
Memory usage analysis of binary clustering algorithm
What is the gain in peak memory usage of the binary clustering algorithm compared to current state-of-the-art clustering methods?

Pavel Verigo1

Supervisor(s): Marcel Reinders1, Gerard Bouland1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Pavel Verigo
Final project course: CSE3000 Research Project
Thesis committee: Marcel Reinders, Gerard Bouland, Bart Gerritsen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract: The rapid increase in the size of single-cell
RNAseq datasets presents significant performance chal-
lenges when conducting evaluations and extracting in-
formation. We research an alternative input data for-
mat that utilizes binarization. Our main focus is an
analysis of peak memory usage. An in-depth explo-
ration of the solution’s design and implementation is
provided, specifically emphasizing the strategies used
to minimize memory usage. We analyzed and validated
memory usage patterns and asymptotes using memory
profiling tools. However, our findings suggest that gains
in reducing memory usage on big modern datasets are
attributable only to binarized data format rather than
workflow interaction with the new format, which we
found to be independent of the input format.

1 Introduction
Analyzing single-cell RNA sequencing (scRNA-seq) data has
become a key tool for gaining valuable insights into various
biological processes. However, the growing size [7] and com-
plexity of scRNA-seq datasets pose significant challenges for
data analysis, particularly regarding scalability.

The driving force behind this research is the need for more
efficient clustering techniques in analyzing scRNA-seq data.
Clustering algorithms are crucial in identifying distinct cell
populations within the dataset, providing researchers with
insights into cellular heterogeneity and functional diversity.
However, existing clustering methods often need more com-
putational efficiency and scalability [10].

In this research, our primary objective is to assess a binary
clustering algorithm’s peak memory usage gain compared
to current state-of-the-art clustering methods for scRNA-seq
data analysis. We hypothesize that the binary clustering algo-
rithm proposed by Bouland [3] can be more memory-efficient
and computationally faster while maintaining comparable
clustering quality, especially considering that scRNA-seq
datasets are sparse in their nature [3].

1.1 A Quick Background on Clustering Workflow
Clustering workflow presents a solution to group cells based
on the initial gene expression matrix, intending to identify
cells with similar genes and draw conclusions on gene func-
tion. In figure 1, we illustrate a common research workflow
to obtain cluster designations, which commonly consist of the
following:

1. Getting gene expression matrix in memory

2. Computing cell-to-cell similarity matrix based on a met-
ric

3. Constructing K nearest neighbors graph based on adding
only best K edges for each cell.

4. Running clustering algorithm, on such neighbor graph,
Louvain [2] or it modern Leiden [8] alternative can be
used to obtain clusters efficiently

Figure 1: Clustering workflow illustration for five cells, with four
genes.

Alternatively, Principal component analysis (PCA) can be
used before computing cell to cell similarity matrix. PCA
helps to reduce the dimensionality of the original dataset, en-
abling us to uncover patterns and identify the genes that im-
pact the overall variance within the dataset.

1.2 Research Question and Plan
The research question of this paper is ”What is the gain in
peak memory usage of the binary clustering algorithm com-
pared to current state-of-the-art clustering methods?”. To
tackle this, we divided our research into several stages:

• Theoretical analyses on optimal memory usage during
clustering workflow. Identify areas that contribute to
memory using the most

• Run profiling on our implementation confirming hy-
pothesizes and obtaining the quantitive measurement of
memory usage based on input

• We discuss our findings and also compare and explain
the difference in memory usage between our solution
and currently used toolkits

During the research, we will use such publicly available
datasets:

1. Peripheral Blood Mononuclear Cell (PBMC)[1] dataset,
from 10X Genomics, a relatively small dataset consist-
ing of 2,700 cells, with 13,712 genes

2. Tabula Muris [4]. Compendium of datasets from dif-
ferent organs of Mus musculus. There are 53,760 cells,
with 23,432 genes

3. Tabula Sapiens [5]. Cell atlas from different human or-
gans, due to the enormous size of each dataset, we only
used 4,000 Skin cells, with 58,869 genes



4. Entorhinal cortex from individuals with Alzheimer’s dis-
ease [6]. A single-cell atlas having 13,214 cells, with
10,849 genes

Seurat toolkit1 will be used as a comparison to our re-
search as it is one of the most popular solutions in the research
space.

2 Theoretical Analysis of Memory Usage
Our research aims to compare memory usage based on input
parameters for clustering workflow, such as the dataset size.
We denote G as the number of genes and C as the number of
cells in a gene expression matrix. Additionally, the clustering
pipeline takes K as a parameter, setting the number of edges
spawned per cell for generating a KNN graph.

We will use bytes as the unit for memory management,
given it is the smallest addressable memory unit in modern
processor architectures.

2.1 Initial Dataset Memory Usage
We measure memory at the start of loading binarized data
into the main memory from the disk. Since each gene ex-
pression needs only one bit, we estimate the memory usage is
1
8 (8 bits per byte) × C ×G.

Note that memory that is occupied by the dataset will be
used as the main baseline for memory usage in this research.

2.2 Cell-to-Cell Similarity Matrix
To store computed cell-to-cell similarity matrix in memory,
given the matrix’s symmetry, we need 4 (32-bit float)× 1

2×C2

bytes of memory. Given our research focus on improving the
workflow for big datasets, which may contain C > 2 · 105
cells, will lead to usage 4 × 1

2 × 4 · 1010 = 80GiB of RAM
usage at least. Such value exceeds the maximum memory of
any common research machine. To circumvent this, we will
only output the K nearest cells for each cell-based similar-
ity. An efficient implementation will result in lower bound
usage of O(K ×C). Concrete values will be discussed in the
subsequent section.

None of the similarity metrics do any allocations. There-
fore we were not concluding any experiments on the topic of
different metrics.

2.3 Graph Construction and Clustering
Based on the nearest K vertices, we construct a KNN graph,
which includes weights based on the similarity between cells,
and afterward, the selected clustering algorithm will run. As
the precise number of bytes per edges/vertices of the graph
is challenging to pinpoint due to high implementation details,
we introduce a new coefficient Q, representing the number of
bytes used in graph construction and clustering per number
of edges. Therefore, merging with the output size from the
previous section, we define the total number of bytes used as
Q×K × C.

1https://satijalab.org/seurat/

2.4 Finalising and Observation
Excluding small and auxiliary allocations, such as the clus-
tering algorithm output, an array of integers size of C. We
identify two terms that we are going to use to approximate
memory usage:

1

8
× C ×G + Q×K × C bytes (1)

Because the second term is not dependent on the initial
number of genes G, if

G

8
>> Q×K (2)

holds, total memory usage will be dependent mostly on the
input dataset. To make any arguments on particular G when
the above is true, we first need to identify Q.

3 Methodology and Implementation
3.1 Memory Profiling
For profiling, we are using a heap profiler called Massif2.
It measures memory usage alongside program execution and
does time-based snapshots, recording all memory allocation.
In the end, Massif outputs profiling data, which is processed
using custom-made Python scripts.

3.2 Implementation
Our main language for implementing our pipeline is C++203,
as advised by our project supervisor. This language integrates
seamlessly with tooling provided by the R4 language, which
we built bindings for as a part of the project. We are using
the Rcpp5 package, which simplifies the integration. We per-
sonalized each step of the pipeline, ensuring a flexible design
that enables easy substitution of different distance metrics and
clustering methods. We employed the third-party igraph6 li-
brary to efficiently implement Louvain and Leiden clustering
since developing a graph clustering algorithm was beyond the
purview of our research project.

3.3 Binary Array
We implement a common data structure called binary array
to store binarized gene expression of cells. This structure ef-
ficiently stores bits in data blocks, the size of which depends
on the system’s specific CPU architecture. For instance, in a
64-bit machine, we use 64 bits blocks, as depicted in Figure
2.

3.4 Dataset and Hardware Independence of
Memory Usage

Our implementation is not affected by the dataset content. If
the input dataset contains only ones, the memory usage will
not be changed. Therefore, we are not that concerned that
random sampling reduces dataset sparsity. This comes from

2https://valgrind.org/docs/manual/ms-manual.html
3https://en.cppreference.com/w/cpp/20
4https://www.r-project.org/
5https://www.rcpp.org/
6https://igraph.org/



Figure 2: Diagram of the bit array structure. Block size equal to 64.

the fact that any data of the same size will use the same mem-
ory usage, and computing neighborhood graphs and cluster-
ing is independent of dataset values in terms of memory us-
age. If we use any cutoff on edge weight before adding to a
KNN graph, we must be more careful with sampling.

We must note that memory usage is independent of the ma-
chine used. We identify that memory access speed is depen-
dent, but such analysis is out of this research’s scope.

4 Profiling Experiment
In order to evaluate our hypotheses, we conducted multiple
profiling scenarios.

4.1 Estimating Q

To estimate Q, we ran the clustering workflow on a PBMC
dataset sampled with varying numbers of cells. We only
count the amount of memory used without taking into ac-
count the memory used by the dataset, so the resulting mem-
ory should be equal to Q × K × C bytes. Furthermore, the
workflow was executed with different K values to demon-
strate the independence of Q from it. Figure 3 depicts result-
ing linear approximations on 15 data points.

K ρ, Pearson Coefficient Slope (on MiB scale)
5 0.99 854.40

10 0.99 1534.03
15 0.99 2310.75

Table 1: Linear Approximation Results

Next, to approximate Q, we run linear approximation on
slope values from Table 1. Figure 4 reveals linear approxima-
tion, which results in Q = 145.63 MiB per cell, with Pearson
coefficient ρ = 0.9992.

4.2 More Genes, More Memory used
One of our memory usage estimation conclusions from For-
mula 1 is that datasets with a high number of genes will ben-
efit from binarized data greatly because most memory allo-
cated during the construction of the KNN graph and cluster-
ing could be neglected.

We run our simple workflow on the Tabula Sapiens (skin
only) and Entorhinal cortex cells dataset. And computed
memory usage after the dataset loaded and peak memory us-
age, Table 2.

Figure 3: Peak memory usage of workflow excluding memory used
by dataset, X-axis represent number cells in the dataset.

Figure 4: Memory used per cell in the clustering part of the work-
flow. X-axis represents K number of nearest cells to which edges
will be connected in the neighbor graph.

G Dataset loaded Peak memory
10850 17.8 MiB 32.4 MiB
58870 28.3 MiB 32.7 MiB

Table 2: Memory usage when datasets are loaded and peak usage af-
ter clustering is completed. Alzheimer’s and Skin datasets are shown
in the first and second rows, respectively.



Figure 5: Peak memory usage of different datasets from Tabula
Muris. X-axis represents the dataset size.

Figure 6: Memory usage of our implementation on binarized PBMC
dataset. X-axis represents the time elapsed from the start.

4.3 Linearity with constant number of genes
In figure 5, we plotted peak memory usage relative to dataset
size C × G, on Tabula Muris dataset collection, where each
dataset contains 23,000 genes. We run linear approxima-
tion returning slope coefficient of ≈ 0.178 with Pearson co-
efficient ρ = 0.99. Note that the slope value is close to
1
8 = 0.125, concluding that gene-expression counts use the
most memory.

4.4 Comparing with Seurat
We executed our implementation and Seurat on the PBMC
dataset. Figures 6 and 7 display the memory usage graphs
based on time elapsed from the start. Note that for Seurat, we
subtracted memory allocated for the Seurat binary when it is
loaded into R runtime.

Unfortunately, because Seurat does PCA computation and
stores a lot more information that we may not need in the
simplest workflow resulting in using around 950 MiB amount
of memory, having a simple workflow that uses small libraries

Figure 7: Memory usage of Seurat toolkit on PBMC dataset. X-axis
represents the time elapsed from the start.

may be a better solution. Note that the Seurat toolkit, is also
a combination of libraries under one API.

5 Discussion and Future Work
5.1 Drawing conclusion on G

Plugin in Q ≈ 145.6 to Formula 2, and taking into account
common that usually inbound 10 ≤ K ≤ 20, we may state if
dataset have 105 genes this results to:

105

8
= 12500 >> 2912 = 145.6 · 20

Thus, for big datasets, memory occupied by the dataset be-
ing loaded into memory contributes most to peak memory
usage.

5.2 Reducing the Q Constant
After running the profiler on the clustering workflow, it pro-
vided information about possible optimization of our imple-
mentation to decrease the Q constant. By thoroughly examin-
ing all allocations in our code responsible for most allocated
memory and the igraph library, we concluded that it is pos-
sible to reduce Q under 100. Below we present some ideas
that could help us to achieve this:

1. Directly calculating graph edges into the igraph data
structure instead of storing them in an intermediate for-
mat and then transforming and reallocating them into a
new format.

2. Upon examination, we noticed that the igraph library
performs unnecessary reallocations, such as allocating
new edges and weights lists, even when our passed ver-
sion is not needed elsewhere. Providing an alternative
implementation will reduce constant. Unfortunately, this
is mostly responsible for Q > 100.

3. Storing binarized input in matrix format instead of an
array of cells. While it may be tempting to store each
cell in its data structure with attached auxiliary data, this
would result in duplicate information (such as storing
the number of genes for each cell) and would fragment
memory because every cell expression would be stored



in a separate memory region instead of a continuous ar-
ray.

5.3 R Language Integration Considerations
The main reason behind this research is to provide researchers
with a better clustering workflow experience. It is assumed
that interface to our researcher is to be R language. Our cur-
rent implementation needs to be independent of the igraph
library, allowing researchers to use other graph analysis li-
braries, which may have better performance characteristics.
We propose that the library providing analysis on binarized
input should efficiently load compressed and uncompressed
datasets from various representations and, after computing
similarity between cells, return only edges and weights as
output, from which the KNN graph can be constructed.

One topic of discussion arising from using R could be the
observation that common R scripts for analyzing datasets are
often not memory-aware. If a researcher loads memory twice
into different variables, all performance analysis becomes
unimportant. We propose to provide library users instructions
for their workflow to be memory efficient.

5.4 Alternative Memory Layout for Sparse
Datasets

We propose another approach to gene expression data stor-
age for future research work. First, you need to identify a
group of genes with a very low rate of occurrence per cell and
store their indices in a compressed way, while other genes are
stored uncompressed in binary format. This idea requires ex-
tensive benchmarking and profiling work and thorough anal-
ysis of hypotheses across a range of datasets. Such a solution
is a mixture of compressed data representation and binarized
one. The advantage of our current approach that was tested
in this research is the dataset content does not influence that
memory usage.

6 Responsible Research
In this study, we utilized pre-existing datasets, the authentic-
ity of which was not questioned. Because we centered our re-
search around memory profiling of the clustering algorithm,
we assume that any biases in the given data are irrelevant to
our results.

Addressing the ethical aspects of our research, we were not
involved in the production of the dataset, nor did we make any
personal or biological conclusions based on the algorithm re-
sults, thereby limiting our research from having ethical impli-
cations.

For transparency and reproducibility, we documented
memory profiling methods for clustering workflow under test.
All code and data utilized in this study have been made pub-
licly available in a GitHub repository [9].

This research paper utilized LLM, named ChatGPT, as a
tool for rewording and suggesting refined English text, each
output of which was reviewed. The instructions given to
ChatGPT were in the form of ”identify + note writing errors
+ tips in ’text’”. ChatGPT was not employed for conducting
any analytical tasks or decision-making processes related to
this research.

7 Conclusions
In conclusion, binarized scRNA-seq data substantially re-
duces memory in the clustering pipeline. However, the re-
duction is primarily caused by the initial dataset compression
format. We identified that the binarized format does not have
implications for the later stages of the clustering workflow.
From our calculations, for a dataset where the gene count ex-
ceeds 105, the binarized dataset will occupy the most allo-
cated memory during the execution of the memory-aware im-
plementation of workflow. If a researcher wants to compute
PCA or return cell-to-cell distance matrix, the memory con-
sumption would be impractical for datasets with more than
2 ·105 cells. This observation factor attributes enormous peak
memory reduction compared to the current solutions.

References
[1] 10x Genomics. 3k PBMCs from a Healthy Donor.

Online Resource: https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.1.0/pbmc3k,
May 2016.

[2] Vincent D. Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008,
oct 2008.

[3] Gerard A. Bouland, Ahmed Mahfouz, and Marcel J. T.
Reinders. Consequences and opportunities arising due
to sparser single-cell rna-seq datasets. Genome Biology,
24:86, April 2023.

[4] The Tabula Muris Consortium*. Single-cell transcrip-
tomics of 20 mouse organs creates a tabula muris. Na-
ture, 562(7727):367–372, October 2018.

[5] The Tabula Sapiens Consortium*. The tabula sapiens:
A multiple-organ, single-cell transcriptomic atlas of hu-
mans. Science, 376(6594):eabl4896, 2022.

[6] Alexandra Grubman, Gabriel Chew, John F. Ouyang,
and et al. A single-cell atlas of entorhinal cortex from
individuals with alzheimer’s disease reveals cell-type-
specific gene expression regulation. Nature Neuro-
science, 22:2087–2097, December 2019.

[7] Lisa Sikkema, Ciro Ramı́rez-Suástegui, Daniel C.
Strobl, Gillett, and et al. An integrated cell atlas
of the lung in health and disease. Nature Medicine,
29(6):1563–1577, 2023.

[8] V. A. Traag, L. Waltman, and N. J. van Eck. From Lou-
vain to Leiden: guaranteeing well-connected communi-
ties. Scientific Reports, 9(1):5233, 2019.

[9] Pavel Verigo. binaryclustering-rp. https://github.com/
pavelverigo/binaryclustering-rp, 2023. GitHub reposi-
tory.

[10] Lijia Yu, Yue Cao, Jean Y. H. Yang, and Pengyi Yang.
Benchmarking clustering algorithms on estimating the
number of cell types from single-cell rna-sequencing
data. Genome Biology, 23(1):49, 2022.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://github.com/pavelverigo/binaryclustering-rp
https://github.com/pavelverigo/binaryclustering-rp


A Q estimation data points

Table 3: K = 5

Number of Cells Memory Used in clustering (MiB)
540 0.4

1080 1.0
1620 1.3
2160 1.8
2700 2.2

Table 4: K = 10

Number of Cells Memory Used in clustering (MiB)
540 0.8

1080 1.5
1620 2.3
2160 3.2
2700 3.9

Table 5: K = 15

Number of Cells Memory Used in clustering (MiB)
540 1.0

1080 2.1
1620 3.3
2160 4.4
2700 5.8

B Tabula Muris Peak memory usage

Number of Cells Number of Genes Peak Memory (MiB) Dataset Name
1432 23433 5.8 Tongue
1580 23433 6.4 Thymus
5355 23433 21.5 Marrow
2663 23433 10.7 Mammary
1961 23433 8.0 Pancreas
981 23433 4.0 Liver
865 23433 3.5 Kidney
1718 23433 7.1 Spleen
2102 23433 8.5 Muscle
4149 23433 16.8 Colon
1923 23433 7.8 Lung
7115 23433 28.7 Heart
5799 23433 23.0 Brain Neurons
4762 23433 19.2 Brain Microgolia
5862 23433 23.4 Fat
2464 23433 10.0 Skin
1638 23433 6.6 Bladder
1391 23433 5.6 Trachea


	Introduction
	A Quick Background on Clustering Workflow
	Research Question and Plan

	Theoretical Analysis of Memory Usage
	Initial Dataset Memory Usage
	Cell-to-Cell Similarity Matrix
	Graph Construction and Clustering
	Finalising and Observation

	Methodology and Implementation
	Memory Profiling
	Implementation
	Binary Array
	Dataset and Hardware Independence of Memory Usage

	Profiling Experiment
	Estimating Q
	More Genes, More Memory used
	Linearity with constant number of genes
	Comparing with Seurat

	Discussion and Future Work
	Drawing conclusion on G
	Reducing the Q Constant
	R Language Integration Considerations
	Alternative Memory Layout for Sparse Datasets

	Responsible Research
	Conclusions
	Q estimation data points
	Tabula Muris Peak memory usage

