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Abstract

Verification of numerical claims is critical as they tend to be more believable despite
being fake and have previously demonstrated the potential to cause catastrophic impacts
on society. While there currently exist several automatic fact verification pipelines, only
a handful focus on natural numerical claims. A typical human fact-checker first retrieves
relevant evidence addressing the different numerical aspects of the claim and then reasons
about them to predict the veracity of the claim. Hence, the retrieval thought process of a
human fact-checker is a crucial skill that forms the foundation of the verification process.
Emulating a real-world setting is essential to aid in the development of automated methods
that encompass such skills. Hence, we introduce QUANTEMP++: a dataset consisting of
natural numerical claims, an open domain corpus, and the corresponding evidence relevance
and veracity labels. Given this dataset, we also aim to characterize the retrieval performance
of key query planning paradigms, especially those of decomposition as they have shown
promising results in other tasks. Finally, we observe their effect on the outcome of the
verification pipeline and draw insights.
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Chapter 1

Introduction

1.1 Terminology

A natural claim is a claim made in everyday natural language usage as opposed to those gen-
erated synthetically by a computer. We define a natural numeric claim as any natural claim
that contains numerical information in the form of quantities, dates, statistics, or comparisons.
This numerical information may be explicit as in the claim “There were 20 children in the play-
ground” or implicit as in the claim “The crime rate has reduced over the past years”.

1.2 Motivation

With the growth of digital tools for disseminating information, misinformation and disinfor-
mation have also increased tremendously in recent years. Although manual verification is per-
formed by journalists in news organizations and on dedicated websites, the sheer volume of
claims generated calls for automated approaches, representing a key objective of computational
journalism [12] .

The case of real-world numerical claims. Numerical claims are more important to verify
as by the Illusion-of-Numeric-Truth effect [54], people tend to believe claims grounded in num-
bers more even if they are false. Such claims can have various negative impacts on society. An
example of this is the case of Purdue Pharma, where unsubstantiated, incomplete claims were
made to market their drug which is believed to be the kickstarter of the Opioid pandemic in
America, resulting in the loss of over 500,000 lives to date[66]. Verification of numerical claims
requires numerical reasoning ability which involves understanding numeric patterns and math-
ematical concepts like arithmetic, numerical estimation, and data interpretation. While several
works focus on automated verification of natural claims, only a handful[43, 59, 68, 63, 58, 26]
focus on claims that require numerical reasoning. However, these techniques only focus on the
detection of numerical claims[58, 59] or are restricted to specific statistical properties[63, 68].

The need for a realistic fact-checking dataset. A typical human fact-checker utilizes vari-
ous skills to verify a natural numerical claim. A given numerical claim can have different explicit
and implicit information needs that first needs to be addressed. Therefore, relevant evidence is
gathered from various sources, including the open web. This evidence is then used to reason
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1.2. Motivation

Example: Claim from QUANTEMP++

Claim: Prime Minister Narendra Modi breached the election protocol
by addressing a rally in Howrah on April 6.

Ideal Retrieval:
• . . . From cooch behar . . . Howrah . . . election rally on April 6, pm Modi will ad-

dress. . .
• . . . Election Silence Period. . . India (48 to 24 hours in advance of polling day and

on polling day). . .
• . . . General elections were held in India in seven phases from 11 April to 19 May

2019. . .

Retrieval Thought Process: The given numerical claim requires multiple aspects to be
addressed. Firstly, evidence proving that PM Modi did indeed rally on April 6 needs
to be fetched. Then, the election protocol breached i.e. information on the election
silence period and the schedule of elections (polling) are required to be fetched. Given
this information, the downstream verifier can then reason about the numerical aspects to
form the verdict.

Figure 1.1: Example numerical claim from QUANTEMP++, requiring to recognize and fetch
explicit and implicit evidence.

about and determine the veracity of a natural numerical claim. The retrieval thought process of
a human fact-checker is a crucial skill that forms the foundation of the verification process (See
Figure.1.1). Emulating a real-world setting is essential to aid in the development of automated
methods that encompass such skills.

Current datasets mainly feature synthetic claims with lexical biases [44, 10], while those
with natural claims often suffer from gold or temporal leakage[56] or lack significant numerical
claims (see Table 1.1). The presence of leaked fact verification articles in the corpus trivial-
izes retrieval, while including evidence published after the claim makes the corpus unrealistic.
Consequently, any automatic method designed under these conditions is likely to fail during
real-time deployment. Hence, our goal is to provide a realistic dataset that addresses all these
gaps, aiding the right development of automated methods for verifying natural numerical claims.

Forming a large-scale dataset to address the above gaps through crowdsourcing can be chal-
lenging as getting manual annotations from expert fact-checkers is expensive[15] and can often
contain biases[44]. Therefore, we employ weak supervision to extend QuanTemp[65] and create
QUANTEMP++: a dataset consisting of about 15k natural numerical claims, an open domain
corpus consisting of 165.7k records, and the corresponding evidence relevance and veracity la-
bels of the claims. The data creation pipeline incorporates claim decomposition to emulate the
thought process of human fact-checkers in retrieving evidence, which helps in realistically eval-
uating and addressing retrieval bottlenecks in automated fact-checking methods.

2
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Paper #Claims Claim Src Natural? Evidence Src No Leakage Numerical∗

Gold Temporal

Thorne and Vlachos[63] 7k KB ✗ KB NA NA ✗

Vlachos and Ridel[68] 7k KB ✗ KB NA NA ✓

FavIQ[44] 188k QA ✗ Wikipedia NA NA ✗

VitaminC[57] 326k Wikipedia ✗ Wikipedia NA NA ✗

HOVER[27] 26k QA ✗ Wikipedia NA NA ✗

SciFact[71] 1.4k Science Articles ✗ Science Articles NA NA ✗

SciFactOpen[72] 279 Science Articles ✗ Science Articles NA NA ✗

WICE[30] 2k Wikipedia ✗ Wikipedia NA NA ✗

FEVER[64] 185k Wikipedia ✗ Wikipedia NA NA ✗

FEVEROUS[4] 87k Wikipedia ✗ Wikipedia NA NA ✗

MultiFC[5] 36k FCW ✓ Open Web ✗ ✗ ✗

ClaimDecomp[9] 1.2k FCW ✓ Fact Check Articles NA NA ✗

FinFact[47] 3.4k FCW ✓ Open Web ✗ ✗ ✗

WatClaimCheck[33] 34k FCW ✓ Open Web ✓ ✓ ✗

LIAR[75] 13k FCW ✓ NA NA NA ✗

QABriefs[16] 8.8k FCW ✓ Open web ✓ ✗ ✗

AviriTec[56] 4.5k FCW ✓ Open Web ✓ ✓ ✗

Jandhagi and Pujara[26] 500 News Articles ✓ Select Datasets ✓ ✓ ✓

COVIDFACT[53] 4.1k Reddit ✓ Open Web ✓ ✓ ✗

QuanTemp[65] 15k FCW ✓ Open Web ✓ ✗ ✓

QUANTEMP++(OURS) 15k FCW ✓ Open Web ✓ ✓ ✓

Table 1.1: Comparison of QUANTEMP++ to other related fact checking datasets. Leakage refers
to either the presence of fact-checking articles (Gold) in the evidence corpus or the inclusion of
evidence items published after the corresponding claim (Temporal). We also judge if a sig-
nificant number of Numerical∗ claims are present in the dataset. In the table, FCW refers to
Fact-Checking Websites. The number of claims listed in the table are approximate figures to
indicate the scale.

The role of query planning. A typical automatic fact verification pipeline consists of three
stages: claim detection, evidence retrieval, and veracity prediction. Although many effective
automatic fact-verification pipelines have been proposed in previous research, many of these
approaches highlight bottlenecks encountered during the retrieval stage.[33, 44, 71]. Within
retrieval, query planning plays an important role as it defines the information needs to be met in
order to verify a claim, forming the entry point of retrieval. Since numerical claims encompass
various implicit and explicit numerical aspects (See Figure.1.1), the query planning method
utilized can have a significant impact on the retrieval of evidence and hence on the downstream
veracity classification performance.

Popular fact verification pipelines like MultiFC[5], FEVER[64], FEVEROUS[4], SciFact[71],
and WatClaimCheck[33] utilize only the claim as the query to fetch the required evidence. How-
ever, following this strategy has previously been shown to reduce recall[27, 44]. Several tech-
niques have been used previously to improve this aspect, one of the main ones being decompo-
sition. Works like ClaimDecomp[9], WICE[30], QuanTemp[65], and ProgramFC[43] show the
benefits of decomposition on the downstream performance of the verification of claims. How-
ever, they do not characterize the retrieval performance in a realistic open-domain setting for
natural numerical claims. Additionally, in previous works, we see there is a lack of a principled

3



1.2. Motivation

aggregation method to combine the retrieval results from the decomposed queries of a claim. In
our work, we evaluate the retrieval performance of key query planning methods with a principled
aggregation method to combine results across sub-queries. Finally, we analyze their downstream
impact and draw insights.

In summary, we set out to address the following research questions:
1. Does query decomposition help retrieve quality evidence from the web for the verification

of natural numerical claims?

2. How do existing query planning methods perform in terms of retrieval of relevant evidence
snippets to verify numerical claims?

3. What is the downstream impact of these query planning methods on the task of verification
of numerical claims?

This translates to the following contributions:
1. A new dataset, QUANTEMP++, to evaluate evidence retrieval for fact-checking natural

numerical claims in an open-domain realistic setting.

2. A comprehensive evaluation of key query planning methods for evidence retrieval to sup-
port fact-checking numerical claims.

3. A comprehensive evaluation of the downstream impact of these key query planning meth-
ods at the task of fact-checking numerical claims.

1.2.1 Thesis Outline

The remainder of this thesis is structured as follows: Chapter.2 identifies the research gaps in re-
lated work that this study aims to address. Chapter.3 describes the data creation pipeline and the
methodology used to evaluate key query planning methods. Chapter.4 details the experiments
conducted and their implementation specifics. Chapter.5 discusses the results of these exper-
iments and provides insights. Finally, Chapter.6 concludes the thesis, highlighting limitations
and suggesting directions for future research.

4



Chapter 2

Related Work

Automatic Fact-checking is a well-explored task, first introduced formally by Vlachos and
Riedel [67] in 2014. A fact verification pipeline mainly consists of three stages- claim detection,
evidence retrieval, and claim verification. A few recent works also include an additional stage
for justification production [52]. This paper exclusively concentrates on the evidence retrieval
stage, crafting a natural numerical dataset to capture its challenges and, in turn, bolstering the
numerical reasoning capabilities essential for successful fact verification. In this section, we
delve into current datasets concerning natural claims, natural numerical claims, the challenges
they pose, and the methods devised to improve retrieval for numerical reasoning.

2.1 Datasets

Since the formulation of the task, various datasets consisting of natural claims have been released
in several domains such as politics[9, 75, 3, 42], finance[59], climate[14], health[37], scientific
research[71, 69, 77], and social media[41, 13]. These datasets vary by the sources from which
these claims are gathered and how they establish evidence labels, if indeed they do. A significant
portion of these datasets collect claims sourced from Wikipedia[64, 4, 57, 30]. FEVER[64], a
popular dataset in the domain of fact verification, constructs a dataset of claims by employing
crowd workers to rephrase phrases from Wikipedia articles. FEVEROUS[4] takes it one step
further by forming longer and more complex claims using the FEVER[64] dataset and its asso-
ciated tables from Wikipedia. While these techniques are effective in generating natural datasets
of claims that require verification, these datasets are prone to be infected by lexical bias. For
example, studies by Park et al. [44] found that the top bi-grams in refute claims of the FEVER
dataset [64] contain negative expressions, e.g., “is only”, “incapable of”, “did not” and hence
are significantly lexically biased.

To alleviate this, VitaminC[57] leverages Wikipedia revisions to generate challenging exam-
ples in which a claim is paired with contexts that are lexically similar, yet factually opposing.
WICE[30] aims to accomplish the aforementioned goal through the automation of claim gener-
ation by using Wikipedia citations. Scifact[71] employs a similar strategy but with scientific re-
search articles as their source. Although this method is efficient in generating extensive datasets

5



2.1. Datasets

for claims, the synthetic nature of the data makes them unrepresentative of naturally occurring
claims.

2.1.1 Natural Claims

To form a dataset of natural claims, Hover[27] and FaVIQ[44] attempt to generate claims us-
ing question-answering datasets. HoVer[27] employs crowd workers to form long-range nat-
ural claims using question-answer pairs from HotpotQA [81] that demand multi-hop reason-
ing for verification. Since employing expert crowd workers to generate claims is expensive,
FaVIQ [44] automates this process by training a T5 model [49] to convert question-answer pairs
from AmbigQA [39] to natural claims. A more straightforward approach is taken by various
methods, where fact-checking websites are crawled for natural claims [22]. While datasets
such as LIAR[75], Covid Fact [53], PUBHEALTH [36] are domain-specific, MultiFC[5] and
WatClaimCheck[33] present datasets that are open domain.

The aforementioned studies employ various methods for collecting gold evidence, including
Search APIs, weak supervision, citations, and the utilization of review articles. WatClaimCheck[33]
utilizes review articles accompanying claims in fact-checking websites and the links in them to
form the evidence for claims. However such datasets created by professional fact-checkers are
expensive and small-scale. Scifact[71] and FEVEROUS[4] use citations to form the evidence
set, however, these approaches do not operate within open-domain retrieval settings. To alleviate
the above disadvantages, MultiFC[5] uses the Google search API to collect evidence articles for
each claim. Such a dynamic search retrieves evidence on the fly from the open web, making
reproducibility impossible. Additionally, MultiFC[5] does not address the prevention of gold
evidence leakage and temporal leakage[56] during its search. Scifact-Open[72], an extension
of Scifact[71] designed for open-domain settings, and FaVIQ[44] both employ weak supervi-
sion techniques to fetch evidence labels. Scifact-Open[72] utilizes simple BM25 retrievers with
a pooling strategy, while FaVIQ[44] leverages Dense Passage Retrieval[32]. It is important to
note that these evidence labels can be noisy as underlying systems are not perfect.

2.1.2 Natural Numerical Claims

These aforementioned datasets demand several abilities such as including multi-hop reasoning,
retrieval from heterogeneous data, and processing long claims. However, very few have signif-
icant samples that require numerical reasoning. For example, the authors of FEVEROUS [4]
observe that although merely around 10% of the claims require numerical reasoning, the an-
notators considered these particular claims to be especially challenging. Addressing numerical
claims can be convoluted, necessitating a range of skills, including the extraction of numerical
keywords and symbols, comparison, recognition of recurrent patterns, trend detection, utiliza-
tion of higher-order functions, and interpretation of intervals over time, among others. Very Few
works focus on generating and dealing with numerical natural claims.

The method proposed by Shah et al. [59] and CONCORD [58] detect natural numerical
claims from financial reports and academic papers respectively. While they use weak supervi-
sion to automate claim detection, they do not propose methods to form labels for retrieval and
verification. Similarly, FinFact[47] presents a benchmark dataset for multimodal fact-checking

6



2.2. Evidence Retrieval

within the financial domain, including professional fact-checker annotations and justifications.
The methods proposed by Thorne and Vlachos [63] and Vlachos and Riedel [68] present datasets
for natural numerical claims along with evidence and verification labels but only focus on sim-
ple claims or work with limited statistical properties. Additionally, both are limited to retrieving
evidence from knowledge graphs. Jandaghi and Pujara [26] identify numerical claims from
news articles by using structure-based detection. Additionally, these claims are aligned with
evidence by extracting indicator and trend entities from claims and matching them with those
of the evidence. Lastly, QuanTemp[65] introduces a comprehensive dataset containing purely
natural quantitative and temporal claims. However, while a corpus of Google Search snippets is
provided, the dataset lacks relevance labels and contains temporal leakage.

2.2 Evidence Retrieval

Retrieval of evidence forms a critical component in the fact verification pipeline. Several works
like WatClaimCheck[33] show that retrieval serves as a performance bottleneck in the pipeline.
Studies conducted by Park et al. [44] demonstrate that the most common error occurring in the
fact verification pipeline is during retrieval. Experiments conducted by Scifact[71] demonstrate
that given oracle retrieval results, the fact verification pipeline demonstrates a huge gain in per-
formance. Additionally, a strong retrieval model can facilitate human-in-the-loop verification
systems. Fan et al. [16] show that a strong evidence retriever increases the accuracy of crowd
workers by 10% while slightly decreasing the time taken for the task of fact verification.

2.2.1 Query Planning

Query planning plays an important role in retrieval as it explicitly conveys the information needs
of the claim. Most popular methods like MultiFC[5], FEVER[64], FEVEROUS[4], SciFact[71],
and WatClaimCheck[33] utilize only the claim as the query to fetch required evidence. However,
following this strategy has previously been shown to reduce recall, especially when there are
multiple aspects contained in the claim[27, 44]. Numerical claims encompass various aspects
that must be addressed, as the downstream veracity classifier processes these multiple pieces
of evidence to reason numerically or temporally, perform calculations, or make comparisons.
Several techniques have been used previously to improve retrieval, one of the main ones being
decomposition.

Decomposition

Decomposition works to address different aspects of a claim explicitly in the retrieval pipeline.
Previous works use two main paradigms to decompose claims into sub-queries.

Fine-Tuning: The first paradigm involves crowdsourcing and utilizing human annotations
to fine-tune smaller language models, as seen in ClaimDecomp[9] and QABriefs[16]. While
both ClaimDecomp and QABriefs[16] show that decomposition provides superior downstream
performance, their retrieval setting is not realistic. ClaimDecomp [9] operates in a proof-of-
concept setting, whereas QABriefs [16] dynamically queries the web to retrieve top documents
for each claim, without attempting to prevent temporal or gold leakage.

7
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Prompting: A major disadvantage of the above paradigm is the reliance on expert anno-
tations to decompose claims. This approach requires a substantial amount of data for effec-
tive performance, which is not always readily accessible. Hence, more recent methods utilize
prompting strategies to overcome this challenge. Works like ProgramFC[43], QuanTemp[65],
and WICE[30] use few shot learning to generate the decomposed questions for a claim. How-
ever, ProgramFC[43] and WICE[30] operate on synthetic claims generated from Wikipedia,
and QuanTemp[65] dynamically queries the web without attempting to prevent temporal leak-
age. Additionally, generating decompositions through prompting can suffer from hallucinations
when there is a lack of background information, leading to errors downstream[85]. To overcome
this, Zhang and Gao [85] and Wang and Shu [74] utilize a multi-step prompting strategy aug-
mented with a dynamic web search to provide context to facilitate query decomposition. While
this reduces hallucination and improves overall decomposition quality, its multi-prompt nature
makes it extremely expensive.

Knowledge Distillation: Recent works have shown that knowledge distillation from large
models to smaller models is an effective strategy to reduce inference costs while maintaining
performance [62, 11, 45, 21]. Specifically, FlanT5 [38] has shown to outperform zero shot
LLMs like GPT-3.5[7] at specific in-domain tasks such as summarization[18]. Additionally, Wu
et al. [79] has demonstrated that problem decomposition tasks can be more easily distilled into
smaller models such as Vicuna from larger LLMs like GPT-3.5 for mathematical reasoning and
QA tasks, thereby reducing inference costs while maintaining performance. Hence, in our work,
we try to adapt this strategy to our task and evaluate this mode of query planning.

While the above methods show decomposition can be helpful, we observe that the above
methods either don’t evaluate retrieval and assume access to oracle evidence[9, 30] or they don’t
have a principled method to combine the retrieved results from each sub-query[65, 43, 16]. V
et al. [65] and Fan et al. [16] use the top result per query to form the final evidence set. However,
using these methods can miss out on retrieving important aspects as each sub-query itself can
be ambiguous requiring multiple documents to cover each perspective. Additionally, the size of
the resulting evidence set varies by the number of sub-queries generated, making comparison
across methods difficult. Previous work in information fusion[70, 86, 84] has shown us effective
techniques to combine results from different queries such as CombMAX and CombSUM. These
methods take the relevance scores assigned to all the documents by the retriever for each query
and assign the final score to a document using a maximum or sum function over them to form
the final score for each document. In our work, we evaluate the utility of these fusion techniques
in the domain of query decomposition for the verification of natural numerical claims.

2.3 Related Work Relevancy

In recent works, we observe that while there are several datasets for the verification of claims,
only a handful of them focus on natural numerical claims(See Figure.1.1). Additionally, the
existing datasets with natural claims often do not provide relevance labels for an open-domain
retrieval setting or their retrieval stage corpus has gold evidence or temporal leakage. The few
natural datasets that evaluate retrieval either use only the claim to retrieve evidence, which is
said to reduce recall, or use decomposition in a closed domain setting with no principled way
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of aggregating retrieval results across sub-queries. Since numerical claims require an effective
query-planning method to retrieve evidence that addresses multiple possible explicit and im-
plicit aspects, a thorough and principled evaluation of query-planning methods is necessary to
understand their pros and cons. In our work, we aim to address these research gaps by pro-
viding a dataset for natural numerical claims with evidence-relevance labels in an open-domain
setting without gold evidence or temporal leakage. Furthermore, using this dataset, we evaluate
the retrieval performance of key query planning methods with a principled aggregation method
to combine results across sub-queries. Finally, we analyze their downstream impact and draw
insights.
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Chapter 3

Methodology

3.1 Dataset Creation

Figure 3.1: Data creation pipeline of QUANTEMP++

The first contribution of this work is to present a new dataset to evaluate evidence retrieval
for fact-checking claims with quantitative and temporal expressions. This high-quality dataset
can then be employed to evaluate existing retrieval methods, specifically query planning. Hence,
the main goal of this dataset is to capture the reasoning abilities and thought processes utilized
by a human fact verifier to find evidence relevant to natural numerical claims.

We create an effective and realistic fact verification dataset for numerical claims by using the
QuanTemp[65] dataset as a foundation, as it contains substantial natural numerical claims and
their corresponding fact verification labels. A straightforward method to achieving such a dataset
would be through crowdsourcing; however, obtaining relevance labels for a significant number
of claims is expensive and requires expert annotators. Hence we resort to weak supervision.
We develop a three-step pipeline: an Automatic Query Generator, followed by a Search Engine
Results Page Processor (SERPP), and finally, a web crawler to curate our dataset. The full data
collection pipeline with an example is shown in Figure.3.1.

The subsequent subsections will first detail each of the components of our pipeline, follow-
ing which we describe our approach to evaluate the dataset’s quality.
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3.1. Dataset Creation

Figure 3.2: Example of query generation output from LLM with redundant and irrelevant items.

3.1.1 Automatic Query Generation

Fact verifiers often search the web or private documents to fetch relevant evidence articles to
verify claims. To emulate their thought process, we use few-shot learning to generate these
web search queries using the justification document provided for each claim. We hypothesize
that utilizing a claim’s justification document in a few-shot learning setup would generate both
explicit and implicit queries required to verify a natural numerical claim. The prompt to generate
Web search queries includes the claim, its publication date, justification document, and one static
example crafted manually by the authors. The instruction specifies the generator to produce
queries that sufficiently address the numerical aspects of the claim. The full prompt can be
found in the Appendix.A.2.

A widely known problem of LLMs is hallucination. Additionally, LLMs also tend to produce
redundant information within the response. An example of this is shown in Fig.3.2. To mitigate
these issues, we put in place a filtering process after query generation. This step ensures we only
keep queries that are both unique and pertinent. The filter is constructed using the relevance
scores provided by the Maximal Marginal Relevance (MMR) algorithm. Given that the queries
generated may be explicit or implicit we need to ensure that the selected queries are still relevant
but don’t deviate from the claim’s core essence. Therefore, we employ a weighted average
approach, to combine the scores with respect to the claim and justification document to form
the end scores for each query. Finally, we apply a threshold to retain only the most relevant and
independent queries for each claim. Hence, for a given claim C, justification document J and
their corresponding sub-queries q1, . . . ,qk, the final set of queries Q is formed by:

sqi = α ·MMR(qi,C,λ)+(1−α) ·MMR(qi,J,λ)

Q = {qi | sqi > γ for i ∈ {1,k}}

Here, α is the coefficient used to control the importance needed to be given to relevance with
respect to the claim versus that to the justification document, λ is the diversification factor used
in MMR and γ is the threshold for selecting a query.
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3.1. Dataset Creation

3.1.2 SERPP

We make the assumption that evidence for claims can be fetched and accessed over the public
web. We only fetch web search results that were published before the claim was made. Each
result contains the URL to the full web page, a snippet containing the most relevant phrases
in the web page and the publication date of the web page. The results of the web search can
be irrelevant to the query if there are no significant results found for it (See Figure.3.3). To
exclude such instances in creation of the relevant set of results for a claim, we filter the results
by measuring the similarity between the result snippet and the corresponding query used to
perform the Google search. Then, we utilize a language model pre-trained for text relevance to
encode both the query and text snippet and take the cosine similarity between them to form the
final relevance score. Once we obtain the relevance score, we set a threshold to filter out noisy
results from being included in the set of relevant records for a claim.

Figure 3.3: Example of query generation output from LLM with redundant and irrelevant items.

3.1.3 Crawling

Many works that use web search results as evidence use the web search snippets directly as
evidence for the corpus[5, 65]. However, these snippets lack context or important information
such as disclaimers that may be useful for the fact verification component. For example, several
claims originate from satirical web pages that specifically add disclaimers within their page.
While we also use these snippets in our work, we crawl all the web pages from our web search
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3.1. Dataset Creation

results to enrich our corpus for future work. We then parse the HTML results to store the main
text content. We exclude any links that are unavailable, behind paywalls, or forbidden.

3.1.4 Distractors and Leakage

The mapping of relevant records for each claim, resulting from the above components, forms
the query relevance judgments, or qrels, of our dataset. A realistic corpus contains sufficient
distractors that are close to the set of relevant records but are not relevant. Hence, the final corpus
includes all the relevant and noisy filtered records resulting from the previous components, while
the qrels only maps claims to their relevant record. To further increase the difficulty of the
dataset, we feed the claim verbatim to SERPP with the temporal filter as mentioned before, and
add the top-10 records and their corresponding crawled web pages to the corpus. To prevent
gold evidence leakage, we evict from the corpus and qrels, all the records whose links originate
from fact-checking websites. We use the set of fact-checking domains provided by QuanTemp
for the same.

Split TRUE FALSE CONFLICTING Total
Train 1824 5770 2341 9935
Validation 617 1759 672 3084
Test 474 1423 598 2495

Total 15514

Table 3.1: Distribution of claims by veracity label

Split Temporal Interval Statistical Comparison
Train 2672 1541 4660 1051
Validation 840 469 1432 339
Test 681 347 1210 255
Total 4193 2357 7302 1645
% 27.06 15.21 47.12 10.61

Table 3.2: Distribution of claims by numerical abilities required

3.1.5 Dataset Statistics

The Quantemp dataset and hence our dataset consists of a total of 15, 514 natural numerical
claims. The dataset is unbalanced as a majority of claims are labeled as False. The distribution
of the dataset by veracity label is provided in Table.3.1. The numerical claims in the dataset
are further divided by the numerical abilities required to verify them namely- temporal, statisti-
cal, interval, and comparison. Majority of the claims require statistical computational abilities
followed by claims that required temporal understanding (See Table.3.2). Our evidence corpus
consists of 165.7k records. The average snippet length is about 154 tokens and the average
number of snippets relevant to each claim is about 6.35.
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3.2. Evaluation of Query Planning Methods

The Automatic query generator outputs a variable number of queries required to retrieve
relevant evidence per claim. The average number of queries per claim is 6.76, which is much
higher than other methods such as PgmFC[43] and ClaimDecomp[9]. Additionally, the aver-
age number of tokens per query is 8.51 which is much lower than those present in the queries
generated by PgmFC[43] and ClaimDecomp[9].

3.2 Evaluation of Query Planning Methods

QUANTEMP++ serves as an ideal dataset to evaluate the retrieval performance of various query
planning methods in the task of verification of natural numerical claims as it contains the rel-
evance labels produced by weak supervision and offers an open domain setting for retrieval.
Additionally, the corpus contains evidence that addresses both implicit and explicit aspects of
a natural numerical claim. Since the corpus does not contain gold or temporal leakage, we can
make a realistic evaluation of key query planning methods with this dataset.

3.2.1 Key Query Planning Methods

In section 2.2.1, we identified three key approaches for querying evidence to address the different
aspects of a natural claim. The first strategy used the claim directly to query for evidence doc-
uments. The second and third strategies decomposed the claim into sub-queries and then used
these sub-queries to retrieve evidence. The second strategy decomposed the claim to sub-queries
with a smaller fine-tuned model while the third used prompting strategies to generate these de-
compositions. Decomposition has previously shown to improve recall by explicitly addressing
the different aspects of a natural claim[9, 43, 65]. However, the technique used to decompose a
claim into sub-queries can have varying downstream retrieval impacts. Hence, we evaluate the
retrieval performance of these three paradigms using the QUANTEMP++ dataset to observe their
strengths and weaknesses in addressing the different aspects of natural numerical claims.

3.2.2 Evidence Aggregation for Decomposed Queries

In the above section, we introduce three query planning methods, in two of which utilize de-
composition. The latter two techniques break down a claim into its sub-queries and retrieve
evidence for each sub-query. Once the documents are retrieved, a systematic approach to aggre-
gate these results to form the final evidence set is required. In Section.2.2.1 we saw that previous
research in information fusion demonstrated the efficacy of the CombMAX and CombSUM fu-
sion functions that could potentially overcome the above challenge. We evaluate and compare
the above methods using the oracle queries, corpus, and relevance labels from QUANTEMP++
using a zero-shot retriever. For a given claim with sub-queries q1..K and a corpus D let rki be the
score assigned by the retriever for the sub-query qk for document di in the corpus. Hence, the 6
settings we evaluate are:

• TOP-1: Forms the final set by taking the top-scored document for each sub-query.

evidence set =
{

di | di = argmax
d∈D

rkd

}K

k=1
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3.2. Evaluation of Query Planning Methods

• COMBMAX: Using this strategy, each document in the corpus is assigned and ranked by
the maximum score achieved by any of the sub-queries.

COMBMAX(di) = max
j=1,...,k

r ji

• COMBMAX-NORM: Using this strategy, the scores assigned by the retriever to the docu-
ments are first normalized per sub-query and then the COMBMAX function is applied to
them to get their final score.

r′ki =
rki −mind∈D rki

maxd∈D rki −mind∈D rki
(1)

COMBMAX-NORM(d) = max
i=1,...,k

r′di

• COMBSUM: Using this strategy, each document in the corpus is assigned and ranked by
the sum of scores achieved by any of the sub-queries.

COMBSUM(di) = ∑
j=1,...,k

r ji (2)

• COMBSUM-NORM: This strategy first normalizes the document scores by each sub-query
as in (1) and then assigns each document the sum of scores across sub-query as the final
score as with (2).

• CONCAT: We take the concatenation of the sub-queries for the final query for our retrieval.

3.2.3 Retrieval Performance of query planning methods

We analyze the results of the above evaluation of the aggregation method and select the one that
performs the best using a zero-shot retriever. Now using this we evaluate our key query planning
methods discussed in 3.2.1 using the claims, corpus, and relevance labels of QUANTEMP++.
Since the corpus contains various distractors, we also assess the efficacy of adding external
signals to reduce noise by applying a temporal filter to the retriever. Hence, when a query for a
claim is made, the retrieval for each of these queries is restricted to documents published before
the claim.

3.2.4 Downstream Impact

Observing the corresponding downstream impact of each of the query planning methods is cru-
cial as it represents the final outcome of the pipeline. Hence, for each of the query planning
methods, we first retrieve evidence, aggregate, and use the top evidences to train and test the
downstream NLI classifier. A Multi-Genre Natural Language Inference (MNLI) model is used
to train and predict the veracity label of the claim as True, False, or Conflicting. Since most
MNLI models have a limited context length, we limit the input length of the evidence to the top-
k fetched snippets. Hence, given the claim and the top-k retrieved snippets by the corresponding
query planning method we train and test this model to predict the veracity label of the claim.
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Chapter 4

Experiments

In this section, we detail the implementation of our methodologies and the evaluations we carry
out in our work. We first explain the implementation of the data creation pipeline of QUAN-
TEMP++ and how we evaluate its quality. Next, we outline our experimental setup to assess
the retrieval and downstream performance of key query planning strategies for verifying natural
numerical claims.

4.1 Data Creation

To create QUANTEMP++ we utilized a three-component pipeline that utilizes the claims and
their corresponding justification document to form a corpus of evidence snippets and relevance
labels. We source the claims and their veracity labels, justification documents, and metadata
from QuanTemp[65]. The three components of the data creation pipeline are the Automatic
Query Generator(AGQ), the Search Engine Results Page processor (SERPP), and the Crawler.
The execution details of each of these phases are as follows:

Automatic Query Generator

To generate the queries that address the different implicit and explicit information needs of a nu-
merical claim, we first prompt an LLM and then use a filter to enforce diversity and relevance.
Open AI’s GPT models have shown to be effective in simulating user search queries[34, 51],
hence we use the GPT-3.5-TURBO model to generate the questions. The filter utilizes the MMR
algorithm to enforce diversity and then measure relevance to the claim and its corresponding
justification document. Within the MMR algorithm, a language model is used to score text
similarity between documents, as well as between a document and a claim and its justification
documents. We employ the paraphrase-MiniLM-L6-v2[48] model to assess the similarity be-
tween texts. After tuning, we finally set the diversification constant λ of the MMR algorithm to
0.4, the weighted average coefficient α to 0.8, and the filter threshold γ to 0.4.
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4.1. Data Creation

4.1.1 Search Engine Page Processor (SERPP)

Once we have the queries generated per claim, we use these queries to search the web for ev-
idence items and filter these items based on their relevance to the query as a post-processing
measure. We use SerpAPI[1] to carry this out. Given a query, SerpAPI[1] fetches the top 10
web pages on the Google Search Results page. Each result consists of a URL to the web page,
a search result snippet, and a publication date. To prevent temporal leakage, we add the be-
fore: filter to the query, which restricts the results to those published before the date provided.
Additionally, the rankings are also reverted to the state on the day provided. To filter irrelevant
results, we use all-mpnet-base-v2[61] which is a pre-trained general-purpose model used by sev-
eral works to calculate relevance[19, 6]. We set the threshold of the filter to 0.45. The relevance
labels are formed by mapping these filtered results of every sub-query to the claim whereas the
final corpus includes all unfiltered results. Distractors are also added to the corpus in a similar
way; however, instead of sub-queries, the full claim is provided with a temporal filter but without
any post-processing filtering.

4.1.2 Crawler

Given the filtered set of search results for each sub-query of the claim, we crawl the URLs of
these results on a best-effort basis for future researchers to use. We utilize the grequests library to
perform concurrent queries on the links and retrieve the HTML content. We limit the response
to text/HTML or XML types and restrict the language to English using request headers. We
parse the resulting HTML and extract the main content using the article extractor of the boilerpy
library. We exclude any results that respond with error codes due to authorization, client, or
server-side errors.

4.1.3 Evaluation

To evaluate the quality of our dataset, we conduct manual validation to verify the main hypothe-
ses used to generate our dataset. Additionally, we perform quantitative analysis by measuring
the overall impact of our dataset on the downstream task of fact verification of numerical claims.

Manual Validation

The generation of our dataset involves two main hypotheses:
1. We hypothesize that utilizing the justification document along with the claim to generate

Google search queries through few-shot learning produces high-quality queries mimicking
the thought process of human fact verifiers.

2. Additionally, we hypothesize that these queries generated help produce high-quality evi-
dence, both implicit and explicit when used to search the open web.

We evaluate the above hypotheses through manual validation. We select 50 samples from
our dataset randomly and present their artifacts to annotators. These samples are selected to
reflect the original distribution of the dataset along the dimensions of claim complexity and
veracity label. To assess the first hypothesis, we present the annotator with the claim and the
final generated and filtered queries that are output from the AGQ component in our pipeline. We
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additionally provide the justification document for each sample for reference. For each of these
generated queries per claim, the annotator needs to mark it as relevant or irrelevant in terms of
its aptness for verifying the claim. Additionally, for each set of queries per claim, the annotators
score the set as a whole in terms of comprehensiveness and redundancy on a 5-point numerical
scale. We adopt the following definitions from ClaimDecomp[9]:

• Redundancy: The query set should be as minimal as is practical and not contain repeated
queries. Hence, a high score of 5 would mean that the set of queries is not concise and
only repeatedly focuses on a few aspects required to verify the claim.

• Comprehensiveness: Queries are defined to be comprehensive if they cover as many
aspects of the claim as possible. A high score of 5 would mean the given set of queries
covers all aspects, both implicit and explicit required to verify the claim.

In our task instruction for annotators, we include a hand-crafted example as examples have
proven previously to improve the annotator’s understanding of the task[40]. The instructions
also include explanations for each numerical rating, detailing what each score signifies regarding
comprehensiveness and redundancy. We have three annotators, two familiar with the project, and
one unfamiliar to annotate the samples.

For our second hypothesis, we follow the same setting as above but present the annota-
tor with the claim and relevant Google search snippets generated and filtered that are output
from the SERPP component. Similar to annotating the queries, the annotators now mark each
snippet as relevant or irrelevant along with scoring each set of snippets as a whole in terms
of comprehensiveness and redundancy. While we do have the final corpus of full-length web
documents, we refrain from evaluating them as fetching granular relevance labels for web doc-
uments has proven to be very challenging in previous studies and has resulted in low annotator
agreements[71, 28]. An example annotation is shown in Fig.4.1 and the full task instruction can
be found in Appendix.A.3.

Figure 4.1: Example of manual annotation conducted to assess the quality of QUANTEMP++

Metrics: We aim to evaluate the set of queries and Google search snippets generated for
comprehensiveness and redundancy. We average the scores of comprehensiveness and redun-
dancy across annotators to get a final score per claim. We then check the frequency distribution
of these scores to draw analysis independently for each aspect and each task. We also aim to
quantify the amount of noise being generated in our pipeline. Hence, we calculate the precision
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of relevance labels of queries per claim. We then take the average of the precision score across
claims to get the final precision. We carry out the same procedure for quantifying the noise in
evidence snippets. To assess the reliability of the annotations, we calculated Fleiss’ kappa[17]
for each of the annotation tasks.

4.1.4 Quantitative Analysis

To evaluate the impact of our dataset in the downstream task of fact verification of natural nu-
merical claims, we fine-tune a veracity prediction model using the train and validation splits of
our dataset. We then evaluate the performance of this model against the test split of our dataset
to measure the gain in knowledge our dataset could have imparted to the veracity classifier. We
compare the performance of the following models:

1. NAIVE-CLASSIFIER: A Veracity Classifier that only predicts the majority class of the
dataset.

2. ROBERTA-MNLI-CLAIM-NO-EV: A pre-trained MNLI model fine-tuned to predict the ve-
racity of the claim only by having just the content of the claim as input.

3. GPT-3.5-TURBO: A few-shot learning model that given the claim and oracle evidence(search
snippets), predicts the veracity of the claim. The few-shot learning model dynamically se-
lects one example per veracity class from the training set, similar to V et al. [65]. We use
the gpt-3.5.-turbo generative model for this purpose.

4. ROBERTA-MNLI-QTEMP++: A pre-trained MNLI model fine-tuned to predict the veracity
label of the claim given the claim and its corresponding oracle evidence snippets.

5. ROBERTA-MNLI-GOLD: A pre-trained MNLI model fine-tuned to predict the veracity la-
bel of the claim given the claim and its justification document. This model serves as the
upper bound that can be achieved with the pre-trained MNLI model for QUANTEMP++.

6. GPT-3.5-TURBO-GOLD: A zero-shot model that predicts the veracity of the claim given
the claim and its gold justification document provided by a human fact-checker. This
model serves as the upper bound that can be achieved with the gpt-3.5.-turbo model for
QUANTEMP++.

MNLI Classifier

For the MNLI classifier, we follow [65] and utilize the roberta-large-mnli model. This classifier
consists of an input encoder initialized with the roberta-large-mnli model, followed by a multi-
class classification head. The maximum input length of this model is 512 but we set the limit
to 256 due to resource constraints. A summary of the model can be found in Appendix.A.4.
We fine-tune all the MNLI models using the Adam optimizer with a weight decay of 1× e−5

and a learning rate of 2× e−5. The training process utilizes the cross-entropy loss function and
incorporates early stopping with a patience of 2.

Metrics

For each of these settings, we evaluate the accuracy, per-class F1, macro-F1 (M-F1), and weighted-
F1 (W-F1) scores to account for the class imbalance in the dataset.
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4.2 Evaluation of Query Planning Methods

In Section.3.2.1, we introduced three key query planning methods to retrieve evidence relevant
to verifying numerical claims. We evaluate the retrieval performance of these three key query
planning methods using the following settings:

• CLAIM-ONLY: In this setting, we use the entire numerical claim to retrieve evidence
from the corpus.

• CLAIMDECOMP: ClaimDecomp[9] utilized crowd workers to generate training data to
decompose a claim into yes or no questions. This dataset serves rich examples for claim
decomposition where both implicit and explicit aspects are addressed. Therefore, we uti-
lize this dataset to prompt GPT-3.5-TURBO with dynamically selected in-context samples.
We set the temperature of the LLM to 0.1 as we need relatively deterministic answers for
our decomposition task, ensuring our outputs are restricted to the concepts in our input.

• PGMFC: PgmFC[43] generates step-by-step instructions derived from the decomposition
of the original claim which can be beneficial to fetch evidence to conduct numerical rea-
soning about the claim. Hence, we incorporate the prompting strategy used by the original
paper to generate sub-queries[43].

• QGEN: QUANTEMP++ consists of oracle queries generated by prompting an LLM with
the claim and its justification document. Although these decompositions are not human-
annotated, the claim-subquery pairs contain the thought process utilized by a human fact
checker. We attempt to distill this knowledge into a smaller model by using these pairs as
training examples. We use Google’s FLAN-T5-LARGE[38] instruction-tuned model for
this purpose. We train the model with early stopping with a patience of 2, a learning rate
of 2× e−5, and a batch size of 8.

To form an upper bound on the performance of decomposition-based methods we introduce
the ORACLE-QUERIES setting that uses the oracle queries from QUANTEMP++ to retrieve evi-
dence.

(a) CONCAT (b) Other aggregation methods

Figure 4.2: Formation of the final evidence set using the (a) CONCAT strategy and (b) the other
5 strategies like TOP-1, COMBMAX and COMBSUM.
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Evaluation of Aggregation methods

For the decomposition-based query planning methods of CLAIMDECOMP, PGMFC and QGEN

we saw there was no principled study to aggregate the results in a principled manner, how-
ever, we saw 6 result aggregation strategies namely TOP-1, CONCAT, COMBMAX, COMBMAX-
NORM, COMBSUM and COMBSUM-NORM. Since we cannot evaluate every combination ex-
haustively, we first evaluated the result aggregation strategies using the oracle queries in QUAN-
TEMP++ using a zero-shot retriever. For CONCAT, we concatenate the claim and queries with
a separator and use this as input to our retriever to obtain the documents that form the final evi-
dence set. For TOP-1 we selected the top-scored evidence document per query to form the final
evidence set. For other strategies, for each claim, we first retrieved documents per query and
then applied the aggregation filter to form the final set of evidence documents (See Fig. 4.2).
We then evaluated the performance of this evidence set against the relevance labels in QUAN-
TEMP++. For the zero-shot retriever, we used Contriver[25], a BERT-based model pre-trained
for information retrieval. CONTRIEVER is a dual encoder model pre-trained with contrastive
learning that performs well across different topics. We utilize FAISS[29] to create our corpus
index, employing cosine similarity to retrieve related documents and their respective scores for
each query. We evaluate NDCG@10 and Recall@100 to understand the retrieval performance
of these aggregation methods.

Evaluation of the Retrieval

Once, we analyze the performance of the aggregation methods, we select the best-performing
method and then evaluate the above-mentioned query planning methods to gain insights. We
again use the same zero shot retrieval setting with CONTRIEVER[25] and FAISS to carry out
our experiments. We additionally add a temporal filter in a second setting where all documents
with dates larger than that of the claim are filtered out after retrieving documents from the index.
We assess NDCG@k, Recall@k, Mean Reciprocal Rank (MRR), and Precision@k to evaluate
the query planning’s effectiveness in ranking documents, prioritizing relevant items, covering
diverse aspects, and handling noise at the retrieval of documents for numerical claims.

Evaluating Downstream Impact

To evaluate the downstream impact of the different query planning methods, we take the final
set of evidence snippets aggregated from the retrieval stage and use the top 3 snippets with
document scores above 0.5, and the claim as the input to the MNLI classifier. We use this setting
to both test and train the classifier. For the classifier, we use the same roberta-large-mnli model
as mentioned in Section.4.1.4, as well as the same fine-tuning settings. We observe the metrics
of accuracy, Macro, and Weighted F1 to gauge performance across the query planning methods.
We additionally use the numerical taxonomy of the natural claims (3.2) in QUANTEMP++ to
analyze downstream impact per class.
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4.3 Ablations

To evaluate the aggregation techniques and mainly the performance of different query planning
methods, we chose CONTRIEVER[25] due to its superior performance in retrieval in previous
works and its efficacy at retrieving relevant evidence for queries from diverse domains. This as-
pect is beneficial in our case as our dataset consists of numerical claims from different domains
like politics, medicine, science, etc. Regardless, we test the efficiacy of a few other retrieves,
namely BM25[50], ANCE[80], DPR[31], and Tas-b[23]. There are several other retrievers uti-
lized in different automatic fact verification pipelines but due to time constraints, we only include
the above mentioned ones in our studies.

Post our experiments to evaluate the retrieval performance of key query planning methods,
we assess its downstream impact by feeding the top-k retrieved evidence to the NLI model. To
understand the best k value, we finetune our MNLI model with different number oracle evidence
snippets per claim. Specifically, we experiment with k values of 1, 3, 5, 7, and 10. We abstain
from going above 10 as we set the maximum input limit of roberta-large-mnli as 256 tokens. We
additionally observe the retrieval performance for ORACLE-QUERIES for the above-extended k
values for the validation set.

Hardware configuration

The experiments were conducted on a dedicated private server running on Arch Linux. This
platform features a 16-core 2nd Gen AMD EPYC™ 7302 processor paired with two NVIDIA
GeForce RTX 3090 GPUs, offering significant computational capabilities. Additionally, the
server is equipped with 256 GB of RAM, ensuring smooth and uninterrupted performance during
intensive computational tasks.
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Chapter 5

Results and Discussion

In this section, we present the results of our experiments and discuss the insights gained from
them. First, we assess the quality of the dataset created–QUANTEMP++, and then we utilize this
dataset to evaluate the retrieval performance of key query planning methods. Finally, we discuss
the downstream impact of these query planning methods. Through the insights gained from the
above, we intend to answer our three research questions:

• RQ1: Does query decomposition help retrieve quality evidence from the web for the
verification of natural numerical claims?

• RQ2: How do existing query planning methods perform in terms of retrieval of relevant
evidence snippets to verify numerical claims?

• RQ3: What is the downstream impact of these query planning methods on the task of
verification of numerical claims?

5.1 Dataset Quality

To answer RQ1, we evaluate the quality of the QUANTEMP++ dataset both qualitatively and
quantitatively.

5.1.1 Qualitative Analysis

To evaluate the two main assumptions in the design of our dataset creation pipeline, 3 researchers
manually annotated 50 samples from the dataset. Across both tasks of annotating queries and
snippets for completeness and relevance we get significant agreement (See Table.5.1). However,
due to the more subjective nature of redundancy, our agreement for both tasks in this aspect
is only moderate. From these annotations, we gain the following two main insights from this
evaluation:

Firstly, we see that utilizing a few-shot learning setup effectively generates queries to verify
natural numerical claims. The frequency distribution of numerical scores assigned by our an-
notators for the set of queries generated per claim is provided in Table.5.1. The results of the
manual evaluation show that generated queries cover most of the implicit and explicit numerical

23



5.1. Dataset Quality

(a) Comprehensiveness (b) Redundancy

Numerical scores assigned for the set of queries generated.

(c) Comprehensiveness (d) Redundancy

Numerical scores assigned for the set of evidence snippets.

Figure 5.1: Distribution of numerical scored assigned by annotators during qualitative analysis
of QUANTEMP++.

aspects of the natural claim 86% of the time. However, these queries exhibit a significant amount
of redundancy, with approximately 84% of the cases containing some redundancy. We also see
that the average precision of these queries is 90%, meaning most of our queries are relevant to
the claim. It is also to note that the 10% of queries that are irrelevant could have potentially
impacted downstream quality negatively in the data creation pipeline.

Metric Queries Evidence Snippets

Completeness 0.61 0.66
Redundancy 0.4 0.45
Relevance 0.58 0.67

Table 5.1: Inter-annotator agreement scores for the tasks in the qualitative analysis of QUAN-
TEMP++

Secondly, using the above-generated queries to search the web generally produces evidence
snippets to verify natural numeric claims. The frequency distribution of numerical scores as-
signed by our annotators for the set of evidence snippets generated per claim is provided in
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5.1. Dataset Quality

Table.5.1. Manual evaluations reveal that the mapped evidence snippets mostly cover different
aspects of the claim 69% of the time, and partially cover them an additional 12% of the time.
However, for 87% of cases, the snippets contain redundant information. We also see that the
average precision of the evidence snippets is 62%. A manual analysis of 10 claims with low
coverage scores reveals that this issue arises because parts of the necessary evidence are not
available on the public web or are based on multimodal information.

5.1.2 Quantitative Analysis

To quantitatively measure the efficacy of our dataset, we fine-tune ROBERTA-LARGE-MNLI with
the training split of our dataset and evaluated its performance on our test split of oracle claim
and evidence pairs. From Table.5.2 we see that the model trained on our dataset, ROBERTA-
MNLI-QTEMP++, performs much better than all the baselines on all metrics. It achieves relative
gains of about 41% over NAIVE-CLASSIFIER and about 16% over the ROBERTA-MNLI-CLAIM-
NO-EV classifier. We also see that the performance of ROBERTA-MNLI-QTEMP++ is closer to
ROBERTA-MNLI-GOLD indicating that we are very close to the upper bound that we can achieve
using the ROBERTA-LARGE-MNLI model.

NLI Classifier Accuracy Per class F1 Total
T F C W-F1 M-F1

NAIVE-CLASSIFIER 57.03 0.00 72.64 0.00 24.21 41.42
GPT-3.5-TURBO 54.15 20.88 37.81 20.88 52.87 43.44
GPT-3.5-TURBO-GOLD 62.32 56.67 75.35 28.00 60.47 53.37
ROBERTA-MNLI-CLAIM-NO-EV 63.2 24.71 79.93 47.37 61.53 50.67
ROBERTA-MNLI-QTEMP++ 65.25 79.92 47.76 49.67 66.56 59.11
ROBERTA-MNLI-GOLD 69.66 56.86 82.92 48.79 69.79 62.85

Table 5.2: Performance of different claim veracity prediction models on QUANTEMP++.

Surprisingly, our smaller ROBERTA-MNLI-QTEMP++ classifier achieved relative gains of
approximately 36% over GPT-3.5-TURBO, despite the latter having 520 times more parameters.
Such phenomena have been observed in recent work that smaller language models specifically
finetuned for certain NLP tasks provide comparable or better performance than larger GPT mod-
els [35, 76]. Brown et al. [8] also suggests that one reason GPT-3.5-TURBO might struggle with
NLI tasks is due to its autoregressive modeling design, which may be incompatible with the
requirements of NLI tasks. Additionally, it is to be noted that the performance of GPT-3.5-
TURBO-GOLD falls significantly short of that achieved by ROBERTA-MNLI-QTEMP++, hinting
that in a few shot learning setting GPT-3.5-TURBO is unable to comprehend the complex numeri-
cal information in the input to provide accurate results. Conversely, ROBERTA-MNLI-QTEMP++,
despite being a smaller model, due to fine-tuning, excels at understanding the statistical patterns
in the input, allowing it to internally reason about them and provide accurate predictions.
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5.2. Impact of Query Planning Methods

5.1.3 Key takeaways

In summary, the final takeaways from our qualitative and quantitative analysis of QUANTEMP++
are as follows:

1. Utilizing a few-shot learning setup effectively generates queries to verify natural numeri-
cal claims.

2. Using the above-generated queries to search the web generally produces evidence snippets
to verify natural numeric claims.

3. Smaller models such as ROBERTA-MNLI-QTEMP++ when trained for specific tasks, es-
pecially those involving complex reasoning are capable of outperforming other baselines,
including the general-purpose GPT-3.5-TURBO, which is 520 times larger.

5.2 Impact of Query Planning Methods

To answer RQ2, we first evaluate various aggregation techniques using the oracle queries in
QUANTEMP++ and then use then utilize the best aggregation method to evaluate retrieval for
key query planning methods. The below sections delineate the results and insights of these
evaluations

5.2.1 Aggregation of retrieval results from decomposed queries

In order to compare the retrieval performance of differenct claim decomposition techniques, we
require a principled method to aggregate the retrieval results across the decomposed queries for
each method. The necessity for a principled aggregation technique becomes further pronounced
when different decomposition methods produce a variable number of queries per claim. Ta-
ble.5.3 shows the retrieval performance of 6 aggregation techniques against the QUANTEMP++
dataset with oracle queries.

Method NDCG@10 Recall@100

TOP-1 0.42 0.37
CONCAT 0.47 0.67
COMBSUM 0.45 0.75
COMBMAX 0.50 0.79
COMBSUM-NORM 0.49 0.80
COMBMAX-NORM 0.57 0.82

Table 5.3: Retrieval performance of different aggregation techniques on QUANTEMP++

From the results, we see that COMBMAX-NORM performs the best whereas TOP-1 per-
forms the worst with respect to the NDCG and Recall. The limitation of the TOP-1 aggregation
technique arises from the reliance on the retriever to give the perfect result on the topmost po-
sition for each decomposed query of the claim, exaggerating any errors in decomposition. Each
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5.2. Impact of Query Planning Methods

decomposed query, especially when underspecific, can miss out on addressing important aspects
of the claim by only considering the first result.

COMBSUM-NORM does better than TOP-1 but significantly worse than COMBMAX-NORM.
In previous works COMBSUM is incorporated in information fusion tasks in order to take ad-
vantage of the Chorus Effect [70]. While the Chorus Effect of this technique works to push
evidence relevant to all queries on top to reduce outliers, it also actively discourages diver-
sity. Additionally, if the decomposed queries are redundant, this effect will further suppress
diversity. The presence of queries addressing implicit aspects may not be related to one other
causing confusion in the aggregation process. On the contrary, COMBMAX operates under the
premise that the system of decomposed queries each excels at addressing their own aspects, a
phenomenon known as the Dark Horse Effect [70]. Since this phenomenon promotes diver-
sity in retrieval, which is important for the verification of claims, especially numerical, we see
significantly higher performance in NDCG and recall.

Lastly, we see normalization on input retrieval scores per query during aggregation improves
the final retrieval performance. As mentioned by Wu et al. [78], normalizing input scores allows
equal opportunity for each decomposed query to contribute to the results regardless of the vari-
ation in their scoring of evidence.

5.2.2 Retrieval Results of Key Query Planning Methods

We evaluated the retrieval performance of the various query planning methods on our dataset.
The results are listed in Table.5.4. From these results, we obtain the following main insights.

Query mode NDCG@10 Recall@10 Recall@100 P@10 MRR

CLAIM-ONLY 0.31 0.30 0.51 0.19 0.50

Decomposition

ORACLE-QUERIES 0.54 0.51 0.82 0.32 0.651
CLAIMDECOMP 0.31 0.30 0.56 0.19 0.492
PGMFC 0.30 0.29 0.52 0.18 0.481
QGEN 0.29 0.27 0.54 0.16 0.481

Table 5.4: Retrieval performance of different query planning methods using COMBMAX-NORM

on QUANTEMP++

Different query planning methods have varying impacts on the final retrieval results which
can be seen in Table.5.4. From these results, we observe that although the NDCG@10 scores
across all query planning methods show minimal variation, Recall@100 for decomposition-
based query planning, particularly for CLAIMDECOMP, exhibits a notable increase with relative
gains as high as 10% when compared to CLAIM-ONLY. Additionally, Recall@100 for PGMFC
and QGEN shows increases of 2.4% and 5.9% respectively. Previous research has demonstrated
that using only the claim to retrieve evidence exhibits low recall and hence coverage of aspects
required to verify the claim. Decomposition methods that generate queries to address various
aspects indeed improve coverage. Ensuring evidence coverage for a claim is crucial in the initial
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5.2. Impact of Query Planning Methods

stage of retrieval, particularly for numerical claims. Missed aspects in this stage can often lead
to completely different NLI results. An example of this is given in Appendix.A.1.

In contrast to Recall@100, the Recall@10 for PGMFC and QGEN are slightly worse than
CLAIM-ONLY, while Recall@10 for CLAIMDECOMP is comparable to CLAIM-ONLY. Addi-
tionally, Precision@10 for PGMFC is minimally lower than CLAIM-ONLY by 0.8%, and QGEN

is lower by 2.4%. This could be attributed to noisy results being included from the decompose,
retrieve, and aggregate process for these methods. To reduce noise, we added a simple temporal
filter to restrict retrieval of evidence to ones that were only published before the claim. This
technique improved the results of all query planning methods slightly (See Table.5.5). However,
we see that the gap in performance of CLAIM-ONLY versus decomposition methods widened
for Recall@100. Adding this filter helped improve Precision@10, especially for that of QGEN

by about 3%. Additionally, the MRR for QGEN increased by 9%. Since most downstream
Natural Language Inference (NLI) tasks are sensitive to the order of results, especially during
fine-tuning[60], this increase in MRR could be crucial. Overall we see that adding external sig-
nals like temporal relevance to the retrieval pipelines can potentially reduce noise and improve
the overall performance of query planning methods, especially those based on decomposition.

Query mode NDCG@10 Recall@10 Recall@100 P@10 MRR

CLAIM-ONLY 0.33 0.32 0.51 0.20 0.54

Decomposition

ORACLE-QUERIES 0.57 0.54 0.82 0.34 0.68
CLAIMDECOMP 0.34 0.32 0.57 0.21 0.53
PGMFC 0.32 0.31 0.52 0.20 0.52
QGEN 0.33 0.31 0.56 0.20 0.57

Table 5.5: Retrieval performance of different query planning methods using COMBMAX-NORM

on QUANTEMP++ with temporal filtering.

As a part of future work, a more balanced aggregation method and incorporation of back-
ground knowledge in the decomposition phase may be needed to catch up to the oracle setting.
While utilizing decomposition-based query planning, given the retriever is frozen, noise could
be introduced by faulty decomposition and/or by using COMBMAX-NORM to aggregate results.
It is to be noted that all the decomposition-based methods of CLAIMDECOMP, PGMFC, and
QGEN rely solely on the claim to generate queries. The lack of background knowledge could
cause hallucinatory or redundant queries that only address explicit aspects of the claim[85]. The
huge gap in performance between the ORACLE-QUERIES and other methods further verifies this
observation. Additionally, a known disadvantage of COMBMAX is that it sometimes tends to
increase noise compared to COMBSUM which has a self-correcting nature[70]. Hence, a more
balanced approach may be needed.
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5.2.3 Key takeaways

In summary, the final takeaways from the evaluation of aggregation techniques and finally of
key query planning methods are:

1. For aggregation of retrieval results across decomposed queries, COMBMAX-NORM de-
livers the highest performance, while TOP-1 performs the worst.

2. Evaluation of the retrieval performance of key query planning methods shows that decomposition-
based query planning methods improve Recall@100, while NDCG@10 and Recall@10
scores remain comparable.

3. Additionally, we see that adding external signals to the retriever to reduce noise improves
the overall performance of all query planning methods, especially those based on decom-
position.

5.3 Downstream Impact

While the above results indicate the performance of the query planning methods at retrieval, ob-
serving their corresponding downstream impact is essential as it represents the final outcome of
the pipeline. Hence, to answer RQ3 we evaluate the final performance of the veracity prediction
component for each of the query planning methods, the results of which are shown in Table.5.6.

Query mode NLI performance

Accuracy F1-T F1-F F1-C W-F1 M-F1

ROBERTA-MNLI-CLAIM-NO-EV 63.2 24.71 79.93 47.37 61.53 50.67
ORACLE 65.25 47.76 79.92 49.67 66.56 59.11
CLAIM-ONLY 66.53 53.38 81.46 31.02 64.03 55.28

Decomposition

ORACLE-QUERIES 66.45 45.73 80.78 50.25 66.8 58.92†

CLAIMDECOMP 64.57 53.78 79.97 35.81 64.41 56.51
PGMFC 65.67 51.38 81.19 37.15 65.73 56.57
QGEN 66.25 53.62 81.39 36.95 65.41 57.28†

Table 5.6: NLI Performance Metrics for Various Query Modes on QUANTEMP++.† indicates
statistical significant with respect to CLAIM-ONLY at 0.05 level. Here W-F1 and M-F1 are
weighted and macro F1 respectively. F1-T, F1-F, and F1-C represent the per-class F1 scores for
the True, False, and Conflicting classes, respectively.

Superiority of decomposition-based methods. Firstly, we observe that the performance of
ROBERTA-MNLI-CLAIM-NO-EV performs the worst, corroborating that solely relying on the
surface pattern of the claim to predict a veracity label provides a performance that is nearly
as poor as random guessing. Hence, augmenting the NLI with evidence serves as context or
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5.3. Downstream Impact

clarification, thereby improving performance. Secondly, we observe that the downstream per-
formance provided by decomposition-based query planning methods, specifically that of QGEN

is higher than that of CLAIM-ONLY. While PGMFC and CLAIMDECOMP are minimally better
than CLAIM-ONLY, QGEN provides a significant performance gain of 3.6% in the Macro-F1
score. A comparison of the per-class F1 scores shows that decomposition-based query planning
methods excel at claims that are of a conflicting nature. We observe relative gains of up to 20%
by PGMFC compared to CLAIM-ONLY. Claims whose veracity is of conflicting nature specif-
ically require diverse perspectives to be retrieved as evidence since some parts of them may be
true and other parts false. In Table.5.8 (b), we see an example of this where CLAIM-ONLY fails
to provide the correct downstream result as the evidence it retrieves is too homogeneous.

Superior performance of QGEN. Another interesting observation we see is that, despite
PGMFC and CLAIMDECOMP using a larger LLM GPT-3.5-TURBO for decomposition, the
downstream impact of QGEN’s query decomposition method, which was developed by train-
ing a smaller model of Flan-T5 with our oracle queries from QUANTEMP++, is superior. The
training of QGEN can also be seen as a form of knowledge distillation, as our oracle queries were
generated by prompting the GPT-3.5-TURBO model with the claim and justification document
as input. Distillation of knowledge from larger LLMs to comparatively smaller LLMs has been
an effective strategy to reduce inference costs while maintaining performance [62, 11, 45, 21].
Specifically, FLAN-T5-LARGE [38] has shown to outperform zero shot LLMs like GPT-3.5-
TURBO at specific in-domain tasks [18]. Additionally, Wu et al. [79] has shown that problem
decomposition tasks are easier to distill into small LLMs in QA tasks. We observe the same with
decomposing claims into sub-queries, which aids in retrieving and verifying information.

Performance by Claim Taxonomy. To understand what type of numerical claims benefit most
from different query planning methods, we show veracity prediction results per numerical taxon-
omy class in Table.5.7. We see that decomposition-based methods provide significantly superior
performance for comparison and interval class of numerical claims. PGMFC provides relative
gains of about 11.5% over CLAIM-ONLY for comparison-based numerical claims and QGEN

provides gains as high as 19% for interval-based numerical claims. This is only natural be-
cause interval and comparison-based numerical claims require multiple independent aspects to
be fetched, which are then reasoned about to get the veracity of the claim. In contrast to inter-
val and comparison-based numerical claims, we find that in statistical and temporal classes, the
performance across various query planning methods is comparable.
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Taxonomy Temporal Statistical Interval Comparison

Method Accuracy M-F1 Accuracy M-F1 Accuracy M-F1 Accuracy M-F1

ORACLE 80.62 62.48 58.51 54.68 66.86 57.55 54.12 53.25
NAIVE-CLASSIFIER 74.09 28.35 50.83 0.22 63.4 25.86 32.94 16.51
ROBERTA-MNLI-CLAIM-NO-EV 77.68 51.7 57.77 46.62 61.96 46.36 51.76 45.64
CLAIM-ONLY 79.74 54.22 62.56 55.98 64.55 47.41 53.33 50.69

Decomposition

ORACLE-QUERIES 78.27 54.7 61.16 56.29 67.15 54.9 59.22 58.23
CLAIMDECOMP 77.09 54.67 59.59 55.25 64.55 53.3 55.29 54.79
PGMFC 76.95 49.94 61.49 55.9 65.99 53.17 64.57 56.51
QGEN 78.41 51.65 61.49 56.53 67.15 56.38 55.29 54.79

Table 5.7: Performance metrics of different query planning methods across Different Tax-
onomies and Models on QUANTEMP++

(a) Error: Missed Explicit Aspect: Noisy Retrieval

Claim Jimmy Carter The Southern Baptist Convention voted 13 years ago ”that women were inferior
and had to be subservient to their husbands.”

Oracle [1] Former President Jimmy Carter Leaves the Southern Baptist ...[2] Southern Baptist Con-
vention’s declaration that wives should “submit graciously” to their husbands...[3] Southern
Baptist Convention. In this study, a ... never tarnish the influence of the church.

Queries [Q1] The Southern Baptist Convention voted 13 years ago. [Q2] The Southern Baptist Con-
vention voted that women were inferior and had to be sub-servient to their husbands.

Retrieved [1] Former President Jimmy Carter Leaves the Southern Baptist ...[2] SBC and Women Pastors
- Seminary survey...churches where women are pastoring ... [3] An Aid To Understanding the
SBC - Baptist Press This brief paper is offered to assist..

Comment The claim talks about the SBC voting on women being inferior. The SBC only mentioned
that wives should “submit graciously” to their husbands, but did not mention anything about
equality. Due to under-specified queries in PGMFC, the retrieved results are not fully relevant

(b) Error: Missed Explicit Apect: Homogenous Results

Claim Rodrigo Duterte President Rodrigo Duterte says no country can diminish the importance of
the July 2016 arbitral award”

Oracle [1] Duterte stresses soft approach toward China in last policy speech Referring to the July
2016..[2]...Arbitral ruling can’t be ignored by any country, Duterte to Asean MANILA...[3]
...Philippine President Duterte has downplayed the South China Sea Arbitration... Award..

Queries Same as Claim.
Retrieved [1]...Arbitral ruling can’t be ignored by any country, Duterte to Asean MANILA...[2] ...The

Philippines ”vigorously pushed” for the inclusion of an arbitration ruling ... [3] Duterte stresses
soft approach toward China in last policy speech

Comment The claim mentions that Rodrigo Deuterte stressed the importance of the July 2016 arbitral
award. While he did do so, it conflicts with his previous views where he has downplayed its
importance. We see that only evidence that confirms the claim is fetched by CLAIM-ONLY.

(c) Error: Missed Implicit Aspect

Claim Jim Renacci ”Since President Obama took office, our federal spending has increased by nearly
30 percent and our national debt has increased by almost 50 percent.”

Oracle [1] President Obama’s Spending...Spending has gone up from $2.98 trillion in 2008
to...[2]...US debt: how big is it and who owns it? ...has gone up from $3tn, a rise of 74.1%...[3]
...In 2008...financial crisis had generated a decrease in government revenues and an increase
in government expenditures... Award..

Queries [Q1] Federal spending has increased by nearly 30 percent since President Obama took of-
fice.[Q1] The national debt has increased by almost 50 percent since President Obama took
office

Retrieved [1]...The amount of federal debt held by the public has skyrocketed in the past...[2] ...National
Debt Increased Under Obama Faster Than Any Other... [3] Federal Government Will Pick Up
Nearly All Costs of Health ...

Comment While the numbers for spending and debt are correct, it was caused by factors out of Obama’s
control such as the financial crisis and recession. This implicit aspect was not fetched as the
queries don’t address it CLAIMDECOMP.

Table 5.8: Examples of Retrieval Error Codes recognized during analysis.
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Discrepancy between retrieval and downstream performance. Lastly, an interesting obser-
vation that we see from comparing the results from retrieval in Table.5.5 and NLI from Table.5.6
is that the gains in retrieval performance do not proportionally translate to downstream NLI
gains. The retrieval performance of oracle queries provides significant relative gains of 68.7%
at Recall@10 and 74% at NDCG@10 over the query planning method of CLAIM-ONLY at re-
trieval. However, we see that this only translated to a relative gain of 6.6% downstream. Accord-
ing to Zamani et al. [82], relevance-based retrieval pipelines are designed with the assumption
that retrieved information will be consumed by humans. However, this approach might not be
suitable for retrieval-enhanced verification frameworks. To address this, Zhang et al. [83] op-
timizes the retriever by incorporating the utility of retrieval in downstream tasks as feedback
during the retriever training process. Following the same philosophy to train the query decom-
position model may reduce the observed gap in the performance of retrieval and downstream
NLI.

5.3.1 Error Analysis

Figure 5.2: Taxonomy of errors identified during Error analysis

Error analysis of query planning methods helps us better understand their performances and
identify their pitfalls. Our thematic analysis on 25 erroneous samples per query planning method
helped us form a taxonomy of error codes provided in Fig.5.2. Table.5.10 and Table.5.2 show
the distribution of errors per query planning method. Table.A.2 in the appendix additionally
shows the distribution of errors per query panning method and claim veracity class. Table.A.1
in the appendix shows one example per error code observed.

Retrieval as the main source of error. We see that for all query planning methods, the pri-
mary source of errors are in the retrieval stage. This shows that it is essential to build a strong
retrieval pipeline to improve the overall performance of the claim verification pipeline. In Ta-
ble.5.10 we observed that within retrieval errors, two types of errors are caused. The retrieved
evidence either fails to address explicit aspects of the claim or implicit aspects of the claim. An
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Error Code CLAIM-ONLY CLAIMDECOMP PGMFC QGEN

Retrieval errors
Missed Implicit Aspects 6 8 4 7
Missed Explicit Aspects 12 9 11 5

Unverifiable
Evidence unavailable 3 4 3 0
Label error 0 1 1 3

NLI Errors 5 5 6 9

Table 5.9: Distribution of error Codes Across different query planning methods.

Error Codes Claim Only Claim Decomp PgmFC QGen

Homogenous retrieval 11 9 6 4
Noisy retrieval 1 0 5 1

Table 5.10: Distribution of Missed Explicit Errors across different query planning methods.

implicit aspect refers to an element of the claim that isn’t explicitly stated but is inferred. Under-
standing these aspects often relies on background knowledge or on numerical common sense[9].
The majority of retrieval errors, however, are due to retrieved evidence failing to address all the
multiple aspects explicitly mentioned in the claim. Table.5.8 shows examples for each of these
cases.

Query Diversity and Granularity. On further analysis of errors caused by missed explicit
aspects in retrieval (See Table.5.9), we see that they are caused by either homogeneous retrieval
or noisy retrieval. Homogeneous retrieval occurs when all the retrieved evidence predominantly
aligns closely or agrees entirely with the query. This phenomenon is expected in the CLAIM-
ONLY setting where we provide only the claim to the retriever. Given there can be snippets with
diverse perspectives on the claim from different sources, those with significant overlap with
the claim are prioritized and pushed to the top. Decomposition-based query planning techniques
such as CLAIMDECOMP and PGMFC, the presence of under-decomposed queries and redundant
queries in the QGEN also contribute to this issue. Previous research such as Santos et al. [55]
that enforce diversification of search results has shown to provide superior results. In the case
of PGMFC, errors arise from noisy retrieval due to under-specification, and in case of QGEN,
errors arise from hallucinated queries.

33



5.4. Ablations

5.3.2 Key takeaways

1. Decomposition-based query planning methods provide superior downstream performance,
especially for numerical claims of conflicting nature.

2. The ability to decompose numerical claims can be effectively distilled into smaller models,
enabling them to outperform larger LLMs that rely on few-shot techniques

3. During query planning, over-specified queries lead to homogeneous retrieval results whereas
under-specified queries lead to noisy results. Therefore, a balanced approach is essential.

4. Finally, the retrieval performance may not translate proportionally to downstream NLI
performance as the relevance of retrieved evidence may not corroborate with their utility
to verify

5.4 Ablations

5.4.1 Performance of Zero-Shot Retrievers

Table.5.11 shows the zero-shot retrieval performances of different retrievers. We see that BM25,
CONTRIEVER, and ANCE perform comparably at the metric of NDCG@10 and Recall@10, but
CONTRIEVER provides the best performance for Recall@100. This superior performance could
be due to contrastive learning that helps retrieve relevant evidence in the presence of distractors.
Similarly, ANCE which is also trained using contrastive learning performs comparably to CON-
TRIEVER while giving slightly lower recall values.

Zero Shot Retriever NDCG@10 Recall@10 Recall@100

BM25 0.59 0.55 0.69
CONTRIEVER 0.57 0.55 0.82
DPR 0.41 0.37 0.67
TAS-B 0.53 0.49 0.79
ANCE 0.58 0.54 0.80

Table 5.11: Retrieval performance of ORACLE-QUERIES on the validation split of QUAN-
TEMP++

5.4.2 NLI Input Length

In the fact verification pipeline, post retrieval, only a fixed number of top evidence snippets can
be provided to the downstream MNLI model as most MNLI models have input length restric-
tions. The number of snippets we provide can have varying impacts on the downstream results.
In Table.5.12, we see that all the metrics first increase from Top-1 to Top-3, then decrease and
stagnate after. Providing too few snippets can impair the coverage of the aspects of the numerical
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claim and including too many snippets can introduce noise in the set and again reduce perfor-
mance. From Figure.5.3 we see that within the retrieval performance of ORACLE-QUERIES,
recall increases with k (number of retrieved snippets), and precision increases from k=1 to k=3
then reduces.

Query mode Accuracy W-F1 M-F1

Top 1 64.57 62.74 54.28
Top 3 66.45 66.80 58.92
Top 5 66.25 65.20 56.90
Top 7 65.67 65.65 57.30

Top 10 65.65 65.30 57.30

Table 5.12: NLI performance of ORACLE-QUERIES with different input evidence lengths.

Figure 5.3: Retrieval performance of ORACLE-QUERIES on QUANTEMP++ on the validation
set.
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Chapter 6

Conclusion and Future Work

In our work, we aim to create a comprehensive dataset of natural numerical claims that provide a
realistic environment to develop effective automatic fact verification pipelines that could possess
the skills of a human fact checker. Given this realistic dataset, we also aim to evaluate the perfor-
mance of existing query planning techniques, as they form the foundation of the fact verification
pipelines and hence can significantly impact downstream performance. We assess the pros and
cons of key existing query planning paradigms, particularly those of decomposition with respect
to retrieval performance and then finally downstream veracity prediction performance. Through
experiments, we addressed the following research questions:

1. Does query decomposition help retrieve quality evidence from the web for the verification
of natural numerical claims?

2. How do existing query planning methods perform in terms of retrieval of relevant evidence
snippets to verify numerical claims?

3. What is the downstream impact of these query planning methods on the task of verification
of numerical claims?

On analysis, we find that our dataset, QUANTEMP++, generated using weak supervision
effectively captures the implicit and explicit numerical aspects of the claim through decomposed
queries. These queries then help retrieve evidence from the open web. Fine-tuning a smaller NLI
model with our dataset provides superior performance over the baselines included. Surprisingly,
we observe that a smaller NLI model fine-tuned with the claim and oracle evidence as input
outperforms the larger GPT-3.5-TURBO model that utilizes a few shot settings, achieving relative
gains of about 36%.

To evaluate the retrieval performance of key query planning paradigms, specifically those
based on decomposition, we require a principled method to combine the results across the de-
composed queries. We see that COMBMAX-NORM provides superior performance compared
to other methods. Using COMBMAX-NORM, we then see decomposition-based query planning
methods provide superior recall compared to solely using the claim for retrieval. Addition-
ally, we see that adding external signals to the retriever to reduce noise improves the overall
performance of all query planning methods, especially those based on decomposition. When
evaluating the downstream impact of these methods, we consistently find that decomposition-
based query planning methods outperform others. Notably, QGEN, a query generation model
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trained with our oracle queries, achieves up to 3.6% relative gains over just using the claim as a
query. This demonstrates that the ability to decompose numerical claims can be effectively dis-
tilled into smaller models. Specifically for interval and comparison-based claims, decomposition
methods prove superior performance because of their ability to capture diverse perspectives. Fi-
nally, on comparing the retrieval performance of the oracle queries from our dataset and their
downstream impact, we see that the retrieval performance may not translate proportionally to
downstream NLI performance as the relevance of retrieved evidence may not corroborate with
their utility to verify.

Overall, the choice of query planning method can largely impact retrieval and hence the final
performance of the verification pipeline. Under-specified queries can introduce noise into the
system, whereas over-specified queries can limit diversity, thereby hindering the pipeline’s per-
formance for natural numerical claims. Therefore, while claim decomposition shows promising
results, it is essential to use a balanced approach to produce these decompositions. In essence,
creating a realistic environment and focusing on refining the initial component of the pipeline
can help address problems at the root, preventing error propagation and enabling the proper
development of subsequent components. With our research, we aim to provide this realistic
environment, allowing future researchers to understand the challenges of developing a fact ver-
ification pipeline suitable for real-time deployment for natural numerical claims. The develop-
ment of such a pipeline can greatly assist journalism by managing the overwhelming number
of numerical claims, helping to protect the public from deception, and potentially even saving
lives.

6.1 Limitations and Future Work

While our research provides a realistic dataset for verifying natural numerical claims and pro-
vides meaningful insights into the query planning needed to address their information needs, we
acknowledge the following drawbacks.

Data Creation Pipeline

With our data creation pipeline we assume that for each claim, the supporting evidence is pub-
licly available on the web. However, in reality human fact-checkers also get their evidence
from private repositories, websites behind paywalls, or by making calls to different institutions
requesting information. Additionally, in our data pipeline, we consider a single modality-text,
however, in reality, evidence can be in the form of videos, audio, images, and PDF documents[2].
Therefore, a more comprehensive approach is needed to gather evidence from multiple modal-
ities and archived pages which would improve evidence coverage of the given claims. We ad-
ditionally see that the qualitative analysis of the set of queries and evidence snippets generated
during our data creation pipeline indicates that despite applying our filters, there is still a con-
siderable amount of noise and redundancy. Hence a stronger filter using an appropriate unsu-
pervised clustering mechanism[24] could be employed to only retain representative queries and
evidence snippets.
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Instillation of numerical sense

During the evaluation of downstream veracity classifiers, we saw that the performance of the
models trained using justification documents produced a maximum Macro-F1 of 61% leaving
a large gap for improvement. Similarly, in our evaluation of retrieval, we observe a large gap
in performance between oracle queries and other paradigms indicating the lack of numerical
understanding and reasoning skills in these components. Several works like GENBERT[20],
NumBERT[73] and method proposed by Petrak et al. [46] have tried to inject numerical rea-
soning ability into language models and shown improvements in downstream tasks like discrete
reasoning. Future works could assess their effectiveness in retrieval tasks and their superiority
in verifying factual numerical claims.

Improving query generation

Comparing the retrieval and downstream performances of oracle queries in QUANTEMP++
showed us that retrieval performance did not translate proportionally to downstream veracity
prediction performance. In a closely related study aimed at addressing this issue, Zhang et al.
[83] enhances the retriever by integrating the utility of retrieval in downstream tasks as feedback
during the retriever training process. Following the same philosophy to train the query decompo-
sition model may reduce the observed gap in the performance of retrieval and downstream NLI.
Furthermore, using reinforcement learning to explicitly reward the diversity and uniqueness of
queries during the training of the query generator could also help mitigate other disadvantages
of existing methods.

Utilization of full web pages

Finally, in our work, we utilize search snippets as evidence despite crawling the full-length web
pages corresponding to these snippets. This restricts our work as full-length web pages provide
full context and contain important information such as disclaimers and credibility characteristics
that play an important role in the verification of natural claims. However, since most LLMs
have limited input length, utilizing these full-length web pages is not as straightforward. A
suite of multilevel retrieval, chunking, and aggregation techniques is required to process such
information, which we leave for future researchers to explore.

38



Bibliography

[1] SerpApi: Google Search API — serpapi.com. https://serpapi.com/. [Accessed 08-
06-2024].

[2] Mubashara Akhtar, Michael Schlichtkrull, Zhijiang Guo, Oana Cocarascu, Elena Sim-
perl, and Andreas Vlachos. Multimodal automated fact-checking: A survey. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 5430–5448, Singapore, December 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.361. URL
https://aclanthology.org/2023.findings-emnlp.361.

[3] Tariq Alhindi, Savvas Petridis, and Smaranda Muresan. Where is your evidence: Im-
proving fact-checking by justification modeling. In Proceedings of the First Workshop
on Fact Extraction and VERification (FEVER), pages 85–90, Brussels, Belgium, Novem-
ber 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5513. URL
https://aclanthology.org/W18-5513.

[4] Rami Aly, Zhijiang Guo, Michael Schlichtkrull, James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. Feverous: Fact extraction and ver-
ification over unstructured and structured information. arXiv preprint arXiv:2106.05707,
2021.

[5] Isabelle Augenstein, Christina Lioma, Dongsheng Wang, Lucas Chaves Lima, Casper
Hansen, Christian Hansen, and Jakob Grue Simonsen. MultiFC: A real-world multi-
domain dataset for evidence-based fact checking of claims. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 4685–4697, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1475.
URL https://aclanthology.org/D19-1475.

[6] Aditya Kiran Brahma, Srinivas Nagamalla, Jose Mathew, and Jairaj Sathyanarayana. Im-
proving search relevance in a hyperlocal food delivery using language models. In Proceed-
ings of the 7th Joint International Conference on Data Science & Management of Data

39

https://serpapi.com/
https://aclanthology.org/2023.findings-emnlp.361
https://aclanthology.org/W18-5513
https://aclanthology.org/D19-1475


Bibliography

(11th ACM IKDD CODS and 29th COMAD), CODS-COMAD ’24, page 479–483, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400716348. doi:
10.1145/3632410.3632428. URL https://doi.org/10.1145/3632410.3632428.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper
/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper
/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[9] Jifan Chen, Aniruddh Sriram, Eunsol Choi, and Greg Durrett. Generating literal and im-
plied subquestions to fact-check complex claims, 2022.

[10] Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett, and Eunsol Choi. Complex claim
verification with evidence retrieved in the wild. ArXiv, abs/2305.11859, 2023. URL http
s://api.semanticscholar.org/CorpusID:258822852.

[11] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org
(accessed 14 April 2023), 2(3):6, 2023.

[12] Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu. Computation-al journalism: A call
to arms to database research-ers. In 5th Biennial Conference on Innovative Data Systems
Research, ACM, 2011.

[13] Leon Derczynski, Kalina Bontcheva, Maria Liakata, Rob Procter, Geraldine Wong
Sak Hoi, and Arkaitz Zubiaga. SemEval-2017 task 8: RumourEval: Determining ru-
mour veracity and support for rumours. In Steven Bethard, Marine Carpuat, Marianna
Apidianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens, editors, Proceedings

40

https://doi.org/10.1145/3632410.3632428
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:258822852
https://api.semanticscholar.org/CorpusID:258822852


Bibliography

of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 69–
76, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/S17-2006. URL https://aclanthology.org/S17-2006.

[14] Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bulian, Massimiliano Ciaramita, and
Markus Leippold. Climate-fever: A dataset for verification of real-world climate claims,
2021.

[15] Tim Draws, David La Barbera, Michael Soprano, Kevin Roitero, Davide Ceolin, Alessan-
dro Checco, and Stefano Mizzaro. The effects of crowd worker biases in fact-checking
tasks. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Trans-
parency, pages 2114–2124, 2022.

[16] Angela Fan, Aleksandra Piktus, Fabio Petroni, Guillaume Wenzek, Marzieh Saeidi, An-
dreas Vlachos, Antoine Bordes, and Sebastian Riedel. Generating fact checking briefs.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
7147–7161, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.580. URL https://aclanthology.org/2020.emnlp-m
ain.580.

[17] Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik, et al. The measurement of interrater
agreement. Statistical methods for rates and proportions, 2(212-236):22–23, 1981.

[18] Xue-Yong Fu, Md Tahmid Rahman Laskar, Elena Khasanova, Cheng Chen, and
Shashi Bhushan TN. Tiny titans: Can smaller large language models punch above their
weight in the real world for meeting summarization?, 2024.

[19] Carlo Galli, Nikolaos Donos, and Elena Calciolari. Performance of 4 pre-trained sentence
transformer models in the semantic query of a systematic review dataset on peri-implantitis.
Information, 15(2):68, 2024.

[20] Mor Geva, Ankit Gupta, and Jonathan Berant. Injecting numerical reasoning skills into
language models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors,
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 946–958, Online, July 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.acl-main.89. URL https://aclanthology.org/2020.acl-main.89.

[21] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of
large language models, 2024.

[22] Zhijiang Guo, Michael Schlichtkrull, and Andreas Vlachos. A survey on automated fact-
checking. Transactions of the Association for Computational Linguistics, 10:178–206,
2022. doi: 10.1162/tacl a 00454. URL https://aclanthology.org/2022.tacl-1.11.

[23] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan Hanbury.
Efficiently teaching an effective dense retriever with balanced topic aware sampling. In

41

https://aclanthology.org/S17-2006
https://aclanthology.org/2020.emnlp-main.580
https://aclanthology.org/2020.emnlp-main.580
https://aclanthology.org/2020.acl-main.89
https://aclanthology.org/2022.tacl-1.11


Bibliography

Proceedings of the 44th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’21, page 113–122, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450380379. doi: 10.1145/3404835.
3462891. URL https://doi.org/10.1145/3404835.3462891.

[24] Yuan Hong, Jaideep Vaidya, Haibing Lu, and Wen Ming Liu. Accurate and efficient query
clustering via top ranked search results. In Web Intelligence, volume 14, pages 119–138.
IOS Press, 2016.

[25] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Ar-
mand Joulin, and Edouard Grave. Unsupervised dense information retrieval with con-
trastive learning, 2021. URL https://arxiv.org/abs/2112.09118.

[26] Pegah Jandaghi and Jay Pujara. Identifying quantifiably verifiable statements from text.
In Estevam Hruschka, Tom Mitchell, Sajjadur Rahman, Dunja Mladenić, and Marko Gro-
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[29] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
gpus. IEEE Transactions on Big Data, 7(3):535–547, 2021. doi: 10.1109/TBDATA.2019.
2921572.

[30] Ryo Kamoi, Tanya Goyal, Juan Diego Rodriguez, and Greg Durrett. Wice: Real-world
entailment for claims in wikipedia. arXiv preprint arXiv:2303.01432, 2023.

[31] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answer-
ing. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6769–6781, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.em
nlp-main.550.

42

https://doi.org/10.1145/3404835.3462891
https://arxiv.org/abs/2112.09118
https://aclanthology.org/2023.matching-1.2
https://aclanthology.org/D19-1259
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550


Bibliography

[32] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answer-
ing. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6769–6781, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.em
nlp-main.550.

[33] Kashif Khan, Ruizhe Wang, and Pascal Poupart. WatClaimCheck: A new dataset for
claim entailment and inference. In Smaranda Muresan, Preslav Nakov, and Aline Villavi-
cencio, editors, Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1293–1304, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.92. URL
https://aclanthology.org/2022.acl-long.92.

[34] Ryosuke Kinoshita and Shun Shiramatsu. Agent for recommending information relevant to
web-based discussion by generating query terms using gpt-3. In 2022 IEEE International
Conference on Agents (ICA), pages 24–29, 2022. doi: 10.1109/ICA55837.2022.00011.
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Appendix A

Appendix

A.1 Examples

This section presents detailed examples of phenomena observed in the fact verification pipeline.

Error Code: Missed Explicit Apect: Homogenous Results
Example of method: CLAIM-ONLY

Claim: Rodrigo Duterte President Rodrigo Duterte says no country can diminish the importance
of the July 2016 arbitral award by the Permanent Court of Arbitration on the South China Sea.
Oracle Evidence:

1. Duterte stresses soft approach toward China in last policy speech Referring to the July
2016..

2. ...Arbitral ruling can’t be ignored by any country, Duterte to Asean MANILA..
3. 021/126 ”...Philippine President Duterte has downplayed the South China Sea Arbitration

Award in the hope of gaining China’s infrastructure and ...
Queries:

1. Same as Claim
Fetched:

1. ...Arbitral ruling can’t be ignored by any country, Duterte to Asean MANILA..
2. ... Philippines says dropping South China Sea ruling from ASEAN...The Philippines ”vig-

orously pushed” for the inclusion of an arbitration ruling ...
3. Duterte stresses soft approach toward China in last policy speech...Referring to the July

2016 ruling by an international tribunal ...
Comment: The claim mentions that Rodrigo Deuterte stressed the importance of the July 2016
arbitral award. While he did do so, it conflicts with his previous views where he has downplayed
its importance. We see that only evidence that confirms the claim is fetched.
Error Code: Missed Explicit Aspect: Noisy Retrieval
Example of method: PGMFC
Claim: Jimmy Carter The Southern Baptist Convention voted 13 years ago ”that women were
inferior and had to be subservient to their husbands.”.
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Oracle Evidence:
1. Former President Jimmy Carter Leaves the Southern Baptist ... The sad reality is that

Jimmy Carter has been estranged from the Southern Baptist Convention for decades. He
shifted his identification to another ...

2. Wifely submission: The SBC Resolution — The Christian Century Media coverage of the
Southern Baptist Convention’s declaration that wives should “submit graciously” to their
husbands has been surprisingly extensive.

PDF the political and social attitudes of political and social attitudes of Southern Baptist clergy,
a ... Southern Baptist Convention. In this study, a ... never tarnish the influence of the
church.

Queries:

1. The Southern Baptist Convention voted 13 years ago.
2. The Southern Baptist Convention voted that women were inferior and had to be sub-

servient to their husbands.
Fetched:

1. Former President Jimmy Carter Leaves the Southern Baptist ... The sad reality is that
Jimmy Carter has been estranged from the Southern Baptist Convention for decades. He
shifted his identification to another ...

2. SBC and Women Pastors - Baptist Press According to the Midwestern Seminary survey
ten state conventions have churches where women are pastoring Southern Baptist churches
– half of them in Virginia.

3. An Aid To Understanding the SBC - Baptist Press This brief paper is offered to assist
those who wish to understand the Southern Baptist Convention, its work, perspectives,
and governance, better. BAPTISTS IN..

Comment: The claim talks about the SBC voting on women being inferior. The SBC only
mentioned that wives should “submit graciously” to their husbands, but did not mention anything
about equality. Due to under-specified queries, the retrieved results are not fully relevant.
Error Code: Retrieval Error:Missed Implicit Aspect
Example of method: PGMFC, CLAIMDECOMP

Claim: Jim Renacci ”Since President Obama took office, our federal spending has increased by
nearly 30 percent and our national debt has increased by almost 50 percent.”
Oracle Evidence:

1. President Obama’s Spending — Cato at Liberty Blog Spending has gone up from $2.98
trillion in 2008—the year before Obama came into office—to a proposed $3.80 trillion in
2013. That is a 28%percent increase in ...

2. US debt: how big is it and who owns it? — News — theguardian.com Under President
Obama’s first term, that figure has gone up from $3tn, a rise of 74.1%. Under George W
Bush, it went up too - by 85% over the whole two terms - ....

[PDF The effect of the economic and financial crisis on government ... In 2008 and 2009, the
economic and financial crisis had generated a decrease in government revenues and an
increase in government expenditures in terms of GDP.

Queries:
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1. Federal spending has increased by nearly 30 percent since President Obama took office.
2. The national debt has increased by almost 50 percent since President Obama took office.

Fetched:
1. The Budget and Economic Outlook: An Update The amount of federal debt held by the

public has skyrocketed in the past two years: from 40 percent of GDP at the end of 2008
to nearly 62 percent at the end ...

2. National Debt Increased Under Obama Faster Than Any Other ... An analysis by CBS
News shows that the national debt has skyrocketed under President Barack Obama —
increasing more than $4 trillion during his presidency.

3. Federal Government Will Pick Up Nearly All Costs of Health ... Congressional Budget
Office (CBO) analysis indicates that between 2014 and 2022, the ACA’s Medicaid expan-
sion will add just 2.8 percent to what states spend on ...

Comment: The claim mentions that federal spending and debt have increased since Obama
took office. While the numbers are correct, it was caused by factors out of Obama’s control such
as the financial crisis and recession. This implicit aspect was not fetched as the queries don’t
address it.
Error Code: Unverifiable: Evidence Unavailable
Example of method: PGMFC
Claim: Bill Pascrell ”As many as 22,000 Americans die each year because they don’t have
health insurance.” a speech
Oracle Evidence:

1. Health Insurance and Access to Health Care in the United States - Being uninsured is
associated not only with inadequate access to care and poorer health but also with the
most serious health consequence, premature death.

2. Why We Must Ration Health Care - The New York Times ... Research Institute, described
... care and had a death rate 37 percent higher than those with health insurance. ... Richard
Kronick, a professor at the School of ...

PDF Uninsured and Dying Because of It: — Urban Institute insurance status and death rates.
One used 1971 ... Americans died in 2000 because they were uninsured. ... “Mortality in
the Uninsured Compared with that in.

3. More than 26,000 Americans die each year because of lack ... - NCBI In the seven years
from 2000 to 2006 an estimated 162,700 Americans died because of lack of health insur-
ance. Families USA said, “The number of uninsured ...

4. Health Insurance Coverage and Mortality Revisited - PMC - NCBI 1994;), and the IoM re-
lied heavily on these two studies to estimate that lack of insurance increased the mortality
rate by 25 percent. The studies were similar ...

Queries:
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1. As many as 22,000 Americans die each year.
2. The cause of death for these Americans is the lack of health insurance.

Fetched:
1. Why We Must Ration Health Care - The New York Times Estimates of the number of U.S.

deaths caused annually by the absence of universal health insurance go as high as 20,000.
One study concluded that in the age ...

2. Health Insurance and Access to Health Care in the United States Being uninsured is as-
sociated not only with inadequate access to care and poorer health but also with the most
serious health consequence, premature death.

3. More than 26,000 Americans die each year because of lack ... - NCBI Many more Amer-
icans die because of a lack of health insurance than previously thought, concludes a new
state-by-state study by Families USA, a non-profit ...

Comment: The claim mentions that there are 22,000 Americans dying each year due to lack
of insurance. While there is plenty of evidence confirming the same, a more recent paper by
Richard Kronick of the University of California, published in HSR: Health Services Research,
challenges the IOM’s conclusions, making the final verdict conflicting. However, this new evi-
dence is not present in the whole corpus itself, making it impossible for any retriever to fetch it.

Error Code: NLI Error
Example of method: QGEN

Claim: An aerial picture of burnt train cars in wet mud shows the aftermath of the February
2023 train derailment in East Palestine, Ohio.
Oracle Evidence:

1. Release of toxic chemicals from train derailment in Ohio prompts ... A drone footage
shows the freight train derailment in East Palestine, Ohio. Ohio residents can return after
air deemed safe after train derailment. By ... Railroad Lobbied Against Safety Changes
Before Ohio Train.

2. Crash ... Ohio Train Derailment. Photo: mpi34/MediaPunch /IPX (AP). Last weekend, a
cargo train carrying toxic chemicals derailed and caught fire in Ohio. Earlier this ... Ohio
catastrophe is ’wake-up call’ to dangers of deadly train ... Five days after a train carrying
vinyl chloride derailed and exploded near the Ohio-Pennsylvania border, crews ignited a
controlled burn of toxic chemicals to ...

Queries:
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1. Aerial photograph train cars burning in wet mud East Palestine Ohio 2023
2. Atlanta International Airport train derailment February 2023
3. Train derailment aftermath East Palestine Ohio February 2023
4. Impact of train derailment on East Palestine Ohio community

Fetched:
1. File:2023 Ohio train derailment.jpg - Wikipedia Drone footage shows the freight train

derailment in East Palestine, Ohio, U.S., February 6, 2023 in this screengrab obtained
from a handout video released by ... East Palestine, OH Train Derailment Information.
On the evening of February 3, 2023, a train derailed in East Palestine, Ohio. The tanker
cars, carrying several types of chemicals, ruptured, and caught fire.

2. Site Profile - East Palestine Train Derailment - EPA OSC Response Please visit our East
Palestine, Ohio Train Derailment Emergency Response webpage for the latest updates on
EPA’s emergency response to this incident.

Comment: Evidence clearly states that the incident mentioned by the claim did occur, yet the
NLI model predicts Conflict as the label.

Table A.1: Examples of errors by code formed during error analysis.
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Example: Claim from QUANTEMP++

Claim: Donald Trump: Well, I got 52% (of women voters). And I will
tell you | in my opinion I might have won women. ... Hey, Hillary Clinton
focused on women, and I did phenomenally well..

[Evidence Set 1]:
1. Donald Trump Claims He Won 52% Of White Women Vote In 2016 You know, I got

52% with women,” President Donald Trump said at a press conference in late September.
Subscribe to

2. Hillary Clinton 2016: How this presidential campaign will be different For starters, Hillary
Rodham Clinton will emphasize her gender and women’s issues more than she did in her
2008 presidential campaign.

3. Media Charged With Sexism in Clinton Coverage Angered by what they consider sexist
news coverage of Senator Hillary Rodham Clinton’s bid for the Democratic presidential
nomination, many women and ...

[Verdict]: True

[Evidence Set 2]:
1. Donald Trump Claims He Won 52% Of White Women Vote In 2016 You know, I got 52%

with women,” President Donald Trump said at a press conference in late September...
2. The Gender Gap in Voting: Setting the Record Straight In the 2016 election, men were

11 percentage points more likely than women to vote for Donald Trump (52% of men vs.
41% of women), according to the exit ...

3. White Women Helped Elect Donald Trump - The New York Times While black and His-
panic or Latino women voted overwhelmingly for Hillary Clinton, 53 percent of white
women who voted picked Mr. Trump, exit data show...

[Verdict]: False

Figure A.1: Example claim from QUANTEMP++ where different retrieved evidence can lead to
different downstream veracity label

55



A.2. Prompts

A.2 Prompts

AGQ Prompt

[CLAIM]
Prime Minister Narendra Modi breached the election protocol by addressing a rally in Howrah on
April 6.
[END]

[PASSAGE]
Modi addressed a rally in Cooch Behar and Howrah’s Dumurjola on April 6, where polls were
held on April 10. The silence period was not breached. As the polling for the third phase of
the West Bengal assembly election was underway for 31 seats on April 6, ...skipped text... In
Dumurjola, the voting took place in the fourth phase on April 10. Therefore, Modi did not breach
the 48 hours silence period. The voting for West Bengal assembly elections for 294 seats is taking
place in eight phases from March 27 to April 29. The counting of votes would take place on May
2.
Published: 2021-04-07.
[END]

[QUERIES]
1. Modi rally in Howrah 2021
2. Prime Minister Narendra Modi rally on April 6
3. election in Howrah 2021
4. locations of Howrah voting
5. CM Mamata Banerjee Modi’s rallies in 2021
6. silence period affects campaigning and media coverage of elections

[END]

Using the above as an example, generate at most 10 independent, short, and diverse Google search
phrases required to verify or debunk the below claim labeled under [CLAIM]. Note: Generate di-
verse questions tending to the different numerical and temporal aspects both implicit and explicit
to the claim.
Note: Use the passage under [PASSAGE] for reference to generate queries.
Do not generate queries for the passage.
Note: You must exclude any questions about fact-checking.

Figure A.2: Prompt used to generate sub-queries given claim and justification document in the
data creation pipeline of QUANTEMP++
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A.3 Instructions

Manual Annotation Instruction

In a fact verification process, a claim needs to be labeled as TRUE, FALSE or conflicting. To
verify this claim a typical human verifier would perform a few web searches to collect evidence
required to verify the claim. We aim to evaluate the quality of our dataset by evaluating the
quality of the web search queries generated and the quality of the retrieved evidence snippets
required to verify a given claim. This is carried out using two tasks.

Task 1
In sheet 1, you are given 50 claims and their corresponding web search queries. For a given
claim, determine if each query is relevant or irrelevant. Tick the checkbox if the query is relevant.
Additionally, for each claim rate the completeness and redundancy of the given web search
queries on a scale of 1 to 5

The completeness rating could be interpreted in the following way:
5 - The set of queries cover all required aspects to verify the claim
4 - The set of queries cover most of the required aspects to verify the claim
3 - The set of queries cover some of the aspects required to verify the claim
2 - The set of queries cover miss most of the aspects required to verify the claim
1 - The set of queries cover no aspects required to verify the claim

The redundancy rating could be interpreted in the following way:
5 - The whole set of queries cover the same aspect needed to verify the claim
4 - Most of the queries cover the same aspect
3 - Some of the queries overlap with respect to covering an aspect
2 - Most of the queries adress a different aspect needed to verify a claim
1 - All queries cover indepent aspects required to verify a claim

Task 2
In sheet 2, you are given 50 claims and their corresponding evidence snippets. For a given claim,
determine if each snippet is relevant or irrelevant. Tick the checkbox if the snippet is relevant.
Additionally, for each claim rate the completeness and redundancy of the given snippets on a
scale of 1 to 5. The meaning of the ratings for the evidence snippets is the same as it is for the
queries related to the claim as mentioned above.

You would also be given the justification document used by a human fact verifier for reference.
A summary of it generated by GPT-3.5 is also available

Two example annotations are shown below in the sheet ”Example”

Note that the claims across Task 1 and Task 2 are the same

Figure A.3: Instruction provided to annotators to assess the data quality of QUANTEMP++
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A.4 Supplementary Tables

Errors by Class Claim Only Claim Decomp PgmFC QGen

FALSE 1 9 3 3
TRUE 4 2 1 3
CONFLICTING 20 14 21 19

Table A.2: Distribution of error codes by query planning method and veracity label identified
during error analysis.

A.5 Model Summary

Figure A.4: Summary of the MNLI model used to form our veracity classifiers.
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