [] 3(x,y)xPy? Tn_ dxdy,
pro>mtn, Pa g ax"ay
20,920
r = V/x2+y2, J

Tn exactly the same way, we find from (2.15a,b), and (2.32) that

ninla = N
mn
1 ¥ m+n p.aq e gIRAL,,
= ) (-1) J[ T(x,y)x"y dpq ( v gl g~ )+
pra>men, B ax oy X 3y
p20,9>0
8m+n+2 2
-oe ———| axdy,
jole] 8xm+1ayn+1
minlb_ =
mn
1 = m+n q am+n+2
s 1 (-1) [] 3xy)xPy? |- o doq TmFT_o+l
pto2min, E Eox 93y
p>0,q9>0
am+n -1 am+n+2r
+re_ | mrn-o mn+2)d.xdy.
pq 9x 9y 9x dy
r = /x2+y2, E = {x,y: x2/a2+y2/v2 < 1}. J
(2.34)
The integrals
( 1) 3m+nr2h—1
g 3Pd - U 3 (x,y)xPyt —E—— axay (2.35)
ox dy
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are fairly easy to calculate; we will do that in the next section.
The remainder of this section is devoted to the proof of the

validity of the equation

am+n
m n ff f(x-y)H(X-X',y-y')dxdy] =
3 ay' E xl=y|=o

+
= (-1)"8 ff £(x,y) —(—h‘L)- dxdy, , (2.36)
ax" y
h_‘\

f(x’y) = J(x9y)xpyqs H(X’y) = (x2+y2) 29
when

oh+p+q-m-n > -1, (2.37)
Proof. We divide the domain of integration into a small square

D = {x,y: |x]| <86, |y| <&} (2.38)

about the origin, and the rest E-D of E. When the point (x',y') is

close enough to the origin, say
|x'| < 8/2, |y'] < 8/2, (2.39)

it lies in the square D, and then all derivatives of H(x-x',y-y')
with respect to x' and y' exist and are continuous in E-D. Hence we

may interchange differentiation and integration in E-D, so that

[ ff f(x,y)H(x=x",y=y")dxdy ]
3x 3y E-D x':y':O
i (2.%0)
R ff f(x,y) ~—*——154X— dxdy.
E-D ax™ By
We will now show that the contribution of the square D to both the
right hand side and the left hand side of (2.36) vanishes as § + 0,

that is

s 8
A= [ | f(xy)—i(’ilﬂ-dxdy+0ass+o (2.41)
=8 =6 ax" ay
am+n § 6
B==———— [ [ f(x,y)H(x-x",y-y")dxdy + 0 as § >0 (2.L2)

ax' Moyt ? -5 =8

Evidently this will establish (2.36).
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i 2h-1-m-n
As to (2.41), we observe Bl St (e ) 5 more-
X 0y
over, £(x,y)=J(x,y)xy = 0(rp+q), so that the integrand of A is
P A e T
2m 26
=o( [ ap ) rPPYETN 1) L0 a5 s >0,
0 0
when 2h+p+q-m-n>-1. (2.43)

As to (2.42), let us consider the case that m=1, n=0. Evidently,

8 8
3 [] g dy f f(xsy)H(x"x's}"y')dx =
- -8
8 8
Lim [ dy [ £0x,y){H(x-x"=k,y=y")-H(x-x',y-y')}
k*0 =8 -6

§ §
Lim { [ dy [ / f(x+Klzi-f(x,y) H(x=-x',y=-y")dx +
k»0 =6 -

x
Kk

-5

+ % g ) £ x4k, ¥ ) H(x=x" ,y-y')dx +
s

/ f(x+k,y)H(x-x'.Y—Y')d¥]}=

Lo B

8 $ 8 =6
af X
- - -$ X==§
or, summarizing,

j f(x:y)H(X—x',y—y')dx =

?
rfdy
“¥ 3 5
=[ &
§

f A (x,y) H(x-x',y-y') dx +

_5 ax > (2.4k)

é x=6
-/ [f(x,y)H(x-X',Y-Y') dy.
-8 x==6

We observe in passing that the right hand side of (2.L44) is formally

equal to -ff(x,y) dxdy, integrated partially. This integral,
however, is not absolutely convergent when h=0, unless x'=y'=0,
The first integral on the right hand side of (2.L4L4) is analogous
to the original integral [[ f(x,y)H(x-x',y-y')dxdy; when we
D

differentiate it further, we obtain forms analogous to (2.4k4). The
second integral may be differentiated under the integral sign, since

H(*8-x',y-y') has continuous derivatives of any order with respect
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to x' and y', when x' and y' satisfy (2.39). So we find, by differ-
entiating first m times with respect to x', and then n times with
respect to y', that

am.+n § § \
m, ,n g f f(x,y)H(x-x' ,y—y')dxdy =
ox' dy -8 =8
§ & .m+n
ji—~j§£51Xl H dxdy +
-6 =8 ax oy

m-1 6&[ i mtn—i-1 =8 > (2.45)
 fx,y) 3 H
- 4 { i m-i-1 n | & ¢
i=0 § 9x ox' Ay'" Jx==6
n-1 § am+1f(x,y) E)n—1—1 H y=8
-4 m i ni-1 | %
1=0 -§ 9X Jy oy y==8
m+
just as if we had integrated (-1)m+n ff_f(x,y) E—Eiga dxdy partially
D 9x 9y

with respect to x and y. It follows from the definition (2.36) of
f(x,y) and H(x-x',y-y') that

8m+1f(;.g,y_) =0 (6p+q—m-i)’

ar(x,y) _ 0 (Gpﬂl-i)
i m, i
9x oy

Bxl

[ m+n-i-1 n-i-1

9 H ) 2h+i-m-n 9 H _ 2h+i-n
m-i-1, ,n =o(s )s n-i-1 = o(s )s
ax' y' |x=%6 oy y=18

so that the line integrals of (2.L45) are all

2h+pt+g-m-n 2h+1+p+q—m—n)

§
of dy = 0(s
=8
The surface integral of (2.45) behaves as

f6 fd 62h—1+p+q-m—n

-8 =6

daxdy = 062+ 1tPra-m-n)

2h+1+p+q-m-n

Hence all terms of (2.45) are 0[6 ), which vanishes as

§+0, when 2h+p+g-m-n>-1.

2.4, The load-displacement equations.

We saw in the previous section that when
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M M-m

(uyvgw) = F (g b mn)x v" and
m=0 n=0
X,Y,2) = GJ £ _JIx
(%,%) (x,3) Zo Z (a pa’®pa’ pg/ * Y
p=0 =0
then is, according to (2.34), (2.33), and (2.35),
2 1\24 ( Ospa _ _13pa )
a T — [d Y ok ? -ge
mn mins pro>mn, Pq mn m+2,n
P:QJQ:O
2 % 15pq ( pq
b == [-od E E°?
mn mind pra>mn, Pq m+1,n+1
p>0,9>0.
M
2(1-0) 03
Cm = 151!:1! z quE ’fr)lg ?
pto>mtn,
onsQE_O
with, as we recall,
- ( 1) m+n q am n 2h—1
Eh’mn = ff I(x,y) =Py —Tn— dxdy,
9xX Jy

when 2h+p+q-m-n :O 4

=0 else.

r = /x2+y2, J(xy) = {1-(x/a)2—(3’/b)2}_% .

(2.46)

], (2.47a)
] (2.470)

(2.47¢c)

(2.48)

We call the equations (2.47) the load-displacement equations.

We can clarify the structure and the connection between (u,v,w)

and (X,Y,Z) by using index notation. We set

Ui = 802310285 1282022112 0 Egye
Vi = Dy0s0000010 ssvry Doy
Wi = COO,C.IO,CO.I, sesey COM,
%; = dppadypedpge iy S
Y5 = eg02®10°%01? ceees Sope
Z; = TsTy0sTore wesey Loy
M

X, = 1,x,y,x2,xy,y2, ceeey Vo

i=1 to 3(M+1)(M+2) |

~

((2.49)
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The square matrix

~rg alieg” adapted to this order, we call Ai,j’
. 2 15pq . 2 13pa .
the matrix Y] E n+2,n is Bij’ = B m+1,n+1 1s Hij’ and
—?-;- g15Pd is D,.. Finally we use the summation convention: when
mind myn+2 1)

two indices in an expression are the same, summation from 1 to

1(M+1)(M+2) is understood. Then we have:

X= GJ(x,y)Xixi, Y = GJ(x,y)Yixi, Z = GJ(x,y)Zixi, b50,55]
U= U,X.y V= VeXey W= W.X.y
i i7i i%i
and the load-displacement equations are
I
u, = (A, .-oB..)X.-oH..Y,,
1 1J 7 J 1J J
. = =coH. .X. + . .=0D. . " > ,
v; = -oH; X, (%JODH)H, (2.51)
L (1-°)Aij Zj’ ,
so that
<
u = xi{(Aij_OBij)Xj-aHij Yj}’
= X.{=-0H. .X. . .=0D. . " g .
v ﬂjnHUxJ+ Ags MHJYJ, (2.52)
w = x.(1—U)A-- Ziw »
% 1J 3 )

We note that only X; is position dependent. For illustration, we

write out the quantities connected with Z for M=1:

(x;) = (,x,3)5 (Z) = (£50,8400%01)5 w3 = (eggae0sqq)s

7 = GJ(1,x,y) fOOW , w=(1,x,v) COO- 5
f10 %10

o1 €01

(50300 ;0310 £0501]

— ]
2(7=o7 ¥ = (1hxy) o0 ® o0 B ool | foof °
0;00 0310 _0301
" 10 & 10 - 10 f10
0300 0310 0301
[T 701 B 01 B0 | Tor
We consider again the constants Eh;ﬁg which we defined as

integrals in (2,48). Since the integrand is an odd function of x
when (p+m) is odd, and since the domain of integration

E = {x,y: (x/a)?+(y/b)?<1} is symmetric sbout the x-exis,

3L,




gR3Pe

0 when (p+m) is odd. In the same way, we find that

mn
Eh;ﬁg = 0 when (q+n) is odd. So,
) 1 ymtn 2h-1
Eh’ﬁg‘ L= ) ” J(x, y)xpqu dxdy,
when (p+m) and (q+n) are even, and 2h+p+q-m-n>0,| (2.53)
=0 in all other cases.

The fact that Eh;gg = 0 unless (p+m) and (g+n) are even, has an

important practical consequence for numerical calculations. This
consequence is, that the load-displacement equations for u and v, and
also those for w, can be decomposed into U4 independent systems.

In order to show this, we bring out the parity of p,g,m and n
by writing for p: 2p+e, or 2p+e' as the case may be, for q: 2q+w or
2q+w', for m: 2m+e, or 2m+e', and for n: 2n+w or 2n+w'. Here, € and w
take on the values O or 1 only, while €' and w' correspond to € and w
by the equations e+e'=1, wtw'=1, so that when =1, then €'=0, and
when w=1, w'=0, and vice versa. Further we will consider the case
that the degree M of the polynomials is given by 2K+v, (v=0,1;

vHu'=1):
M=2K+v, €=0,1; w=0,1; v=0,1; e+e'=wtw'=v+v'=1, (2.54)

It follows from a consideration of the 8 cases v=0,1; €=0,1; w=0,1,
that the ranges of the summation can be represented in the formulae

2m2n+e+w < 2p+2qtetw 2K+v

A

+ mtn < ptq < K-vewrv'(e'w'-1),

2m+2n+e+w < 2pt2qre'+w' < 2K+v (2.552)
+ mtn+1-g'=w' < ptq < K-ve'w'+v'(ew-1),
while
om+ 1+e=2(mte )+e', 2n+1+w=2(n+w)+w'. (2.55b)
So we find from (2.47):
"
1 ] (] =
3(2m+e) ! (2n+w) ! a?m+e,2n+m
- o
_ Kevewtv! (e'w'-1) 032pte,2qtw 132pt+e,2q+w
- d2p+e 2q+w( 2mte ,2n+w OF 2(m+1)+e,2 +w)+
p+q=mn, > ¥ il
p20,q>0
i ¥ Vs
. K-ve'w'+v' (ew-1) . 152pte’ ,2q+0"
g T, 2pt+e',2q+w’ 2(mte)+e',2(ntw)+w'®
p20,920 4
(2.56a)
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1 1) 1y =
1(2m+e') ! (2n+w')! b2m+e',2n+w'
- Y E e
. Kevewtv'(e'w 1)d {iBpre, Buda .
= = L} L}
. S——— 2pte ,2q+w 2(m+e')+e,2(n+w' )+w
p20,0>0 r
W Ui =
N Kive w'+v! (ew 1)e ( 0;2p+e’,2q+w'_ _1;2p+e’,2q+w’ )
. J— 2p+e' ,2q+w' 2m+e' ,2n+w' 2m+e' ,2(n+1)+w'’?
20,920 A
(2.56b)
3(2m+e) ! (2n+w)! c = |
2m+e ,2n+w
K-vewtv'(e'w'=1)
= (1-0) £ picrte.tate | (2.56¢)
pgemn, 2pte,2q+w 2m+e ,2n+w
p>0,9>0

We see immediately from these equations that the systems (2.56a) and
(2.56b) taken together form a closed system of equations for each of
the four possible choices for (e,w), viz. (e,w)=(0,0), (0,1), (1,0),
(1,1). The same can be said of the system (2.56c). Moreover, when
0=0, there is no longer any interection between Y and u, and between
X and v, sc that the equations (2.56a) can be solved independently
of (2.56b); in fact, (2.56a) and (2.56b) get the same form as
(2.56¢) with o0=0.

After these general considerations, we will determine

Eh°2p+e 2qtw . .
b t
omte ,2n+w in the next subsections.

2.41, A differentiation formula.

In the present subsection, we derive the following different-

iation formula:

am+n(x2_._ 2)0 _
axay"
k+2 [
- n {=~1) (-a)y o mint (s z)a‘k‘l(g y2k=m 1280
VA IR =3 H c=0 H = ey L i * v
= - (2.57)

in which we use the notation (z)j:
(2); = %gl b (2)g=1s (2) 2z ))ene(2bn1), §1,2,3,00. (2.56)

.
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Proof. We expand {(x+u)2+(y+v)2}a about (x°+y?). Lccording to

TAYLOR's theorem, we have that
bl o m n ,mtn o
[orw2e(pn2}® = § § S 2 (e

m=0 n=0 m!n! meayn

(2.59)

H

This expansion has a radius of convergence which differs from zero,
when (x2+y2) # 0.
On the other hand, we can expand H by means of the binomial
theorem:
H = {(x+u)2+(y+v)2}* = {(x2+y2)+(2xutu+2yvev2) |} =
o (=1)K(=a), (2xutru2+2yv+v2 )k
2442) k =
(x2+y2)% ] =
k=0 k! (x2+y2)
k
© k (-1)"(-a)

I e (2492 (erura?)
O . .

k=0 &=

[}

k-2

(2yv+v2)£.

In this double sum, we interchange the summation. The summation
ranges are then 0<f<w, 2<k<w~., Then, we replace k by k+&, which gives

us an expression for H which is symmetric in k and %:

vOv ('1)k+l(’°)k+m a-k-2 k 2
; (x24y2) "7 (2xutu?) ™ (2yvev?) " =

H

220 k=0 ki
I N Y a-k-% [, yk-mi(, y2-n
) ) (k-m)!(%=n)!nim! (x*+y?) (2x)" " (2y)

2=0 k=0 m=0 n=0
In order to get u"™v" in this sum, we replace m by m-k, and n by n-2:

k+2 m n
© o 2k 28 (=1) (—a)k+l u v

(2k-m) ! (m-k) t(22-n) ! (n-2) ¢

3 (x2+y2)a-k-l (2x)2k-m (2y)2l_n.

We bring the summation over m and n in front. The range of summation

2=0 k=0 m=k n=2

of k and m was: Ogk<w», k<m<2k; this becomes 0<m<w, %mjk:m. So,

n o (=00, (Pey
(m-K): (n-2) ! (2k-m) ! (281} !

2 ) O=K=-2

(-] (o] m
=1 1 1
=0 n=0 k>m/2 2>n/2

(2y)2%" , (2.60)

m

X U vn (2x)2k—m

Comparing this with (2.59), we see, that indeed
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m+n

3 (x2+x2)“ _
3xm3yn

m n (—1)k+1(-“)k+2m!n! o=k=1 2k-m 2%-n
_ (x2+y2) (2x) = (2y) =,

" Kom/2 250/2 (m-k) ! (n-2)! (2k-m) ! (28-n)!

as we set out to prove.

2.42, The coefficients of the load-displacement equations as finite

sums of complete elliptic integrals.

We use the differentiation formula (2.57) to calculate the

integrals
Eh;2p+e,2q+w =
2mte ,2n+w
+w 2m+2n+e+w_2h-1
_ (=1)¢ 2p+e_2q+w 9 r
= _2’_' II J(X,Y)X y 2m+e. 2n+w dXdy! (2-61)
b E 0x oy
where
€=0,1; w=0,1; h+p+tq-m-n>-3} (2.62)

see (2.53), in which the coefficients of the load-displacement
equations (2.56) are expressed.

We call |e| the excentricity of the contact ellipse
(x/a)2+(y/v)2 = 1, O:|e|:1;g = /1-e2 is the ratio of the axes. When
a is the minor semi-axis, we take e>0. We will denote the minor semi-
axis by s:

e>0: s=a=gb<b=s/g, J={1-(x/s)2-(gy/s)?} 2,
e<0: s=b=ga<a=s/g, J={1-(gx/s)2-(y/s)2}"2, (2.63)
g = f1-e2, |e| = /1-g2.

We interchange in (2.61) x and y, p and q, m and n, € and w. Taking

ni= - =

(2.63) into account, we see that

(e) = EX 5L bl (<o) (2.64)

Eh;2p+e,2q+w
2mte ,2n+w

So, without loss of generality, we consider the case of e>0 only.
We substitute the differentiation formula (2.57) into (2.61).

This gives:
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hi2pte,2qtw _

& 2mte y2n+w
, 2wre onvw (=)o) | (omve) 1(2nvw) !
E — X
o k=m+e f=n+w (2mte-k)!(2n+w-2)! (2k-2m-€)!(28-2n-w)! X
Ok+2 4= 2m=-2n—-g~ Ok+2p-2m_28+2q=2 —3=k=%
% P PReeR-a-) J[ 3(x,y)x L - n(x2+y2)h =8 dxdy,
E
1
with J(x,y) = {1—(x/s)2—(gy/s)2}_§. )
(2.65)

In the double integral (2.65) we introduce polar coordinates:
X = srcosy, y = srsiny, dxdy = szrdrdw.
The form J(x,y) becomes
1 1
J(x,y)={1-r2cos2y-r2g2sin?y}~2 = {1-D2r2}72, D = /1-e2sin?y. (2.66)
The integration is taken over all points x and y, for which J(x,y) is
real. That is, the limits are in polar coordinates: 0<¢<2m, 0<r<1/D.

If we set 2k+2p-2m=2i, 24+2g~2n=2j in (2.65), we see that a typical
integral of (2.65) becomes

2m 1/D 21 . 29 .2d
¥ S2d.+1 ay f cos ~Ysin “yYr “dr ,
0 0 fi-D2r2 (2.67)
i = k+p-m, j = %+g-n, d = h+ptg-m-n. J
Changing the variable to t = D?r?, with dr = .- , we obtain
2Dk
27 21, = 23 1 1 1
[ =gt [ coB NID VAP [ 40-FrqpyE g,  (2.68)
0 2D2d+1 0

The integral over t in (2.68) is a complete Beta function,
1
-1 -1
B(x,y) = [ %7 (1=6)¥7" at = M(x)T(y)/T(x+y).  (2.69)
0]
As to Y, we may restrict ourselves to the interval Ofw:n/E, owing to
the symmetry of the integrand. So we get from (2.66), (2.68), and
(2.69), that

2i _2j
[f 3(x,y) 2L U
E

I-= p—— =
(x2+y2)1+3-d;%
_ 2% (@ nr(d) ("2 cos®lysin®yay (2.70)

-
r(a+1) 0 (1-e2sin2y)4*2

This is a complete elliptic integral of a general type, which can,
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in principle, be reduced to a combination of elliptic integrals of
the first and second kind. We substitute (2.70) into (2.65), setting
i=k+p-m, j=%+g-n. Then,

h32pte,2qtw _ s2qtw,2pte _
£ ’2m+e:2n+m (lel) = Eh,2n+m:2m+e rlel] = 1

(=1 )k+ £+e+w( 3 !hk+£-m-n —E=0)

2m+e 2n+w -h). . (2m+e) ! (2n+w)

1 2
2m

k+4%
k=m+e L=n+w (omt+e~-k) ! (2ntw-2) ! (2k-2m-e) ! (22-2n-w) ! |

y 2s°*'r(a+d)r(3) ITT/E (cos2y) X P (sin2y) *a-Bgy i
al 0 (1-ezsin2w)d*%

d= h+p+q-m—n:0. J
(2.71)

We replace k by k+mte, & by L+n+w. The limits of summation then

became O<k<m, 0<%<n. Making use of the formulae of the Gamma function
T(z+j)
I(3+z)r(3-2z) = n/cos(nz), I'(3) = /7, (z)j = —%T;§— 5 (2.72)

T(a+3)r(3) in (2.71) becomes
T'(3-h+m+n+k+2+e+w)T(3)m _

- . "
it is easy to see that (E-h)kﬂ,

1 1 1 e
(3-1) 1y paminsesa” (BF2)T(2) = T(2-b)T(3-d)cosmd
- I(3-d+protktiretw) cosmh I(3+h)
r(z-d) cosmd TI(3z)

- pro-m-n_ 4

= (-1) 1-0) L, crgrere P ¢
So, (2.71) becomes
Eh§2P+992q+w (e) =

2m+e 4 2n+w
< hk+9'(2m+e)!(2n+w)!s2d+1

1]

(%)h(—Q)Eﬂo I(d,k+p+e L+qtw,e),
k=0 2=0 (m-k)!(n-2)!(2k+e)!(22+w)!

(2473)
with
1/2 (-cos?y)(-sin2y)day
a+3

o s 4 1 1
I(d’l’a' lel):I(d’J’l’_lel)= E!— (E—d)i*'j 0 (1-ezsin2‘l’)
-<]i_!- = 0 when d = =1, =2, =3, ..

(2.74)
which is valid when 4 = h+ptq-m-n>-3. When h is an integer, as it is
in the load displacement equations, d is also an integer, and then
(2.73) is a finite sum of complete elliptic integrals of a general

type which can be reduced to complete elliptic integrals of the first
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and second kind.

It is useful for the purpose of numerical calculations, to know
beforehand what elliptic integrals (2.T4) actually occur in the load-
displacement equations (2.56). Let the degree of the polynomials
(2.46) be 2k+v, with v = 0 or 1. Then it can be shown that

M=2k+v, v=0,1 + 0 < d < k, d < i+j < 2ktv-d, i > 0, j >o,]
for w (eq. 2.56c) and for u,v when o = 0 (eq. 2.56a,b), J (2.75)

and
M=2k+v, v=0,1 + 0 < d <k, d < i+j < 2k+l+v-d, i >0, j > 0,

for u,v (eq. 2.56a,b), o # O. (2.76)

2,43, Transformation to another metric.

We will consider the case that we transform the coordinate
system (x,y,z) to another coordinate system (x,y,z) with the same
origin and axes, but with another metric:

X=AX, y=\y, 2= Az, 5 = As, (A constant). (2.77)
We distinguish quantities taken with respect to (X,y,z) from the

corresponding quantities in (x,y,z) by a bar over the letter. Clearly,

we have
(ut,vi,wt)= A(ut,vi,wt),
(W, v,w) = r(u,v,w), (2478)
(%,%,2)/G = (X,Y,2)/G, G = G/A2.
Also,
= — =1 -1
I(%,5) = A-(x/3)2-(F/F)2 = N-(x/a)2=(y/0)2 = I(x,y),
- - 2.
g Ee e (2.79)
It is easy to see that
o M M-m _ e m sl
(u,v,w) = z Z (amn’bmn’cmn)x y =
m=0 n=
M M-m
=] I ™ (@& 5,5 )Xy =
mn® mn® mn
m=0 n=0
M M-m
Au,v,w) D) )\(amn )x y i
m=0 n=0
from which it follows that
T w A, p uplRRy W o g, (2.80)
mn mn® mn mn® “mn mn
L1,




and it follows in the same way from

1T a )2 5
(%,%,2)/G = J(x,y) oI )x ¥y _
p—O 0 pa’pa’ g
M_
= (X,Y,2)/¢ = J(x,y) Z Z q’epq’f ) xpyq,
w50 a0 P pa
that
3 =Pl e =Pl [ F = P%gp | (2.81)
jl pa® pq pa’ “pg jole}
From (2.73) and (2.T4) we see with the aid of (2.77) and (2.79) that
hipq _ .2d+1 _h; -
E ig = A E ’53, 24 = 2h+p+g-m-n. (2.82)
If (a__,b ) and (4 ) are such that the (unbarred)
mn® *mn * “mn 45q*®pa*Tpq

load-displacement equations are satisfied, we see immediately from
(2.47) that the barred lcad-displacement equations are satisfied by

1=m-n ( a b

(a_,b ,c )=21a sC ),

mnmnmn mnmnmn
d 6. ,F )=2"P%(q e ,f )
(d pa’ pa’ pa pa’ pa’ pq’?

that is, by the same parameters as in (2.80) and (2.81). So, solving
the load-displacement equations for one value of A, means solving them

for all A.
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3. Special cases of the load-displacement equations.

In section 3.1 of the present chapter, we develop the theory of

the load-displacement equations further. In fact, we will study the

special case that the traction behaves as /1—(x/a)2-(y/b)2 as one
approaches the edge of the contact area, rather than as

V1-(x/2)2-(y/0)2 -1, as we had in chapter 2, see eq. (2.32). This is

of importance in some applications of which we will name the normal
problem of HERTZ, which is treated in 3.221, and the tangential
problem of CATTANEO [1], and MINDLIN [1], which is treated in section
3.222. Since for a general polynomial displacement the traction goes
to infinity at the edge, the demand that the traction must vanish
constitutes a restraint on the displacement, in other terms, the
displacement must have a special form in order to meet it. In the
HERTZ case this special form results from the adaptation of form and
size of the contact ellipsej; similarly, in the MINDLIN-CATTANEO
problem of section 3.222, and in CARTER's [1] problem, the area of
adhesion is so adapted.

One can perhaps say that in tangential problems in which slip is
actually present, but is neglected in the calculation, the load-
displacement equations of section 2.l must be used: the infinity of
the traction at the edge of the contact area indicates an area of
slip. This is the case, at any rate, in the MINDLIN-CATTANEO problem
without slip (sec. 3.212), in DE PATER's [1] treatment of the problem
of the rolling contact between two cylinders with parallel axes with
infinitesimal longitudinal creepage, and in the treatment of the
problem of rolling contact with infinitesimal creepagé and spin of
section 4.3. In that section, the interpretation of the traction
singularity is treated more fully. In normal problems, the pressure
singularity can indicate a sharp edge, as is the case in the problem
of an elliptical die pressed into a half-space, see section 3.211.

If in the tangential problems slip is not neglected, as we have
in sec. 3.222, the MINDLIN-CATTANEO problem with slip, without twist,
and in the theory of rolling with arbitrary creepage and spin,
chapter 5, the tangential traction generally vanishes at the edge of

the contact area. For the normal pressure distribution will mostly
be Hertzian, and the friction law demands that |(X,Y)| < wZ. So X and

L3,
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Y must also vanish at the edge of the contact area, and at least as

fast as the normal load Z.

3.1. The load-displacement equations, when the surface tractions

vanish at the edge of the contact area.

As we pointed out in section 3, the demand of vanishing
traction at the edge of the contact area E constitutes a restraint
on the surface displacement differences (u,v,w).

We had found in sec. 2.2 (see 2.32) that when

3 M2 ME2-p
(X,¥,2) = 6{1-x2/a2-y2/p2} 2 pzo qzo (dI')q,eI')q pq) (3.1)
then
M+2 M#2-m N
(uyvyw) = mzo nEO (CIN )x Y . (3.2)

Now, the tractions must vanish at the edge of the contact area. This

means that the constants (d' ,e! f! ) must be so, that

pa’ pa’ pg
M+2 M+2-p
(d' ,e’ f'] y
e i ra’ pa’ pa

is divisible by {1-(x/a)2-(y/b)2}. That means that

M+2 M+2-p 5.4 3
X,Y,Z2) = GJ ¥ !
Sl L pZO qzo (g2pq> Tpe)* 7
1T G ) !
= GJ(x,y) 1-(x/a)2-(y/v)2
0 g=o & Pa’°pa’ “pq
M M-p
= 0/1-(x/a)2-(y/0)2 | T (4 .e o0t )xy? [
p=0 q=0
Gt T T [ et T L PR, Lm0
= @J(x,y) y= S X'y
4 520 g=0 pa’“pq? pq b2 ’
1
J(x,y) = {1-(x/a)2-(y/p)2} "2 . )
(3.3)
Comparing (3.2) and (3.3), we see that there are more constants
(amn’bmn’cmn) in (3.2) than there are constants (dpq - pq) in

(3.3). So, the matrix of the load-displacement equations is no
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longer square.

We seek the connection between (a.mn,b oL

) on the one hand,
mn’ ‘mn

and |d__,e_ ,f on the other hand. For that purpose we define
( pa’“pa’ pq) purp
FPe - ghspa _ 1 phsp¥2,q 1 phip,q+2 (3.1)
mn mn g2 mn b2 mn

We note that by (2.53) Eh;ig = 0 when 2h+p+q-m-n<0, (h=0,1), but that

for 2h+ptq-m-n = and

-2, Eh;$2’q do not vanish for all

ER3Psa*2
mn

values of p,q,m,n. Keeping this in mind, we see from (3.3), (3.2),
(3.4), and (2.L47) that

\
M
2 03prq 15pq T3pq
a =—— | {a (F2l-0oF J-ce F }s
mn mini promn-2, Pa mn m+2,n Pa m+1,n+1
20,920
2 % {e ( 035pq 15pq ) T5pq
b === e (F’>*-0F? -gd__ F°? }, ?
mn men, pro>mtn-2, Pa mn myn+2 jele} m+1,n+1
20,920
M
= 2(1-0) y FOsPa
Int '
mn min! praomtn-2, jole] mn
p>0,9>0 )

(3.5)
We will now calculate Fh;ig. We see from (3.4) and (2.53) that

Fh;}p;g = 0 when 2h+ptq-m-n =

and we note that (p+2) and (g+2)

respectively, so that it follows

-3, -h, -5, soey (3-68.)

have the same parity as p and g,
from (3.4) and (2.53) that

(3.6b)

and (q+n) are even.

Fh;gg = 0 unless both (p+m)

Hence, the load-displacement equations can again be decomposed into

4 sets. Further, by (2.64) we have from (3.L4) that

P23 (Je|)=E 23 (|e])- (1/52)EE 2% [e])- (82/52) BP322T*2 e ), (3. 7a)

PRI (- o) =EB R (- Je|)- (1/52) 32 (< e ) (62/52) BB T20P - e,

(3.7p)
where s denotes the minor semi-exis, and g is the ratio of the axes
min (a/b,b/a). Since Eh;ig(e)=Eh;gfl(—e) according to (2.6L4), it
follows from (3.7) that
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FP(e) = FHP (). (3.8)

Fh;2p+€,2q+w(| I)
2m+e ,2n+w ‘
We consider a change of metric as described in sec. 2.43. It is easy

to see from (3.2), (3.3), (3.5), and (3.4), and from (2.32) and
(2.47) that the analysis of 2.43 remains valid in the present case of

So, by (3.6) and (3.8), we only have to calculate

zero stress at the edge of the contact area, so that the effect of a
change of metric here is also described by (2.80), (2.81), and (2.82},
if we read F for E. So, we have to set up the load-displacement
equations for one metric only.

We see from (3.4) that the Eh;ig occurring in the expression for
Fh;ig all have the same h, m, and n. So in substituting the Eh;ﬁg
from (2.73), we can bring the double summation outside the brackets.

Then we have for e>0:

Fh;2p+e,2q+w _
2m+e ,2n+w
h32pt+e,2qtw _ [1/Sz)Eh;2(p+1)+e,2q+w _ (gz/sz)Eh;2p+e.2(q+1)+w=

= E
2m+e ,2n+w 2mte ,2n+w 2m+e ,2n+w

m n k+2
=(3), (-2)5" ] .
k=0 2=0

~I(a+1,k+p+l+e, L+qtw,e)-g2I(d+1 ,k+pte, t+q+i+u,e)},

(2m+e) ! (2n+w) } 52d+1
(m-x) ! (n-2) ' (2k+e) ! (22+w)

!{I(d,k+p+€,2+qfw,e)+

e>0, d=h+p+q-m-n.
(3.9

We define
J(d,i,j,le[] =I(d’i’j9le[] -I(d+1,i+1,j,{6l) —gZI(d+1,i,j+1,le|) ’
T(dy30is-le])=T(dyisis-|e])-T(ar1,3,i%1,-|e|)-e2T(a+1,5+1,i,-e]),
(3.10)

so that
J(dyi,jse)=d(d,j,i,-e), (3.11)

and from (3.8),(3.9),(3.10) and (3.11) it follows that

12p+e 5 20+W _ _hj2qtw,2pte - )
Fh’2m+e:2n+w le} = ¥ ,2n+w:2m+e fe) =

m n k+2 2d+1

1 e+w L (2mte )t (2ntw) ! s
=(2),(-2) kZO zzo Took ) (oot T ok e) Tamvm) T O (dsktpte, braruse). |
Fh;ig = 0 unless (p+m), (g+n) are hoth even and d=h+p+g-m-n>-1.

(3.12)
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Comparing this with (2.73), we see that Fh;ig and Eh;ﬁg have exactly
the same form, the only difference is that F has J-functions where E
has I-functions.,

We calculate J(d,i,j,|e|) from (3.10) and (2.7L).
T(ai,d,sle])= T(asi,g,le])- T(a+1,i+1,5,le|)-g21(a+1,i,j+1,]e]|) =

= 1 &3 nje (=cos?y)*(-sin2y)d ap 1 i
Tar (E'd)i+j ata - (E’d'1)i+j+1 *
: 0 (1-e2sin?y)" 2 (a+1)!
ﬂ/2 N 2 i - 9 j
x [ {zeos™ ) ( 512;%}24§¢ (~cos?y-g?sin?y) .
0 (1-e2s5in2y)
Since 1/d! must be interpreted as zero when d = -1, we can write

1/48 = T%E%T? ; further, cos?y+g?sin?y = 1-e?sin?y, and finally

(5-:1-1)i+j+1 = (%-a,1)(%-d)i+j , 80 that
. 24+2~2d-1 /2 cos2u)E (cainy)d )
(et lel)= ST () [ e %).(z:??ﬁi) W
- s1n
m/2 20V (_ain2g)d
N 5 (—cos?y)” (-sin?y) |
= 3-d). .. —— ay,
* (d+15! (2 )1+J é (1_ezsin2w)d+§ ¥
J(a,i,d,le]) = 3(a,j,i,-lel}, 1/(a+1)t = O when d = -2,-3 ...

(3.13)
Comparing this with (2.T4), we see that
I(d,i,jse) = 2(a+1)I(d,i,j.e), (3.14)
so that we find from (3.12) and (2.73), that

Eh;ﬁg = 2(d+1)Fh;£3 , 24 = 2h+ptq-m-n, (3.15)

which means that the coefficients of the load-displacement equations
for an infinite traction at the edge of the contact area can be found
by multiplying the corresponding coefficient of the load-displacement
equation with zero traction at the edge with 2(d+1).

It is useful for the purpose of numerical calculations to know
beforehand which elliptical integrals (3.13) occur. When the degree
of the traction polynomial is M = 2K+v, v = 0 or 1, it can be shown
that

M=2K+v: w, and (u,v) when 0=0: ~1<d<K, max(0,d)<i+j<2K+v-d (3.16a)

M=2K+v: (u,v) when 0#0: ~12d2K, max(0,d)<i+j<2K+1+v-d. (3.16b)
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3.2. Examples' of the use of the load-displacement equations.

A list of the functions J(d,i,j,e) and Fh;gg.

In the present section we give a few examples of the use of
the load-displacement equations. First we will give a list of the
elliptic integrals out of which the Fh’ig' are formed, and a list of
these coefficients themselves. We define with JAHNKE & EMDE [2]:

m/2
K=/ , E=[  1-e?sin?y ay , (3.17a)
T 0 ieZsin?y T 0

F

C = fn/2 sin?ycos? d3 . B f“/z sinzydy B fn/2 coszy,_vdg! s

-0 m T 0 /1-e2sin%y ~ 0 V1-e2sin?y
(3.17p)

K = 2D-e2C ; E = (2-e?)D-e?C ; B = D-e’C. (3.17¢)

The functions X and E are the complete elliptic integrals of the
first and second kind, respectively. The functions B, C, D do not
have a special name. The five functions are tabulated by JAHNKE &
EMDE [1], pg. 78, 80, 83, and 82, In Table 1, we give a small table
of the values of C and D, taken from JAHNKE & EMDE [1].

Table 1. C and D as functions of g = V1- 2,

g ¥0 0.1 0.2 0.3 0.4 0.5

C |-2+log 4/g | 1.7351 | 1.1239 [0.8107 |0.6171 |0.4863
D |-1+log 4/g | 2.7067 |2.0475 [1.6827 |1.4388 |1.2606
g 0.6 0.7 0.8 0.9 140

€| 0.3929 |0.3235 |0.27060|0.22925/0.19635 = Tz
D| 1.123% [ 1.0138 | 0.9241 |0.8491 [0.7854 = -

It is well-known that the complete elliptic integrals -of the
type we encountered can be expressed in two independent elliptic
integrals. We will list the reduction to X and E, because these
functions are widely tabulated. We also give the reduction to C and
D, which are tabulated in JAHNKE & EMDE [1], because in our short
list of elliptic integrals the coefficients of D and C do not

contain the excentricity |e| in the denominator, while g2 = 1-e2
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occurs in the denominator only twice,

The reduction is accomplished by regarding X, E, C, and D, and
J(a,i,j,|e|) as hypergeometric functions F(a,bjc;e2?) in the
following manner. According to ERDELYI et al. 1], Yols 1, pge 115,
eq. 2.12 (7)

m/2 2¢c~2b-1 , . 2b=1
Fla,bjess)s 2r(c) (cosy) (siny) ay
a Cc3z szsric-bs 0 ( 1=z sinzw)a (3.18a)
= (a) (6)
= nZO ‘;Trgx:- z' » when |z|<1.

We set z=e?, a=d+}, b=j+3, c=i+j+1 in (3.18a), and from this and
(3.13) it follows that

. _ (=1)3* T(3-d+i+j) e (coszw)i(Sinzw)jdw
J(d,l.J;|e|)- 21d+1s! F(g—ds é (1_ezsin2w)d+£

(3.18b)

_ (=0 r(3-arivd) r(g+Br(itd) e 4o
W@ T Mgy T, 3 e e?),

Further we have from (3.17) and (3.18a) that

K = 3 F(3,331;¢2);5 E =3 F(-3,3313¢%); B = | F(3,152;¢%);
¢ = T2 7(3/2,3/2;3;¢2); D = T F(3,3/252;¢2).,

(3.19)
The reduction itself is accomplished by repeatedly applying the 15
relations of GAUSS which connect F(a,bjc3;z) with any two of the 6
functions F(at1,bjc3z), F(a,btl1;cyz), F(a,bjctl;z). These relations
can be found, for instance, in ERDELYI et al. (1], vo1. 1, par. 2.8,
pg. 103-104, eq. (31)/(45). We shall give the result of this

reduction without proof. Since according to (3.11) and (3.1k4)
I(d,i,j,e) = 2(a+1)J(d,i,j,e) = 2(a+1)J(d,j,i,-e), (3.20)

we give only J(d,i,Jj,|e]|).
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7(-1,0,0,e[)= 3(-e?)p - 3% =3 E,
Bt 1-2e2
71,01, lel)= ~i(3-2e2)D + bee. = - K+
_ 1-e? 1+e2
3(-1,1,0,e[)= =4 (3-e?)D + 2’ T e Ere B
_1 2 1 2\~ 1+e?-2e" 2+3e2-8e"
J(—12092v|e|)_ 3(11-8‘3 ]2+'B'(1—he )C_:..— Lot K- Bak =y
1 2-3e2+e" 1-e2+e"
I(=1,1,1,]e])= ‘1(2"32)2'3—(”‘32)2 - 8e‘"e £ ie“ =
1 1 1-Le2+3e 2-Te2-3e"
J('1’2’O:|ei)= E(11_3e2)2+8(1'9e2)9= :eq - E_ Zek . o
J(0,0,0,le|) =D - 3eX = 3 K,
1 1
J(0,0,1,]e[) =-iD = -kt E
J(0,1,0,]e]) = = § D+ feXx =def 1
PETEE L e ST e
B 1 _ 2+e? 1+e2
J(090:29|el) - ’1;2 +B'9. . Bel K- Lek E
_ 9 1 1-e2 2-e2
7(0,1,1,]e]) =g D -gC "~ Bt B
o 1 1(1 2.2 = 2=5e2+3e 1-2e2
J(O,2,0,|e” 52+§(1 3e )g. el Lel =?
J(1,0,0,]e|) = {(2-e2)D - e2C}/4g? = E/Ug?,
D e?C 1 1
J(1,0,1,]e]) = - = - ——K+
8(1-e2) 8(1-e2) 8e2 8e2(1-e2)
1 1 1
J(1,1,0 =D = —— K = = I,
( o ’IeD B= 8e2 T 8e2 T )
(3.21)

We can form the following sets of load-displacement equations

from the elliptic integrals (3.21):

X=Y=Z + = on edge; w, and (u,v) for o = 0: the
(u,v) for o # 0 : the
X=Y=Z = 0 on edge; w, and (u,v) for 0: the
(u,v) for 0 # 0 : the

Q
L}

2nd degree (M=2),
1st degree (M=1),
1st degree (M=1),
Oth degree (M=0).

The E's and F's which are needed for those equations are:
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3.21, The case of infinite surface traction at the edge of the

contact area.

In 3.211 we shall treat a normal problem, and in 3.212 a
tangential problem in which the traction becomes infinite at the edge
of the contact area. So the building blocks of the coefficients of
the load-displacement equations are the Eh;ﬁg, see (2.73), (3.13) and
(3.14):

ER32PTES20+w (e) =
2mte 4 2ntw

- 4y O B hk+£(2m* )1 (2n+w) ! 24+1
=@y AT 1L Gt s (a1 ()T (Gpesatuse),

htp+g-m-n; I(d,i,j,e) = 2(a+1)J(d,i,j.e).

d

(3.23)

The equations themselves are given in (2.56).

3.211. A normal problem: a rigid, flat elliptical die pressed into a
half-space.,

A rigid, flat die of elliptical circumference with semi-axes a

and b, s = a < b, is pressed into the elastic half-space z > 0 with

a normal force N, with the action line along X=Xys Y=Y+ The force is

applied so, that contact takes place over the whole of the base of

the die. Friction is assumed to be absent. This problem was treated

by DOVNOROVICH [1] with the aid of the load-displacement equations.
After deformation, the equation of the base of the die is

(3.24)

W RS Gos T Qe ¥ S5 g¥3

the vertical displacement difference w is clearly equal to w+(x,y,0)
since the die is perfectly rigid, and that in turn is clearly given
by (3.24). The constants Cyg» Cqo» and ¢y, follow from the demand
that the total force and moment exerted by the half-space on the die
is in equilibrium with the applied load. We have for the normal

pressure distribution on the half-space:

=
6/1-(x/a)2-(y/b)? (£, 4Ff, x + £..7),
+ 00""10* * “ot¥ (3.25)

G 2G*, o=0 3

it follows from considerations of equilibrium of the die that
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2
N = jé Z axdy = 2mabG £ , XN = jé’ x 2 dxdy = 3 madbG £, 0,

2
o fé y % dxdy = 3 mab3G £41
or,

£ = % Nxolna,3b(}’ fo1 = —g- Nyolwa.b3G. (3-26)

00 10
The condition that contact must take place over the whole of the base

N/2wabG, £

of the die is equivalent to the condition that the normal pressure is

everywhere positive, that is, according to (3.25) and (3.26), that

N 3:0:0 3yyo
f00+ f10x+ f01y—m(1 +—a.—2-+—1-;_2—) » 0 (3.27a)
which after some calculation leads to the condition
2 2
X '
0 0
1, (3.27b)

a7 Gue-

from which we see that (x ) must lie inside the ellipse which is

0* Yo
concentric, similar, and similarly oriented with E, but the axes of
which are % times the axes of E.

The load-displacement equations are, according to (2.56c) and

(3.22):

_ 0300 . _ (1=0)N gy - =0 )
¢ = 2[1=0)E 00 £oo = pg - (22-e°0) = g L
. 3(1-0)Nx 3(1-0)nx
cp = 2(1-0)E% 10 £1) = ———= (D-e?0) = ——— B,
mabG TabG > (3.28)
0301 3(1-0)ly,
= - ’ = cte—————
coq = 2(1=0)E7? ) £4, e 2
G = 2G+, o= o+,

which is also the solution of the problem.

3.212, A taggentia.l problem: the problem of CATTANEO and MINDLIN
without slip.

Two elastic bodies are pressed together by a normal force N, so

that a contact area forms between them. According to the HERTZ
theory, which we assume to be valid, the contact area E is elliptical

with semi-axes a, b (s=agb):
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E = {x,y: (x/a)2+(y/b)? < 1}, s = a < b. (3.29)

After this, a tangential force (Fx’Fy) and a torsional couple MZ are
applied. Assuming that the HERTZ distribution does not influence the
tangential displacement difference and vice versa, it is required to
find the tangential displacement (Gx,dy) and the torsion angle B of
the upper body with respect to the lower. Slip in the contact area
is assumed to be absent. This problem was treated by CATTANEO [ﬁ] and
MINDLIN [1].

Since we must choose the unstressed state so that the displace-

ment vanishes at infinity, we have in the contact area

u(x,y)—u (x,57,0)=u" (x,y,0)=6 <BT=800%8, 1 Vs

v(x,7)=v" (%,5,0)~v" (x,¥,0)= 6y+3"_boo+b " (3.30)

Therefore, the tangential traction distribution over the contact area

has the following form:

i
&/1-(x/a)2-(y/0)2  (dy,*dye) s

X =
Y = ¢/1-(x/a)2-(y/v) [eoo+e1ox)
so that
. . - -5 B
F, =2mabGd g, Fy=2mabGey, M, fé (xY=yX) dxdy= = mebG(ae | -b? 854
(3.31b)
The load-displacement equations are:
_ _ 0300 _ 1500 3
200 = 85 = 2(E g9 = 9F " 50)dg0s
=5 = o oo _ 21300
boo = by 2(E oE oz)eoo’ f 2
_ 8—2(001—0'E1;01)d ey ( ‘
s 21/ %1 12 €10°
o (a03 1o 1310 1;01
b, = 8=2(E - 0E * 5)eyq=20E . d, e |
Now, e>0, so that according to (3.22),
0300 _ o 51300 _ D, 51300 = o5 5001 - op
00 = 20 02~ %= 01 = (3.33)
g1301 o oo 1510 & an20. 59510 - ’
o1 = 82 B p T 88 B o T

J

From (3.17¢), (3.31), (3.32), and (3.33) we can solve §_, Gy and B:

5’4. <,

o




(K-0D)F (K=-oB)F 3M (B D-oE C)
(S:——x’ﬁ:—-—-——-l—— s B = : Akl

. (3.34)
* THG v THG m03G(E-kog2C)

3.22. The case of zero surface traction at the edge of the contact

ared.

In 3.221 we shall treat the HERTZ problem, and in 3.222 the
problem of CATTANEO and MINDLIN with slip, but without twist. The
HERTZ problem is treated in some detail, since its results are
frequently used in the present work. Ve also give a numerical table.

The building blocks of the coefficients of the load-displacement
equations are the Fh;ig of (3.12):

32pte,2qtw ( y_(1 etw §
P e oy (e)=(2),(-2) XL

x J(d,k+pte,L+qrw,e), d = h+prg-m-n>-1,

B onre) (oney)1s®HT
Tkt (o201 (Pkve V¢ (20va) T

(3.35)

The equations themselves are given by (3.5).

3.221, A normal problem: the problem of HERTZ.

Two elastic bodies are pressed together by a normal force N, so
that a contact area forms between them. Assuming that friction is
absent, and that for the boundary conditions the bodies may be
approximated by elliptic paraboloids, find the contact area, the
pressure distribution over the contact area, and the depth of
penetration of the bodies.

The most important case in which we shall use the HERTZ problen
is that of two bodies of revolution which are steadily rolling over
each other., In that case the parallel circles of both bodies are
approximately parallel. We shall confine ourselves to that case. The
axes of the paraboloids then coincide. The elasticity problem
remains the same when the axes of the paraboloids are not parallel,
but the boundary conditions require a little more algebra, which is
given, for instance in LOVE [1] pg. 193-19L. We shall give the
results of this analysis only.

We must choose the unstressed state so, that the displacement

and the stresses vanish at infinity; in such an unstressed state, the
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bodies intersect. Let the principal radii of curvature of the bodies
be given by R;, R;, where a + refers to the lower body, and a - to
the upper body. We count them positive if the centre of curvature in
question lies inside the half-space under consideration. The equation

of the surface of the bodies near the contact area is

F_o-x2 o y2 ¥ .
z =+ 5—: + l_= + a , upper sign: upper half-space,
2RT 2R : (3.36)
x y lower sign: lower half-space.
In the contact area, we have w'(x,y,0)+z"-w=(x,y,0)-z" = 0, that is,
= +
w(x,y) = 27 (x,y)-2 (x,y)= = Ax2-By?+a, (3.37)
with
- + 5
a =0 =0,
ixd {2,
Rx Rx if the axes of the paraboloids
B=1} ( l:.+ l: ), are (nearly) parallel,
R R
y ¥

%:%(A+B)=% (1_+1__.+1_+.1_),

R
p: characteristic length of the b

R; o principal radii of curvature of lower (+) and (3.38)
L]
upper (-) body, taken positive when the
corresponding centre of curvature lies inside

the half-space under consideration;
1 =% 1 1 42
) tlgeg)e
2 21 #2
1 1 1 1
+2(—RT+-—;7)(;——-—R—_)C082(»,
1 2 2 1

w: angle between the plane of R; and the plane of R;,

4(A-B)?2 = (

in case the axes of the paraboloids are not parallel”
This means that
=0y Cpy = -A, ey = -Be (3.39)
We propose the hypothesis that the contact area is elliptic with
semi-axes a and b,
E = {x,y: (x/a)2+(y/b)2< 1}, (3.40)

We take the normal stress in the form
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Z =G Ty, V1-(x/a)2-(y/v)2, (3.41)

where G is the combined modulus of rigidity. We will also need the
combined POISSON's ratio o. They are given by (2.10), which we repeat

here:
1 1.1 o of o
e 1 = i
-d—l('GT"'-E],E-z(g;*'-E]- (3.42)
The total normal force can be found from (3.41) by integration:
N _2 _ _3N
= fé Z dxdy =3 mabGfyq, fo) = prrw . (3.43)
The load-displacement equations are
- - 0300 _,
@ = cyy = 2(1-0)F 2 00 foo *
_ _ 0;00
-A = ¢,y = (1-0)F o0 Too (3.44)
_ = 170300 .
B =gy = (1=0)F 705 fog s
according to (3.22),
3
0 00 0300
oo(le” = Z ’00("|e|) =3 s K,
2390(lel) = ¥%30(lel) = ~(ze2c)/s = -B/s, {  (3.45)
0300 0 300 y
Froollel) =725 (=lel) = -(1-e?)D/s = -g2D/s.
s: minor semi-axis of contact ellipse. :
So we obtain from (3.43), (3.44), and (3.L45):
3N(1-0)sK 3N(1-0) (D-e?C)  3N(1-v)B
e 2rabG ’ A(|e|)=B[-|e|)= 2mabsG = Znebsc  ° (3.146)
3N(1-0)(1-e2)D  3N(1-0)g?D
B(lel)=s(-lel)= 2nabsG T T omabsG  *

Since D > C, see sec. 3.2, Table 1, it follows that A(Ie ) ( le])2
B(le|]=A(—|e|], so that we have:

a=i(H+L)2n=(5+=)dez20,ax0,

R R R

e o9 (3.47)
a=3(L+l)cm=3(Lrl )0, bsa

R R R R

X X Na Na

In order to find the excentricity of the contact ellipse, we set with




HERTZ
) [1/R, + 1/8] - 1/R; - /K|

= 3 plA—B| = T _‘. 3 _ ’ (30)483:)
1/Rx + 1/RX + 1/Ry + 1/Ry

A-B
A+B

cosT =

and it follows from this and (3.46) and (3.17c) that
e?(D-C)
CcoST = - (3.1&81))

L, le| and g are tabulated as functions of t in Table 2, This table
is taken from LOVE [1], p. 197, and from JAHNKE & EMDE [1], p. 78 and

Table 2. |e|, g, E, K as functions of .

t [90% [80° |70° |60° [50° [40° |[30° |20°

o o

10 0

g=s/%|1.00 [0.79 | 0.62 | 0.47 [0.36 |0.26 | 0.18 [0.10 | 0.05 | 0.00
le] |0.00 [0.61]0.73|0.33 [0.93 |0.96 [0.98 | 0,99 |0.999| 1.00
K 1.57 | 1.76 | 1.97 | 2.21 | 2,46 [ 2,75 | 3414 [ 3.71 [ k. kO ®

E 1.57 | 141 [ 1,29 1,19 [ 1,13 [ 1,08 | 1.04 | 1,02 [ 1,01 | 1,00

-

30. We see from (3.48) that the shape of the contact ellipse depends
only on A and B, and not on the applied load N or the elastic
properties of the bodies. The size of the contact area does depend on
the load, as follows:

3M(1-0)E  3N(1-0)E

2 - Var
=S e = c = Yab (3.49)
A4B P 2mabsG 21TG'C3 /é ’ ’

or
3N(1-0)pE = Lmec3G Vg, c = Yab. (3.50)

A frequently-used quantity is fOO' It is

p =3 __ 2cfg __ 2 s
00 ~ 2mabG  (1-0)Ep (1-g)E o °

Finally we determine the penetration a of the bodies according to
(3.44), (3.46), (3.51)
282K

@ = (1-0)K f,, s = —-DE—‘ i (3.52)

(3.51)

3.222. A tangential problem: The problem of CATTANEO and MINDLIN with

slip, without twist.

Two elastic bodies are pressed together by a normal force N, so
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that a contact area forms between them. According to the HERTZ theory,
which we assume to be applicable, the contact area E is elliptical

with semi-axes a and b, a < b:
E = {x,y: (x/a)2+(y/b)2}, a < v, (3.53)

After this, a tangential force (Fx,Fy) is applied. Assuming that the
HERTZ distribution does not influence the tangential displacement
difference, and vice versa, it is required to find the tangential
displacement (éx,éy) of the upper body with respect to the lower.
This problem was treated by MINDLIN [1] end CATTANEO [1].

. If the.tangential force is below its maximal value as predicted
by COULOMB's law,

I(Fx,Fy)|<uN, u: coefficient of friction (3.54)

the contact area is split up into a region of adhesion Eh in which
there is no relative movement of the particles in contect as a
consequence of the tangential force, and a region of slip E_ where
the tangential traction has reached the COULOMB value |(X,Y) |=uZ. The
boundary conditions in E are the same as those of 3.312, with B=0:

u(x,y) = u' (x,y,0)=u"(x,y,0) = 8.

ing . (3.55)

+ -
v (x’Yso)‘v (X,y,o) = Gy s

The boundary conditions in Eg are, that the tangential traction is
equal -to the COULOMB value, and that the local slip takes place in
the diréction of the local tangential traction:

v(x,y)

=yZ = N 2. 2 o :
[(X,Y) [=uz = cu £, V1~(x/2)2-(y/0)?, £y = 5o== 4| in E, (3.56a)
slip in direction of tangential traction. (3.56b)

In the analysis of CATTANEO and MINDLIN, which we will give here with
the aid of the load-displacement equations,boundary conditions (3.55)
and (3.56a) are met completely; (3.56b) is satisfied only approxim-
ately, for it is assumed that (X,Y) is in the same sense as (Fx,Fy),
rather than in the same sense as the slip. The solution is found by
a device which was already used by CARTER [1] in his treatment of
the problem of the rolling contact with creepage of parallel
cylinders. This device consists of assuming that the stress distribu-

tion is that which obtains when complete sliding takes place,
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(X',Y'), from which is substracted a stress distribution (X",Y") over
the adhesion area alone, and which is similar to the stress distribu-~
tion of complete sliding. As a consequence (3.56a) is met automatic-
ally and, (this hypothesis was advanced by CATTANEO and MINDLIN), the
area of adhesion will be bounded by an ellipse. We will show that the
ellipse is similar to the contact ellipse, concentric with it, and
similarly oriented. We denote the semi-axes of the area of adhesion
by a",b", and we will prove the statement just made by showing that
the boundary conditions (3.55) can be met.

Denoting by (u',v') the displacement differences due to the
stress distribution (X',Y') of complete sliding, and by (u",v") those

due to the stress distribution (X",Y") over the adhesion area alone,

we have
(F ,F UGt )
(X',Y")= uz xF y) = FOO (Pi,Fy]/q:(x/a)z—(y/b)z in E,
=0 outside E,
" un " (FX’FE) )2 "2 . ( (3.57)
(X, ¥ HGEY o V1-(x/a")2-(y/p") in E ,
=0 outside Eh’
(x,1) = (x',¥)-(x",¥"); F = |(F,E)], )
and

(u',v')=(aoo,boo)+(a20,b20]x2 +(a11,b 1]xy +[a02,b02)y2 in E, (3.58a)
(u",v")=(a oo’bgo) ( 2o'b50) +(a 450y )3 +(afpsbpp)v? in By, (3.580)
(u,v) = (u'-u", V) = ( y) in E ,(3.58¢)
where, according to the load-displacement equations (3.6),

0300 1300y | o,oo "1500
a50=2(F "0 = 9F 59 ’Q(F - oF o)
o,oo 100 F . Fo,oo "1,00 F
= (Fp - oF Py suf ==, %207 ( F *)0) ppn X :
1’00 0 F - ,.1 s 00 F
b”— ~207'300 bY,= -20F 500
_ (0300 _ 1300 w_ (0300 "1;00
20o= (F 70 = F 25 e (F o= oF P25
(3.59a)
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bog2 (500 = aF'350) | w2 (30 - oF'00) |
bog= (Fi50 = oF P55 g by @00 - o) .
8, —20F1;gg > oo T 0 all = -2 ;1;22 LRy T -
boe™ (Fi0p = o7 P1) | v (FO3Gp - oF' Gl |

(3.59b)

Here the coefficients 3P4 gre taken with the minor semi-axis a of
the contact area, while the Fh;ig are taken with the minor semi-axis
a" of the adhesion area.

Now, we see from (3.35) that the coefficients F and ¥ of the
second degree terms are equal to each other but for a factor s_1=a.—1

and (s")-1=(a")_1, since d= -1. So,

" )

F = F a/a" in 2nd degree terms. (3.60)
If the second degree terms in (u,v) are to vanish in E, as is
demanded by (3.58c), we must choose
a‘"

1 B
5o = + T f5p° (3.61)

If we do so all second degree terms vanish simultaneously.
We are now in a position to express the semi-axes a" in a, with
the aid of the prescribed forces F and Fy:

"

P, = Jf waxay - J] waxay = [f ey - [ 42 & xaxey -
By
= {1-(a"/a)3} u F_N/F,
F& = {1-(a"/a)3} u F& N/F,
so that
%=§=WMMW,F=§+%. (3.62)

As to the zero degree terms, it follows from the fact that d=0,
n
that F = F a"/a, so that

f"
S =g -00 a" _ 2/3 _u 2/3
a0 = &op foo — = a,,(1-F/uN) boo—boo(1-F/uN) . (3.63)
According to (3.22),
. 1300 1;00
F00 = fka, F 00 = ips, P3O0 = ipa, (3.64)
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and we finally find that

3uliF
6, = {1-(1~F/uN)2/ 3} (&-aD) 2ToGF °
| (3.65)
3ulF,
éy = {1-(1-F/uN)2/3}(K-°§) 2mhGF

If we let F/uN approach zero, we get again the result (3.34).

It should be observed that for non-vanishing POISSON's ratio o
the boundary condition (3.56b) is met only approximately. In order to
see that, we consider the case that Fy=0’ and that Fx grows to Fx=u1\l.

The traction at every instant is then parallel to the x-axis,
and the same should hold for the slip. The slip is given by
K [u-s_] a[v-ay]

Lot ? ot

3(v=38_)
T = 0., Since éy—o when Fy-O, T should vanish at every lnstant.

Accordinglys v should vanish in the final state of complete slip; in

); its y-component should vanish, that is,

that case,‘v"=0, and v=v'=b11xy according to (3.59a), where b”#O
when 0#0. So the slip is not always parallel to the traction. In the
case of a circular contact area, the maximum angle between (u,v) and
(X,Y) is 9.6° vhen o=}, and 4.1° when o=1. We conjecture from this

that the angle between (u,v) and (X,Y) is always small.
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4, Steady Rolling with creepage and spin: asymptotic theories.

In this chapter and the next we will treat the problem of the
transmission of tangential forces during rolling.
Consider two bodies of revolution which are pressed together by

a normal force N, and which roll steadily over each other, see Fig. 6.

v-
——
-
v+
2 y
X N
Mz
e
% X
P il N
fy

Fig. 6. Two bodies rolling over each other.

Owing to the normal force, a contact area is formed along which the
bodies touche. If the conformity of the bodies is not too strong, and
the changes of curvature are small, the contact area and the normal
pressure transmitted across it are given by the HERTZ theory which

we treated in detail in 3.221, According to this theory, the contact

ares is an ellipse with semi-axes a and b,

E = {x,y,z: (x/a)2-(y/b)2 < 1, z=0}, (4e1)
while the distribution of normal stress is given by
= 3N 2 2
% e Y1-(x/a)2-(y/b)2. (k.2)

The formulae by means of which the semi-axes a and b can be computed
from N and from the radii of curvature R;:, R;;, R;, R;_ are given in
3.221. When the bodies are rolling steadily, their parallel circles
are almost parallel, so that according to 3.221 the axes of the
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contact ellipse are very nearly oriented along the rolling direction
and perpendicular to it. So, if we take the axial direction of the
ellipse as x and y axes, as we did throughout this work, the rolling
direction very nearly coincides with one of these, so that we can
assume without loss of generality that it is the positive x~axis.

In addition to the normal load, a tangential force can be
transmitted from one body to the other, owing to friction. When the
tangential load is below its maximal COULOMB value, that is,
I(Fx,Fy)|<uN, u: coeff. of friction, slip occurs in part of the
contact area called the area of slip Eg’ while in the remainder of

the contact area, the locked area or area of adhesion Eh’ there is

no relative velocity of one body with respect to the other. This is a
consequence of the fact that the elastic deformation of the bodies
modifies the velocity pattern near the contact area. In the area of
slip Eg, work is done by friction; macroscopically, this results in

a difference of the overall circumferential velocity of the bodies.,
This difference is determined by means of the quantities called

creepage and spin, which are defined in (4.14).

In the present chapter, we first set up the boundary conditions
both for steady and unsteady rolling (sec. 4.1). In sec. 4.2, we
consider the various symmetries present in the problem, and we
introduce a number of dimensionless parameters. In sec. 4.3 we
generalize the theory of DE PATER [1] and KAIKER [1] on DE PATER's
asymptotic case of infinitesimal creepage and spin, to elliptic
contact areas. This is an application of the load-displacement
equations of ch. 2. In 4.4 we present the theory of WUTZ [1,2,3] and
WERNITZ [1,2] on LUTZ's asymptotic case of infinite creepage and

spin, in a slightly generalized form.

4.1, Boundary conditions.

For the problem of elasticity and the solution of the boundary
value problem, the bodies will be approximated by half-spaces. The
boundary conditions are set up for the finite bodies, but we will
already utilize the coordinate system of the half-spaces.

A cartesian coordinate system (0; x,y,z) is introduced in the

following manner, The plane z=0 is the boundary of the half-spaces,
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z20 is the lower half-space. The hodies touch each other along an
elliptical contact area E, see 3.221. We take the centre of the
ellipse as origin, and the axes of the ellipse as the coordinate axes

x and y,
E = {x,y,2z: (x/a)2+(y/b)? < 1, z=0}. (4.3)

The positive x=-axis coincides approximately with the rolling
direction, which is always the case when two bodies of revolution
roll steadily over each other, as we pointed out in sec. L.

The material of the bodies flows through this coordinate system.
We take the undeformed state so, that at infinity the deformed and
the undeformed state coincide, in other terms, the elastic displace-
ment g.t = (ut,vt,wt) vanishes at infinity. In this undeformed state,
the bodies intersect. This intersection is countered by the elastic
deformation, as a consequence of which the contact area forms.
According to 3.221, only the difference w = w+-w- of the z-component
of the displacement is involved in the formation of the contact area.
As we have seen in (2,15c) and (2.10a), this difference is unaffected
by the tangential tractions acting in the contact area, when the
elastic constants of the bodies are the same, That means that contact
area and normal pressure can be calculated as if the tangential
tractions were absent. In the case that the elastic constants are not
the same, we assume that the contact area E and the normal pressure Z
are not significantly altered by the tangential tractions (X,Y), see
sec. 2.1,

Regarding the tangential tractions, we only take the effect of
dry friction into account. This means that the contact area is
divided into a region of slip Eg where }the tangential traction
l(X,Y] |=uZ, and is directed along the local slip, and a locked region
E, vhere the slip vanishes, and |(X,Y)|<uZ. We assume that the
coefficient of friction is independent of the slip, in particular,
that the coefficient of friction which prevails in the locked region
is the same as that in the slip region.

We observe that the slip is of central importance in the
boundary conditions, and we proceed to find an expression for it.

Consider a particle of the bodies which lies at a certain time t in
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the point x = (x,7,2) in the undeformed state. The position in the
deformed state is x + Et = (x+u*, y+v*, z+w’). The velocity of the
particle is found by differentiation with respect to time. In the
undeformed state the velocity is

dx

Leowc (& &) (4.1)

and in the deformed state,

dx du ou

Yarwmtw s Yt t (peradn s

Let the superscript * refer to the lower body, and the superscript ~
to the upper body. We define the slip as the velocity of the upper
body with respect to the lower body in the deformed state. It is:
p(u-u")

at

Y(xsy’0)= Yg_ = Y; = @1-— .Y1+1)+ e
= + - + = + + - (h:6)
+ 30+ Yheeraa) @ - wOv (Y - Y hegrad) ().

Since |grad(g++5-)|<< 1, we may neglect the last term of the right

hand side of (4.6) with respect to the first term. This gives

ou
V(x,5,0)= (Vi=v7)- == - 3({v7+7}.grad)y, (h.7)
w=yu -

The z-component of Y(x,y,o) vanishes in the half-space approximation;
the (x,y) components of V(x,y,0) depend only on the differences

u=u ~u", V=V =v_ of the (x,y) components of the elastic displacement
at z=0., We saw in (2.11a,b), and (2.10a) that this difference is
unaffected by the normal pressure Z, when the elastic displacements
of both bodies are the same. We can then calculate the tangential
tractions and the difference of the (x,y) components of the elastic
displacement at the contact area, as if the normal pressure were

absent. We will do this throughout this work. If we use the results

so obtained also in the case of different elastic constants by using
the combined modulus of rigidity G and POISSON's ratio o of eq.
(2.10), it should be kept in mind that we make an error. This error
is not necessarily small, see sec. 2.1.

We can regard the velocity of the undeformed bodies in the half-
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space approximation as a velocity at the origin and a rotation about
the z-axis:

+ + + +
gﬁ_:&‘ _Q+y,§:‘L.=§:I_| + Q' x,
dat dt o zv® dt dt o Z (4.8)
ax” _ dx_ o o gx- _ gx- -
=" b~Th =51, * =

We define the rolling velocity Yr’ with magnitude V as the opposite

of the mean velocity at the origin,

+ - 2 -
vos - M, (20, Vs (%.9)

In the steady rolling of two bodies of revolution over each other,
the rolling velocity makes a small angle § with the positive x-axis.

We confine ourselves to this case of small §. Then, we have:

V. - (V,8V), (k.10)

The creepage v = (ux,uy] is defined as follows:
1 ax”  ax 1 & &
Ux=7(dt T at Ho’uy=v(dt T at Ho' (ha11)
We write for the rotations ) and o

A = He-9)V, o7 = 3(e+)V. (h.12)

¢ is called the spin, and the constant ¢ has no special name. Note
that ¢ and ¢ are not dimensionless, but have the dimension of
(length)—1. The velocity (4.8) of the undeformed bodies becomes:

+ +
dx
S = -V - dwo -~ e=g)yV, %LL = -6V - Iy +3(0-4)x7;

o e ()"'013)
ax
il %VUX-%(wp)yv, %‘tL = -8V + %Vuy+%(¢+¢)xv,

and
-+ - +

- o _ cdlx-x) dly -y ) y_
Voot (HEx) ydty )= V(v -¢y, uy+¢x), (4.1ka)
Vo + V5 = -V(2tey, 26-0x). (k. 14b)

Q/‘; + \_I;) is multiplied in (L.T) by a term of order grad u. So we
may neglect § with respect to 1 when we insert (L4.14b) in (4.7). We
also assume that the angle between the rolling axes of the upper and
the lower body and the z-axis is not small, that is, the rolling
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axes are not almost vertical. In that case, the horizontal component
of rotation ﬂx is larger or has the same order of magnitude as ., or
oV, But V = O(pﬂx), where p is the characteristic length of the
bodies, see (3.38). Therefore, ¢x and &y are at most of the order of
magnitude x/p, y/p. In the contact area we have that x/p and y/p are
0(2/p), with & the major semi-axis of the contact ellipse, which is
small with respect to unity when the bodies are counterformal. Hence
we may also neglect the terms ¢y and ®x when we insert (L4.14b) into
(he7)

(¥" + V2 ) = (-2V,0) when inserted in (4.7). (4. 1kc)

So, (4.7) becomes

V(x,y,0) = V s(x,y,0) = V(sx,sy,oj, s: relative slip (4.15a)
_ 1 0u , du

Sy T V- vaE T ax

R 13v, oy unsteady rolling (4,15b)

% Y x= 33t tox

S_ = u_=4¢y+ u ey +oxt 2. steady rolling. (4.15¢)

X X = * "y ¥y 3x

The boundary conditions can now be formulated.

Stresses and displacements vanish at infinity; (4.16a)
Z=0on z = 0, outside Ej
3y (4.16b)
= - 2. 2 = s, 3 .
Z =G fooﬁ(x/a) (y/p)=, f00= Bogng inside E;
X=Y=0on z =0, outside E; (4.16c)
(X,Y)= uG f00/1-(x/a)2-(y/b)2[wx,wy) in region of slip Eg,
. . —_ _ _ W) o
with u: coeff. of friction, w sx/s, L5 sy/s, s=vsltsy , (4.164a)
s given in (L4.15).
B = &= 0, |(X,¥Y)|s uZ in region of adhesion E . (4.16e)
4.2, Considerations of symmetry. New dimensionless parameters.
Iet us define
2mabG 2mabG
! = V= 2 4.1
X o % ¥ oy L (4.172)
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2mabG
[u)':,u;r,w - _;:_N- (ux,uy,¢). (4.17Dp)

Then it follows from HOOKE's law and from the fact that we neglect
the influence of the normal pressure Z on the displacement differ-
ences u and v, that the displacement differences due to (X',Y') are

(u' ’v') = 2mabG

e (u,v), (4o17c)

where (u,v) are the displacement differences due to (X,Y). Hence,

S =TT Y T A Sk’
(4.174)
- la_vl. E _ 2mabG
s! = U}',"‘d)'x' V 9t ax  3uN y°
Clearly,
Wy = Vs Vo W (L. 17e)
if
X'.y') =g¢ )/1— 2. 3} : : .
(x',1") (x/2)2-(y/0)? (w}wy) " g (4.18)
sy =83 =0, [(x',¥)]|s ¢ I=x/a)2-(y/0)? in B,

then it is clear that (4.16a,c,d,e) are satisfied by (X,Y). So we
have only to solve (4.18) to obtain the solution for any coefficient
of friction and normal load. Also, we have only to consider a single
value of G, further we can choose the unit of length arbitrarily, so
that we have to consider only one contact area with the prescribed
ratio of the axes. In accordance with this, we introduce new
dimensionless parameters. We consider fx = Fx/ul\l, fy = Fy/uN,

m, = M /uNe, c = Yab, (see 3.50). ILet Fl, F;r, and M! be the total

force and torsional couple connected with (X',Y'); then

F! F |
£ =P /uy =N . _X_ —=
e = 2mabG  uN  oge2g °
F! 3’
3uN
T N = __E_ x l = . )-l-.1
Y /u ZnabG W ppe2g ° [ o
M! 3
. T S S
n, = Mz/uNc = ZnabG | WNc 2nedc

We also introduce new dimensionless parameters for creepage and spin:
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1 1 1 1
5= 3(1_++.__.+—+-+—_], see (3.38);
By By By E/ (L.20)
v p v_p
- X =l_ =.‘EE. = v
E=%c » "Thc » X Ty s C T veb.

We express £, n and x in u;, u&, and ¢' of (4.,17b). We make use of
{3.51)s

v_p
% _ 3Wop _ 2%
§= ue 2mabG uc x =T -aiE x?* "7 < L Uy 2 (4.21)
%o _ 2cVg ., ___2s . ’
X 7 (1-0)E [0 (1-0)E ¢', s: minor semi-axis of E.

We observe tnat c¢' and s¢' are dimensionless.,
In the following, we suppose that (X',Y') and (u',v') satisfy
the boundary conditions (L.13). Let

x(2)= =X', Y(2)= -Y', (4.22a)
(2)_ [ (2)_ ] (2)-. 1 )
g ™ ol U vl ¢ "'= =¢'. (4.22p)
From (L4.22a) it follows that the corresponding displacement
differences u(e) and v(2) satisfy
u(2)= -u', v(2)= -v', (4.22¢)

so that it follows from (4.22b) and (4.22¢) that

S}({2)= _sx’ (2) -3 é w(2) w}'c, w3(72)= -W}" 5 (h.22d)
hence the boundary conditions are satisfied by (X(e),Y(2),u(2),v(2))

with the creepage and spin of (4.22b), The areas of slip and
adhesion are the same as in the solution (X',Y',u',v'), and we have

that

£ = £ (=E,=n,=x)= £, (&,n,x),
fy - fy(—E,-n,-X)= _fy(g’n’x)’ (4.22e)
m, = m, (=§,=n,=x)= -m_(E,n,x).
Let
X(3)(x,y)= g} Y(3)(x,y)= Y' (x,-y). (4.23a)
Then, according to (2.15a,b),
B (TR SR, Q. . [ S (4.23p)
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Vhen

(3)_ . i 2
b ) o' (4.23¢)

L(3),

~-y'!
% x?

it is easy to see that
Si3)(x,y)= -s2(x,-¥), 553)(X.y)= S§(X.-y). (4.234)
so that
w}(c3)(x,y)= -wx(x,-y), w}(r3)(x,y)= w}'r(x,—y‘)- (L,23e)

We conclude that (X(3),Y(3),u(3),v(3)) satisfy the boundary

conditions (4.18), with areas of adhesion and slip which are the
mirror images with respect to the x-axis of the Eh and Eg correspond-

ing to (X',Y'). Moreover, it is easily verified from
(FoF) = J] (X, ¥)axdy, M, = [] (x¥-yX)axdy (4.24)
vy E S
that

fx(E,n.x)= 'fx(-€9n9X)9 fy(gan’)(): fy.(-E:rI’X)s mz(E.n,x)mz(-Ean,x)-

(4.23f)
Iet
X(h)(x,-y)= XVx30)s Y(h)(X,-y)= -Y*(x,¥), (4.25a)
u,(;h) = U;(’ U)('h) - -U;r’ ¢(h) ==¢' . (4.25p)
It follows from (2,15a,b) that the corresponding surface displacement
differences
u(h)(XQY) = u'(x,-y), v(h)(xﬁr) = =v'(x,-¥) (k.25¢)
so that
sih)(X.y) = s!(x,-y), S§h)(X.Y) = -sy(x,=y), (k.254)
== Wi(ch)(X’Y) = W;c(x’-y)’ Ws(rh)(x,y) = -w;r(x"Y), (L.25e)

(h),Y(h),u(h),v(h)) satisfies the boundary conditions

So the system (X
(4,18) for the creepage and spin as given in (4.25b), and with

locked area and slip area which are the mirror image with respect to
the x~-axis of the E and E corresponding to (X',Y',u',v'). Again it

is readily verified from (4.25a) and (L4.2L4) that
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£ (Eanyx) = £ (E,=n,=x),

fy(E,n,x) -fy(e,-n,-x), (4.25£)
m, (Esn,x) = -m, (£,=n,-x)

As a corrollary of (4.23) we have
£ = 0==-9X'(x,y) = X(3)(xa3’) = X' (xa-y)i 1

Y' (x,y) = Y(3)(x,y)

b (X,—Y) s

S;K(X,Y) = 3(3)(x’y) = 'S;c(x"y)’
sty) = s ey) = sty L (h26)
fx(osn’X) = 0,

Eh and Eg symmetric with respect

to the x-axis. J

We see from (L4.26) that when £ = 0, traction and slip are mirror
antisymmetric about the x-axis.

\ As a corrollary of (4.25) we have

n=x = 0=% (x,y) = XM (x,y) = X (xy-y),
Y(u)(x,y) = =Y'(x,=y),
S}(ch) (x,-y) s

-sl(fh) (x4=y)s ¢ (B.27)

Y'(x,y) =

si(x,y) = Sih)(X.y)

i _ ()
sy(x,y) =8 (x,y)
fy(EQO’o) = mz(E’O’O) = 0,

E eand Eg symmetric with respect

to the x-axis. J

We see from (4.27) that when n = x = 0, traction and slip are mirror
symmetric about the x-axis.
We summarize (L4.22e), (4.23f), and (L4.25f):

£ (Esn,x)= =£ (<Eynyx)= £ (E,-ny=X)= -f (=£,-n,=X),
fy(gsn’X)= fy(-E,n.x)= "fy(an"fh-X): -fy(-E.-n,-x), (4.28)
m, (Eyn,x)= W, (=E,n,x)= -m (£,=n,=x)= -m_(~E,-n,=x).

Finally, it should be observed that the method used here for

symmetries about the x-axis cannot be used for symmetries about the
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y-axis. To see this, one might propose the following relationship:

X(S) (X,Y) =X' ("xsy)s Y(S)(x’y) = Y(S)(-'x’y)'

Then indeed

(5) (x

w x,5) = —ut exay)s v ryy) = v exy),

but

Bu(S)(x,y) = 4 du'(=x,y) BV(S)(x,y) o _ av'(=x,y)
ax ax ’ ox 3x ’

}(CS), s}(rS)) do not match those of (X(s), Y(S)).

so that the signs of (s

4.3. The limiting case of infinitesimal creepage and spin.

When creepage and spin are absent, it follows from (4.15) that

the relative slip (sx,sy) is given by

_ 19u. du _ _1av, 3y
ST~V "’ SyT "V Tax (k.29)

so that we can satisfy the adhesion condition B ® R - 0 (4.16e)
throughout the contact area by setting u = v = 0, from which it
follows that X = Y = 0 ( all in case of elastic symmetry). Therefore,
the adhesion area covers the whole contact area and there is no slip.
As a consequence it is to be expected that when creepage and
spin do not vanish but are very small, the adhesion area covers
nearly the entire contact area. Accordingly it was proposed by
DE PATER in 1957 to treat the case that creepage and spin are so
small that the adhesion area can be approximated by the entire

contact area. So, the boundary conditions (L.16) become
Stresses and displacements vanish at infinity; (4.30a)

Z=0 on z =0, outside E,

= - 2. 2 = .—3.N__ 1 1 o
7 =G foo V/1-(x/a)2=-(y/p)?, foo 5——= inside E; (4.30b)
X=Y=0 on 2z =0, outside E; (4.30c)
_ 1 ou u _
Ryt~
(4.304)
. 1 0v oV _
S = + e 0.

v Uy+¢x- Vot = ox

Condition (4.30a) is satisfied if we use the integral representations
(2.7) and (2.13) of BOUSSINESQ-CERRUTTI for the connection between
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surface tractions and displacements. Conditions (4.30b) define the
HERTZ problem which we treated in 3.221. We will consider only the

case of steady rolling, so that %—E = g: 0, and (4.304) becomes
s EU-¢y+i1-1-=O s Eu+¢x+-a—v—0 inside E (4.30e)
e X 9x ¥ Sy ¥y ox ‘ °

We integrate (4.30e) with respect to x, to find u and v:
u = -xux+¢xy+f(y), v = -uyx-%¢x2+g(y) in E, (4.31)

where f(y) and g(y) are arbitrary, differentiable functions of y. In
order to apply the theory of the load-displacement equations, which
is based on the integral representation of BOUSSINESQ-CERRUTTI, so
that (L.30a) is satisfied, and in which the surface outside the
ellipse E is free of traction (cond. (4.30c)), we approximate f(y)
and g(y) by polynomials:

M

- n
u = uxx+¢xy+nzoaony,
- in E (4.32)
- 1452, n
vE=-ux-3¢x+ ] b_y.
y n=0 on

By increasing M, we can approximate f and g as closely as we like.
The coefficients &n and bon are (2M+2) parsmeters which are still

free. To (u,v) correspond the tangential tractions (X,Y) of the form

_1 M M-p
(%,Y) = {1-(x/a)?-(y/0)2}% | ] (m Pq ) <Py, (4.33)
p=0 g=0
where the [dpq qu are uniquely determined by v %° uy, ¢ and the

(2M+2) parameters &, and bon' This means that we can assume (2M+2)
relations between the (d_ ,e_ ).
. Pq" pq . . i
In order to find these relations, we first attempt to bring X
and Y in a form in which there is no singularity at the edge of the
contact area:
1 M=2 M-p-2

(X,Y) = {1=(x/a)2=(y/p)2}*2 § I (a' ,e! )xFy%,  (4.3%)
p=o0 g=0 pa’°pg

and compare the number of coefficients in (4.33) and (L4.34). In
(4,33), there are (M+1)(M+2) coefficients, while (4.34) contains
(M-1)M coefficients. In order that (4.33) can be brought into the
form (4.34), there must exist (M+1)(M+2)=(M-1)M=LM+2 relations
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between the coefficients of (4.33), which is about double the number
of parameters (aon’bon)' So it would seem to be impossible to bring
(4.33) in the form (4.34).

Another argument which points in the same direction is the
following. Let us suppose that POISSON's ratio o = O, Then, according
to (2.15a,b),

u(xy)= L J[ ¥t EL | v(xy)= L I xte) S

R = /(x-x'")2+(y-y"')2.

It is easy to see that when X is even in x, u will be even in x. For,

b V1"( '/b) 1 ] 1 1
w-xy)= g [ ey Y P iy

LI -a/1=(y'/0)? V(x+x") 2+ (y-y' )2
=1 fb gyt [P x(xtpytaxtay!
" J -a/1=(y" /)2 /(x=x") 2+ (y=y' )2

= Ly Ralay ey o ypey).
E

The converse, viz. that to an u which is even in x corresponds an X
which is also even in x, follows from the (assumed) uniqueness. In
the same way it can be shown that to an u which is odd in x corres-
ponds an X which is odd in x. Now, u = -v X is o0dd in x, and it is a
polynomial, so it gives rise to an X which is odd in x and which has
a singularity on the edge of the contact area, the strength of which
is an odd function of x. u = f(y) gives rise to an X with a
singularity (if any) which is even in x. So these singularities can
never cancel each other. The same holds for v = -uyx and for u = ¢xy.
Finally, the singularities due to u = -u X and to u = ¢xy cannot
cancel each other, since the former is even in y and the latter is
odd in y. The conclusion is that there will be a singularity in
(X,Y) at the edge of the contact area when o = 0, and hence there is
a strong presumption that the same happens when o # 0.

The two arguments above point to two things: firstly, that it
1s impossible to have no area of slip whenever there is creepage
and/or spin, and secondly, that if we assume as an approximation
that there is no area of slip, we must accept a solution with an

infinite traction at the edge of the contact area.
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The first conclusion has a simple physical explanation. It is
that there is a rate of dissipation connected with creepage and spin,
of magnitude (qux T ¢ Mz¢)V, where (Fx’Fy) is the resultant
tangential force and Mz is the resulting torsional couple about the
z-axis, transmitted at the contact area. Since the elastic field is
conservative, and the absence of an area of slip means that there is
no dissipation by friction, the hypothesis that there is no area of
slip leads to a contradiction.

As to the second conclusion we observe that there is also a rate
of dissipation connected with the solution in which there is a stress
singularity at the edge, and no slip in the contact area. This
constitutes a paradox. It was pointed out by JOHNSON [3], pge T9T,
that a comparable paradox occurs in aerofoil theory.

So we have found that the surface traction goes to infinity at
the edge of the contact area. On the other hand, we still have the
(eM+2) paraneters a o and b_ , and the only boundary condition which
we did not use is COULOMB's friction law. The conclusion is that the
parameters & n and bon must be determined by an application of the
friction law, interpreted to fit our problem.

The friction law states in the first place that the tangential
traction |(X,Y)| may not exceed a finite multiple of the normal
pressure Z: |(X,Y)|5 U Z. This part of the friction law is violated
near the edge of the contact area, if the traction goes to infinity
there. So it is plausible to suppose that an infinite traction at a
point should be interpreted as an indication that it belongs to the
area of slip. We will show in 4.31 that the slip area does not
border on the leading edge of the contact area in our approximation.
Hence we must have that the strength of the singularity (Xe,Ye)
vanishes at the leading edge:

e b

(x%,¥°)

1}

0 on leading edge of E,

Lim (X,¥)V1-(x/a)2-(y/p)?
(x,y)> edge from inside

(4.35)

The question arises whether this last condition indeed suffices
to remove the undeterminateness of the boundary conditions (4.30).

In the case of a circular contact area and vanishing POISSON's ratio
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we succeeded in determining the solution in terms of an infinite
series of spheroidal harmonics, the coefficients of which were stated
explicitly (see KAIKER [1], p. 171, eq. (8.10)). It was found that
the problem is indeed completely determined by the conditions (L4.30)
and (4.35). Although this does not constitute a proof, there is a
strong presumption that the conditions (4.30) and (4.35) indeed
completely define the more general problem (o # 0, elliptical contact
area) we have here.

In the case of a finite number of the parameters 8. ns bon' it is
impossible to satisfy (L4.35). We then approximate (4.35) by the
demand that (a’on’bon] are chosen so as to minimize the integral

m/

2
/ {(Xe)2 + (Ye)z} dy = minimal, x = acosy, ¥y = bsiny;
_1[/2 ()-|-036)

(x°,Y°) given by (4.35).

Since (X°,Y®) depend linearly on the parameters (aon’bon) , condition

(4.36) furnishes us with the following (2M+2) linear equations in the
(2M+2) unknowns (a. L. Js

on
m/2 e e /2 ¥ e )
[ R lay [ [ v A gm0, 00,4, 0
’ o0 o gl
-n/2 aa’on 98y, -m/2 abon aboil ’ o
f,Ye: linearly dependent on (a‘on’bon) 5 {
e
9X ,
E- a seeseeeyess independent of (aon’bon) .
)

(4.37)
4,31, Proof that no slip takes place at the leading edge, when

creepage and spin are infinitesimal,

As we pointed out in 4.3, an infinite traction at a point of
the edge on the contact area means that this point belongs to the
slip area Eg. COULOMB's law also states that the slip is in the same
direction as the tangential traction. To obtain an insight into the
slip at the traction singularity, we determine the limiting
behaviour of . and sy as we approach the edge of the contact area

from the outside since 5, = sy = 0 inside the contact area.

7.




We can express the slip in the traction by means of (2.16):

Voad'Y = w it
sx(x 231 v by +

> -x')2 v -1
ey f}{ [ ) { 52 + O(XR}; 21 4 vixy) ——L}-—"(x'xng( =) axay,

s (x',y') = uy+¢x‘+

¥
1.3 1= (r=y")?2 (x=x') (y=y")
* g e ] [ {57+ S+ xy) S axy

R = /(x-x')2+(y-y')2, E: contact area.
(4.38)
Since (x',y') lies outside the contact area, we may interchange

differentiation with respect to x' and integration:

s (x',y') = v -gy' o+ )

(leag) (st}

1 30( - 1)3
+7I'-§ f]{: [X(X,y){ R3 + :SX }+
=y' . 3(x=x")2(y=y'
+ oY (x,y){- .‘LR.SL.+ X=X Rsy y') }axdy,

(%.39)
sy(X'.y') = uy+¢X' +

. s g -t Y2
+":r‘5fé [2 (s (1 o)gxx ) , 3o(x XRZ(YI)’) } +

+ oX(x,y){- ;{3' ¥ 3(x—x';§(y-y') }axay

We assume that the tangential traction has an inverse square root

behaviour at the edge of the contact area,

X(x,y) = X'(x,y){1-(x/a)2-(y/b)2}‘5,
y (4.%0)
Y(x,y) = ¥' (x,5){1-(x/a)2=(y/p)?} "%,

where ¥'(x,y) and Y'(x,y) are continuously differentiable functions.
llow it will be shown later in this section that when the distance u'
of (x',y') to I approaches zero, see fig. T, then the relative slip

is given by
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Fig. T. The contact area with the u,v-axes.

\

sx(x' »¥' )= cosy{ 2% () (1-ocos?y)- 20¥" (x,5) cosysiny }+0(1)

GB/AL GB/u'
8y (x',y")= cosy{ 20! (xy) (1-osin?y)- 20! (aoF) cosysiny}+0(1)
G/t CB/u' [ (1141)

u': distance of (x',y') to E, B = V2 /T{'/az) +(y'/b2)

Y : angle between pos. x-axis and inner normal on edge of T
which passes through (x',y');

(x,y): intersection of this normal with the ellipse;

0(1) : any bounded function. /

When POISSON's ratio o=0, s, and sy becone

(\:',y )= i‘_(_:_c_!y_)_ cosy + 0(1),
G/t

s (X' y )——'__-Y_—L‘-’l).cosq) + 0(1)
GB YA

(4,42)

from which we see that the vector (sx,sy) is parallel to the
tangential traction (X,Y) as u'+0, when, at any rate, (X',Y')#(0,0)
or, in other terms, when the traction goes to infinity at the edge.
The vector has the same sense as (X',Y') when cosy>0, and the
opposite sense when cosy<0. It is easy to see from fig. T that

cosy>0 when (x',y') approaches the trailing edge x<0, and that

9.




cosy<0 when (x',y') approaches the leading edge x>0. It is thus
plansible to suppose that at the leading edge the slip would be
opposite to the tangential traction, if the traction goes to infinity
there; according to the friction law, this should not happen, and
therefore the traction singularity should be removed from the

leading edge.

When POISSON's ratio o#0, the slip and the tangenti=l traction
are not precisely parallel, but we can show that at the leading edge
they are almost opposite, and at the trailing edge almost in the
same sense., In order to show this, we calculate the angle 6 between
slip and traction from (4.41). After some calculation we obtain:

Xs, + Ysy {¥24Y2~0 (Xcosy+Ysiny)? }sign(cosy)

0s = =
‘ I(X’Y)[](Sx’sf)l /X24Y2 /524Y2 g (2-0) (Ycosy+Ysiny)?2

(4.43)

where we dropped the prime of X' and Y'. We denote by D the ratio

D = (Yeosy + Ysiny)2/(X2+Y2). (4odha)
Since (Xcosy + Ysiny) is the component of (X,Y) in the direction

(cosy, siny),

0<D=x< 1. (4olkp)
In this notation, cos6 becomes
cosf = (1-0D)sign(cosq1) . (’4.’45)

V/1-0(2-0)D

It can be shown without difficulty that the absolute value |cos6|

s 5 i V=
reaches a maximum of 1 when D=0 or D=1, and a minimum of 22100 when
_—" . When 0=0, the minimum equals unity as we knew already. When

2=0
0=i, the minimum is 0.987, corresponding to an angle of 9°; when
1
2

consequence of this and of the presence of sign(cosy) in the
expression for cos6, we have that on the leading edge the angle 6 is

nearly 180°, and on the trailing edge it is nearly zero. Ifumerically
L]

we have:
at the leading edge: 180°- 6 <0< 180°+em,
at the trailing edge: -6 <020, (4.46)
6, = 0 for o = 03 o, ™ 9° for o = 13 o = 20° for o = 1.

The conclusion is again that the traction singularity should be
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removed from the leading edge of the contact area.

In the remainder of this section we will establish (L.41). We
see from (4.39) and (L4.41) that this task consists in calculating the
part that behaves as 1/Yu' (see fig. 7 and (4.41)) as the distance u'

from (x',y') to & goes down to zero, of integrals of the following.

type:

1) 1)
I(x',y")= [/ fix\:}gr)(x-x - dxdy, R: see (2.9), (4.47)
B R 1-(x/a)2-(y/b)? E: see (1.5a),

where f(x,y) is a continuously differentiable function, and (x',y')

is a point outside the elliptic area E. We shall show that
[T(x'4y')|> = as (x',y') approaches the elliptic area E, and we shall
calculate the singular part of I.

In our coordinate system, we take the minor semi-axis of E as
the unit of length. From (x',y') we drop a normal on the ellipse,
see fig. T; the point of intersection is (X,y). It is clear that the
contribution to the integral of the domain of integration outside a
neighbourhood of (x',y') with radius & is bounded. We denote by D
this neighbourhood in so far it intersects with the elliptic area E.
D is shown shaded in fig. T. We also denote a bounded function by
0(1). So we obtain

I(x',y') s fj f(x.}’)(x—x' )m()’-}")n dxdy + o(1). (4.48)
B2 1 (x/2)2-(y/b)2

We introduce the cartesian coordinate system (u,v) into this
integral, which has (X,y) as origin, and the positive u-axis of
which coincides with the inner normal to the ellipse at (X,y), see
fig. T. Let y be the angle between the positive x-axis and the
positive u-axis, Then:

X=X = ucosy=-vsiny, y-sr = usinyt+vcosy;

the point (x',y') has in the (u,v) coordinate system

the coordinates (-u',0);

u' is the distance from (x',y') to E, u'>0; L (k,b9)

x=x' = (utu')cosy=vsiny, y=y' = (utu')sini+vcosi;

RZ2 = (utu')?+v?; dxdy = dudv;

£(x,y) = £(%,¥) + 0(/uZ+v2) = £(%,5) + 0 (Y[utur]2+v2),
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Also, since (X,y) lies on the ellipse,

1-(x/a)2=(y/b)2= Zz-xzi_§2.y2;4(§-x){2§-(§-x)} rlify){gi'(ify)}‘=
8.2 b2 8.2 " b2
_(excgswi_zysinw}u_[_ 2xsinw=,gzcgsﬂjv+h'(u'v)'
a b a b
(4.50)
where h'(u,v) is a homogeneous gquadratic form in (u,v). So,
h' (u,v) = 0(u2+v?) = 0((u+u')2+v2) = 0(R?) in D, (4.51)

where we made use of the fact that u'>0, and that u>0 in D, Also we
have that the coefficient of v vanishes in (4.50), since the ellipse

is tangent to the v-axis. That means according to (4.50), that

_ . B 2
-2-}25= acosy, _2:21___ asinp, o = + 2\ /[Z_+ L_ = + B2 (1+0(R)),
a b al bl )
o e = (4e52)
B = [ ) ( ) ’
so that (4.50) becomes
1=(x/a)2-(y/b)2 = B2{u+h(u,v)}(1+0(R)), . (4.53)

B2(1+0(R) )n(u,v) = 0(R2).

1}

with h'(u,v)
In (4.53) we chose the negative sign for o, since a point (x,y) with
v=0, O<u<<1 lies inside the ellipse, so that 1-(x/a)2-(y/b)2>0.
The integral (4.43) becomes with (4.49) and (4.53):
Tl ’3") =

= Jf {£(%,7)+0(R) H (utu') cosy=vsiny }™{ (u+u' )siny+veosy dudv+0(1).
B(1+0(R) )Yu+h (u,v) RE22

(L.54)

Again we introduce a new coordinate system into this integral:

w = uth(u,v), v = v; (4.55)
we denote .

r2=(w+u')2+v2; then, h{u,v)=0(r2), RZ=r2(1+0(r));

dudv = {1+0(r) }dwdv;

(utu') cosy-vsiny={ (w+u')cosy=vsiny } (1+0(r)), f (4456)

(utu' )siny+veosy={ (w+u' )siny+vecosy}(1+0(r)),

all in De )




The integral becomes

I(x'yy')= j

[ {f(§,§)+0(r)}{(w+u')cos¢-vsinw}m "
D B/ rm+n+2

x {(wtu' )sinyp+veosy} {1+0(r) Javaw+0(1), X

= I'(x',y")+0(1),

I (x'y")= ff £(%,3) { (wru') cosy=vsiny " { (wu' ) siny+veosy ™ e,
D BY rm+n+2
(4.5T)
since ff rm+n+1/rm_+n+2 avaw = 0(1).

D
We observe that the domain of integration D lies in the half=-
plane w > 0, For u' > 0, the domain outside D, in so far as it lies
in the half-plane w > 0, gives a finite contribution to the
integral. So we can extend the integration to the whole half-plane

w > 0:

I(x',y') =

_ fm £{x.7) . fm { (w+u') cosy=vsiny ¥ { (w+u' ) siny+veosy ) av+0(1)

0 BAT rm+n+2

(4.58)
We evaluate {(w+u')cosw-vsinw}m{(w+u')sinw+vcosw}n by means of the
binomial theorem. A typical integral is then

- - ) oo k 2
Tl oot gt = £(x,y) aw (wtu')” v adv . (L.
(X 5 k »Q:) B g —w,.. 4 {( u')2+ }k/2|2/2+1 ( 59)

By symmetry, this integral vanishes when % is odd. When & is even,

we use the substitution

1
v = (w+u')tan6, dv = L ae. (4.60)
cos?0
This gives
- - oo -"-/2 N
I(x'yy"skyt)= f(g’y) / qu / sin%ocos™s a6 =

0 (wu')A _q/2

k+1 241
_ 255 I&Ir , b (1.61)
- Ry when £ 1s even,
BA' T
=0 when & = odd.
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So as a final result from (4.58), (4.59) and (4.61) we obtain:

m n %
1( ', "= - Fxay) (x=x')"(y=y") axdy =
o jé Rm"'n-"zﬁ-(x/a.)z--(y/b)2 Y

o - ' . r(m+n_i-'j+1]r{i+'i+1)
SMEGED (Y Y [enRend]®mE) 2 2.~
oSBT i=0 j=0 N r(@2) r

mrysin™ 104} + 0(1),

B = v3 / (x'/a2) 24 (3" /b2)2,

X cos

)
- - (4.62)
X, ¥» u' and ¢, see fig. T.

The expression (4.41) follows from (4.39) and from (4.62) after
a straightforward, but somewhat laborious calculation, which we omit

here,

4,32, Solution of the problem.

When we use the theory of the load-displacement equations, the
boundary conditions (4.30a,c) are automatically satisfied, and the
only boundary conditions left are (4.32) and (L4.36).

We define
M M-p
(Xr ) = p£0 qZO (dpq’epq] xpyq', (4.63)

where the coefficilents dpq’ ePq depend uniquely on Ux,uy,¢, a'on’bon

through the load-displacement equations (2.56), where we have,
according to (4.32) in terms of the constants (amn’bmn) of (2.32):

849 = "VUys 844 = ¢ s 8 = 0 otherwise, unless m = 0; o
by = ~Uos by = -3, By = 8 otherwise, unless m = 0. eleie)
X and Y are given by
-1
(X,Y) = &1=(x/a)2=(y/0)2  (x',Y'), (4.65)
so that according to the definition (4.35)
(x%,Y%) = G lim (X',Y'). (4.66)

X,y*edge

According to the remarks made after (2.56), (a2n+e,2n+m’

on the one hand, and [

b2:m+t-: ! ,2n+w') d2p+e ,2q+w’ e2p+e' ,2q+m') Ol

8k,
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the other hand belong to a closed system of equations for each of the
four possible choices.of (e,w). If we set M=2K+1, for instance, and

\

2K
xg = (19x ’y sx sx Z’y‘-t’ coey ¥
2K
xg]' = x(1’x2’y :x sx y ,Y 9 eoey ¥ )
2K
x§ = (1,x2,y ,X ’x p g 'Yus ceey ¥ )
2K=-2
Xg = (1,}( sy :x s X yzqus seey ¥ )o
0 =
X2 = (8hgs8ngsdgpsdygadpnsdoys ++os dg o)
1
X3 (d10,d30,d12,d50,d32, cees 4y ,EK) > (4.67)
2 =
X2 = (dgqsdpsngady1adnss cees &g oier)s
3 =
X§ = (d11,d31,d13,d51, AP d1’2K_1),
Y: as X'l, with e instead of d_ ,
J 3 pq PQ
ut as X:.L, with a__ instead of d4_ ,
3%% mn Pa
v: as XJ.', with b__ instead of d_ ,
g J mn o )
then, 1f we sum over repeated indices,
X'= Xixs, Y'= YiXr, W= WXr, V= vixt, (4.68)
J Jd d Jd J
We can write the load-displacement equations (2.56) as
u; = (Agz) X';’ , no sum over i3 i = 0,1,2,3., (4.69)
3-i 3-i
v‘i Y!L

The matrices A‘]j'z are square and have a non-vanishing determinant, so

that we can invert them:

. P = .
x} = (Agz) W | (4.70)
3-i 3-i
Yj vz

According to (4.64), a great number of the ug and v3“ are zero, so

that we can drop a nuuber of columns of (AZ.'E)-1, and we can write
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Xg = B3,2n 29, 2n° (i=0 i.e. e=w=0),
X% = N5,2n+1 b0,2n+1+D5 v ,(i=1, i.e. e=1, w=0),
xg = B§’2n+1 0,20+1 E v ,(1 =2, i.e. e=0, w=1),
Xg = 83,2n b0,2n+Fj by (i=3, i.e. e=w=1),
Yg = gg,en 29, 2n° (i=0 i.e. e=w=0), ( (k.71)
Yg = C§,2n+1 0, 2n+1+D v ,(1— , il.e. €=1, w=0),
1 = 32
Yj = Bj,2n+1 0, 2n+1 +El Uy,(l— s 1ee. €=0, w=1),
Yg = Cg,en o, * Fj ¢y (i=3, i.e. e=w=1). J

: . N
The quantities with the superscript ~ vanish when 0=0, except Fg.
This gives for (X',Y'):

e 50 10 2 1
& XJ BJ,Zn 0 on* J{ j,2n+1 b0,2n+1+Dj Ux} *
2 3[30 3
+ x3{B% oneq 2, 2n+1+E Sl # xj{cj,zq Po,00*F3 ¢hs
3 M 2[ 02 oy ¢ (.72)
L
= x3 B2 o 8y, 00" 16 oner Po,one1?D) Vil *
1[32 1 3[a0 w3
i N e LIPS £ o

7

We can split X' and Y' in a part X ,Y, , even in y and a part X ,Y ,

odd in y.
—0: ¥ = x0 B0 1{52 1
o=0s A Ee Be o a0,2n+xj{cj,2n+1 By, 20+1%0; v b
g at (4.73a)
V=30 2[02 1 .
L™ %2 By o ao,2n+xj{cj,2n+1 g, 2n+1*; vt s
n
x = x2{8 1
J{ sent O,2n+1+Ej Uy} * x { Js2n O 2n J ¢} (4.73b)
0 ¥ ’
{ 3,201 %0,0041%E] Oyt * %] {CJ 2n ®0,2n*F; ¢}

X'= X +X,, Y'= Y +Y . X (-y)= X (v), X_(-y)= -X_(y).  (4.73c)

We enter (L4.73c) into the compensation condition (L4.36):

m/2 2 2
P+ 1) (1 + 1) g 0 -
-m/2

/2 m/2

- 2 2 2 2
_£/2 {x2 + v }|edge ay + _£/2 {x2 + 1 }|edge

dy = minimal.

(ba7h)
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Ve see from (L4.73a) that {X3+YE} depends only on v_, &; 5 and
L]
2 4.2
b0,2n+1’ and that {Xﬁ*Y+} depends only on Uy’ b, a0,2n+1’ and b0,2n'
So the system of compensation equations falls apart into two systems,

one involving the quantities with w= 0, and one involving those with

w = 1, Now, the total force is given by

- -1
Fx=G ff /1-(x/a)2-(y/b)2 X' dxdy=G ff /ﬁ-(x/a)z—(y/b)2 X, dxdy,
E E
(k.75a)

so that, after removal of the singularity from the leading edge, Fx

depends only on v e Further we have that

-1
F, =G [f N=(x/a)2=(z/0)? ¥, axdy, (4.750)
E
-1
M, =G [[ /1-(x/a)2=(y/0)?  (xY,-yX ) axdy, (L.T5¢)
E

so that Fy and Mz depend only on Uy and ¢. This is completely in
accordance with the findings of 4.2, since Fx’ F_and MZ are here
linear in Vs Uy, ¢, owing to the linear character of the compensation
condition, see (4.37).

Iet us call
e = 0 0 = 2 e = 9 - )
x X0, x xJ 5 0 20,2n , u 2 on+1 (4.76)
1 3
= *3 P0,2n+1 ®o,2n
v v
X y
¢
and let us indicate a transpose by a ' over the letters. Then we have
— - (]
= 0 1 0 - eBe e,
X, [xj xj) B on O 0] 80,21 x Bu’; (4.7Ta)
0 2 Lo
| Je2n+1 Di_ 0,2n+1
P
- N1 E 7 1
= (x2 x3 2 1 = 9p0. €,
& (xj xJ) 0 % ont1 Dj|| 20,20 x°B%"; (4.7Tb)
B? 0 0 {{0®
Lj,2n 0,42n+1
[ ]
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= [«2 +3 2 Bl I 7 = loso 0,
X [x xj) Bj,2n+1 Ej 0 a0,2n+1 xCu (Lo7Te)
0 3
Q 6j,2n o Fj bO,2n
v
v
¢ i
" —
= 0 41 0 3 _ le.e o
Y, = (x xj) 0 8 on O F3||30,0m41| = XC (k.774)
B2 0 El of|v
Js2n+1 J 0,2n
v
y
¢ J
So,
2+ Y2 = 'ele e'e.e e , 'elo o0'o,0 e _
2 “=uBxxBu tuBxxBu = (4.78a)
1ot ' ' ' .T0a
= u° (8%x°x°8® + B%x°x°B)u® ,
1] 1 1 1
X2+ 12 = u®(C%%x%® + c*x®x°c®)u’. (4.78b)

We integrate (4.78a) and (L4.78b) over the leading edge of the contact
area x=acosy, y=bsiny, =m/2 < ¢ < /2. Only the matrices x°x® and

x°%° are position dependent. There are two types of integral:

m/2 n/2 n/2

f xi xi dy = x2py2q ay = f aepbeqCOSEPWSin2q¢dw
-n/2 -n/2 -m/2
2p 2q T(p+3)T(g+]
«19a
j"/g 20 20kl 4 f"/z 2P 2 g
-m/2 R -m/2
/2 1
j/ a2p+1b2qcosep+1wsin2qwdw = aeit P4 Fré+;:% é « (L.79D)
-m/2
Call
n/ ele e n/2 olo o
j/ xxdy = F, [/ x°x°ay = F°, (4.80)
-7/2 -n/2
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/2 1 [
| {x2 + ¥2}ay = u®(3°F°8° + B°F°B°)u° = minimal,
iy
(4.81)
“/2 1 1 L}
[ {x2 + v2}ay = u®(c°Foc® + €%r%%)u° = pinimal,
-1/2

and a typical compensation equation is found by differentiating
(4.81) with respect to 82 bon:

]
2(0,0,1,0 ... 0)(B®F°B® + B°F°8°N°® = o, (4.82)
or, in other terms
] 1
the first (2k+1) rows of (B®F°B® + B°P°B°)u® must vanish, (4.83a)

1 1
the first (2k+1) rows of (C°F°c® + ¢°7°c°)u°® must venish. (L4.83b)

These equations are solved numerically, where we set v =1 in (4.83a),

and by multiplying the resulting [ by v 3 e set

2,00 0,on+1)

uy=1, $=0 in (L4.83b) and multiply the resulting (ao’2n+1, b0,2n) by

Vys and finally we set Uy=0’ ¢=1 in (4.83b) and multiply the

resulting [ao’2n+1, bO,EnJ by ¢

In order to find the total force Fx’ Fy and the torsional

couple Mz, we first observe that

3

-1 _
r =6 ] A-Gdat-G/o) | waxay=e [ A-(elali-(/o) | xxaay,
E E

-1
F =G [[ /1-(x/a)2-(y/0)2  ¥%x] dxay,
vy ' 3%

=1
=G [[ /1-(x/a)2=(y/b)? (vl - y22xd) axay. J
: (4.85)
0
J
(aon’bon) which we find from the solution of the compensation

By means of (L4.71), we can determine X§, Yo X%, Yé from the

equations (4.83a,b). A typical integral of (L.8k4) is

1
[] $°%P i(x/a)2=(y/0)2  axdy =
E
2m 1 _2pt+2q+1
w g iy A / c052PWSin2qwdw | f——
0 0 V1-r?
= o2P*12a+1 I(p+3)T(gH3)r(z)
T(pra+3/2) J

dr = ( (4.85)
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We obtain

F =Ge?C, v, Fy=Gc2(C22uy + C23c¢], M _=Ge3 (Cyu + Cogct) (4.86)

1Y% 32% 7 33

where the creepage and spin coefficients Cij are calculated with
¢ = /ab as unit of length. With (4.19), (L4.20) and (3.50) we obtain

for the dimensionless parameters of sec. L4.2:
z \_ 3(1-0)E

F r i

=X
(fX’fy’mz)"[un’ pIl? ulle h“/g (C11g, 022n + 023x, C32n + C33X).
(4.37)

4,33, Numerical results.

The creepage coefficients Cij were calculated for a few values
of a/b with 2ii+v=3,5,7. It was found that the solution with 2K+v=5
had a relative error of less than 1% from the solution with 2K+v=T.
Therefore, we calculated the creepage coefficients Cij for more
values of a/b with 2K+v=5, The results are shown in fig. Oa and Ob,
and in Table 3,

For the case of a circular contact area (a/b = 1), the values
found coincide with those given in KAIKER [1]. In that paper, the
values of Cij were compared with JOHNSON's experimental results on
the rolling of steel balls [1,3]. JOHNSON found that C,, lies
between 3.0 and L.L; we find for o = 0.28 the value 4.22. Also,
according to Johnson, 022 = 3,47 end 023 = 1.53; we find 3,71 and
1.49 respectively. Since according to JOHNSON the moment MZ due to
elastic hysteresis is of a higher order of magnitude than the moment
due to creepage and spin, when the latter are very small, we cannot

compare C,, and C., with the experiment; indeed, we conclude that
3

33
the values of 023 and 033 are of little practical significance.

According to the theorstical results of JOHNSON and VERMEULEN
(5],

Cyple) = C,5(0) ¥, (0)/y,(e),

v
o
~

-

vy (e) = B - ag?C when a < b (e >

-
'

(4.88a)

7z (4=o)m when a =D (e = 0),

1}

gD - ogC when a > b (e < 0);
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Table 3.

The creepage and spin coefficients Cij'

C 033
g o= o= 0=0 [1/4 1/2
| 0.0 wg/3 72/16(1-0)g
0.1 2,51 3.31| 4.85] 2.51| 2.52 0.334 6.42 [8.,28 |11.7
0.2 2,59 3.37| 4.81| 2.59| 2.63 0.433 3.46 |L4.27 | 5.66
0.3]| 2.68| 3.44| 4,80| 2.68| 2.75 0.607 2.49 (2,96 | 3.72
-% 0.4] 2.78| 3.53| 4.82] 2.78] 2.88 0.720 2,02 [2.32 | 2,77
0.5| 2,88| 3.62| 4.83| 2.88| 3.01 0.827 1.7 |1.93 | 2.22
0.6] 2,98 3.72| L4.91| 2.98| 3.14 0.930 1.56 [1.68 | 1.86
0.7] 3.09] 3.81] 4.97| 3.09| 3.28 1.03 1.43 [1.50 | 1.60
0.8] 3.19| 3.91| 5.05| 3.19| 3.h41 1.13 1.34 11.37 | 1.k42
|| 0.9 3.29| k.01 5.12| 3.29| 3.54 1.23 127 12T | 1.27
(| 1.0 3.40( 4,12 5.20( 3.40( 3.67 1.33 1.21 (1,19 | 1.16
0.9 3.51| 4.22| 5.30( 3.51| 3.81 1.44 1,16 |1.11 1.06
0.8] 3.65| 4.36| 5.42| 3.65| 3.99 1.58 1.10 (1,04 | 0,954
ol 07 3.82( 4,54 5.58| 3.82] L4.21 1.76 1.05 {0.965| 0.852
—¢| 0.6 4,06| 4.78| 5.80| 4.06| 4.50 2,01 1,01 |0.,892| 0.751
&1l 0.5| 4.37| 5.10]| 6.11| 4.37| 4.90 2.35 0.958/0.819| 0.650
O | 4,84 5.57| 6.57| 4.84| 5.48 2.38 0.912]0.747! 0.549
0.3] 5.57| 6434 T«34| 5.57| 6.40 3.79 0.868|0,6T4| 0.LL46
0.2 6.96| 7.78| 8.82| 6.96| 8.1k 5.2 0.828(0,601| 0,341
0.1{10.7 [11.7 {12.9 ]10.7 |12.8 12.2 0.795/0.526| 0.228
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¢, (e) = ¢,,(0) a(0)/a(e), )

¢(e) =B - o(D - C) when a < b (e > 0),
= %3 (Lb=30)7 when a =b (e = 0), T (4.380)

= g(1-0)D + agC when & > b (e < O).J

The experiments of JOHNSON and VERMEUIEN on the dependence of F_ on
Yy for different values of the axial ratio a/b, (see [5], fig. 3)
show that the relationship

mGabu
S

['ﬂ%]u =¢=0 = T ( 3ulTy, ), o =0.23 (4.89)
X

is very nearly satisfied. We compared the functions

Chole) = €5 (0) 9, (0)/¥, (e),

Ciy(e) = ¢, (0) e(0)/e(e)

(4.90)

with the values of sz(e) and C,,(e) as we calculated them, for

11
0=0.25. In the range 0.2 < a/b < 1, 0.2 < b/a < 1 we found a

discrepancy of at most 7% both in C.. and in 011, the largest

22
discrepancy occurring at the end of the ranges a/b = 0.2 or

b/a = 0.2. In fact,

a/b = 0.2: C,,(0) ¥,(0)/y (e) = 1.07 C, (e),

c,,(0) @(0)/2(e) 1,05 ¢, (e),
11 11 (4.91)

b/a = 0.2: C,,(0) ¥ (0)/¥,(e) = 0.94 C, (e),

c”(o) ®(0)/a(e) 0.93 c”(e).

So here also the experimental results of JOHNSON are fairly close to
our theoretical results on Cope

We observe that in the calculations of Cij’ the smallest value
of a/b and b/a with which we computed was a/b = 0.1, b/a = 0.1. The
values of Ci' for a/b = 0.1 came close to those of the strip theory
of KAIKER [2], with the exception of Csp
ventured to put in the values of Cij obtained by the strip theory at
a/b = 0, and led the graphs through to a/b = 0.

Finally we note that the feature that C_, = -023 which was

32
noted in KAIKER [1], also persists in the case of elliptical contact

= -023, for o # 0. So we

9k,




areas. No explanation has been given for this curious feature.

4,4, The limiting case of large creepsge and spin. Numerical resuvlts.

When the creepage and the spin become very large, we may neglect

the elastic deformation in the expression (L4.15) for the relative

slip:
= ou 1 du »
Sy S VW o TV Y Uk O 52}
s =y tix + 2 2y rex 7
vy x ~ Vat Ty 7t

We can then regard the slip, with LUTZ [1,2,3] and WERNITZ [1,2] as
a pure rigid body rotation with angular velocity ¢V about a point in
the plane z = O which is called the spin pole by LUTZ and WERNITZ:

spin pole =(x',y'), x'= -Uy/¢= -cn/Xs y'= Ux/¢= cE/Xs (4.93)

see fig. 9. No adhesion area is assumed to form, not even when the

m

X

4
Fig. 9. Contact area with spin pole and traction vector.
spin pole lies inside the contact area. Note that the rolling

direction is no longer a preferred direction. The surface traction
transmitted by the upper body to the lower body has the magnitude

|, 1)| = vz = 2 /1=(/a) 2= (77007, (1.9%)

and the direction is perpendicular to the line between (x',y') and
(x,y), with a positive moment with respect to (x',y') when ¢ is
positive, and with a negative moment when ¢ is negative. It is easy

to see from fig. 9 that
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= a(r. /um)= 25i8X) ATy (/)2 —roy)dxdy
X 2mab 5 =
(x=x")2+(y-y")

= 4(F_/ull)= - 3sign(x) Y1=(x/2)2-(y/0)2 (x'-x)dxdy i [
J H 2mab X/a W /(X—x' )2"'(}"'}" )2

dm}= a(u!/ulic)= %ﬁ%’”— 1-(x/a)2-(y/5)2 V(x-x")2+(y-y')? dxdy.
(4.95)

Here M; is the moment about the spin pole. For the moment about the

origin, we have the relation

Moo= MY 1 —
M, MZ+xFy i (4.96)

We find the total force and moment by integrating (4,95),

S I =GRt royiisly
L a2+ (g3 )2
_ 3sigm0) (1 ATa) o (y/0)2 —eKoX)AXsy
y 2mab ff (x/a Yy /(x-x')2+(y-y')2 q
n = 32iEn0) I GG e Pl P axay - e - y
(4.97)

In the special case that the contact area is circular, these
integrals were evaluated by LUTZ in [2], and in the special case
that the contact area is an ellipse, and that the spin pole lies on
one of the axes of the ellipse, they were evaluated by WERNITZ D],
p. 63-72, Since any line through the origin is an axis of the circle,
LUTZ's results are a special case of WERNITZ's results. If, say,

x' = 0, LUTZ and WERNITZ integrate with respect to x, and obtain as
a result a form involving complete elliptic integrals of the first
and second kind, which then has to be integrated with respect to y.
This latter integration is done numerically. This process breaks
down, however, when the spin pole does not lie on one of the axes,
i.e. wvhen x' # 0, y' # 0. The first integration with respect to x
is still possible, but the resulting form contains also elliptic
integrals of the third kind. We accordingly abandoned the attempt
of analytically performing the first integration, and we treated
the integrals as follows. We had:

a6.




r 3b1§E(X Jf 1=(x/2)2=(y/0)2 (y'=y)dxdy

x 2mab Jox oty 12
- 3sigG g SGex Gy )Py g (4.98)

emab g i-(x/a)2-(y/b)? b2
by partial integration with respect to y. Then, we set
X = arcosy, y = brsiny. (4.99)

This gives

-3sign(x) 1 p2qr 27 - .
f = / [ larcosy=x')%+(brsiny=y')? sinydy =
X 21b 0 /1-1‘2 0
=--—§%%—l— J sin?ea6 | V(asinbcosy-x')2+(bsinesiny-y')?sinyay.
0 0
(4.100a)
In the same way we find
3si e
y ——2555-—- f s1n26d9 | Y(asinecosy-x')2+(bsinbsiny~-y')2cosydy,
0

(4.1000)

27
= 3sign(x) 51necoszed6 | V(asinecosy-x')2+(bsinbsiny-y')2dy +

z 2me f

-l sl
el A (4.100¢)

By means of the svbstitution o = 7=y in (L4.100) it is easy to see
from (4.93) that
£ (&/%, (~=n)/x)
fy(a/x, (=n)/x)
m (£/X, (=n)/x)

fx(E/X, n/x),
-£,(&/X, n/x), (k.101a)
m (£/X, n/X).

By means of the substitution o = -y in (4.100), it is easy to see
from (4.93) that
£ ((-€)/x, n/x)
fy((-E)/x, n/x)
m ((=€)/X, n/x)

n

-fx(E/X, n/x),
fy(s/x, n/x), (4.1010)
mz(E/x: n/x).

n

By means of the substitution o = m/2-¢ in (4.100), it is easy to see

that

fx(a,b, E/X, n/X)
mz(a,b. E/Xy n/X)

—fy(b,a-, f\/X, E/X) s

m, (b2, n/X, €/X). (k.101¢)
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Fig. 10. The total force for large creepege and spin.
(a): g=0.5; (b): g=0.2,



1.2
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Fig. 11. The total force for large creepage and spin. g=1.

So we can confine ourselves for the purpose of calculations *to the
cases with

e >0 (a<b), =x'=cn/x20,y"=cg/x20. (4.102)
Under the conditions (L4.102) we can eliminate a and b from (L4.100).
This gives

£ = 3—’/-éilﬂ-—f sin20d0 x

X

N

/( Slnec05¢+n/X) +(w /X)2 sinydy,
3 X
%= —Z%(—j 31n26d0 x
x j /(/g sinBecosy+ n/x) (s'ﬂe_Si_n‘P._ e;/x)2 cosydy, b (k,103)

5 /g
-—m—f s:.necos"’-ede %

2"/ R 2 ¢ sinfsin 2
x [ /(Vg sinBcosy +n/X) +(ﬁz—-‘k - E/X)" ayp +

0
- (n/X)fy - (tz/x)fx

X # 03 if X = 0 then fx = g/v, fy = n/v, v = VE24n2, J
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The repeated integrals of (4.103) are easy to integrate numerically.
The total force has been calculated for g = 0.5 and g = 0.2, see fig.
10, and for g = 1, see fig, 11, In the figures, we use the symbols v
and o:

£,X = vcosa, n/X = vusina. (4 104)

As to fig. 11, we observe that the force is always in the direction
of the creepage. So fig. 11 could have a simpler form than fig. 10.
We finally observe that the three integrals of (4.97) can be

written as a sum of integrals of the form
= P,(x',y') fé P), (x,¥)3(x,¥) %11 ’ (4.105)

where P, and P) are polynomials and J(x,y) and R have their usual
meaning. Hence GALIN's theorem of sec, 2.2 can be applied, and the I
can be evaluated by means of DOVNOROVICH's method. This gives after

some calculation: -

_ 3ysign(x) [1500 _ 1 5 1500 1 > 1;00]
o = ab [F T2 FBY T o 3 X F Tppfs
_ _ 3xsign(x) [ 1,00 1 42 p1300 . 1 o 1,02]
ty ab *EEF Yty ¥
_ 3sign(x) [ 1300 1 2 1300 1 5 51500
m, abc 0 X Flp*z ¥y Flig® $
w §1300 L 1 2.2 21300 L 1 4 1;00]
+"E T EF N P XY F Tt ap Y Ty
+2¢r _Lr
c’y ¢

(x,y): spin pole, x = =en/X, y = c&/X.

F1;99: see (3.22),
1J

7
(4.106)
It should be kept in mind that (4.106) is valid only when the spin

pole lies inside the contact area, so that (L4.106) has only limited
applicability.
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5. Steady rolling with arbitrary creepage and spin: a numerical
theory. .

In the present chapter we apply the theory of the load-
displacement equations to the problem of rolling with arbitrary
creepage and spin. In section 5.1 and its subsections we present the
numerical process. In section 5.2 and its subsections we discuss a
compu‘f:er programme based on the method of section 5.1, Finally we
present the numerical results in section 5.3 and its subsections. In
5.31 they are compared with the experiments of JOHNSON and HAINES and
OLLERTON, In the two remaining subsections of 5.3, we discuss the

solutions obtained.

5¢1. The numerical method.

In 5,11, we reformulate the boundary conditions so, that the
solution becomes equivalent to minimizing a certain integral. The
numerical analysis of the minimalization is presented in 5.712, and
some detalls concerning the minimalization and the formulation of

the problem are discussed in 5.13 and 5.1k,

5.11. Formulation as a variational probler.

Since the tangential traction is at most equal to a finite
multiple of the normal Hertzian traction, the latter vanishing at
the edge of the contact area, we will use the theory of section 3.1.

We can rewrite the results of that section as follows:

Iet 7 = G £, /1-(x/a)?=(y/b)? inside E, 3\

=0 on z=0, outside E;

If (X,Y)= Gufoom(x/a)z_(y/b)2k§1 [xﬁ‘rk,yg'rk] inside E,

= (0,0) on z=0, outside L, L
. My _ " 3 M
with (xk) = (19X’st 2 XY 3T s000sY » 050,0,000, 0),
M M
(Yk) = (0,0,0,4.., O’1sx,y’x2:xysy2’-"s ¥ 1s

(r) = (dg0s8y0s9g198n0seevs Sys€00981028072€p0s+ =+ €0y

(14+1) (M+2) ,

Le]
1}

(5.1)
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N

P q
then [u(x,y), v(x,y)]= £, k£1 j§1 (zjujka’Zjvjka)’

with ujk’vjk: coefficients of the load-displacement
" equations (3.5), i (5.1)
M+1 M+2
[ZJ) = (19xay’x2ﬁw’y2w”a Xy s ¥V )’

q = 2(1+3) (k). )

The derivatives of u and v with respect to x, which we need to

calculate the slip, are readily found. They are:

(ﬂﬂ)—? § %('-TZ'-T)

o T 00 L L BGRETe KT o
5.2

9z,

with [z‘;)=[ﬁl) = (0,15042%,¥4053%2 40045 yM+1, 8)s

The relative slip due to the traction distribution of (5.1) in
steady rolling is then according to (L4.15¢),

3
(sx’sy) = (Ux"‘1>y * o ¢x . a;
U Ng P g

s = uf { — Z s 'r,}

= T “foo oo k=1 j=1 I Ik
[ttt | o 3

g = + + z'v.. T
y = Moo Woo Moo k=1 j=1 I K E

According to (3.51),

so that the relative slip due to the tractions of (5.1) becomes

8, 8 ufOO ( E-AX l + Z Z ZJqu k)’

k=1 J"’1
D
5, = o, (An+Ax— + k-);1 §1 : jka]’ (5.3)
(1~0)E n/2
A= s, E=]  Y1-eZsinZeqe.
2vg = B
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When we use the X and Y of (5.1),'and we calculate the surface
displacement differences also in the manner of (5.1), we accomplish
that the surface of the half-space outside the contact area is free
of traction, and that the displacement and stress vanish at infinity.
In terms of the boundary conditions (4.16), this means that (L4.16c)
and (4.16a) are satisfied. Also, the normal pressure of (5.1) is the
same as the one in (4.16b). So, only condition (4.16d4) remains for
the slip region Eg an@_condition (4. 16e) for the locked region E, .

We repest these boundary conditions here:

_ o av
S V¢ * 3xe Sy Uy+¢x * e
v =s /s, wy=sy/s, s=¢s§+s§; (5.4)
= = 2- 2 - . o
(X,Y) quOOMW (x/a)%=(y/b) wx,wy) in slip area Eg’
sx=sy=0, I(X,Y)|5uZ=quoo/1—(x/a.)z--(y/b)2 in locked area E, .

7/

We set

(x',¥")=(X,Y)/uz=(X,Y)/{uf, @/ 1-(x/a)*- (y/b)*}. (5.5)

Then we can reformulate the boundary conditions:

1
T=(X'=w )24+(Y'=w )2, 8= ————— (52452
( x) ( y) » w2 2 ( X y)’

00
T=0 in Egs (5.6)

§=0,|(X',¥')[< 1 in E
where Eg and Eh are unknown, and follow from the solution of the
problem. We defined S so that it is independent of the factor ufy,
which represents the normal load and the coefficient of friction. Ve
eliminate E8 and Eh from the equations by demanding that the
product TS vanishes everywhere in E, Moreover, I(wx,wy)]=1, so that
the inequality |(X',Y')|< 1 must hold throughout E. So we obtain
for (5.6):

™ =0, |(X',¥')]|s 1 in E. (5.7)

If (5.7) is satisfied, we have found the solution of the problem.
Since TS > 0 for any choice of (X',Y'), we can integrate (5.7) to

obtain
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=
[}

[ wrs axay = 0, [(X',¥')|< 1 in E,
E

W = weightfunction > 0 in E .

Here we have put in a positive weightfunétion W. Again, since
WTS > 0, the integral I > O for any thoice of (X',Y'), sq that the
value zero of the integral is actually a minimum. So we can
reformulate (5.8):
I =[] VWIS dxdy = minimal, [(X',Y')]|<1 in E. (5.9)
E

The two conditions of (5.9) are completely equivalent to the
boundary conditions (5.4), but (5.9) can be used to obtain an
approximate solution, namely by introducing the tractions of (5.1)
into it, with the corresponding relative slip (5.3), and minimizing

the integral with respect to the 1 . The inequality [(X',Y')|s 1 is

k.
verified afterwards.

5.12. Numerical analysis.

We summarize the new formulation of the problem:

~

I = [[ WIS axdy is minimal, |(X',Y')|< 1 in B
E
T = [ 2 L 2 2 2g = g24g2
T = (X Wx) +(Y wx) s WEL %8 sx+sy,
D
= 1 o
ey = TGl o),
— [ (5.10)
W, & sx/s, wy = sy/s, s = |(sx,sy) |y
y p q '
sx - “fOO (AE-AX c * ; Z Zj vjk Tk)’
k=1 j=1
. D 4
= — 1
s, = ufy (Antax 3+ k; j; 28 Vi T
A= (1-0)E/2Vg . )

(5.10) is an approximation in the sense that we take along only
p=(M+1) (M2) parameters T,» SO that X' and Y' are arbitrary M-th
degree polynomials in x and y, the coefficients of which are
determined from condition (5.9).

In order to determine the T from the condition I = minimal, we
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seek the stationary value of I with respect to the 1, by iteration.

We are not certain that the stationary value we findkin actually the
gbsolute minimum or even a relative minimum, In practice, however,
we determined I after each iteration step and we found in
practically all cases that at the stationary value, I was indeed the
smallest as compared with the series of values of I obtained during
the iteration. In the cases where this was not so, the solution was
grossly at fault. So there is a strong presumption to believe that
we indeed find a minimum.,
At the stationary value,
g—f;-——HWTS axay = [[ 0252

This is a difficult equation, as a consequence, principally, of the

a(TS) dxdy = (5.11)

complicated dependence of [wx,wy] on t1,. We find the solution by

k
NEWTON's method: we start with an arbitrary To, and proceed by

iteration, as follows:

(r;) = arbitrary; (5.12a)
aI ATS A
9T )kark+Ar o (BTk) = E iy +
3215 |
+ [[w Z e n n At, dxdy = 0 (5.12p)
fé g=1 (aTk“z) s T, X ’

k = 1,2,3,0005 p = (M+1) (M2);

7

n+1 )

T =To#AT, 3 if max IAT |<8 max|t | then solution is found;
k k" k k k

L (5.12¢)

§: a small positive number which can be chosen arbitrarily. J

The equations of (5.12b) are p linear equations in the p unknowns

Arl.
The integrals are evaluated numerically, by replacing them by un-

weighted sums over a fairly large number of points. This was done

for two reasons. The most important reason is that the integrals

have no physical meaning, so that we are not interested in their

precise value. In fact, one could directly have used finite sums

instead of integrals in the original equations. Secondly, the

function T, containing as it does the discontinuous functions W and
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w&, is a function with locally large gradients. This does not render
it very suitable for numerical integration methods involving higher
order differences.

The process (5.12) of successive approximations converges fairly
rapidly: it depends on the behaviour of the resulting function WTS,
and to some extent also on the starting value T;. When in the calcul-
ation of several cases we work in a chainlike fashion, by slowly in-
creasing the creepage and the spin, and using the previous result as
a starting value, the number of iterations for 6=0.001 (see 5.12¢)
is about 5, sometimes increasing to 7 or 8 when the adhesion area is
large, or dropping down to 3 when the adhesion area is small. The
number of iterations increases slowly with the degree I of the
polynomials X' and Y'. In the calculation performed on a series of
33 different values of creepage and spin, we needed an average of
3.9 iterations per case for 1=2 (12 1's), 4.l iterations per case
for M=3 (20 1's), and 4.7 iterations per case for M=4 (30 t's). The
number § of (5.12c) was taken equal to 0.001.

In the contact area we took 80 points to approximate the
integral when M=2 or M=3, and about 100 points when M=L, The calcul=-
ations proved to be exceedingly lengthy. On the fast Telefunken TRA4
computer of Delft Technological University, each iteration step
(5.12b), which consists of the evaluation of the coefficients of the
linear equations and their subsequent solution, took the following

amount of machine time:

M=2, 12 equations, 80 points in the contact area ...18 sec.
M=3, 20 equations, 80 points in the contact area ...35 sec.p(5.13)

M=L, 30 equations, 100 points in the contact area ...8T sec.

Most of the time was used in setting up the equations. These long
calculating times are due to the complicated character of
aZ(Ts)/arkarm (see sec. 5.23), and to the fact that these calcul-
ations have to be performed for every point, that is, they must be
repeated about a hundred times for each iteration step.

In the calculation outlined above, the inequality [(X',Y')|[s 1

is ignored. After the 1, have been determined, we inspect the

k
solution to see whether |(X',Y')|< 1 in each point (x,y) of the

106.




contact area. The output of the computer programme has been especially
designed to facilitate this verification, see sec. 5.24, We found

- that generally |(X',Y')|> 1 at some points. In judging this
aberration, we distinguish three cases, viz. T<S, T>S, and (x,y)

near the edge of the contact area.

In the case T<S, the reduced tangential tractions (X',Y') are
closer to the Coulomb value than the slip is to zero. That means that
the solution at a point where T<S approximates slip area conditions,
in which |(X',Y')| should be equal to unity. That means that the
traction |(X',Y')| we actually find should be regarded as a more or
less succesful approximation of unity. The situation |(X',Y')|> 1,
T<S indeed occurred very frequently in our numerical work, but for
the reason just mentioned should not be used to throw doubt on the
validity of the solution.

Points with |(X',¥')|> 1, T>8 do throw doubt on the validity of
the solution. A point of this type we call an aberration of the
solution. Aberrations also occurred in our numerical work, but much
less frequently, and mostly concentrated in a small portion of the
contact area. Solutions with aberrations occur mostly at values of
the spin close to the peaks of fig. 23, sec. 5.33. The argument of
the case T<S does not apply, since the solution at a point with T>S
approximates adhesion area conditions, where |(X',Y')| should be
smaller than unity. One might be tempted to think that where
| (x',Y")| passes the value 1, a slip area with small T should be-
found. This is, however, not always the case, since a small value of
T implies not only that |(X',Y')|as1, but also that the angle between
slip and traction must be small. Mostly this angle is not small in
an aberration.

As to the case that (x,y) is near the edge of the contact area
vhile |(X',Y')|> 1, we observe that for reasons discussed in sec.

5.13, we used the weight function

W=W, = 1-x2/a2-y2 /b2, (5.14)

As a consequence, little weight is attached during the minimalisation
process to the behaviour of the solution near the edge of the contact

area where W, is small, and hence in judging the solution in the

1
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light of the requirement that |(X',Y')|< 1, little importance
should be attached to the behaviour near the edge.

5.13. The choice of the weight function.

The weight function of (5.14) was chosen, because then WT is
proportional to the square of the absolute value of the difference
between the actual tractions (X,Y) and the COULOMB traction
uZ(wx,wy), with the proportionality constant quOOZGZ. As a
consequence, u“foo“GZVZ(W1TS) is the square of the rate of work per
unit area done by the difference of the actual tractions (¥,Y) and
the COULOMB traction uZ[wX,wy) on the slip V(sx,sy), if the latter
were in the same direction as the traction difference
(R=wzv_, Y—uZw&).

We also tried W=1, and compared the total force obtained with
W=W1 with the total force obtained with W=1 for the degree I of the
traction polynomials (X',Y') equal to 2 (12 t's), to 3 (20 t's), and
to 4 (30 t's). We did not use higher degrees M, because of the large
amount of machine time, see (5.13). We calculated the force fy=Fy/uN
for a circular contact area, POISSON's ratio 0=0.28, and for pure
lateral creepage (ux=¢=0, uy#o), and also for pure spin (ux=uy=0,
¢#0). The results of the comparison are given in Tables 4 and 5. In

reading the tables it should be remembered that the maximum value of

Table 4., A comparison of fy with W=1 and with W=W,, for M=k,

1°

v_=¢=0 v_=v_=0
b4 X ¥

Max | Mean Max | Mean

_ . .00 . .
|fy’w=1 fy,W=W1| 0.016/0,009| 0,046 [0.016

with the conjectured

Table 5. A comparison of f& with w=1, W=W1,

value of f .
3

v_=¢=0 v =u =0

W | Max |[Mean | W | Max |Mean

1 10.,022/0,009| 1 |0.0LkL|0.023

1 1 _
|2f§,w=1,M=h+2fy,w=w1,M=h fy,M=3l
W,|0.033]/0.011| w,|0.029]0.018
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fy is 1.
We see from Table 4 that there is a distinct difference

between f_; and £ __. for M=lW, This indicates that we should
y,W=W1 YoW=1

have used a higher value of M in our calculation. The large amount
of machine time precluded that, however.

1 1 i
In table 5 we assume that (zfy,W=1,M=h+2fy,W=W1 ,M=h) is the

correct value of fy with which we want to compare the performance of
polynomials with degree M=3. We see from Table 5 that the polynomials
with M=3 give passable results. The weightfunction W=1 performed
better than W=W1 in the case of pure lateral creepage, and W=W1
performed better than W=1 in the case of pure spin. In view of the
fact that the largest errors occur in the case of pure spin, and in
view of the amount of machine time available, we decided to adopt

M=3, W=W1, in all our further calculations.

5.14%, Final remarks on the method.

It should be observed that the formulation of the boundary
value problem as a minimalization problem is by no means unique. In

fact, one could also minimize the integral f f W'I'msnd_xdy, but we
E

preferred the integral (5.9), since the integrand is the square of a
rate of work per unit area. A possibility to be considered is m=n=3:
the integrand is then a rate of work per unit area. We tried it for a

single case in which tie integrand W,TS gave good results, but it

turned out that the iteration did no:: converge., We suspect that this
is because /TS has too large gradients near T=0 and S=0 to be
workable.

A possibility which has been investigated more fully is the

minimalization of

[[ v, Taxday + [[ W, 8 dxdy = minimal,
Fg g (5.15)
| (x',¥')|< 1 in E, -
This form has the drawback that the adhesion area and the slip area
explicitly enter into the minimalization problem. It has the

advantage that for fixed Eg and Eh’ for fixed L and wy and 1f W2
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and W3 are functions of (x,y) on;y, it is a least squares problem,
since S and T are then quadratic in T+ So it has a single stationary
value which is actually the absolute minimum. A situation which
approaches fixed (Wx’wy) is that of pure creepage with vanishing
POISSON's ratio o. The variation of Eg and E in all cases turns out
to be simple: if at a certain point of the boundary W2T>W38, then Eh
should be increased, if W2T<W38, Eg should be increased. In the final
solution W2T=W3S on the boundary. So, assuming that the solution
continuously changes with the creepage, we see that in the case of
pure creepage with 0=0 we find the best solution in the sense of
least squares, and assuming that this feature of (5.15) does not
change when o0#0 and ¢#0, we see that there is a strong presumption,
that we will find the solution from the stationary value of (5.15).
Now, by a special choice of w2 and W3 we can obtain (5.9) back.,
One must then take W2=WS, and W3=WT. Note that now W2 and W3
also on T and S, which is different from what we assumed before.
Seen in this light one can say that in (5.9) WT serves as a weight

function on S in the adhesion area, so that the larger is the

depend

difference of the approximation of the traction and the COULOMB
traction at a certain point, the more importance is attached to a
small value of S at that point, while in the slip area S serves as a
weight function on WT,so that the larger the slip at a certain point,
the more importance is attached to a small difference between the
approximation of the traction and the COULOMB traction at that
point.

It was found that the results of (5.12) compared better with the
experiment than those of (5.15). In view of the fact that by making
(5.15) stationary one probably finds the absolute minimum, we
conclude that the process (5.12) of making (5.9) stationary probably
leads to the absolute minimum of (5.9).

Let us finally return for a moment to the fact that we have
used the tractions of ch. 3, which are so that they vanish at the
edge of the contact area. One might argue that this choice is not a
necessary one, and that one could use any set of tractions which form
a complete set of functions. So one could also use the tractions of

ch. 2, which are infinite at the edge of the contact area. In that
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case the displacement differences can be chosen arbitrarily, for

instance
%

= - L2
u==uXx+ ¢xy, v ==U X = dx“.
X ? N <

We see that u and v are second degree polynomials, and hence the

corresponding traction in the contact area has the form

X

c{1-(x/a)2~(y/v) }'“ (doo+d x+d )y, X +d11:qr+d02y2),

Y

c{1-(x/a)2~ (y/b)z}- [e oteipXteg e X +e11:qr+e02y2].

Moreover, we see from (4.15c) that the relative slip (sx,sy)=(0,0)
throughout the contact area, so that the integral I of (5.9) actually
vanishes. However, |(X,Y)|>>uZ near the edge, from which it appears
that we must reject this solution. So we see that the inequality
| (X,Y)|suZ is indeed essential for the solution of the problem, and
we see that we cannot use the tractions of ch. 2 in a calculation in
which the inequality is verified afterwards. Instead, we use the
tractions of ch. 3, which, as we recall, have the form

(X,Y) = G{1-(x/a)2=(y/0)2}*? | (a,grepg) =
These tractions already reflect something of the inequality
| (X,Y) |<uZ, namely, they behave correctly at the edge of the contact
area, and the inequality reduces to

(] a, % [ e, v < oo

This relationship is much easier to satisfy that the inequality

= 2mabG

which obtains in the case that we use the tractions of ch. 2. Indeed,

| a, Py § e x| < o2 (1-(x/2)-(3/0)2

the tractions of ch. 3 lead to an acceptable spproximative solution
in a great many cases, while, as we saw, the tractions of ch. 2 do

not,

5.2. The computer programme.

In the subsections of the present section, we discuss several
features of the ALGOI~60 computer programme which was written to
perform the iteration described by (5.12). The input is described in
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5.21, in order to give some impression of the degree of generality
of the programme. The possibility to use several forms of the
integrand is described in 5.22, the optimalization of the programme
is discussed in 5.23, and in 5.24 the output is described with the
aid of an example (fig. 12).

5.21. The input.

To be specified at input are:

a) The degree M of the traction polynomials;

b) The ratio of the axes a/b of the contact ellipse;
c) POISSON's ratio o

d) The points for the calculation of the integralj;
e) The number § of (5.12¢c);

f) The maximum number of iterations;

g). Creepage and spin;

h) If necessary, the starting values -r;

i) Several features of the output.

a) The importance of the generality of M hardly needs adstruction.
Owing to the large amount of machine time involved, (see (5.13)),
only small values of M (say, up to 6) are of interest. So the
load~-displacement equations can be kept in core storage, which is
important with a view to calculating speed.

a,b,c) The most difficult to adapt to the demand of variable M, a/b,
and o was the construction of the load-displacement equations.
They are constructed by the machine in such a way that use is made
of the fact that they fall apart into four independent systems of
equations. This was done to avoid the occurrence of unnecessary
zeros in the equations. The load-displacement equations are
computed only once for a whole series of calculations. After they
have been computed, the lengthy procedure needed for their
calculation is placed on tape and the memory space occupied by it
is again free for use.

d) The points needed for the calculation of the integral are taken so
that they form a rectangular network, the meshlength of which in

the x and y directions can be specified separately.
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e) Ordinarily, we took 6=0.001. It should be noted that ma.xIA'rkl in
k

. C) 1s an approximation O € error present 1in T, . ilnce 1n
(5.12¢) i imati £ th t i is' i

n+1

(5.12b) terms of order ATkATZ are neglected, the T which we

obtain at the end of the iteration contains errors of order

mex |AT | |2

k " -6
mex o] | ° that is, of order 6% = 10 .
p |k

f) Ordinarily, we set the maximum number of iterations equal to 12.
If after these 12 iterations the inequality (5.12¢c) is not
satisfied, the machine concludes that the calculation diverges,
and proceeds to another case,

g) Creepage and spin are put in in terms of the significant data of

the following triple loop:

" )
for x:= xo step AX until xe do
for a:= a step Ao until ae do
for g2:= 1 step 1 until % do \ (5.16)

begin &:= vu[t] cos a; n:= v[t] sin a3
perform the calculationj

end; J

Here, v[1: le] is an array the dimension %, elements of which
are given in the input. o is the angle between the vector (&,n)
and the x-axis; it is given in degrees.
h) The programme works in a chainlike fashion, taking the resulting
as the starting value 10 for the next case. In the first case

k
is set equal to zero, unless it is specified

Tk

to be treated, 'r;
otherwise. The presence of a set of starting values {T;} in the
input is indicated by a control word in the input.,

i) The features of the output which are under control of the input

are discussed in sec. 5.2L.

5.22. The form of the integrand.

It was the object during the writing of the programme to put as
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few restrictions on the form of. the integrand of I as was possible
in view of the fact that hardly any loss of machine time may be
suffered. So we chose as a general form of the integrand the
function f(x,y,a,0,T,S). £ is calculated by a procedure which gives

the values of

*
’f’f’

* ¥

* .
£, £, f 4 f
": differentiation with respect to S, (5.17)
*: Gifferentiation with respect to T,

which are all that is needed from f in the course of the calculation,
as we will see in sec. 5.23. Another function f can easily be tried
by a modification of the body of the f-procedure alone. In order to
facilitate this, the f-procedure is kept separate from the rest of
the programme. More specifically, it is a pretranslated procedure in
the Delft TRL,

Up to now, we have extensively tried f=TS and f=W1TS. We also
tried £=/7 TS. It should be noted in this connection that the form
(5.15) is not caught in this way: a separate programme was written

for it, which actually preceeded the present programme in time.

5.23. Optimalisation of the programme.

With a view to the formidable amount of machine time, the pro-
gramme . had to be optimalized as much as possible. Consequently, the
first demand is that the load~displacement equations, which are
constantly referred to in the course of the calculation, should be
immediately available at all times. Hence they were placed in core
storage. The procedure which computes them is used only once for a
whole series of cases, so it was placed on magnetic tape in order to
save space.

Since every point of the network covering the contact area
gives its contribution to every one of the (M+1)2(M+2)2 coefficients
of the linear equations (5.12b), the generation of these equations
takes up most of the machine time. Consequently, these equations are
placed in core storage, and special case is taken to perform the

calculation as efficiently as possible. This optimalisation took the

114,



file:///ised

form of reducing the number of operations in the innermost loop of
the programme as much as possible. We will give here the analysis
involved.

We introduce the following notations:
= = = P2402
p Sx/“foo’ Q sy/ufooés P+Q%;

,k: differentiation with respect to T3 (5.18)
*: differentiation with respect to T

‘: differentiation with respect to S.

/

Hence, by (5.10),

q
= = = 1
v P/VS, Wy Q/vs, P,k j£1 z! u,jk’
q ; (5.19)
= 1 1 = 't =
%k 521 25 Viro X = Xpeo Yy = Ve
7/
Also, we set
Us=X'-w, V= Y'-Wy% T=U2+V2, (5.20)
We differentiate f(x,y,a,b,T,S) with respect to T+ That gives
£ =fT +f£8 (5.21)
ok ok k'* :
We differentiate (5.21) with respect to Ty
* .
T T T T n * E5 0 *
+e'ror + £ (T8 +T S )+ S .S e
’k ,2’ ’k ’R‘ ’2' ’k ’k ’!' ‘

We observe that in £ ., and f occur only the quantities (5.17)
4

o,k k%
which are produced by the f-procedure.

In order to be able to evaluate (5.21) and (5.22), we must have

the derivatives T,k’ S,k’ T,kl’ S,kQ:
S =2PP , + 2
o gt e (5.23)
S =2P P  + 2
2k oK o2 Q,kQ,z’

the latter, since according to (5.19) P . end Q , are independent of
2 9’

T, Also,
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We introduce (5.23), (5.24), and (5.25) into (5.22).

+ 2V V

3w

ZUU,kl

w2P +
J

-3w w2 P

39
o 2 2
x 3wxwy)P’k+3wywx

+ 2VV k2

9

-3w wZ)Q ]
~3w )P +(w =3 W )Q,k]’
*(w x-3wxw§)Q,k]+

Q

L

2 =
(Paq ,-@%P \)=

(5.24)

That gives after some

(5.25)

is

Clearly, f k8

374 3 L 1 1 L}
a bilinear form in [x’k, Y Pyo Q’k) and (x’z, Ys P ys Q). Ve
write it in matrix form, as follows:
= 1 T v ]
Fop = (K ¥R o0 ) Ay A Ay Ay [Xy]s (5.268)
1
Aoy B A3 Py | Yk
P
B e g5 Ay Jk
_Aln Mo M3 Ahh_] _Q,k_]
with
q q
Y = [] - 1
AlJ AJl, b LXps ’l=y1, P’z jz1zj Us e Q’l j£1zj Vig s (5.26b)
and
B = 2" + Lf**u2, A, = WUV,
2 2 *® * %
S e e— + - -
Ayg /éf'wy 4E¥UP - Uf Uwy(Uwy w ) /8, _—
22 . xe - ) 5.26¢
Ay = T2 Ehwgr + LeTTUQ + U wa(Uwy-wa)//é,
= * *% 112
A, =2f"+ Le**ve,
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By = %E f’wxwy + 4Py - hf”wa(Uwy-wa)/¢§, ?
Ay, = - %g-f'wi + Le* Vg + hf"wa(Uwy-wa)//g,
Ayg = % f'{w§+3waw§+v [wx-3wxw§)} + 2f +
4~% f"w§(Uwy—wa)Z-Sf’.wxwy(Uwy—wa)+hf..P2,
Ay =2 » L (5.26¢)
U {-wxwy+U (wy-3wyw}2c) +V (wx-3WXW§,)} +
-.% f..wxwy(Uwy-wa)2+hf’.(wi—wi)(Uwy—wa)+hf.'PQ,
A, =-§ f'{wi+3waw§+U(wy-3wyw§]} +2f +
+-§ f"wi(Uwy-va)2+8f"wxyy(Uwy-vi)+uf"Qz. |

It should be noted that all three factors of (5.26a) are position
dependent. It should also be observed that if f=W1‘I‘S or =TS, only
A21=A12 vanishes identically. So, very little is gained by writing
a special programme dealing with these cases only. The greater
generality of f in the present programme is thus obtained at hardly
any cost,.

A programme which computes the coefficients jf,kf jf,zk of the
equations (5.12b) in a way which is based on the form (5.26a) of
fskz’ is easily given. Its innermost loop might look as follows:

Generate the 4 arrays X;k, Y:k’ P,k’ Q,k; 3
comment here and only here the load~-displacement
equations are used;

Generate the Aij;
comment no array to save time;
pr= (M+1) (M+2);

or k:= 1 step 1 until p do

v (5.27)
1 = 1 L .
begin C,:= A11X,k + A Y kAP A1J+Q,k’

12",k 137,k
Ce:= seey C3:= ceey Cu:': see
comment the Ci form no array to save time;
for #:= k step 1 until p do
. 1 ]
ff’kz._ ff’kk +CpX!g O+ CoP
end; )

R

L

By meking use of the fact that half of the numbers X'IL and Y'
) L




venish, (see (5.26b) and (5.1)), more calculation time can be saved.
We avoid the use of subscripted variables as much as possible, since
the call of a subscripted variable takes more time than the call of

an ordinary variable,

5.24, The output.

In the course of time, the output underwent a number of changes.
We will discuss here only the final version, which was introduced
when T5% of the calculations described in sec. 5.33 were finished. A
page of this output is reproduced in fig. 12. We will discuss this
figure in some detail, in order to give an impression of the
verification of the inequality in (5.9).

The format of the numbers in fig. 12 has three forms:
texxx, *xx: a floating number with exponent at the right (fl);

txxxexx : a fixed point number (£i);¢(5.28)

XXX : an integer (in).

It should be remembered that throughout the programme the major
semi-axis 2 is unit of length.

SPIN, MICROSLIP, HOEK: a.,(fi) ae(fi) a.3(fi)

with a,=X, a,=v, a,=a, see (5.16) .

2 3
Specification of creepage and spin.
UPSX, UPSY, PHI: a1(fi) az(fi) a.3(fi)
with a1=ux/ufoo, a2=uy/uf00, a3=¢£/ufoo.

TOEG GEV a,(fl) a,(fl) GEMAFW 8.3(15‘1)
" +1
with a, = & max ITnk |, a, = max ]Arkl, see (5.12¢),
k k
175 .(n)
&y = Z o\ (x,y58,b,T4S), m: number of points in
1

contact area.

We can see from the series of lines TOEG GEV etec. how fast the

iteration process converges. It should be noted that a, gives
an approximation of the error in the previous iteration. In
combination with the fast convergence when 8, gets small (here even

faster than quadratic, when a, << 1) this justifies us to give § the

2
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‘6LL

q/8 *gndqno ay3 jo a8ed y °*zg| °914

=0 ¢G°0=

‘ge*o

SPIN,MICROSLIP,HOEK:

UPSX,UPSY,PH]

TOEG GEV+,310202512545.~
TOEG GEV+.325191548046~
TOEG GEV+,325668086279»~
"TOEG GEV+,325667730896s~

CONVER

FX FY MZ: 0.6249
TAU
+,908286119491,+
+.196130755753a+
+,281355484607,+
+.1538748450840+
uvXx
+.,4085294602415+
+.102304109803,+
~+117220801720=+
-.270534609240.+
~.162104008915a+
AFWIJKINGEN:

=0.1220

1
0
-]
-]
1
1
1
-]

2.0000

0,3437

=.349367884271 .+
=:166438669774,¢
=.166314884292,+
=,432568316460.¢

=.131612477230,¢
+.381801540534,+
+.806106721542.%
=.111786684778,+
+.213857179240.+

TrSeYoXsF,S,HOEK:+.996538670152. 1

GoHsAWOPP: 1
CONTACTVLAK:

W
XX Xoe o oo o0
e TXXo o o0 oo

VMAWNHFOF NG

s e Xo o s o o o

ToSsINTLXsFoF W,
Y:-0.5000
+.166133321545,~
+.151439686305~
+.500945898238,~
+.260215543676=~
+.172421023307~
+.514759714861"
+.138197710111.~
+.294273050531~
Y: 0.5000
+.124776151060s"
+,168548618210,.+
+.417216103353s+
+,1226841013490,+
+.111114408529.+
+,110524486022,+
+.117756519309=+
+.,102047302975.+

1

MNP XX X oo o« oo

EX XX » o o

22

-1
-1
*3
-1

TXITXe « o o
XXX

2 WS, ARS?

NN GGGl N

- X 1

+.961605765187,¢
+.736778676230a+
+.538701820158.+
+.382747524121 5+
+.267835781729,¢
+.184769929270a+
+.122851534659.¢
+.736370221307s+

+:191754441562.+
+.429966799773,+
+.389698802534,~
+.239830621106.~
+.170290990747»~
+.174456342756,~
+.144254949480.~
+.111194503863,~

sraar

.7

(-]
=3
-1
-1
3
3
-1
=1
-1

0

O e

T AT Y

1.7000 - 30.00
0.9077 - 0.5241
2 +.,825463503290,+
2 +.196467231468a+
2 +.243485761775.~
2 +,223328902102.~

1.7439

~.598682684580,+
+,339905894663.¢
+,591234429808,¢

=.9206014469235+
+,156971880339.¢
=~:621773461409~
~,203120076839.+
+.587589341798s¢
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modest value of 0.,001. It should also be noted that a3 gives the

mean value of f for T = Ti rather than r;+1, which is the one
generated by the iteration. When the las* value of ag is smaller

than all the previous ones, we conjecture that the stationary value
is a minimum, It is seen that in the present case this condition is
satisfied.

CONVER
After the machine concludes that the iteration is finished according
to the criterium (5.12c), the word "conver" is printed. If the
iteration is not finished after the number of iterations specified at

input, the word "cycle" is printed and a new case is taken up.
FY FY MZ: a (fi) a,(fi) a3(fi)

vith a,=f =F_/uN, a2=fy=Fy/uN, aq

The total force and the torsional couple exerted on the lower body by

=mz=Mz/uNc.

the upper body.

TAU

(a number of lines of floating numbers)
The T of the solution. Taking the inner product with x% and yﬁ (see
(5.1)) gives the traction polynomials X'=X/uZ, and Y'=Y/uZ
respectively. It should be recalled in computing X' and Y' that the
major semi-axis of the ellipse is the unit of length.

Uuvx

(a number of lines of floating numbers)
The slip polynomials, Taking the inner product with 2xM;1 and 2yM;1
(see (5.1)) gives P and Q. The contributions of the creepage and the
spin, which are first degree polynomials, are accounted for in UVX,

AFWIJKINGEN :

7,8,Y,X,F,S,HOEK: a1(fl)ae(fl)a3(in)ah(in)aB(fi)a6(fi)aY(fi)

with a1=T, =5, (ah,a3) = coordinates in the network of the point

s

under consideration, a_=vX'“+Y'4, ag=vs, &= angle between traction

5
and slip in degrees.

This is a list of all the aberrations, i.e. the points of the network
with T>s, |(X',Y')|>1, that is, the points in which the inequality of

(5.9) is not satisfied in the critical case that T>S. In the present
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case, we have that the aberration occurs at the edge of the contact
area, while T is only a little larger than S. So tke solution is
acceptable,

G,H,A,OPP: a1(1n) az(ln) a3(1n) ah(ln)

with a1=number of separate areas of slip; a2=number of separate areas

of adhesion; a.=number of aberrations; ah=number of points in Eh.

This line giveg some statistics regarding the solution. It should be
observed that the solution itself does not specify the division of
the contact area in areas of slip and locked areas. One can only say
that a point with T<<S belongs to the area of slip, while a point
with T>>S belongs to the area of adhesion, Quite arbitrarily, we set
the boundary between an area of slip and an area of adhesion at the
line T=S, It will be seen later on that in the case represented by
fig. 12 the region where T®S is narrow, so that there is in fact a

sharp distribution between the locked region Eh and the slip region

E .
g
CONTACTVLAK :
=4 ... 000-1=-1=1=1000
etc, etec,

This is a crude picture of the division of the contact area in areas
of slip and adhesion. The numbers at the right were only used to
generate the picture on the left, and to compute the statisties of
G,H, etc. In the picture on the left, the column of integers
indicates the line number (y-coordinate). A point indicates that the
point belongs to the area of slip, an H indicates that it belongs to
the locked area, and an A indicates an aberration. Complete data
regarding the solution at an aberration are found in the AFWIJKINGEN
list. Tt is seen from the picture in fig. 12 that we took a
rectangular mesh of points which has at most 10 points in the x-
direction end 10 points in the y-direction giving a total of 80
points in the contact area.

T,S,INT,X,F,IW,ANF,WS,ARS:

¥: a (fi)

a,(f1) a,(f1) e.3(fl) a), (fi) 35(1‘1) ag(fi) a.T(fi) ag(fi) ag(fi)

etc.

121.



file:///ised

with a = y-coordinate of the points listed below; a.=T, a.=S, a

[¢] 1 D 3=f’

8, = x-coordinate of the point, ay = VX'Zey' 2, ag = ¢X2+Y2/ufOOG,
&, = angle between traction and x-axis in degrees, ag = R

&y = angle between slip and x-axis in degrees. The angles 8y and
a,

are between 0° and 900, when X'>0, Y'>03 Sx>0’ Sy>0'

This is a specification of the solution at the point (ah,ao), where
it should be recalled that the major semi-axis is unit of length. The
values of (ah,ao) are specified in the input. From this list we can
judge the quality of the solution. In the case represented by fig.12
one can see from the T and S of the points (-0.35, 0.5),

(~0.25, 0.5), and (-0.15, 0.5) that the distinction between locked
area and slip area is sharply defined. It is also seen that the
solution at y = -0.5 is of good quality. The angle between slip and
traction is satisfactorily small (up to 30), and the traction is
quite close to the COULOMB value (error up to 4%). The values of f
are all below average, see GEMAFW., The values of f at y = + 0.5 are
above average, and it is seen that the quality of the solution is

much worse than at y = - 0.5. It is worst at the separatrix T = S.

5.3, Numerical results.

The present section is divided into three parts. In 5.31, we
calculate several cases with the object of comparing them with the
experiments of JOHNSON [1,3], and of HAINES and OLLERTON [1]. In 5.31
we treat only cases with circular contact area, since most of the
experimental evidence is so confined.

In 5.32, we try to give a qualitative survey of the behaviour
of the surface stresses occurring under conditions of rolling with
creepage and spin.

Finally, we direct our attention in 5.33 to the total force
exerted by the upper body on the lower body.

5.31. Comparison with the experiment.

We calculated the cases of pure creepage in the x and y
directions respectively, of pure spin and of combined lateral
creepage and spin all for a circular contact area, with the object

of comparing them with the experiments. The results are shown in
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figs. 13 to 17.

In fig. 13, the dimensionless forces fx = Fx/uN and fy = Fy/uN
are plotted against the creepage parameters £ = pr/uc, and
n= pr/uc, respectively. Also plotted in fig. 13 are JOHNSON's
experimental values taken from [1]. As the theoretical curves for
the degrees M=2,3,4 nearly coincide, we show only one viz. M=2 for
the E-fx diagram, and M=4 for the n-fy diagram. The weight function

W=1, The agreement is quite satisfactory.

12
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O lubricated
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0 04 08 12 16 20

—

Fig. 13. The total force due to longitudinal and
lateral creepage. a/b=1, 0=0,28, x=0,
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In fig. 1k, fy is plotted as a function of the spin parameter
X=¢p/u, for zero creepage. The weight function W=W1. Curves for
M=2,3,4 are shown; where not drawn, the curve for M=2 follows the
curve for M=3. Also given are experimental results taken frow K.L.
JOHNSON [3, fig, 8]. The coefficient of friction was not known; it
was adjusted to fit the curve M=4 best (p=0.094). It is seen that
the curve of M=3 lies markedly higher in the region X=0.T to x=2.
In this region, a change in the coefficient of friction has little
effect upon the fit of theory and experiment. The curve of M=4 in
that region lies somewhat lower than the curve of M=3, but still

above the experimental values.

0.7
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(o)
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M=3
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: \
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|

Fig. 14. The total force due to pure spin for various
degrees M in comparison with experiments by
JOHNSON. a/b=1, 0=0.28, u=0.094 (estimated).
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16 - ® experiment (4)

@ experiment (5)
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\ X
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Fig. 15. The total force due to combined lateral creepage
and spin in comparison with experiments by
JOHNSOW. a/b=1, 0=0,23.
1: X=03 2: X==0.561; 3: X==2.25; k4: X==4,78; 5: Xx=-9,58.
1,2,3: 1=0.0845; L4,5: u=0,10Lk.

In fig. 15, the results of the numerical theory are compared with
the experimental evidence of JOHNSON [3] on combined lateral
creepage and spin, i.e. v, =0, (uy,¢)¢(0,0). The numerical results
were obtained with the weight function W=W1 and the degree M=3. Here
also, the coefficient of friction u was not known; however, the

differences between theory and experiment are rather insensitive to
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changes in u for the curves 1 and 2 of fig. 15 which represent small
values of the spin, so that they give a clear impression of the
deviation of theory and experiment for smell spin. The curves 1,2,3
were measured with the same apparatus, so that it seemed natural to
suppose that the coefficient of friction was the same in all three
cases. It was adjusted so as to minimize the difference between
theory and experiment for the curve 3(p=0.085). As a consequence of
the way in which p was estimated, the correlation between experiment
and theory for curve 3 is not necessarily as good as the one shown
in fig. 15. JOHNSON performed the experiments for the curves 4 and 5
(large spin) by means of a different apparatus, so that it seems
justified in assuming for curves 4 and 5 a coefficient of friction
which differs from the one taken in curves 1,2,3. The u for 4 and 5
was chosen so as to minimize the differences between theory and
experiment in those curves (u=0.104). The differences appeared to be
very sensitive to changes in u. Consequently the correlation between
experiment and theory is not necessarily as good for the curves 4 and
5 as the one shown in fig. 15.

The moment MZ agreed badly with the experiments. However, it was
pointed out by JOHNSON [3] that a moment due to elastic hysteresis is
present in the experiments, which is of the same, or even larger
order of magnitude than the moment due to surface friction. So there
is little practical significance attached to the moment Mz as we
calculate it, and consequently we omit it from our further
considerations.,

In fig. 16, the results for pure longitudinal creepage,
calculated with W=W1 and M=3, are compared with the photoelastic
work of HAINES and OLLERTON [1]. In the upper left part of fig. 16,
the circular contact area is divided into an area of adhesion and an
area of slip, the separatrix being assumed to be the line T=S. The
distinction between Eg and Eh is quite sharp. Also shown is the
separatrix according to HAINES and OLLERTON. It is seen that the
lines are quite close. Also shown in fig. 16 is a comparison
between HAINES and OLLERTON's surface stress and our results. The
agreement is best for y=0, and worst for y=0.80. The value of P (see
(5.18)) is shown for y=0. It is seen that it rises sharply in the slip

126,




10
y=056
o
05 Ao
Haines
9 (o)
o]
x 0
— X
\ \k y=08 /
\y X P
15
= 0
y y
o\
X
0.75
y=08
050 <A 05
[e]
o
o)
0 0
— X

Fige. 16, A comparison with the photoelastic
results of HATNES and OLLERTON.
a/b=1, 0=0.5, n=x=0, £=0.90.

zone, and winds itself about zero in the adhesion zone.

In fig. 17, we show the division of the contact area in areas
of slip and adhesion according to the numerical theory, the strip
theory (KAIKER [2]), and the experimental evidence of JOHNSON 4],
which consists of a photograph of the track of a rubber ball rolling
over a sooted transparent plate (JOHNSON [4], fig.8b). The value of
the spin parameter X=1.20, and POISSON's ratio 0=0.50 (for, taking
the rubber ball as the upper body, we have that G*>>G?, o =0.503
hence, according to (2.10), G=2G+, 0=0.50, «k=0). The longitudinal
creepage ux=0, so that Fx=0, and Uy is chosen so that Fy also

vanishes: that is, we are in fig. 15 at the intersection of the line
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Fig. 17. The separatrix for combined lateral creepage and spin.
0=0.5, £,=0, X=1.20, n= -0.5T.
1: strip theory. 2: numerical theory.
Broken line: a photograph by JOHNSON,

X=1,20 (not shown) with the n-axis. The theoretical separatrix is
the line T=S, the degree M=3, the weight function W=W1. It is seen
that JOHNSON's contour is asymmetric with respect to the x-axis,
while our contour is symmetric, as it should be with ux=0, see
(L.26). This is attributed by JOHNSON to the fact that the soot is
swept into the adhesion area in the lower part of the figure, while

it is swept away from the adhesion area in the upper part.

5.32. Qualitative behaviour of the solution.

In the present section and its subsections, we will make some
observations on the qualitative behaviour of the solution in the
case of pure creepage (¢=0, sec. 5.321), pure spin [ux=uy=0, sec.

5.322), and arbitrary creepage and spin (sec. 5.323).
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5.321. Pure creepage.

In the case of f)ure creepage, the area of adhesion borders on
the leading edge of the contact area, and it is, according to the
numerical theory, approximately symmetric about the x-axis., In the
cases of purely longitudinal or purely lateral creepage, the form of
the area of adhesion is well predicted by the strip theory of KAIKER
[2], which is a generalization of the strip theory due to HAINES and
OLLERTON [1]. According to KAIKER [2], the separatrix is found by
shifting the trailing edge of the contact area parallel to itself

along the x-axis, see fig. 18, where the case of a circular contact

area area of

adhesion Ep

slip Eg

y

Fig. 18. Separatrix according to KAIKER [2] for pure creepage.

area is shown. So, in the theory of KAIKER [2], the area of adhesion
is symmetric about the x-axis when there is combined longitudinal and
lateral creepage, but no spin. When the total creepage increases, the
separatrix comes to lie further and further from the trailing edge,
until there is no area of adhesion left and gross sliding commences.
Adhesion areas of this type have been observed by HAINES-OLLERTON [1]
for pure longitudinal creepage, and by HAINES [2] for pure lateral
creepage.

The behaviour of the sbsolute value of the traction can be seen

from fig. 16. Going in the rolling direction along a line parallel to
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the x~axis, the tangential traction first increases according to
|(X,Y)|=uZ in the slip area, then falls below uZ near the separatrix,
and stays below uZ in the locked area. According to the strip theory
of HAINES and OLLERTON [1] and of KAIKER [2], the curve representing
the traction would have a vertical fangent at the separatrix.

The traction vectors are in general not parallel to each other,
In the case of pure longitudinal creepage, the traction direction
behaves qualitatively as sketched in fig. 19a. The division of the
contact area in areas of adhesion and slip is not shown, our
considerations are valid both for the area of slip and for the area
of adhesion. y is the angle between the traction and the x-axis. It
is seen that the angle y vanishes on the x~axis, since the traction
is mirror-symmetric about the x-axis, see (4.27). When the
longitudinal creepage changes sign, the direction of the traction is
reversed, that is, the arrows in fig. 19a are reversed. To give an
idea of the magnitude of y, we giv: some values for £=0.8, n=y=0,
a/b=1, 0=0.28. Then Y3 ==Y = 302 and y) = =Y, = 3%, For increasing
|y|, the absolute value of Yy increases. For increasing longitudinal
creepage |E|, |y| decreases. For increasing values of POISSON's
ratio o, |y| increases up to values of about 20° for 0=0.5. For

values near unity of the excentricity [e| of the contact ellipse,

a)
==Y, ==Y, A
B2
— X

- T l

T{va -y, P\ k
B B
—_— 3\/ 4
creepage y creepage >

Fig. 19. An impression of the direction of the traction for

a) longitudinal, b) lateral creepage, without spin.
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Iyl decreases. It should be remarked that the foremost points of fig.
19a lie in the area of adhesion or close to it, when |£|=0.8. Deeper
in the adhesion area, and for smaller values of ||, the traction
becomes much smaller than the COULOMB value, and its direction
according to the numerical method tends to be erratic. One should not
place undue reliance on the fact that the direction of (X',Y') is
erratic when [(X',Y')|<<1, since the error in the numerical method
may drown the information. We also meet this phenomenon later on.

In the case of pure lateral creepage (ux=¢=0), the traction
direction behaves qualitatively as sketched in fig. 19b. It is seen
from fig. 19b that on the x-axis the angle B=0, since according to
(4,26), the traction and slip are mirror anti-symmetric about the
x-axis, whenever v =0. Also, when under the conditions of fig. 19b
the lateral creepage changes sign, traction and slip are reversed.

If n=0.8, £=y=0, a/b=1, 0=0.28, then B.= -B3=7°, and B,= -8)=3°,

8|

increases for increasing |y|; |B| decreases for |e|+1, and for
increasing |n|. The foremost points of fig. 19b lie in the area of
adhesion or close to it when |n|=0.8. Deeper in the adhesion area,
and for smaller values of |n|, the traction becomes much smaller than
the COULOMB value, and its direction according to the numerical
theory tends to be erratic.

We finally observe that the maximum values of |y| and |8| found
here are of the same order of magnitude as the angle 6 of (k.46),
which is the maximum angle between slip and traction in the problem
of infinitesimal creepage and spin., The same values also occur in the
strip theory of KAIKER (2], fig. L.

We leave the discussion of the total force exerted on the lower

body to section 5.33.

5.322, Pure spin.

In the case of pure spin, the area of adhesion is symmetric
gbout the x-axis, in accordance with the symmetry relations (L4.26).
In fig. 20, we sketched the division of the contact area into areas
of slip and adhesion for different values of the spin parameter X.
The separatrix is assumed to be the line T=S. All three figures

correspond to a/b=1, 0=0,28, ux=uy=0. The adhesion areas are shown
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Fig. 20. a/e: Areas of adhesion (shown shaded) and slip for pure spin.

a/b=1, 0=0,28., f: Traction Y and slip Q on the x-axis for x=2.65.
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shaded. The trivial case =0 has not been sketched; the adhesion
area then covers the whole of the contact area (free rolling). In
fig. 20a, the case X=0.53 has been sketched. It is seen that slip
commences at the trailing edge of the contact area, but that the
x-axis lies entirely in the adhesion zone. For increasing values of
the spin, the areas of slip grow, while the x=axis remains in the
adhesion zone; the adhesion area becomes narrow in the y-direction
(see fig. 20b, x=1.24), and finally splits into two parts (fig.20c
X=1.95) . The island on the left is the adhesion area about the point
with X=Y=sx=sy=0. The traction vectors from a rotating field about
this adhesion area, see fig. 21. Both slip and traction have a large
gradient there in the numerical solution, see fig. 20f. With further
increasing spin, the adhesion area on the right of fig. 20c decreases
in sizej then it breaks up into small parts (fig. 20d, X=2.65), and
finally venishes (fig. 20e, X > 3). The island on the left remains,
retains the character outlined above, but moves inward toward the
centre of the contact area, where the spin pole of LUTZ [1,2,3] and
WERNITZ [1,2] is situated (see (4.93)). The behaviour of the solution
on the x-axis, upon which the islend lies, can be gathered from fig.
20f, in which is sketched the relative slip Q (see (5.18)) and the
distribution of the traction Y, both on the x-axis. The circle
represents the COULOMB value of the traction. It is seen that slip
and traction vanish at about the same point in the adhesion island
on the left. It is also seen that going in the rolling direction the
relative slip Q increases sharply with increasing x, attains a
maximum, and decreases again with a much smaller gradient. This
clearly shows the influence of the two small adhesion areas on the
right of fig. 20d. It should be observed, finally, that it is doubt-
ful whether the two small adhesion areas on the right of fig. 20c
actually exist. Indeed T > S, but the difference is small, and,
moreover, the largest contribution to T stems from the fact that the
angle between slip and traction is rather large (up to 14°). In fact,
for slightly different values of Y, n , and &, aberrations occur in
that region, in the sense that |(X,Y)|>uZ, and T > S. The occurrence
of the island on the left is also somewhat doubtful. It is entirely

possible that the tractions have a discontinuity there, and that the
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slip has there a simple zero.

In fig. 21, the traction distribution in the contact area is
shown for various values of the spin. Only half of the contact area
has been drawn. The traction distribution is given in the form of
curves of constant ratio between the resultant surface stress I(X,Y)}
and the COULOMB traction uZ in percents. These lines are symmetric
about the x-axis. The arrows represent the direction of the traction
exerted on the lower body; according to (4,26), the tangential
traction is mirror anti-symmetric about the x-axis, see fig. 19b.

It is seen from fig. 21 that the tractions form a rotating field
with somewhat varying centre of rotation. The spin pole of LUTZ and
WERNITZ lies in the centre of the contact area, but it is seen that
there is no point X=Y=0 inside the contact area when X=0.53
(fig. 21a), such a point enters the contact area, (fig. 21b, x=1.24),
and slowly moves towards the centre of the contact area with

increasing spin (fig. 21c, X=2.65).

5.323. Arbitrary creepage and spin.

The case of arbitrary creepage and spin lies between the cases
of the spin pole at infinity (pure creepage) and of the spin pole at
the center of the contact area (pure spin). An example is sketched
in fig. 22, in the manner of fig. 21, The determining parameters of
fig. 22 are: X=0.70, &=-n=0.50, a/b=1, 0=0.28, M=3, W=W,. The spin
pole of LUTZ and WERNITZ lies on the circle, and has the coordinates
(0.71a, 0.71a), where a is the radius of the contact circle. The
point X=Y=0 lies approximately at (0.25a, 0.502). Since the traction
is small near this point, it is not clearly defined. Also, when the
parameters £,n,Y get larger in absolute value in such a way that the
spin pole retains its position, the absolute value |(X,Y)| of the
traction has a minimum inside the contact area, but no zero. However,
the accuracy of the numerical method is not so that one can come to
a decision on the point whether there is a zero or not. It is seen
from fig. 22 that the traction again forms a rotating field with the
centre somewhere in the first quadrant x>0, y>0. In this quadrant,
the values of the traction are small, and, especially near the point

X=Y=0, the direction is erratic; this is possibly a case of the error
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b) x=124

c) x=265

Fig. 21. Traction distribution for various values of the spin.

a/b=1, 0=0.28, £=n=0,
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Fig. 22, Traction distribution for a case of combined creepege and

spin.
a/b=1, 0=0.28, X=v=0.7, a = =45°,

in the calculation drowning the information.

5.33. The total force transmitted to the lower body.

For fixed ratio of the axes a/b and fixed POISSON's ratio o, one
(can imagine surfaces of constant creepage U=/EE:;§ in the three-
dimensional (f f X]—space. The surfaces of constant creepage all
lie inside the cyllnder fi + f; = 1, or, equivalently, F2 + F§=u2N2
This cylinder represents the limiting case that £2+n2- w, see fig.
2ha,b,c. It was found that the surfaces v=constant form tubes in the
X-direction which lie inside each other, and which have a roughly
circular intersection with the planes X=constant, the radius of the

tube increasing as v increases. The radius decreases when the spin

136.




becomes larger, i.e. as |X| increases, see fig. 2la,b,c, In the limit
X+ » , the force is determined solely by the parameters c&/X, and
-cn/X, which are the coordinates of the spin pole, see (4.93). So
the "radius" of the tube is roughly determined by the quantity v/|x|,
as X > »,

It follows from the considerations of symmetry of sec. 4.2 that
the (x,fy)-plane is a plane of symmetry of the tubes, for when the
point (fx,fy,x) corresponds to (g,n), then (—fx,fy,x) corresponds to
(=g4n), see (4.23f). It follows from (L4.22e) that the tubes are
symmetric about the origin, for if the point (fx,fy,x) corresponds to
(E4n), then (—fx,-fy,-x) corresponds to (-£,-n). Hence we need for
the construction of the tubes only the pertinent information in the
quarter space fx > 0, X 2 0, When E=n=0, the tube degenerates into a
line in the [fy,x)-plane. This is the case of pure spin, which is
given in fig, 23 for four values of the parameter a/b, with POISSON's
ratio 0=0,28.

The total force transmitted to the lower body was calculated in
a great number of cases, with the degree M=3, the weight function
w=w1, and 0=0.28. First, we calculated the case of pure spin £=n=0
for a/b=2, 1, 0.5, 0.2. The results are shown in fig., 23. Then we
calculated fx and fy as functions of £ and n, for fixed values of
spin, POISSON's ratio, and ratio of the axes a/b. The values of X
were chosen so that we obtain the plane of pure creepage (x=0), then
two values of X before the pesk in fig. 23, one at the peak, and two
after., In fact, we calculated

0=0.28, a/b=2; x=0,3,1,2,33,7; variable £ and n.

0=0,28, a/b=1; X=0,%,1,2,5,10; variable £ and n.

0=0.28, a/b=0.5; X=0,1,2,3,5,10; variable & (5.29)
€

0=0.28, a/b=0.2; X=0,%,1,2,5,10; variable

and n.

and n.

The case X = «» has been treated in sec. 4.4, fig. 10 and 11.
The results of these calculations will be laid down in a report of
the Laboratorium voor Technische Mechanica of the Delft Technological
University. Some results of the calculations with X = constant are
given in fig. 24, all for a/b=1, 0=0.28.

We also attempted to calculate the case a/b=5, but here the
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Fig. 23. fy—x diagram for various values of a/b.
0=0.28, &=n=0.

numerical method failed to give results in a large portion of the
curve of pure spin, situated around the peak. Either the iteration
process (5.12) failed to converge, or it gave incorrect results, with
sberrations covering nearly the entire contact area, and with f}zc+ f?r
exceeding unity. By taking special care in the choice of the initial
12 , the trouble could be concentrated in a smaller position
of the curve of pure spin, but even so the solutions obtained showed

value T

many aberrations. We decided to drop the case altogether in view of
the formidable amount of machine time needed to obtain any results

at all, which would be of poor quality as well. Also, the case would
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Fig. 24ka. Lines of constant v and o as functions of f, and fy,

a/b=1, 0=0,28, X=0.

seem to have little practical interest: it is the case of a contact
area which is narrow in the lateral direction, an extreme case of
which is a circular knife rolling over a plane. The trouble in the
case a/b=5 was already foreshadowed in the calculations of the case
a/b=2, where near the pesk many aberrations T > S, [(X,Y)|[>uz
occurred. In pure spin also, the resulting values near the peak of
fy for a/b=2 were somewhat erratic, which is the reason why that
portion of the curve of fy for a/b=2 is given in fig. 23 with a
broken line.

In fig. 23 we show the case of pure spin, for different values
of a/b. The curve for a/b=0.5 is shown only partially; it goes
through the origin in the same way as the other curves, and on the

right the curve a/b= 0.5 is very close to the curve a/b=2. In fact,
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the values of fy lie slightly higher in the case a/b=0.,5, but not
significantly so. It is seen that the curves of fy as functions of X
increase from zero to a maximum, then decrease again, apprc.ching
zero asymptotically. Two competing mechanisms are at work. For small
values of |x|, the effective spin pole lies far from the origin, see
fig. 21. However, the area of adhesion is large, which keeps the mean
absolute value of the traction down as a consequence of elastic
deformation. As IXI increases, the area of adhesion becomes smaller,
and the mean absolute value of the tractions grows. At the same time,
however, the effective spin pole moves towards the origin.
Consequently, the direction of the traction becomes diversified,
which tends to diminish the total force. Especially for small values
of a/h, the effects appear to keep each other in check for a large
range of values of X around the maximum, for the maximum is very
flat,

It is seen from fig. 23, that the value of the maximum decreases
when a/b decreases, that is, when the ellipse becomes narrower in the
rolling direction. If we assume tentatively that the effective spin
pole lies in the point (-aa,0), where o is some function of X
independent of the ratio a/b, it is clear that with decreasing a/b
the area occupied by points with a large x-component of the traction
increases, while in the determination of the total force the x-
components cancel each other, owing to the mirror antisymmetry of the
traction.

It is also seen from fig. 23 that the value of X at which the
maximum is reached, first increases with decreasing a/b, reaches a
maximum at a/b=x0.5, when 0=0.28, and then decreases again., This is
partially because for the same value of the spin parameter ¢c, a
slender ellipse has a larger area of slip than a non-slender ellipse,
so that the effect of the elastic deformation described above, dies
out for a smaller value of ¢c.

We now turn our attention to the figures 24, They represent the
case 0=0.28, a/b=1, In the three-dimensional [fx,fy,x)-space
introduced above, they are planes of constant X. In fig. 24a, X = 0
(pure creepage). Fig. 2Ub represents a value of X near the peak of

fig. 23 (x = 2). Fig. 2Lc represents a value of X beyond the peak,
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for which fy(ux=0, uy=0)z% max fy: X = 5, In the figures, the
X
tangentials are lines of constant creepage v = VE2+n2 = constant.

The radials are lines of constant a, where
E = veosa, n = usina, v = VE%+n?, o in degrees, (5430)

in accordance with (5.16).

In fig. 2ba, only the first quadrant is shown because when X =0,
there is symmetry about both the £ and fy axes. It is seen that the
lines o = 30° and o = 60° are nearly straight, except at the end
v + » , where they make a sharp turn. This means that the ratio fx/fy
depends principally on the ratio £/n for values of v up to 1.7. In
fact,

30°, 0 < v < 1.7;] a/b=1

-1 [¢)
25° < tan (f Vs ) < 27.6" when o
y * (5-318.)

53° < ta.n-1(fy,/fx] < 56.7° when a = 60°, 0 < v < 1.7.| 0=0.28

According to the theory of JOHNSON and VERMEULEN [5], these angles
are constant, and

25.8° when a = 300, v > 03

tan™’ (fy/ £)

tan-1(fy/fx] 55,4° when a = 600, v > 03 (5.31b)

a/b=1, 0=0.28.

In figs. 24b and 24c, only the first and fourth quadrents are
shown, since the fy-axis is a line of symmetry. The curves v=constant
are egg-shaped, with the flat end up. In fig. 24b (X = 2.0), the
curves for a = -30° and a = -60° show some waviness, It is not at all
certain whether this waviness actually occurs in practice: it is
quite possible that it is due to errors in the numerical calculation.
It is seen from fig. 24c that the waviness is completely gone for
X =5, In fig. 24c, the effect of the diminishing radius of the tube

v=constant with increasing X is clearly shown,
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6. Conclusion.

In this final chapter we will review in 6.1 the results which
have been achieved in this thesis, and in 6.2 we will make some

observations on further research.

6.1, Results achieved.

In this thesis, we confine ourselves to contact problems
between purely elastic bodies which can be approximated by half-
spaces, while the contact area is elliptic in form. The method for
the solution of contact problems with friction which is discussed in
this thesis is, strictly speaking, only valid when the elastic
constants of the bodies are the same, or when both bodies are incom-
pressible. The method gives an approximation in case that these
conditions are not satisfied. A crude estimate of the error of this
approximation is given in sec. 2.1,

In chapters 2 and 3, we discuss the general theory. It was shown
in 2,2 that a generalized version of GALIN's theorem (GALIN [1], ch.
2, sec. 8) can be established without recourse to LAME's ellipsoidal
harmonics. As a consequence of this, DOVNOROVICH's method [1] for the
calculation of contact problems without friction on the basis of
GALIN's theorem could be adapted in 2.3 to contact problems in which
there are also frictional forces. DOVNOROVICH's method was generalized
in 2,4 sqq. in the sense that the connection between tractions and
displacement differences was given explicitly for any degree M of the
determining polynomials. In 3.1, the theory is worked out for the
case without traction singularity at the edge of the contact area.
DOVNOROVICH also considered this problem, but he did not arrive at the
simple relationship (3.15). The examples treated in 3.2 sqq. are all
well-known.

In chapters 4 and 5, we discuss the problem of contact in steady
rolling. The boundary conditions are well established, see e.g. DO
PATER [1] and KAIKER [1]; they are set up in section L.1. In 4.2,, we
derive a number of symmetry relations between the surface tractions
and the slip on the one hand, and creepage and spin on the other

hand. These relations lead to a number of symmetry properties of the
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total force and the total torsional moment as functions of creepage
and spin. It is also found that the determining parameters of the
problem are a/b, £, n, X, and 0. We have not found the symmetry
relations in this form in the literature.

The limiting case of infinitesimal creepage and spin (sec. 4.3
sqq.) was treated before in the literature, but we generalized it to
elliptic contact areas. KAIKER's proof (see [1], pe 168-169) that no
slip takes place at the leading edge of the contact area when creepage
and spin are infinitesimal, and which is valid for circular contact
areas and vanishing POISSON's ratio, was extended in sec. 4.31 to
elliptic contact areas and arbitrary POISSON's ratio. The creepage
and spin coefficients Ci' (p.91 to 93) coincided with those obtained
in KAIKER [1], pg. 174, when the contact area is circular. It was
found in KAIKER [1] that the creepage and spin coefficients agree
with JOHNSON's experiments [1,2,3], when the contact area is a
circle. In a comparison with the experiments of JOHNSON and

VERMEULEN [5], it was found that C,, agrees well with the experiment

22
when the contact area is an ellipse. The curious and unexplained
phenomenon that 023 = -032, which was noted in KAIKER [f], occurred

also with elliptic contact areas.

The theory of LUTZ [1,2,3] and WERNITZ [1,2] for very large
creepage and spin, which is confined to the case that ux=0 or v_=0
when the contact area is an ellipse, was generalized in sec., L.k to
the case that v # 0, Uy # 0.

The numerical theory of ch. 5 for steady rolling with arbitrary
creepage and spin, which consists of the minimalization of a certain
integral, anpeared to work reasonably well for the degree M=3, and
the weight function W=W1. The error in the total force is at most
agbout 10%, see fig. 15. The error in the traction distribution is
larger, see fig. 16, A qualitative description of the tractions in
steady rolling is given in sec. 5.32 sqq. The calculations were
carried out for a large number of the defining parameters a/b,
£, n, X (see (5.29)); POISSON's ratio was kept at 0=0.28 throughout.
The calculations provéd to be exceedingly lengthy, so that in our
opinion the main significance of the theory of ch. 5 lies in the
possibility that existing approximate theories (JOHNSON [1,2,3,4,5],
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wrz [1,2,3] - WERNITZ [1,2], DE PATER [1] - KAIKER (sec. 4.3 sqaq.),
HAINES - OLLERTON [1], KAIKER [2]) or theories that will be developed

yet can be tested with the numerical theory.

6.2, Further research.

It would be of interest to have a deeper insight in the inter-
action between the normal and the tangential problem, when k # O.

Such an interest is mainly academic in the case of the influence
of the tangential traction on the normal problem., An interesting
aspect of such a theory is the change of the contact area as a
consequence of tangential tractions. A simple, non-trivial problem of
this sort is the problem of gross slidirg in Hertzian contact. In

that case, the boundary conditions are

w o= -sz-By2 + a,

- uE, T =0 in E, (6.1)
w > -Ax?~By? + a,
XeY=%=0 on z = 0, outside E, (6.2)
Displacements and stresses vanish at infinity. (6.3)

In the rotationally symmetric case of pure spin about the z-axis,

L= = —E%Z—; s Y =+ U:Z x the normal problem is unaffected by the
Vx +y VXe+y

tangential tractions, see SNEDDON [1], ch. V, sec. 31.

The case of the normal problem influencing the tangential
problem is of greater practical interest, especially in the case of
e small conefficient of friction w. This would be an investigation
into the second approximation of sec. 2.1. This has already been
carried out for the two-dimensional case of two cylinders rolling
freely over each other, see JOHNSON [ﬁ]. In the general three-
dimensional case of rolling contact, the treatment would differ only

slightly from the one given in chapter 5. The only new thing needed

is
H
du_ _ [ou v _ [av (6.1)
ox 3X|x=y=0® 0x  |9x]X=Y=0 :

which can be given as a surface integral derived from (2.11a,b), with

the Hertzian normal pressure
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Z(x'yy') = G £y, V1=(x"/a)*=(y'/p)%. (6.5)

By means of the substitutions of the fundamental lemma of sec. 2.2,
the double integral derived from (2.11) can be reduced to a single
integral with periodic continuous integrand which is integrated over
the period. So the quantities (6.4) are brought in a numerically

accessible form. The relative slip is then given by (4.15c):
oul_ ou du
x = W +[3_X-]_ U [3X]X=Y=o : [3X]z=o '
oV oV oV
u_+¢x +[—T(]= v _+ox + | + | H
A A T [3x]x=y=o [ax]z=o

the only difference with the theory of ch., 5 is, that a known

2]
|

(6.6)

0
]

function is added to S, and sy at each point.

An analytical investigation into JOHNSON's problem of free
rolling is also feasible in the case of a circular contact area. The
problem is:

Determine Uos Uy and ¢ so, that
du du
- jood + |
Ut [3X]X=Y=o [ax]z=o

=y +ex + X + ﬂ} = 0 in E; (6.7)
y y 90X [x=y=0 3X |7=0
No singularity at the edge of the contact area;

Z="fyGC V1-x2/82-y2 /a2,

This investigation could be based on potential theory, using the
methods developed in KAIKER [1].

As a final project we mention the case of instationary rolling:

0 in E,

S
X

S

it is perhaps possible that the theory of ch. 5 can be adapted to

some problems of unsteady rolliné.
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Notations.

: oo W oo e
Underlined symbols designate vectors. A superscript indicates that

the quantity belongs to the lower body. A superscript” indicates

that the quantity belongs to the upper body. We list only symbols

the meaning of which extends beyond the section where they are

defined.
Symbol Meaning Definition, etc.
a In sec. 1.1: half width of contact | Fig. 2
area
Elsewhere: semi-axis of contact (1.5a)
ellipse in x-direction
& Coefficient of u-polynomial (1.10)
B (No vector) A complete elliptic (3.17)
integral
b In sec. 1.1: coordinate of trailing | Fig. 2
edge of locked area
Elsewhere: semi-axis of contact (1.5a)
ellipse in y-direction
b Coefficient of v-polynomial (1.10)
Cij In sec. 4.32: creepage coefficient | (4.86), gig. 8
able 3
c (No vector) A complete elliptic (3.17), Table 1
integral
c = /ab, geometric mean of semi-axes | (3.50)
of contact ellipse
L. Coefficient of w-polynomial (1.10)
D (No vector) A complete elliptic (3.17), Table 1
integral
Integer with special meaning (2.67)
dpq Coefficient of X'-polynomial (1.9), (4.63)
E (Elliptic) contact area (1.5a)
Eg Slip area

Area of adhesion, also called

locked area
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Symbol

Meaning

Definition, etc.

g13Pa
mn
h32pte,2qtw
2mt+e ,2n+w

&

FrPa
mn
Fh;2p+e,2qfw
2m+e ,2n+w

23
(2,02,

RS

I(d,i,j.e)
J(x,y)
J(a,i,g,e)
K

.4

152,

A certain integral

Expressed in complete elliptic
integrals

(No vector) Complete elliptic
integral of the 2nd kind
Signed excentricity of contact
ellipse

Coefficient of Y'-polynomial

(x,y) components of total
tangential force on lower body.
See also (fx,fy)

Coefficients derived from En;ig

Expressed in complete elliptic
integrals

In 5.22, 5.23: integrand of I
Components of dimensionless
total force exerted on lower
body

Modulus of rigidity: combined,
upper body, lower body
=min(a/b,b/a). Ratio of axes of
contact ellipse

In ch. 5: an integral to be
minimized

A complete elliptic integral
"Square root singularity"

A complete elliptic integral
Integer connected with the
degree: M=2K+v

(lo vector) Complete elliptic
integral of the 1st kind
Integer; also: major semi-axis

of contact ellipse max(a,b)

(2.35),(2.148),(2.53)

(2:73),(2.7%), (3.22)

(3.17), Table 2

(2.63), Table 2

(1.9),(4.63),(5.1)
(4.24)

(3,4),(3.15)
(3.12),(3.13),(3.22)

sec., 5.22

(4.19), Figs. 3, 8,
10, 11, 13, 14, 15,
23, 24

(2.4),(2.10)

(2.63), Table 2
(5.9)
(2.74),(3.14),(3.21)
(2.21a)
(3.13),(3.14),(3.21)

(2.54)

(3.17), Table 2




Symbol

Meaning

Definition, etc.

Le]

+ + - -
ReoRysRsR)

Degree of traction polynomial
Total moment about the z~axis
on lower body

Dimensionless total moment
about z-axis

Total normal force

Origin of cartesian coordinate
system, centre of contact area.
Also: order of magnitude symbol
Proportional to x-component of
relative slip

In ch. 5 only: number of
degrees of freedom
Proportional to y-component

of relative slip

In ch. 5 only: summation limit
Distance between two points on
the surface

Radii of curvature of bodies in
X2, &z plane

Distance from origin to a point
of the plane z=0 (except in
sec. 2.1)

Positive definite function of
relative slip

Minor semi-axis of contact
ellipse min(a,b)

Relative slip (vector end
components) of upper body

over lower

Positive definite function of
traction difference

Time

(1.9)
(4,2k)

(4.19)

(3.50)

(5.1)
(2.9)

sec. 3.221

(2.33)

(5.6)

(2.63)

(4.15)
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Meaning

Definition, etc.

(X, %.2)

(X,Y)

> o o
(x,¥,2)
x-direction
y-direction

z-direction

[N

€y’

15L,

Displacement differences,

except in 2,41 and 4.31

Elastic displacement of lower/
upper body

Magnitude of rolling velocity,
except in sec. 5.23

Weight function

A special weight function

Components of unit vector in
the direction of the slip
(x,y,2) components of surface
tractions on lower body
Tangential traction components
Traction polynomials

Cartesian coordinate system
(Nearly the) rolling direction
Lateral direction

Inner normal on lower body at
centre of contact area

Normal pressure distribution,
mostly Hertzian

Standard polynomial
x=-derivative of Zj

Angle between creepage and
x-axis in degrees

A small positive number with
several meanings

Parity numbers (0 or 1);
gte'=

Lateral creepage parameter
An elastic constant

(neglected in the present work)

Coefficient of friction, assumed

(1.4), (1.6p)

(4.9),(4.10)

(5.8)
(5.14)

(1.8a)

(4.%0),(4.63),(5.5)
sec. 2

(4.10)

(1.5b)

(5.1)
(5.2)
(4.104),(5.30)

(2.38)3(4.10)3(5.12¢)

(2.54%)

(4.20)
(2.10)




Symbol Meaning Definition, etec.

to be constant

v,V Parity numbers (0 or 1); v+v'=1 |(2.54)
Longitudinal creepage parameter |(4.20)

p Characteristic length of the (3.38)
bedies

o,c+,0- Poisson's ratio: combined, upper|(2.4),(2.10)
body, lower body

L Coefficients of traction (5.1)
polynomials
Creepage. In ch. 5: {5.16),(5.30)

_qu,uy] Creepage vector, longitudinal (4.11),(4.1ka)
and lateral creepage

y Spin (4.12),(4.1ka)

X Spin parameter (4.20)

wyw' Parity numbers (0 or 1); wtw'=1 [(2.54)
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STELLINGEN

I

Het door KIRCHOFF gegeven bewijs van de ondubbelzinnigheid van
het verplaatsings- en spanningsveld in elastische lichamen is niet
geldig voor contactproblemen. De ondubbelzinnigheidsstelling kan
worden uitgebreid tot het geval van wrijvingsloos contact, en het
blijkt dat het elastische veld onafhankelijk is van de voorgeschiede-
nis van de uiteindelijke belasting en de configuratie. In het geval
van contactproblemen met droge wrijving met constante wrijvingsco&f-
ficiént, waarbij de elastische lichamen gedurende de gehele belas-
tingstijd zowel meetkundig als elastisch elkaars spiegelbeeld zijn
ten opzichte van een plat vlak door de contactgebieden, is de on-
dubbelzinnigheid van het elastische veld eveneens gewsarborgd, echter
in afhankelijkheid van de geschiedenis van de uitwendige belasting
en de configuratie.

A.E.H. LOVE, A treatise on the mathematical theory of elasticity,
Cambridge 1927, par. 118,

1T

Voor het oplossen van halfruimtecontactproblemen met cirkelvor-
mig contactvlak kan men de elastische veldgrootheden uitdrukken in
drie potentiaalfuncties. Deze potentiaalfuncties kunnen worden be-
paald met behulp van de methode van splitsing der variabelen in een

afgeplat spheroidaal codrdinatenstelsel

x+iy = a /(1-0?) (1+n2 elw, z = awn,

=1 2wz<1,0<n<eo, 02y <2,

In de halfruimte w > O hebben de basispotentialen, waarvan de ge-

vraagde potentialen lineaire combinaties zijn, de vorm
K:(w)Qﬁ(in)elmw, m,n: positief geheel.

Hierin is Qﬁ(t) de geassocierde legendrefunctie van de tweede soort.
Kﬁ(w) is de geassociéerde legendrefunctie van de eerste soort, waar-
bij men kan kiezen tussen Pﬁ(w) (positieve orde) en P-ﬁ(w) (negatie-

ve orde).




Het is voordelig de functies met negatieve orde te gebruiken.
J.J. KAIKER, The transmission of force and couple between two
elastically similar rolling spheres, I, II, Proc.Kon.Ned.Akad.Wet.
Ser. B, 1964, p. 135-16L,
ITT

Men last twee elastische lichamen snel over elkaar glijden. Zij
zijn zodanig gevormd dat bij afwezigheid van wrijving het contact-
vlak cirkelvormig zou zijn. Wrijving is echter aanwezig, met co&ffi-
ciént p, zodat de tangenti&le spanning wordt gegeven door Y=0, X=uZ.
De elastische constanten van de lichamen zijn ongelijk, hetgeen tot
uitdrukking wordt gebracht door een van nul verschillende gecombi-
neerde elasticiteitsconstante k; zie vgl. (2.10) van dit proef-
schrift., Het blijkt dat het probleem wordt beheerst door een con-~
stente q=xku/(1-0), waarin ¢ het gecombineerde poissongetal is. Men
kan de oplossing ontwikkelen naar machten van q. De term evenredig
met q° levert de hertzverdeling. De term evenredig met q! leidt tot
een verschuiving van het contactvlak evenwijdig aan de glijdrichting.
De term evenredig met g2 leidt tot verandering van de indringdiepte
en maskt dat het contactvlak elliptisch wordt, terwijl termen even-
redig met hogere machten van q resulteren in niet-elliptische con-
tactvlakken.,

Iv

Uit een onderzoek naar het gedrag van spanning en slip in het
contactvlak ven twee niet-stationair rollende elastisch symmetrische
cylinders met evenwijdige assen is het volgende gebleken:

1. De grens tussen hecht- en glijdgebied kan discontinu verspringen;
2., Het hechtgebied kan zich splitsen in twee of meer delenj
3. De overgangsverschijnselen zijn vrijwel uitgestorven als de bij
constante totale kracht afgelegde rolweg 1 & 2 contactbreedten
bedraagt.
v

In een ongesmeerd, langzaam draaiend hoekcontactlager zonder
kooi, waarbij voor elk van de kogels het contactvlak met de buiten-
ring congruent is met het contactvlak met de binnenring, rollen de

kogels met zuivere spin.

2.
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VI

Door HUANG wordt met behulp van een perturbatiemethode de perio-
dieke beweging van twee massa's behandeld, waarvan de eerste ener-
zijds aan een vaste wand is gekoppeld door middel van een lineaire
veer, en anderzijds met de tweede massa is verbonden door middel van
een niet-lineaire veer met een karakteristiek met een kleine derde-
graadsterm. Een parallel met de niet-lineaire veer geschakelde kleine
viskeuze demping is al of niet aanwezig. De tweede massa wordt geé&x-
citeerd door een kleine periodieke kracht waarvan de frequentie in
de buurt van een eigenfrequentie van het gelineariseerde twee-
massasysteem ligt. Zowel de oplossing van de nulde-orde vergelijking
als de behandeling van de seculiere termen worden door HUANG onjuist
gegeven., Dit blijkt te leiden tot onjuiste resultaten.

T.C. HUANG, Harmonic oscillations of non-linear two-degree-of-
freedom systems, J.Appl.Mech. 22 (1955) p. 107-110.

VII

Door Mevr. C.M. KALKER-KATKMAN is het probleem behandeld van
een cylinder waarin warmte wordt ontwikkeld en waarvan het oppervlak
wordt gekoeld met uitzondering van een klein cirkelvormig gebiedje.
De oplossing wordt gevonden door op de temperatuur die uit de koeling
van het gehele oppervlak resultedrt, een stoortemperatuur te super-
poneren, waarmee de onderbreking van de koeling in rekening wordt
gebracht. De stoortemperatuur werd berekend door de cylinder te ver-
vangen door een halfruimte. Deze benadering nu is slechts bruikbaar
indien de koelingsco&fficiént groot is,

C.M. KAIKER, The influence of local absence of cooling on the
cladding temperature of a fuel rod, Nuclear Eng. Des. 3(1966)

p. 1-10.
VIII

In een kernreactor waar de koeling op zodanige wijze plaats
vindt dat
1° een volmaskt warmtecontact heerst tussen splijtstof en koelmid-
del;

2° ae temperatuur in een doorsnede loodrecht op de bewegingsrichting

3.

-




van het koelmiddel constant kan worden genomen;
3° de warmtegeleiding in de bewegingsrichting kan worden verwaar-

loosd,
is het temperatuursverloop bij een tijdsafhankelijke koelmiddelsnel-
heid gelijk aan het temperatuursverloop bij een constante koelmiddel-
snelheid, doch met een andere, tijdsafhankelijke, warmteproduktie in
de splijtstaaf.

C.F. BONILIA et al., Formal heat transfer solutions, Nucl. Sci.

Eng. 9(1961)3, p. 323-331,

IX

Het verdient aanbeveling de toelichting op de wet tot regeling
van het voortgezet onderwijs zodanig te wijzigen, dat de mogelijkheid
om eindexamen te doen in een andere moderne taal dan &&n der drie
talen Frans, Duits of Engels - op zichzelf een wenselijkheid - on-
dubbelzinnig blijkt.

Wet op het voortgezet onderwijs, Tjeenk Willink 1962, art. 29

en 12.2°,

Ontwerp van wet tot regeling van het voortgezet onderwijs, deel

5, overgangswet W.V.0., Staatsuitgeverij 1966, p. T8.




