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Construction and Evaluation of Trellis-Coded 
Quantizers for Memoryless Sources 
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Abstract-New constructions of trellis waveform coders, trellis-coded 
quantizers, and trellis-coded vector quantizers are proposed. The per- 
formances of the new quantizers are determined for the memoryless 
Laplacian, Gaussian, and uniform sources. They are better than (for the 
Gaussian and Laplacian sources) or equal to (for the uniform source) the 
best previously published results. 

Index Terms- Vector quantization, trellis waveform coding, trellis- 
coded quantization, Markov chain, spectrum, fake process, trellis com- 
plexity. 

I. INTRODUCTION 

Traditionally, there have been two methods for designing trellis 
codebooks. The first, based on the asymptotic optimality proof [I] ,  
stochastically populates the trellis with randomly chosen samples 
from the source distribution. Although in general this method is very 
complex, Pearlman et al. have shown that i t  can be considerably 
simplified at the cost of a relatively small increase in distortion 
[2]-141. In particular, in [3] it was shown that time-invariant trellis 
waveform coders (TWC’s) (using the same set of representation 
symbols at each step), which are considered in this paper, can achieve 
performances close to those of time-varying TWC’s. The second 
codebook design method optimizes a given initial codebook; an 
algorithm, based on the LBG algorithm [SI, is described in [6].  

Although both methods have been successfully applied, their 
disadvantage is that they are essentially nonconstructive. The first 
method just picks a random code; the second method picks a random 
code and tries to improve it. A first constructive design method 
was given by Marcellin and Fischer [7], who map the representation 
symbols deterministically onto the trellis according to a convolutional 
code (interestingly, it was observed already in [8] that optimized 
unconstrained trellis codes tend to have a great deal of regularity, 
but the link to convolutional codes was not made). The performance 
of the TWC’s of [7] in general is good and in some cases superior 
to all previous results, which was our reason for investigating new 
constructions of TWC’s. 

11. N E W  CONSTRUCTIOiiS OF TRELLIS WAVEFORM CODERS 

The new TWC constructions are based on the fake process ap- 
proach of [9]. Using this approach, one tries to imitate the original 
source by a “fake process,” which is generated by a random walk 
through a time-invariant trellis. In particular, as shown in [9], as 
a necessary (but not sufficient) condition, the source and the fake 
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Fig. 1 .  Trellis diagram of an eight-state trellis waveform coder for y = 2 .  
(a) The states are numbered S I ,  1 5 1 5 8 ;  the branches have representation 
symbols T17a, 1 5 k 5 16. (b) Example of the symmetry of the underlying 
convolutional code. 

process should have the same spectrum. Only memoryless sources 
are considered here; for sources with memory, a better performance is 
obtained by incorporating the TWC’s into a predictive coding scheme 
(such as described in [ IO])  which decorrelates (whitens) the source 
samples. Thus since i t  is assumed that the sequence of source samples 
has a flat (or white) spectrum, the representation sequence should 
also have this property. While for randomly populated, time-varying 
trellises this requirement is fulfilled by definition, for deterministically 
populated, time-invariant trellises i t  is not. Therefore, in order to find 
out how to generate white representation sequences, a study is made 
of the spectrum, i.e., the autocorrelation, of sequences generated by 
time-invariant trellises with uncorrelated inputs. 

Consider a trellis having q” states SI, 1 5 1 5 q”, with q branches 
entering and leaving each state, where q = 2“.  t i  = 1 . 2  :... The 
branch from state SrI ,q ,+r.q, , -~,  0 5 I’ 5 q - 1, to state SI is 
assigned the representation symbol Ti-/+,..(lz,, where [ t i  denotes the 
smallest integer not less than f .  The rate, R, equals 71 bits per sample. 
As an example, in Fig. I(a) an eight-state TWC with branch values 
Ti, and states SI  is shown for q = 2. 

As derived in [ l l ] ,  assuming all trellis branches are selected with 
equal probability (it is shown in Section VI that this is a good 
approximation), the autocorrelation of the fake process, denoted by 
R ( T ) ,  can be written as 

\ , = I  

for 1 5 T 5 v + 1. For obtaining R(T) = 0, according to (1) there 
are two trivial solutions 

and 

( 3 )  

for 1 5 T 5 v + 1 and 1 5 i 5 qv--r i l .  For T = 1, (2) and 
(3). resoectivelv. state that the sum of the values of the branches 
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Fig. 2. 
Construction A. (b)  Construction B. (c) Construction C. 

Examples of the proposed constructions for q = 2, I /  = 3 .  (a) 

entering or leaving each state should be zero, in order for ' R ( T )  to 
be zero. Based on this observation, in [12], for q = 2, TWC's were 
constructed and their performances evaluated. I t  was found, however, 
that TWC's based on convolutional codes-in particular those of rate 
l/i/-have a better performance. They use a one-to-one mapping 
from the convolutional-code symbols to the representation symbols. 
The generalization to q = 2" presented here assumes the underlying 
rate 1/11 q-ary convolutional code has a symmetry of its q" different 
branch symbols as specified by the following set of equations: 

~ I - , + ( < , W 7 ( , , <  , , l < > < l 2 j - r + ( ? , 7 - l j  , , ~ , ~ ~ l ~ , j + ~ / ( ~ ~ ~ , - i ! , l ~ ~  < / j + F  j r , , o < l  ' / ' ,+I 

= I:,$ (4) 

for 1 5 r t i  5 q', 0 5 r 5 (1 - 1. For TWC, the branch values 
represent real numbers, of course. An example of the symmetry is 
shown in Fig. l(b). Since the underlying convolutional code does not 
need to be explicitly specified (contrary to [7], where Ungerboeck's 
codes [ 131 were assumed), no actual convolutional code is required 
for the construction. In fact, there are many convolutional codes that 
fit (4). For q = 2, e.g., the convolutional codes used in 1141 for 
Quasi-Orthogonal and Super-Orthogonal codes of degree 1 fit (4); 
their generator polynomials are (11 ( , I , )  = 1 + .I,'' ,  and y,(.r) = . r / - ' ,  

for 2 5 j 5 11. 

The correspondence between the representation symbols and the 
symbols of the underlying convolutional code is not uniquely spec- 
ified. Therefore, the following three constructions are considered: 
Construction A. a "trivial" construction (based on (2)) (because of the 
structure of the underlying convolutional code, as given by (4), (2), 
and (3) are equivalent), and Constructions B and C, two "nontrivial" 
constructions. They all result in  a white spectrum, for equal branch 
probabilities. 

For Construction A in addition to the symmetry specified by (4), 
the representation symbols have the following relation: 

for 1 5 I,. 5 q ' / 2 .  By combining ( 5 )  and (4), i t  follows immediately 
from (3) or (2) that the construction results in  a white spectrum. An 
example of the construction is shown in Fig. 2(a). In the example 
I-, = A, I. = -A,  1 1 3  = L?, etc. Interestingly, the construction is 
similar to that of the Super-Orthogonal codes of degree I ,  as defined 
in [ 141, which are designed for trellis-coded rnodulation (TCM) (see, 
e.g., [ 151 for an introduction to TCM). 

For Construction B, in addition to the symmetry specified by (4), 
the representation symbols have the following relation, for 11 > 1: 

r ~ - , + q l , / ~ + ~ / - 2 , , L - , ! , , , ~ ~ ~ l ~ / !  = -1-A (6) 

for 1 5 k 5 q " / 2 .  The proof that the construction results in a white 
spectrum is given in [ 111. An example of the construction is shown 
in Fig. 2(b). Now, 1.1 = -4, 1; = Il, 11% = C ,  etc. 

Finally, for Construction C,  in addition to the symmetry specified 
by (4), the representation symbols have the following relation, for 
I /  > 1: 

~ 2 q ( ( A - l l < l ~ \  q ) + l + q + ( L - l !  m c , r l  

- 
- - ~ - 2 q ( ( A - , I d , \  < / ) + l + ( L - l )  m d q  (7) 

for 1 5 I ,  5 q " / 2 .  The proof that the construction results in  a white 
spectrum I $  again given in 1 1  I ] .  An example of the construction 15 

shown in  Fig. 2(c). In this case, 1 = .-I, I >  = I?, 1; = - 4, etc. 

111. EXTENSION TO TRELLIS-CODED QUANTIZATION 

Inspired by Ungerboeck's trellis-coded modularion (TCM) tech- 
nique known in communication theory [ 131, [ 161, [ 171, Marcellin and 
Fischer [7] recognized that TWC can be improved by a technique 
which they call trellis-coded quanti:arion (TCQ). It is similar to 
TWC, but, instead of a single codebook element, the finite-state ma- 
chine in this case specifies a set of codebook elements. The encoder 
now investigates all allowed sequences of sets of codebook elements, 
selecting from each set the codebook element that minimizes the 
distortion. 

The TWC constructions of Section I1 are easily extended to TCQ. 
Consider again the trellis having (1'' states Si, 1 5 I 5 q', with 
q = 2" branches entering and leaving each state. Now, the branch 
from state Siclql+, . .~ ,u-~,  0 5 r 5 q - 1, to state SI is assigned the 
set TI;+,- q z ~ .  For quantizing at R bits per sample ( R  = t t .  + 1.. . .), 
each set contains .LK-" representation symbols. I-,?, now denotes the 
set {.yrn I : y,,, 2 :  . . . : !I,,, 2/<- , ,  } and is used to denote the set 

Constructions A, B, and C again give a white spectrum, assuming 
{-!/m.I: - ! / r j t , 2 : . . . :  -y,,, 2 1 1 - " I .  

that all set members are used with the same probability [ I  11. 

IV. EXTENSION TO TRELLIS-CODED VECTOR QUANTIZATION 

In [ 181, rrellis-coded Lvctor quuntizarion (TCVQ) was investigated. 
While for TCQ the branch sets contain scalars, for TCVQ they contain 
vectors. Thus TCQ can be seen as one-dimensional TCVQ. 

The TCQ constructions of Section I11 can be extended to TCVQ 
as follows. Consider again the trellis having q" states SI, 1 5 
I 5 q" ,  with q = 2" branches entering and leaving each state. 
Again, the branch from state Slil( l l+,  cl,,-^, 0 5 I' 5 q - 1, to 
state St is assigned the set I\;+ . Now, for quantizing at R 
bits per sample using -\--dimensional representation vectors, each 
set contains 2 "'+" vectors; I-?,? denotes the set of S-dimensional 
vectors {y,,, : y,,, , 2 : .  . . : y,,, %.\ R - , ~  } and is used to denote the 
set {-y,,! l : - y ~ ~ , , 2 : . . . : - y , , ~ ,  ~ . ~ K - , ~ } .  

It should be noted that, in  general. Constructions A, B, and C no 
longer guarantee a white spectrum for TCVQ. A white spectrum can 
be guaranteed, however, by forcing the representation vectors to have 
a certain structure. This was done for the case of q = 2, -1- = 2, and 
R = 1/2,  for the Laplacian source, in [ 191, but the performances 
obtained for this case are lower than the performances obtained for 
the constructions proposed in this correspondence, which use uncon- 
strained representation vectors. As argued in [20], this observation is 
true in general: although structured quantizers can be asymptotically 
optimal for large dimensions, for small dimensions they are inferior 
to unconstrained quantizers. Experiments we performed show that 
the optimized TCVQ's do generate a white spectrum (as they should, 
since generating a white spectrum is a necessary condition for the 
fake process, as was shown in (91). 
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V. PERFORMANCE EVALUATION 
In order to make a fair comparison of the various quantizers, 

they should be compared at the same complexity. A fundamental 
measure of quantization complexity is the number of evaluations 
of the (single-sample) distortion function per source sample. For 
TWC, this number equals the traditional trellis complexity, as defined 
in [I] ,  [21], i.e., the total number of branches in the trellis. The 
invention of TCM [ 131, however, introduced parallel branches into 
the trellis, with the associated question of how to measure their 
complexity. In 1171, i t  i s  proposed to count the complexity of a 
set of parallel branches as if it were a single branch, thus actually 
using a lower bound to its complexity. This approach i s  not suitable 
for quantization, however, as i t  assigns a vector quantizer the same 
complexity as a scalar quantizer, which, at a fixed complexity, leads 
to the optimality of high-dimensional TCVQ’s with many parallel 
branches. Therefore, we propose to use an upper bound on the 
complexity of parallel branches, assigning them the same complexity 
as nonparallel branches. The complexity C thus equals the total 
number of branches-either single or parallel-in the trellis, i.e., it i s  
the product of the number of states q”, the number of branches (sets) 
per state q ,  and the number of (one- or multidimensional) vectors 
per set 2 ‘ - K - r 1 :  

If certain symmetries occur in the trellis, as is the case for TCQ, 
one may be able to use these to further reduce the complexity. 
For example, if only four different representation symbols occur 
in the trellis, i t  is assumed in [7] that only four evaluations of 
the distortion function are needed per source sample; the results of 
those computations are stored and recalled when necessary. Whether 
this assumption is valid or not depends on the actual quantizer 
implementation: if the algorithm is executed on a von Neumann 
(single-processor) machine, this practice does indeed reduce the 
complexity, as the complexity ( C P U  time) of evaluating the distortion 
function generally i s  higher than the complexity of a memory lookup. 
However, for a machine with multiple processing elements, such as 
a parallel VLSI implementation, the above-mentioned compute-and- 
store technique cannot be applied to reduce the complexity, because 
the complexity associated with obtaining the result of a remote 
computation in general i s  higher than that of a local computation, 
according to VLSI theory [22]. Since our TCQ’s use more (different) 
representation symbols than those of [7], the complexity of the TCQ’s 
of [7] will be lower than that of ours (at the same rate and number of 
states), when the encoding algorithm is executed on a von Neumann 
machine. The VLSI complexity, however, of our TCQ’s and those of 
[7] is the same. In this correspondence, we will use the complexity 
as defined by (8). 

To determine the performances of the proposed quantizers, exper- 
iments have been performed for samples from memoryless uniform, 
Gaussian, and Laplacian sources. In the experiments, the Gaussian 
and Laplacian sources have a variance u2 = 1, while the uniform 
source has m p  = 413. The figure of merit i s  the signal-to-noise ratio 
(SNR), defined as lOlog,, ( S I D )  decibels, where S is the source 
variance and D is the quantization error variance (the distortion). 

For the experiments, a training set of S.100000 independent 
random vectors (-I-’. 100000 i.i.d. samples) is used. The reason for 
this i s  that 100000 samples, as used in [7], turned out not to be 
enough for TCVQ, in several experiments. Therefore, as a rule of 
thumb, -I-’. 100000 samples are used and the final performance is 
measured on an i.i.d. sequence not in the training set. It should be 
remarked that for 100000 i.i.d. samples (as were also used in [7]), 
for the TWC and TCQ experiments, the performances obtained for 

sequences not in the training set are the same as for sequences inside 
the training set. 

To enable the computation of the significance, or reliability, of the 
computed SNR values, the samples are divided into 100 sequences 
(each consisting of -I-. 1000 random vectors). To compute the 
confidence intervals, for each of the T = 100 experiments both the 
source variance 5, and noise variance D ,  are considered to be random 
variables. The confidence interval is overestimated in this way, since 
5, in reality is known exactly. The total source and noise variances 
are computed as 

l 1  s = - p  T ’  
,=1 

and 

resulting in an SNR of SID.  Since each experiment involves S. 1000 
vectors, i t  is valid to assume that S ,  and D ,  are normally distributed. 
Thus for S and D the n x  100% confidence intervals are 

(5 - & O \ / f l . S  + : , , u 5 / f l )  

and 

( D  - D + : < , u n / d T )  
where 

and 
- 1  

and i s  chosen such that 

l;a f I - l ( . V ) 4 /  = (1 (9) 

where f ~ - ~  (g )  is the probability-density function of Student’s f -  
distribution with T - 1 degrees of freedom [23]. The probability of 
both S and D being inside their respective confidence intervals is 
o . (I and the resulting o2  x 100% confidence interval for S / D  is 

For a2  = 0.95, zn = 2.27, as can be obtained by solving (9), either 
numerically (used here) or by table lookup (a zz 0.975). 

To optimize the codebook, we use an algorithm based on that 
described in [6], but adapted to maintain the structures prescribed 
by the respective constructions and extended to TCQ and TCVQ; it 
is listed in Fig. 3. In [6], in Step 2, each representation symbol of 
generation k + 1 is the centroid of those elements of the training 
sequence that were encoded by the corresponding representation 
symbol of generation k .  For the constructions presented in this 
correspondence, the same sets of representation symbols IT,!:) and 
-1:;) each occur at q branches of the trellis. Therefore, in Step 2, 
now each representation symbol of I;!:+’) i s  the centroid of both 
those elements of the training sequence that were encoded by any 
of the q occurrences of the corresponding representation symbols of 
1;;;) and the negatives of those elements of the training sequence 
that were encoded by any of the q occurrences of the corresponding 
representation symbols of -1;:;’. Representation symbols onto which 
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Stcp I. Using 0‘)). ttw <orit+ool\ foi g r w r n t m i  I;. ciicode tlir 
training srqnmce 

Strp 2 Find t h r  optimal codebook. C‘‘+’). for generation k + 1 

Step 3 If k < 99. thrn rrplacc k by k + 1 and go to Strp 1 

Fig. 3 .  Codebook optimization algorithm 

no source symbols are mapped are updated to zero (the average source 
value). 

The stopping criterion used in [6],  i.e., the relative reduction of 
the distortion, cannot be used in this case because of the modified 
codebook update of Step 2. As the codebook values are not optimized 
individually for each branch (as done in [6]) but simultaneously for 
‘Lq branches (in order to maintain the symmetries imposed by the 
constructions), it cannot be guaranteed that the codebook update in 
Step 2 reduces the distortion. In our experiments, we observed that, 
sometimes, the distortion even slightly increased after the codebook 
update. Another reason for not using the relative decrease of the 
distortion as a stopping criterion is that (even for the algorithm of 
161) the distortion decrease does not necessarily diminish at each 
successive codebook update. We repeatedly observed that, after a 
few codebook updates that decreased the distortion by a very small 
amount, the distortion decrease again became larger during the 
following codebook updates. 

For the above-mentioned reahons, we decided to use a fixed number 
of codebook updates. In particular, we found 100 codebook updates 
to be a suitable compromise between quantizer performance and 
optimimtion effort for the largest trellises and highest rates used in 
our experiments. For small trellises at low rates, convergence can 
occur after less than 100 updates. 

For TWC and TCQ, the initial trellis codebooks are chosen 
deterministically using uniformly spaced levels from the interval 
( -2 .2 ) .  Contrary to a random initialization, this choice of initial 
codebooks guarantees a certain minimal distance both inside each set 
and between the sets of the branches entering and leaving each state. 
The same initial codebooks are used for all sources. The specific 
initializations for Constructions A, B, and C can be found in the 
Appendix. 

For TWC and TCQ at R = 1, R = 2, R = 3, and R = 4, the SNR 
results of quantizing the Laplacian, Gaussian, and uniform sources 
are listed in Table 1; for all SNR values listed, the 95% confidence 
interval corresponds to a tolerance of no more than 0.003 dB (this 
result differs from the tolerances given in [7] which range from 0.02 
to 0.15 dB; a possible explanation is that in [7] it is incorrectly 
assumed that the source variance is the same for each of the 100 
parts of the training sequence). For R = 1, TI equals 1, for R = 2, 
t l  equals 1 or 2, and for R = 3 and R = 4, 1 1  equals 1, 2, or 3 
(for “pure” TWC, R = t i ) .  Note that the numbers of states in the 
experiments have been restricted to be powers of q,  so as to have 
an underlying q-ary convolutional code. The constructions are easily 
extended to different numbers of states, however. 

TWC’s and TCQ’s at the same rate, having the same number of 
states, have the same complexity. When comparing the SNR results 
listed in Table I at the same complexities, it can be observed that, 
generally, Construction C gives the best performance (except for the 
Laplacian source at R = l), although the differences with the other 
constructions are small. It can also be observed that, generally, the 
performances decrease as the number of (different) representation 
symbols per set is decreased (i.e., as q is increased). The TCQ’s 
clearly outperform the TWC’s, considering that (8) favors the latter. 

TABLE I 
EXPERIMENTAL SNR’s (IN dB) FOR THE. THREE CONSTRCCTIONS A, B, 

UWFORM SOURCES AT R = 1, R = 2, R = 3 ,  AND R = 1 
ANI1 C, FOR W C / T C Q  OF THE LAPLACIAN, GAUSSIAN, AND 

~~ 
_ _ _ _ _ ~  ~~ _ _  

~~ ~~ ~~ 

5,,,,*,, 
- 

TABLE I1 
SNR’s (IN d B )  OF T H E  PROPOSED CONSTR~CTION B TCQ’s (NEW) COMPARED 
WITH THE PERFORMANCES FOUND IN IHE LITERATURE (LIT A S  LISTED IN 171). 
FOR THE L ~ P L A C I A N  AND GAUSSlAk SOURCES AT R = 1, R = 2 ,  AND R = 3 

In [24], it was shown that at the same number of states (i.e., at 
the same complexity, according to (8)), the proposed Construction B 
TCQ’s outperform the TCQ’s of [7], for the Laplacian and Gaussian 
sources. For the uniform source the performances of the proposed 
TCQ’s approximately equal those of the TCQ’s of [7]. In fact, for 
the Laplacian and Gaussian sources, the proposed TCQ’s improve 
upon all previous results found in the literature (as listed in [7]), as 
shown in Table 11. 

For TCVQ, the initial trellis codebooks are chosen randomly using 
i.i.d. samples from the distribution to be quantized, both because 
good deterministic initial codebooks are not easily found for TCVQ 
(although an algorithm is proposed in [25]), and to guarantee an 
approximately white spectrum. Table 111 lists the performances of 
several 64-state Construction C TCVQ’s at R = 1; the 95% 
confidence intervals correspond to a tolerance of no more than 
0.003 dB. It can be observed that, contrary to the results given 
in Table I for A\T = 1, for the Gaussian and uniform sources, the 
performances increase as (I is increased, even though the number of 
representation symbols decreases with q. For the Laplacian source, 
q = 8 achieves virtually the same performance as q = 4, using 
half as many representation symbols. Further, for the Gaussian and 
uniform sources, it can be observed from Table I11 that increasing 
the number of representation symbols, or their dimension, beyond 
a certain value does not result in a higher performance; the same 
performance can be obtained at a lower complexity, by using lower 
dimensional representation symbols. 

To further investigate the influence of the representation sym- 
bol dimension on the TCVQ performance, experiments have been 
performed for Construction C,  for several rates and dimensions, 
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TABLE 111 
EXPERIMENTAL SNR’s (IN dB), COMPLEXITIES C ,  AND NUMBER 

COKSTRUCTION C TCVQ OF THE LAPLACIAN, GAUSSIAN, A N D  
UNIFORM SOURCES AT R = 1, FOR SEVERAL VALUES OF .\* A N D  q 

OF (DIFFERENT) REPRtStNTATlON SYMBOLS FOR 64-STATE 

TABLE IV 
EXPERIMENTAL SNR’s (ih dB) AYD NLMBER OF (DIFFEREYT) 
REPRESEWTATION SYMBOI 5 FOR CO~STRUCTIO~ C TCVQ OF 

THE LAPLACIAY, GAUSSIAY, A h D  UhlFORM SOURCES AT = 1 /2 ,  
R = 1, R = 2,  AVD R = 3 ,  AT A COMPLEXITY OF C7 = 2jG 

_________ ~ 

ill, I /  < 

TABLE V 
SNR’S (IN dB), AT THE SAME COMPLEXITY c, FOR THE TCQ’S OF 
[7], THE TCVQ’s OF [IS],  THE PROPOSED q = 2 CONSTRUCTION B 

TCVQ’s, AND THE PROPOSED (1 = 2 CONSTRKTION B TCQ’s, FOR THE 
LAPLACIAN SOLRCE, AT R = 1. FOR THE TCVQ’S, .\- = 2 

at a constant complexity. Table IV lists the SNR’s obtained for 
the experiments with a complexity of 256 at R = 1/2, R = 1, 
R = 2, and R = 3;  the 95% confidence intervals correspond to 
a tolerance of no more than 0.001 dB. From Table IV, it can be 
observed that, at a constant rate and complexity, increasing -1- while 
not simultaneously increasing q decreases the performance, whereas 
simultaneously increasing -1- and q can increase the performance. In 
Table IV, those performance increases occur in particular in those 
cases where no parallel branches are used in the trellis. In Table 
111 as well, increasing q in general increases the performance. The 
explanation for the observation that increasing q does not always 
increase the performance (as is also the case in Table I) could be the 
associated reduction of the number of representation symbols. 

In [ 181, two experiments were presented for a memoryless Lapla- 
cian source, at R = 1. Table V shows a comparison, at the same 
complexities, of the performances of the TCQ’s of [7], the TCVQ’s 
of [ 181, the proposed TCVQ’s, and the proposed TCQ’s (Construction 
B). The proposed TCVQ’s outperform those of [ 181, but the proposed 
TCQ’s are still superior. 

In 1251, different TCVQ’s and more results were presented. The 
SNR’s presented in [25]  were computed inside the training sequence 
of 1000000 samples of a memoryless Gaussian source. To compare 
the performances of the proposed TCVQ’s with those of [25] ,  
we performed experiments with the proposed TCVQ’s, also using 

TABLE VI 
SNR’S (I\ dB) IhSlDE AUD OUTslDt THE TRAIYIYC SET FOR THE PROPOSED 

I6-STATE COYSTRUCTION c TCVQ’S A h D  THE I6-STATE TCVQ’S OF 1251 FOR 
THE GAUSSIA\ SOURCE, FOR SEVERAL RATES R AND DIMENSIONS S 

I 1 I 11)‘l(l IO\’) I G G ?  - ~- 

IO00000 samples, for several cases selected from the tables in [25] .  
The performances were measured both inside and outside the training 
set. Table VI, in which the proposed TCVQ’s are compared with those 
of [ 2 5 ] ,  clearly shows that in the case of R = 2, the training set is 
too small. We conclude that the proposed TCVQ’s have performances 
equal or superior to those of 1251. 

VI. ‘ DISCUSSION 

The observation that, at the same number of states, the proposed 
TCQ’s have performances equal (for the uniform source) or superior 
(for the Gaussian and Laplacian sources) to the TCQ’s of [7] is 
discussed here. 

The differences between the proposed TCQ’s and those of [7] are 
that they are based on different convolutional codes and that they use 
a different number of (different) representation symbols (we do not 
know whether the TCQ construction of [7] generally guarantees a 
white spectrum). The different convolutional codes probably do not 
account for the performance differences: the different Constructions, 
A, B, and C, presented in this correspondence have about the same 
performances. Also, in [7], a search was performed to find convolu- 
tional codes with better performances than Ungerboeck’s codes, but 
little improvement was obtained. The difference in the number of 
different representation symbols provides a better explanation for the 
performance gain. 

As shown in [20], the gain of a TCQ over a uniform scalar 
quantizer can be separated (asymptotically, at high rates) into two 
components: the granular gain and the boundap gain. The granular 
gain arises from a more efficient local space covering. In two 
dimensions, for example. hexagonal regions are more efficient than 
square regions. The ultimate granular gain [20], as the dimension 
goes to infinity, is 0.255 bit for the quadratic distortion measure 
(corresponding to 1.53 dB (re/G),  for the Gaussian source). The 
boundary gain arises from a more efficient global space covering, 
i.e., it is caused by the ability of the TCQ to adapt its representation 
symbol density to the source density (concentrating the representation 
sequences in the typical-sequence region of the source). Whereas for 
the uniform source there is no boundary gain, for nonuniform sources 
the boundary gain can be much higher than the granular gain. 

In [7], for the Gaussian and Laplacian sources, respectively, at 
most four and eight different sets of representation symbols are 
used, whereas the proposed constructions use q” different sets of 
representation symbols for a q”-state TCQ. Since the proposed TCQ’s 
use more different representation symbols, they are better able to 
adapt to the source density. The conjecture that the gain of the 
proposed TCQ’s over those of [7] is attributable to the boundary 
gain is supported by the observation that, for the uniform source, 
the proposed TCQ’s do  not provide a gain over those of [7]. It is 
also supported by the entropies of the proposed TCQ’s: although R 
bits are used to quantize each source sample, the actual entropy is 
less, because not all representation symbols are selected with equal 
probability. Table VI1 lists the entropies of the Construction B TCQ’s, 
for the Laplacian and Gaussian sources, as a function of the rate and 
the number of states. The entropies increase with the number of states 
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TABLE VI1 
ENTROPIES OF THE PROPOSED TCQ’s COMPARED WITH THF LLOYD-MAX 

LAPLACIAN AND GAUWAN SOL RCES AT R = 1, R = 2, A N D  R = 3 
QUAhTlZER (LM) AND RATE-DISTORTIOU THEORY (RD) VALUES, FOR THE 

and i t  can be seen that i t  is a good approximation to assume that all 
branches are selected with equal probability, for the proposed TCQ’s. 

The better the representation-symbol density of the TCQ matches 
the source density, i.e., the higher the boundary gain, the more all 
representation symbols will be used with equal probability. Thus the 
entropy indicates how well the TCQ exploits the boundary gain. 

In the following, we will further examine the relation between 
entropy and boundary gain and its implications for the asymptotic 
quantizer performance. For Gaussian sources, it was shown in [20] 
that the ultimate boundary gain equals the gain that can be obtained 
by entropy coding. Alternatively, one can say that entropy coding can 
achieve the ultimate boundary gain. This observation is the basis for 
entropy-constrained TCQ (ECTCQ). ECTCQ was proposed in [26] 
and improved upon in [27]. The experiments with 8-state ECTCQ that 
are performed in [27] show that the granular gain and the boundary 
gain obtained by entropy coding (called the weighting gain in [20]) 
are additive at all rates (i.e., not only asymptotically, at high rates), 
for the Gaussian source. The granular gain for the 8-state trellis i s  
0.183 bit or 1.10 dB [7], [28] and indeed the performance obtained 
in [27] is only 0.255-0.183 =0.072 bit or 1.53-1.10 = 0.43 dB 
away from the rate distortion bound. Using a 256-state trellis, which 
has a granular gain of 0.226 bit or 1.36 dB 1201, one could get to 
within 0.255-0.226 = 0.029 bit or 1.53-1.36 = 0.17 dB from the 
rate distortion bound, at all rates. This implies that asymptotically, 
for large trellises, ECTCQ can reach the rate distortion bound for the 
Gaussian source, at all rates. We conjecture that, at sufficiently high 
rates, ECTCQ can asymptotically reach the rate distortion bound for 
all sources for which the performance of an entropy-coded uniform 
threshold quantizer is 0.255 bit away from the rate distortion bound 
~291. 

VII. CONCLUSIONS 

Three different constructions of TWC’s, TCQ’s, and TCVQ’s have 
been proposed. They are based on a fake process approach. By 
enforcing certain symmetry properties, it has been guaranteed for 
the TWC and TCQ constructions that a random walk through the 
trellis results in an uncorrelated signal, irrespective of the actual trellis 
codebook. This cannot be guaranteed for the TCVQ constructions. 

The proposed constructions are more general than previous con- 
structions, since, although the mappings of the representation symbols 
onto the trellis are based on underlying convolutional codes, the 
constructions do not require those codes to be explicitly specified. 

In the experiments for the memoryless Laplacian, Gaussian, and 
uniform sources, at the same rate and complexity, the proposed TCQ’s 
outperform the TWC’s as well as the TCVQ’s. 

For the memoryless Gaussian and Laplacian sources, the proposed 
TCQ’s at 1, 2, and 3 bits per sample improve upon all previously 
published results (as listed in [7]). For the uniform source, the 
performances equal those of 171. The gains of the proposed TCQ’s 
over those of [7] for nonuniform sources are attributable to a higher 
boundary gain. 
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Two Remarks on a Paper by Moreno and Kumar 

Jyrki Lahtonen 

Abstract- In a recent article 0. Moreno and P. V. Kumar showed how 
Deligne’s theorem can be applied to coding theory. They studied certain 
subcodes of binary Reed-Muller codes and estimated the associated 
character sums over a field of q* elements. They obtained bounds of 
the order 0 ( q ) .  In this correspondence we show that in one case we can 
improve the coefficient of q in the estimates. We also show that there is 
an error in Moreno and Kumar’s argument and in some cases we need 
to replace a bound of the order 0 ( q )  by a weaker bound of the order 
L’, ( f f / ?  ). 

Index Terms-Exponential sums, Deligne’s bound. 

I. BACKGROUND 
In [ l ]  Moreno and Kumar showed how Deligne’s theorem on 

character sums involving polynomials in several variables can be 
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applied to coding theory. Their main idea is a degree reduction trick, 
where a monomial of a high degree in a single variable is replaced 
with a monomial in several variables, whose total degree equals the 
q-ary weight of the original degree. Thus character sums in a single 
variable over the field E = G F  (q“ ) are transformed to character 
sums in several variables over the field GF(y) .  Moreno and Kumar 
also resort to the quadratic form technique to evaluate the character 
sums of the type 

S ( f . c )  = *(f ( . r )  + c.,.) (1) 
J € E  

where the polynomial f ( . r )  has only such terms, whose degrees 
have binary weight 2. The resulting codes are then subcodes of the 
second-order Reed-Muller codes. 

The quadratic form technique amounts to the following result that 
we take from [I] .  The interested reader is referred to [2, ch. 6.21 
or [3, ch. 151 for a detailed discussion of the theory of quadratic 
forms over a field of characteristic 2. Let q2 = 2“, E = G F ( q 2 ) ,  
T :  GF ( q 2 )  + G F  ( 2 )  be the trace map and let *: G F ( q 2 )  + { -1. l} 
be the character 

* ( , I , )  = ( - l ) I ( , ’ ) .  

Let us henceforth assume that the polynomial f in (1 )  is not of the 
form that T ( f ( . r ) )  is identically equal to 0. In particular we want to 
rule out the possibility that f ( . r )  = b.r . “+’ ,  where b E G F ( q ) .  We 
first form the symplectic form 

After some manipulation, this can be put into the form 

where 0 5 < 11 and g ( x )  is a linearized polynomial (see [2, sec. 
3.41) with coefficients in E.  The number of distinct roots of g(.r)  in 
E is a power of 2, say 2‘. Then it can be shown (see [ I ]  and [3, 
ch. 151) that 

IS(f..,l = Jr..1 or = 0. 

As the coefficient c varies all the possible values 0. fJ2”+‘ occur. 
Furthermore, since i t  is an even number and S (  f. c )  is an integer, 
one can conclude that t must also be an even number. 

11. POLYNOMIALS O F  THE FORM f( , I . )  = ( l . P 3  + b.,.“’ + C S  

Here we study the character sum S (  f. c ) ,  where f has terms of 
degrees 3 and y + 1. We will prove that for certain values of q these 
sums are bounded by ’Lq. This is certainly very remarkable, when one 
compares this result to the Carlitz-Uchiyama bound. The addition of a 
term of degree y+ 1 does not increase the sums at all. This means that 
these polynomials yield sets of binary sequences with good auto- and 
crosscorrelation properties. Thus they will be useful in code division 
multiple access (CDMA) applications (cf. [4]). Indeed, the resulting 
set of sequences has parameters equal to those of the so-called large 
Kasami set. 

In this case, the symplectic form is 
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