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Abstract

By placing multiple Peltier elements in a linear arrangement while two water flows run past the elements,
a temperature increase can be realised in one flow while the other flow is cooled down. In this study the
heating of domestic hot water with Peltier elements as solid state heat pumps, and a heating network was in-
vestigated. A numerical model that solves the thermal energy balance within the Peltier elements was derived
to describe the internal temperature distribution of the Peltier element, and its interaction with the domestic
hot water and the heating network. The model was used to simulate the performance of 40 Peltier elements
in a custom designed Peltier Heat Exchanger. Experiments were run to validate the numerical model. The
numerical simulation of the temperature distribution within a Peltier Heat Exchanger and the temperature
distributions observed in the experiments were not in agreement. The model input parameters Seebeck co-
efficient, resistance, thermal conductivity and a relation for the Nusselt number were re-evaluated using the
experimental results. After the adjustment of the model input parameters, the new simulation results were
able to accurately describe the temperature distribution with the Peltier Heat Exchanger. The Peltier Heat Ex-
changer was able to deliver domestic hot water with a COP between 1.2 and 1.8 depending on the flow speed
of the domestic hot water and the heating network. The COP can potentially be increased by using Peltier
elements with a higher Seebeck coefficient.

L. kleyn Winkel
Leiden, June 21, 2022
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1
Introduction

In this research, the use of Peltier elements as solid state heat pumps to increase the temperature of low
temperature district heating networks to 60 °C is investigated. This chapter provides background information
as to inform why this research is necessary.

1.1. Heating networks
A heating network (or heat distribution network) is an energy source, a hot fluid, that can provide energy to
other systems like domestic hot water or central heating systems. Examples of heating networks are an elec-
tric boiler, a central heating system for an entire apartment complex or even district heating networks like the
one in Rotterdam [38] where thermal energy from the port of Rotterdam is used for domestic heating. The
temperature of the district heating network in Rotterdam is designed to be 130 °C. The temperatures of heat-
ing networks are set to reduce, as mentioned by Schmidt et al. [31], to 40 °C. Heating networks at these tem-
peratures are considered a low temperature heating networks. The reduction in temperature allows for better
integration of renewable energy and contributes significantly to a more efficient use of energy resources [31,
sec. 2.1] as there is less heat loss compared to networks with higher temperatures. Figure 1.1 schematically
shows the heat sources and heat sinks in the fifth generation district heating networks. A downside to the
temperature reduction is the possible growth of the legionella bacteria.

Figure 1.1: Schematic visualisation of a the fifth generation district heating networks by Boesten et al. [4]. The two loops
on the outside represent a hot loop and a cold loop.

1.2. Legionella
At temperatures above 20 °C and below 51 °C in domestic water lines, the legionella bacteria can settle and
grow according to the World Health Organisation [44]. Dutch law prescribes specific conditions for thermal
disinfection of domestic water lines to prevent legionella growth [26]. The minimum temperature demand for
thermal disinfection of water is 60 °C. If the district heating has a supply temperature of 45 °C, then an other
source of energy is needed to for fill this demand. The government of The Netherlands is stimulating the use
of district heating networks [30]. Therefore, the utility of district heating networks will likely rise and with
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2 1. Introduction

that the demand for the additional energy source. If combustion heating is undesirable, then two obvious
candidates for a sustainable heat source are:

1. Electric heating elements

2. (Air-water) heat pumps

While electric heaters can be cheap, small and as simple as an electric heating element in the water flow,
their Coefficient of Performance (COP, Section 1.3) will never exceed 1. Conversely, heat pumps can have a
relatively high COP (>4, [20, sec. 1.4]) but can contain harmful, unwanted chemicals and can be relatively
large system that are not suitable in every domestic living situation.

1.3. Coefficient of performance
The coefficient of performance (COP) is an import value in heating systems as it is the ratio of the useful heat
delivered per power input [20, sec. 1.4]. A higher COP means less input power is required to obtain a similar
heat delivery as compared to a lower COP. The previously mentioned electric heating elements and the heat
pump use electricity as the input power. A heat pump with COP 4 thus uses only a quarter of the electric input
power of an electric heater to provide the same heat delivery. This gives the impression that a higher COP is
always desirable. However, due to size, high COP systems are not always a practical solution. The company
Flamco proposes to use Peltier elements as solid state heat pumps to necessary thermal energy to increase
the domestic water to 60 °C.

1.4. Flamco
Flamco B.V. is a company that develops, produces and sells components for use in HVAC (Heating, Ventilation
and Air Conditioning) systems [6]. Among others they produce Heat Interface Units for domestic hot water,
HIU for short, as shown in Figure 1.2:

Figure 1.2: A Heat Interface Unit as produced by Flamco [1].

The current products are able to transfer heat from a heat distribution network (like an electric boiler),
to tap water and central heating via a heat exchanger, keeping the systems separated. The downside to this
method is that the temperature of the leaving water streams can never exceed the temperature of the in-
coming water stream. This means, for the Dutch market, a heat source of at least 60 °C must be provided to
comply with the Dutch law concerning legionella (Section 1.2).

As low temperature heating networks provide lower temperatures than 60 °C, additional heating is needed.
In this project a low temperature heating network is considered to deliver water at 45 °C at a flowrate of 20
L/min. The solution proposed by Flamco is to pre-heat the domestic water to 40 °C using the heating network,
and to use Peltier elements to extract additional heat from the heating network to increase the temperature
of domestic water to 60 °C.
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1.5. Current, past and future use of thermoelectric devices
Peltier elements have been widely used since the development of bismuth-telluride room-temperature semi-
conductor material in the late 1950s, according to Bell [2]. Applications ranged from creating the temperature
of -80 °C needed for infrared guided missile technology where the Peltier elements are used in cooling mode,
to generating power in deep-space probe from the temperature difference between nuclear fissile material
and the space temperature where the Peltier elements are used in power generation mode [2, sec. Present
Applications].

Modern-day applications of Peltier devices are: controlling the temperature cycle of enzymatic reactions
to multiply specific sequences of DNA in PCR systems [7], and keeping laser diodes at constant temperature
to stabilize operating wavelengths [2, sec. Present Applications]. Yilmazoglu [45] has run experiments where
the performance of a prototype thermoelectric heating/cooling unit was investigated for air-air heating and
cooling systems. The reported COP for heating was between 2.5 and 5.

Bell [2] claims that as thermoelectric devices become more efficient, they will replace harmful refrigerants
in heating and cooling systems, improve electronics’ life time by providing better temperature control and
improve the mileage of internal combustion engined vehicles by converting waste heat to electricity.

1.6. Project scope
The goal of this project is to investigate, design and verify the use of Peltier elements and heating networks to
increase the temperature of domestic hot water. Limitations on the system are the flow speeds of the water
flows, the temperature availability of the heating network and the maximum power draw by the system. The
proposed solution should be able to run on single phase 230 Volt, 16 amp fused current. The goal is to propose
a solution that is able to increase the domestic hot water from 40 °C to 60 °C with a COP of 2.

1.7. Report structure
The relevant physics needed to understand end explain the thermoelectric effect is presented in Chapter
2, as well as relevant information on heat transfer. Chapters 3 and 4.2 discuss the numerical model and
the numerical results. The experimental setup and experimental results are presented in Chapters 5 and 6
together with a discussion on the apparent differences in the numerical simulation and the experimental
observations. The experimental data is used to re-evaluate relevant numerical simulation input parameters
in Chapter 7. The new numerical model is validated in chapter 8. The solution to the research question is
presented in Chapter 9 and the conclusions are drawn in Chapter 10.





2
Theory

2.1. Solid state physics
The thermoelectric effect finds its explanation in solid state physics. To understand where the Seebeck and
Peltier effect come from, the concepts band structures, Fermi level/Energy, Fermi distribution, semiconductors,
conduction band and valence band need to be introduced.

2.1.1. Fermi energy, Fermi level and Fermi distribution
Atoms consist of a nucleus, surrounded by electrons [9, Section 5.2]. The electrons move in orbits around the
nucleus, each orbit corresponding to a certain energy. Suppose the electrons are in the ground state, that is,
the energy states are filled from the lowest energy state until the electrons have run out. Since the temperature
is at absolute zero, there can be no thermal excitation and the highest occupied energy level is a sharp cutoff.
The Fermi energy is the difference between the highest and the lowest energy state. Taking the lowest energy
level to be equal to E = 0 J, the Fermi energy is then equal to the highest energy state, that is denoted with E f .
The Fermi energy of materials of typically in the order of electron volts [33, Somerfeld model].

The Fermi level, confusingly also denoted by E f is defined at finite temperature T > 0 K as equal to the
energy state that has a chance of 50% of being occupied. The important difference between Fermi energy
and Fermi level is that the Fermi energy is only defined at T = 0 and is an energy difference while the Fermi
level is the total energy of an energy state, including kinetic and potential energy. It is therefor likely, but not a
necessity, that the Fermi level is larger than the Fermi Energy. At finite temperatures T > 0 K, the probability
that a state with Energy E is occupied by an electron is given by the Fermi distribution [33, Somerfeld model]
displayed in Figure 2.1:

f (E ,E f ,T ) = 1

exp
(
(E −E f )/kB T

)+1
(2.1)

Figure 2.1: Fermi distribution for electrons (actually fermions) at temperature T .

Note that as T → 0, every state with E ≤ E f will have a probability of 1 of begin occupied, and states with
E > E f have a zero probability of being occupied, confirming the idea of a sharp cutoff of occupied energy
states. Furthermore, E f in Equation 2.1 will always denote the Fermi level, since the Fermi energy is only
defined for T = 0 K and Equation 2.1 is valid for T > 0 K.

Equation 2.1 gives that at T > 0 K, there is a non-zero change that energy levels with an energy above the
Fermi level are occupied. As mentioned before, materials often have a Fermi energy in the order of electron
volts. Thermal excitations come with an energy of kB T , with kB = 1.38 ·10−23 J/K the Boltzmann constant,
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6 2. Theory

or an energy of roughly 0.1 meV per Kelvin. This means that at T = 300 K the system gained only 30 meV
hence the distribution of electrons changed only slightly and locally around the Fermi energy, due to thermal
excitations.

2.1.2. Band structures
Free electrons in a box can be described by their (plane) wave function that solves the Schrödinger Equation
[9, Eq. 2.20]:

EΨ=− ħ2

2m
∇2Ψ (2.2)

Using the boundary conditions that the wave function must vanish at the boundaries, the solution is know

to beΨ(x) = exp(i k ·r) with corresponding eigenvalues: E = ħ2k2

2m (Figure 2.2a) with k the wave number of the
electron. k is related to the electron momentum by the de Broglie equation ħk = p with p the momentum.
The assumption made here is that electrons are particles that are not interacting with atomic nuclei [33,
Sommerfeld model].

Within metals, the electrons do in fact interact with other nuclei. The 1-dimensional Schrödinger Equa-
tion can be solved, assuming the on-side energy (the energy of the electron at the atom it is residing) to be
E0 and assuming an electron can tunnel to the neighbouring nucleus at a cost of energy −t , the hopping
integral [33, Tight-binding model]. The sign of the hopping integral is due to the negative coulomb poten-
tial. Since a monolithic chain of atoms is considered, the hopping integral is equal for both neighbours. The
corresponding Schrödinger equation is:

Eφn = E0φn − tφn−1 − tφn+1 (2.3)

To find the available energy states, Equation 2.3 needs to be solved. The proposed solution is φn =
A exp(i kxn) with xn = na, the locations of the nuclei. A = 0 gives the trivial solution is therefor it is assumed
A 6= 0. Substituting the proposed solution and dividing Equation 2.3 by A exp(i kna), the energy dispersion
relation, Equation 2.4, is obtained:

E = E0 −2t cos(ka) (2.4)

The available energy states for the system are now limited between E0 − 2t and E0 + 2t , instead of 0 and
∞ like for the free-electron model (Figure 2.2b). The range of energies that can be occupied by electrons is
know as the band structure. These band structures arise because bring similar atoms, with similar electron
distributions, are brought close to each other. When they are brought close enough some energy states will
overlap, meaning that two fully filled states with two electrons (four electrons total) try to occupy the same
state. By the Pauli exclusion principle, only two electrons can be in the same state hence what is tried to be
achieved, four electrons in a single state, is not possible. The accommodate the four electrons both energy
states shift slightly in energy, one state increases while the other decreases [43, Section 37.3, Band Theory].
If another two atoms are put close by the same problem arises, hence the energy states slightly shift their
energies again. This means there are four available energy states, where a single atom only has one available
energy state. If 2N atoms are put together, 2N states are available where a single atom would have only one
state. The range of energies that correspond to the same state are know as a band, hence the name band
structure.

From Peierls theorem [17] it is know that an equally spaced monolithic chain is unstable, the material
undergoes a Peierls transition and effectively there is a different hopping between adjacent nucleus sites (−t1

and −t2). The Schrödinger equation for this system can be obtained and solved [33, Many atoms per unit
cell]. The obtained energy dispersion is now given by:

E = E0 ±
√

t 2
1 + t 2

2 +2t1t2 cos(ka) (2.5)

The available energy states (assuming t1 > t2) are now located between E0 − t1 − t2 and E0 − t1 + t2, but also
between E0 + t1 − t2 and E0 + t1 + t2. There are no available states between E0 − t1 + t2 and E0 + t1 − t2! The
difference between the latter two, 2(t1 − t2), is known as the band gap (Figure 2.2c). It is the minimal energy
electrons need to gain to go from the low-energy band to the high-energy band. Materials where the Fermi
level is located in a band are known as metals. Materials where the Fermi level lays within the band gap, that
are not insulators, are known as semiconductors. The distribution of electrons therefor has a major influence
on the behavior of materials, metal like, insulator or semiconductor like. The splitting of the bands arises
when (similar) atoms are brought together close enough that the orbitals of the electrons overlap.
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Real materials have much more complicated band structures, and band gaps often arise. Common ev-
eryday semiconductors are for instance Silicon and Germanium (alloys). Materials with a large band gap
are often referred to as insulators, simply because only at very large potential differences electrons can gain
enough energy to jump the band gap. The different band structures as discussed before are shown in Figure
2.2:

(a)

(b) (c)

Figure 2.2: Electron dispersions for; Figure 2.2a, free electrons, x-axis shows the product of the wave number and the
lattice constant ka. y-axis shows the energy in terms of ħ/2m; Figure 2.2b, a monolithic chain, x-axis shows the product
of the wave number and the lattice constant ka. y-axis shows the energy of the highest energy electrons; Figure 2.2c,
Peierls transition dispersion, x-axis shows the product of the wave number and the lattice constant ka. y-axis shows the
energy of the electrons. The highlighted area shows the forbidden zone known as the band gap.

A typical band structure consists of multiple bands with multiple band gaps. Let us consider a system of
N atoms. In the ground state (T = 0 K), the orbitals of the electrons are filled from the lowest energy to the
point where there are no electrons left. If the outer most shell is not completely filled with electrons, then the
electrons in the outer shell are called valence electrons. Every atom has q electrons. Every atom contributes
one state to a band in a band structure, that can be occupied by two electrons. Therefor, atoms with an odd
number of electrons per unit cell have halve filled electron bands (at T = 0 K, and roughly too at T > 0). The
Fermi energy therefor lays inside an electron band, these materials are called metals [33, Band structures in
2D]. Atoms with an even number of electrons in a unit cell are either insulators or semiconductors, depending
on the size of the band gap.

Now the bands for T > 0 K are considered. The highest band that is not fully filled is called the conduction
band while the band below is called the valence band. There can still be bands below the valence band, but
the electrons in those states are unlikely to interact with other particles since there are very few states still
available in the bands below the valence band.

2.1.3. Semiconductor doping
Semiconductors are often solid state (compound) materials that have an even number of electrons in their
outer orbital. Such as Silicon (2 electrons), Germanium (2 electrons) or Gallium Arsenic (4 electrons). Previ-
ously mentioned elements are group III, IV or V elements, meaning they have either 3, 4 or 5 electrons in their
outer shell (or 1, 2 or 3 in their outer orbital). Furthermore, semiconductors have the Fermi level in a band
gap. Only the relative position of the Fermi level can be changed, by altering the band structure.

Suppose a group V element (like Phosphorus, 5 electrons in the outer shell) is added to the bulk of a Silicon
semiconductor. Phosphorus has one electron more in its outer orbital than Silicon. The extra electron is only
weakly bound to the Phosphorus atom, and simple thermal excitations can pull the electron away from the
nucleus and an applied electric field can then cause the electron to move through the material [33, Doping
and devices]. For an electron to move through the material bulk, it has to be in the conduction band since
the current flows at (the bottom of) the conduction band (Section 2.1.4). Since this electron was promoted
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to the conduction band by thermal excitations, this means the extra state added by the Phosphorus has to be
close, but below the conduction band. Thus, a state just below the conduction band has been added to the
system, which means the state with a chance of being occupied of 50% is now increased hence the Fermi level
is increased. Since an electron is added to the system, the charge is carried by negatively charged particles.
These type of doped semiconductors are called N-type semiconductors. Semiconductors with a group III
dopant are called P-type semiconductors for a similar reason.

2.1.4. Current carrying electrons
As discussed before, the Fermi level lays within a band of the band structure for metals. This means that
electrons can easily be excited by electric fields and carry an electronic current. The current will therefor flow
at the Fermi level.

For semiconductors, the Fermi level lays within the band gap. This means that the states below the va-
lence band are likely filled, and the valence band only has a few available states that are simply denoted as
holes. There is a chance that some electrons are located in the conduction band as predicted by Equation
2.1. The electron(s) in the conduction band have a lot of states available since that band is only occupied by
a few electrons, at least there are more and easier accessible states than the states in the valance band. The
current in a semiconductor will therefor be carried by the electrons in the conduction band. The conduction
band only hosts a few electrons, hence the current flows at the energy of the bottom of the conduction band,
denoted by Ec .

2.2. Thermoelectric effect
The thermoelectric effect sits at the basis of the working principles of thermocouples [29, section 7.2.4.1] and
solid state heat pumps and generators [22, page 73]. Ludstrom and Jeong [22] describe four thermoelectric
transport coefficients that govern two thermoelectric transport equations given by:

J =σE −σS
dT

d x
(2.6)

q =ΠJ − (κn +κp )
dT

d x
(2.7)

In which J is the electric current density in A/m2, T the temperature in K, E is the electric field in N/C and
q the heat flux in W. The four thermoelectric coefficients are σ,S,Π,κn which are the thermal conductivity,
Seebeck coefficient, Peltier coefficient and the electronic conductivity respectively. κp in Equation 2.7 is the
phononic thermal conductivity, which is not a thermoelectric phenomena. Equation 2.6 (Section 2.2.1) is es-
sentially a modified version of Ohm’s law, in which a temperature gradient across a (semi)conductor reduces
the electric field within the material (Seebeck effect). Equation 2.7 (Section 2.2.2) is essentially Fourier’s law of
cooling, but with an additional termΠJ which implies that a heat current is accompanying an electric current
(Peltier effect).

2.2.1. Seebeck effect
The Seebeck effect states that, in conductors, a thermal gradient is accompanied by an electric potential
difference. This effect can be represented by Equation 2.8:

∆V =−S∆T (2.8)

Physically, it is easy to understand where the Seebeck effect comes from. Let us consider an electric con-
ductor that is heated on one side only. A thermal gradient will form across the length of the conductor. As long
as the materials are not melting or evaporating, the atoms are confined to their position in the conductor but
the electrons can move easily through the material since the material is a conductor. At higher temperatures
the electrons will therefor diffuse towards the colder side creating a charge differential across the conductor.
The hot side will become slightly positively charged and the cold side slightly negative, creating a potential
difference over the conductor.

This seems to be a contradiction. There is an electric field within the conductor, but the charge carriers do
not move to cancel the field. In fact, they let a potential difference build up. Whereas an electric potential
difference is often pointed towards as the driving force behind current flow, it is actually the difference in
Fermi levels that causes a current to flow [22, Section 2.2]. This explains why at first, when there is only a
temperature difference between the two ends, the electrons flow down the energy slope since they feel a force
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F =−∇E as the energy of the hot side is ∼ kB∆T higher than the cold side. Eventually, there is an electrostatic
force q∆V , with q the electric charge of the electrons, that counters the thermal energy giving an equilibrium
distribution of electrons. This suggests:

kB∆T = qV =−qS∆T =⇒ S =−kB

q
≈−100µV/K

for all materials. From measurements it is known that this is not true, it especially seems semiconductors
have a higher Seebeck coefficient than ordinary metals. This explanation is given by Ludstrom and Jeong [22,
Section 4.2]:

Whenever the two sides of the conductor are in equilibrium, the Fermi functions at the sides should be
equal. One side is at a temperature T1 while the other side at a higher temperature T2 with T2 > T1, and an
electrostatic builds up within the conductor giving Fermi functions:

f1(E ,E f ,T1) = 1

exp
(
(E −E f )/kB T1

)+1

f2(E ,E f ,T2) = 1

exp
(
(E +qV −E f )/kB T2

)+1

(2.9)

For the conductor to be in equilibrium the two functions must be equal. This must mean that:

E −E f

kB T1
= E +qV −E f

kB T2
(2.10)

Which after some rearranging gives:

V = E −E f

qT1
(T1 −T2) =−S∆T =⇒ S =−E −E f

qT1
(2.11)

Which states that the Seebeck coefficient is proportional to the difference between the energy of the charge
carriers and the Fermi level. For metals this difference is nearly 0 since current roughly flows at the Fermi
level, but for semiconductors the current flows just above the bottom of the conduction band which can be
a significant amount of energy above the Fermi level. N-type semiconductors, where the current flows above
the Fermi level, the Seebeck coefficient must be negative and for p-type semiconductors it must be positive
since the charge is carried by the holes that flow below the Fermi level. As measured by Hyun et al. [14], the
Seebeck coefficient of a particular n-type Silion is -170 µV/K and for p-type Silicon 153 µV/K.

A practical use of the Seebeck effect is measuring temperature using thermocouples of thermopiles. Since
different materials have different electron densities and band structures, different materials will have a differ-
ent potential difference corresponding to the same temperature difference. If two wires of different materials
(the top and bottom wire of Figure 2.3a) have one junction in common (the black dot in the right of Figure
2.3a) with the other ends at the same temperature but different than the junction temperature, both wires will
develop potential differences that are unequal in magnitude. This means there now is an electric potential
difference between the two ends of the total wire. Placing multiple junctions of alternating wire in series, a
thermopile (Figure 2.3b) is obtained. The total potential difference between the two ends of the thermopile
is equal to the temperature difference over a single thermocouple, multiplied my the amount of thermocou-
ples. If one of the two temperautres in Figure 2.3b is known, the other can be determined using the Seebeck
effect.

2.2.2. Peltier effect
As mentioned in Section 2.2.1, a temperature difference between two points in a conductor can cause an
electric potential difference to build up within the conductor, know as the Seebeck effect. A similar but oppo-
site effect happens too: when an electric potential difference is applied to a (semi)conductor, a temperature
difference manifests itself across the the (semi)conductor. To be more precise, an electrical current is accom-
panied by a heat current since the current carrying electrons also carry heat across the conductor. Effectively
there is an electric potential difference that causes an electric current, that is accompanied by a heat current,
that causes a temperature difference. The Peltier effect can be captured by Equation 2.12:

Q =ΠI (2.12)

The Peltier effect is closely related to the Seebeck effect. This is easily shown by considering a horizontal
conductor with metal contacts at both ends. If there is an applied potential difference∆V over the conductor
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(a) Schematic of a thermocouple. Figure taken from Litteaur [21,
Figure 7]

(b) Schematic of a thermopile consisting of four thermocouples.
Figure taken from Thapaa et al. [34, Fig 1].

Figure 2.3: Figure 2.3a shows a schematic of a thermocouple. Figure 2.3b shows the schematic of a thermopile, an array
of thermocouples.

such that the current flows from left to right, then there is also a heat current flowing from left to right (by the
Peltier effect), cooling down the left contact, and heating up the right contact. Now there is a temperature
gradient from right to left, creating a potential difference due to the Seebeck effect, that counters the applied
potential lowering the current. This indicates that the Peltier and Seebeck effect are interconnected, as ex-
plicitly showed by Ludstrom and Jeong [22, Section 4.3]. It is important to note that altough the Peltier effect
is a property of the semi-conductor, it requires a metal junction.

Ludstrom and Jeong [22] provide a way to calculate the Peltier coefficient by means of a physical insight.
Let us consider an n-type semiconductor, where the bottom of the conduction band is above the Fermi level,
that is on both ends connected to metal contacts that have a potential difference between them as depicted
schematically in Figure 2.4a.

(a) Band structure of a (lightly doped) semiconductor with
metal contacts.

(b) Band structure of a heavily doped semiconductor, essen-
tially acting like a metal, with metal contacts.

Figure 2.4: Band structures of different metal contacts. The dashed red line indicates the Fermi level throughout the
contacts. The red zones indicate the band gaps. EF i are the respective Fermi levels in the metal contacts, Ec +∆n is the
energy of the bottom of the conduction band where the electrons flow, for a lightly doped semiconductor ∆n = 0, Ev is
the energy of the top of the valence band, Fn (x) is the electron flux. Figures taken from Ludstrom and Jeong [22].

The metal contact on the right in Figure 2.4a is at a higher potential, which lowers its energy due to the
electron charge being negative. This causes the electrons to flow from the left contact to the right contact via
the semiconductor. But how do the electrons in the left metal contact, where the current flows at the Fermi
level, enter the conduction band of the semiconductor where the current flows at the energy of the bottom of
the conduction band? The answer is that at finite temperatures, the electron distribution is given by the Fermi
function as given by Equation 2.1 and Figure 2.5 indicating that there is a nonzero chance that there is an
electron that occupies an energy state that is higher than the conduction band energy of the semiconductor.
Given the vast amounts of electrons in metals and semiconductors (1018 cm−3 [33, Doping and devices]), it is
very likely that an electron will occupy a state with an energy high enough to enter the semiconductor1.

The electron that has entered the semiconductor now leaves a hole in the electron distribution in the metal
contact creating a highly non-equilibrium distribution of the electrons. Now there is inelastic scattering be-
tween electrons and lattice vibrations (phonons), which essentially means electrons take up thermal energy

1Ludstrom and Jeong [22] mention additional band bending in the metal-semiconductor contact, creating an additional (Schottky [40])
energy barrier for the electrons to overcome.
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(a) Electron distribution within the metal contact. Both Fermi
level and the bottom of the conduction band are indicated.

(b) Fermi function projected on top of the metal contact.
Showing high energy electrons enter the semiconductor.

Figure 2.5: Fermi distribution at finite temperature and in the metal contact. Figures taken from Ludstrom and Jeong
[22].

from the lattice to move lower energy electrons into the created electron vacancy. Since this energy is coming
from the lattice vibrations, the entire metal contact loses some thermal energy which cools the contact down
[22, Section 4.3]. Figure 2.4a shows that at the other metal contact, electrons with an energy Ec (> E f ) enter
the metal contact, again creating a non-equilibrium electron distribution causing the electrons to give up
some of their energy to the lattice vibrations due to the energy-phonon scattering, heating up the contact!

In p-type semiconductors this process is the other way around. The charge carriers are (positively charged)
holes, that move with the electric current, from the valence band into the conduction band. The jump from a
hole to the conduction band is accompanied, simultaneously, by a high energy electron giving of some of its
energy to the lattice to repopulate the vacancy. This means the metal contact where the charge carriers flow
into the semiconductor is now heating up (instead of cooling down like in the n-type semiconductor). At the
other metal contact the hole takes a place in the Fermi distribution corresponding to its energy Ec which is
accompanied, simultaneously, by a high energy electron flowing into the semiconductor, cooling down the
metal contact. Table 2.1 gives an overview of the Peltier effect:

Table 2.1: Characteristics of charge flow and temperature in n-type and p-type semiconductors.

n-type semiconductors low potential contact high potential contact

Temperature Increases Decreases
Charge carriers flow into the semiconductor out of the semiconductor

p-type semiconductors low potential contact high potential contact

Temperature Decreases Increases
Charge carriers flow out of the semiconductor into the semiconductor

An electric current is now accompanied by a heat current that is proportional to the movement of the
electrons (or holes), which is know as the electric current. The proportionality constant, Π, is know as the
Peltier element and is calculated as:

Q = (Energy carried per electron) · (electron rate) = (Ec −E f ) · (I /q) =ΠI =⇒ Π= Ec −E f

q
(2.13)

Where Π = ST which is the fundamental Kelvin relation [22, Section 4.3] and it explains the connection
between the Peltier effect and the Seebeck effect.

Just as with the thermopile, that enhances the effect of thermocouples, pairs of metal-semiconductor con-
tacts can be placed in series to enhance the Peltier effect. These devices are known as Peltier elements and
have a structure similar to Figure 2.6.

From Figure 2.6 it is clear that a Peltier element consists of a long array of metal-semiconductor pairs,
where the semiconductor is alternating between n-type and p-type. This alternating is necessary since if two
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Figure 2.6: Schematic of a Peltier element [24].

n-type semiconductors are connected to a metal contact ("Electrical connection" in Figure 2.6) then charge
will flow out of one semiconductor, and via the metal into the other semiconductor hence there is both the
Peltier heating and Peltier cooling effect on the same piece of metal. If the two semiconductors connected
to the same piece of metal are dissimilar (n-type and p-type) the metal contact is either heated or cooled
depending on the direction of the current.

The pieces of metal connecting two semiconductors should be electrically insulated from other pieces of
metal. On top of all the pieces of metal is another piece of (ceramic) material that covers the total surface
area of the Peltier element on either side. The Peltier element is now a piece of semiconductor technology
that, when a potential difference is applied, heats up on one side and cools down on the other. Essentially, a
Peltier element is a high energy density (i.e. 42 kW/m2 [28]), small size heat pump.

Peltier element naming convention
Peltier elements often have a red and black wire, and a piece of text written on the side that heats up of the
red wire is connected to a positive potential and the black wire to ground. The text has the form TEC1-xxxyy
or TEG1-xxxyy where TEC is short for thermoelectric cooler and TEG is short for thermoelectric generator, 1
indicates the number of stages (essentially how many Peltier elements are stacked on top of each other), xxx
is the number of semi-conductor pairs in the element and yy is the rated current that can flow through the
device.

2.2.3. Thomson effect
When both an electric current and a temperature difference are present, a third thermoelectric effect known
as the Thomson effect [20, Section 8.3.1.3] is present. The Thomson effect states that in the case of an electric
current and a temperature difference the heat flow is given as:

Q̇ =−k
(
I · dT

d x

)
(2.14)

with k = dΠ
dT −S, using the second Kelvin relation Π= ST it is found that k = T dS

dT . The Seebeck coefficient
S is assumed to be constant in temperature range of operation, giving a Thomson coefficient of 0. In practise,
the Thomson effect is much smaller than the Peltier effect and is therefor often neglected [20, Section 8.3.1.3].

2.3. Heat transfer
Heat transfer can be modelled using the analogy with electrical circuits as done in Mills and Coimbra [25,
Section 1.4]. In this analogy, temperature difference ∆T is analogous with electric potential difference ∆V ,
heat current Q is analogous to electric current I and the product of the overall heat transfer coefficient and
total heat transfer are 1

U A is analogous to electric resistance R:

I = ∆V

R
⇐⇒ Q = (U A)∆T (2.15)

This means that multiple resistances in series, like two different pieces of material, have a total resistance
that adds up. The heat transfer resistance of a plate with area A, thickness d and thermal conductivity k is
given by:

(U A)−1 = R = d

k A
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The resistance of two different materials in series is then given by:

Rtot = d1

k1 A1
+ d2

k2 A2

which gives a total heat transfer coefficient:

U A = R−1 = k1k2 A1 A2

d1k2 A2 +d2k1 A1

The heat transfer resistance of a circular symmetric piece of material can be found by integrating the radial
heat equation and is given by:

R = ln(ro/ri )

2πLk

with ro the outside radius, ri the inside radius and L the length of the material. The resistance to heat
transfer of a convective boundary with heat transfer coefficient h is given by.

R = 1

h A

A circular pipe carrying a hot fluid, exposed to cooler air has a total heat trasnfer resistance:

U A = (∑
i

Ri
)−1 = 1

1
hi nsi de 2πri

+ ln(ro /ri )
2πk + 1

hout si de 2πro

(2.16)

2.3.1. Heat transfer coefficients from dimensionless numbers
In order to determine how much energy is transferred due to a temperature difference, the product of the
total heat transfer coefficient U and the total heat transfer area A needs to be known. Whereas for solids, the
thermal conductivity is readily available or can be easily calculated from experiments, the convective heat
transfer coefficient in fluids depends on more than temperature (and pressure).

Heat transfer coefficients can be determined from Nusselt relations [25, Table 4.3]. The Nusselt number is
defined as the conductive heat transfer resistance over the convective heat transfer resistance:

Nu =
d

k A
1

h A

= hd

k
(2.17)

in which h is the heat transfer coefficient in W/m2, k the thermal conductivity in W /mK of the fluid and
d a characteristic length scale in m. Thus the Nusselt number is a dimensionless quantity. If the Nusselt
number for a certain situation is known, the heat transfer coefficient h can be calculated from Equation 2.17
using h = Nu k

d .
Other dimensionless number that are often used in heat transfer are the Reynolds number, the Prandtl

number and the Rayleigh number:

Re = ρU 2

µU /D
= ρU D

µ
(2.18)

Pr = µ/ρ

k/ρcp
= cpµ

k
(2.19)

Ra = l 2/α

η/ρβ∆T l g
= ρβ∆T l 3g

µα
(2.20)

With ρ the fluid density in kg/m3, U the velocity in m/s, D the hydraulic diameter in m, µ the dynamic
viscosity in Pa·s, cp the specific heat of the fluid in J/kgK, k the thermal conductivity in W/mK, β the coef-
ficient of thermal expansion in K−1, ∆T the temperature difference in K over a characteristic distance l in
m, g the gravitational acceleration in m/s2, α = k/ρcp the thermal diffusivity in m2/s. Reynolds number is
used to characterise the flow in terms of laminar of turbulent flow. The Prandtl number gives the ratio of the
momentum transfer rate to the heat transfer rate. The Rayleigh number gives the ratio of the time scale for
thermal transport via diffusion to the time scale for thermal transport via convection. The Prandtl number
can be calculated using temperature dependant relations for µ [41] and k [18], the specific heat capacity of
water is taken constant at cp = 4.18 kJ/kg [36].
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The hydraulic diameter is used to characterise non-circular channels as in Equation 2.21 [37, eq. 5.26]:

D = 4A

P
(2.21)

Such that the hydraulic diameter of a circular tube is D = 4πr 2/2πr = 2r .



3
Numerical Model

The goal of this project is to investigate if Peltier elements can be used to increase the temperature of a water
flow by extracting thermal energy from another flow. This will be done by placing 10 Peltier elements in line
in a Peltier Heat Exchanger (PeHEX) schematically shown in Figure 3.1. Water flows on both side of the Peltier
elements, one of the flows will be heated while the other is cooled.

Figure 3.1: Schamtic of the Peltier Heat Exchanger as shown with 4 Peltier elements. The domestic hot water is heated
using thermal energy from the heating network, extracted by the Peltier elements. The flows operate in counter current
conditions.

To model the Peltier Heat Exchangers, the performance of the individual Peltier elements has to be mod-
elled. More precisely, the behavior of the individual Peltier elements, when an electric potential difference is
applied, has to be modelled. This is done in three steps:

1. The internal temperature distribution for the Peltier Elements will be derived by considering a thermal
energy balance on the interior of the Peltier element. From there, the heat flux at the element boundaries
will be determined.

2. Using the heat flux at the element boundaries, the interaction between the Peltier element and the envi-
ronment (heat absorption/rejection, electric potential) will be derived.

3. The individual Peltier element models are added together to analyse the performance of the Peltier Heat
Exchangers.

Additionally the two dimensional heat equation was solved on the cross sectional area of the Peltier heat
exchanger to get an idea for the heat transfer area.

3.1. Internal temperature analysis
The Peltier element is essentially a heat pump where the heat is carried by the electric charge carriers and the
atomic lattice vibrations (phonons [33, Chap. Debye model]). The heat flux can be calculated using Equation
2.7. The Seebeck coefficient of the material is assumed to be constant with temperature in the temperature
range of interest. Also, the second Kelvin relation Π = ST will be substituted in Equation 2.7 and it will be
multiplied with the cross sectional area A to obtain the thermal current in Equation 3.1:

Q̇ = I ST −k A
dT

d x
(3.1)

The Peltier elements will be used as a simple heat pump, moving energy from the district heating networks
to the domestic (hot) water lines. Only where the ceramic coatings take up or reject heat, at the Peltier ele-
ment’s boundaries, the heat flux has to be evaluated. To this end the Peltier element is analyzed via a slice of
the interior of the Peltier element as depicted in Figure 3.2. Figure 3.2a also indicates the boundary conditions
of the temperature distribution on the outside interfaces of the Peltier element.

15
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(a)

(b)

Figure 3.2: Figure 3.2a shows the schematic of a horizontal Peltier element as they are shown in Figure 3.1. The interfaces
1 and 4 in Figure 3.2a represent the boundary conditions T (z = 0) = Tp,hn and T (z = d) = Tp,dhw respectively. Interfaces
2 and 3 correspond to the interfaces in Figure 3.2b. Figure 3.2b shows the energy balance from the dashed box from Figure
3.2a in detail.

Balancing the slice from Figure 3.2 gives:

−
(
k(T )A

dT

d z

)
|z +

(
k(T )A

dT

d z

)
|z+d z + I 2R

d z

d
= 0

Collecting likewise terms and dividing by d z the differential equation that governs the temperature distri-
bution within a Peltier element is given by Equation 3.2:

d

d z

(
k(T )A

dT

d z

)
+ I 2R

d
= 0 (3.2)

As mentioned by Ludstrom and Jeong [22], the thermal conductivity in semiconductors is rather low, 1 ∼10
W/mK, when compared to metals and can vary significantly with temperature. Experimental data of the
temperature dependence of the thermal conductivity of the Peltier element used in this research is given by
Figure 3.3.

Figure 3.3: Thermal conductivity of the Peltier element as function of temperature. The thermal conductivity has halved
from 2 W/mK to 1 W/mK over the range of 15 K.

The total thermal conductivity is the sum of the electronic and phononic thermal conductivity. The ther-
mal conductivity due to charge carriers is linearly proportional to temperature, as described by Ludstrom
and Jeong [22, Equation 4.7], whereas the effect of lattice vibrations is inversely proportional to temperature
according to Holland [12, Equation 8]. The total thermal conductivity can be modelled by Equation 3.3:

k(T ) = k1T + k2

T
(3.3)

However, Formula 3.3 has a root at Tk=0 =
√
−k2/k1. Typical values for k1 and k2 (from the experimental

observations, Chapter 6) are k1 = −0.033 and k2 = 3830 giving Tk=0 = 67 °C. This is an issue since it is very
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likely that the Peltier elements will actually attain a temperature higher than 67 °C to get the domestic hot
water to the desired temperature of 60 °C. This problem could be solved by using a simple power law to
model the thermal conductivity k ∼ αT β, as proposed by Palankovski [27, sec. 3.2.3]. The downside to this
method is that due to the parameter fitting of an exponent (β), which at only 10% relative error can cause big
differences in the value for k(T ). The proposed solution is to use a thermal conductivity of the form given by
Equation 3.4:

k(T ) = k1 exp(k2T ) (3.4)

Formula 3.4 has the advantage of never giving a negative thermal conductivity, as well as never giving a
thermal conductivity of 0 W/mK. A comparison of the two models for the thermal conductivity is given in
Figure 3.4.

Figure 3.4: Thermal conductivity with fitted equations 3.3 and 3.4.

The ODE given by Equation 3.2 is subject to the boundary conditions T (z = 0) = Tp,hn and T (z = d) =
Tp,dhw where Tp,hn indicates the temperature of the Peltier element at the heating network side and Tp,dhw

indicates the temperature of the Peltier element at the domestic hot water side. The goal is to find an ex-

pression for −
(
k(T )A dT

d z

)
such that the the total heat transfer rate can be calculated at the boundaries of the

Peltier element. The heat transfer rates at the boundaries can be calculated using Equation 3.1 with Q̇hn > 0
for Thn,out < Thn,i n .

Q̇dhw =I STp,dhw −k(T )A
dT

d z

∣∣
z=d

Q̇hn =I STp,hn −k(T )A
dT

d z

∣∣
z=0

(3.5)

The full derivation of the solution can be found in Appendix B. The final solution is given by:

− (k(T )A
dT

d z
) =− I 2R

2

(
1− 2z

d

)
−k

(
Tp,dhw +Tp,hn

2

)
A

d
(Tp,dhw −Tp,hn) (3.6)

Such that the heat fluxes at the Peltier element’s boundaries are given by Equation 3.7:

Qdhw =I STp,dhw + I 2R

2
−k

(
Tp,dhw +Tp,hn

2

)
A

d
(Tp,dhw −Tp,hn)

Qhn =I STp,hn − I 2R

2
−k

(
Tp,dhw +Tp,hn

2

)
A

d
(Tp,dhw −Tp,hn)

(3.7)

From a total energy balance equation the input power can be calculated to be:

Pi n =Qdhw −Qhn = I S(Tp,dhw −Tp,hn)+ I 2R (3.8)

Since the electric power input is given by Pi n = IV , it is clear that the total applied electric potential differ-
ence is distributed over the resistive load of the Peltier element and the Seebeck load (= S(Tp,dhw −Tp,hn)).
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3.2. Estimating thermoelectric parameters
From previous analysis it is clear that the parameters S,R and k(T ) are important for the determination of the
performance of a Peltier element. A datasheet is usually provided with a Peltier element, informing what the
specification of the device are. Figure 3.5 shows the graphs on the datasheet for the type of Peltier element
used in this research (TEC1-12706 by Hebei I.T. (Shanghai) Co., Ltd. [10]). To the day of writing the author
has not found a datasheet yet, where the relevant thermoelectric parameters, S, R and k(T ) are simply listed.
The parameters have to be extracted from the datasheets as they are implicitly represented in the graphs of
the datasheets.

(a) Datasheet for TEC1-12706 at Tp,dhw = 25 °C (b) Datasheet for TEC1-12706 at Tp,dhw = 50 °C

Figure 3.5: Performance of Peltier element TEC1-12706 for two different temperatures. The horizontal axis shows the
temperature difference over the Peltier element, the vertical axis shows the heat absorption by the Peltier element on the
heating network side Qc = Q̇hn . [11].

3.2.1. Seebeck coefficient and resistance
According to Equation 3.7 the heat transfer rate at ∆Tp = 0 (the horizontal axis in Figure 3.5) at the heating
network side of the Peltier element is given by:

Qhn = SI Tp,hn − I 2R

2

From the Figures 3.5a and 3.5b eight datapoints (Qhn , I ) are obtained (marked with an X in figure 3.5) to
which a least squares fit of the form of Equation 3.2.1, with S and R as coefficients, is performed. Four data
points have two temperature T1 = 298 K and four data points have temperature T2 = 323 K.

If the four different values for the current from Figure 3.5 are denoted as I1 = 1.5, I2 = 3, I3 = 4.5, I4 = 6 A
and the heat transfer rate values Qc corresponding to the values for the current as Q1,1, ...,Q1,4,Q2,1, ...,Q2,4

with the first subscript indicating the correspondence to the temperature T1 or T2, and the second subscript
indicating the correspondence to the current I1, ..., I4, then the linear least squares system c X = b to be solved
is:

X =



I1
T1

− I 2
1
2

...
...

I4
T1

− I 2
4
2

I1
T2

− I 2
1
2

...
...

I4
T2

− I 2
4
2


b =



Q1,1
...

Q1,4

Q2,1
...

Q2,4


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The solution to the least squares problem minS,R
∑

i ||X T
[

S
R

]
−b||2 is given by:[

S
R

]
= (xT x)−1(xT b)

Using Figure 3.5 the obtained values for S and R are S = 0.0477 V/K and R = 1.57 Ω. The value of S seems
a factor of 100 too large compared to the values mentioned in Section 2.2.1. This is because the values men-
tioned in Section 2.2.1 are the Seebeck coefficients for a metal-semiconductor junction. Peltier elements con-
sist of 127 n-type and p-type semiconductors in series (Figure 2.6). There are four junctions per n-type/p-type
couple giving a value of Sn = 0.0477

4·127 = 94 µV/K for the used semi-conductor material, which is in the expected
order of magnitude.

3.2.2. Temperature dependence of thermal conductivity
Using the Seebeck coefficient S = 0.0477 V/K and resistance R = 1.57Ω, the thermal conductivity of the Peltier
element can be evaluated. Using Figures 3.5a and Figures 3.5b and the temperature difference over the Peltier
element at Q̇c = 0, the relation between k(T ) and T can be determined since:

Qc = 0 = I STp,hn −k(
Tp,dhw +Tp,hn

2
)

A

d
(Tp,dhw −Tp,hn)− I 2R

2

k(
Tp,dhw +Tp,hn

2
) = I STp,hn − I 2R

2
A
d ∆Tp

With ∆Tp the temperature difference over the Peltier element. Using the data from Figure 3.5, eight dat-
apoints can be determined. The initial fit resulted in k1 = 0.79 W/mK and k2 = 0.002 1/K, with k1 and k1 as
defined in Equation 3.3, which is an increasing exponential. The thermal conductivity of the semiconductor
material is expected to decrease with temperature. This is because as the temperature rises, more electrons
occupy the conduction band making it increasingly harder for electrons in the valance band to occupy the
conduction band. Electrons in the valance band cannot move since there are no, or little, available states
available, by assumption. Since the electrons have a large contribution to the thermal conductivity of semi-
conductors (explaining the difference in magnitude of Peltier effect between metals and semi-conductors)
the thermal conductivity decreases as temperature increases. A a certain point, a substantial amount of elec-
trons have moved from the valence band to the conduction band giving all the electrons available states to
move around in, causing the thermal conductivity to theoretically rise again. The shear amount of electrons
needed to move from the valance band to the conduction band for this phenomena to happen is means an
energy of several kB T has to added to the system, making it like that the system has melted before the thermal
conductivity has risen again.

To obtain a decreasing thermal conductivity, the datapoints with Th = 25°C and the datapoints with Th =
50°C are averaged, the resulting values for the parameters k1 and k2 of the thermal conductivity model are
k1 = 2.14 W/mK and k2 =−0.0011 1/K.

3.3. Environment interaction
As mentioned in Section 3.1, the effective potential difference over the Peltier element’s resistive load is re-
duced, when compared to the applied potential difference, by an amount S∆Tp where ∆Tp indicates the
temperature difference over the Peltier element. Such that:

Ve f f =V0 −S∆Tp (3.9)

With R the resistance of the Peltier element. This is due to the Seebeck effect as mentioned in Section
2.2.1. In practice this means a reduced current will flow, as compared to the initial current that would flow
at the applied electric potential difference. The effective potential determines the current through the Peltier
element, and thus the power draw of the Peltier element according to Equations 3.10 and 3.11:

Ip = V0 −S(Tp,dhw −Tp,hn)

R
(3.10)

Pelement =V0I =V0

(V0 −S∆Tp

R

)
(3.11)
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The reduced current will reduce the heat flow due to the Peltier Effect and therefor will lower the tem-
peratures of the boundaries of the Peltier elements. The reduced temperature difference ∆Tp will increase
the effective electric potential over the Peltier element. In essence, the Peltier effect and Seebeck effect work
together in a negative feedback loop as depicted in Figure 3.6.

Figure 3.6: Negative feedback loop in which the Peltier effect and the Seebeck effect work together.

From Equation 3.11 it is clear that for∆Tp < V0
S ≈ 10

0.05 = 200 K (or °C) the power draw per element is reduced
due to the Seebeck effect compared to an electric resistor of the same resistance. The maximum allowable
temperature difference ∆Tp,max , in terms of system boundaries, is determined by the difference between
the maximum allowable temperature of 130 °C (melting point of the solder in the Peltier element), and the
minimum allowable temperature difference of 0 °C (freezing point of water) resulting in a maximum allowable
temperature difference of 130 °C. Therefor, ∆Tp,max = 130 < 200 °C and the power per element will be below

P0 = V0
R whenever the system is running.

In the Peltier heat exchanger the Peltier elements will be placed between the domestic hot water flow and
the heating network flow. The hot side of the Peltier element will be engaged in heat transfer to the domestic
hot water and the cold side of the Peltier element will be engaged in heat transfer with the heating network
flow. The temperature difference between the Peltier element’s boundaries and the water flows will determine
the amount of heat transferred to each respective flow. The interaction of a single Peltier element can be
described by the four equations of System of Equations 3.12:

Udhw Adhw (Tp,dhw − Tdhw,i n +Tdhw,out

2
) =ṁdhw cp (Tdhw,out −Thn,i n)

ṁdhw cp (Tdhw,out −Tdhw w ater,i n) =I STp,dhw + I 2R

2
−k(

Tdhw +Thn

2
)

Ap

d
(Tp,dhw −Tp,dhw )

ṁhncp (Thn,i n −Thn,out ) =I STp,hn − I 2R

2
−k(

Tp,dhw +Tp,hn

2
)

Ap

d
(Tp,dhw −Tp,hn)

Uhn Ahn(
Thn,i n +Thn,out

2
−Tp,hn) =ṁhncp (Thn,i n −Thn,out )

(3.12)

The four equations from System 3.12, in order, represent:

1. An energy balance over the domestic hot water.

2. A surface thermal energy flux on the domestic hot water side
of the Peltier element.

3. A surface thermal energy flux on the heating network side.

4. An energy balance over the heating network.

Figure 3.7: Schematic representation of
the energy balances from system 3.12.

Figure 3.7 shows where the four equation from System 3.12 are relevant. The first and fourth equation
contain a ∼U A∆T term where the ∆T term represents the logarithmic average temperature difference. The
formulas in System of Equations 3.12 use the arithmetic mean. When the temperature gradient of the domes-
tic water per Peltier element is small (∆T /n = 0.5 °C per element) compared to the temperature differences
between the domestic hot water and the boundaries of the Peltier elements the difference between the loga-
rithmic mean and the arithmetic mean becomes negligible.
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Notice that the first two equations consist of three different formulas, any permutation of the three formu-
las over the two equations gives a valid system of equations that describes the behavior of the Peltier element
with its environment as long as the two formulas in an equation are different. The same holds for the last two
equations. Since the Equations of System of Equations 3.12 are quasi-linear (the thermal conductivity of the
Peltier elements k(T ) is non-linear) they can be put in matrix-vector form as done in Equation 3.13:

ṁdhw cp + Udhw Adhw
2 −Udhw Adhw 0 0

−Udhw Adhw
2

(
Udhw Adhw

+k(
Tp,dhw +Tp,hn

2 )
Ap
d −I S

)
−k(

Tp,dhw+Tp,hn

2 )
Ap

d 0

0 k(
Tp,dhw+Tp,hn

2 )
Ap

d

( −Uhn Ahn

−k(
Tp,dhw +Tp,hn

2 )
Ap
d −SI

)
Uhn Ahn

2

0 0 Uhn Ahn −ṁhncp − Uhn Ahn
2



·


Tdhw,out

Tp,dhw

Tp,hn

Thn,out

=


(ṁdhw cp − Udhw Adhw

2 )Tdhw,i n
I 2R

2 + Udhw Adhw
2 Tdhw,i n

− I 2R
2 +−Uhn Ahn

2 Thn,i n

−(ṁhncp − Uhn Ahn
2 )Thn,i n

 (3.13)

The input parameters to System 3.13 are:

• ṁdhw ,ṁhn Mass flow rate of the respective side of the Peltier element.

• Udhw , Uhn Total heat transfer coefficient at the respective sides.

• I Electric current through the element.

• Tdhw,i n ,Thn,i n Inflow temperature of the respective sides.

The constant model parameters are given by (see Section 5.1):

• cp Domestic hot water specific heat capacity (= 4180 J/kg).

• Adhw ,Ahn Heat transfer area at the respective sides (=0.00152 m2).

• Ap Cross sectional area of the Peltier element (=0.0016 m2).

• d Thickness of the Peltier element (= 0.0039 m).

• S Seebeck coefficient (=0.0477 V/K).

The solution to System 3.13 is a vector containing; the temperature of the domestic hot water after the
Peltier element, the temperature of the hot side of the Peltier element, the temperature of the cold side of the
Peltier element, the temperature of the heating network after the Peltier element. The final solution to System
3.13 is obtained by iteration, the iteration terminates if the temperature has not changed by more than 0.001
K over a single iteration and if the electric current flow is below the allowed current by the power supply. After
every iteration the electric current has to be re-evaluated according to Equation 3.14:

I = V0 −S(Tp,dhw −Tp,hn)

R
(3.14)

It is likely that the value for the thermal conductivity k((Tp,dhw − Tp,hn)/2) has changed (slightly) after
an iteration. Additionally, since a power supply will limit the applied electric potential difference when too
much current is drawn, a check has to be done to prevent a too high current draw, i.e.: I < Imax,ps where
Imax,ps is the maximum current that the power supply can provide. If the calculated current from Equation
3.14 is larger than Imax,ps , the applied electric potential difference will be (numerically) reduced to V0,new =
1
2 (V0,ol d + Imax,ps R). Since the solution to the quasi-linear system is found by iteration, a starting point for
the Peltier element’s boundary temperature has to be chosen. The initial guesses are chosen to be:

Tp,dhw,0 =Tdhw,i n

Tp,hn,0 =Thn,i n
(3.15)

The iteration schemes used to solve System of equations 3.12 are shown schematically in Appendix D.
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The heat transfer coefficient from the Peltier element’s boundary to the respective flow has to be calculated.
The design of the PeHEX that will be used to run the experiments (Chapter 5) was made in parallel with the
numerical model. The Peltier elements will not be in direct contact with the flow, but will be separated by a 1
mm thick plate of aluminium with a thermal conductivity of k = 205 W/mK. Therefor the total heat trasnfer
coefficient will be U−1 = h−1+d/k with d = 0.001 m the thickness of the aluminium plate and h the convective
heat transfer coefficient from the wall to the water flow. The convective heat transfer coefficient is calculated
using a correlation for the Nusselt number from Mills and Coimbra [25, Eq. 4.50] for laminar flows (Re < 2300):

NuD = 3.66+ 0.065(D/L)RePr

1+0.04((D/L)RePr)(2/3)
(3.16)

With D the hydraulic diameter of the channel, L the length of the channel, Re the Reynolds number and Pr
the Prandtl number. For turbulent flows (Re > 3000) the Gnielinski correlation [8] is used:

NuD = ( f /8)(ReD −1000)Pr

1+12.7( f /8)1/2(Pr2/3 −1)
(3.17)

f = 1

(0.79ln(Re)−1.64)2 (3.18)

with f the friction factor as defined in Incropera and DeWitt [15, p. 490]. For Reynolds numbers in the
range 2300 < Re < 3000 a Hermite cubic polynomial (Appendix C) is used to interpolate between Equations
3.16 and 3.17. Code snippet E.1 shows how the final solution to System 3.13 is found.

3.4. Coupling of Peltier element models
System of equations 3.12 describe the temperature distribution of a single Peltier element. To analyse the
performance of the PeHEX all the individual models for the Peltier elements have to be coupled together
since the temperature of the domestic hot water as it leaves one element will be the input temperature of
another element. Therefor, to find the temperature distribution within the entire PeHEX, iterations over all
the Peltier elements have to be performed.

Before the iterations can be done a flow type, co-current, cross-current or counter-current, has to be cho-
sen. In an ordinary heat exchanger, a counter-current flow is chosen to accommodate a maximum logarith-
mic temperature difference between the two flows in order to maximize the heat transfer. However, there
is a major difference between an ordinary heat exchanger and a PeHEX. In an ordinary heat exchanger the
temperatures of the two flows approach each other, such that the temperatures at which the flows leave the
heat exchanger have to be in between the two temperatures that the flows entered the heat exchanger with.
In a PeHEX the temperatures diverge from one another as visible in Figure 3.8, meaning the temperatures at
which the two flows leave the PeHEX do no necessarily have to be in between the temperatures at which the
two flows entered the PeHEX. Therefor a co-current arrangement is not desirable, as the temperature differ-
ence over the Peltier element would grow from the beginning to the end of the heat exchanger and a large
temperature difference over the Peltier element can severely limit their performance according to equation
3.7.

The advantage of a cross-current arrangement is that the heating network sides of all the Peltier elements
feel the hottest water at temperature Thn,i n when compared to only the last element feeling Thn,i n for a
counter-current arrangement as the heating network will cool down throughout the PeHEX. The disadvan-
tage of a cross-current arrangement is the lower mass flow rate as the water has to travel to a larger (transver-
sal) surface area. The choice was made to use a counter-current arrangement for this research. The PeHEX
now consists of two identical water channels, limiting the cost of the test setup (Chapter 5).

To find the temperature distribution throughout the PeHEX, the System of Equations 3.12 has to be solved
for each individual Peltier element. The value Tdhw,out from the solution vector becomes Tdhw,i n for the next
element, and the value Thn,out from the next element becomes Thn,i n for the current Peltier element. Since
the solution vector for the next Peltier element is not found yet, an initial guess of the temperature distribution
has to made. This is a consequence of using a counter-current arrangement. The solution vectors for the
Peltier elements are solved sequentially, meaning the model sweeps over the elements. After all the solution
vectors have been found, the model sweeps back to the first element. The final solution is said to be found
if the temperature profiles before and after a sweep is smaller than 0.01 for every Peltier element. The code
used for determining the temperature distribution in the PeHEX is shown in Figure E.2.
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(a) (b) (c)

Figure 3.8: Different temperature profiles for the PeHEX. The rising arrows represent the domestic hot water temperature,
while the falling arrows represent the heating network temperature. Figure 3.8a shows the only temperature profile that
is possible in an ordinary heat exchanger and in a PeHEX and indicates an inefficient use of the Peltier effect. Figure 3.8b
shows the diverging temperature difference within the PeHEX. The relatively large temperature decrease in the heating
network indicates a medium efficient use of the Peltier effect. Figure 3.8c indicates a very efficient use of the Peltier effect
in a PeHEX. Figures 3.8b and 3.8c clearly require an extra source of power.

3.5. Maximum coefficient of performance
The Coefficient of Performance (COP) of the PeHEX is given by COP = Qdhw

Pi n
= 1+ Qhn

Pi n
. The mass flow rate of

the domestic hot water is not controllable (it is a demand by the user). The only variables that affect the COP
are the applied electric potential V0 and the mass flow rate of the heating network ṁhn . As the temperature
difference over the Peltier elements limits the current and therefor the heat transfer it is desirable to set the
mass flow rate of the heating network to the maximum value. This reduces the temperature drop over the
Peltier element (for a given power absorption) and thus an increased power rejection at the domestic hot
water side. Therefor, the maximum COP at a given state of operation is determined by the applied electric
potential difference and given by:

max COP = max
V0

Qdhw

Pi n
(3.19)

where V0 is the electric potential difference that is applied to the Peltier element. The maximum COP is
found by differentiating Qdhw

Pi n
with respect to V0 and finding the root of the derivative. The derivative is given

by:

d

dV0
COP = d

dV0

[Qdhw

Pi n

]
=

Pi n
dQdhw

dV0
−Qdhw

dPi n
dV0

P 2
i n

= 0

(3.20)

Using the formulas for Q̇dhw and Pi n :

Qdhw =∆Hdhw = ṁdhw cp (Tdhw,out −Tdhw,i n) =⇒ d

dV0
(Qdhw ) = ṁdhw cp

d

dV0
(Tdhw,out ) = d

dV0
(Hdhw,out )

Pi n =∑
n

V0

[V0 −S∆Tp,n

R

]
=⇒ d

dV0
(Pi n) =∑

n

[2V0 −S∆Tp −V0S
d∆Tp

dV0

R

]
with ∆Hdhw the enthalpy change over the entire entire PeHEX and Hdhw,out the enthalpy of the domestic

hot water as it leaves the entire PeHEX. The subscript n in the formula for the power draw represents the sum
over all the individual elements. The root of the numerator of Equation 3.20 is found by solving Equation
3.21:

0 =
(∑

n
V0

[V0 −S∆Tp,n

R

]) d

dV0
(Hdhw,out )−∆Hdhw (V0)

∑
n

[2V0 −S∆Tp,n −V0S
d∆Tp,n

dV0

R

]
(3.21)
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It is not immediately clear if there are any solutions to Equation 3.21 with non-zero finite potential differ-
ence 0 < V0 <∞. These bounds are necessary on V0 since for V0 = 0 the input power is zero and the Peltier
elements act like a simple heat exchanger which is not the goal of the research, and V0 →∞ is an impossible
scenario. The quantitative solution to Equation 3.21 is best found incrementally using numerical methods.

A practical limit on the applied electric potential difference V0 can be obtained by observing that COP =
Qdhw

Pi n
= 1+ Qhn

Pi n
. Therefor, if Qhn < 0 the COP will be less than 1. The formula for Q̇hn is given by Equation 3.22:

Q̇hn = I STp,hn − 1

2
I 2R −k(

Tp,dhw +Tp,hn

2
)

A

d
(Tp,dhw −Tp,hn) (3.22)

If the third term on the right hand side (the thermal conduction k A
d ∆Tp ) is regarded as linear with respect

to current (≈ αI ) for the sake of obtaining an estimate for the maximum electric potential difference to be
applied, then Equation 3.22 can be regarded as a quadratic equation with roots I = 0 and:

I =2
STp,hn −α

R
= V0 −S∆Tp

R
= V0 − αSd I

k A

R

=⇒ V0 =2(STp,hn −α)
(
1+ Sαd

k AR

) (3.23)

Typical values for the unknown parameters are Tp,hn = 303 K,α= 8.5 V, S = 0.05 V/K, k = 2 W/mK and R = 3
such that the maximum potential is roughly V0,max = 15 V.

As discussed above, to reach the highest possible COP the heating network has to be run at maximum flow
speeds to reduce the temperature difference across the Peltier elements. In practice, the only variable that
can still be altered is the electric potential difference. Since the output temperature of the domestic hot water
is set fixed at 60 °C, there are no more free variables and thus the COP is set.

After solving the coupled system of equations for the entire PeHEX (Code snippet E.2) and using the for-

mulas for Qdhw =∆Hdhw and Pi n =∑
n V0

[
V0−S∆Tp

R

]
, the COP is calculated as:

COP = ∆Hdhw∑
n V0

[
V0−S∆Tp,n

R

] (3.24)



4
Numerical Results

Numerical simulations using the model from Chapter 3 were run to determine if time and money should be
invested to build a physical test setup and experimentally validate the numerical model.

4.1. Temperature distribution
As discussed in Section 3.4 there are three different possibilities for the temperature profile within the entire
PeHEX. Figure 4.1 shows the three different temperature distributions as a result of numerical simulations
for different domestic hot water flow speeds φdhw , heating network flow speeds φhn and applied electric
potential differences V . This indicates that the temperature profiles from Figure 4.1 are not just hypothetical,
but are also the results of numerical simulations.

(a) (b) (c)

Figure 4.1: Figure 4.1a show the temperature distribution for high flow speeds and low potential differences φdhw = 4
L/min, φhn = 4 L/min, V = 5 V. Figure 4.1b show the temperature distribution for low flow speeds and high potential
differencesφdhw = 1 L/min,φhn = 1 L/min, V = 9.6 V. Figure 4.1a show the temperature distribution for high flow speeds
and high potential differences φdhw = 4 L/min, φhn = 4 L/min, V = 9.6 V.

Figure 4.1b shows an increase in domestic hot water temperature from 40 °C to 60 °C while the heating
network temperature gets reduced from 45 °C to 40 °C. From Figure 4.1b it is clear that the temperature
difference between the hot side of the Peltier element and the domestic hot water is much larger than the
temperature difference of the heating network and the cold side of the Peltier element, even though they
have the same flow speed. This is because at low flow speeds the thermal energy supplied to the hot side
of the Peltier element is much larger than the heat absorbed at the cold side due to the difference in sign in
the 1

2 I 2R term. At low flow speeds, the difference in power absorption and rejection of the Peltier element
can influence the temperatures of the domestic hot water and the heating network significantly. At low flow
speeds, the total heat transfer coefficient is relatively small U ∼ 1000 W/m2. A large temperature difference is
then sustained to balance the energy equation that governs the heat flow from the Peltier element to the wall
(U A(Tp,dhw − T̄dhw ) = Q̇dhw ). At larger flow speeds the thermal energy is given of easier to the domestic hot
water, and taken up easier from the heating network due to the larger heat transfer coefficient.

4.2. Modelling the experimental outcome
The simulations that were run are given by Table 4.1. All simulations have a potential per element of V0 = 9.6
V, (unless the potential is current limited to 5 amps, then it is lowered). The maximum flow speed of Vmax = 5
L/min is chosen to ensure that the water channels and connection hoses in the physical PeHEX (Section 5.5)
do not suffer damage from a too high flow speed.
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Table 4.1: Overview of flow setting per measurement. Vertical bars indicate an increase in the domestic hot water flow.

Experiment index 1 2 3 4 5 6 7 8 9 10 11 12 13

φdhw (L/min) 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0
φhn (L/min) 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0

Experiment index 14 15 16 17 18 19 20 21 22 23 24 25

φdhw (L/min) 3.0 3.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0
φhn (L/min) 4.0 5.0 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0

The full results of the simulations are given in Table A.1, and are graphically represented in Figure 4.2 and
Figure 4.3.

(a) (b)

(c) (d)

Figure 4.2: Figure 4.2a: Domestic hot water power absorption; Figure 4.2b: Heating network power rejection. Figure 4.2c:
Power input; Figure 4.2d: COP. The vertical dashed lines correspond to the vertical lines in Table 4.1.

An interesting observation from Figure 4.2 is the general increase in Q̇dhw , Q̇hn , Pi n , and the COP as the
domestic hot water flow speed and the heating network flow speed (increasing experiment index) increase.
This is an artifact from the Thermoelectric effect. As the heating network flow speed and the domestic hot
water flow speed increase (increasing Experiment index) the total heat transfer coefficient increases, which,
as discussed in section 4.1, decreases the temperatures of the boundaries of the Peltier element. As the tem-
perature differences over the Peltier elements decrease, the effective electric potentials (Formula 3.9) increase
causing larger currents to run and therefore larger thermal currents will be supplied to the domestic hot water
by the Peltier effect. The same argument holds for the increasing power rejection of the heating network.

The power input Pi n is the only variable that decreases as the heating network flow speed increases. This is
because the applied electric potential gets limited as the current draw would otherwise exceed the maximum
5 amps the power supply is able to deliver to the elements (as visible in table A.1). As discussed before,
the temperature difference over the Peltier element is reduced as the Experiment index increases causing an
increasing effective electric potential. The increasing electric potential causes an increasing current until it
exceeds 5 amps, when it is reduced by limiting the applied electric potential.

Figure 4.2d suggests that a COP of 2.0 is possible with higher flow speeds (higher experiment index). The
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downside of higher flow speeds is a lower output temperature of the domestic hot water, as visible from Table
A.1 and Figure 4.3. Generally, it is advantageous to have φhn > φdhw as visible from Figure 4.3. A different
type of Peltier element with a higher Seebeck coefficient S, and lower electric resistance R might reach higher
output temperatures for higher flow speeds whilst also achieving a high (>2.0) COP.

Figure 4.3: Output temperature of the domestic hot water Tdhw,out as a function of Experiment index. The output tem-
perature decreases with increasing domestic hot water flow speed, and increases with increasing heating network flow
speeds.

The numerical results presented in this chapter show evidence that a Peltier Heat Exchanger is able to
heat domestic hot water ,using a heating network, with an acceptable performance (COP between 1.2 and
1.9). Therefore, a PeHEX was designed and build. The experimental setup is discussed in Chapter 5. The
experimental results are presented and discussed in Chapter 6.





5
Experimental setup

5.1. Peltier Heat Exchanger design
The Peltier Heat Exchanger used to run the experiments was designed from scratch by the author. The final
design is depicted in Figure 5.1 with a cross sectional view in Figure 5.2a. The PeHEX was produced by DEMO
[23], at Delft University of Technology.

(a) (b) (c)

(d) (e)

Figure 5.1: Figure 5.1a: 5 mm thick perspex lid of a single channel with 1/2" tapped holes for hose connectors; Figure
5.1b: shape of the gasket (1 mm thick silicon) and the channel shape (3mm thick aluminium); Figure 5.1c: 1 mm thick
aluminium base plate; Figure 5.1d: assembly of the base plate, channel, gasket and perspex lid, the base plate and the
channel are glued together with metal glue. The length of the water channel is 44 cm, the total length of the assembly is
46 cm; Figure 5.1e: Peltier Heat Exchanger (PeHEX) consisting of tho opposite facing channels (Figure 5.1d) with Peltier
elements in between.

The width of the channel is w = 0.038 m, which is narrower smaller than the Peltier elements. This was
to ensure the Peltier elements do not push through the base plate (Figure 5.1c) when the entire assembly
was bolted together. The Peltier elements are located between two channels. Thermal adhesive was used to
ensure a proper thermal contact between the Peltier elements and the base plates.

The heat transfer area from Section 3.3 (Adhw , Ahn) is less than the total metal surface area that is in contact
with the water. This is because due to the thin base plate, the heat (or cold) provided by the Peltier element
travels directly trough the aluminium to the water rather than through the aluminium around the water, as
depicted in Figure 5.2b. Therefor, the heat transfer area is taken as the area of the base plate in contact with
the water Adhw = Ahn = 0.04 ·0.038 = 0.00152 m2. The boundary conditions for Figure 5.2b are:

• A prescribed heat flux where the metal touches the Peltier element, 50 W for the domestic hot water side,
40 W for the heating network side.

• A convective boundary condition where the metal is in contact with the domestic hot water or the heat-
ing network.

• An insulation boundary condition on the remainder of the boundary: signifying no heat to the environ-
ment.
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The code used to solve the 2D-heat equation can be found in Appendix F.

(a) (b)

Figure 5.2: Figure 5.2a: Schematic cross sectional view of the Peltier Heat Exchanger of Figure 5.1e. Figure 5.2b: Heat flow
through the Aluminium parts of the assembly in Figure 5.2a. The black box indiates the location of the Peltier element.
The water temperatures are Tdhw = 43.9 °C and Thn = 43.0 °C.

The total number of Peltier elements used is n = 40. As every PeHEX has ten elements, the number of
PeHEX used in this research is four.

5.2. Electric connections in a PeHEX
The PeHEX build for the measurements consists of four arrays of ten Peltier elements, each consisting of
two parallel arrays of five Peltier elements in series (Figure 5.3a). This configuration is chosen such that, in
combination with the 48 VDC, 10 A Mean Well HLG-480H-48AB power supplies [39] per array, each element
receives a potential difference of ∼ 9.6 V and can draw a current of 5 amps meaning the power draw per
element is limited to 48 Watts. The modules used (TEC1-12706) are rated for 100 Watts so there should be
no damage to the modules caused by an electric overloading. The resistance of the Peltier elements is Rp =
2.85±0.04Ω, giving a resistance of the parallel string of Peltier elements of 7.13Ω giving a maximum current
of 6.7 A.

(a) (b)

Figure 5.3: Figure 5.3a: Electrical wiring of the Peltier elements in a PeHEX with the two strings of Peltier elements. The
two strings are placed in the heat exchanger such that the first 5 elements and last 5 elements are part of a separate string
of elements. Figure 5.3b: Model of the electric characteristics of a Peltier element.

Figure 5.3b shows how a Peltier element can be modelled in an electric circuit. The variable load of the See-
beck load is given by PSeebeck = I S∆Tp whereas the resistive load is given by Presistive = I 2R. The experimental
setup consists of four PeHEX in series, each with their own power supply. Since every power supply is limited
to drawing 480 Watts, the four power supply can be powered from a single 230 VAC, 16 amps fused socket.

5.3. Heating network simulation
For the test setup, the Flamco workbench (used to test the Flamco HIU’s 1.4) was used. The workbench can
hold a water tank at a specific temperature, which was set to 45 °C for the measurements. The workbench can
also provide a certain flowrate of the heated tank, and of the non heated water flow. As discussed in Section
1.1, the incoming domestic water can at least be pre-heated to 40 °C. To obtain the 40 °C water from the hot
water tank the water flow from the hot water tank was split into two flows as visible from Figure 5.4, one flow
was used to pre heat the domestic water to 40 °C and the other was used as the heating network.
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The pre-heat of the domestic water is done by the HIU in Figure 5.4 by a PID controller. The PID controlled
system will affect the differential pressures on the two split flows from the hot water tank. A differential
pressure control valve (DPCV in Figure 5.4) was added between the supply and the return flow of the heating
network that flows to the PeHEX to prevent oscillations in the flow rate.

5.4. Potential and current measurements
To measure the current running through the Peltier elements in the PeHEX, the Isabellenhütte ISA-plan Pre-
cision Resistor [19] of 0.02 Ω was used in series with the strings of Peltier elements and the power supply for
every PeHEX (4 shunts in total). The potential difference over the shunt resistor provides the total current
running through the system. Both strings of Peltier elements receive roughly half of the total current that is
running. Variations are possible due to differences in temperature gradients over the Peltier elements along
the length of the PeHEX. The potentials and resistances were measured with a 4 digits digital multimeter.

The total applied potential V0,i with subscript i indicating the corresponding PeHEX is measured directly
from the terminals of the power supplies. Using the average resistance Ri of Peltier elements in PeHEX i and
the current running through the elements in PeHEX i , the effective potential Ve f f over the elements can be
estimated and can therefor be used to calculate the temperatures of the boundaries of the Peltier elements
Tp,dhw and Tp,hn . These temperatures are needed to calculate the Nusselt number of the flow to correlate the
measured values to the numerical values of the Nusselt number to verify the model (Chapter 7).

5.5. Total assembly
Along the length of the PeHEX eight temperature sensors are placed as indicated in figure 5.4. The temper-
ature sensors are simple J-type thermocouples. The flow sensors (F1 and F2 in Figure 5.4) send 950 pulses
per liter. The data acquisition (DAQ) is done by a DATAQ DI-2008 [16] with a custom Python interface (Code
snippet E.2).

Figure 5.4: Schematic resemblance of the test setup. The dashed box around the HIU indicates the pre-heat of the do-
mestic hot water. The green lines (going to the DAQ) represent data lines. The yellow lines (from the 230 Vac) represent
power wires. The numbers in the PeHEXs are used for future reference.

Due to a limit on the available ports on the DAQ, no temperature sensors are placed between the second
and third PeHEX. The temperatures in between will be estimated using a weighted average of T2 and T3 for
the domestic hot water side, and T6 and T7 for the heating network side. The weights are the reciprocal of
the power per element Pe in the respective PeHEX, since a higher power draw means a larger temperature
differential over that PeHEX. The raw data from the measurements can be found in Table A.2. The mid-point
temperatures are thus calculated as indicated in Equation 5.1.

Although the workbench mentioned in Section 5.3 is able to provide water at certain flow speeds, two extra
manual valves (V1 and V2 in Figure 5.4) were added to have a more precise control over the flow speeds.
The threaded holes in the perspex lid from Figure 5.1a are fit with 1/2" BSP to 1/4" nickel brated brass hose
connectors, and PVC tubes are used to connect the four PeHEX together. Figure 5.5b shows two pictures of
the PeHEX test setup.
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Figure 5.5: Test setup for the Peltier heat exchanger. Figure 5.5a: The four PeHEX are shown, on the left the two manual
valves (white) V1 and V2 are shown, and the two flow sensors (black) F1 and F2 are shown. Figure 5.5b: PeHEX setup
setup with the power supply, multimeter and data acquisition station.

5.6. Measurement decimation
The measurement devices, eight J-type thermocouples and two BIO-TECH FCH-midi-POM [3] flow sensors,
provide a measurement by supplying a voltage or pulses respectively. The DI2008 Data acquisition box has
8 thermocouple ports, a digital rate channel and a digital count channel that are used. The thermocouples
provide a voltage due to the Seebeck effect (Section 2.8). The voltage-temperature characteristic of K-type
thermocouples is known and therefor the measured voltage can be converted to a temperature difference
between the probe and the DI2008. Since the DI2008 has an internal reference temperature, the temperature
at the probes can be determined.

The thermocouple probes are squeezed between the 2 mm thick PVC hose and the 1 mm thick brass hose
connector as shown in Figure 5.6. This means the probe essentially measures the outside temperature of
the brass hose connector. The thermal resistances to radial heat conduction of the brass and the PVC are
calculated using Formula 2.3 and are Rbrass = 0.0003 mK/W (kbrass ≈ 100) and RPVC = 0.2 mK/W (kPVC ≈ 0.2)
with r0 = 6,r1 = 7,r2 = 9 mm. The contribution to the temperature difference across the water and the outside
temperature of the brass is given by Rbrass

Rbrass+RPVC
and is roughly 1% indicating that the temperature difference

across the brass will be relatively small and therefor the temperature as measured by the thermocouple probe
will be used as the temperature of the water.

Figure 5.6: Schematic of the squeezed thermocouple probe between the PVC hose and the brass hose connector.

Due to random noise, thermal oscillations and possible PID conroller effects from the HIU, the voltage that
the thermocouples provide can oscillate giving an unreliable measurement. To circumvent this problem the
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measurement are averaged over time, set by the decimation variable in Code snippet E.2. The sampling rate of
the DI2008 is 200 Hz divided over 8 thermocouple channels giving a sampling rate of 25 Hz per thermocouple
channel. The measurements are averaged over 1500 samples, or 60 seconds of data.

The flow sensor of the heating network was connected to the rate channel of the DI2008. The flow sensor
of the domestic hot water was connected to the digital count channel. The flow sensors sent square waves
with 50% duty cycle (essentially pulses) to the DI2008 at a frequency of 950 pulses per liter. At 5 L/min the
frequency at which data was sent to the DI2008 is 80 Hz. The sampling frequency of the DI2008 for the
digital count channel is 200 Hz, so the Nyquist criterion for no aliasing sampling was satisfied. The data
from the flow sensor connected to the rate channel is automatically converted to a frequency by the DI2008
python interface. The data from the flow sensor connected to the count channel had to be converted to a
rate value. The DI2008 increments the counter when a potential is applied. This was done by simply dividing
the difference in count value by the difference in time between when two data packages were sent from the
DI2008 to the computer. The decimation of the flow sensors data was set to 10 samples, or 0.4 seconds, to
reduce measurement noise but maintain an accurate reading of the current flow speed.

5.7. Measurement error
All sensors have a certain measurement uncertainty. The measurement uncertainties for the sensors used in
this research are given in Table 5.1.

Table 5.1: Measurement errors due to sensors and measurement techniques.

Quantity Vdhw (L/min) Vhn (L/min) Ve (V) Ie (A) T (°C)

Measurement error 0.05 0.01 0.005 0.025 0.5

The data from the flow sensors is decimated by keeping track of the last ten measurements and taking the
average. From the last ten measurements, a standard deviation can be calculated. The calculated standard
deviations for the flowsensors were 0.05 L/min for the domestic hot water (connected to the count channel of
the DI2008) and 0.01 L/min for the heating network (connected to the rate channel of the DI2008). The count
channel has a higher uncertainty than the rate channel. This is likely explained by random noise on causing
the counts to increment randomly.

The measurement error for the potential Ve and Ie come from the multimeter. The multimeter is a 4 digit
digital multimeter. The total PeHEX applied electric potential difference measurements are done with a preci-
sion of two decimals, the uncertainty is therefore 0.005 V. The current measurements are done by calculating
the potential over the shunt resistor, the potential over the shunt is with an precision of three decimals mean-
ing the uncertainty is 0.0005 V. The uncertainty in the current is therefor d I = dV /R = 0.0005/0.02 = 0.025 A
(Section 5.7.1).

The uncertainty in the temperature measurements is provided by the manufacturer’s datasheet and is 1.5
°C. However, due to the decimation of 1000 samples this error is reduced to 1.5/

p
1000 = 0.05 °C. The 1000

samples from the decimation can be used to obtain the measurement error. The uncertainty in the tempera-
ture measurements was found to be 0.5 °C.

5.7.1. Measurement uncertainty propagation
The error propagation of (multi-variable) functions f (X ,Y , ...) is given by Hughes and Hase [13, Chap. 4] as:

u
(

f (X ,Y , ...)
)=

√(
∂ f (X ,Y , ...)

∂X
u(X )

)2

+
(
∂ f (X ,Y , ...)

∂Y
u(Y )

)2

+ ... (5.2)

where u( f ) indicates the total error in f (X ,Y , ...) due to the uncertainties u(X ),u(Y ), ... in the variables. In
terms of the uncertainty in the current I = I (V ) =V /Rshunt this gives:

u(I ) =
√(

d I

dV
u(V )

)2

=
√(

1

R
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)2
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6
Experimental Results

In this section the experimental results will be presented and discussed. The experimental results will be
compared to the model predictions from Chapter 4. Using the experimental observations, the model param-
eters S and k(T ) will be re-evaluated in Chapter 7.

A total of 25 measurements were done (Table A.2) with increasing domestic hot water and heating network
flow speeds (φdhw and φhn respectively) ranging from 1 L/min to 5 L/min as indicated in Table 4.1.

The electric potential supplied to each PeHEX was set to the maximum value of the power supplies of 49.92
V, 48.88 V, 46.11 V and 50.3 V respectively. The results from Table A.2 are summarized in Figures 6.1c, 6.1b,
6.1a and 6.1d.

6.1. Power absorption and rejection
The supply and return temperatures of the PeHEX were measured. Using these temperatures the power ab-
sorpbtion of the domestic hot water, and the power rejection of the heating network can be calculated. Figure
6.1a shows the power absorption by the domestic hot water as calculated by Q̇dhw = ṁdhw cp (T4 −T1) with
ṁdhw = ρφdhw where ρ = 1 kg/L, cp = 4180 the specific heat capacity and T1 and T4 as defined in Figure 5.4.
Figure 6.1b shows the power rejection by the heating network as calculated by Q̇hn = ṁhncp (T5 −T8) with
ṁhn = ρφdhw and T1 and T4 as defined in Figure 5.4.

(a) Calculation of the power absorption of the domestic hot water
Q̇dhw .

(b) Calculation of the power rejection of the heating network Q̇hn .

Figure 6.1: Visualised measurement data from Table A.2.

The measured domestic hot water flow rates and the heating network flow rates do not exactly match the
values used in the numerical simulation, although they differ only by 1%. Therefor, the experimental results
can still be compared to the numerical simulations, and an increasing experiment index still corresponds
to increasing water flow speeds. Figures 6.1a and 6.1b suggest that both the domestic hot water power ab-
sorption and the heating network power rejection increase as the experiment index increases, as the model
predicted.

The error bars in Figures 6.1a increase as the domestic hot water flow speed increases. The error bars in
Figures 6.1b increase as the domestic hot water flow speed increases. The uncertainty in the flow speed is 5%
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maximum for the domestic hot water and 1% for the heating network, explaining the differences in the error
bars between the domestic hot water and the heating network at the same experiment index.

As the flow speed increases, the temperature difference across the flow decreases. Since the measurement
error in the temperature measurements is fixed, the effects of the uncertainties in the temperature on the
total power becomes larger for smaller temperature differences. The uncertainty in a temperature difference
is

p
2dT ≈ 0.7 °C. At a temperature difference of 20 °C the uncertainty is 3.5%. At a temperature difference

of 6 °C, the uncertainty is 12 %!. Therefore, at higher flow speeds (lower temperature differences) the relative
uncertainty in the temperature difference is much larger than the temperature difference in the flow speed,
causing the total uncertainties in Q̇dhw and Q̇hn to increase.

6.2. Electric power draw and heat loss
The electric power draw by the Peltier elements increases as the experiment index increases, shown in Figure
6.1c, as the simulation results from Chapter 4 predicted.

(c) Calculation of the effective electrical input power P . (d) Calculation of the heat loss of the system Q̇loss .

Figure 2.1 continued: Visualised measurement data from Table A.2.

The heat lost by the PeHEX is due to natural convection to the air and due to radiative heat losses. The
convective heat loss is modelled by using Formula 4.85 from Mills and Coimbra [25]:

Nu =0.68+0.67(RaΨ)(1/4)

Ra =β∆T g H 3

να

Ψ=
[

1+ (0.492

Pr

)9/16
]−16/9

(6.1)

With Ra the Rayleigh number [25, eq. 4.29], Ψ a Prandtl number function from Mills and Coimbra [25, eq.
4.84], β≈ 0.003 K−1 the thermal expansion coefficient of air, ∆T ≈ 40 the temperature difference between the
PeHEX and the air, g = 9.81 the gravitational acceleration, H = 0.01 m the combined height of the metal parts
of the PeHEX, ν= 1.5 ·10−5 m2/s the kinematic viscosity of air, α≈ 20 ·10−6 m2/s the thermal diffusivity of air
and Pr= 0.7 the Prandtl number of air. The Nusselt relation holds for Ra ≤ 109. Combining these values the
Rayleigh number is found to be 7100, and a value of 5.4 was found for the Nusselt number. The convective
heat transfer coefficient is calculated as h = Nu k

H = 11 W/m2K. The heat transfer area is A = 0.01 m2. The
convective heat loss is therefor calculated as Qc = h A∆T = 7 W for each heat exchanger.

The radiative heat loss is calculated by Q = hr A∆T [25, e1. 1.19] where hr = 4εσT 3
m with ε= 0.5 the radiative

emission coefficient,σ= 5.67·10−8 W/m2K4 and Tm ≈ 324 K such that the radiative heat loss is Q = h A∆T = 2
W. The total heat loss per heat exchanger is therefor 9 watts which is a relative heat loss of 9/350 ≈ 2% where
350 watts is the nominal power of the power supply of a single PeHEX.

A potential power gain of 2 % means an extra potential temperature increase of 0.4 °C. This temperature
increase is in the order of magnitude of the temperature measurement uncertainty. The temperature loss due
to convective and radiative heat losses so small that they can be neglected. From Figure 6.1d it is clear that in
some measurements there was a significant imbalance in the conservation of energy: Pi n = Q̇dhw −Q̇hn .
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6.2.1. Heat loss
Figure 6.1d indicates that in some measurements there was a gain of energy (Q̇l oss < 0) rather than an energy
loss to the environment. The energy loss is given as Q̇l oss =

∑4
n=1

(
Pn−(Q̇dhw,n−Q̇hn,n)

)
where the sum is over

the Peltier Heat Exchangers. The negative energy loss is an indication that the system was not stabilized when
the measurement was taken. As mentioned before, the heat loss is negligible. Therefore a regression was
performed on the domestic hot water power absorption and the heating network power rejection to reduced
the effects of the energy imbalance for later analysis of the power absorption and rejection (Chapter 7). The
chosen regression variables are the Reynolds number for the domestic hot water flow Redhw , the Reynolds
number for the heating network flow Rehn and the relative power number given by Equation 6.2:

Pr el ati ve = Pe f f ect i ve /Pnomi nal = (I 2R)/(V 2
0 /R) = (I R/V0)2 (6.2)

The domestic hot water power absorption was non-dimensionalized with the nominal power, which essen-
tially is the COP of the system. This gives:

Q̇dhw

Pnomi nal
=β1 ·Redhw +β2 ·Pr el ati ve +β3 ·Rehn (6.3)

By the conservation of energy, Q̇dhw = Q̇hn +Peffective, therefore

Q̇hn +Pe f f ect i ve

Pnomi nal
=β1 ·Redhw +β2 ·Pr el ati ve +β3 ·Rehn (6.4)

Combining equations 6.3 and 6.4 gives a system of equations 6.5 that must hold for each measurement:

[
Redhw Pe f f ect i ve /Pnomi nal Rehn

Redhw Pe f f ect i ve /Pnomi nal Rehn

]β1

β2

β3

=
[

Q̇dhw /Pnomi nal

(Q̇hn +Pe f f ect i ve )/Pnomi nal

]
(6.5)

Since each measurement provides four Equation 6.5-like system of equations (one for each Peltier Heat
Exchanger), where the regressions parameters β1,β2 and β3 are the same for each system, this provides 200
equations for performing the regression on. Table 6.1 displays the calculated values for the regression param-
eters as a the least squares solution to the total system of equations 6.5. The uncertainties in the regression
parameters are determined according to Hughes and Hase [13, Sec. 7.2].

Table 6.1: Values for the regression parameters β1,β2 and β3.

Parameter β1 β2 β3

Value 5.4 ·10−5 1.27 3.0 ·10−5

Standard deviation 2.9 ·10−5 0.14 2.2 ·10−5

Relative error 0.40 0.11 0.73

An eye catching observation from Table 6.1 is that parameters β1 and β3 are five orders of magnitude
smaller than β2. Typical value for the variables corresponding to the regression parameters are x̄1 = 3000
(Reynolds number), x̄2 = 0.8 (relative power number) and x̄3 = 3000 (Reynolds number) for β1,β2 and β3 re-
spectively. The relative influence of each variable is given by: x̄1β1 : x̄2β2 : x̄3β3 = 0.16 : 1.0 : 0.09. These ratios
give the impression that in order to increase the power absorption of the domestic hot water flow it is seven
times more effective to increase the power draw by the elements than increasing the Reynolds number of the
domestic hot water flow, and fifteen times more effective than increasing the Reynolds number of the heating
network.

The relative errors in the parameters β1 and β3 are dβ1/β1 = 0.40 and dβ3/β3 = 0.73. Although these
relative errors may seem substantial, their relative contributions to the total error are x̄1dβ1 : x̄2dβ2 : x̄3dβ3 =
0.85 : 1.0 : 0.65 which indicates that the uncertainties in β1 and β3 do not dominate the total error.

It is important to note that the regression only indicates a correlation between Q̇dhw , Redhw ,
Peffective/Pnominal and Rehn and not an analytic relation. In fact, all the different variables are dependant on
each other. For example: The relative power number indicates the power drawn by a single element, which
is dependant on the temperature difference across the Peltier element, which in turn is connected to the do-
mestic hot water power absorption and the in-going temperature of the domestic hot water and the Reynolds
number of the domestic hot water.
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(a) Comparison of the measured domestic hot water power ab-
sorption with the regression values.

(b) Comparison of the measured heating network power rejection
with the regression values.

Figure 6.2: Comparison between the Measured and calculated (with the regression parameters) power absorption and
rejection.

Figure 6.2 shows the comparison between the measured values (dots with error bars) for Q̇dhw and Q̇hn

on the one hand, and the values for Q̇dhw and Q̇hn as calculated with the regression parameters (linear line
withσ1 error bars). Figures A.1a, A.2a, A.3a and A.4a show how the regression compares to the measurements
on the respective arrays of the Peltier elements. The domestic hot water power absorption and the heating
network power rejection as calculated with the regression parameters will be used in Chapter 7 to re-evaluate
the model parameters.

6.3. Comparison with simulation results
Figure 6.3 shows a comparison between the measurement results and the simulations from Section 4. Figure
6.3d shows that the COP value is between 1.2 and 1.8 for the measurements.

(a) Comparison of measurements and simulated predictions for
domestic hot water power absorption.

(b) Comparison of measurements and simulated predictions for
heating network rejection.

(c) Comparison of measurements and simulated predictions for
electric power use.

(d) Calculated COP from the measurement data.

Figure 6.3: Results of the simulation of the measurements.

An immediate observation from Figures 6.3a, 6.3b and 6.3c is that the prediction does not accurately rep-
resent the measurements. The differences between the simulations and the observations of the power ab-
sorption and rejection are between 30% and 50%. The power input differs between 50% and 75%. Although
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the COP calculations in Figure 6.3d do not seem to follow the 30-50% difference between measured and cal-
culated value, it seems there is a larger dependence on experiment index in the simulated results than the
experimental observations show.

An interesting observation from Figure 6.1c is that the qualitative increase in the total power draw as the ex-
periment index increases matches the model prediction. The model simulations were done using a resistance
of R = 1.57Ω per Peltier element. The measured values for the average Peltier element resistance per PeHEX
are given in Table 8.1. The average Peltier element resistance is R = 2.85Ω. This difference in resistance low-
ers the power draw by 45%. The resistance and the Seebeck coefficient of a Peltier element were obtained
from the least squares fit in Chapter 3. Since the measured resistance value does not match the fitted value,
this suggests that the fitted Seebeck coefficient is also different from the actual value. These parameter S and
k(T ) will be re-evaluated in Section 7.1 using the measurement data.





7
Numerical Adjustment

As mentioned Chapter 6, the numerical simulations and the experimental observations differ by 30% to 75%.
To improve relation between the numerical simulations and the the experimental observation the model
parameters S and k(T ) will be re-evaluated. Also a new correlation for the Nusselt number will be fitted.

7.1. Computation of Seebeck coefficient
The electric potential difference reduction (S∆Tp ) will be used to re-evaluate the Seebeck coefficient S. The
reduction is calculated using Formula 3.9. The measured electric potential reductions are shown graphically
in Figure 7.1a:

(a) (b)

Figure 7.1: Figure 7.1a: Reduction in potential per array for each measurement. Figure 7.1b: Adjusted reduction in po-
tential per array for each measurement.

The second and fourth PeHEX seem to have a substantially higher potential reduction (∼ 0.75 V) than the
first and third PeHEX. The temperature difference over the Peltier elements is expected to rise from first to
fourth PeHEX, and therefore the potential difference reduction is expected to increase from first to fourth
PeHEX. The extra potential reduction probably arose due to poor soldering joints, or poor connections to the
power supplies.

To try to eradicate the discrepancies in the potential reduction, the potential difference reductions for every
experiment index were distributed linearly from PeHEX 1 to PeHEX 4 such that the electric potential reduction
increases from PeHEX 1 to PeHEX 4 as expected. The new adjusted potential difference reduction are shown
in Figure 7.1b.

To calculate the new value for S, the temperature differences over the Peltier elements need to be calculated
as will be discussed in Section 7.1.1. The final value of S is calculated by iteration over S, taking the fitted value
from the datasheet Sd at asheet = 0.0477 V/K as a starting point.

7.1.1. Calculating Peltier element temperatures
The reduced electric potential difference is used to calculate the temperature difference over the Peltier ele-
ment according to Tp,dhw−Tp,hn =∆V /S. The actual values for Tp,dhw and Tp,hn are determined by distribut-
ing the Peltier element temperature difference Tp,dhw −Tp,hn in such a way that the ratio of the temperature
differences between the Peltier element’s boundary and the respective flows (Tp,dhw −Tdhw ) : (Thn −Tp,hn)
is equal to the ratio Q̇dhw : Q̇hn . The power rejection at the domestic hot water side is usually larger than the
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power absorption on the heating network side, this is because the dissipation I 2R is pumped towards the hot
side of the Peltier element relative to the cold side.

The new value for S was recalculated by minimizing the square norm J ·J of System of non-linear equations
7.1 using a bisection algorithm on S. The elements of vector J represent:

• The power difference at the domestic hot water side between the measured power absorption and the
modelled power absorption.

• The power difference at the heating network side between the measured power rejection and the mod-
elled power rejection.

• The difference between the measured electrical power input and the modelled electrical power draw.

J(S,Tp,dhw ,Tp,hn) =
I STp,dhw + 1

2 I 2R −k A
d (Tp,dhw −Tp,hn)−Q̇dhw

I STp,hn − 1
2 I 2R −k A

d (Tp,dhw −Tp,hn)−Q̇hn

I S(Tp,dhw −Tp,hn)+ I 2R −P

 (7.1)

The value for S has to be found by iteration. After each iteration, the new value for S was taken as the
average between the old value for S and the value Smi n that minimizes the square norm J · J. The new value
for S was then used to re-evaluate the temperature difference over the Peltier elements Tp,dhw−Tp,hn =∆V /S,
and Tp,dhw and Tp,hn were determined for the new S. This iteration continues until the values of S converge to

0.1% of the previous value of S. The standard deviation of S can be approximated byσS = J·J
(J·J)T (J·J)

p
N
= 1p

100(J·J)
(Standard deviation from a population). Figure 7.2 shows the calculated value of S over several iterations.

Figure 7.2: Calculated value of S after several iterations

The final calculated value is S = 0.0428±0.0011 V/K. The value for S as fitted to the datasheet is Sfit = 0.0477
V/K. The value for S as calculated from the measurements is surprisingly close to the fitted value for S which
suggests that the fitted value from the datasheet could be correct. However, the value fitted from the datasheet
is 4 standard deviations away. This means that the probability that the calculated value for S = 0.0428 is due
to uncertainty in the measurement data and the real value is actually S = 0.0477 is very small.

7.2. Re-evaluation of the thermal conductivity of the Peltier element
Using the new value of S the thermal conductivity of the Peltier element can be re-evaluated using Equation
7.2:

k(T p ) = I STp,dhw + 1
2 I 2R

A
d ∆Tp

k(T p ) = I STp,hn − 1
2 I 2R

A
d ∆Tp

(7.2)

where ∆Tp = Tp,dhw −Tp,hn , T p = (Tp,dhw −Tp,hn)/2, I the current, S = 0.0428 the Seebeck coefficient, R
the Peltier element’s resistance, A the Peltier element’s area and d the thickness of the Peltier element. Fitting
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the model 3.3, the parameters A and B are A = exp(15) W/mK and B = −0.046 1/K. Formula 3.4 can thus be
rewritten as:

k(T ) = exp
(
B(T −T0)

)
with T0 =−A/B . Figure 7.3 shows the relation between the measured thermal conductivities and the fitted

model.

Figure 7.3: Relation between the measured thermal conductivities and the fitted model

The uncertainties in k(T ) are not shown as they are several orders of magnitude bigger than the actual val-
ues for k(T ). This is because the regression parameter A is the argument of an exponential. A measurement
error of 10% in A causes an uncertainty in k(T ) of exp(1.1) ≈ 3 times the actual value of k(T ). As mentioned
in Chapter 3 the exponential relation for the thermal conductivity was purposely chosen to prevent zero and
negative thermal conductivities. Therefore the uncertainty in k(T) is accepted, as the calculated values for
k(T ) match the measurement results to a degree similar to the theoretical relation.

7.3. Calculation of Nusselt number
Figure 7.4 shows the poor correlation between measured Nusselt number and the Gnielinski correlation for
the Nusselt number. This is probably caused by the relation used for the friction factor in Equation 3.18 which
seems not applicable for the PeHEX. Therefore, a new Nusselt relation is determined.

Figure 7.4: Comparison between the Gnielinsky correlation and the measured Nusselt numbers for Re > 3000.

In order to calculate the Nusselt numbers corresponding to the measurements, the heat transfer coefficient
h needs to be determined from the total heat transfer coefficient U . The total heat transfer coefficient is,
according to the theory from Section 3.3), expected to be a strong function of the Reynolds number (Re) and
the Prandtl number (Pr) for turbulent flows (Re > 2300), and a weak function of the Reynolds number and
Prandtl number for laminar flows (Re < 2300). The relation between U , Re and Pr can be determined by
obtaining U from Equation 7.3:
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ṁcp∆Tdhw =
∫ L

0
U P (Tp,dhw −Tdhw )d x

=U (Re,Pr)P
∫ L

0
(Tp,dhw −Tdhw )d x

=U (Re,Pr)A(Tp,dhw −Tdhw )

ṁcp∆Thn =
∫ L

0
U P (Thn −Tp,hn)d x

=U (Re,Pr)P
∫ L

0
(Thn −Tp,hn)d x

=U (Re,Pr)A(Tp,hn −Thn)

(7.3)

In which the bar indicates a spatial average over a single PeHEX. The only unknown in Equation 7.3 is
U (Re,Pr).

7.3.1. Calculating the convective heat transfer coefficient
The only unknowns in Equation 7.3 are the total heat transfer coefficients U and can therefor easily be calcu-
lated. From U , the values of h, the heat transfer coefficient of the water, can be calculated as given in Equation
7.4:

1

h
= 1

U
− dAl

kAl
(7.4)

Where dAl = 0.001 m is the thickness of the aluminium base plate, and kAl = 238 W/mK is the thermal
conductivity of the aluminium base plate [35]. The Nusselt number is now easily calculated as Nu = hD

kw ater
with D = 0.00556 m the hydraulic diameter of the channels and kw ater as defined in E.1. From the theory, the
expected relation between the Nusselt number, Nu, and the Reynolds number, Re, and the Prandtl number,
Pr, are non trivial and the relation to be used depends on the type of flow. However, even though the Reynolds
number is in the laminar flow regime (Re < 2300) entrance effects will cause turbulent mixing throughout the
heat exchanger since the entrance length for laminar flow is Ll ami nar = 0.0575ReD D ≈ 0.7 m for Re = 1250
and the length of the heat exchanger is only 0.4 m [32]. This indicates that entrance effects cause turbulent
mixing in the PeHEX for Re > 1250. A model of Nu = f ReαPrβ was fitted to the measured values of Nu. Table
7.1 shows the fitted values for the parameters f ,α,β. Figure 7.5 shows a plot of the calculated Nusselt number
from the measurements, and the fitted values for Nu.

Figure 7.5: Plot of measured Nusselt numbers versus fitted Nusselt numbers.

This relation was fitted to data with 738 ≤ Re ≤ 5005 and 3.1 ≤ Pr ≤ 4.9. What is interesting about Figure
7.5 is the magnitude of the error in the fitted Nusselt numbers, compared to the relative errors in the fitted
parameters. This difference in order of magnitude can be explained by considering that error ∂α in parameter
α propagates through as Re∂α which is roughly a factor of 1.7 for the range of Reynolds numbers of interest. A
same reasoning holds for the error in the Prandtl number. Since the errors do not add linearly, a total error of
one times the Nusselt number instead of four times the Nusselt number is found. Since the Nusselt number
is tool for engineers to get an estimate of the heat transfer coefficient of a fluid, the calculated values for the
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Table 7.1: Values for the regression parameters f ,α and β.

Parameter f α β

Value 2.71 ·10−2 0.608 1.4
Standard deviation 0.03 ·10−2 0.02 0.13
Relative error 0.01 0.03 0.09

Nusselt number will be used without the errors. A p-value (the probability that the fitted relation for Nu is
actually due to chance) of 1.3 ·10−7 is found for the fit, indicating that the model seems adequate to predict
the Nusselt number for the given Peltier Heat Exchangers.





8
Model Validation

8.1. Re-evaluation of numerical results
Using the fitted value for S = 0.0428, the measured values for R, and the model for the Nusselt number, the
model simulations can be re-calculated and compared with the measurements. The new simulation results
are shown in Figures 8.1a, 8.1b and 8.1c.

(a) Measurement and prediction of the
power absorption of the domestic hot
water Q̇dhw .

(b) Measurement and prediction of the
power rejection of the heating network
Q̇hn .

(c) Measurement and prediction of the
effective electrical input power P .

Figure 8.1: Comparison of the simulations with new parameters and measured results.

The simulated results for Q̇dhw , Q̇hn and P are much more in line with the experimental observations than
they were in Figure 6.3. This indicates that the model for the PeHEX, in combination with the values for S and
R could be used to model the used Peltier Heat Exchangers. The value of R on the datasheet of R = 2.2Ω was
not an accurate value for the resistance of an element, but an average Peltier element resistance of R = 2.852Ω
was measured.

8.2. Coefficient of performance
Figure 8.2 shows the comparison between the calculated COP from the measurements and simulated COP:

Figure 8.2: Comparison between calculated COP from the measurements, and simulated COP.
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Figure 8.2 shows that the adjusted model predicts a COP that is close to the measured COP. Figure 6.3d
shows a COP simulation that is a stronger function of the experiment index than the COP simulation from
Figure 8.2. Figure 6.3d gives the impression that the domestic hot water flow speed φdhw has a larger in-
fluence on the COP than the heating network flow speed φhn . The domestic hot water flow speed is not a
variable that can be controlled in a final product, it is demanded by the user. As mentioned in Section 6.2.1
it is two times more effective to increase the domestic hot water flow speed φdhw than it is to increase the
heating network flow speedφhn , in order to increase the COP. This is visible from Figure 8.2 by comparing ex-
periment index 1 and 2 (increase in φdhw ) to 1 and 5 (increase in φhn). The increase from experiment index
1 to 5 is about 2% (1.45 to 1.47), while the increase from experiment index 1 to 2 is about 4% (1.45 to 1.53).

8.2.1. Return on investment
A major difference between a PeHEX and an air-water heat pump for domestic use is that the heat extracted
from the outside air is free of charge. This means that a heat pump with a COP of 3, hypothetically cuts the
domestic heating bill by a factor 3. The PeHEX used the heat from a heating network, for which it is likely that
extracted heat from the network has to be paid for. Therefor, it is not immediately clear what the potential
savings of a PeHEX could be. The Return On Investment (ROI) gives an idea for the potential savings:

ROI = c0Qdhw

c0 ·Ei n + c1Qhn
(8.1)

Where Qdhw is the energy usage for domestic heating, Ei n is the total electric energy input, Qhn is the total
heat extraction from the heating network, c0 = €0.25 the cost of electric per kWh and c1 = € 0.10 [5] the costs
of extracted heat from the heating network per kWh. Using that Ei n =Qdhw −Qhn and COP =Qdhw /Ei n the
ROI becomes:

ROI = COP

1+ c1
c0

(COP−1)
(8.2)

Using COP = 1.5 a value of ROI=1.25 is found. This means that for every €1 spent on domestic heating
using a PeHEX, €0.25 is saved compared to using simple electric heating. As mentioned in Section 1.2 a
conventional air-water heat pump might have a higher COP of 3, but a PeHEX can be a much smaller and
easier to fit device.

8.3. Recalculation of model prediction
To validate the model, all the measurements are now simulated using the new model and the simulated out-
put temperatures of the domestic hot water Tdhw,out and the heating network Thn,out are compared to the
measurements. The results of the simulation and the observations are in Table A.4. The result is that the the
model predicts the actually measured return temperatures with an accuracy of 0.7 K, the maximum temper-
ature difference between a measured an predicted results is 2.7 K at experiment index 5 (Vdhw = 5 L/min,
Vhn = 1 L/min). From Figure 8.3 it can be seen that the average cumulative error decays as the experiment
index increases, indicating that the model simulations come more in line with the measurements as the flow
speeds increase.

Figure 8.3: Error between simulations and experimental observations.

Figure 8.3 suggests that for low flow speeds (experiment index ≤ 10) the model is not accurately repre-
senting the temperature distribution within the PeHEX. This is likely due to the flow having a low Reynolds
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number ≤ 2300, but entrance effects disturbing the laminar flow such that the correlation for the Nusselt
number is not accurate for low Reynolds numbers.

For transitional to turbulent Reynolds numbers (≥ 3000) the error in the temperature simulation averaged
roughly to 0.8 K and approaches the final value of 0.7 K average absolute temperature difference between the
simulations and the observations. This indicates that as the flow speeds increase, the model gets better at
predicting the behavior of the PeHEX.

To fully validate the model. A comparison between model simulations and corresponding measurements
that were not used in the fitting of the new model parameters was made. The simulations consist of different
flow speeds that were not used in the fitting of the model. The unused measurements’ input parameters are
are given in Table 8.1. The comparison between the experimental observations ans the simulation results are
given in Table 8.2.

Table 8.1: Unused measurement input parameters.

# Vdhw (L/min) Vhn (L/min) Tdhw,i n (°C) Thn,i n (°C)

1 2.67 3.49 40.4 45.4
2 3.87 0.92 39.7 44.2
3 4.50 2.60 38.8 43.8
4 3.34 4.76 39.3 44.4
5 1.74 3.84 38.6 44.1

Table 8.2

# Tdhw,out ,exp (°C) Tdhw,out ,si m (°C) Thn,out ,exp (°C) Thn,out ,si m (°C) Pi n,exp (W) Pi n,si m (W)

1 49.2 50.7 41.7 42.3 1174 1179
2 46.7 46.2 35.7 35.4 1184 1178
3 45.3 45.1 39.9 39.7 1205 1206
4 47.5 48.49 42.3 42 1184 1199
5 52 53.8 41.5 41.5 1124 1153

Comparing the measured return temperatures with the simulated return temperatures again gives an aver-
age deviation of 0.6 K. The simulated power usage is within 3% of the measured power usage. This indicates
that the proposed model with the new model parameters gives an accurate description of the temperature
behavior and the power draw of a PeHEX.
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Optimal layout of a PeHEX

Now that a model has been derived that accurately represents the temperature distribution behavior of a
PeHEX, the best configuration in terms of the layout of the Peltier elements in the PeHEX can be derived.

To determine to optimal layout, initially three simulations were run with a total of 120 elements in the total
PeHEX. The simulations differ in the channel width in terms of how many Peltier elements are placed side by
side perpendicular to the flow direction to determine if it is desirable to place multiple Peltier elements side
by side. Figure 9.1a has a single line of Peltier elements in the PeHEX (one element channel width), Figure 9.1b
has two element perpendicular to the flow (two element channel width) and Figure 9.1c has three element
perpendicular to the flow (three element channel width).

(a) (b) (c)

Figure 9.1: Comparison between different layouts of the PeHEX for 120 elements with Vdhw = 6 L/min, Vhn = 20 L/min,
V0 = 10 V. Figure 9.1a: one element channel width. Figure 9.1b: two element channel width. Figure 9.1c: three element
channel width. Figures 9.1b and 9.1c show the average temperature distributions over the 2 and 3 elements respectively
per element index.

Using the Nusselt relation Nu = 0.0271Re0.608Pr1.4 from Table 7.1, it can be deduced that by doubling the
width of the channel, and placing two rows of side by side Peltier elements, the Reynolds number of the flow
will halve causing a reduction in Nusselt number of a factor ( 1

2 )0.608 = 0.65. This affects the total convective
heat transfer coefficient U that governs the heat transfer from the Peltier element to the flows.

An interesting observation from Figure 9.1 is that the output temperatures of the domestic hot water
Tdhw,out is reduced as the channel width increases (54 °C, 53.3 °C and 52.9 °C respectively). Also, the tem-
perature difference across the Peltier elements increases. This is easily understood. The number of Peltier
elements does not change between Figures 9.1a, 9.1b and 9.1c so all the elements feel the same electric po-
tential difference and will therefore, initially, draw the same current I = V0/R indicating all the elements
initially move the same amount of heat. As the total convective heat transfer coefficient U reduces as the
channel width increases the temperature of the Peltier element on the domestic hot water side has to in-
crease to accommodate the heat pumped from the heating network side to the domestic hot water side. A
similar argument shows why the temperature on the heating network side has to decrease. The increased
temperature difference across the Peltier element means that the effective electric potential Veff is lower than
for smaller channel widths and the thermal conduction term k a

d∆Tp is larger. Therefor, a smaller current
will run for larger channel widths and thus less heat is pumped from the heating network side to the domes-
tic hot water side, causing a lower output temperature. Unsurprisingly this also has a negative effect on the
COP (1.78, 1.73, and 1.7 respectively). It is therefor, as a rule of thumb, not desirably to place multiple Peltier
elements side by side.

The exception to this rule is when an increased channel width is accompanied by an increased Seebeck
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coefficient for the Peltier element. A larger Peltier element could increase the output temperature. If the
Seebeck coefficient of a certain Peltier element is modelled as in Equations 9.1 and 9.2:

S = 0.0428

4 ·127
·4 ·127

( L

L0

)2 =σS · 4L2

n0
= 4σS n (9.1)

R = ρ(2nd)
L2

2n

= ρ(2n)2d

L2 = ρd

L2
0

·4(127)n2 (9.2)

with σS = 84 · 10−6 the Seebeck coefficient of the semi-conductor material in V/K per junction, L the di-
mension of the (square) Peltier element in m, L0 = 0.04 the dimension of the reference Peltier element in m,
n0 = L2

0/127 = 12.6 ·10−6 square meter per semiconductors, ρ = 18 ·10−6Ω−1m−1 the resistivity of the Peltier
element, d the spacing of the Peltier element and 127 is the number of semiconductor pairs in the Peltier ele-
ment, then a Peltier element of size 0.05 x 0.05 m2 has a Seebeck coefficient of S = 0.067 V/K and a resistance
R = 4.46Ω. The single element channel width is now 25% larger than an element with size 0.04 x 0.04 m2.
Figure 9.2 shows a comparison for L = 0.04m, L = 0.05m and L = 0.06m.

(a) (b) (c)

Figure 9.2: Comparison between the effects of different sizes of Peltier elements, on the PeHEX for 120 elements with
Vdhw = 6 L/min, Vhn = 20 L/min, V0 = 10 V. Figure 9.1a: L = 0.04m . Figure 9.1b: L = 0.05m, S = 0.067 V/K, R = 4.46Ω.
Figure 9.1c: L = 0.06m, S = 0.096 V/K, R = 6.42Ω. Figures 9.1b and 9.1c show the average temperature distributions over
the 2 and 3 elements respectively per element index.

The output temperatures are 54 °C, 55.7 °C and 57.1 °C for Figures 9.2a, 9.2b and 9.2c respectively indicating
that the increased Seebeck coefficient out weights the reduced total convective heat transfer coefficient. The
COP has also increased from 1.78, to 2.06 and 2.32 respectively. Therefore, if the channel width increase is
compensated for by an increased Seebeck coefficient a larger channel width might be favorable.

The number of Peltier elements in a single PeHEX placed in sequence affects the heat transfer in the en-
trance area of the PeHEX for low Reynolds number. Entrance effects for low Reynolds number are not mod-
elled in this research and therefor no conclusion can be drawn on the amount of Peltier element in a single
PeHEX. This parameter could be adjusted to get the desired dimensions of a PeHEX in terms of length.

It is important to note that with S = 0.067 V/K, R = 4.46Ω, Vdhw = 6 L/min, Vhn = 20 L/min and V0 = 10 V
the desired 60 °C to stop legionella growth is not yet reached. A larger Peltier element with a higher Seebeck
coefficient might be used to achieve this goal, or more elements have to be used.

9.1. Second law analysis
Kiss and Infante Ferreira [20, sec. 3.1] mention that in order to increase the efficiency of thermal machines
(such as heat pumps), the entropy production in the devices should be limited. However, in this application
the thermal energy is moved against the temperature gradient which is only possible if a large amount of
entropy is produced in the PeHEX as otherwise the second law of thermodynamics would be violated [20, eq.
2.14]. Using Equation 9.3 [20, eq. 310] as the second law efficieny:

ηI I = COPreal

COPcarnot
(9.3)

with COPcarnot = Th
Th−Tc

= 323
323−313 = 32.3 with Th the thermodynamic average temperature of the domestic

hot water and Tc the thermodynamic average temperature of the heating network. The second law efficiency
of the PeHEX is then only η = 2.0

32.3 = 6%. This very low efficiency is caused by the entropy production of
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the Peltier elements. An exergy analysis Kiss and Infante Ferreira [20, sec. 3.4] of the PeHEX gives similar
efficiencies.

The author of this report is uncertain if Equation 9.3 is a proper definition of the second law efficiency of
a PeHEX. For example: if the PeHEX is unable to heat the domestic hot water to a temperature above the
heating network’s temperature, then Th < TC and η< 0, even though the domestic hot water is heating up.

To the day of writing, the author has not found an other definition of the efficiency of the PeHEX.





10
Conclusion

Peltier elements can be used to increase the temperature of a water flow (domestic hot water) by using the
temperature of another water flow (a heating network). A Peltier Heat Exchanger (PeHEX) as proposed in this
research is able to elevate the temperature of a water flow above the temperature of the heat source, which is
not possible in an ordinary heat exchanger or without any input power.

The model as proposed by Ludstrom and Jeong [22] was fitted to the datasheet of the used Peltier element,
and re-fitted to the data from the measurements. The thermal conductivity of the Peltier element was fitted
with an exponential function. The choice to use an exponential was made based on the empirical data for the
thermal conductivities.

Initially, the model was not able to accurately simulate the experimental observations with differences
between simulated and observed results up to 75%. The experimental data was used to re-evaluate the model
parameters S, R, k(T ) and the relation for the Nusselt number. The Seebeck coefficient of the Peltier elements
was determined to be S = 0.0428±0.0011 V/K, the average resistance of the Peltier elements was R = 2.85±
0.02Ω.

The model with the new parameters was successfully used to accurately simulate the temperature distri-
bution within a PeHEX as a function of domestic hot water flow speed, heating network flow speed and input
power. The model that describes how the Peltier effect and the Seebeck effect work together in a single Peltier
element was successfully used to determine the power usage of a single Peltier element. The model of a Pe-
HEX consisting of coupled Peltier element models predicts the temperature distribution within a PeHEX to
an accuracy of 0.7 K.

The model for the PeHEX was able to simulate new measurements to an accuracy of 0.6 K, indicating that
the model and correlations as proposed in this research can be used to accurately describe the behavior of a
PeHEX for at least the range 738 ≤ Re ≤ 5005 and 3.1 ≤ Pr ≤ 4.9.

The optimal layout for a PeHEX as proposed in this research is a channel that has the width of the used
Peltier elements. Increasing the channel width by placing more Peltier elements side by side limits the effi-
ciency of the PeHEX. Peltier elements with a higher Seebeck coefficient can allow a wider channel without
the cost of reduced efficiency.

The desired 60 °C at a flow speed of 6 L/min was not reached with the used Peltier elements, but a Peltier
element with a higher Seebeck coefficient might to able to increase the temperature output significantly.

A possible future research idea is to model how a heating network can be used to (pre)heat a domestic
water flow before and after a PeHEX, or if a parallel placement is advantageous.
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A
Results

Table A.1: Numerical results graphically represented in Chapter 4.

Measurement
index

Vdhw

(L/min)
Vhn

(L/min)
V0 (V) I (A) Pi n (W) Tdhw,out (C) Thn,out (C) COP

1 1 1 9.60 3.95 1516 66.57 40.20 1.22
2 1 2 9.60 3.98 1527 67.56 42.18 1.26
3 1 3 9.60 4.01 1538 68.63 42.82 1.30
4 1 4 9.60 4.02 1542 68.93 43.30 1.31
5 1 5 9.60 4.02 1544 69.11 43.61 1.31
6 2 1 9.60 4.34 1667 56.49 35.97 1.38
7 2 2 9.60 4.43 1701 57.67 39.54 1.45
8 2 3 9.60 4.56 1749 59.41 40.43 1.55
9 2 4 9.60 4.59 1763 59.92 41.37 1.57
10 2 5 9.60 4.61 1772 60.23 42.00 1.59
11 3 1 9.60 4.61 1768 52.38 33.24 1.46
12 3 2 9.60 4.72 1814 53.42 37.89 1.55
13 3 3 9.60 4.92 1888 55.15 38.88 1.68
14 3 4 9.58 4.97 1904 55.63 40.11 1.72
15 3 5 9.54 4.99 1902 55.86 40.95 1.74
16 4 1 9.60 4.70 1805 49.66 32.28 1.49
17 4 2 9.60 4.80 1843 51.01 37.24 1.67
18 4 3 9.46 5.00 1891 51.81 38.31 1.74
19 4 4 9.33 5.00 1865 52.03 39.66 1.80
20 4 5 9.25 5.00 1849 52.17 40.57 1.83
21 5 1 9.60 4.76 1827 47.91 31.70 1.51
22 5 2 9.60 4.90 1883 48.64 36.91 1.60
23 5 3 9.29 5.00 1856 49.54 37.98 1.79
24 5 4 9.15 5.00 1828 49.74 39.39 1.85
25 5 5 9.06 5.00 1811 49.85 40.35 1.89
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Table A.3: Total and elemental resistance for the Peltier Heat Exchangers

Peltier Heat Exchanger number 1 2 3 4

Total resistance (Ω) 7.2 7.0 7.1 7.3
Element resistance (Ω) 2.87 2.79 2.83 2.91

Figures for DHW regression:

(a) Regression on domestic hot water power absorption for
the first array.

(b) Regression on heating network power rejection for the
first array.

Figure A.1: Regression on the first array of the test setup.

(a) Regression on domestic hot water power absorption for
the second array.

(b) Regression on heating network power rejection for the
second array.

Figure A.2: Regression on the second array of the test setup.
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(a) Regression on domestic hot water power absorption for
the third array.

(b) Regression on heating network power rejection for the
third array.

Figure A.3: Regression on the third array of the test setup.

(a) Regression on domestic hot water power absorption for
the fourth array.

(b) Regression on heating network power rejection for the
fourth array.

Figure A.4: Regression on the fourth array of the test setup.

Table A.4: Model simulations compared with measurement results.

Measurement
Index

1 2 3 4 5 6 7 8 9 10

Tdhw,meas (K) 331.4 333.2 334.1 334 332.9 323.2 323.9 324.1 323.2 324.4
Tdhw,si m (K) 333.03 334.43 335.03 334.43 335.62 324.73 323.88 323.56 323.98 325.08
Thn,meas (K) 310.8 313.7 315.5 316.4 316.5 308.7 313.3 314.1 314.4 315.6
Thn,si m (K) 310.48 313.72 313.95 314.79 315.82 310.26 313.10 313.49 314.99 315.38

Measurement
Index

11 12 13 14 15 16 17 18 19 20

Tdhw,meas (K) 320.8 321 321.8 320.8 321.1 319.1 319.4 318.9 319.6 319.5
Tdhw,si m (K) 321.31 322.30 321.51 319.97 321.31 318.28 319.07 319.56 319.67 319.56
Thn,meas (K) 308.9 312.8 313.9 315.4 315.3 307.9 312.5 313.7 315.1 315.7
Thn,si m (K) 310.02 314.10 314.42 313.90 315.55 308.60 312.93 314.57 315.29 315.66

Measurement
Index

21 22 23 24 25

Tdhw,out ,meas (K) 318 318.4 317.9 317.9 318.3
Tdhw,out ,si m (K) 317.88 318.06 317.35 318.61 318.42
Thn,out ,meas (K) 307.6 312.4 313.5 314.2 315
Thn,out ,si m (K) 309.11 312.82 313.49 315.34 315.54





B
Solution to the Peltier Element’s ODE

B.1. Solving Equation 3.2
Substituting the model for the thermal conductivity from Equation 3.3 into Equation 3.2 and integrate twice
gives:

k1

k2
exp(k2T )A+ I 2Rz2

2d
+C1z +C2 = 0 (B.1)

The constants C1,C2 can be determined by the boundary conditions T (z = 0) = Tp,hn and T (z = d) = Tp,dhw

and are given by:

C1 =− I 2R

2
− k1 A

k2d

[
exp(k2Tp,dhw )−exp(k2Tp,hn)

]
C2 =k1

k2
A exp(k2Tp,hn)
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Tp,dhw −Tp,hn

]
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d
k
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2

)
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(B.2)
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C
Hermite interpolation

Hermite interpolation uses function values, as well as derivatives to fit a third order cubic polynomial be-
tween two data points. If the two data points are (x0, f (x0)) and (x1, f (x1)), with corresponding derivatives
(x0, f ′(x0)) and (x1, f ′(x1)), then the coefficient os the polynomial p3(x) = ax3 +bx2 +cx +d are found using:

1 x0 x2
0 x3

0
1 x1 x2

1 x3
1

0 1 2x0 3x2
0

0 1 2x1 3x2
1




d
c
b
a

=


f (x0)
f (x1)
f ′(x0)
f ′(x1)

 (C.1)

Any interpolation polynomial based on function values as well as derivatives, or sensitivities, is called an
Hermite Interpolation Polynomial. An example of how Hermite interpolation can improve a fit is given in
figure C.1.

Figure C.1: From [42]. An example of a set of arbitrary data points, a linear interpolation polynomial and a Hermite
interpolation polynomial. Interpolation points are x = [0,0.01, ...,0.05] The figures shows the linear interpolation simply
connecting the interpolation points, whilst Hermite interpolation follows the curvature of the responses. The zoom on
0.02 ≤ x ≤ 0.03 especially shows how the linear interpolation is unaware of the curvature.
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D
Iteration schemes.

Figure D.1: Matrix vector equation for solving the temperature distribution of a Peltier element.

Figure D.2: Iteration scheme to find solution to system 3.12.
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E
Python code

Code snippet E.1: Supporting functions used for the PeHEX model

import numpy as np
from scipy import s t a t s
import matplotlib .cm as cm
import matplotlib . pyplot as p l t

def z ( S , R, n , k_T , A = 0.0016 , d = 0.0039) :
s = (n*d) /(R*A/n)
Sn = S/n
return (Sn * * 2 ) * s /k_T

def mu_w(T) :
return (1.856*10** −14) *np . exp (4209.0/T + 0.04527*T − 3.376*10** −5*T* * 2 )

def k_w(T) :
return −0.5981 + 6.53*10** −3*T − 8.354*10** −6*T**2

def Pr_f (T) :
return 4180*mu_w(T) /k_w(T)

def Re_f ( v ,D, T) :
rho = 1000
return v * rho *D/mu_w(T)

def k (T) :
global k_coef
try :

T_v = np . zeros ( ( len ( k_coef ) , len (T) ) )
except :

T_v = np . zeros ( ( len ( k_coef ) , 1 ) )
T_v [ 0 , : ] = T
T_v [ 1 , : ] = 1/T
return np . dot ( k_coef , T_v )

def Nu( v ,D, T , L ) :
rho = 1000
Re = Re_f ( v ,D, T)
Pr = Pr_f (T)

i f Re < 2300: # Mills , non c i r c u l a r laminar flow 4.50
return 3.66 + ( 0 . 0 6 5 * (D/L ) *Re* Pr ) /(1 + 0 . 0 4 * ( (D/L ) *Re* Pr ) * * ( 2 . 0 / 3 ) )

e l i f Re < 3000:
f0 = lambda Re : (3 .66 + ( 0 . 0 6 5 * (D/L ) *Re* Pr ) /(1 + 0 . 0 4 * ( (D/L ) *Re* Pr ) * * ( 2 . 0 / 3 ) ) )

f = ( ( 0 . 7 9 *np . log (Re) − 1.64) ** −2)
f1 = lambda Re : ( ( f /8) * ( Re − 1000) * Pr /(1 + 1 2 . 7 * ( ( f /8) * * 0 . 5 ) * ( Pr * * ( 2 . 0 / 3 ) − 1) ) )

Nu, c = spline (Re , 2300 , 3000 , f0 , f1 )
return Nu

else : # Gnielinski
f = ( ( 0 . 7 9 *np . log (Re) − 1.64) ** −2)

return ( f /8) * ( Re − 1000) * Pr /(1 + 1 2 . 7 * ( ( f /8) * * 0 . 5 ) * ( Pr * * ( 2 . 0 / 3 ) − 1) )
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def spline ( x , x0 , x1 , f0 , f1 ) :
df0 = ( f0 ( x0 ) − f0 ( x0 − 1e−3) ) /(1 e−3)
df1 = ( f1 ( x1 + 1e−3) − f1 ( x1 ) ) /(1 e−3)

A = np . zeros ( ( 4 , 4 ) )
A [ 0 , : ] = [ x0 * *3 , x0 * *2 , x0 , 1]
A [ 1 , : ] = [ x1 * *3 , x1 * *2 , x1 , 1]
A [ 2 , : ] = [ 3* x0 * *2 , 2*x0 , 1 , 0]
A [ 3 , : ] = [ 3* x1 * *2 , 2*x1 , 1 , 0]

b = np . zeros ( ( 4 , 1 ) )
b[ 0 , 0] = f0 ( x0 )
b[ 1 , 0] = f1 ( x1 )
b[ 2 , 0] = df0
b[ 3 , 0] = df1
c = np . l i n a l g . solve (A , b)
X = np . array ( [ x * *3 , x * *2 , x , 1 ] )
return np . dot (X , c ) , c

def solveCellEqs ( vc , vh , Ac , Ah, Uc, Uh, Awc, Awh, Tcin ,
Thin , k , A , d , S , I , R, Tp) :

B = np . zeros ( ( 4 , 4 ) )
b = np . zeros ( ( 4 , 1 ) )

B[ 0 , 0 ] = vc *Ac*1000*4180 + Uc*Awc/2
B[ 0 , 1 ] = −Uc*Awc
b [ 0 , 0 ] = vc *Ac*1000*4180* Tcin − Tcin /2*Uc*Awc

B[ 1 , 0 ] = −Uc*Awc/2
B[ 1 , 1 ] = Uc*Awc + k ( ( Tp[1]+Tp [ 0 ] ) /2) *A/d − S* I
B[ 1 , 2 ] = −k ( ( Tp[1]+Tp [ 0 ] ) /2) *A/d
b [ 1 , 0 ] = Tcin /2*Uc*Awc + R/2* I **2

B[ 2 , 1 ] = k ( ( Tp[1]+Tp [ 0 ] ) /2) *A/d
B[ 2 , 2 ] = −Uh*Awh − k ( ( Tp[1]+Tp [ 0 ] ) /2) *A/d − S* I
B[ 2 , 3 ] = Uh*Awh/2
b [ 2 , 0 ] = −Thin/2*Uh*Awh − R/2* I **2

B[ 3 , 2 ] = Uh*Awh
B[ 3 , 3 ] = −vh*Ah*1000*4180 − Uh*Awh/2
b [ 3 , 0 ] = −vh*Ah*1000*4180*Thin + Thin/2*Uh*Awh

T = np . squeeze (np . l i n a l g . solve (B, b) )

return T

def s i n g l e C e l l ( Tcin , Thin , vc , vh , Wc, Hc, Lc , Wh, Hh, Lh ,
S , R, k , Tp , V = −1 , I = −1 , A = −1 , Ac = −1 , Ah = −1 ,

CLh = 1 , CLc = 1 , n = 1 , Awc = −1 , Awh = −1 , Iallowed
= 5 . 0 ) :

global k_w
B = np . zeros ( ( 4 , 4 ) )
b = np . zeros ( ( 4 , 1 ) )
d_al = 0.001
k_al = 205
Rf = 0.0002

i f A == −1:
A = Lc **2

i f Awc == −1:
Awc = Lc*Wc

i f Awh == −1:
Awh = Lh*Wh

i f Ac == −1:
Ac = Wc*Hc

i f Ah == −1:
Ah = Wh*Hh

Dc = 4*Wc/n*Hc/ ( 2 * (Wc/n+Hc) )
Dh = 4*Wh/n*Hh/ ( 2 * (Wh/n+Hh) )

h_h = Nu( vh , Dh, Thin , CLh) *k_w( Thin ) /Dh
h_c = Nu( vc , Dc, Tcin , CLc) *k_w( Tcin ) /Dc

Uh = 1/(1/h_h + d_al / k_al )
Uc = 1/(1/ h_c + d_al / k_al )

i f I == −1:
I = V/R

else :
V = I *R

T = solveCellEqs ( vc , vh , Ac , Ah, Uc, Uh, Awc, Awh, Tcin
, Thin , k , A , d , S , I , R, [ Tcin , Thin ] )

Tp = T [ 1 : 3 ]
T = solveCellEqs ( vc , vh , Ac , Ah, Uc, Uh, Awc, Awh, Tcin

, Thin , k , A , d , S , I , R, Tp)

V_eff = V − S * (Tp[ 0 ] − Tp [ 1 ] )
I = V_eff / R

while np . l i n a l g .norm(T [ 1 : 3 ] − Tp) > 0.001 or I >
Iallowed :

Tp = (Tp + T [ 1 : 3 ] ) /2
T = solveCellEqs ( vc , vh , Ac , Ah, Uc, Uh, Awc, Awh,

Tcin , Thin , k , A , d , S , I , R, Tp)
V_eff = V − S * (T[ 1 ] − T [ 2 ] )
I = V_eff / R
i f I > Iallowed :

V = (V + Iallowed * R) /2
V_eff = V − S * (T[ 1 ] − T [ 2 ] )
I = V_eff / R

return (T , I , V)
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Code snippet E.2: Code for determining the entire temperature distribution in the PeHEX.

# I n i t i a l i z e parameters and arrays
Nw = 1 # number of P e l t i e r elements placed side by side
NL = 10 # number of P e l t i e r elements in a s i n g l e PeHEX
Ntot = 40 # t o t a l number of elements used
V = 48.0/5 # potential per element
Tdhwin = 273 + 45 # input temperature of the domestic hot water
Thnin = 273 + 45 # input temperature of the heating network
W = 0.038 # width of the water channel
Hc = 0.004 # Height of the water channel
Debdhw = 5 # domestic hot water flow rate in L / min
vc = ( ( (Debdhw/60) /1000) / (Nw*W*Hc) ) # / ( l / s ) / (m3/ s ) / (m/ s )
Debhn = 15.0 # heating network water flow rate in L / min
vh = ( ( ( Debhn/60) /1000) / (Nw*W*Hc) ) # / ( l / s ) / (m3/ s ) / (m/ s )

T = np . zeros ( (N,Nw, 4 ) )
T2 = np . zeros ( (N,Nw, 4 ) )
I_v = np . zeros ( (N,Nw) ) # Current through element
Velem = np . zeros ( (N,Nw) ) # Potential over element

for w in range (Nw) :
T [ : ,w, 3 ] = np . linspace ( Thnin − ( ( V* * 2 ) /R*N) /(Debhn/60*4180) , Thnin , N)

(T [ 0 , : , : ] , I_v [ 0 , : ] , Velem [ 0 , : ] ) = s i n g l e C e l l (Tdhwin , T[ 1 , 0 , 3 ] , vc , vh , W, Hc, L , W, Hh, L , S , R, k , [ ] , V = V , A = W*L ,
CLc = NL*L + 0.04 , CLh = NL*L + 0.04)

(T [ − 1 , : , : ] , I_v [ − 1 , : ] , Velem [ − 1 , : ] ) = s i n g l e C e l l (273 + 60 , Thnin , vc , vh , W, Hc, L , W, Hh, L , S , R, k , [ ] , V = V , A = W*L
, CLc = NL*L + 0.04 , CLh = NL*L + 0.04)

# S t a r t i t e r a t i o n
while (np . abs (T − T2) > 0.01) . any ( ) :

T2 = np . copy (T)
for n in range (N) :

for w in range (Nw) :
i f n == 0 :

(T[n ,w, : ] , I_v [n ,w] , Velem [n ,w] ) = s i n g l e C e l l (Tdhwin , T[ 1 ,w, 3 ] , vc , vh , W, Hc, L , W, Hh, L , S , R, k , [ ] ,
V = V , A = W*L , CLc = NL*L + 0.04 , CLh = NL*L + 0.04)

e l i f n == N−1:
(T[n ,w, : ] , I_v [n ,w] , Velem [n ,w] ) = s i n g l e C e l l (T[ −2 ,w, 0 ] , Thnin , vc , vh , W, Hc, L , W, Hh, L , S , R, k , [ ] ,

V = V , A = W*L , CLc = NL*L + 0.04 , CLh = NL*L + 0.04)
else :

(T[n ,w, : ] , I_v [n ,w] , Velem [n ,w] ) = s i n g l e C e l l (T[n−1 ,w, 0 ] , T[n+1 ,w, 3 ] , vc , vh , W, Hc, L , W, Hh, L , S , R, k
, [ ] , V = V , A = W*L , CLc = NL*L + 0.04 , CLh = NL*L + 0.04)

for n in range (N) :
for w in range (Nw) :

i f n == 0 :
(T[N−n−1 ,w, : ] , I_v [N−n−1 ,w] , Velem [N−n−1 ,w] ) = s i n g l e C e l l (T[ −2 ,w, 0 ] , Thnin , vc , vh , W, Hc, L , W, Hh, L , S

, R, k , [ ] , V = V , A = W*L , CLc = NL*L + 0.04 , CLh = NL*L + 0.04)
e l i f n == N−1:

(T[N−n−1 ,w, : ] , I_v [N−n−1 ,w] , Velem [N−n−1 ,w] ) = s i n g l e C e l l (Tdhwin , T[ 1 ,w, 3 ] , vc , vh , W, Hc, L , W, Hh, L , S
, R, k , [ ] , V = V , A = W*L , CLc = NL*L + 0.04 , CLh = NL*L + 0.04)

else :
(T[N−n−1 ,w, : ] , I_v [N−n−1 ,w] , Velem [N−n−1 ,w] ) = s i n g l e C e l l (T[ −(n+2) ,w, 0 ] , T[ −(n) ,w, 3 ] , vc , vh , W, Hc, L , W

, Hh, L , S , R, k , [ ] , V = V , A = W*L , CLc = NL*L + 0.04 , CLh = NL*L + 0.04)

# Calculate Pin , Qdhw and COP
Pin = np .sum( I_v *Velem )
Tdhwout = np .mean(T[ − 1 , : , 0 ] )
Qdhw = 4180 * 1000 * W * Nw * Hc * vc * (Tdhwout − Tdhwin)
COP = Qdhw/Pin
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Code snippet E.2: Code used to acquire data from the test setup with the DATAQ DI-2008.

import s e r i a l
import s e r i a l . tools . l i s t _ p o r t s
import keyboard
import time
import matplotlib
import matplotlib . pyplot as p l t
import numpy as np

matplotlib . use ( ’ Tkagg ’ )

TCs = 8
Flows = 2

measHis = np . zeros ( ( TCs , 1) )
rateHis = np . zeros ( ( Flows , 1) )

s l i s t = [ ]
for i in range (TCs) :

s l i s t . append(0 x1300 + i )

i f Flows > 0 :
s l i s t . append(0 x080A )
i f Flows == 2 :

s l i s t . append(0 x0809 )

analog_ranges = [ . 5 , 0 .25 , 0 . 1 , . 0 5 , .025 , . 0 1 , 0 , 0 , 50
,25 , 10 , 5 , 2 . 5 , 1 , 0 , 0]

rate_ranges = tuple ((50000 ,20000 ,10000 ,5000 ,2000 ,1000 ,
500 ,200 ,100 ,50 ,20 ,10) )

tc_m = [0.023956 ,0.018311 ,0.021515 ,0.023987 ,0.022888 ,
0.02774 ,0.02774 ,0.009155]

tc_b = [1035 ,400 ,495 ,586 ,550 ,859 ,859 ,100]
range_table = l i s t ( ( ) )

# Define f l a g to indicate i f acquiring i s a c t i v e
acquiring = False
ser= s e r i a l . S e r i a l ( )

def discovery ( ) :
# Get a l i s t of a c t i v e com ports to scan f o r p o s s i b l e

DATAQ Instruments devices
avai lable_ports = l i s t ( s e r i a l . tools . l i s t _ p o r t s . comports

( ) )
# Will eventually hold the com port of the detected

device , i f any
hooked_port = " "
for p in avai lable_ports :

# Do we have a DATAQ Instruments device ?
i f ( "VID : PID=0683" in p . hwid ) :

# Yes ! Dectect and assign the hooked com port
hooked_port = p . device
break

i f hooked_port :
print ( "Found a DATAQ Instruments device on" ,

hooked_port )
ser . timeout = 0
ser . port = hooked_port
ser . baudrate = ’ 115200 ’
ser . open ( )
return ( True )

else :
# Get here i f no DATAQ Instruments devices are

detected
print ( " Please connect a DATAQ Instruments device " )
input ( " Press ENTER to continue . . . " )
return ( False )

# Sends a passed command s t r i n g a f t e r appending <cr >
def send_cmd(command) :

ser . write ( (command+ ’ \ r ’ ) . encode ( ) )
time . sleep ( . 1 )
i f not ( acquiring ) :

# Echo commands i f not acquiring
while True :

i f ( ser . inWaiting ( ) > 0) :
while True :

try :
s = ser . readline ( ) . decode ( )
s = s . s t r i p ( ’ \n ’ )
s = s . s t r i p ( ’ \ r ’ )
s = s . s t r i p ( chr ( 0 ) )
break

except :
continue

i f s != " " :
print ( s )
break

# Configure the instrment ’ s scan l i s t
def config_scn_lst ( ) :

# Scan l i s t posit ion must s t a r t with 0 and increment
s e q u e n t i a l l y

position = 0
for item in s l i s t :

send_cmd( " s l i s t "+ s t r ( position ) + " " + s t r ( item )
)

position += 1
# Update the Range table
i f ( item & 0 x f < 8) and ( item & 0x1000 == 0) :

# This i s a voltage channel .
range_table . append( analog_ranges [ item >> 8 ] )

e l i f ( item & 0 x f < 8) and ( item & 0x1000 != 0) :
# This i s a TC channel . Append 0 as a

placeholder
range_table . append ( 0 )

e l i f item & 0 x f == 8 :
# This i s a dig in channel . No measurement

range support .
# Append 0 as a placeholder
range_table . append ( 0 )

e l i f item & 0 x f == 9 :
" " "
This i s a rate channel
Rate ranges begin with 1 , so subtract 1 to

maintain zero −based index
in the rate_ranges tuple
" " "
range_table . append( rate_ranges [ ( item >> 8) −1])

else :
" " "
This i s a count channel . No measurement range

support .
Append 0 as a placeholder
" " "
range_table . append ( 0 )

while discovery ( ) == False :
discovery ( )

# Stop in case Device was l e f t running
send_cmd( " stop " )
# Keep the packet s i z e small f o r responsiveness
send_cmd( "ps 1" )
# Configure the instrument ’ s scan l i s t
config_scn_lst ( )
# s e t f i l t e r mode to average
send_cmd( " f i l t e r * 1" )
# obtain divided f o r rate troughput
send_cmd( " info 9" )
# Define sample rate = 10 Hz ( r e f e r to protocol : )
# 800/( s r a t e * dec ) = 800/(4 * 20) = 10 Hz
send_cmd( "dec 1" )
send_cmd( " srate 4" )

k = 0
decimation = 1500
TCresults = [ ]
TC1results = [ ]
c1 , c2 = 0 , 0
t1 , t2 = 0 , 0
cv = np . array ( [ ] )
rateValue1 , rateValue2 = 0 , 0

plotLoop = 0
# r e s e t the counter
send_cmd( " r eset 1" )
plotted = True
Creset = False

p l t . ion ( )
f i g = p l t . f i g u r e ( 1 )
p l t . plot ( [ 1 ] , [ 1 ] )
p l t . draw ( )
p l t . pause ( 0 . 0 0 1 )
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s l i s t _ p o i n t e r = 0
output_string = " "

while True :
# I f key ’SPACE ’ s t a r t scanning
i f keyboard . is_pressed ( ’ g ’ or ’G ’ ) and acquiring ==

False :
t i c = time . time ( )
keyboard . read_key ( )
acquiring = True
send_cmd( " s t a r t " )
t1 = time . time ( )

# I f key ’ esc ’ stop scanning
i f keyboard . is_pressed ( ’ s ’ or ’ S ’ ) :

keyboard . read_key ( )
send_cmd( " stop " )
time . sleep ( 1 )
# s e r . flushInput ( )
print ( "stopped" )
ser . flushInput ( )
acquiring = False

# I f key ’ q ’ e x i t
i f keyboard . is_pressed ( ’q ’ or ’Q’ ) :

keyboard . read_key ( )
send_cmd( " stop " )
break

# I f key ’ r ’ r e s e t counter
i f keyboard . is_pressed ( ’ r ’ or ’R ’ ) :

keyboard . read_key ( )
send_cmd( " r eset 1" )

# clearing the storage
TCresults = [ ]
while ( ser . inWaiting ( ) >= (2 * len ( s l i s t ) ) ) :

i f not Creset :
Creset = True

plotted = False
for i in range ( len ( s l i s t ) ) :

# The four LSBs of s l i s t determine measurement
function

function = s l i s t [ s l i s t _ p o i n t e r ] & 0 x f
mode_bit = s l i s t [ s l i s t _ p o i n t e r ] & 0x1000
# Always two bytes per sample . . . read them
bytes_received = ser . read ( 2 )
i f ( function < 8) and ( not ( mode_bit ) ) :

# Working with a Voltage input channel .
Scale accordingly .

r e s u l t = range_table [ s l i s t _ p o i n t e r ] * int .
from_bytes ( bytes_received , byteorder= ’
l i t t l e ’ , signed=True ) / 32768

e l i f ( function < 8) and ( mode_bit ) :
r e s u l t = int . from_bytes ( bytes_received ,

byteorder= ’ l i t t l e ’ , signed=True )
i f r e s u l t == 32767:

output_string = output_string + " cj c
error , "

e l i f r e s u l t == −32768:
output_string = output_string + "open ,

"
else :

# Get here i f no errors , so i s o l a t e TC
type

tc_type = s l i s t [ s l i s t _ p o i n t e r ] & 0x0700
# Move TC type into 3 LSBs to form an

index we ’ l l use to s e l e c t m & b
scal ing constants

tc_type = tc_type >> 8
r e s u l t = tc_m [ tc_type ] * r e s u l t + tc_b [

tc_type ]
TCresults . append( r e s u l t )

e l i f function == 8 :
# Working with the D i g i t a l input

channel
r e s u l t = ( int . from_bytes ( bytes_received

, byteorder= ’ big ’ , signed=False ) ) &
(0 x007f )

e l i f function == 9 :
# Working with the Rate input channel
r e s u l t = ( int . from_bytes ( bytes_received

, byteorder= ’ l i t t l e ’ , signed=True )
+ 32768) / 65535 * ( range_table [
s l i s t _ p o i n t e r ] )

rateValue1 = r e s u l t

else :
# Working with the Counter input channel
r e s u l t = ( int . from_bytes ( bytes_received ,

byteorder= ’ l i t t l e ’ , signed=True ) ) +
32768

c2 = r e s u l t
t2 = time . time ( )
# print ( c2 , t2 )

# Get the next posit ion in s l i s t
s l i s t _ p o i n t e r += 1

i f ( s l i s t _ p o i n t e r + 1) > ( len ( s l i s t ) ) :
# End of a pass through s l i s t items . . .

output , r e s e t , continue
output_string = " "
s l i s t _ p o i n t e r = 0

i f acquiring and not ( plotted ) :

i f len ( measHis [ 0 , : ] ) >= decimation :
measHis = measHis [ : , − decimation : ]

i f len ( rateHis [ 0 : 1 ] ) >= 10:
rateHis = rateHis [ : , − 1 0 : ]

measHis = np . c_ [ measHis , np . zeros ( ( TCs , len (
TCresults [ 0 : : TCs ] ) ) ) ]

rateHis = np . c_ [ rateHis , np . zeros ( ( Flows , 1 ) ) ]
rateValues = [ rateValue1 ]
i f Flows > 1 :

i f t2 − t1 == 0 . 0 :
t2 = t1 + 1e−6

i f ( c2 − c1 ) < 0 :
rateValue2 = ( c2 + 2**16 − c1 ) / ( t2 − t1 )

else :
rateValue2 = ( c2 − c1 ) /( t2 − t1 )

i f len ( cv ) == 10:
cv = cv [ 1 : ]

cv = np . append( cv , rateValue2 )
c1 , t1 = c2 , t2
rateValues . append(np .mean( cv ) )
rateHis [ : , − 1 ] = rateValues

output_string = " "
p l t . c l f ( )
i f TCs > 0 and Flows > 0 :

p l t . subplot (211)
p l t . xlim ( ( 1 5 , 70) )

i f TCs > 0 :
avgRes = [ ]
for i in range (TCs) :

measHis [ i , − len ( TCresults [ 0 : : TCs ] ) : ] =
TCresults [ i : : TCs ]

for i in range (TCs) :
p l t . barh ( i +1 , np .mean( measHis [ i , : ] ) )

p l t . t e x t (np .mean( measHis [ i , : ] ) , i +1 , s t r (np
. round (np .mean( measHis [ i , : ] ) , 1) ) + "
+ " + s t r (np . round (np . std ( measHis [ i
, : ] ) , 3 ) ) , ha=" l e f t " , va=" center " ,
fo nts i ze =14)

p l t . x label ( "Temeprature (C) " )
p l t . y label ( "Analogue inpute " )
p l t . t i t l e ( "Decimation i s over %d samples , or

%.2 f seconds" % ( decimation , decimation
/(200/8) ) )

i f TCs > 0 and Flows > 0 :
p l t . subplot (212)
p l t . xlim ( 0 , 6)

i f Flows > 0 :
for i in range ( Flows ) :

p l t . barh ( i +1 , np .mean( rateHis [ i , − 1 0 : ] )
/950*60)

p l t . t e x t ( 0 . 1 *np .mean( rateHis [ i , − 1 0 : ] )
/950*60 , i +1 , s t r (np . round (np .mean(
rateHis [ i , − 1 0 : ] ) /950*60 ,2) ) + " + " +
s t r (np . round (np . std ( rateHis [ i , − 1 0 : ] )
/950*60 ,3) ) , ha=" l e f t " , va=" center " ,
fo nts i ze =18)

p l t . x label ( " Flowrate ( L/min) " )
p l t . y label ( "DHN − DHW" )

i f not ( plotLoop − 0) :
plotLoop = 0
p l t . draw ( )
p l t . pause (0.0000001)

else :
plotLoop += 1

plotted = True
Creset = False

SystemExit





F
2D heat equation

Figure F.1: Supporting functions used for the PeHEX model

import matplotlib . pyplot as p l t
import numpy as np
from mpl_toolkits import mplot3d
import matplotlib . patches as mpatches

def createGrid ( x0 , x1 , dx , y0 , y1 , dy ) :
Nx = int ( ( x1−x0 ) /dx )
Ny = int ( ( y1−y0 ) /dy )

x = np . linspace ( x0 + dx /2 , x1−dx /2 , Nx)
y = np . linspace ( y0 + dy/2 , y1−dy/2 , Ny)

[X , Y ] = np . meshgrid ( x , y )
X = np . reshape (X, ( − 1 ) )
Y = np . reshape (Y, ( − 1 ) )
return X , Y

def removePoints (X , Y , x0 , x1 , y0 , y1 ) :
X_n = [ ]
Y_n = [ ]
for n in range ( len (X) ) :

i f (X[n] > x0 ) and (X[n] < x1 ) and (Y [n] > y0 ) and (Y [n] < y1 ) :
continue

X_n = np . append(X_n , X[n ] )
Y_n = np . append( Y_n , Y [n ] )

return X_n , Y_n

def findNeighbours (X , Y , dx , dy ) :
Nb = −np . ones ( ( len (X) , 4) )
for n in range ( len (X) ) :

i = 0
for m in range ( len (X) ) :

i f m == n :
continue

i f i == 4 :
break

px = (X[m] > X[n] − 1.5* dx ) * (X[m] < X[n] + 1.5* dx )
py = (Y [m] > Y [n] − 1.5* dy ) * (Y [m] < Y [n] + 1.5* dy )
i f px*py :

i f np . l i n a l g .norm ( [ X[n] −X[m] , Y [n] −Y [m] ] ) > max( dx , dy ) :
continue

Nb[n , i ] = int (m)
i += 1

return Nb. astype ( int )

def plotNeighbours (X , Y , nb) :
for i in range ( len (nb) ) :

i f nb[ i ] == −1:
break

p l t . plot (X[nb[ i ] ] , Y [nb[ i ] ] , ’ ro ’ )

def c l a s s i f y G r i d P o i n t s (Nb) :
pointType = 4*np . ones ( len (Nb) )
pointType = 4 − np .sum(Nb == −1 , 1)
return pointType
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def pl o tC l as s i f i e dG ri d (X , Y , gridPointClass ) :
p l t . plot (X[ gridPointClass == 4 ] , Y [ gridPointClass ==

4 ] , ’bo ’ )
p l t . plot (X[ gridPointClass == 3 ] , Y [ gridPointClass ==

3 ] , ’ ro ’ )
p l t . plot (X[ gridPointClass == 2 ] , Y [ gridPointClass ==

2 ] , ’ ko ’ )
p l t . plot (X[ gridPointClass == 1 ] , Y [ gridPointClass ==

1 ] , ’mo’ )
return None

def findBoundaryNeighbours (Nb, gridPointClass ) :
isBoundary = ( gridPointClass != 4)
BNb = −np . ones ( ( len (Nb) , 3 ) )
for n in range ( len (Nb) ) :

k = 0
i f isBoundary [n ] :

for m in range ( len (Nb[n ] ) ) :
i f Nb[n ] [m] == −1:

break
BNb[n , k ] = Nb[n ] [m]
k += 1

return BNb. astype ( int )

def classifyBoundaryPoints (X , Y , BNb) :
boundaryClass = np . zeros ( ( len (X) ) )
for n in range ( len (X) ) :

for nb in BNb[n ] :
i f nb == −1:

break
i f np . abs (X[n] − X[nb ] ) < 0 . 0 0 1 :

boundaryClass [n] −= 1
i f np . abs (Y [n] − Y [nb ] ) < 0 . 0 0 1 :

boundaryClass [n] += 1
return boundaryClass

def findBoundaryInteriorPair (X , Y , BNb, CBP, B) :
boundaryPair = np . zeros ( ( len (B) ) )
for n in range ( len (B) ) :

i f B[n ] :
i f CBP[n] == −1:

for m in range ( len (BNb[n ] ) ) :
i f np . abs (X[n] − X[BNb[n ,m] ] ) > 0 . 0 0 1 :

boundaryPair [n] = BNb[n ,m]
break

e l i f CBP[n] == 0 :
for m in range ( len (BNb[n ] ) ) :

i f np . abs (Y [n] − Y [BNb[n ,m] ] ) > 0 . 0 0 1 :
boundaryPair [n] = BNb[n ,m]
break

e l i f np . abs (X[n] − X[BNb[n ,m] ] ) >
0 . 0 0 1 :

boundaryPair [n] = BNb[n ,m]
break

else :
for m in range ( len (BNb[n ] ) ) :

i f np . abs (Y [n] − Y [BNb[n ,m] ] ) > 0 . 0 0 1 :
boundaryPair [n] = BNb[n ,m]
break

return boundaryPair . astype ( int )

def setBoundaryType (X , Y , B) :
boundaryType = np . zeros ( ( len (B) ) )
boundaryType [ ( X > 10) * (X < 50) * (Y < 0 . 5 ) * B] = 1
boundaryType [ ( X > 11 − 1.5* dx ) * (X < 49 + 1.5* dx ) * (Y

> 0 . 5 ) * B] = 2
return boundaryType

def classifyNeighbour ( x , nbx ) :
return (np . abs ( x − nbx ) < 0.5* dx )
i f np . abs ( x − nbx ) < 0.5* dx : # Check i f neighbour

point i s v e r t i c a l
return 1

else :
return 0

def findCellTemp (X , cx , T , CNb) :
rhs = 0
lhs = 0
for n in range ( len (CNb) ) :

i f CNb[n] == −1:
break

i f classifyNeighbour ( cx , X[CNb[n ] ] ) :
rhs += T[CNb[n ] ] * ( k*dx/dy )
lhs += k*dx/dy

else :
rhs += T[CNb[n ] ] * ( k*dy/dx )
lhs += k*dy/dx

return lhs , rhs

def finddT (T0 , f ) :
Tn = np . zeros ( ( T0 . shape ) )
dT = np . zeros ( ( T0 . shape ) )
Tdm = np . ones ( ( len (T0) , 1 ) ) * T0 + 1e−3 * np . diag (np .

ones (T0 . shape ) )
J = np . zeros ( ( len (T0) , len (T0) ) )
J inv = np . zeros ( ( J . shape ) )
for n in range ( len (T0) ) :

J [ : , n] = ( g (Tdm[n , : ] , f ) − g (T0 , f ) ) /(Tdm[n , n] − T0
[n ] )

## print ( J [CBP[n ] . astype ( int ) , n ] )
Tn = T0 − np . l i n a l g . solve ( J , g (T0 , f ) )
return (Tn − T0) , Tn, J

def g (T0 , f ) :
return T0 − f (T0)

def finddT2 ( f , X , Y , T0 , Nb, B, boundaryPair , boundaryType ,
CBP) :

Tn = np . copy (T0)
dT = np . zeros ( ( T0 . shape ) )
Tdm = np . ones ( ( len (T0) , 1 ) ) * T0 + 1e−3 * np . diag (np .

ones ( ( T0 . shape ) ) )
J = np . zeros ( ( len (T0) , len (T0) ) )
J inv = np . zeros ( ( J . shape ) )
g0 = T0 − f (X , Y , T0 , Nb, B, boundaryPair , boundaryType

, CBP)
for n in range ( len (T0) ) :

checkCells = np . append ( [ n ] , Nb[n ] [Nb[n] != −1])
for j in range ( len ( checkCells ) ) :

c e l l = checkCells [ j ]
span = Nb[ c e l l ] [Nb[ c e l l ] != −1]
ful lspan = np . append ( [ c e l l ] , span )
func = lambda T : singleSweep (X[ ful lspan ] , Y [

ful lspan ] , T , [np . linspace ( 1 , 4 , 4 ) − np .
linspace ( 2 , 5 , 4 ) * (Nb[ c e l l ] == −1) ] , B[
ful lspan ] , [ ] , boundaryType [ ful lspan ] , CBP
[ ful lspan ] , Xn = [X[ c e l l ] ] )

J [ c e l l , n] = ( ( g (Tdm[n , ful lspan ] , func ) − g0 [
ful lspan ] ) / (Tdm[n , n] − T0 [n ] ) ) [ 0 ]

Tn = T0 − np . l i n a l g . solve ( J , g0 )
return (Tn − T0) , Tn, J

def singleSweep (X , Y , T , Nb, B, boundaryPair , boundaryType ,
CBP, Xn = −1) :

i f Xn == −1:
Xn = X

Ttemp = np . copy (T)
for n in range ( len (Xn) ) :

i f B[n ] :
lhs , rhs = findCellTemp (X , X[n ] , T , Nb[n ] .

astype ( int ) ) # build [ Ttemp * ( lhs ) = ( rhs
) ]

i f int ( boundaryType [n ] ) == 0 :
i f CBP[n] == 1 :

lhs += dx * 4 * (5 .67 * 1e−8) * (
emissiv i ty ) * Ttemp[n] * * 3

rhs += dx * 4 * (5 .67 * 1e−8) * (
emissiv i ty ) * (Ttemp[n ] * * 3 ) * Tenv

else :
lhs += dy * 4 * (5 .67 * 1e−8) * (

emissiv i ty ) * (Ttemp[n ] * * 3 )
rhs += dy * 4 * (5 .67 * 1e−8) * (

emissiv i ty ) * (Ttemp[n ] * * 3 ) * Tenv
pass

i f int ( boundaryType [n ] ) == 1 :
i f CBP[n] == 1 :

rhs += q*dx
else :

rhs += q*dy
i f int ( boundaryType [n ] ) == 2 :

i f CBP[n] == 1 :
rhs += h*dx*Tw
lhs += h*dx

else :
rhs += h*dy*Tw
lhs += h*dy

Ttemp[n] = rhs / lhs
for n in range ( len (Xn) ) :

i f B[n ] :
continue

lhs , rhs = findCellTemp (X , X[n ] , T , Nb[n ] . astype (
int ) ) # build [ Ttemp * ( lhs ) = ( rhs ) ]

Ttemp[n] = rhs / lhs
return Ttemp
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def params ( z ) :
Qh = 55.3 + (51.1 − 55.3) /1600*z
Qc = 23.3 + (20.0 − 23.3) /1600*z
Twc = 313.2 + (320.7 − 313.2) /1600*z
Twh = 314.1 + (317.9 − 314.1) /1600*z
return Qh, −Qc, Twc, Twh

def solveTotalSystem (X , Y , T , Nb, B, boundaryPair ,
boundaryType , CBP, z = −1) :

global q
global Tw
dz = 1600/N
Tc = np . zeros ( ( len (T) , N) )
Th = np . zeros ( ( len (T) , N) )
i f z == −1:

for i in range (N) :
Qh, Qc, Twc, Twh = params ( dz/2 + i *dz )
i f i == 0 :

Tcold = np . copy (T)
Thold = np . copy (T)

else :
Tcold = np . copy ( Tc [ : , i −1])
Thold = np . copy (Th [ : , i −1])

dT = 1
q = Qh/ ( 0 . 0 4 * * 2 )
Tw = Twc
while (np . l i n a l g .norm(dT) > 1e−5) :

dT , _ , _ = finddT2 ( singleSweep , X , Y , Tcold
, Nb, B, boundaryPair , boundaryType ,
CBP)

Tcold += dT

dT = 1
q = Qc/ ( 0 . 0 4 * * 2 )
Tw = Twh
while (np . l i n a l g .norm(dT) > 1e−5) :

dT , _ , _ = finddT2 ( singleSweep , X , Y , Thold
, Nb, B, boundaryPair , boundaryType ,
CBP)

Thold += dT

Tc [ : , i ] = Tcold
Th [ : , i ] = Thold

i f np .mod( i , N/10) == 0 :
print ( ’ another 10 percent done ’ )

else :
Qh, Qc, Twc, Twh = params ( z )
q = Qh/ ( 0 . 0 4 * * 2 )
Tw = Twc
dT = 1
Tcold = np . copy (T)
while (np . l i n a l g .norm(dT) > 1e−5) :

dT , _ , _ = finddT2 ( singleSweep , X , Y , Tcold , Nb
, B, boundaryPair , boundaryType , CBP)

Tcold += dT

Qh, Qc, Twc, Twh = params ( z )
q = Qc/ ( 0 . 0 4 * * 2 )
Tw = Twh
dT = 1
Thold = np . copy (T)
while (np . l i n a l g .norm(dT) > 1e−5) :

dT , _ , _ = finddT2 ( singleSweep , X , Y , Thold , Nb
, B, boundaryPair , boundaryType , CBP)

Thold += dT

Tc = Tcold
Th = Thold

return Tc , Th

def plotResults ( Tc , Th) :
cmin , cmax = np . min(Th − 273) , np .max( Tc − 273)
try :

L = Tc . shape
N = L [ 1 ]

except :
N = 1

i f N > 1 :
p l t . ion ( )
p l t . plot ( [ 0 . 0 1 , 0.05 , 0 .05 , 0.01 , 0 . 0 1 ] , [0.0039/2 ,

0.0039/2 , −0.0039/2 , −0.0039/2 , 0.0039/2] , ’ k
’ )

p l t . s c a t t e r ( [ X , X ] , [ Y + 0.0039/2 , − Y − 0.0039/2] ,
c = [ Tc [ : , 0 ] − 273 , Th [ : , 0 ] − 273])

p l t . colorbar ( )
p l t . clim (cmin , cmax)
p l t . draw ( )

dz = (400/N) /10
for i in range (N−1) :

for j in range (10) :
p l t . c l f ( )
p l t . plot ( [ 0 . 0 1 , 0.05 , 0.05 , 0.01 , 0 . 0 1 ] ,

[0.0039/2 , 0.0039/2 , −0.0039/2 ,
−0.0039/2 , 0.0039/2] , ’ k ’ )

p l t . s c a t t e r ( [ X , X ] , [ Y + 0.0039/2 , − Y −
0.0039/2] , c = np . array ([(10 − j ) *Tc [ : , i
] + ( j ) *Tc [ : , i +1] , (10− j ) *Th [ : , i ] + ( j
) *Th [ : , i + 1 ] ] ) *1/10 − 273 , cmap = " j e t "
)

p l t . colorbar ( )
p l t . clim (cmin , cmax)
p l t . t i t l e ( ’ z = %f ’ % (1600/(2*N) + (1600/N)

* i + j *dz ) )
p l t . draw ( )
p l t . pause (0.00000001)

i += 1
p l t . c l f ( )
p l t . plot ( [ 0 . 0 1 , 0.05 , 0 .05 , 0.01 , 0 . 0 1 ] , [0.0039/2 ,

0.0039/2 , −0.0039/2 , −0.0039/2 , 0.0039/2] , ’ k
’ )

p l t . s c a t t e r ( [ X , X ] , [ Y + 0.0039/2 , − Y − 0.0039/2] ,
c = np . array ( [ Tc [ : , i ] , Th [ : , i ] ] ) − 273 , cmap

= " j e t " )
p l t . colorbar ( )
p l t . clim (cmin , cmax)
p l t . t i t l e ( ’ z = %f ’ % (1600/(2*N) + (1600/N) * i ) )
p l t . draw ( )
p l t . pause (0.00000001)

else :
Tc , Th = np . squeeze ( Tc ) , np . squeeze (Th)
p l t . plot ( [ 0 . 0 1 , 0.05 , 0 .05 , 0.01 , 0 . 0 1 ] , [ 3 . 9 / 2 ,

3 .9/2 , −3.9/2 , −3.9/2 , 3 . 9 / 2 ] , ’ k ’ )
p l t . s c a t t e r ( [ X , X ] , [1000*Y + 3.9/2 , − 1000*Y −

3 . 9 / 2 ] , c = [ Tc − 273 , Th − 273] , cmap = " j e t "
)

cbar = p l t . colorbar ( )
p l t . clim (cmin , cmax)
cbar . s e t _ l a b e l ( r ’$T$ ( $\degree$C ) ’ , fo nts i z e =22)
cbar . ax . tick_params ( l a b e l s i z e =22)
p l t . x label ( ’ x (m) ’ , fo nts i ze =22)
p l t . x t i c k s ( fonts i z e =22)
p l t . y label ( ’ y (mm) ’ , fonts iz e =22)
p l t . y t i c k s ( fonts i z e =22)
p l t . grid ( )
p l t . xlim ( −0.01 , 0 .07)
p l t . ylim ( −15 , 15)
p l t . show ( )

def plotCrossResults (X , Y , T , x = −1 , y = −1) :
i f x == −1:

p = (Y == y )
else :

p = (X == x )

X s l i c e = [ ]
Y s l i c e = [ ]
T s l i c e = [ ]

L = T . shape [ 1 ]

for i in range ( L ) :
X s l i c e = np . append( Xslice , (1600/(2*L ) + i *1600/L ) *

np . ones (X[p ] . shape ) )
i f x == −1:

Y s l i c e = np . append( Ysl ice , X[p ] )
else :

Y s l i c e = np . append( Ysl ice , Y [p ] )
T s l i c e = np . append( Tslice , T[p , i ] )

p l t . s c a t t e r ( Xsl ice , Ysl ice , c = Tslice , cmap = " j e t " )

x0 = 0
x1 = 60
dx = 0.5
y0 = 0
y1 = 4
dy = 0.1

k = 250 # in W/mK
h = 4000 # W/m2
emissiv i ty = 0.3

Tenv = 273 + 20

# Creating mesh
X , Y = createGrid ( x0 , x1 , dx , y0 , y1 , dy )
X , Y = removePoints (X , Y , 11 , 49 , 1 , 5)
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Nb = findNeighbours (X , Y , dx , dy )
gridPointClass = c l a s s i f y G r i d P o i n t s (Nb)
B = ( gridPointClass ! = 4)
Bx = X[B]
By = Y [B]
BNb = findBoundaryNeighbours (Nb, gridPointClass )
CBP = classifyBoundaryPoints (X , Y , BNb)
boundaryPair = findBoundaryInteriorPair (X , Y , BNb, CBP, B)
boundaryType = setBoundaryType (X , Y , B)

X /= 1000
Y /= 1000
dx /= 1000
dy /= 1000

# ’ ’ ’
# P l ot t i n g the gridpoints
pl o tC l as s i f i e dG r id (X , Y , gridPointClass )
# P l ot t i n g grid edges
x_edges = np . array ( [ 0 , 0 , 11 , 11 , 49 , 49 , 60 , 60 , 0 ] ) *1/1000
y_edges = np . array ( [ 0 , 4 , 4 , 1 , 1 , 4 , 4 , 0 , 0 ] ) *1/1000

for j in range ( len ( x_edges ) −1) :
p l t . plot ( x_edges [ j : j +2] , y_edges [ j : j +2] , ’ k ’ )

p l t . grid ( )
p l t . show ( )

## p l t . plot (X[B] , Y [B] , ’ bo ’ )
p l t . plot (X [ ( boundaryType == 0) * B] , Y [ ( boundaryType == 0) * B] , ’ ro ’ )
p l t . plot (X [ ( boundaryType == 1) * B] , Y [ ( boundaryType == 1) * B] , ’ ko ’ )
p l t . plot (X [ ( boundaryType == 2) * B] , Y [ ( boundaryType == 2) * B] , ’mo’ )

p l t . grid ( )
p l t . show ( )
# ’ ’ ’

N = 1
T i n i t = 293 * np . ones ( ( X . shape ) )
Tc , Th = solveTotalSystem (X , Y , Tinit , Nb, B, boundaryPair , boundaryType , CBP)
plotResults ( Tc , Th)
p l t . show ( )
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