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UPPS-RL: Unified Predictive and Passive Safety in Quadrupedal
Locomotion Control Using Reinforcement Learning

Peiyu Yang

Abstract— Safe quadrupedal locomotion control with rein-
forcement learning (RL) has attracted increasing attention in
recent years, where existing approaches can be broadly cate-
gorized into recovery RL, distributional RL, and constrained
RL. However, recovery RL cannot provide predictive safety
guarantees; distributional RL lacks passive safe performance;
and constrained RL-while capable of both safety-often restricts
exploration. To address these limitations, we propose UPPS-
RL, a unified framework that integrates predictive and passive
safety into quadrupedal locomotion control through three main
components: a risk-aware task-level policy, a self-supervised
risk network, and a risk-triggered recovery policy, forming
a hierarchical control architecture that embeds unified safety
without imposing explicit exploration constraints. Extensive
simulations across composite scenarios, including steps, pit,
slope, and rough plane terrains, demonstrate that UPPS-RL
significantly suppresses catastrophic failures while maintaining
a favorable trade-off between robustness and efficiency.

I. INTRODUCTION

In recent years, quadrupedal robots have attracted increas-
ing attention in robotics research due to their remarkable
agility and adaptability to complex terrains [1]–[3]. These
features make them suitable for applications such as disaster
assistance [4], environmental protection [5], and industrial
inspection [6]. However, to enable these applications, it
is crucial to achieve reliable and safe locomotion control
in complex environments. In particular, quadrupedal robots
must not only provide efficient locomotion capabilities, but
also satisfy two critical requirements: predictive safety [7]
and passive safety [8]–[10]. Predictive safety, achieved via
risk-aware control, involves perceiving and modeling uncer-
tainties and hazards in the environment, thereby enabling risk
avoidance and more robust control strategies. Passive safety,
by contrast, concerns the robot’s ability to avert catastrophic
outcomes once it has entered risky conditions, including
the prevention of falls, collisions, and the avoidance of
joint over-torque, thereby mitigating hardware damage and
mission disruption.

Although significant progress has been made in enhanc-
ing quadrupedal locomotion on complex terrains through
both model-based approaches [11], [12] and learning-based
approaches [13], [14], research on predictive and passive
safety remains insufficient, with limitations arising from
multiple factors. In model-based approaches, safety is gen-
erally enforced by incorporating manually designed con-
straints into the control framework. For instance, Grandia
et al. [15] integrate control barrier functions (CBFs) into a
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Fig. 1. Performance of UPPS-RL in different environments. (a) Execution
in a step environment. (b) Execution in a pit environment. By adjusting β ,
the agent exhibits different risk preferences ranging from aggressive (β =
−1.5) to conservative (β = 1.5). In addition, a neural network is designed
to provide real-time perception of risk values, enabling the controller to
anticipate hazards and adapt its actions accordingly.

trajectory-tracking framework to address the stepping-stone
locomotion problem; Liao et al. [16], who propose a CBF-
based nonlinear model predictive control (MPC) with dual
optimization to handle polyhedral obstacles; and [17], [18]
designed task-specific CBFs for stair-climbing scenarios.
While these methods can theoretically guarantee safety, their
implementation relies on manually crafted dynamic models
and is fragile to disturbances and modeling errors, which
impose considerable computational demands and complicate
practical deployment. In addition, since risk is inherently
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hard to model and highly uncertain, existing model-based
control methods, to the best of our knowledge, still lack
explicit mechanisms for its representation and handling.

In contrast, learning-based methods offer more diverse
solutions for risk awareness and safety. For predictive safety,
model-free RL alleviates the reliance on accurate dynamics
models, enabling agents to implicitly acquire risk informa-
tion through extensive interactions with the environment.
Such information is subsequently utilized to refine control
strategies. For instance, several studies in [19]–[21] integrate
distributional learning into RL frameworks to capture risk-
related features from return distributions. In addition, Zhang
et al. [22] propose a terrain-aware teacher–student learning
framework that integrates a risk assessment network, thereby
enhancing the stability of quadrupedal robots on complex
terrains. On the other hand, regarding passive safety, a widely
studied paradigm is recovery RL, which adopts a hierarchical
structure where multiple policies are integrated and adap-
tively switched according to different risk levels to keep the
robot confined within a predefined safe set. A key limitation
of the above approaches, however, lies in the absence of
an explicit integration between predictive and passive safety.
As another approach, constrained RL [23]–[25] explicitly ac-
counts for both predictive and passive safety. This is achieved
by incorporating mechanisms such as control Lyapunov
functions (CLFs), CBFs, or constrained Markov decision
processes (CMDPs) into the learning process. Nevertheless,
constrained RL typically enforces constraints prior to policy
convergence, which restricts exploration and can lead to
suboptimal returns [26], [27].

Therefore, my research question is: How can predictive
and passive safety be achieved through RL while preserving
exploration efficiency? To address this question, we propose
the unified predictive and passive safety RL (UPPS-RL)
framework, which achieves this integration through a hierar-
chical control scheme. Specifically, we employ a risk-aware
RL policy as the task-level policy, parameterized by a tunable
risk-preference that allows behaviors ranging from conser-
vative to aggressive. To mitigate potential unsafe behaviors
arising from the task-level policy, we design a recovery
policy that intervenes when necessary. Finally, we introduce
a self-supervised risk value network that quantifies risk
levels, enabling adaptive adjustment of risk preference and
generation of recovery commands. Through the integration
of these components, our framework establishes a unified
mechanism that combines adaptive risk modulation with
formal safety assurance, thereby achieving both predictive
and passive safety while preserving exploration efficiency.

In brief, the main contributions of this work are sum-
marised as follows:

• A set of functional modules is developed, comprising
a task-level policy for risk-aware locomotion, a self-
supervised neural network for risk quantification, and a
safety-oriented recovery policy for high-risk conditions;

• A hierarchical mechanism is proposed to coordinate
functional modules, enabling the integration of predic-
tive and passive safety control;

Fig. 2. Overview of the UPPS-RL framework. The framework consists
of three modules: 1) Task-level Policy, trained with DPPO to produce
behaviors ranging from conservative to aggressive, depending on the risk-
preference parameter; 2) Recovery Policy, designed to take over control in
risky condition, and maintain safety when tracking the recovery command
that lowers the risk level; and 3) Risk Network, trained in a self-supervised
manner to estimate the risk level in real-time. During deployment, the risk
value network provides a modulation of risk-preference for the task-level
policy, a recovery command for the recovery policy, and a switching signal
for activating the dual-policy scheme. In this scheme, the task-level policy
is executed under low-risk conditions, while the recovery policy is activated
once the estimated risk exceeds a threshold to ensure safety.

• Extensive simulation experiments are conducted to com-
prehensively validate the functionality of each sub-
module as well as the overall framework.

The remainder of this paper is organized as follows.
Section II reviews the related works. Section III presents
the overall framework and preliminaries. Section IV, V,
VI, and VII describe the proposed methodology in detail,
including the design of each sub-module and the overall
system architecture. Section VIII reports the experimental
results. Section IX concludes the paper, and Section IX
presents the acknowledgments.

II. RELATED WORKS

A. Toward Predictive Safety in Reinforcement Learning

Predictive safety aims to prevent agents from entering
unsafe regions by anticipating potential risks in advance.
This objective is commonly addressed through risk-aware
RL. Unlike traditional RL, which focuses solely on maxi-
mizing long-term return, risk-aware RL explicitly accounts
for uncertainty during both training and deployment, aiming
to maximize performance while mitigating catastrophic tail
risk. Risk awareness in such methods is typically realized
through model-based approaches, Bayesian formulations,
and distributional RL.

Incorporating risk using model-based RL [28], [29] is a
natural and effective strategy. One of the general paradigms
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leverages either prior physical models or data-driven learned
models to characterize environmental uncertainty and map
it into an optimizable risk measure. This enables sampling
procedures that penalize or reweight highly uncertain succes-
sor states, steering the learned policy toward high-confidence
regions and reducing worst-case damages.

Within Bayesian approaches to risk-aware RL, the core
objective is to represent decision risk arising from parametric
uncertainty via the posterior distribution and, on that basis,
to embed computable risk criteria and guarantees into policy
evaluation and improvement. For parameter uncertainty, one
line of work derives second-order approximations under a
Dirichlet posterior to construct confidence bounds on value
functions for risk-sensitive evaluation and optimization [30],
yielding a direct and tractable data-to-interval mapping. An-
other line adopts quantile objectives and Conditional Value-
at-Risk (CVaR) as a unified framework and, under Dirichlet
priors, develops approximately solvable formulations with
efficient evaluation [31]. Overall, these methods integrate
posterior uncertainty into the optimization objective, confer-
ring statistical robustness [32].

In recent years, distributional RL [33]–[36] has become
an important direction for risk-aware learning. Unlike tra-
ditional frameworks that estimate only the expected return,
distributional RL directly learns the complete return distri-
bution, whose semantics are specified by the recursive dis-
tributional Bellman equation; value-based methods perform
value iteration on this distribution and typically compare
actions using the expectation of that distribution. Following
Dabney et al. [35], the distribution representation in distribu-
tional RL can be classified into three categories: categorical
approximations, quantile-regression representations that fit
the cumulative distribution at fixed quantile points, and
continuous representations that learn an implicit quantile
function at arbitrary quantiles. In the domain of robotic
control, distributional RL is often instantiated within the
classical actor–critic architecture with a distributional critic,
thereby leveraging both the shape and the location of the
return distribution during policy improvement to realize risk-
sensitive characteristics. Benefiting from its compatibility
with the actor–critic framework widely used in contemporary
quadruped locomotion control and its direct characteriza-
tion of risk preference, several studies have applied it to
quadrupedal locomotion—including risk-aware control [19],
risk-averse control [20], multi-terrain robust locomotion [37],
and bipedal walking [21]. While constrained RL is ca-
pable of achieving predictive safety through its constraint
formulation [38], we present the related work in the next
subsection, where its relation to recovery RL can be more
clearly articulated.

Our method is consistent with distributional RL, but it
departs from prior work that either prioritizes robustness
without explicit control of risk preference, or relies on
hand-tuned risk-attitude parameters to obtain differentiated
policies across the full risk spectrum. We introduce a self-
supervised risk network to adaptively regulate risk preference
over the spectrum. By explicitly leverage the risk value,

the proposed approach achieves a unified balance between
performance and safety.

B. Toward Passive Safety in Reinforcement Learning

Passive safety aims to ensure that, once an agent enters a
potentially unsafe region, mechanisms steer the robot back
to the safe region without violating safety. In reinforcement
learning, this objective has been widely studied and is
commonly pursued through two methodological paradigms:
end-to-end and hierarchical approaches, corresponding to
constrained RL and recovery RL, respectively. Constrained
RL enforces safety within a single policy-learning pipeline
by formulating the problem as a CMDP, and seeking to
maximize expected return subject to prescribed cost or
safety constraints. Representative formulations include La-
grangian methods [39], [40], which solve a saddle-point
problem by jointly updating policy parameters and La-
grange multipliers; penalty and interior-point methods [41]–
[43], which embed constraints in the objective via external
penalties or barrier terms to promote feasibility; alternating-
optimization schemes, which alternate between reward im-
provement and cost reduction according to current feasibility;
and projection-based methods [44], which take an uncon-
strained step followed by a projection or proximal update
back to an approximate feasible set.

To address the suboptimality caused by constrained RL,
recovery RL approaches [45], [46] have been advanced as
a salient paradigm for safe RL. These methods typically
rely on system dynamics together with control-theoretic
safety certificates [47], in order to determine whether the
system has entered a trigger set, and, upon detecting potential
violations, switch to a recovery policy to ensure safety. How-
ever, such model-based switching mechanisms depend on
accurate system identification and complex constraint design,
imposing substantial requirements on prior knowledge and
computational resources and thereby limiting scalability to
high-dimensional, complex platforms such as quadrupeds.
To alleviate these demands, a line of work replaces explicit
models with learned safety critics and recovery policies,
thereby preserving, to a large extent, the advantages of
model-free training. In this context, He et al. [27] proposed
the ABS framework, which is fully model-free and hier-
archical, explicitly accounts for the interaction between a
reach–avoid (RA) value network and a recovery policy, lead-
ing to more competitive overall performance. Nevertheless,
the aforementioned hierarchical schemes remain reactive,
focusing on post-entry safety rather than predictive, risk-
aware control; moreover, including [27] among others, they
have yet to couple the learned risk indicator with the task-
level policy, which limits the latter’s ability to fully exploit
the information provided by the safety module. Accordingly,
adhering to a fully model-free hierarchical control architec-
ture, we propose a framework that integrates a risk value
network with a risk-aware task-level policy, resulting in a
more tightly coupled hierarchy that provides both predictive
and passive safety.
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TABLE I
NOMENCLATURE: SYMBOLS AND ABBREVIATIONS USED IN THIS WORK

Symbol / Abbrev. Meaning

SYMBOLS

S,A, O State space; action space; observation space
C Command space
s,a State; action
f (s,a) Dynamics
P(s′ | s,a) Transition kernel
r(s,a), c(s,a) Reward and cost
γ ∈ (0,1) Discount factor
πθ (a | s) Task-level policy

with neural network weights θ

V π (s), Qπ (s,a) State-/action-value under policy π

Zπ (s,a) Return distribution
VaRα (·) Value-at-Risk at level α

CVaRα (·) Conditional Value-at-Risk at level α

ρψ (·) Wang distortion with parameter ψ

R,T,RT Risk set; tracking set; risk–tracking set
πrec Recovery policy

ABBREVIATIONS

RL Reinforcement Learning
MDP, CMDP Markov Decision Process; Constrained MDP
PPO Proximal Policy Optimization
DPPO Distributional Proximal Policy Optimization
MPC Model Predictive Control
CLF, CBF Control Lyapunov Function; Control Barrier

Function
MSE Mean-squared Error

III. PRELIMINARIES AND OVERVIEW

A. Preliminaries

1) Nomenclature: In the following text, sets and spaces
are denoted by calligraphic capitals, while number sets are
using blackboard bold. Matrices and vectors are denoted
using bold symbols (e.g., A for matrices and vvv for vectors).
The notation (·)[k] refers to the k-th element of a vector
or a matrix. Scalars are represented using regular italic
symbols (e.g., a). Subscripts and superscripts are used to
indicate specific indices or contexts, where necessary. In
pseudocode, parameters are denoted using italic symbols
(e.g., param), while functions are represented using regular
text (e.g., FunctionName)

Specifically, the key symbols and abbreviations used in
this work are summarized in Table I.

2) Dynamics: Although our method does not rely on a
parametric model, a brief specification of the robot dynamics
is useful for clarifying the relationship between state spaces
and action spaces. Let ssst ∈ S denote the robot state vector
at time t, where the state space satisfies S ⊆ Rns and ns is
the state dimension. Likewise, let aaat ∈ A denote the action
vector at time t, where the action space satisfies A ⊆ Rna

and na is the action dimension. The robot’s dynamics are

modeled as

ssst+1 = f
(
ssst ,aaat

)
, f : S×A→ S, (1)

where f denotes the dynamic transformation function that
takes the current state–action pair (ssst ,aaat) as input and returns
the next state ssst+1.

3) Distribution and Risk Criteria: Let Z(sss) denote the
return of an agent at state sss. Its cumulative distribution
function and quantile function are:

FZ(z) = P(Z ≤ z), QZ(u) = inf{z : FZ(z)≥ u}, (2)

where FZ denotes the cumulative distribution function of Z,
and QZ is the corresponding quantile function evaluated at
probability level u ∈ [0,1].

In the baseline view of risk, one often writes “probability
× consequence” as R = p ·C, which can be understood as
an expectation over outcomes with implicit weights. Two
classical paradigms refine this baseline by emphasizing tail
behavior or by reweighting probabilities.

(I) Tail-based measures: VaR [48] and CVaR [49]. For
α ∈ (0,1), the lower-tail VaR is defined by

VaRα(Z) = QZ(α), (3)

the return threshold below which outcomes fall with proba-
bility α (i.e., the α-quantile of Z). The corresponding lower-
tail CVaR averages the same tail:

CVaRα(Z) = E[Z |Z ≤ QZ(α)] =
1
α

∫
α

0
QZ(u)du . (4)

(II) Distortion-based measures: the Wang trans-
form [50]. Distortion risk measures first reweight probabil-
ity/quantile levels via a monotone map ψ : [0,1]→ [0,1] and
then integrate the quantile function:

ρψ(Z) =
∫ 1

0
QZ(u)dψ(u). (5)

The Wang transform uses the “normal-equivalent” distortion

ψ(u) = Φ
(
Φ

−1(u)+λ
)
, (6)

where Φ is the standard normal cumulative distribution
function and λ controls risk attitude: λ < 0 increases weight
on the lower tail, whereas λ > 0 emphasizes upper-tail gains.
Unlike class (I), which targets a specific lower-tail quantile
or its mean, the distortion class redistributes weight across
all quantiles through ψ , thereby encoding tail importance
directly into the overall evaluation of Z.

4) Policy: A policy maps observations to a distribution
over actions,

πθ : O→ ∆(A), (7)

where O is the observation space and ∆(A) denotes proba-
bility measures over the action space. At each timestep, the
agent samples an action

at ∼ πθ (· | ot). (8)

The environment dynamics are defined by the transition
kernel:

P(s′ | s,a), (9)
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which specifies the probability of reaching state s′ given
state s and action a. Together with a reward function rtrk :
S×A×C → R, a discount factor γRL, a command set C,
and a command distribution pC, the policy is optimized to
maximize the expected discounted return:

J(πθ ) = E vcmd∼pC
at∼πθ (·|ot ,vcmd)

[
∑

t
γ

t
RL rtrk(st ,at ,vcmd)

]
. (10)

5) Set Definitions and Trigger Mechanisms: Inspired by
the classical reach–avoid problem in [27], we introduce
similar definitions tailored to our setting. In accordance with
the control task considered in this work—ensuring robot
safety while tracking velocity—we introduce three subsets
of the state space S: the risk set R ⊆ S, the tracking set
T ⊆ S, and the risk–tracking set (RT set) RTπ ⊆ S.

The risk set collects unsafe states (e.g., excessive
tilt, collisions, and feet stumble) and is encoded as the
zero–superlevel set of a Lipschitz function ζ :

R := {s ∈ S : ζ (s)≥ 0}, ζ : S→ R (11)

The tracking set gathers states that correctly track the veloc-
ity command and is encoded as the zero–sublevel set of a
Lipschitz function l:

T := {s ∈ S : l(s)≤ 0}, l : S→ R (12)

The RT set is related to policy. For the nominal policy
π , the RT set is the set of initial states whose closed-
loop trajectories ξ π

s (t) stay in T while avoiding R over the
horizon:

RTπ :=
{

s∈ S : ξ
π
s (t)∈T ∧ ξ

π
s (t) /∈R ∀ t ∈ [0,T ]

}
. (13)

Trigger mechanism is a binary switching map Trig : S→
{0,1} selects between the nominal policy π and a recovery
policy κ:

mt = Trig(st), µ(st) = (1−mt)π(st)+mt κ(st). (14)

The objective of the trigger mechanism is to ensure risk
avoidance and tracking maintenance under µ . Let the robust
interior of the tracking set be Tδ := {s : l(s) ≤ −δ } with
δ > 0. Then the guarantee is stated as

s0 ∈ Tδ =⇒ ξ
µ
s0
(t) ∈ T ∧ ξ

µ
s0
(t) /∈ R, ∀ t ∈ [0,T ], (15)

and, desirably, the inclusion RTπ ⊆ RTµ ⊆ T \R, where
RTµ := {s : ξ

µ
s (t) ∈ T∧ξ

µ
s (t) /∈ R, ∀t ∈ [0,T ]}, highlights

that the recovery mechanism can only enlarge or match the
capability region induced by π .

6) Risk Value and Time-Discounted Reach-Avoid Bellman
Equation: We define the risk value under the nominal policy
π , denoted V π

risk(s), whose zero–sublevel set strictly coincides
with the nominal RT set:

V π
risk(s)≤ 0 ⇐⇒ s ∈ RTπ(ζ ; l). (16)

Following [27], we adopt a contracted time–discounted risk
Bellman equation to characterize and compute this function.

Let the successor state be s+ = f (s,π(s)) and choose a
discount γrisk ∈ (0,1); then the value can be represented as:

V π
risk(s) = γrisk max

{
ζ (s), min{ l(s),V π

risk( f (s,π(s)))}
}

+(1− γrisk) max{ l(s), ζ (s)}. (17)

Since γrisk < 1, the corresponding operator is a contraction in
the sup-norm, hence the fixed point exists and is unique, and
the value iteration Vk+1 = Tπ

risk(Vk) converges; formal proofs
can be found in [27] and Appendix A of [51].

B. Overview

The architecture of the proposed UPPS-RL framework is
illustrated in Fig. 2, which comprises three primary modules:
a risk network, a task-level policy, and a recovery policy.
The task-level policy πT is trained under a distributional
RL scheme to track twist commands while taking a risk-
preference parameter as an additional input, thereby enabling
tunable aggressiveness–conservatism (details in Section VIII-
A). The recovery policy πR, designed as a safety-first con-
servative controller, tracks a recovery command under safety
constraints to steer the system back toward low-risk regions
(details in Section VIII-C). Both policies output joint position
targets in R12, which are mapped by a PD controller to low-
level actuation commands.

In our setting, when the risk value is below a switching
threshold, the system executes the action of the task-level
policy; the policy’s risk-preference parameter is generated
by passing the risk value through a shaping curve, so that
the controller is more aggressive at low risk and more
conservative at moderate or high risk. When the risk value
exceeds the switching threshold, the system executes the
recovery policy, whose recovery command is obtained by
a search operation performed by the risk network. In short,
the selection can be summarized as:

βt = ψ
(
V π

risk(st)
)
, crec

t = Search(RiskNet,st), (18)

at =

{
πT (ot , ct , βt), if V π

risk(st)≤ τsw,

πR(ot , crec
t ), if V π

risk(st)> τsw.
(19)

To summarize, the UPPS-RL is constructed by sequen-
tially training three modules and then applying them jointly;
the training and merging procedures are as follows:

• The task-level policy is trained under a DPPO frame-
work, with its configuration defined in Section IV. Its
core advantage is that the critic evaluates the overall
distribution of returns and applies a distortion according
to a sampled risk-preference parameter, yielding risk-
aware characteristics.

• The risk network is trained via a self-supervised learn-
ing method, using the risk-neutral task-level policy as
the reference policy for data collection and labeling,
which are used to indicate the risk value. The training
process is detailed in Section V.

• The recovery policy is trained under a PPO framework,
with its configuration defined in Section VI.
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Fig. 3. Task-level policy training framework based on DPPO. The observations consist of proprioception, terrain-scan information, and twist commands.
These inputs are fed into the actor–critic networks, where the actor outputs robot actions and the critic provides value estimates. The distributional output
of the critic is further shaped by a risk metric under randomly sampled risk preferences, which is then used for generalized advantage estimation.

• The module composition method—including the map-
ping from risk value to the risk-preference parameter
and the generation of the recovery command—is pre-
sented in Section VII.

IV. TASK-LEVEL POLICY

As a key component of the UPPS-RL framework, the
task-level policy provides predictive safety assurance. Given
motivations in Section II-A, we adopt the distributional
RL approach in [19], called distributional proximal policy
optimization (DPPO), to obtain risk-aware control: within a
standard actor–critic framework, the scalar critic is replaced
by the distributional value network that models the return
distribution, and this distribution is then distorted according
to a prescribed risk metric and a specified risk-preference
parameter. At deployment, by tuning the risk-preference
parameter, the policy can be explicitly adjusted to achieve
an aggressiveness–conservatism trade-off.

This section presents the training details of the task-level
policy, including the actor, the critic, the risk metric, the
reward design, and the training setup.

A. Actor

As shown in Fig. 3, the actor is a three-layer fully
connected MLP with hidden widths [512, 256, 128]. Its
observation vector includes: base linear velocity vvv, base
angular velocity ωωω , the gravity projection ggg expressed in
the body frame, the body-frame twist command cccbody

t , the
joint positions qqq, the joint velocities q̇qq, the previous action
aaat−1, the ray-caster height samples hhht in the body frame
within a 1.6m (x-axis) by 1.0m (y-axis) area, and the risk-
preference parameter βt . Formally, the observation can be
summarized as:

oooTask-Actor
t =

[
vvvt ; ωωω t ; gggt ; cccbody

t ; qqqt ; q̇qqt ; aaat−1; hhht ; βt
]
. (20)

The actor outputs the policy action as a 12-dimensional
joint target vector. Consistent with Section III-B, the joint
targets are tracked by a PD controller, which maps joint
targets to the low-level joint torques:

τττ t = Kp
(
aaat −qqqt

)
+ Kd

(
ȧaat − q̇qqt

)
, (21)

where aaat ∈ R12 is the joint-target vector, qqqt , q̇qqt are the
measured joint positions and velocities, ȧaat is the desired
joint velocity which is set to zero, and Kp, Kd ∈R12×12 are
positive gain matrices.

We train the actor with the PPO-Clip objective [52],
maximizing

L= min

(
πφ (a |oooTask-Actor

t )

πφold(a |oooTask-Actor
t )

Aπφold (oooTask-Critic
t ,a),

g
(
ε, Aπφold (oooTask-Critic

t ,a)
))

, (22)

where,

g(ε,A) =

{
(1+ ε)A, A ≥ 0,
(1− ε)A, A < 0.

We use a truncated version of generalized advantage
estimation (GAE) [53], as employed in [54] and [55]. Specif-
ically, for horizon T , it is computed as:

Aπ(oooTask-Critic
t ,aaat) =

T−t−1

∑
l=0

(λγ)l
δ

π
t+l , (23)

where

δ
π
t = rt + γ V (oooTask-Critic

t+1 )−V (oooTask-Critic
t ), (24)

γ is the discount factor, λ is the bias/variance trade-off
hyperparameter, rt is the immediate reward, and V (·) is the
state value function.
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Since the critic in the proposed framework produces a
full return distribution, it is not directly compatible with the
scalar value function V (ooo) used in standard PPO. Accord-
ingly, we introduce a risk metric (detailed in Section IV-C)
that operates on the critic’s distributional output, applies a
distortion, and yields a scalar value, which is then used as
V (oooTask-Critic).

B. Critic
We adopt Quantile Regression DQN (QR-DQN) [56] as

the distributional critic, which uses uniform weights 1/N
and learns the quantile locations {θi(s)}N

i=1. The return
distribution is represented as

Zθ (s) =
1
N

N

∑
i=1

δθi(s), (25)

where δθi(s) denotes the Dirac measure at θi(s).
Different from the actor, the critic is used solely to predict

the discounted return at state s and is invariant to the choice
of risk-preference; therefore, the critic’s observation set does
not include the risk-preference parameter. Its observation set
can be expressed as follows:

oooTask-Critic
t =

[
vvvt ; ωωω t ; gggt ; cccbody

t ; qqqt ; q̇qqt ; aaat−1; hhht
]
. (26)

Motivated by [34], we train the critic with a simple
energy–distance objective, as

Lcritic = 2Ei, j
[∣∣θi −T θ j

∣∣]−Ei, j
[∣∣T θi −T θ j

∣∣]
−Ei, j

[∣∣θi −θ j
∣∣] , (27)

where θi,θ j ∼ Zθ (st) are samples from the current critic
distribution, T θ j denotes samples from the SR(λ ) target
distribution obtained by discounting and shifting with rt and
γ , and Ei, j is the empirical average over sample pairs.

C. Risk Metric
To enable both upper-tail (aggressive) and lower-tail (con-

servative) reweighting, we adopt a distortion-based risk met-
ric. Specifically, we use the Wang metric to distort the
distribution produced by the critic. Let Zθ (s) denote the
return distribution at state s with quantile function QZθ (s).
For a risk-preference parameter β ∈ R, define

ψβ (u) = Φ
(
Φ

−1(u)+β
)
, u ∈ [0,1], (28)

where Φ is the standard normal CDF. The Wang risk value
is then

Vβ (ooo
Task-Critic
t ) =

N

∑
i=1

[
ψβ (τi)−ψβ (τi−1)

]
θi(oooTask-Critic

t ),

0 = τ0 < τ1 < · · ·< τN = 1. (29)

which emphasizes upper-tail returns when β > 0 (more
aggressive) and lower-tail returns when β < 0 (more conser-
vative). During training, β is sampled from [−1.5, 1.5]. This
range induces substantial and practically useful distortions of
the critic’s return distribution; larger magnitudes drive most
mass into the extreme head or tail and offer little additional
benefit, hence an expansion of the range is unnecessary.

D. Rewards

Inspired by [27] and [19], we set the reward function to
consist of three components: penalty, task, and regularization
terms:

rtotal = rpenalty ·∆t + rtask ·∆t + rregularization ·∆t, (30)

where ∆t is the rendering time step.
1) Penalty: We penalize robot collisions and foot-

stumbles:

rpenalty =−3.0 · rcollication − 1.5 · rstumble. (31)

The two components are

rcollication =
1

Fmax
∑
i∈U

∥∥ fff i
∥∥

2, (32)

rstumble =
1
|F| ∑

j∈F
1
{

ℓ j

v j + ε
> Rthr

}
. (33)

where U is the set of undesired-contact bodies, i.e. trunk,
fff i ∈R3 is the net contact force on body i, and Fmax = 100N
is the normalization constant. F is the set of feet; for foot j,
the lateral and vertical force magnitudes are

ℓ j =
√

( f x
j )

2 +( f y
j )

2,

v j = | f z
j |;

(34)

ε = 10−6 is designed to avoid division by zero, and Rthr >
4.0 is a ratio threshold that flags excessive lateral loading.
The indicator 1{·} returns 1 if the condition holds and 0
otherwise.

2) Task: The task reward encourages tracking of the
linear- and angular-velocity commands while staying alive:

rtask = 1.5 · rlin xy +1.0 · ryaw z +0.1 · ralive. (35)

The linear- and angular-velocity tracking reward terms are

rlin xy = exp
(
−Errlin

σtrk

)
, (36)

rang z = exp
(
−

Erryaw

σtrk

)
, (37)

where

Errlin =
∥∥vvvxy

cmd − vvvxy∥∥2
2, Erryaw =

(
ωcmd −ωz

)2
.

Here vvvxy,vvvxy
cmd are the measured and commanded linear

velocities on the xy plane; ωz and ωcmd are the measured and
commanded yaw rate; and σtrk = 0.25 is the tuning constant.

The alive reward term is

ralive = 1. (38)

3) Regularization: In this work, we set the regularization
rewards as:

rregularization =−2.0 · rlin z −0.01 · rang xy −1.5e−4 · rtorques

−5.0e−8 · rdof acc +0.5 · rfeet air time

−0.01 · raction rate −0.5 · rgait.
(39)
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Fig. 4. The training environment is composed of multiple terrain types arranged in increasing difficulty. From top to bottom: (1) step, (2) inverted step,
(3) slope, (4) inverted slope, (5) rough terrain, and (6) pit. Terrain elevation is visualized as color heatmaps to mitigate ambiguity due to finite simulation
rendering fidelity; the heatmaps are sourced from the Isaac Sim official documentation.

The vertical linear- and lateral angular-velocity regulariza-
tion terms are

rlin z = v2
z , (40)

rang xy =
∥∥ωωω

xy∥∥2
2, (41)

where vz is the z-component of the body-frame linear velocity
vvv, and ωωωxy = [ωx, ωy ]

⊤ stacks the x- and y-components of
the body-frame angular velocity ωωω .

We limit the torque and joint acceleration with

rtorque = ∥τττ∥2
2 =

ndof

∑
j=1

τ
2
j , (42)

racc = ∥q̈qq∥2
2 =

ndof

∑
j=1

q̈2
j , (43)

where τττ denotes the applied joint torques and q̈qq the joint
accelerations.

To encourage the robot to raise its legs, feet air time is
added as a positive value to the regular reward:

rair = κ ∑
j∈F

(
tair

j − τair
)

1{fc j}, (44)

where κ = 1{∥vvvxy
cmd∥2 > vmin}, τair = 0.6, vmin = 0.1; tair

j is
the last air time of foot j, and fc j means the first contact
of foot j in the current step, and 1{·} denotes the indicator
function, which equals 1 if the condition inside holds and 0
otherwise.

The action-rate is also included as a regularizer:

ract =
∥∥aaa−aaa−

∥∥2
2 =

ndof

∑
j=1

(
a j −a−j

)2
, (45)

where aaa ∈Rndof is the current actions and aaa− is the previous
actions.

To suppress the erroneous gait in which one leg remains
airborne for an extended period, we add a gait regularization
term:

rgait = κ ·max
j∈F

[
tair

j,cur − τair

]
+
, (46)

where [x]+ = max(x,0), tair
j,cur is the current air time of foot

j, and τair = 0.8s is the threshold. The activation factor κ

enables the penalty only when a nontrivial planar speed is
commanded.

E. Training Setup

1) Simulator and Hardware: We trained the task-level
policy in the Isaac Sim simulator using the Isaac Lab training
framework. For the actor-critic algorithm, the hyperparam-
eters were: PPO clipping ratio ε = 0.2, entropy coefficient
βentropy = 0.01, GAE parameter λ = 0.95, discount factor
γ = 0.95, and learning rate η = 1 × 10−3. The training
process was conducted on a laptop equipped with an Intel
Core i9-13900HX (24 cores/32 threads), 16 GB RAM,
and an NVIDIA GeForce RTX 4060 Laptop GPU (8 GB
VRAM), running Ubuntu 20.04.6 LTS (kernel 5.15.0–139).
1,024 parallel agents were trained for 6,000 iterations, which
required approximately 2.5 hours.

2) Environment: We adopt a parameterized suite of di-
verse terrains based on [57], to train the policy’s ter-
rain adaptivity and risk awareness. As shown in Fig. 4,
the terrain set comprises: pyramid-steps with step height
h+step ∼ U[0.05, 0.15] and step width wstep = 0.3; inverted
pyramid-steps with height h−step ∼U[0.03, 0.15] and the same
width 0.3; pyramid-slopes with gradient s+ ∼ U[0.02, 0.15];
inverted pyramid-slopes with gradient s− ∼ U[0.02, 0.15];
stochastic roughness modeled as zero-mean uniform eleva-
tion noise η ∼ U[−ε,ε] with amplitude ε ∼ U[0.00, 0.01];
and pit terrains with depth dpit ∼ U[0.01, 0.25]. All the
lengths are in meters, and slopes are dimensionless gradients.
To better expose the policy to risk, the upper bounds of
the step-height and pit-depth ranges are set to the Unitree
Go1’s nominal gait limits [58], i.e., 0.15m for step height
and 0.25m for pit depth.

3) Domain Randomization: We employ domain random-
ization to facilitate sim2sim and sim2real transfer. For each
episode, we inject independent zero-mean uniform noise to
the signals: joint position noise ηq ∼ U[−0.01, 0.01] rad;
joint velocity noise ηq̇ ∼ U[−1.5, 1.5] rad/s; base angular-
velocity noise ηω ∼ U[−0.2, 0.2] rad/s; projected-gravity
components noise ηg ∼ U[−0.05, 0.05]; ray-caster height
noise ηh ∼ U[−0.01, 0.01] m; and an added base-mass
perturbation ∆m ∼ U[−1.0, 1.0] kg.

At each episode reset, the initial state is randomized as
follows: base position offsets ∆px,y ∼ U[−0.4, 0.4] m; yaw
angle ψ0 ∼U[−π, π]; base linear velocity vxy ∼U[−0.2, 0.2]
m/s; and base yaw rate ψ̇z ∼ U[−0.2, 0.2] rad/s.
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4) Curriculum: We employ a terrain difficulty curriculum
to prevent early training from being blocked by overly chal-
lenging terrain. Following [59], the workspace is partitioned
into tiles arranged by difficulty levels. At each reset, we
assess progress on the current tile; if the agent’s planar
displacement since episode start exceeds half of the tile
length, it is promoted to the next level. However, since our
terrain set includes highly risky configurations, we introduce
a downgrade buffer to maintain exposure to risk: when the
velocity command exceeds the designed threshold but the
agent does not traverse half a tile before reset, we record
a failure; after three such failures, the agent is demoted by
one level. The failure counter is cleared upon promotion or
a successful episode.

V. RISK VALUES

Although the task-level policy in the proposed framework
affords predictive safety, it neither enables online adaptation
of its risk preference nor provides formal guarantees of
passive safety. We cast risk evaluation in the RA formal-
ism. Building on data-driven RA value-function learning
in the existing works [60], we train a risk network via
self-supervised learning. In contrast to approaches that ap-
proximate a global RA value function [51], our method
follows the policy-conditioned paradigm [27], i.e., we ap-
proximate the value function induced by a fixed task-level
policy. Since the task-level policy admits a tunable conser-
vative–aggressive trade-off and the labels must be invariant
to the data-collection process during self-supervision, we
therefore collect data under the risk-neutral policy by fixing
the risk preference parameter to β = 0. This restriction of
the sampling space does not compromise the risk network’s
capacity to generalize over the risk-preference parameter β ,
because data gathered under a risk-neutral policy probe the
environment’s intrinsic risk characteristic. By contrast, overly
conservative or overly aggressive policies skew visitation and
confound estimation, introducing policy-dependent biases
into the inferred risk.

In this section, we present the training details of the risk
network, including the network configuration, the labeling
and training process, and the training setup.

A. Risk Network

We set the risk network as a two-layer fully connected
multilayer perceptron with hidden width [64,64]. Following
the works in [61], [62], we provide a low-dimensional vector
composed of most important observation features as the risk
network’s observation space: the base linear velocity v, the
base angular velocity ωωω , the gravity projection g expressed in
the body frame, the commanded body-frame twist cbody

t , and
a 12-dimensional set of ray-caster height samples obtained
by reducing the original 187-dimensional height profile.
Formally, the network input is the concatenation

orisk
t =

[
vt ; ωωω t ; gt ; cbody

t ; h∗
t
]
,

where h∗
t ∈ R12 denotes the dimension-reduced height fea-

tures, and the principles underlying the dimensionality re-

Fig. 5. Training framework of the risk network. The Neutral TL Policy is
obtained from the task-level training described in Section IV and is used to
drive the robot’s motion in the environment. The robot states are processed
through the simulator and converted into dimension-reduced observations
and termination information, which are stored in the data buffer. The
collected data are then relabeled in hindsight and used for loss calculation,
producing training labels for supervising the risk network.

duction of the ray-caster height samples are illustrated in
Fig. 6.

The risk network outputs a single scalar-valued risk score
rt ∈ [−1,1].

B. Labeling and Training

For notational convenience, we denote the risk value
by V Πneutral

risk

(
orisk

t
)
, and the corresponding training label by

V̂
(
orisk

t
)
.

Consistent with Section III-A.6, we define the training
label for the risk network as:

V̂ target
(

orisk
t

)
= γrisk max

{
ζ (st), min

{
ℓ(st), V̂ old(orisk

t+1
)}}

+
(
1− γrisk

)
max

{
ℓ(st), ζ (st)

}
, (47)

where we set the discount γrisk = 0.999999, following [27],
a large discount yields a tighter approximation to the true
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Fig. 6. Dimension-reduced height scan used in the risk network, where the
white circles represent the original 17×11 height scan and the red circles
denote the extracted 12-dimensional features.

value. The term V̂ old(·) is computed by the snapshot of the
risk network from the previous training iteration and serves
as the bootstrap target.

As described in Section III-A.5, both the task function
ℓ(st) and the risk function ζ (st) are required to be Lipschitz
continuous. We first instantiate the task shaping function as:

ℓ(st) = tanh
(

log
( et

τ
+ ε
))

, (48)

where et =
∥∥vb

t − ub
t
∥∥

2 denotes the body-frame velocity-
tracking error in xy plane, τ = 0.1 m/s is the velocity
tolerance, and ε = 10−8 is a small regularizer to avoid
numerical error.

For the risk function, we set over-tilt, undesired collision,
and foot stumble as risky events and construct a hindsight
label that increases linearly over the N = 10 frames preceding
the event, as:

ζ
∗(st) =

1
N

(
t − (τ −N)

)
+

1{t ≤ τ}, (49)

where τ denotes the risk event time, (x)+ ≜ max{0,x}
denotes the positive part operator, and 1{·} is the indicator
function. And it was map to [−1,1] by

ζ (st) = 2ζ
∗(st)−1. (50)

The risk network is trained to satisfy

V Πneutral
risk

(
orisk

t
)
≈ V̂

(
orisk

t
)
. (51)

Since the agents are safe at most times in the rollout,
we adopt an importance-weighted mean-squared error (MSE)
loss following [63], [64]:

L = λ
1
T

T

∑
t=1

wt

(
V Πneutral

risk

(
orisk

t
)
−V̂
(
orisk

t
))2

, (52)

with per-sample weights

wt =


α

p̂risk + ε
, if sample t is risk-positive

1−α

p̂safe + ε
, if sample t is safe

, (53)

where T is the mini-batch size; V̂ (·) is the supervisory
target defined in Eq. 47; risk-positive denotes samples labeled
positive by the risk shaping signal ζ (st) and safe oth-
erwise; p̂risk = 1

T ∑
T
t=1 1{risk-positive at t} is the empirical

risk-positive fraction in the batch; α ∈ (0,1) sets the desired
class contribution (we use α = 0.5 for balance), ε = 10−8

prevents division by zero, and λ = 100 scales gradients
without affecting the minimizer.

C. Training Setup

We trained on the laptop configuration described in Sec-
tion IV-E, using 1024 parallel agents to collect trajectories.
The agents are operated in the designed environment; how-
ever, unlike task-level policy training, we uniformly assigned
agents across all terrain tiles at reset and disabled the terrain
curriculum. During rollout, every 20 simulation steps, we
performed an offline pass over a rolling per-environment
buffer of the most recent 1000 transitions, with mini-batches
of size 200 for each agent. The entire run comprised 200,000
steps and took approximately 4.5 hours of wall-clock time
on our setup.

VI. RECOVERY POLICY

The recovery policy is a safety-prioritized policy for
tracking body-frame twist commands and is trained using a
standard PPO framework. This section presents the training
details, including the actor and critic, the reward design, and
the training setup.

A. Actor and Critic

We use a three-layer fully connected MLP with hidden
widths [512, 256, 128] for both actor and critic. The ob-
servation vector is defined as: base linear velocity vvv, base
angular velocity ωωω , the gravity projection ggg expressed in
the body frame, the body-frame twist command cccbody

t , the
joint positions qqq, the joint velocities q̇qq, the previous action
aaat−1, and the ray-caster height samples hhht which is the
same with task-level policy. Formally, the observation can
be summarized as:

oooRecovery
t =

[
vvvt ; ωωω t ; gggt ; cccbody

t ; qqqt ; q̇qqt ; aaat−1; hhht
]
. (54)

The actor outputs the policy action as a 12-dimensional
joint target vector, which is tracked by the PD controller
in Eq.21. The critic outputs a scalar-valued estimate of the
return.

B. Rewards

Consistent with the preceding design, the recovery policy’s
reward function is also decomposed into task, penalty, and
regularization components:

rtotal = rpenalty ·∆t + rtask ·∆t + rregularization ·∆t, (55)

In designing the recovery policy’s reward, we follow [27]
and [65], assigning increased weight to components that
promote balance and safety so as to prioritize stability while
preserving command-tracking performance.
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Fig. 7. Recovery policy training framework based on standard PPO. The policy is optimized through simulator interactions and reward signals, with
generalized advantage estimation used to update the actor–critic networks.

1) Penalty: We penalize robot collisions:

rpenalty =−3.0 · rcollication, (56)

where rcollication is shown in Eq. 32.
2) Task: Within the task-reward channel, we assign a

higher weight to the alive term and introduce two additional
shaping signals—base orientation and target posture—to
explicitly encourage balance:

rtask = 1.5 · rlin xy +0.75 · ryaw z +0.75 · ralive

+0.05 · roriention −0.02 · rposture, (57)

where rlin xy, ryaw z, and ralive are designed, respectively, in
Eq. 36, Eq. 37, and Eq. 38.

The base orientation term is

rorientation = ggg2, (58)

The target posture term is aimed at tracking the normal
standing posture:

rposture =
12

∑
i=1

∣∣qi − q̄rec,i
∣∣, (59)

where q = [q1, . . . ,q12]
⊤ ∈ R12 denotes the joint-angle

vector, and q̄rec = [q̄rec,1, . . . , q̄rec,12]
⊤ is the normal stand

posture.
3) regularization: The regularization rewards for the re-

covery policy are designed as:

rregularization =−2.0 · rlin z −0.01 · rang xy −1.5e−4 · rtorques

−5.0e−8 · rdof acc +0.5 · rfeet air time

−0.01 · raction rate,
(60)

where all reward terms are defined in Section IV-D.3.

C. Training Setup
The training setup closely follows Section IV-E, with the

following deviations:

1) Simulator and Hardware: Owing to the reduced
GPU–memory footprint of the standard PPO pipeline, we
are able to employ 4096 parallel agents.

2) Domain Randomization: We augment domain ran-
domization with stricter initialization perturbations, added
random base rotational offset ∆θx,y ∼ U[−0.5, 0.5] rad; set
base linear velocity vxy ∼U[−0.5, 0.5] m/s, and base yaw rate
ψ̇z ∼ U[−0.4, 0.4] rad/s, to emulate the robot’s state after a
policy switch.

3) Curriculum: We lowered the promotion threshold in
the curriculum: at the end of each episode, the agent is
promoted if its planar displacement exceeds one-third of a
terrain tile’s side length. We also removed the downgrade
buffer, so that a single failure can immediately trigger
demotion.

VII. INTEGRATION OF MODULES

A. Recovery Command Generation

The recovery command is computed by scanning the risk
network over candidate planar headings in the body frame
and selecting the least–risky direction. N candidate headings
are sampled uniformly on [0,2π):

θk =
2πk
N

, dk =
[
cosθk,sinθk

]
, k = 0, . . . ,N −1.

(61)
Let orisk

t denote the current risk network observation vec-
tor. For each candidate k, a temporary observation orisk

t k is
built by cloning orisk

t and forcing the base linear velocity
and commanded body-fame twist channel to the candidate
heading (i.e., assuming perfect tracking for all direction),
and evaluate the scalar risk value

rk = R
(

s(k)t

)
. (62)
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Fig. 8. Switching and risk-preference adjustment. βt(rt) follows Eq. (64)
with threshold τsw = 0.8; the hatched light-blue area indicates the recovery
region.

The recovery command vrecovery
t is then selected by choosing

the safest heading and forming a fixed–magnitude command

k⋆ = argmin
k

rk, vrecovery
t = v0 dk⋆ , v0 = 0.5 m/s. (63)

vrecovery
t is written into the command channel cccbody

t of the
recovery observation and passed to the policy.

This procedure runs every control cycle at 50 Hz.

B. Switching and Risk Preference Adjustment

As described in Section III-B, we also use the risk value
V π

risk(st) for policy switching and risk preference adjustment.
We adopt a deterministic gating rule with the threshold of
τsw in Eq. 19, and set τsw = 0.8.

When the task policy is active, the risk preference param-
eter β is modulated by a piecewise-linear map:

βt =

−1.5, rt ≤ 0,

−1.5+
3

0.8
rt , 0 < rt ≤ 0.8,

(64)

which varies monotonically from a aggressive setting (β =
−1.5) to an conservative setting (β = 1.5) as V π

risk(st) in-
creases on [0,0.8], while clamping to −1.5 for rt ≤ 0. The
switching mechanism and risk-preference adjustment are
shown in Fig. 8.

VIII. EXPERIMENTS

A. Task-level Policy

1) Critic Evaluation: To characterize the distributional
critic in DPPO under varying risk preferences, and to elu-
cidate how the task-level training framework yields risk-
aware policies, we conduct evaluations on six representative
terrain settings: rough plane (a), pit (b), step (c), inverted
step (d), slope (e), and inverted slope (f). In each setting, an
aggressive policy is employed to explore the environment,
from which the critic’s output distributions are collected.

Subsequently, the Wang transform is applied to obtain risk-
distorted distributions. The results are shown in Fig. 9.

Across terrain configurations and risk preferences, the
critic outputs exhibit consistent and interpretable patterns.
On relatively benign terrains such as the rough plane and the
slopes, the critic produces distributions with higher means
and smaller variances, indicating that the agent can achieve
both larger and more stable returns in low-risk environments.
Moreover, in these mild settings, the discrepancy between
conservative and aggressive distortions remains small, sug-
gesting limited uncertainty and constrained tail risks as well
as potential extreme rewards.

In contrast, in more challenging terrains such as the pit and
the step/inverted step, the original distributions are broader
and exhibit lower means. Notably, the step setting attains
a relatively higher mean compared to the pit and inverted
step, as the agent does not need to overcome gravity and
can more easily track velocity commands, thereby achieving
higher expected returns. Overall, these complex terrains
result in lower expected values and substantially increased
uncertainty relative to mild configurations. After applying
the Wang transform, the conservative distortion consistently
shifts toward higher expected returns, whereas the aggressive
distortion shifts toward lower expected returns, producing
pronounced differences. It is worth noting that, due to the
GAE calculation in the actor–critic framework illustrated by
Eq. 24, the relationship between critic distributional shifts
and policy aggressiveness may appear counterintuitive.

In summary, these findings demonstrate that the distribu-
tional critic effectively captures scenario-dependent uncer-
tainty structures, while the Wang transform provides a unified
and tunable mechanism that explains the emergence of risk-
aware characteristics in the training framework. Overall, the
results validate that replacing the conventional scalar critic
with QR-DQN enables the learning of return distributions; by
adjusting the parameter β , one can systematically reweight
uncertainty and thereby induce differentiated risk-sensitive
policy learning.

2) Policy Evaluation: We evaluate the performance of
policies with different risk preferences across multiple ter-
rain configurations. For each terrain–preference setup, we
execute 40 independent trials under a fixed forward velocity
command of 1m/s. The results are summarized in Table II.
Outcomes are categorized into three classes: Avoid, Fail, and
Succ, where Avoid denotes that the robot halts at the terrain
boundary without attempting to traverse; Fail denotes that
the robot attempts to traverse but does not succeed (e.g.,
falls over or gets stuck); Succ indicates that the robot enters
the terrain region and successfully exits it.

On the flat terrain, all risk preferences achieve the 100%
success rate, indicating that environmental risk is negligible
and risk sensitivity has virtually no impact on performance.
In the Step inv and Pit settings, shaded in red and green, suc-
cess rates decrease markedly with increasing terrain difficulty
across all risk preferences, and a clear separation emerges
between conservative and aggressive policies. Conservative
policies (β > 0) tend to avoid high-risk states, with the
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Fig. 9. Visualization of the critic output distributions, together with the distorted distributions distorted by the Wang metric, where the conservative setting
corresponds to β = 1.5 (orange) and the aggressive setting corresponds to β =−1.5 (blue). Subfigures illustrate different terrain settings: (a) rough plane,
(b) pit, (c) step, (d) step inv, (e) slope, and (f) slop inv.

TABLE II
PERFORMANCE OF THE TASK-LEVEL POLICY ACROSS DIFFERENT TERRAINS AND RISK PREFERENCES. CELL BACKGROUND COLORS INDICATE

AGGRESSIVENESS/CONSISTENCY WITH RISK PREFERENCE (RED/GREEN) AND DEVIATIONS FROM THE TREND (YELLOW).

Step inv Pit
5cm 8cm 12cm 15cm 20cm 25cm

β Avoid Fail Succ Avoid Fail Succ Avoid Fail Succ β Avoid Fail Succ Avoid Fail Succ Avoid Fail Succ
1.5 0 0 100 95 0 5 100 0 0 1.5 0 2.5 97.5 90 5 5 100 0 0
0.8 0 0 100 55 0 45 97.5 2.5 0 0.8 0 2.5 97.5 5 42.5 52.5 97.5 0 2.5
0 0 0 100 7.5 2.5 90 75 25 0 0 0 7.5 92.5 0 20 80 40 17.5 42.5

-0.8 0 0 100 2.5 7.5 90 50 10 10 -0.8 0 5 95 0 5 95 5 35 60
-1.5 0 0 100 0 15 85 5 37.5 57.5 -1.5 0 7.5 92.5 0 15 85 0 32.5 67.5

Step Flat
5cm 8cm 12cm ———

β Avoid Fail Succ Avoid Fail Succ Avoid Fail Succ β Avoid Fail Succ
1.5 0 5 95 0 12.5 87.5 0 80 20 1.5 0 0 100
0.8 0 10 90 0 10 90 0 65 35 0.8 0 0 100
0 0 7.5 92.5 0 15 85 0 65 35 0 0 0 100

-0.8 0 12.5 87.5 0 17.5 82.5 0 45 55 -0.8 0 0 100
-1.5 0 7.5 92.5 0 7.5 92.5 0 40 60 -1.5 0 0 100

proportion of Avoid increasing as difficulty rises; aggressive
policies (β < 0), however, attempt traversal more frequently
and, while achieving higher success rates than conservative
policies, also incur higher failure rates.

The Step setting departs from this trend, as marked in
yellow. Even at higher difficulties, all risk preferences exhibit
elevated failure rates, yet the conservative policy rarely
produces Avoid outcomes. The failure mechanism here is
dominated by rollovers: as the robot moves from the step top
to the bottom, excessive pitch induces a rollover that triggers
an immediate reset during training. Consequently, trajectories
are truncated upon failure onset and cannot continue to

accrue terms such as collision or feet-stumble rewards; the
expected-return distribution is thus shifted globally toward
lower values rather than developing heavier adverse tails,
which attenuates the observable risk-aware signature.

Overall, task-level policies exhibit differentiated behaviors
under distinct risk preferences: conservative policies priori-
tize safety at the expense of success rate, whereas aggressive
policies pursue higher success at the cost of elevated failure
risk. By tuning the risk parameter β , one can smoothly trade
off performance and safety.
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Fig. 10. Heatmap visualization of risk network predictions under varying terrain difficulties. The robot is initialized within the red box and commanded
to explore the terrain at a forward velocity of 1 m/s (along the yellow arrow). The risk network computes risk values in real time within the range [−1,1],
where −1 (green) denotes safe regions and 1 (red) denotes risky regions, indicating the estimated risk of the configuration. The blue arrows represent the
recovery commands generated by the risk network, as described in Section VII.

B. Risk Network

We evaluated the risk network as follows: the robot was
assigned to regions with different terrain types and difficulty
levels to collect data. The collected data were then processed
offline by the risk network, and the outputs were visualized
as heatmaps shown in Fig. 10. Furthermore, whenever the
network output exceeded the threshold τsw defined in Sec-
tion VII, the corresponding recovery command was added as
blue arrows at those locations to indicate the motion direction
received by the recovery policy.

In low–difficulty configurations (i.e., rough plane, slope,
slope inv), the predictions generally form a uniform low–risk
background, with near–neutral values appearing only under a
few locally harsher conditions; the safe region remains broad
and continuous. In contrast, in high–difficulty configurations
(i.e., pit, step, step inv), the spatial risk distribution is highly

consistent with the terrain geometry: high values first emerge
in the central area of the terrain features; as the difficulty
increases, both the peak magnitude and the spatial proportion
of high–risk bands increase, gradually expanding toward
the terrain boundaries, and at the highest difficulty nearly
covering the entire terrain extent. Moreover, in pit, step,
and step inv at high difficulty, as well as in step inv at
medium difficulty, the risk values exceed the threshold;
the associated recovery commands point away from the
hazardous regions, namely in the directions of moving down
into the pit or descending the steps. This is consistent with
empirical observations, where leveraging gravity results in
safer motions than opposing it.

In summary, the outputs of the risk network are consistent
with intuition: as the terrain becomes more challenging, the
risk set expands and the corresponding risk values increase;
at the same time, the safety–recovery directions indicated by
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Fig. 11. Comparative rollouts under five setups: (a) conservative policy; (b) neutral policy; (c) aggressive policy; (d) aggressive policy with recovery
policy; (e) adaptive-β policy; and (f) adaptive-β policy with recovery policy. Each row shows one complete trail, with frame colors indicating the state
condition—success (green), avoid (yellow), and failure (red). The colored bars beneath each state denote the policy type: aggressive (red), neutral (gray),
conservative (purple), and recovery (blue).

TABLE III
SUCCESS RATE OF RECOVERY POLICY INTERVENTION

Baseline Recovery Policy

Success Rate (%) 57.5 95.0

Settling Time (S) 0.7624 0.3888

the risk network are correct and consistent.

C. Recovery Policy

To ensure fairness, we trained the baseline policy using
the same training framework as the recovery policy, with
the reward and training configurations specified in [66]. On
this basis, we designed a randomized experiment to evaluate
the intervention success rate and average settling time of
the policy. Specifically, at the beginning of each trial, the
robot was randomly assigned a wide range of initial heights,
initial pitch and roll angles, as well as linear and angular
velocities, in order to simulate the diverse states that may
occur when the switching mechanism of the overall frame-

work is triggered. For both the baseline and the recovery
policy, a forward velocity command of 1m/s was assigned,
and 40 independent trials were conducted for each policy.
The recovery success rate and the average settling time (time
to reach target velocity within 0.1 m/s) were recorded. The
experimental results are shown in Table III.

The results show that the baseline policy achieved a suc-
cess rate of 57.5%, with an average settling time of 0.7624 s
in successful cases. Under the same conditions, however, the
recovery policy significantly improved the success rate to
95.0% and reduced the average settling time to 0.3888 s.
Failures occurred only in extreme cases, where both the
rolling angle and the initial height simultaneously reached the
limits of the recovery policy, leading to agent collapse. These
findings indicate that adopting a safety-prioritized recovery
policy within the proposed policy-switching mechanism can
substantially increase the intervention success rate and enable
rapid tracking of the recovery command, thereby ensuring
the effectiveness of UPPS-RL in achieving passive safety
and providing reliable operation of robots in hazardous
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environments.

D. Holistic System Experiment

1) Qualitative Evaluation: To evaluate the effectiveness
of the proposed UPPS-RL framework in passive safety and
predictive safety, we conducted comparative experiments on
the five configurations shown in Fig. 11. Each agent was
initialized on flat ground at the left side of the mosaic tile
and was commanded to track a forward speed of 1m/s. The
test environment first contained a 15cm pit (low difficulty),
followed by a step inv terrain with a step height of 12cm
(high difficulty). We let each trial last 20s, and no reset logic
was configured so as to observe the full policy execution.
A trial was labeled success if the velocity command was
tracked; avoid if standstill actions were taken before or at
the early stage of entering the risk region; and failure in
the case of severe collision, falling, or getting stuck. For
each trial—especially (d), (e), and (f)—the policy mode and
risk preference were recorded to analyze the control strategy
across states.

The results of (a), (b), and (c) are consistent with the
quantitative findings in Section VIII-A: in low risk regions,
the three risk preferences exhibit similar control performance
and all track the speed command successfully; in high risk
regions, the conservative and neutral policies take avoid
actions, ensuring safety at the expense of command track-
ing. Moreover, the conservative policy tends to stop at the
geometric boundary of the risky terrain, whereas the neutral
policy proceeds into the risk region. The aggressive risk
preference prioritizes command tracking but has a higher
probability of failure within the risk region. With the recov-
ery mechanism, upon entering the risk region, the aggressive
policy triggers recovery, and the command guides the agent
back to a safe region (i.e., moving down off the steps in
this experiment setup), effectively suppressing catastrophic
failures. In addition, the combined adaptive-β policy with
recovery exhibits more flexible risk-aware control: remain-
ing aggressive in safe regions to achieve a higher success
rate, while proactively lowering the risk preference before
approaching the risk region to increase safety. In summary,
the results indicate that adjustable risk preference based on
risk assessment, together with recovery control, effectively
improves safety.

2) Quantitative Evaluation: As a complement, we con-
ducted additional tests following the same methodology as
in Section VIII-A.2. Specifically, we evaluated the adaptive-
β policy (a), the adaptive-β policy with baseline recovery
policy (a+r), and the adaptive-β policy with the proposed
recovery policy (a+r*). In this setting, an additional outcome
class, Recovery, is introduced to represent cases where the
recovery mechanism is triggered and successfully guides the
robot back to the safe region. The results are shown in
Table IV.

The comparison with Table II shows that the adaptive-β
policy, by automatically adjusting risk preference, enables
the robot to maintain a low failure rate across terrains of
different difficulty levels: adopting a neutral strategy on

medium-difficulty terrains and a conservative strategy on
high-difficulty terrains, thereby achieving a balance between
success and safety. Furthermore, the results of a+r and a+r*
indicate that the proposed recovery policy can significantly
reduce the failure rate, whereas the baseline recovery policy
may even increase failures in some cases due to aggressive
maneuvers during policy switching. These findings demon-
strate that combining the policy-switching mechanism with
the proposed recovery policy can effectively enhance the
safety of the robot.

IX. CONCLUSION

This work presents the UPPS-RL framework, an RL-based
locomotion control method that incorporates both passive
safety and predictive safety. It comprises three complemen-
tary modules: (i) a risk-aware task-level policy built upon
a distributional critic, in which the value distribution is
distorted by the Wang distortion risk measure to realize
a spectrum of policies—adjustable via the risk preference
parameter β—from conservative to aggressive; (ii) a risk
network trained offline in a self-supervised learning method
from trajectories generated by the neutral policy (β=0), self-
labeled using velocity-tracking performance and termination
events, to provide terrain–action–conditioned risk estimates;
and (iii) a recovery policy triggered by the predicted risk,
which given safety-prioritized control under high-risk con-
ditions. This architecture integrates passive and anticipatory
safety within a unified control pipeline while avoiding the
introduction of constraints that could limit exploration during
training.

Systematic evaluations and ablations across
different scenarios—step/step inv, pit, slope, and rough
plane—demonstrate that the recovery mechanism suppresses
catastrophic failures; a fixed aggressive policy attains
stronger speed-tracking capability but incurs elevated failure
risk; fixed conservative/neutral policies tend to avoid in
high-risk regions at the expense of reachability; and an
adaptive-β policy combined with recovery lowers the risk
preference before, or at the early stage of, entering risky
regions, thereby yielding a superior safety–success trade-off
in multi-task difficulty settings. Visual analyses of the
distributional critic, risk heatmaps responsive to terrain
difficulty, together with quantitative statistics, further explain
and substantiate the effectiveness of UPPS-RL.
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TABLE IV
PERFORMANCE OF THE OVERALL FRAMEWORK ACROSS DIFFERENT TERRAINS. CELL BACKGROUND COLORS HIGHLIGHT THE COMPARISON OF
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Step Flat
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