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Abstract

A brief review of some publications on computation of incompressible tur-
bulent flow in complex geometries is given. A 2D finite volume method for
the calculation of turbulent flow in general curvilinear coordinates is described.
This method is based on a staggered grid arrangement and the contravariant
flux components are chosen as primitive variables. Turbulence is modeled by
the standard k-e model with wall functions. Applications of this method to a
variety of flows are presented. The results of computations are compared with

experimental data and other numerical solutions and are found to be satisfac-
tory.

1 Introduction

Solving incompressible turbulent flows using a boundary-fitted coordinate system is
an important technique in CFD. It permits an easy and accurate implementation of
boundary conditions and makes the computation of flows in complex geometries pos-
sible. For this purpose two different approaches can be adopted. The first approach
is a complete transformation of the Navier-Stokes equations to general coordinates.
Such a coordinate-invariant formulation contains many geometric quantities and
thus leads to more work and storage. Moreover, the equations involve Christoffel
symbols which may lead to inaccuracies on non-smooth grids. Another approach is
a partial transformation, in which only the independent variables are transformed
while retaining the velocity components as Cartesian components. As a result, the
governing equations have a strong conservation form which has a much simpler
structure and thus simplifies programming of codes.

The choice of the two approaches mentioned above depends on a grid arrange-
ment: staggered versus colocated. On staggered grids one may choose Cartesian
velocity components as unknowns in the Navier-Stokes equations, because of sim-
plicity. But these velocity components, in general, are not perpendicular to grid
lines. Therefore, this approach may lead to unstable discretization. Hence, the
choice of grid-oriented velocity components as dependent variables is preferable. On
colocated grids Cartesian velocity components as primitive variables in the momen-
tum equations are satisfactory.

In order to compute turbulent flows a turbulence model has to be chosen. Many
investigators adopt isotropic eddy-viscosity formulations, of which a k-¢ model is the



most prominent. This model consists of two transport equations for the turbulent
kinetic energy k and its dissipation rate e. Both equations contain a quantity Py
called the production rate of turbulent energy. In the coordinate-invariant approach
this quantity contains Christoffel symbols (in 2D eight different Christoffel symbols
occur). Hence, it seems attractive to implement the k-¢ model with the Cartesian
approach.

In the light of the above observations, the colocated /Cartesian approach for solv-
ing the Reynolds-averaged Navier-Stokes equations with the k-¢ model has become
very popular and has been widely used over the last 15 years [Habib and Whitelaw,
1982], [Rhie and Chow, 1983], [Perié, 1985], [Chen and Patel, 1989], [Deng, 1989],
[Piquet and Queutey, 1990], [Lien and Leschziner, 1991], [Cho and Fletcher, 1991],
[Melaaen, 1991], [Coelho and Pereira, 1992), [Zhu and Rodi, 1992], [Xu et al., 1993],
[Rolfes et al., 1993] and [Issa and Oliveira, 1994].

Within the colocated approach the pseudo-compressibility method can also be
used. This has been done e.g. in [Kwak et al., 1986] and [V. Michelassi and F.
Martelli, 1990]. The former used an algebraic eddy-viscosity model while the lat-
ter used the k-¢ model. The main disadvantage of this method is that for time-
dependent flow problems it is difficult to obtain accurate mass conservation.

Although the colocated approach is very popular, an important disadvantage of
this approach is that there are special measures required to obtain a stable discretiza-
tion (for example the Rhie and Chow interpolation to avoid decoupling between
pressure and velocity).

Staggered grid arrangement has important advantages for incompressible flow
computations, because this arrangement avoids non-physical pressure oscillations.
Some publications discretizing the Reynolds-averaged Navier-Stokes equations for
staggered grids with Cartesian velocity components as primitive variables including
the k-¢ model in general coordinates are [Rapley, 1985], [Braaten and Shyy, 1986],
[Yung et al., 1989] and [Chen et al., 1990]. It should be recognized that this approach
may give rise to unstable discretizations. Following Chen et al. (1990), the more
common way to avoid this, is to choose the coordinate system such that the angle
between the velocity components and the grid lines is not too large. However, for
special domains it is very difficult to achieve this, especially in 3D.

Discretizations for staggered grids with grid-oriented velocity components as un-
knowns with the k- model are presented in [Pope, 1978], [Rastogi, 1984], [Demirdzic
et al., 1987], [Stern et al., 1988, [Majumdar and Rodi, 1989] and [Koshizuka and Oka,
1991]. Stern et al. (1988) have formulated the governing equations in vector no-
tation which has the advantage that Christoffel symbols do not occur explicitly.
Rastogi (1984) and Majumdar et al. (1989) use contravariant velocity components
to solve the Navier-Stokes equations, while Pope (1978), Demirdzic et al. (1987)
and Koshizuka et al. (1991) employ contravariant physical velocity components as
unknowns.

In [Mynett et al., 1991], [Wesseling et al., 1992] and [Segal et al., 1992] a
coordinate-invariant discretization of the incompressible Navier-Stokes equations on
a general staggered grid has been developed. Standard tensor notation has been
used. As a consequence, the formulation contains Christoffel symbols. In spite
of that, discretization accuracy can be maintained if certain rules concerning the



approximation of the geometric quantities are followed and the contravariant flux
components are chosen as primitive variables, and the grid is not too non-smooth.
Good results are obtained for 2D laminar flows on fairly smooth grids.

In this paper a finite volume method for turbulent flow predictions on staggered
grids in complex geometries employing the contravariant flux components as depen-
dent variables is presented. Turbulence is modeled by the standard high-Re k-¢
model with wall functions. The discretization incorporates central differences for
the momentum equations and hybrid central/upwind differences for the turbulence
equations. Accurate approximation of production of turbulent energy (defined in
(2.13)) is obtained. The method is applied to some complex 2D turbulent recircu-
lating flows, namely driven cavity flow, flow over a backward facing step, constricted
tube flow and flow through an U-bend.

2 Equations governing incompressible turbulent flows
in general coordinates

In order to formulate the equations governing turbulent flow in general coordinates,
tensor notation will be used; for an introduction see [Aris, 1962].
The physical domain with curved boundaries Q is transformed to a rectangle G
with the mapping
T:z=z2(f), z€N6€CG (2.1)

Here, x are Cartesian coordinates and ¢ are boundary conforming curvilinear coordi-
nates. The mapping is assumed to be regular, i.e. the Jacobian of the transformation
does not vanish. Covariant base vectors a(,), contravariant base vectors a(®), and
the covariant and contravariant metric tensors gos and g*# are defined as

oz gt~ o o
a(e) = jge 2@ = 'a%’ Gop = 6y agg), 00 =al®.a®  (22)

The square root of the determinant of the covariant metric tensor, denoted by /g,
equals the Jacobian of the transformation. The following formulae for covariant
derivatives of tensors of rank zero, one and two, respectively, are used in this paper:
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is the Christoffel symbol of the second kind. The summation convention holds for
Greek indices.

Turbulent flow is governed by the continuity equation and the Reynolds-averaged
Navier-Stokes equations. The Reynolds stresses are related to the mean rates of
strain through the isotropic eddy-viscosity »4, which is calculated by the standard
high-Re k-¢ model [Launder and Spalding, 1974]. The tensor formulation of these
equations is given by

Us =0 (2.8)
o« a7 af avyrrB Byrra = p©
S+ (UTUP) 4 (g7p) = (v + g™ 05 + 471U = (29)
.2
l/t=CM'l:; (210)
0k
— o Z9%Pk 5) o = Pr — 2.11
57 (UK) 0= (Zghg) o= Pi—e (2.11)
0
ai + (U%€) 0 — (VtgaﬁE,ﬁ)'C,,:%(Cslpk—CEQE) (2.12)

where U? is the contravariant mean velocity component, p is the pressure, v is
the kinematic viscosity, F'® is an external force per unit volume, k is the turbulent
kinetic energy, ¢ is the turbulent energy dissipation rate and Py is the production of
turbulent energy, given by

Pe = 1igas(9°"UE + g2 U2V (2.13)

Finally, ¢, cc1, ce2, 0k and o, are dimensionless constants which, respectively, are
taken to be 0.09, 1.44, 1.92, 1.0 and 1.3. The values of these constants are recom-
mended in [Launder and Spalding, 1974].

Specification of the boundary conditions is straightforward, except in near-wall
regions where wall functions are adopted to avoid integration through the viscous

sublayer and to obtain log-layer solutions [Launder and Spalding, 1974]. These wall
functions are given by:
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Here, 7, is the wall shear stress, Y is the distance perpendicular to the wall, & is
the Von Kérman constant (~ 0.4) and E is a roughness parameter, approximately
equal to 9.0 for a smooth wall. The quantity w ¢ denotes the tangential velocity
along the wall and is given by

Jta
u-t= U% t=1lor2 2.18
v/ gt ( )
Finally, the flux of turbulent energy through the wall is set to zero and the value of
€ at the first grid point away from the wall is determined from
Cﬁ/ 413/2

£ = —':}7— (2.19)

3 Discretization of the governing equations

3.1 Invariant finite volume discretization

In discretizing the governing equations (2.8)-(2.12), the following requirements should
be met for accuracy reasons:

1. The geometric identity a(a)df‘a = 0 should be satisfied after discretization.
B

2. When representing a constant velocity field w in terms of its contravariant
components U, and recomputing « from U?, the original vector field u should
be recovered exactly.

The first requirement imposes rules on the approximation of geometric quantities.
The second requirement can be met if the flux components V¢ = ,/gU*? are chosen as
unknowns. More details can be found in [Mynett et al., 1991], [Wesseling et al., 1992]
and [Segal et al., 1992].

A finite volume method is used to discretize the governing equations on a stag-
gered grid in the computational rectangle G. In G we choose a uniform grid, choosing
the mapping @ = x(£) such that the mesh-size §£% = 1. Figure 3.1 shows the loca-
tions of the points for the velocities U and pressure p in the grid. The turbulence
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Figure 3.1: Arrangement of the unknowns for a staggered grid

quantities k£ and € are evaluated at pressure points. For brevity the momentum and
k-¢ equations are written in the following form:
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where
T = UUP + ¢*Fp - (v + v)(6*U% + ¢7'U3) (3.2)
and
o 6¢
Q,a = Sd’_—é? (33)
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Q% =U%— ; 9?45 (3.4)

Here, ¢ = k or £ and S represents the nonlinear source terms. For convenience we
introduce the local cell coordinates given by Figure 3.2.

2+ + +

! H

0 4+ o 4 O +

1 ul

2+ + +
-2 -1 0 1 2

Figure 3.2: Local cell coordinates

Discretization of the continuity equation is obtained by integration over a finite
volume Q with center (0,0), using (2.5):

a0 - [ VIV a0 (10 21(01) _
/QU,adQ_/Q e de? ~ V(L 1V =0 (3.5)

The momentum equation (3.1) is discretized in space as follows, taking for ex-
ample a U!-cell with center at (1,0), using (2.6):

/ T840
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Integration of the momentum equation with & = 2 over a UZ2-cell with center (0,1)
is done similarly.

Using (2.5), the transport equation (3.3) is integrated over a pressure cell with
center (0,0) which yields

[ @%de = vaQH (L0 + vaQUIRR, (3.7)
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The right-hand sides of (3.1) and (3.3) are integrated using midpoint rules:

oUe o OoU*
/Q(ch__ a7 )sz\/.E(k,z)(F ot Nk (3.8)

and
09 0
[86= 300 = o055 = 50l00 (3.9)

with (k,!) = (1,0)if a =1 or (k,1)=(0,1) if a = 2.

The discretization is completed by substituting (3.2) in (3.6) and (3.4) in (3.7).
Furthermore, U® is replaced by V*/,/g. The cell-face fluxes containing cell-face
values (convection) and derivatives (diffusion) have to be approximated. Central
differences will be employed, except for the convection of turbulence equations in
which a hybrid central/upwind scheme [Spalding, 1972] will be adopted. The reason
for this is as follows. The k-¢ equations are highly nonlinear and coupled. As a
consequence, the computational task is complicated, because numerical experiments
have shown that the convergence of iterative methods, to solve this coupled nonlin-
ear problem, is adversely affected by negative values of ¥ and £ which occur when
convection is approximated by a non-positive (e.g. central) scheme. Using the hy-
brid scheme, the approximation of the face value ¢ at point (1,0), for example, is
given by

$(1,0) = {1 = 8(Pefy ) }bc + s(Pefy o)) U (3.10)
where ¢ and ¢y are given by
1
¢c = 5(d(0,0) * ¢2.0)) (3.11)
1 ) 1 .
du = 5{1+ sign(V(i 0)) b0 + Sil- sign(V(1,0))}9(2,0) (3.12)

Furthermore, the mesh-Péclet number Pe?k,l) is defined by

o ¢V(7c,1)

Peakl = '_—‘_T
®0 2By 9555

, ho summation over a (3.13)

If lPe?k,,)| > 1, a first order upwind scheme is used, otherwise a switch to central
differences is applied. The switching function s(Pe) is defined as

{0, |Pel<10
S(Pe)"{ 1, |Pe|> 1.0 (3.14)

Non-orthogonal coordinates introduce mixed derivatives in diffusion terms, which
make the scheme non-positive even when upwind discretization is applied. Many
authors (e.g. Rhie and Chow (1983), Demirdzic et al. (1987) and Melaaen (1991))
treat these derivatives in an explicit manner, i.e. calculating them from values
obtained in the previous iteration, but we found that our iterative solver allows to
treat the mixed derivatives implicitly. Nonetheless, in some circumstances (highly
non-orthogonal grid or large non-alignment of grid lines and streamlines) this scheme
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may produce numerical instability. In such cases certain precautions will have to be
taken; for a discussion see [Zijlema, 1993].

The discretization of the production of turbulent energy (2.13) is carried out by
substituting (2.4) in (2.13) and with central differencing. Again, U® is replaced by
Ve/,/g. In spite of the presence of Christoffel symbols numerical experiments have
shown that this discretization gives good results on reasonable smooth grids.

The discretization of the V1-momentum equation results in the 19-point stencil
presented in Figure 3.3. The V? stencil is obtained by rotation over 90°. The total

— + O+ & — - V! unknown

D D D - V2 unknown
— + — + — 4+ - p unknown
e S S e A s

Figure 3.3: Stencil for V!-momentum equation

number of variables linked together in the transport equation is 9.

Implementation of boundary conditions for the momentum and transport equa-
tions is discussed in [Segal et al., 1992] and [Zijlema, 1993]. Also discussion about
the implementation of periodic as well as antiperiodic boundary conditions in our
code can be found in [Segal et al., 1993].

3.2 Time discretization and solution method

The spatial discretization yields systems of ordinary differential equations of the
following form:

DV =0 (3.15)
& sNV)+GP=F (3.16)
do
— +T(V)¢=B+S, . (3.17)

where V', P and ¢ denote algebraic vectors containing the velocity, pressure and
scalar unknowns, respectively. Furthermore, D and G are the discretized divergence
and gradient operators, N and T represent the discretization of convection and
diffusion terms, F contains the discretized source term and boundary values, B
represents a right-hand side term arising from the boundary conditions and Sy
contains the source term which is a function of V' and ¢. Time discretization takes
place with the implicit Euler method. Linearization of nonlinear terms is carried
out with the standard Newton method:
ON™

NV = N(V™) + W(Vm -V") T (3.18)



and a5n

S & 83+ G - g7 (3.19)
For both the k and ¢ equations the inequalities % > 0 and 8S7}/0¢ < 0 hold,
which preserves positivity of the solutions. For a derivation see [Zijlema, 1993]. The
resulting systems of linear equations are solved by a Krylov subspace method of
GMRES type [Saad and Schultz, 1986] with preconditioning. This method is very
suitable for non-symmetric matrices, has a relatively good rate of convergence, and is
vectorizable to a satisfactory degree. For more details we refer to [Vuik, 1993]. Most
authors, like Rapley (1985), Demirdzic et al. (1987), Majumdar and Rodi (1989),
Melaaen (1991) and Coelho and Pereira (1992) adopted more slowly convergent
iterative methods for solving the momentum and turbulence equations, of which the
line Gauss-Seidel method and the strongly implicit method of Stone (1968) are the
most prominent. Both iterative methods are only partly vectorizable.

The overall solution algorithm can be summarized as follows: first, the continuity
equation and the momentum equations are solved. To ensure a divergence-free veloc-
ity field a second order pressure-correction method as described by Van Kan (1986)
is used. Details can be found e.g. in [Segal et al., 1992]. Finally, the equations for
k and ¢ are solved in a decoupled way. Time-stepping is repeated until a stationary
solution is obtained.

4 Results

In this section applications of the present method to 2D turbulent flows, both geo-
metrically and physically complex, are described. Only flow situations that are well
documented in the literature will be investigated. These include flows in a driven

cavity, over a backward facing step, through a constricted tube and through an
U-bend.

4.1 Driven cavity flow

The calculation of a driven cavity flow shown in Figure 4.1 is compared with the ex-
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Figure 4.1: The domain for the driven cavity flow (not to scale)

periments of Baines and Knapp (1965). Furthermore, experimental data for the ve-
locity along the vertical plane in the middle of the cavity are taken from {Rodi, 1984).



At walls, the wall functions are applied. At the moving wall the experimental
surface shear stress 7, is given. In order to reduce the turbulence length scale near
the moving wall, the following boundary conditions for k¥ and ¢ are used:

’U,2 ’LL3

k=21, £= = 4.1)
N " (
where u,, = ,/7;/p is the surface friction velocity and y is the distance perpendicular
to the moving wall. The Reynolds number based on the surface friction velocity and
the depth h of the cavity is approximately 6,000.
Figure 4.2 shows the 80x50 mesh in which the grid cells are highly stretched in

Figure 4.2: Grid used for prediction of flow in driven cavity (not to scale)

order to resolve the steep velocity gradients near the walls.
The predicted normalized velocity profile along the vertical plane in the middle
of the cavity is shown and compared with the experimental data in Figure 4.3. It is

1 T T I T I

0.8 - Present prediction —— 7]
Experiment ©
0.6 + 7
y/h

0.4 | T
0.2 + T

o L ! 1 L

-5 0 5 10 15

U’/u'rs

Figure 4.3: Streamwise velocity profile at z = 0.0 m

seen that the calculation is in very good agreement with the measurements. Hence,
it may be concluded that this type of flows are well described by the standard k-¢

10



model. Furthermore, our general coordinate discretization is accurate on the non-
uniform grid of Figure 4.2, Convergence of the preconditioned GMRES method was
not adversely affected by the high (up to 10) mesh aspect ratios which occur.

4.2 Turbulent flow over a backward facing step

Turbulent flow over a backward facing step is a widely used benchmark problem
to evaluate the performance of turbulence models in the prediction of separated
flows. It is well-known that the standard k-¢ model with wall functions underpre-
dicts the reattachment length in the backward facing step by an amount in the
order of 20-25%. This has been widely discussed since the 1980-81 AFOSR-HTTM
Stanford Conference on Complex Turbulent Flows, see e.g. [Demirdzic, 1982], [Nal-
lasamy, 1987] and [Thangam and Speziale, 1991].

In this section we present some results. For the computations the flow configu-
ration of [Kim et al., 1980] (which was one of the test cases in the aforementioned
conference) has been selected. In this case the ratio of step height to outlet channel
height is 1:3 and the Reynolds number based on the step height and U is 44,000.
The domain is sketched in Figure 4.4,

LLY L LL LS LLLLLLLL S LLLLLY I L LL LSS LY

M4 (S
_1- x//////T//////f//////
b X, -

Figure 4.4: Geometry of the backward facing step flow

Inlet profiles for velocities and turbulence quantities are specified at 4 step heights
upstream of the step corner. These profiles are obtained from a preliminary calcula-
tion of a fully developed turbulent flow in a straight channel for the given Reynolds
number. Wall functions are used at the upper and lower walls and outstream con-
ditions (i.e. normal stress and tangential velocity are zero and zero normal gradient
conditions for turbulence quantities) are applied 30 step heights downstream of the
step.

Figure 4.5 shows a part of the non-orthogonal 40x94 mesh employed. Overall,
the mesh is smooth except near the step. In fact, the backward facing step problem
is suited for a multiblock approach in which an orthogonal coordinate system can
be employed. However, our purpose is to test our general coordinates discretization.
Inaccuracies will occur with the present grid, which will be shown later. An initial
calculation with a 20x45 grid indicates little change in the reattachment length
compared to the result from the 40x94 grid. Hence, further grid refinement seems
unnecessary.

In Figure 4.6 the computed streamlines are shown. The calculated reattachment

11
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Figure 4.5: A part of the 40x94 grid for the backward facing step flow

B L=
Figure 4.6: Predicted streamlines for flow over the backward facing step

length is z,./H = 5.3, which gives 24% underprediction of the experimental reat-
tachment length of z,/H ~ 7. This result resembles the results found earlier at the
aformentioned conference very well. Plots of calculated isobars, turbulence intensity

(defined as v/k/Uq) and turbulence length scale (defined as ¢,k%/2/eH) are shown
in Figure 4.7.
.
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Figure 4.7: Predicted features of turbulent flow over the backward facing step:
isobars, turbulence intensity and length scales, respectively

Profiles of the normalized streamwise velocity are given in Figures 4.8, 4.9 and
4.10 and are compared with the experimental data. As can be seen, there is reason-
ably good agreement between the computations and the experimental results and
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Figure 4.8: Streamwise velocity profile at z/H = 5.33
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Figure 4.9: Streamwise velocity profile at z/H = 8.00

discrepancies are mainly due to the underprediction of the reattachment length.
Furthermore, profiles of the normalized Reynolds shear stress are presented in Fig-
ures 4.11, 4.12 and 4.13. Deficiencies occur near the recirculation zone, where the
shear stress peaks are underpredicted, whereas in the recovery region far downstream
of the reattachment the shear stress is reasonably well predicted. The results and
their deficiencies are typical of k-¢ modeling. The results obtained with the present
method are in very good agreement with the computations of Demirdzic (1982).
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: Shear stress profile at z/H = 7.66
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Figure 4.12: Shear stress profile at z/H = 10.30
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Figure 4.13: Shear stress profile at «/H = 15.67
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From Figure 4.14 it is seen that small wiggles occur in the streamlines due to the

=

Figure 4.14: Wiggles in streamlines for turbulent flow over backward facing step

non-smoothness of the grid near the step. Although undesirable these wiggles seem
to have a very small influence on the solutions, and thus are not too dramatic, As
mentioned before, a multiblock approach combined with Cartesian grids is a natural
approach to avoid this problem. This can be demonstrated with a computation
of laminar flow over a backward facing step with Re = 300. It is concluded from
Figures 4.15 and 4.16 that better results are obtained with the multiblock method.

LLLLL T Ll L7
LLLT L7 L LT

Ll 777 L L L LT 7 L7
LLILLL L L L L L L L7 7
L7777 772777777 77277 7

Figure 4.15: Inaccurate streamlines for Re = 300 with a non-smooth grid

Figure 4.16: Accurate streamlines for Ee = 300 with an orthogonal grid computed
with multiblock

For more details on the multiblock method, we refer to [Brakkee and Wilders, 1994].
A way to improve the single block results would be by further smoothing of the
discontinuity in the grid.
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4.3 Turbulent flow through a constricted tube

The method is applied to an even more challenging turbulent flow case: turbulent
flow through a tube with a sinusoidal constriction, as shown in Figure 4.17. This

X
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Figure 4.17: Geometry of the solution domain for the constricted tube flow

flow has been studied experimentally by Deshpande and Giddens (1980). Earlier nu-
merical studies related to this flow type have been carried out by Rastogi (1984) and
Melaaen (1991). The former used general orthogonal coordinates with a staggered
grid arrangement, while the latter employed general non-orthogonal coordinates on
a colocated grid.

Although the flow is axisymmetric, it was found that there is not much differ-
ence between the flow through a planar constricted duct and through a circular
constricted pipe. Therefore, we consider the calculation of the flow in 2D plane
constriction.

The height of the duct is 50.8 mm and the Reynolds number based on that
height and the average inlet velocity is 15,000. The height and the base length of
the constriction are %Rg and 4Ry, respectively, where Ry is the half height of the
duct. Due to symmetry, only the lower half of the domain needs to be considered.
The inlet profiles for the velocity and turbulence quantities were specified at the
plane z = —4Ry. Following Deshpande et al. (1980), at the inlet a fully-developed
power-law profile (n = 6.4) is assumed for the streamwise velocity:

Uin = uo(1+ 5-)/%4 (4.2)
0
where ug is the centerline velocity. For the turbulence quantities k¥ and &, the
following inlet profiles are assumed:
31432
kin = 1.5I2u2,,  &in = —*-‘—l—n (4.3)
Here, I, is the turbulence intensity, taken to be 3% and ! is the mixing length given
by:
! = min(ky, 0.1Ro) (4.4)
In addition, wall functions, symmetry and outstream conditions are imposed in the
usual way.

Grid dependence tests have been performed with four grids, consisting of 50x20,
75x30, 100x60 and 150x100 cells, respectively. Figure 4.18 shows the 50x20 grid. The
test focussed primarily on the separation and reattachment lengths. The computed
separation and reattachment lengths are presented, together with the measurements
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Figure 4.18: A typical grid for the constricted tube flow (50x20 cells)

Separation x5/ Ro | Reattachment z,/Rp
Experiment 0.5 4.0
Rastogi, 41 x 21 1.2 2.4
Melaaen, 52 x 22 0.89 3.02
Present, 50 x 20 1.06 3.07
Present, 75 x 30 0.93 3.10
Present, 100 x 60 0.64 3.36
Present, 150 x 100 0.56 3.50

Table 4.1: Variation of separation and reattachment lengths with different grids

and earlier calculations of Rastogi and Melaaen in Table 4.1. From this Table it
is seen that calculated separation length is overpredicted, while the reattachment
length is underpredicted. Furthermore, the agreement between the present results
and the results of Melaaen corresponding to grid resolution of the same order can
be said to be satisfactory. It should be noted that Rastogi used the hybrid scheme
and Melaaen used the power law scheme of Patankar (1980) for solving both the
momentum and turbulence equations. Moreover, Melaaen also employed a second-
order upwind scheme [Peric, 1985] for solving the momentum equations while the
power law scheme is still used for solving turbulence equations. In that case, on the
52x22 grid the calculated separation and reattachment lengths are z,/Rq = 0.56
and z./Ro = 4.07, respectively, as has been reported in [Melaaen, 1991}.

The predicted lengths of separation and reattachment decrease and increase,
respectively, with grid refinement approaching the experimental lengths. Although
the reattachment and separation lengths still show some variation between two finest
grids, further mesh refinement was not perform because of prohibitive demands
for computing time and to avoid that the first y* point is too close to the wall.
Hence, all subsequent computations were done with a 150x100 grid. Figure 4.19
presents typical features of this flow, including streamlines and contours of isobars
and turbulence quantities.

Figures 4.20, 4.21 and 4.22 show the streamwise velocity predictions at different
stations. The calculation is seen to yield good agreement with the measurements,
except for the station z/Rg = 2.0, although the profiles shapes are the same. This
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Figure 4.19: Typical flow pattern for contricted tube: streamlines, isobars, turbu-
lence intensity and length scales, respectively
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Figure 4.20: Streamwise velocity profile at z/Rg = 0.0

19



1 T T T T T
o
0.8 - .
o
0.6 - © 1
y/Ro o 0
04 | o .
L Present prediction — |
0.2 oo Experiment ¢
0 OO 1 1 1 1 1
-1 0 1 2 3 4
u/T

1 T T T
Present prediction —
08 Experiment ©
0.6 |- -
y/Ro

04 .
0.2 -

O | 1 1

-1 2 3 4

u/TU

Figure 4.22: Streamwise velocity profile at z/Ry = 11.0
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is not surprising, because it is well-known that the k- model does not scale well in
and around the recirculation zone. Furthermore, both the present method and the
methods of Rastogi and Melaaen produce very similar velocity profiles.

Figure 4.23 shows a comparison of the predicted wall static pressure with the
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o ©°
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-10 Experiment ¢ A
_12 | | 1 | 1 | 1 1
-4 -2 0 2 4 6 8 10 12 14

Z / Ro
Figure 4.23: Wall static pressure distribution

measurements. In the acceleration region, where a steep decline of the pressure
occurs, the pressure is well predicted. In the deceleration part, however, the present
method gives an excessive pressure recovery. The same conclusion is drawn by both
Rastogi and Melaaen.

Finally, the profile of the centerline turbulence intensity is compared with mea-
surements in Figure 4.24. The comparison indicates that the predicted turbulence

1 T T T T L T T T
Present prediction —— ° 0
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o
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0.2
0
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Figure 4.24: Turbulence intensity distribution along the centerline

intensity increases too early, and the measured one increases after separation occurs,
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whereas the computed one decreases there. Moreover, the peak of the predicted tur-
bulence intensity is too low. Again, it is believed that the errors lie in the k- model.
Although the agreement between the predicted and measured turbulence intensity
is not satisfactory, there is a qualitative accordance with the computed results of
Rastogi.

4.4 Turbulent flow through an U-bend

This section is concerned with the application of the present method to the prediction
of flow through a sharp two-dimensional U-bend as shown in Figure 4.25. Such a flow

y
Lx
Figure 4.25: U-bend geometry

occurs for example in cooling passages within gas-turbine blades. Earlier numerical
studies were made by e.g. Choi et al. (1989) and Bo and lacovides (1993). We
compare our results with numerical results from Bo et al. and experimental data
taken from [Bo and Iacovides, 1993].

The bend geometry considered here has a curvature ratio R,/D = 0.65, which
causes separation. Here D is the width of the duct. The Reynolds number based on
the duct width and the centerline inflow velocity U, is 100,000. The inflow boundary
is located at three duct widths upstream of the bend, whereas the outflow is specified
at eight duct widths downstream of the bend. At smooth walls, the wall functions
are applied. The streamwise velocity at inflow is described according to the power-
law profile with n = 7, whereas k and ¢ are obtained from the formula (4.3). Here,
the turbulence intensity is taken to be 6% (in accordance with the experiment) and
! = min(xy, 0.5D).

First, computations were performed to examine the grid dependence of the so-
lutions. To this end, three grids of 50x30, 90x50 and 150x90 cells were used. Fig-
ures 4.26 gives the 50x30 grid. The grid is non-orthogonal. Test results are shown in
Figure 4.27 and 4.28 for the streamwise velocity and the turbulence intensity at 1D
downstream of the bend. It can be seen that unlike the turbulence intensity the ve-
locity is already grid independent on the 90x50 grid. Further grid refinement was not
pursued, because it is believed that it gives smaller differences than those provoked
by the k-¢ model. Hence, the calculations for the 150x90 grid are considered.

Contour plots of streamlines, isobars, turbulence intensity and length scales are
shown in Figures 4.29, 4.30, 4.31 and 4.32. The streamlines show the expected
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Figure 4.28: Grid refinement test for U-bend (turbulence intensity profiles)
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Figure 4.30: Isobars for flow through U-bend
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Figure 4.31: Turbulence intensity /k/U, for flow through U-bend

behaviour and also indicate that thelength of the recirculation zone is about one duct
width. The isobars shows also the qualitatively correct behaviour: high pressure
in the impingement region, low pressure in the recirculation region and pressure
recovery after separation. Also expected is the build up of turbulence intensity from
the walls, especially in the impingement region.

The results of the computations are compared with the predictions obtained by
Bo et al. (1993) and the measurements taken from [Bo and Iacovides, 1993]. Bo et al.
performed 3D calculations on orthogonal grids. Present results will be compared
with their results at the symmetry plane. They used the standard k- model, whereas
a k-l model is used in the near-wall regions instead of wall functions. Furthermore,
they employed two convection schemes: the hybrid central/upwind scheme and a
blended scheme, called LODA [Zhou and Leschziner, 1988], in which the convective
transport is approximated by a combination of the well-known QUICK and first
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Figure 4.32: Length scales c#k% /e D for flow through U-bend

order upwind schemes. Blending of these two schemes is determined by a so-called
blending factor which is generally unknown. Hence, an iterative procedure is needed
in order to determine the blending factor. Another disadvantage of this blending
technique is that several measures are introduced to improve numerical stability and
to prevent negative values of k and ¢ [Bo et al., 1993]. Therefore, one may expected
that this blending technique is very costly.

In Figures 4.33, 4.34, 4.35 and 4.36 the streamwise velocity and the turbulence
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Figure 4.33: Streamwise velocity at 1D downstream of the bend

intensity profiles are presented at 1D and 30D downstream of the bend. "LODA”
means that the LODA scheme is employed on both momentum and turbulence
equations on a 133x67x35 grid, whereas "HYBRID” denotes the application of the
hybrid scheme on both momentum and turbulence equations on a 177x77x35 grid.
With respect to our computations, the following conclusions may be drawn. At
1D downstream of the bend, the velocity is reasonably well predicted, although the
recirculation length is underpredicted. There is no qualitative accordance between
the prediction and measurements of the streamwise velocity at 3D downstream of
the bend. Furthermore, at 1D downstream of the bend, the turbulence intensity
near the inner side of the duct is predicted very well, while the turbulence level near
the outer wall is overestimated. Finally, at 3.D downstream of the bend, the
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Figure 4.34: Turbulence intensity at 1D downstream of the bend
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Figure 4.35: Streamwise velocity at 3D downstream of the bend

turbulence intensity is somewhat lower than the measured one.

Overall, the standard k-¢ model does not produce accurate solutions, because this
model is not capable of predicting effects of curvature on the turbulence. But there is
qualitative agreement between computation and experiment, and satisfactory agree-
ment between the HYBRID scheme of Bo et al. and the present computations.

5 Conclusions

An invariant finite volume discretization in general coordinates of the Reynolds-
averaged Navier-Stokes equations with the standard k-e model on staggered grids has
been presented. Central differencing is used for convection of momentum, whereas
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Figure 4.36: Turbulence intensity at 3D downstream of the bend

the hybrid central/upwind scheme is employed for convection of k& and ¢, to prevent
negative values of £ and €. The diffusion terms are approximated with central
differences. The mixed derivatives in these terms are treated implicitly. The present
method was applied to several 2D turbulent flows in arbitrarily shaped domains.
The agreement between the results of the computations and the experimental data
or the predictions obtained by other methods was found to be satisfactory, within the
limitations of the standard k-¢ model employed. The calculation of the backward
facing step flow has demonstrated that the present discretization is not accurate
enough on very non-smooth grids. It turns out that a multiblock method is more
suitable to avoid such inaccuracies.
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