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Abstract

The novelty-raahn algorithm has been shown to effectively learn a desired behavior from raw
inputs by connecting an autoencoder with a Hebbian network. Hebbian learning is compelling
for its biological plausibility and simplicity. It changes the weight of a connection based only
on the activations of neurons it connects, and can effectively reinforce good behaviors when
combined with neuromodulation. These low-level synaptic weight changes make for a better
merge of the three learning tasks of perception, prediction and action. However, the state-of-
the art algorithm requires the design of a highly detailed modulation scheme designed for a
specific system, which is disconnected from the overall objective it optimizes. In this thesis,
we will propose that similar learning behavior can be achieved, by making the autonomous
agent react to longer-term rewards, and thus implicitly introducing prediction capabilities.
In doing so, the required modulation scheme becomes connected to the global optimization
objective.
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Chapter 1

Introduction

Robotic tasks are becoming more complex ever since the progressive developments in com-
putational resources permitted the additional freedom of building more autonomy into the
robotic agents. But unlike in industry, the environments in which these agents are employed
are not static, and so the complexity grows further in that these agents require not only
better hardware, but intelligence to maximally utilize its hardware potential. Ideally, agent
intelligence allows not only the generalization of its behavior to unperceived situations, but
also the optimal adaptation to it. Since such environments can be very complex (many sensor
inputs, many actuator outputs and varying dynamics), the main challenge lies in the design
of scalable learning algorithms.

An agent is hypothesized to exhibit intelligent behavior when they effectively minimize their
prediction errors [3, 4]. It is straightforward that in order to optimize its predictions with
respect to its sensation of the world, which is caused by its actions, it needs to accurately
learn to:

• represent the state (sensory perception),

• predict the state given an action (prediction),

• control to achieve the state (action).

Interestingly, within these three tasks, we recognize three major types of learning. Namely
unsupervised, supervised and reinforcement learning respectively. Of course, implementing
an algorithm that combines these task must be meaningful, and so we must consider a few
assumptions:

A.1 The agent features unknown (and uncertain) dynamics. Otherwise, there is no need for
prediction, and the point of minimizing an error becomes futile.

A.2 The agent must sufficiently explore the unknown environment, in order to effectively
learn the three tasks. If an autonomous agent does not excite sufficiently, it will most
likely get stuck at a local equilibrium.
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2 Introduction

A.3 The algorithm must be applicable to a wide range of system classes, up to higher
dimensional state and input spaces, from which follows that it must be not only compu-
tationally simple, but also scalable. Indeed, if we have high order complex and unknown
system dynamics, learning must be efficient to be applied in either real-time learning,
or episodic optimization tasks.

Hebbian learning is a learning type, compelling for its simplicity and biological plausibility.
It straightforwardly changes the weight of a synapse based only on the activations of the
neurons it connects and can effectively reinforce good behaviors and repel bad behaviors when
combined with neuromodulation. Hebbian learning in general is scalable and computationally
efficient, since the agent behavior is shaped through low-level neuromodulation as opposed
to high-level value-function approximation as in other reinforcement learning types like Q-
learning and SARSA. The biologically plausible and local learning rule, makes for a better
merge of the three tasks.

The major obstacle to useful applications with Hebbian learning — which is that the per-
formance of Hebbian plasticity is highly sensitive to the choice of inputs — has recently
been solved by [1]. Their Novelty-raahn algorithm enables a neural network to represent
accurately the features of the input domain by inserting a certain type of autoencoder that
extrapolates higher level features. It is a real-time learning algorithm that makes the agent
effectively learn a good state representation, combined with good feedback control. A
local modulation term makes the agent highly adaptive to its environment. These attributes
makes that their algorithm is currently the best in the eyes of the aforementioned assumptions
and requirements.

The drawbacks of such method however, is that this algorithm still requires a considerable
design effort to appropriately construct the modulation scheme, which demands detailed
logic in order for the agent to learn correctly. The modulation term is also highly local for
the current time tick in which the agent fares, and therefore the agent is never really learning
to anticipate, i.e. the prediction part of the three learning tasks is missing.

We will propose in this thesis, that if we add a general global reward function from which
the modulation scheme is derived, that it will enable the agent to regulate any type of control
variable, and also regulate multiple control variables simultaneously. Moreover, with this
novel method of deriving the modulation from global rewards, we will show that the agent
can react to more distal rewards, and as such implicitly develop prediction capabilities. The
utilization of a self-defined global reward function then gives more freedom to the engineers
to decide how important each control aspect is. This generalized method poses the research
question whether it can achieve similar results as the state-of-the-art algorithm.

Firstly, we will give an introduction to the Hebbian learning process in chapter 2 to familiarize
the reader with its mathematical functionality. In chapter 3 we will present the proposal of
how to use global rewards with Hebbian learning, and thereby yield a generalized version of
novelty-Raahn. In chapter 5 we demonstrate that indeed the new algorithm can compete
with the original novelty-Raahn algorithm while using a more complex set of dynamics, and
prove its generality by applying the new algorithm on a cart-pole system, where we attempt
to control an unstable equilibrium. Finally in chapter 7, we will conclude the thesis with our
main findings in this research. Relevant code can further be found in appendix 7.
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Chapter 2

Background

In this chapter we will explain briefly the idea of Hebbian learning, and how that idea trans-
lates into a mathematical formulation. We will then proceed to demonstrate the state-of-
the-art literature and the use case for this algorithm as currently implemented. We will also
show some experimental results done in literature and by myself, and finally argue about its
drawbacks and propose how to improve this algorithm by eliminating these drawbacks.

2-1 The Hebbian Learning Process

Hebbian, or associative learning, is a theory about learning, hypothesized by psychologist
Donald Hebb [5], that explains how biological neurons shape the learning process. The
following statement is often quoted among neuroscientists to explain how Hebbian learning
works:

“When an axon of Cell A is near enough to excite a Cell B and repeatedly and
persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells, such that A’s efficiency, as one of the cells firing B, is
increased.” [5]

The idea is that any two cells that are repeatedly active at the same time, tend to become
associated, so that activity in one facilitates activity in the other. This is often informally
summarized as neurons that fire together, wire together [6]. Haykin [7] generalized this
statement and rephrased it as a two-part rule:

1. If two neurons on either side of a synapse (connection) are activated simulta-
neously (i.e., synchronously), then the strength of that synapse is selectively
increased.

2. If two neurons on either side of a synapse are activated asynchronously, then
that synapse is selectively weakened or eliminated.
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4 Background

This is called a Hebbian synapse. In [7], Haykin explained this concept of synaptic weakening,
where he included the processes of synaptic enhancement and synaptic depression. In this
way, a Hebbian synapse is recognized to produce synaptic strengthening (enhancement) by
positively correlated activity, or synaptic weakening (depression) by negatively or uncorrelated
activity. Opposite from the Hebbian synapse is the anti-Hebbian synapse which weakens the
synapse with positively correlating activity, whereas is strengthens the synapse with negatively
correlating activity.

Hence, these statements spark an inspiration for the development of biologically plausible
learning algorithms in optimization and artificial intelligence.

Altough Hebb did not provide a precise mathematical formulation of his postulate, a general
form can be considered from the previous statements in a feedforward artificial neural network,
when the weight between an input and output neuron is strengthened, when the input neuron
causes a strong activation in the output neuron [8]. In that sense, the simplest form of Hebbian
plasticity is described byHebb’s hypothesis, where the plasticity (change in weight) is given
as

∆wij = η · yixj , (2-1)

where η denotes a step size (or learning rate), and xj denotes the activation of input neuron
j, and yi denotes the activation of output neuron i. This equation represents the standard
mathematical form of a Hebbian synapse.

Of course this type of plasticity does not say anything about the neuronal dynamics them-
selves. If we consider for example that neurons can have activations in the range of real
numbers, and their connections is a linear one, then Hebbian plasticity would suffer from ex-
ponential growth. That is, if presynaptic neuron fires strongly with the postsynaptic neuron,
then their weight will grow strongly. This leads to an even higher value for the rate of weight
change, driving the weight into saturation, after which selectivity is lost, i.e. no meaningful
information will be stored in the synapse any longer. This is the sensitivity problem of Heb-
bian learning as mentioned before. I.e., if we feed a synapse too much of a same input, its
weight will simply saturate, and this synaptic connection will hold only useless information
in its memory.

To counteract this problem, a modulatory signal can be added to the learning rule, as is done
by various methods in literature, see e.g. [9, 10] but also by [1] of which the algorithm is the
basis for this thesis. This modulatory signal acts as a reinforcement-type feedback, and acts
as a reward or punishment for an experienced input-output relationship, in order to develop
the desired behavior. Hebbian plasticity then takes the following form:

∆wij = η ·myixj , (2-2)

wherem denotes the modulation in this scenario. Note thatm can not only vary to change the
amount of plasticity, but it can switch to the negative range, at which point anti-Hebbian (or
unlearning) is turned on. Now, we can recognize that modulated Hebbian plasticity is in line
with selectively reinforcing good behaviors as is the case with animals, where the modulation
corresponds to dopamine in the brain. In we consider modulated Hebbian plasticity in a
reinforcement learning framework, then the presynaptic activity is regarded as the agent’s
sensory perception y or state x, and the postsynaptic activity is equivalent to the agent’s
action u. This means that the Hebbian synapse is simply an adaptive feedback controller.
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2-2 The state-of-the-art implementation 5

Figure 2-1: Block diagram of a general reinforcement learning framework using Hebbian learning.

For the purpose of consistency in our conventions, let us define the terminology and notations
that goes unchanged for this entire thesis. The adaptive Hebbian feedback controller is a
nonlinear combination of measurements y (perception) fed back as a signal u to its actuators
(action). Generally, we have that

uk = f(wkyk). (2-3)

Here we will denote the subscript k as a discrete time-index. Then yk ∈ Rn denotes the n-
dimensional sensor inputs, wk ∈ Rm×n a matrix contain the plastic Hebbian weights and uk ∈
Rm denotes the m-dimensional control outputs. The function f(·) is a nonlinear activation
function. Hebbian adaptation is then generally of the form

wk+1 = wk + η ·mkuky
T
k , (2-4)

wheremk is the scalar modulation signal, which is the same for each Hebbian connection. This
modulation value assumes a measure of ’correctness’ that the input-output sample (yk, uk)
turned out to cause based on later observations (k + 1 in this thesis). A schematic overview
of the closed loop structure is depicted in Figure 2-1.

The modulation scheme in this algorithm is the most important aspect for proper learning,
as it directly changes the importance and sign of each training sample. But apart from the
modulation term, good exploitation of the input space is still important. If, for example, the
network gets excited with only bad experiences where the modulation is negative, the agent
will proceed to unlearn everything it sees, and no viable progress may still occur. So to avoid
feeding the agent with redundant and repetitive experiences, [1] includes an autoencoder,
where the input space is represented by the autoencoder’s higher-level features. In this way,
the input as fed to the Hebbian synapses are more carefully selected, so that the entire input
space of a given environment is better exploited.

2-2 The state-of-the-art implementation

In [1], the Novelty-Raahn algorithm is proposed, to solve the main obstacle of plain Hebbian
learning. The novelty-Raahn algorithm enables an artificial neural network to represent
accurately the features of the input domain (sensory perceptions) by extrapolating higher level
features, based on the collection of novel agent experiences. These features of the autoencoder
are fully connected with a second layer, which is considered the Hebbian control component
of the agent. In the following subsections we will inform about the simulation environment
in which the algorithm has been tested, and the functioning of the algorithm itself. Finally,
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6 Background

Figure 2-2: Graphical representation of the simulated environment as designed in Python: an
autonomous agent traverses the lap shaped map. The autonomous car is required to make as
many laps as possible in an allotted amount of time. The non-uniformly shaped map ensures that
the agent does not simply repeat one behavior, but rather is required to generalize its policy to
any input it experiences.

we will summarize some drawbacks still present, and propose what aspects need to change
for improvement.

2-2-1 The environment

The system comprises both the environment and the agent. The environment entails the
dynamics which govern the world’s state, and the agent entails that which acts upon the
world, to change its state, based on its perception of the world. The system in this description
corresponds to a closed loop in feedback control.

Specifically, the simulated environment in [1] concerns an autonomous car agent, driving
around through a static map in laps, see Figure 2-2. The entire track from the leftmost wall
to the rightmost wall has a width of approximately 4120 units, whereas the lowermost wall up
to the uppermost wall has a height of approximately 3074 units. The car has no dimensions,
and is considered a point mass, which always drives at a constant speed of approximately 15
units1 per time tick, unless it gets stuck into a wall in which case it stops moving forward. The
agent can further issue a control signal between 0 an 1 (which may convolve with additional
actuator noise), that determines the change in steering angle, or the car’s global orientation
θ. Note that if the car crashes into a wall, it may still escape after some time, because it is
allowed to correct its steering. A control output of 1 changes the global orientation θ with
−2◦ per time tick (steers to the right) and a control output of 0 changes this orientation with
+2◦ per tick (steers to the left). The agent further has access to a set of eleven rangefinder
sensors. These rangefinder sensors are line segments extending from the center of the car

1The true forward speed depends on its global orientation, and is equivalent to
√

152 cos2 θ + 122 sin2 θ.
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2-2 The state-of-the-art implementation 7

Figure 2-3: Depiction of the car’s rangefinder sensors. A sensor’s activation denotes a measure
of wall intersection.

outward with each a length of 350 units, which sense the presence of walls (Figure 2-3). The
first and last rangefinder sensors are separated with 180◦ from each other, and are oriented
perpendicular to the car’s facing direction. The other sensors have a spacing of 18◦ between
them. Each rangefinder receives an activation between 0 and 1 at each time tick. A sensor
value of 0 indicates no intersection with any wall, and an activation of 1 indicates a full
intersection with a wall. Intermediate activations are linear interpolations of where a wall is
sensed.

The agent uses the collaborate autoencoder and Hebbian layer as artificial neural network
components, in order to learn the optimal control policy in real-time (figure 2-4). It first senses
an experience yk ∈ [0, 1]11 at discrete time index k, from which it computes the perceived state
x̂k = σ(Wkyk), with W ∈ R5×11 a matrix containing the connections between the input and
the perceived state x̂k. This perceived state, or high-level features, are in turn used to compute
final control output uk = σ(wkx̂k) that determines the change in turn angle of the car, where
wk ∈ R1×5 denotes the Hebbian connections. The nonlinear activation function σ(·) is the
logistic sigmoid, and can be viewed as a mechanism that determines the activation of neurons
in a more biologically plausible way (close to 0 is a non-firing or inactive neuron, whereas
close to 1 is a firing or active neuron).

2-2-2 The autoencoder

Since the performance of Hebbian plasticity is given to be very sensitive to how each sample is
treated during training, it is naturally important to feed the correct experiences representative
of the input domain to the Hebbian plasticity. The functionality of the autoencoder in this
sense is twofold. It learns to describe the underlying high-level features of the input space
into its perceptive memory, which guarantees that these features are fruitful, given that it
can produce a good reconstruction of the original input space. At the same time, this encoded
representation makes the agent more exploratory, since it considers a more meaningful sense
of inputs for its decision making. This part is important, because it solves the main obstacle
of Hebbian plasticity, which is its high sensitivity to the choice of inputs.

In order to exploit this input space in an autonomous setting, the novelty-Raahn in [1] uses
a novelty buffer to select only the most novel experiences for training. This novelty buffer
prevents overfilling the perceptive memory with only the same kind of experiences, and hence
prevents the agent from settling rather quickly in a bad state. For example, if the agent
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Figure 2-4: Artificial neural network as used in [1]. The network receives an activation yk

of input neurons (top part), from which the autoencoder (first layer) computes the high-level
encoded features x̂k in the hidden neurons (middle part). Finally, these features are used by
the Hebbian network (second layer) to compute the control value uk in the final output neuron
(bottom part).

initially gets stuck into a wall, it may erroneously learn as if its state at that moment is
representative of the entire input domain, and consequently remain in that state (it has
reached a bad local optimum from which it cannot escape).

The novelty buffer contains at most 500 past experiences, where each experience is assigned
a novelty score. To determine the novelty score of an arbitrary experience i, the Euclidean
distance di is first computed between it and all the other experiences in the buffer,

∀i ∈ N : di = ||yi − yl||2 ∀l ∈ N 6 i, (2-5)

with N the set of all experiences in the novelty buffer, yi the activation vector corresponding
to experience i. The novelty score ni of experience i is then computed as the 20 smallest such
distances. If the currently sensed experience yk has a novelty score greater than that of the
least novel experience in the novelty buffer N , it replaces that experience in the buffer.

At each training tick, the autoencoder selects 20 random experiences from the novelty buffer
N to train on. When training on experience yi, the forward activation x̂i is first computed.

x̂i = σ(Wyi), (2-6)

where σ(·) is the logistic sigmoid activation function, and W a matrix containing the au-
toencoder weights. This forward activation is used to compute the backward activation (the
reconstruction of the experience yi).

ŷi = σ(W T x̂i), (2-7)

where the reconstruction error is computed as

ei = yi − ŷi. (2-8)

Ajdin Husić Master of Science Thesis



2-2 The state-of-the-art implementation 9

Then, the delta of the inputs can be computed from this error, which will be used to computed
backpropagated error.

δy = ei � σ′(ŷi), (2-9)

where the � is the component-wise multiplication, and σ′(·) is the logistic derivative. Now,
the delta for the hidden features can be computed as

δx̂ = (Wδy)� σ′(x̂i). (2-10)

Now, using both the original error deltas δy and the backpropagated error deltas δx̂, we can
compute the update of the tied autoencoder weights.

∆w = α(x̂iδTy + δx̂y
T
i ), (2-11)

where α is a learning step size, set to 0.1, and all weights in W are clipped to the interval
[−wmax, wmax], with wmax set to 10, in order to prevent weight saturation.

2-2-3 The Hebbian layer

After having inferred the features of the environment through the autoencoder (perception),
the agent decides which actions to take (control). The Hebbian layer in this sense can be
viewed as an adaptive controller, as it adapts its plastic connections in real-time.

This component uses a modulated form of learning in order to achieve a desired behavior
(control policy). This entails that learning is done through the modulated Hebbian learning
rule as described in section 2-1. The presynaptic activity, in the case of the autoencoder, is
equal to x̂k at time tick k. And the postsynaptic activity is then just the control output uk,
which is first normalized through a linear transformation un,k = 2uk − 1, in order to be in
the range [-1, 1]. This removes any bias while learning, such that the synapses can learn on
their own if the modulation were removed.

∆wk = ηmkun,kx̂
T
k + ξ, ξ ∼ U(−0.1, 0, 1)1×5, (2-12)

where η = 1.0 is the learning step size, ξ is a vector of random samples drawn from a
uniform distribution between -0.1 and 0.1 and mk is the modulation term determining when
and at what rate to use learning, unlearning or no learning. The modulation scheme in [1]
always compares the the next state k+ 1 with the current state k, in order to determine how
good the corresponding training sample (yk, uk) turned out to be, and influences all Hebbian
connections using the same modulation.

The modulation scheme

The modulation scheme in [1] is defined as whether the car has turned toward a wall (mk < 0,
unlearning), turned away from a wall (mk > 0, learning) or detecting no walls (m = 0, no
learning). In order to measure the modulation, the authors have first defined a modulation
feeler, an invisible line extending from the center of the car straight outward in the direction
it is facing, i.e. with same global orientation θ, and with a maximum range of 400 units.
This modulation feeler first senses the presence of walls, just like the rangefinder sensors, but
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10 Background

rather than measuring the distance, it computes the angle β it makes with a certain wall. If
the modulation feeler detects a different wall at the next time tick k + 1 than it detected at
the current tick k, than it computes the angle β with respect to the wall it detected at time
k. If no wall was detected at time k then the corresponding modulation mk = 0.

A modulation value mk is thus only computed, when a particular wall has been detected at
time k. The measure ∆ of how much it turned away from this wall is thus computed at time
tick k + 1 as

∆ =
{
βk+1 − βk , if βk > 90◦

βk − βk+1 , if βk ≤ 90◦
(2-13)

Finally, the modulation mk is computed as the amount in degrees it turned away from the
wall normalized with the maximum turning speed per tick, such that the modulation yields
a value in the domain of [-1, 1].

mk = ∆/Θmax. (2-14)

Here, Θmax denotes the maximum turning speed that can occur between two given time ticks,
i.e. max(θk+1 − θk).

Finally, the general algorithm is summarized in pseudocode 1.

Algorithm 1 the novelty-RAAHN algorithm. This methods assumes:
1. multi-dimensional input space
2. modulation scheme needs be well-defined
3. unknown system dynamics

1: procedure Initialization
2: Initialize Autoencoder weights W0 ← N (0, 1) ∈ Rm×n
3: Initialize Hebbian weights w0 ← N (0, 1) ∈ Rm
4: Initialize novelty-buffer size nnovelty arbitrarily
5: Initialize number of training samples per tick nsamples
6: end procedure
7: procedure Training(for every time tick k do)
8: take action uk using policy derived from Wk, wk
9: observe measurements yk+1 and reward mk+1

10: update novelty buffer and weights Wk+1, wk+1
11: end procedure
12: Output: learned agent weights W,w

2-2-4 Experiments and results

In the experiments in [1], the simulation is run 200 times for 10,000 ticks each time where
an agent with novelty-Raahn is compared against an agent with only a Hebbian network (i.e.
without autoencoder). Completing a circle around the center point as shown with the red
dot in Figure 2-2, denotes completing one lap.

The results suggest that novelty-Raahn completes 8.8 laps on average, whereas Hebbian alone
completes 9.2 laps. Novelty-Raahn performs thus slightly below the lone Hebbian controller,
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2-2 The state-of-the-art implementation 11

while requiring extra time in the beginning to acquire a novel set of experiences. Also,
considering that novelty-Raahn learns both features and the control policy at the same time,
it is likely close to performing as well as possible for such a method.

The authors have furthermore shown that novelty-Raahn performs better when degrading the
quality of the sensors to a certain extent. They show that if the length of the rangefinders
increases, which makes distinguishing different situations more difficult, novelty-Raahn expe-
riences fewer failures in completing laps than Hebbian, because the Hebbian agent is forced
to learn from these degraded inputs, whereas novelty-Raahn learns a new representation.

Additionally, I have performed an experiment with Hebbian and novelty-Raahn myself. The
claim is that when training a larger network, the agent needs a significantly longer time to
learn, as it learns both perception and action at the same time. This reasoning prompted
me to do a different experiment, in which both type of algorithms are run first in a training
phase for 12,000 time ticks, with the idea that this is enough time for the agents to reach
their near-optimal potential. After this phase, the state of the agents is reset, and they are
released to follow their learned controller for 10,000 time ticks without training (evaluation
phase). The performance in this scenario is only counted in how many laps each agent makes
in this evaluation phase. This process is repeated for both algorithms 10 times, which results
in a low enough variance to conclude from it their true performances. Namely, the Hebbian
agent performed in the range [9.82, 9.92] with an average performance of 9.86 completed laps.
Novelty-Raahn on the other hand performed in the range [9.81-10.04] with an average of 9.91
completed laps. This suggest that after sufficient training, novelty-Raahn even overtakes pure
Hebbian slightly in its performance.

2-2-5 Current drawbacks

The main issue of the novelty-Raahn algorithm is the modulation scheme as currently de-
fined. Firstly, it is only defined for the environment as described in [1], i.e. as in subsection
2-2-1. A closer look at this system, which is relatively simple and static in nature (the en-
tire network only generates the change in steering angle), suggests that achieving the desired
behavior requires complex modulation logic. For this system, this means that designing this
logic is almost as easy (if not harder) as guessing the weights of the 11-by-1 Hebbian compo-
nent, since these weights approach rather intuitive steady-state values: using only the Hebbian
component without autoencoder results in weights that simply compensate for sensing walls
in a particular direction. If such ’simple’ agent behavior requires such detailed modulation
logic, then we can ask ourselves whether even the slightest changes in the environment will
not render the algorithm useless. The algorithm as is, thus lacks the desired freedom for
the engineer to determine the desired tasks that the agent needs to achieve.

Moreover, the modulation scheme as defined is a time-local reward, and therefore the agent
develops a short term memory. Rather than just anticipating one step ahead at most, complex
autonomous agents may require long-term connections, that enable a more optimal control
policy.

Most importantly, the odd observation of this algorithm is that the modulation logic is not
explicitly related to the global objective which is sought to be optimized by the algorithm.
In this way, the algorithm suffers from requiring hard-coded logic, which is not directly
available. Whereas the directly available global objective of the system is not used, i.e. the
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12 Background

engineers know what they want to make the agent ultimately achieve, but need an interme-
diate step to reach this achievement.

2-2-6 General proposal

In order to eradicate these difficulties, and thus make the algorithm more useful overall, I
will propose in this thesis that the main contribution lies in changing the way in which this
modulation scheme is defined. More specifically, I propose that the modulation scheme
should be defined by relating the global objective function explicitly to how each
Hebbian input-output training sample should be modulated.

Assuming that we can successfully achieve the goal in such proposal, we can further recognize
some additional advantages: Namely, if we find such a relationship, we can use this global
objective to train any type of output we wish to control. For example, if we now are to add
a control output that sets the agent’s acceleration, we can use this more general relationship
between how the global objective function should be treated with respect to the modulation
of each individual sample, rather than requiring some different detailed modulation logic
yet again. Since the change in velocity physically represents something different than the
change in steering angle, and suddenly we need not contemplate how this new control variable
precisely affects the current modulation behavior.

Furthermore, achieving such a relationship allows for the agent to develop a long term
memory as well. The idea is that if the algorithm allows for global objective functions,
then such an objective function can be one which incorporates the average performance of
the agent over multiple time steps in the future. Coincidentally, this means that the agent
will implicitly assume prediction capabilities. Therefore, we are practically also merging
the existing tasks of perception and action, together with prediction, as we have initially
considered to be required for prediction error minimization.

Ajdin Husić Master of Science Thesis



Chapter 3

Proposal of the Thesis

The current proposal as put forth in the past section, is to find a relationship between the
global objective function given a certain task, and the modulation applied to each training
sample in the Hebbian network. In order to find the best conclusion, we must first recall
the fundamental function of Hebbian connections, and how modulation affects its plasticity.
In this chapter, we will consider the goal of a global reward function and its effect on the
behavior of an agent. Subsequently, we will relate one with another based on how they affect
the system to achieve its goal, and finally we will conclude the chapter with the obtained
answer materialized from the given proposal.

3-1 Defining the general global reward

Since we are working in a reinforcement learning setting, we will define the global objective
function, which is to be maximized, the global reward function R1. Specifically, the particular
reward function, or otherwise the immediate reward rk, obtained at discrete time tick k
from the environment, is a measure of how ’good’ the current time-local input-output or
measurement-action sample (yk, uk) is. The global long-term reward function RNk , which
anticipates a horizon of N discrete time steps ahead, is simply the average of each particular
reward over this horizon.

RNk = 1
N

k+N−1∑
i=k

ri. (3-1)

The general goal of reinforcement learning is to optimize, specifically maximize, this function
RNk . The parameters on which RNk (indirectly) depends, i.e. the neural network weights wk,
are adjusted in such a manner, that RNk increases overall.

1Rather than a fitness function, which is directly related to the parameters (weights) on which said function
depends, we call it the reward function because it is directly related to the effect of a state-action pair.
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14 Proposal of the Thesis

3-2 Relating the global reward to modulated Hebbian learning

The hypothesis of Hebbian learning, is that it learns the behavior the agent experiences. That
is, the presynaptic activity (sensor input) y results in postsynaptic activity (control output)
u trough the synaptic connection w, and updates w by Hebbian learning ∆w = uyT , in such
a manner that input y will more often produce output u. Using this hypothesis, we find that
we can modulate said synaptic plasticity by ∆w = muyT , based on the desired result: If
we want that y produces result u, then modulate the training sample positively m > 0 such
that behavior u, given y gets learned. If we want that y produces result u no longer, then
modulate the training sample negatively m < 0, such that behavior u given y gets unlearned.
If we are satisfied with current behavior, do not learn at all, and modulate zero m = 0, such
that there will be no change in behavior.

This is a pretty powerful hypothesis, in that it can effectively reinforce desired behavior. If
we now consider the global reward function RNk based on a given sample2 (yk, uk) then we
identify three possible scenarios at each time step. That is, with respect to the previous time
step k − 1, the reward RNk has

• increased (positive modulation),

• decreased (negative modulation),

• stayed the same (zero modulation).

From this we can infer that modulation can be related as

mN
k = g(RNk+1 −RNk ), (3-2)

with g(·) a nonlinear weight regularization function. Since RNk is defined as the future average
of particular rewards r (equation 3-1), we can make the simplification

mN
k = g

 1
N

 k+N∑
i=k+1

ri −
k+N−1∑
i=k

ri

 ,
mN
k = g

( 1
N

(rk+N − rk)
)
.

(3-3)

Note that, since we use an arbitrary time horizon N , we have to wait N discrete time steps
more with respect to the inference at k, before we update the weight corresponding to that
time sample, i.e.

wk+1 = wk +mkyku
T
k

wk+1 = wk + g

( 1
N

[rk+N − rk]
)
yku

T
k .

(3-4)

The idea is that with this generalized form of modulation, the global reward function subject
to the environmental dynamics will be maximized, assuming that the global reward is strictly
increasing wen a desired change in behavior occurs, and decreasing when an undesired change

2The input here is denoted as yk, but may be an inferred state x̂k depending on any intermediate filters.
The input in this sense is just what gets fed into the Hebbian network.
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3-3 Chapter conclusion: proposal of the thesis 15

in behavior occurs between each time step. This assumption needs to be satisfied to learn
properly a desired control policy, because of the sensitivity of Hebbian plasticity. But it does
not imply that defining a global reward with this algorithm is more prone to failure than any
other algorithm that incorporates objective functions. Rather, I would say that any other
control method that utilizes explicit objective functions needs to be properly defined too.

3-3 Chapter conclusion: proposal of the thesis

Based upon the previous chapters we have arrived at the following thesis proposal:

Proposal 3-3.1: Thesis proposal

Given a long term global reward RNk =
∑k+N−1
i=k ri, with rk the particular reward, the

modulation scheme can appropriately be defined as a function of increment of RNk+1 in
the next time step k + 1 with respect to the current reward RNk . Or equivalently, the
modulationmN

k that is assigned to input-output sample (yk, uk) is equal to g( 1
N (rk+N−

rk)).

Proposal 3-3.1 goes hand in hand with the following assumption:

A.4 The global reward RNk increases if the environmental state changes desirably and de-
creases if the environmental state changes undesirably between time ticks k and k + 1.

In the next section we will set up the exact modulation scheme as used for the the experimental
environment in 2-2-1.

3-3-1 application and use-case

If we consider the environment as in 2-2-1, we remark that the true performance of the
autonomous car is that in an allotted amount of time the car must create as many laps
as possible around the center point. However, we cannot directly use this performance as
our global reward R, since the map is shaped in such a way that at many places the agent
must first decrease the performance, in order to increase the overall performance later on,
like driving around a turn that goes a bit outward. So we must first make an adjustment
in choosing our appropriate global reward. Given that the first experiment concerns only to
correctly learn steering, we can initially use a particular reward rk not dissimilar to [1]. If we
define dk = 1 − yk as distances3 to objects, then we can say that desirable behavior occurs
when the car’s front-pointing sensor (6th out of 11 sensors), detects an increase in distance.
That is, we define the particular reward rk as

rk = 1− yk(6), (3-5)
3The 1 in this definition is not strictly necessary, since the algorithm cares about increments of rewards

only, but is more intuitive as the input domain now physically represents normalized distances.
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16 Proposal of the Thesis

where yk(6) denotes the sixth element out of the 11 rangefinder sensor activations in yk. A
good regularization function g as presented in equation 3-3 is the tangent hyperbolic function

g(x) = tanh (γx), (3-6)

where γ is just a positive gain constant. The reason for regularization is that the if rewards
change too radically, the weights do not get too large updates, as the tangent hyperbolic
functions maps to a value between -1 and 1 (just like the original modulation scheme). More-
over, the tangent hyperbolic function is nearly linear when its argument is close to zero. The
gain function γ on the other hand is used to stretch out the weight updates if these are
too small. A good value of γ generally is when the modulation becomes approximately 1
with the maximum possible improvement, and -1 with the maximum possible deterioration
in behavior.
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Chapter 4

Implementation

Before showing the final results in the following parts of this thesis, we will first cover the
details of the entire implementation as necessary to generate the subsequent experiments.
The original work of [1] was first recreated in Python. This was done mainly because of
my own higher competence in Python rather than the original language, which was written
in C#. This allowed me to very easily make any additions to the program without further
investigation. Also, rewriting the code was crucial in understanding the exact mechanics of
the entire simulation, which in turn allowed for further improvements, and helped me achieve
the new additions to the existing algorithm.

4-1 Implementing the environment for the autonomous car

The first step of implementation was to create exactly the discrete environment as developed
by [1] in Python3, in order to enable stepping through it by giving an control action u at
each particular state. This environment consists of the classes Car.py, Wall.py, rangefinder.py
and configs.py. See appendix -1-1 for the source code. Both the Wall and rangefinder class
inherit from a lower-level LineSegment class (lines.py). Any line segment object (instance
from LineSegment) has the ability to firstly test if it intersects any other line segments present
using the AABB (Axis Aligned Bounding Box) method. Secondly, if two such line objects
do intersect, then intersections are computed using simple linear line intersection math. An
AABB collision is a collision detection method in computer graphics, in which two rectangular
shapes collide if they overlap in all dimension axes (axis-aligned). See Figure 4-1 for an
example. The same logic can be applied for line segments, in which the upper and lower
bounds of said segment is simply seen as the rectangle boundaries in AABB. Of course
when using line segments, their AABB collision does not guarantee an actual intersection,
so intersection math is still necessary not only to check whether intersections are present
between line segments, but also at what point they occur. Skipping the AABB detection part
is theoretically possible but not optimal in simulation, because of the considerable difference
in computational load, especially when testing multiple line segments against many other line
segments.
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18 Implementation

Figure 4-1: Example showcasing AABB collision in 2D. Collision between two rectangular objects
only occurs if they overlap in all dimension axes. Adopted from [2].

Furthermore, a line segment object is able to compute the exact intersection coordinates be-
tween itself and any other arbitrary line segment. This concept is extended in the rangefinder
class, where its objects have additional attributes like a default length, a current activation
value yi, and a car instance to which it is attached. Each instance of rangefinder updates
its positioning dynamically, along with its host car, of which its center point corresponds to
the rangefinder’s starting position. The end position is then related to a fixed relative angle
between the car and itself, and its default length. A rangefinder line segment i has the addi-
tional ability to sense the value of its activation yi by first computing the exact intersection
point, and simply calculate the distance from its end position to this intersection, divided by
its default length.

Whenever the simulation is initialized, first the car and and all the map walls are spawned.
This is done from the file configs.py. The map configuration is stored in an xml file XMap.xml,
which contains both the car starting position (1561.93, 505.79), and all the wall coordinates
(an (X,Y) coordinate and a relative distance in x,y-direction). Now the simulation can step
through the environment by receiving an control output u in the value [-0.1,1.1]. The car
object is programmed initially to move with constant speed, but only change its global ori-
entation θ by adding 4u − 2 degrees to it, so that the increment yields a value in the range
[-2.2, 2.2] degrees. The velocity vector is computed as

vk =
(
sx cos θ, 4

3sx sin θ
)
, (4-1)

where sx = 15.0 is the constant speed component in the initial experiments. Later on, I added
the dynamic speed and acceleration control variable of the car, such that an environmental
step accepts the value u = (uθ, ua). Here the control values change the global orientation θ
and car’s speed sx respectively. The control values in u are both expected to be given in the
range [-0.1, 1.1]. The control value ua changes the car’s speed attribute by incrementing it
with 1.16ua− 0.08 so that the increment in speed is in the range [-0.08, 0.08] units. The car’s
speed is bounded to the upper limits of (15.0, 12.0) (in x and y direction resp.) and the lower
limits of (10.0, 8.0). This is done to prevent indefinite increase or decrease of speed, and so
that the car cannot outperform its previous version by simply driving faster (the upper speed
limit is also the starting speed in case of no acceleration).

The environment as described here is used in the following experiments, and in case of constant
speed experiments the acceleration control variable ua is simply set to 0.5 (constant speed).
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4-2 Implementing the agent for the autonomous car 19

4-2 Implementing the agent for the autonomous car

The initial version of the autonomous agent is simply a recreation of the existing agent by
[1]. The main components are net3.py, modulation.py, and agent_functions.py. A network
object (from class net3) defines the nonlinear relationship between an arbitrary observation
it receives as input, and the control output mapped from this observation. I.e. the network
is built to describe exactly the equations as described in the neuronal dynamics in chapter
2. It consists of two layers (an autoencoder layer, and a Hebbian layer) and produces an
optimal control policy by interacting with the environment. The network interacts with the
environment in two ways. At every time tick k it samples the observed experience yk (the
rangefinder activations) to output the control uk and send it back to the car, and secondly
it adapts its network parameters through sensing a modulation according to the modulation
.py class. This is done as described in section 2-2-3. Later on, I added the performance.py
class with the addition of global rewards. The modulation in that case is derived from these
global rewards as proposed in chapter 3. Training of the neural network is done through the
agent_functions.py module, which contains both the autoencoder training process, and the
Hebbian learning process as training options. One ambiguity I had found in [1] is the fact that
Hebbian learning was actually done by first normalizing the postsynaptic activition. I.e. uk,
the real postsynaptic value was one between 0 and 1, whereas the postsynaptic activation as
used during training is first normalized to a range between -1 and 1 to represent the measure
of increment (or decrement) in the car’s orientation. A detail not precisely mentioned in [1],
but actually crucial for proper learning.

After having implemented the original works of [1] in Python, I proceeded with the additional
experiments as described in section 2-2-4. These are experiments where the original algorithm
is compared with and without autoencoder. Subsequently I tested the new algorithm with my
own contribution where global rewards have been introduced. The corresponding particular
reward rk in this experiment was defined somewhat intuitively, where we gave relatively high
importance to averting walls, and relatively low importance to increasing speed. That is,
this particular reward (particular to each world state) is just a weighted average of several
objectives that the agent needs to learn simultaneously (both steering and accelerating).
The exact relative weights for these objectives are then tunable, based on what the engineer
finds important. From rk the global reward RNk is then constructed according equation 3-
1 in performance.py, and the corresponding modulation is the difference of two consecutive
global rewards as per equation 3-3. This modulation measurement is defined in modulation.py
and is fed in an N -step delayed fashion to the Hebbian layer’s training method in training
.py. Finally, fundamental experiments are done as shown in chapter 5 to prove the new
method works. The final algorithm is shown in pseudocode 2, where the main difference is
the generalizing addition of global rewards.

4-3 Implementing the cart-pole environment

The cart-pole environment as used in the later experiments, is a gym-environment from
python OpenAI [11]. The graphical representation of the environment is found in Figure 5-4.
It concerns a pole attached by an un-actuated joint to the cart, which moves along a horizontal
plane. At each moment in the environment the full four-dimensional state x is available to
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Algorithm 2 the Hebbian learning with global rewards method. This methods assumes:
1. multi-dimensional input space
2. a global reward function based on the agent’s task
3. unknown system dynamics

1: procedure Initialization
2: Initialize Autoencoder weights W0 ← N (0, 1) ∈ Rm×n
3: Initialize Hebbian weights w0 ← N (0, 1) ∈ Rm
4: Initialize novelty-buffer size nnovelty arbitrarily
5: Initialize number of training samples per tick nsamples
6: end procedure
7: procedure Training(for every time tick k do)
8: take action uk using policy derived from Wk, wk
9: observe measurements yk+1 and global reward RNk+1

10: compute generalized modulation mk ← RNk+1 −RNk
11: update novelty buffer and weights Wk+1, wk+1
12: end procedure
13: Output: learned agent weights W,w

Table 4-1: Summary of the observation and action spaces of the cart-pole environment. The
real-valued fully observable state is shown in the left part, and the discrete-valued one-dimensional
action space is shown in the right part.

Observations Actions

Nr State Min Max Control Action Discrete Value
1 Cart Position -4.8 4.8 Right Force 0

2 Cart Velocity −∞ ∞ Left Force 1

3 Pole Angle -24 24

4 Angular Velocity −∞ ∞

the agent. This state is a sensor observation of the cart position, cart velocity, pole angle and
pole velocity at the tip respectively. And a ’zero’ state corresponds to an upright position of
the pendulum. When an episode starts, the pendulum starts upright with a minor random
variation for each state variable, sampled uniformly from a distribution in [-0.05, 0.05]. The
control action applied onto the environment is a force to the right (1) or an equivalent force
to the left (0). The environment is forced to receive either of the control values and may not
apply zero force. A neat overview of the full observation space and action space is summarized
in table 4-1.

The environmental time evolution occurs in episodes. The state initializes at the start of each
episode as described above, and simulates a sequence of states based on the control outputs it
receives. The episode is terminated when the pole angle deviates more than 15 degrees from
its equilibrium state (the upright position), or when the cart moves more than 2.4 units from
its center position. If the pole remains alive (balanced) for at least 200 time ticks, the episode
terminates due to a successful episode. According to [11], cart-pole is considered solved when
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it remains alive for 195 or more time ticks on average for a duration of 100 successive episodes.
That same goal will be used for our purposes.

4-4 Implementing the cart-pole agent

The code to implement the agent can be reused from the autonomous car environment. The
only differences will be in hyper parameters (structure, objective function, etc.). The main
noticeable difference with the cart-pole compared to the autonomous car, is the fact that the
sensor inputs measure values in the range of real numbers. So the autoencoder cannot properly
learn if the state is not pre-processed (assuming that the nonlinearities are sigmoids still).
Another obvious difference is the type of sensor input. Rather than high-level environmental
features, the agent receives the physical state that is part of describing its own dynamics. For
this reason, an autoencoder is generally not necessary, and might only pollute the network
with needless additional information.

In experimentation, two different structures of the agent network are used. First, the exact
same network structure as in the autonomous car example, to show that it does not work
because of violation of the initial assumptions. Secondly, a different structure with multiple
layers and different nonlinear activation functions will be used, such that the controller consists
of more complexity, which is required for the proper policy.

All the implementation code is found in cartpole.py in appendix 7.
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Chapter 5

Experiments

In this chapter, we will demonstrate fundamental experiments using the new generalized
modulation rule, and report its results. I have reproduced the original work of [1] in a Python
simulation, in which I have validated their method (Figure 2-2). Additionally I have added
experiments of my own which will be discussed in this chapter (see source code in appendix
7). In the first section I will demonstrate experiments using the autonomous car environment,
where we have made changes that make the system more complex. Showing that the new
method can indeed learn to control this environment is the most important contribution of this
paper. In the second section we will attempt to demonstrate the generality of this method,
by applying it on a cart-pole system with inverted pendulum.

5-1 Experiments with the autonomous car environment

Firstly, let us introduce into the existing dynamics an additional control variable that sets the
acceleration of the car. Now uk ∈ R2, where uk(2) is the second element of the vector uk and
which corresponds to the change of speed of the car. The control output uk(2) is first linearly
mapped to the range [-0.08, 0.08] to denote the change in car speed. The constant bounds
of 0.08 were chosen such that the dynamics of accelerating look realistic relative to the car’s
speed. The precise choice of this value matters not too much in showing that the new method
can regulate multiple control variables. The speed however, is capped to a maximum value
of its original forward speed in order to prevent indefinite increase of speed. In this way,
the new method is not allowed to outperform the old algorithm by simply driving at a faster
speed. On the other hand, the lower limit of speed is set to approximately 12 units per tick, to
prevent the car from a complete standstill. Also, the car’s speed is set to its minimum value
once it crashes into a wall, which additionally causes a sudden decrease in reward. Since the
car is allowed to drive slower than its maximum speed, it acts as a disturbance to the overall
training process as now it needs to learn both control variables simultaneously. Hence, we
will demonstrate that even though both training and the dynamics are now more complex,
the method is still able to learn reliably the optimal control policy.
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Given the new dynamics of the system, we will choose the particular reward rk to be equivalent
to a weighted sum of the front-pointing distance dk and the absolute speed sk of the car.

rk = 1.3 · dk + 0.3 · sk. (5-1)

The precise relative weights are designed by tuning, but are set initially to match an intuitive
understanding of the tasks that the agent needs to achieve. We can argue that in order to
maximize the amount of laps the car completes, averting walls is indeed the most important
aspect. So the larger relative importance of 1.3 is given to the sensor distances, whereas
acceleration is only required if the agent is certain that the car will not crash. Hence the
smaller value of 0.3 corresponds to the reward contribution of the speed, which was found to
work well.

We furthermore chose a time horizon of N = 5 steps ahead, and γ = 2. Taking a too large
value for the anticipation horizon N may lead to loss of causality. That is, the agent may
seek to reward an action too far in history that had no significant effect on the current world
state. Of course, a value as low as 5 time steps anticipation reduces the quality of conclusion
about the actual prediction capabilities the car has. As the sampling rate of an arbitrary
system gets faster, the less impact a delay will have on that system, since the measurements
will be closer to each other in value. Nevertheless the tuned value N = 5 worked well in the
case of the autonomous car, and it does not take away from the quality of conclusion about
the generality of the method.

Next, to encourage exploitation of the input space more, we will introduce episodic learning,
in which the environment’s state gets reset after a certain amount of time ticks. At each reset,
the agent’s network keeps in memory, such that it keeps improving its policy. Specifically, we
will set the agent to train for 15 episodes, where each episode lasts for 1200 simulation time
ticks.

5-1-1 Convergence test

If we consider the true global optimum, as permitted by the environmental dynamics, where
the maximum absolute speed sk equals 19.21 (Euclidean distance of 15 and 12 units per tick),
and the maximum distance (1.0 in case of no wall intersection), then we find max rk ≈ 6.96.
If we now collect the average values of the global rewards per episode, we find a convergence
behavior as shown in Figure 5-1. From this figure we can deduce that indeed the global reward
function RNk is optimized by the new modulation scheme, as the reward value converges to
its optimum of 6.9.

5-1-2 Performance test

In the following experiment, we will demonstrate that the new method can achieve a similar
performance as the existing algorithms. First, let us determine the performance range, in
which the algorithms can be considered to perform similarly, i.e. near optimal. Past sim-
ulations have revealed that a good agent is able to complete anywhere between 0.9 up to
approximately 1.0 laps in a span of 1000 time ticks. For example, both pure Hebbian and the
novelty-Raahn algorithm performed close to 10 laps (at least 9.8 in all cases) in the evaluated
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Figure 5-1: Graph of the average global reward occurring at each episode.

10,000 time ticks as tested in section 2-2-4. To define a more strict minimum boundary of
when an agent can be considered near-optimal (i.e. satisfactory performance), we will de-
termine an additional metric that measures this. That is, the agent behavior is considered
unsatisfactory if it ever crashes. Between crashing and no crashing at all is clear difference
in overall performance, because a crash may occupy the car at the same location for a sig-
nificantly longer time, before it escapes. To test this metric, and hence find the minimum
satisfactory performance, we will first run an experiment where the number of crashes is
tracked for each algorithm.
The set-up of the experiment is as follows. We will again use episodic learning, where the
goal is to achieve zero crashes in the final episode. Each episode takes at least 2500 time
ticks, to ensure enough training time. If the car has crashed within the initial period of 2500
ticks, the episode will terminate once the 2500 ticks have passed. If the car crashes later
than 2500 ticks, the episode terminates immediately. If no crashes occur at all during said
episode for 10,000 time ticks, then learning will terminate for the current algorithm, and
the final performance of the episode (corresponding to the final 10,000 time ticks) will be
recorded. The number of crashes for each episode is recorded as well, which will be shown in
a graph. The entire training experiment is repeated 5 times for all three algorithms, i.e. for
pure Hebbian, novelty-Raahn and the novelty-Raahn structure in combination with the global
rewards as defined in equation 5-1 (called global reward). Afterward, the average number of
crashes along the 5 runs is computed for each episode and plotted in Figure 5-2.
We can conclude from the crash experiment that indeed the global reward method learns
eventually to not crash along with the other algorithms. Expectedly, the global reward
method takes longer to learn, since we train it on two control variables simultaneously, and
so the network becomes more complex as well.
Furthermore, we find that indeed we have a similar performance when using global rewards.
Namely, the minimum performance of novelty-Raahn and pure Hebbian without crashing is
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Figure 5-2: Average number of crashes for each algorithm during training. From this figure we
can conclude firstly that the global reward method learns the optimal behavior of not crashing
along with the other algorithms shown. Secondly, global reward has indeed learned a similar
performance, because its final performance is in the range of optimal performances as derived
from the other algorithms when they do not crash (not shown in this figure).

reached with a final performance of 9.64. With these methods, the car is forced to always drive
at maximum speed, so we can use this value as the minimum satisfactory threshold. Now we
can see that similarly, the global reward method achieves a performance of 9.73 on average,
which is well above the satisfactory threshold, and from this we conclude that the global
reward method can indeed achieve similar performance as the state-of-the-art algorithms while
training multiple control variables simultaneously. All the final performances are compared in
box plots as shown in Figure 5-3. If we observe the learning process visually, then we see that
the autonomous car agent learns to accelerate immediately after it crashes, as it discovers
that this is more optimal. It learns that driving at maximum speed is the best in combination
with proper steering, and it does not need to slow down to achieve the optimal control policy.
A well trained agent will never have to crash, and simply drive at maximum speed, as if it
had no influence over the acceleration, just like the initial algorithm assumed.

5-2 Experiments with the cart-pole

In this section, we will do a secondary experiment with the cart-pole environment. The
following experiments will show the generality of using Hebbian learning with global rewards
in complex control systems.

In the first attempt, we will consider as if the components can be used in the same way as in
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Figure 5-3: Depiction of the amount of laps completed over a certain amount of experiments.
The figure shows that the global reward method achieves similar performances as the state-of-
the-art algorithms after sufficient training, since the satisfactory threshold of 9.64 laps is achieved
on average.

the autonomous car case. We have a cart-pole with four states

xk =


sk
ṡk
φk
φ̇k

 , (5-2)

where sk denotes the horizontal positioning, φk the angle with respect to the upper equilib-
rium point, and the dot notation represent their respective time-derivative. The graphical
representation of the corresponding environment is shown in Figure 5-4.

Note that xk ∈ R4 may have arbitrary real numbers, whereas the assumptions of novelty-
Raahn consider an input range of [0, 1]. We can solve this easily by pre-processing the state
to a suitable range of values between 0 and 1. After some tests with the environment, the
pre-processed state

xp,k =


1

1/4
2

1/6

� xk +


0.5
0.5
0.25
0.5

 (5-3)

turns out to produce suitable values close to the range [0,1], such that the autoencoder error
could theoretically reach close to zero.

The remaining layers of the agent network remain the same as before, along with the training
process. The only obvious difference now is the choice of global reward. If we consider the
state xk, then we can consider the main objective to bring this state to its desired equilibrium
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Figure 5-4: Graphical representation of the cart-pole environment, with four known states.
Objective is to stabilize the pole in its upper equilibrium (unstable point).

state xd.

xd =


0
0
0
0

 . (5-4)

The measure of negative discrepancy between the actual state and the desired state is con-
sidered the particular reward. Namely, the Euclidean distance of the weighted state:

rk = −
√
wTr (xd − xk) = −

√
wTr xk. (5-5)

After some trial and error with tuning, the relative weights wr consists of the values

wr =


0.1
0.1
1.3
0.1,

 (5-6)

because most importance is given to stabilizing the angle φk. Various anticipation steps ahead
N have also been tried, but unfortunately the algorithm did learn to stabilize the environment
with these settings. After reflecting back upon the precise learning method in combination
with the given environment, I have concluded the following: Firstly, one significant difference
now is that the state xk is already representative of the input space. The four state values
represent the physical features of all important aspects, so we could argue that an autoencoder
is not necessary, just like with the pure Hebbian controller in section 2-2-4.

Another main problem is still the uncontrollability or instability of the environment. If we
observe visually at what happens during training, we see that because the system is unstable
without a working controller initially, it keeps receiving negative modulation and hence keeps
unlearning all it observes. This is now a major obstacle to proper learning, because the
methods of raahn and global rewards assume that the environment has enough time for the
modulation signal to directly drive it to the next state in which it receives a higher global
reward. Whereas the unstable cart-pole environment becomes quickly unstable ones the pole
deviates too much from the equilibrium state.

Ajdin Husić Master of Science Thesis



5-2 Experiments with the cart-pole 29

Finally, the network structure as proposed in [1] also does not contain enough complexity for
the purposes of cart-pole. With the network structure as proposed in [1], i.e. as described
in chapter 2, only a single layer is effectively used for learning control. The other part
(autoencoder), if present, learns the high level perception of the same input space that the
sensors supply. We have to take note that a single-layered feedback controller is not sufficient
in complexity to control the cart-pole as used in this experiment. Contrary to controlling
classic cart-pole systems, which are controllable via a single-layered linear mapping, where
the main difference is that our controller is forced to be non-linear. The reason being is that
our used cart-pole example has a discrete action space of two values (u=1 or u=0), so deriving
a controller through linearization is not possible.

With this in mind, we will make some major changes in the agent’s architecture. Firstly,
we have established above that an autoencoder is not really necessary. The states however,
are still in the neurally unsuitable real domain (i.e. it does not corresponds to biologically
plausible neuronal activations, like a voltage spike that determines firing or non-firing). For
this, we will change the neuronal dynamics of the hidden layers to be either -1 (non-firing) or
+1 (firing), where specifically the activation function at each layer is the sign function. Such
a structure is similar as in literature in [12], which is used as a supervised learning network.
Apart from handling the input neurons correctly the main reasons for such a structure choice
are the following: Firstly, this structure allows for a multi-layered network, which is required
for more control complexity as we have established before. The version of Hebbian learning
in the raahn algorithm normalizes the control output first for proper learning, which is not
defined for a multilayered structure. The Hebbian weight updates in [12] are now simply ηm
or −ηm, based on the pre- and postsynaptic activations. Here, η denotes the learning rate
and m the global modulation signal. The network structure as such is strictly defined to
learn in a supervised fashion, from which we can infer a different understanding in the sense
of reinforcement learning.

In order to make the agent react to global rewards, we will now introduce what the global
reward RNk will be. Since an episode of cart-pole terminates ones it deviates too much from
the equilibrium, we can assign a particular reward rk of 1, at every time tick that it is alive.
The anticipation step value N is now dynamic, and based on the duration of each episode.
We can then construct the global reward RNk to be equal to

RNk = 1
200

N∑
i=k

ri. (5-7)

The 200 in the denominator corresponds to a perfect episode of 200 steps alive, giving a
value of RNk = 1. If we consider the performance of cart-pole, then we anticipate that a lot of
learning is necessary initially when the performance is bad, and little to no learning is required
once the performance is good. In other words, this means that we already now the optimal
global reward that is achievable (RNk = 1), and so rather than defining the modulation as

mk = g(RNk+1 −RNk ), (5-8)

we can directly write the modulation as

mk = 1−RNk . (5-9)

Master of Science Thesis Ajdin Husić



30 Experiments

Note that no negative modulation can occur (RNk is between 0 an 1), and so the network
will simply learn based on how well it performs. Note also, that we now use true episodic
optimization where we wait each episode before learning, and update the weights based on
the rolled out policy in that episode, whereas in the previous experiments with autonomous
car we used a strictly real-time adaptive learner.

For this experiment, we will also change the amount of layers to three, with first layer a
mapping from the four states xk to 12 hidden features h1,k. The second layer a mapping from
the previous features to 24 hidden features h2,k. And finally the last layer sigmoidal logistic
mapping (like in raahn) from the previous 24 features to a single scalar value uk in the range
[0, 1], where 1 denotes a right-force to the cart, and 0 denotes a left-force to the cart. The
actual control value is rounded, and so the cart is not allowed to stand still, i.e. it must get
either a left- or right-force.

With these new agent settings, training works quite well. The cart-pole is considered solved
if it remains alive1 for at least 195 time steps, for 100 consecutive episodes. The algorithm
was tested 10 times, and cart-pole was solved in an average of 343.3 episodes, using the global
reward method as described above.

1The cart-pole environment stays alive as long as the pole does not deviate more than 15 degrees from its
upper equilibrium, and the position not more than 2.4 meters away from the center.
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Chapter 6

Discussion and Future Work

We have shown in this thesis that Hebbian learning can effectively be used to control au-
tonomous systems. The autonomous car has learned to control both its steering angle and
its velocity simultaneously, through the maximization of a single global reward function. The
sensitivity of the performance is in this way shifted from the specific modulation scheme, to a
global reward function. Even though care still needs to be taken to correctly set up a global
reward function, I would argue that it must be easier, since it is designed in a general context,
rather than a specific one for a certain control variable. For future work, we can look at po-
tentially even better ways to come up with this general global reward. We could for example
look to use a different idea of the long term effect on the agent with some form of eligibility
trace, like in different methods in literature. More importantly, I would say that establishing
reward-based Hebbian learning theory using convergence proofs would have a high priority,
since this would allow for an easier approach given a set of assumptions about the problem.
Furthermore, we could potentially think about different methods of storing sample specific
rewards, like a value function approximation as in other reinforcement learning approaches,
and use our general modulation scheme along with these reward values to learn more ro-
bustly. Overall, the idea of using global rewards opens up a new door to novel algorithms
with Hebbian learning, as the definition space of objective functions is very broad.
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Chapter 7

Conclusion

I proposed in this thesis that global reward functions can be used to train autonomous systems,
which solves the main drawbacks of the existing novelty-Raahn algorithm. In this way, it
makes sure that the agent can learn all control agent simultaneously. This is supported by
the results in chapter 5. These experiments have shown a couple of interesting things. Firstly,
we have shown that autonomous control with Hebbian learning now actually becomes an
optimization problem, in which the reward converges. Secondly, the new algorithm enables
a similar performance as the existing algorithms, while having to control a more complex
system. Finally, we have shown that the method is indeed more general, since it is able
to learn to control a completely different system, with an unstable equilibrium. The type
of design effort required is now different in that it focuses on a more general concept of
optimization, rather than how the desired behavior is related to the exact dynamics. From
this we can conclude that the algorithm has become more useful, which is also promising for
future research.
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Source Code

Appendices are found in the back.

-1 Python code for the autonomous car agent

-1-1 The environment

The following code is part of the autonomous car environment.

raahn.py

1
2
3 # -*- coding: utf-8 -*-
4 """
5 Created on Tue Jun 5 15:12:41 2018
6
7
8 @author: ajdin
9 """

10 import pygame
11
12 from CarMazeEnv import CarMazeEnv
13
14 display_width = 1600
15 display_height = 1440
16
17 res = ( display_width , display_height )
18
19 simul = None
20
21
22 def main ( ) :
23 global simul
24 simul = CarMazeEnv ( )
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25 render = False
26 RUNNING , PAUSE = 0 , 1
27 state = RUNNING
28
29 while not simul . game_ext :
30 for event in pygame . event . get ( ) :
31 if event . type == pygame . QUIT or simul . game_ext :
32 simul . close ( )
33 return
34
35 if event . type == pygame . KEYDOWN :
36 if event . key == pygame . K_p and state == RUNNING : state = PAUSE
37 elif event . key == pygame . K_p and state == PAUSE : state = RUNNING
38
39 if state == RUNNING :
40 simul . crashcounting_test ( )
41 try :
42 if render :
43 simul . render ( res )
44 except Exception as E :
45 simul . close ( )
46 raise E
47
48
49
50 main ( )
51 pygame . quit ( )
52 #quit()
53
54 #%%
55 #import envmanager
56 #import matplotlib.pyplot as plt
57 ###
58 ###
59 #import numpy as np
60 #
61 # plt.scatter(envmanager.performance_vector , envmanager.modulation_vector

)
62 #performance_vector = envmanager.performance_vector
63 #modulation_vector = envmanager.modulation_vector
64 #p = performance_vector.argsort()
65 #plt.plot(np.tanh(12*performance_vector[p]), modulation_vector[p])
66 #sensor_vector = envmanager.sensor_vector
67 #
68 #
69 #
70 #delta_performance_vector = np.zeros(len(performance_vector))
71 #delta_modulation_vector = np.zeros(len(modulation_vector))
72 #delta_sensor_vector = np.zeros(len(sensor_vector))
73 #batchsize = 2
74 #for x in range(len(performance_vector)-batchsize+1):
75 # delta_performance_vector[x+1] = performance_vector[x+batchsize -1] -

performance_vector[x]
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76 # delta_modulation_vector[x+1] = np.mean(modulation_vector[x:x+
batchsize])

77 # delta_sensor_vector[x+1] = -sensor_vector[x+batchsize -1] +
sensor_vector[x]

78 #
79 ##sort the indices
80 #p = delta_sensor_vector.argsort()
81 #
82 #
83 #plt.plot(delta_sensor_vector[p], modulation_vector[p])

Car.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jun 13 21:11:27 2018
4
5 @author: ajdin
6 """
7 #from Line import Line
8
9 import numpy as np

10
11 import xml . etree . ElementTree as ET
12 import pygame
13
14 from lines import LineSegment
15
16 redcolor = (0xff , 0 , 0 )
17
18 class CarConfig :
19 """
20 Configures initial parameters or constants , used by the Car class.
21 """
22 root = ET . parse (’Maps/XMap.xml’ ) . getroot ( )
23 ROOT = root . find (’Robot’ )
24 def __init__ (self , root=ROOT ) :
25 self . x = float ( root . find (’X’ ) . text )
26 self . y = float ( root . find (’Y’ ) . text )
27 self . angle = float ( root . find (’Angle’ ) . text )
28
29
30 class Car ( object ) :
31 """
32 Agent that moves through a 2D environment , which can be visualized

using a pygame surface.
33
34 Parameters
35 ----------
36 center: tuple , optional.
37 Sets the initial position in a 2D plane using Cartesion coordinates.

default is (0,0).
38
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39 angle: float , optional.
40 Sets the initial angle in degrees of the agent relative to a 2D frame

. default is 0.
41
42 Attributes
43 ----------
44 center:
45
46 velocity:
47
48 speed:
49
50 acceleration:
51
52 image:
53
54 angle:
55
56 """
57
58 CONTROL_THRESHOLD = 0.5
59 MIN_SPEED_X = 10.0
60 MIN_SPEED_Y = 8.0
61 MAX_SPEED_X = 15.0
62 MAX_SPEED_Y = 12.0
63 MAX_ROTATE = 1.0
64 MIN_ROTATE = 0.0
65 ROTATE_SPEED = 2.0
66 ROTATE_RANGE = 2.0∗ ROTATE_SPEED
67 ACCELERATION = 0.08
68 ACCELERATION_RANGE = 2.0∗ ACCELERATION
69 RADIUS = 3.0
70
71 def __init__ (self , center=(0 ,0) , angle=0) :
72 self . center = center
73 self . lastpos = center
74 self . velocity = (0 , 0)
75 self . speed = ( self . MAX_SPEED_X , self . MAX_SPEED_Y )
76 self . speed_x = self . speed [ 0 ]
77 self . acceleration = 0
78 self . image = pygame . image . load (’Textures/CarResized.png’ )
79 self . angle = angle % 360
80 self . last_can_move = True
81 self . can_move = True
82 self . reset_speed = False
83 self . num_crashes = 0
84 self . upper_bounds = ( self . MAX_SPEED_X , self . MAX_SPEED_Y )
85 self . lower_bounds = ( self . MIN_SPEED_X , self . MIN_SPEED_Y )
86
87 def update (self , walls ) :
88 self . lastpos = self . center
89 radians = np . radians ( self . angle )
90 yx_ratio = self . MAX_SPEED_Y / self . MAX_SPEED_X
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91 resulting_speed = ( self . speed_x , yx_ratio∗self . speed_x )
92 self . speed = np . clip ( resulting_speed , self . lower_bounds , self .

upper_bounds )
93 self . speed_x = np . clip ( self . speed_x , self . MIN_SPEED_X , self .

MAX_SPEED_X )
94 self . velocity = (np . cos ( radians ) ∗self . speed [ 0 ] , np . sin ( radians ) ∗self .

speed [ 1 ] )
95 original = self . center
96 projected = tuple (np . add ( original , self . velocity ) )
97 collision_line = LineSegment ( original , projected )
98 walls_in_bounds = collision_line . entities_in_bounds ( walls )
99 self . can_move = True

100 for wall in walls_in_bounds :
101 intersections = collision_line . intersects ( wall )
102 if len ( intersections ) > 0 :
103 if self . last_can_move :
104 self . num_crashes += 1
105 self . can_move = False
106 if self . reset_speed :
107 self . speed = ( self . MIN_SPEED_X , self . MIN_SPEED_Y )
108 break
109 if self . can_move :
110 self . center = tuple (np . add ( self . center , self . velocity ) )
111 self . last_can_move = self . can_move
112
113 def draw (self , display , options ) :
114 x_scale = options [ ’x_scale’ ]
115 x_translate = options [ ’x_translate’ ]
116 x = self . center [ 0 ] ∗ x_scale + x_translate
117 y = self . center [ 1 ] ∗ x_scale + x_translate
118 angle = self . angle
119 angle %= 360
120 rotated_img = pygame . transform . rotate ( self . image , −angle )
121 original_rect = self . image . get_rect ( center=(x , y ) )
122 rotated_rect = rotated_img . get_rect ( center=original_rect . center )
123 display . blit ( rotated_img , rotated_rect )
124 pygame . draw . circle ( display , redcolor , tuple ( int (i ) for i in (x , y ) ) ,

int ( self . RADIUS ) , 2)

configs.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Oct 16 08:22:29 2018
4
5 @author: ajdin
6 """
7
8 import json
9

10 file = ’Networks/HebbianNet.json’
11
12 class Net3Config :
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13
14 def __init__ (self , filename=file ) :
15 self . layers = [ ]
16 with open ( filename ) as rfile :
17 container = json . load ( rfile )
18 for layer in container [ ’NeuralNetwork3’ ] [ ’NetworkLayers’ ] :
19 try :
20 neuron_count = layer [ ’neuron_count’ ]
21 learning_rate = layer [ ’learning_rate’ ]
22 training_method = layer [ ’training_method’ ]
23 modulation_scheme = layer [ ’modulation_scheme’ ]
24 layerconfig = LayerConfig ( neuron_count , learning_rate ,

training_method , modulation_scheme )
25 self . layers . append ( layerconfig )
26 except KeyError :
27 break
28 self . input_count = container [ ’NeuralNetwork3’ ] [ ’input_count’ ]
29 self . output_noise_mag = container [ ’NeuralNetwork3’ ] [ ’output_noise_mag

’ ]
30 self . weight_noise_mag = container [ ’NeuralNetwork3’ ] [ ’weight_noise_mag

’ ]
31 self . weight_cap = container [ ’NeuralNetwork3’ ] [ ’weight_cap’ ]
32
33
34 class LayerConfig :
35
36 def __init__ (self , neuron_count , learning_rate , training_method ,

modulation_scheme ) :
37 self . neuron_count = neuron_count
38 self . learning_rate = learning_rate
39 self . training_method = training_method
40 self . modulation_scheme = modulation_scheme

lines.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Aug 25 16:27:41 2018
4
5 @author: ajdin
6 """
7 import numpy as np
8
9 def get_dist (p1 , p2 ) :

10 return ( ( p2 [1]−p1 [ 1 ] ) ∗∗2 + (p2 [0]−p1 [ 0 ] ) ∗∗2) ∗∗(1/2)
11
12 class LineSegment :
13
14 def __init__ (self , startPoint , endPoint ) :
15 self . startPoint = startPoint
16 self . endPoint = endPoint
17 self . setUp ( )
18
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19 def setUp ( self ) :
20 deltaX = self . endPoint [ 0 ] − self . startPoint [ 0 ]
21
22 #Set up the bounds
23 self . upperBoundY = max ( self . endPoint [ 1 ] , self . startPoint [ 1 ] )
24 self . lowerBoundY = min ( self . endPoint [ 1 ] , self . startPoint [ 1 ] )
25
26 self . upperBoundX = max ( self . endPoint [ 0 ] , self . startPoint [ 0 ] )
27 self . lowerBoundX = min ( self . endPoint [ 0 ] , self . startPoint [ 0 ] )
28
29 #If the change in x is 0, the slope is undefined
30 if abs ( deltaX ) <= 1e−5:
31 self . vertical = True
32 self . slope = None
33 #If the line segment is just a point , it’s x coordinate is stored

in lowerBounds
34 self . lowerBoundX = self . startPoint [ 0 ]
35 #End if
36 else :
37 self . vertical = False
38 self . slope = ( self . endPoint [ 1 ] − self . startPoint [ 1 ] ) / deltaX
39 self . yIntercept = self . startPoint [ 1 ] − ( self . slope ∗ self .

startPoint [ 0 ] )
40
41 def getY (self , x ) :
42 if x >= self . lowerBoundX and x <= self . upperBoundX and not self .

vertical :
43 return self . slope∗x + self . yIntercept
44 else :
45 return np . inf
46
47 def intersects (self , line ) :
48 intersection = [ ]
49 bothVertical = self . vertical and line . vertical
50 parallel = self . slope == line . slope and not self . vertical and not

line . vertical
51
52 if bothVertical or parallel :
53 if ( bothVertical and self . lowerBoundX == line . lowerBoundX ) or (

parallel and self . yIntercept == line . yIntercept ) :
54 lowerInBounds = self . valueInBounds ( self . lowerBoundY , line .

lowerBoundY , line . upperBoundY )
55 upperInBounds = self . valueInBounds ( self . upperBoundY , line .

lowerBoundY , line . upperBoundY )
56
57 if lowerInBounds and upperInBounds :
58 intersection . append ( ( self . lowerBoundX , self . lowerBoundY ) )
59 intersection . append ( ( self . lowerBoundX , self . upperBoundY ) )
60 elif lowerInBounds :
61 intersection . append ( ( self . lowerBoundX , self . lowerBoundY ) )
62 intersection . append ( ( self . lowerBoundX , line . upperBoundY ) )
63 elif upperInBounds :
64 intersection . append ( ( self . lowerBoundX , line . lowerBoundY ) )
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65 intersection . append ( ( self . lowerBoundX , self . upperBoundY ) )
66 elif self . valueInBounds ( line . lowerBoundY , self . lowerBoundY , self .

upperBoundY ) and self . valueInBounds ( line . upperBoundY , self .
lowerBoundY , self . upperBoundY ) :

67 intersection . append ( ( self . lowerBoundX , line . lowerBoundY ) )
68 intersection . append ( ( self . lowerBoundX , line . upperBoundY ) )
69 return intersection
70 elif self . vertical :
71 y = line . getY ( self . lowerBoundX )
72 #Maker sure the returned y is valid
73 #GetY not returning infinity makes sure that the point is in bounds

of this line
74 if y == np . inf or not line . valueInBounds (y , self . lowerBoundY , self .

upperBoundY ) :
75 return intersection
76
77 intersection . append ( ( self . lowerBoundX , y ) )
78 return intersection
79 elif line . vertical :
80 y = self . getY ( self . lowerBoundX )
81 #Make sure the returned y is valid
82 #GetY not returning infinity makes sure that the point is in bounds

of line
83 if y == np . inf or not self . valueInBounds (y , line . lowerBoundY , line .

upperBoundY ) :
84 return intersection
85
86 intersection . append ( ( line . lowerBoundX , y ) )
87 return intersection
88 else :
89 intersectionX = ( line . yIntercept − self . yIntercept ) / ( self . slope −

line . slope )
90 if self . valueInBounds ( intersectionX , self . lowerBoundX , self .

upperBoundX ) and self . valueInBounds ( intersectionX , line .
lowerBoundX , line . upperBoundX ) :

91 intersection . append ( ( ( intersectionX ) , self . getY ( intersectionX ) ) )
92
93 return intersection
94
95
96 def valueInBounds (self , value , lowerBound , upperBound ) :
97 if value >= lowerBound and value <= upperBound :
98 return True
99 else :

100 return False
101
102 def angle_between (self , line2 ) :
103 vector1 = ( self . endPoint [ 0 ] − self . startPoint [ 0 ] , self . endPoint [ 1 ] −

self . startPoint [ 1 ] )
104 vector2 = ( line2 . endPoint [ 0 ] − line2 . startPoint [ 0 ] , line2 . endPoint [ 1 ]

− line2 . startPoint [ 1 ] )
105 inner_product = vector1 [ 0 ] ∗ vector2 [ 0 ] + vector1 [ 1 ] ∗ vector2 [ 1 ]
106 len1 = np . linalg . norm ( vector1 )
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107 len2 = np . linalg . norm ( vector2 )
108 return np . degrees (np . arccos ( inner_product /( len1∗len2 ) ) )
109
110 @staticmethod
111 def overlapsInDimension ( pointsA , pointsB ) :
112 Amin = min ( pointsA )
113 Amax = max ( pointsA )
114 Bmin = min ( pointsB )
115 Bmax = max ( pointsB )
116 if Amin > Bmax :
117 return False
118 if Amax < Bmin :
119 return False
120 return True
121
122 # def entities_in_bounds(self, entities):
123 # entities_in_bounds = []
124 # for entity in entities:
125 # lowerInBoundsY = self.valueInBounds(self.lowerBoundY , entity.

lowerBoundY , entity.upperBoundY)
126 # upperInBoundsY = self.valueInBounds(self.upperBoundY , entity.

lowerBoundY , entity.upperBoundY)
127 # lowerInBoundsX = self.valueInBounds(self.lowerBoundX , entity.

lowerBoundX , entity.upperBoundX)
128 # upperInBoundsX = self.valueInBounds(self.upperBoundX , entity.

lowerBoundX , entity.upperBoundX)
129 # entityInBounds = lowerInBoundsY or upperInBoundsY or

lowerInBoundsX or upperInBoundsX
130 # if entityInBounds:
131 # entities_in_bounds.append(entity)
132 # return entities_in_bounds
133
134 def entities_in_bounds (self , entities ) :
135 entities_in_bounds = [ ]
136 pointsAx = ( self . lowerBoundX , self . upperBoundX )
137 pointsAy = ( self . lowerBoundY , self . upperBoundY )
138 for entity in entities :
139 pointsBx = ( entity . lowerBoundX , entity . upperBoundX )
140 pointsBy = ( entity . lowerBoundY , entity . upperBoundY )
141 overlapsInX = LineSegment . overlapsInDimension ( pointsAx , pointsBx )
142 overlapsInY = LineSegment . overlapsInDimension ( pointsAy , pointsBy )
143 entityInBounds = overlapsInX and overlapsInY
144 if entityInBounds :
145 entities_in_bounds . append ( entity )
146 return entities_in_bounds

rangefinder.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Aug 26 20:08:34 2018
4
5 @author: ajdin
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6 """
7 from lines import LineSegment
8 from lines import get_dist
9

10 import numpy as np
11 import pygame
12
13 class RangeFinder ( LineSegment ) :
14
15 def __init__ (self , car , default_length=350 , relativeAngle=0) :
16 self . car = car
17 self . default_length = default_length
18 self . length = self . default_length
19 self . relativeAngle = relativeAngle
20 super ( ) . __init__ ( self . getStartPoint ( ) , self . getEndPoint ( ) )
21 self . activation = 0.0
22
23 def getStartPoint ( self ) :
24 return self . car . center
25
26 def getEndPoint ( self ) :
27 rads = np . radians ( self . car . angle + self . relativeAngle )
28 change = (np . cos ( rads ) , np . sin ( rads ) )
29 return tuple (np . add ( self . car . center , tuple (x∗( self . default_length )

for x in change ) ) )
30
31 def update_position ( self ) :
32 self . startPoint = self . getStartPoint ( )
33 self . endPoint = self . getEndPoint ( )
34 self . setUp ( )
35
36 def update (self , walls ) :
37 self . update_position ( )
38 walls_in_bounds = self . entities_in_bounds ( walls )
39 nearestWallDistance = self . default_length
40 for wall in walls_in_bounds :
41 intersections = self . intersects ( wall )
42 if len ( intersections ) > 0 :
43 distance = get_dist ( self . car . center , intersections [ 0 ] )
44 nearestWallDistance = min ( distance , nearestWallDistance )
45 self . length = nearestWallDistance
46 self . activation = ( self . default_length − self . length ) / self .

default_length
47
48 def draw (self , display , options ) :
49 color = tuple ( [ self . activation∗x for x in (255 , 80 , 0) ] )
50 x_scale = options [ ’x_scale’ ]
51 x_translate = options [ ’x_translate’ ]
52 startPoint = tuple ( x_scale∗x+x_translate for x in self . startPoint )
53 endPoint= tuple ( x_scale∗x+x_translate for x in self . endPoint )
54 pygame . draw . aaline ( display , color , startPoint , endPoint )
55
56
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57 class RangeFinderGroup ( list ) :
58
59 def __init__ (self , car , size=11) :
60 self . car = car
61 self . count = size
62 self . activations = [ ]
63 self . configure ( )
64
65 def configure (self , default_length=350 , angleOffset=−90, angle_between

=18) :
66 self . default_length = default_length
67 self . startAngle = angleOffset
68 self . angleSpacing = angle_between
69
70 for i in range ( self . count ) :
71 relativeAngle = self . startAngle + ( self . angleSpacing∗i )
72 self . append ( RangeFinder ( self . car , self . default_length ,

relativeAngle ) )
73 self . activations . append ( self [ i ] . activation )
74
75 def update (self , walls ) :
76 for i in range ( self . count ) :
77 self [ i ] . update ( walls )
78 self . activations [ i ] = self [ i ] . activation
79
80 def draw (self , display , options ) :
81 for i in range ( self . count ) :
82 self [ i ] . draw ( display , options )

Wall.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Sep 13 13:26:34 2018
4
5 @author: ajdin
6 """
7 from lines import LineSegment
8 import pygame
9 import xml . etree . ElementTree as ET

10
11 root = ET . parse (’Maps/XMap.xml’ ) . getroot ( )
12 ROOT = root . find (’Entity’ )
13
14 class EntityConfig :
15 def __init__ (self , root=ROOT ) :
16 self . x = float ( root . find (’X’ ) . text )
17 self . y = float ( root . find (’Y’ ) . text )
18 self . relX = float ( root . find (’RelX’ ) . text )
19 self . relY = float ( root . find (’RelY’ ) . text )
20 self . angle = float ( root . find (’Angle’ ) . text )
21 self . type_ = None
22 if root . get (’Type’ ) :
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23 self . type_ = root . get (’Type’ )
24
25 black = (0 , 0 , 0)
26
27 class Wall ( LineSegment ) :
28 def __init__ (self , startPoint , endPoint ) :
29 super ( ) . __init__ ( startPoint , endPoint )
30
31 def draw (self , display , options ) :
32 x_scale = options [ "x_scale" ]
33 x_translate = options [ "x_translate" ]
34 startPoint = tuple ( x_scale∗x+x_translate for x in self . startPoint )
35 endPoint = tuple ( x_scale∗x+x_translate for x in self . endPoint )
36 pygame . draw . aaline ( display , black , startPoint , endPoint )

-1-2 Xmap.xml

1 <?xml version="1.0" encoding="utf-8"?>
2 <Map xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance" xmlns:xsd="

http://www.w3.org/2001/XMLSchema">
3 <Robot>
4 <X>1561.9331742243444</X>
5 <Y>505.79080279525812</Y>
6 <Angle>0</Angle>
7 </Robot>
8 <Entity Type="Wall">
9 <X>1301.3842482100238</X>

10 <Y>675.13128038897889</Y>
11 <RelX>769.83293556080639</RelX>
12 <RelY>1.4438228390645236E−11</RelY>
13 <Angle>0</Angle>
14 </Entity>
15 <Entity Type="Wall">
16 <X>2071.21718377083</X>
17 <Y>675.13128038899333</Y>
18 <RelX>210.78758949880694</RelX>
19 <RelY>−52.512155591572082</RelY>
20 <Angle>0</Angle>
21 </Entity>
22 <Entity Type="Wall">
23 <X>2282.0047732696371</X>
24 <Y>622.61912479742125</Y>
25 <RelX>155.79952267303088</RelX>
26 <RelY>−171.53970826580246</RelY>
27 <Angle>0</Angle>
28 </Entity>
29 <Entity Type="Wall">
30 <X>2437.804295942668</X>
31 <Y>451.07941653161879</Y>
32 <RelX>128.30548926014308</RelX>
33 <RelY>−297.56888168557509</RelY>
34 <Angle>0</Angle>
35 </Entity>
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36 <Entity Type="Wall">
37 <X>2566.1097852028111</X>
38 <Y>153.5105348460437</Y>
39 <RelX>142.05250596658698</RelX>
40 <RelY>−150.53484602917376</RelY>
41 <Angle>0</Angle>
42 </Entity>
43 <Entity Type="Wall">
44 <X>2708.162291169398</X>
45 <Y>2.9756888168699334</Y>
46 <RelX>164.96420047732727</RelX>
47 <RelY>−38.508914100486209</RelY>
48 <Angle>0</Angle>
49 </Entity>
50 <Entity Type="Wall">
51 <X>2873.1264916467253</X>
52 <Y>−35.533225283616275</Y>
53 <RelX>155.79952267303088</RelX>
54 <RelY>45.510534846029145</RelY>
55 <Angle>0</Angle>
56 </Entity>
57 <Entity Type="Wall">
58 <X>3028.9260143197562</X>
59 <Y>9.97730956241287</Y>
60 <RelX>105.39379474940324</RelX>
61 <RelY>94.521880064829816</RelY>
62 <Angle>0</Angle>
63 </Entity>
64 <Entity Type="Wall">
65 <X>3134.3198090691594</X>
66 <Y>104.49918962724269</Y>
67 <RelX>−13.747016706443901</RelX>
68 <RelY>143.53322528363049</RelY>
69 <Angle>0</Angle>
70 </Entity>
71 <Entity Type="Wall">
72 <X>3120.5727923627155</X>
73 <Y>248.03241491087317</Y>
74 <RelX>−128.30548926014308</RelX>
75 <RelY>196.04538087520177</RelY>
76 <Angle>0</Angle>
77 </Entity>
78 <Entity Type="Wall">
79 <X>2992.2673031025724</X>
80 <Y>444.07779578607494</Y>
81 <RelX>−160.38186157517885</RelX>
82 <RelY>227.55267423014607</RelY>
83 <Angle>0</Angle>
84 </Entity>
85 <Entity Type="Wall">
86 <X>2831.8854415273936</X>
87 <Y>671.630470016221</Y>
88 <RelX>−201.622911694511</RelX>
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89 <RelY>161.03727714748766</RelY>
90 <Angle>0</Angle>
91 </Entity>
92 <Entity Type="Wall">
93 <X>2630.2625298328826</X>
94 <Y>832.66774716370867</Y>
95 <RelX>−114.55847255369918</RelX>
96 <RelY>154.03565640194506</RelY>
97 <Angle>0</Angle>
98 </Entity>
99 <Entity Type="Wall">

100 <X>2515.7040572791834</X>
101 <Y>986.70340356565373</Y>
102 <RelX>−68.7350835322195</RelX>
103 <RelY>147.03403565640167</RelY>
104 <Angle>0</Angle>
105 </Entity>
106 <Entity Type="Wall">
107 <X>2446.9689737469639</X>
108 <Y>1133.7374392220554</Y>
109 <RelX>−9.164677804295934</RelX>
110 <RelY>129.52998379254495</RelY>
111 <Angle>0</Angle>
112 </Entity>
113 <Entity Type="Wall">
114 <X>2437.804295942668</X>
115 <Y>1263.2674230146004</Y>
116 <RelX>36.658711217183736</RelX>
117 <RelY>154.03565640194483</RelY>
118 <Angle>0</Angle>
119 </Entity>
120 <Entity Type="Wall">
121 <X>2474.4630071598517</X>
122 <Y>1417.3030794165452</Y>
123 <RelX>206.20525059665852</RelX>
124 <RelY>105.02431118314416</RelY>
125 <Angle>0</Angle>
126 </Entity>
127 <Entity Type="Wall">
128 <X>2680.6682577565102</X>
129 <Y>1522.3273905996894</Y>
130 <RelX>531.55131264916554</RelX>
131 <RelY>367.58508914100548</RelY>
132 <Angle>0</Angle>
133 </Entity>
134 <Entity Type="Wall">
135 <X>3212.2195704056758</X>
136 <Y>1889.9124797406948</Y>
137 <RelX>206.20525059665852</RelX>
138 <RelY>234.55429497568866</RelY>
139 <Angle>0</Angle>
140 </Entity>
141 <Entity Type="Wall">
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142 <X>3418.4248210023343</X>
143 <Y>2124.4667747163835</Y>
144 <RelX>−9.164677804295934</RelX>
145 <RelY>133.03079416531591</RelY>
146 <Angle>0</Angle>
147 </Entity>
148 <Entity Type="Wall">
149 <X>3409.2601431980383</X>
150 <Y>2257.4975688816994</Y>
151 <RelX>−100.81145584725527</RelX>
152 <RelY>133.03079416531546</RelY>
153 <Angle>0</Angle>
154 </Entity>
155 <Entity Type="Wall">
156 <X>3308.4486873507831</X>
157 <Y>2390.5283630470149</Y>
158 <RelX>−160.38186157517976</RelX>
159 <RelY>38.508914100485526</RelY>
160 <Angle>0</Angle>
161 </Entity>
162 <Entity Type="Wall">
163 <X>3148.0668257756033</X>
164 <Y>2429.0372771475004</Y>
165 <RelX>−288.68735083532192</RelX>
166 <RelY>−35.008103727714115</RelY>
167 <Angle>0</Angle>
168 </Entity>
169 <Entity Type="Wall">
170 <X>2859.3794749402814</X>
171 <Y>2394.0291734197863</Y>
172 <RelX>−192.45823389021461</RelX>
173 <RelY>−101.5235008103723</RelY>
174 <Angle>0</Angle>
175 </Entity>
176 <Entity Type="Wall">
177 <X>2666.9212410500668</X>
178 <Y>2292.505672609414</Y>
179 <RelX>−375.75178997613375</RelX>
180 <RelY>−287.06645056726074</RelY>
181 <Angle>0</Angle>
182 </Entity>
183 <Entity Type="Wall">
184 <X>2291.169451073933</X>
185 <Y>2005.4392220421532</Y>
186 <RelX>−261.19331742243435</RelX>
187 <RelY>−147.034035656402</RelY>
188 <Angle>0</Angle>
189 </Entity>
190 <Entity Type="Wall">
191 <X>2029.9761336514987</X>
192 <Y>1858.4051863857512</Y>
193 <RelX>−169.546539379475</RelX>
194 <RelY>−24.505672609400335</RelY>
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195 <Angle>0</Angle>
196 </Entity>
197 <Entity Type="Wall">
198 <X>1860.4295942720237</X>
199 <Y>1833.8995137763509</Y>
200 <RelX>−490.31026252983293</RelX>
201 <RelY>−3.5008103727714115</RelY>
202 <Angle>0</Angle>
203 </Entity>
204 <Entity Type="Wall">
205 <X>1370.1193317421908</X>
206 <Y>1830.3987034035795</Y>
207 <RelX>−174.1288782816232</RelX>
208 <RelY>70.016207455429139</RelY>
209 <Angle>0</Angle>
210 </Entity>
211 <Entity Type="Wall">
212 <X>1195.9904534605676</X>
213 <Y>1900.4149108590086</Y>
214 <RelX>−229.11694510739824</RelX>
215 <RelY>178.54132901134517</RelY>
216 <Angle>0</Angle>
217 </Entity>
218 <Entity Type="Wall">
219 <X>966.87350835316931</X>
220 <Y>2078.9562398703538</Y>
221 <RelX>−155.79952267303111</RelX>
222 <RelY>203.04700162074505</RelY>
223 <Angle>0</Angle>
224 </Entity>
225 <Entity Type="Wall">
226 <X>811.07398568013821</X>
227 <Y>2282.0032414910988</Y>
228 <RelX>−219.95226730310253</RelX>
229 <RelY>147.034035656402</RelY>
230 <Angle>0</Angle>
231 </Entity>
232 <Entity Type="Wall">
233 <X>591.12171837703568</X>
234 <Y>2429.0372771475008</Y>
235 <RelX>−229.11694510739858</RelX>
236 <RelY>45.510534846029259</RelY>
237 <Angle>0</Angle>
238 </Entity>
239 <Entity Type="Wall">
240 <X>362.0047732696371</X>
241 <Y>2474.54781199353</Y>
242 <RelX>−256.61097852028638</RelX>
243 <RelY>−28.006482982171747</RelY>
244 <Angle>0</Angle>
245 </Entity>
246 <Entity Type="Wall">
247 <X>105.39379474935072</X>
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248 <Y>2446.5413290113584</Y>
249 <RelX>−151.21718377088303</RelX>
250 <RelY>−105.02431118314416</RelY>
251 <Angle>0</Angle>
252 </Entity>
253 <Entity Type="Wall">
254 <X>−45.823389021532307</X>
255 <Y>2341.5170178282142</Y>
256 <RelX>2</RelX>
257 <RelY>−154.03565640194483</RelY>
258 <Angle>0</Angle>
259 </Entity>
260 <Entity Type="Wall">
261 <X>−43.823389021532307</X>
262 <Y>2187.4813614262694</Y>
263 <RelX>192.45823389021473</RelX>
264 <RelY>−238.05510534846053</RelY>
265 <Angle>0</Angle>
266 </Entity>
267 <Entity Type="Wall">
268 <X>146.63484486868242</X>
269 <Y>1949.4262560778088</Y>
270 <RelX>279.52267303102622</RelX>
271 <RelY>−238.05510534845939</RelY>
272 <Angle>0</Angle>
273 </Entity>
274 <Entity Type="Wall">
275 <X>426.15751789970864</X>
276 <Y>1711.3711507293494</Y>
277 <RelX>215.36992840095468</RelX>
278 <RelY>−185.54294975688777</RelY>
279 <Angle>0</Angle>
280 </Entity>
281 <Entity Type="Wall">
282 <X>641.52744630066331</X>
283 <Y>1525.8282009724617</Y>
284 <RelX>119.14081145584737</RelX>
285 <RelY>−168.03889789303093</RelY>
286 <Angle>0</Angle>
287 </Entity>
288 <Entity Type="Wall">
289 <X>760.66825775651068</X>
290 <Y>1357.7893030794307</Y>
291 <RelX>−4.582338902147967</RelX>
292 <RelY>−185.54294975688754</RelY>
293 <Angle>0</Angle>
294 </Entity>
295 <Entity Type="Wall">
296 <X>1301.3842482100238</X>
297 <Y>675.13128038897889</Y>
298 <RelX>−183.29355608597143</RelX>
299 <RelY>−115.52674230144339</RelY>
300 <Angle>0</Angle>
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301 </Entity>
302 <Entity Type="Wall">
303 <X>1118.0906921240523</X>
304 <Y>559.6045380875355</Y>
305 <RelX>−187.87589498806688</RelX>
306 <RelY>−171.53970826580229</RelY>
307 <Angle>0</Angle>
308 </Entity>
309 <Entity Type="Wall">
310 <X>930.21479713598546</X>
311 <Y>388.06482982173321</Y>
312 <RelX>−183.29355608591868</RelX>
313 <RelY>−94.521880064829816</RelY>
314 <Angle>0</Angle>
315 </Entity>
316 <Entity Type="Wall">
317 <X>746.92124105006678</X>
318 <Y>293.5429497569034</Y>
319 <RelX>−270.35799522673051</RelX>
320 <RelY>−94.521880064829588</RelY>
321 <Angle>0</Angle>
322 </Entity>
323 <Entity Type="Wall">
324 <X>476.56324582333627</X>
325 <Y>199.02106969207381</Y>
326 <RelX>−155.79952267303088</RelX>
327 <RelY>14.00324149108576</RelY>
328 <Angle>0</Angle>
329 </Entity>
330 <Entity Type="Wall">
331 <X>320.7637231503054</X>
332 <Y>213.02431118315957</Y>
333 <RelX>−128.30548926014319</RelX>
334 <RelY>84.019448946515354</RelY>
335 <Angle>0</Angle>
336 </Entity>
337 <Entity Type="Wall">
338 <X>192.45823389016221</X>
339 <Y>297.04376012967492</Y>
340 <RelX>−64.152744630071652</RelX>
341 <RelY>126.02917341977309</RelY>
342 <Angle>0</Angle>
343 </Entity>
344 <Entity Type="Wall">
345 <X>128.30548926009055</X>
346 <Y>423.072933549448</Y>
347 <RelX>36.658711217183736</RelX>
348 <RelY>133.03079416531608</RelY>
349 <Angle>0</Angle>
350 </Entity>
351 <Entity Type="Wall">
352 <X>164.96420047727429</X>
353 <Y>556.10372771476409</Y>
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354 <RelX>91.646778042959454</RelX>
355 <RelY>101.52350081037207</RelY>
356 <Angle>0</Angle>
357 </Entity>
358 <Entity Type="Wall">
359 <X>256.61097852023374</X>
360 <Y>657.62722852513616</Y>
361 <RelX>192.45823389021473</RelX>
362 <RelY>126.02917341977172</RelY>
363 <Angle>0</Angle>
364 </Entity>
365 <Entity Type="Wall">
366 <X>449.06921241044847</X>
367 <Y>783.65640194490788</Y>
368 <RelX>197.04057279236281</RelX>
369 <RelY>126.02917341977309</RelY>
370 <Angle>0</Angle>
371 </Entity>
372 <Entity Type="Wall">
373 <X>646.10978520281128</X>
374 <Y>909.685575364681</Y>
375 <RelX>91.646778042959568</RelX>
376 <RelY>94.5218800648297</RelY>
377 <Angle>0</Angle>
378 </Entity>
379 <Entity Type="Wall">
380 <X>737.75656324577085</X>
381 <Y>1004.2074554295107</Y>
382 <RelX>18.329355608591868</RelX>
383 <RelY>168.03889789303253</RelY>
384 <Angle>0</Angle>
385 </Entity>
386 <Entity Type="Wall">
387 <X>1397.8854415274473</X>
388 <Y>462.13495863941552</Y>
389 <RelX>535.21718377084085</RelX>
390 <RelY>−7.5740259740153988</RelY>
391 <Angle>0</Angle>
392 </Entity>
393 <Entity Type="Wall">
394 <X>1933.1026252982881</X>
395 <Y>454.56093266540012</Y>
396 <RelX>109.97613365155121</RelX>
397 <RelY>−53.2987012987013</RelY>
398 <Angle>0</Angle>
399 </Entity>
400 <Entity Type="Wall">
401 <X>2043.0787589498393</X>
402 <Y>401.26223136669881</Y>
403 <RelX>91.646778042959568</RelX>
404 <RelY>−129.03896103896102</RelY>
405 <Angle>0</Angle>
406 </Entity>
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407 <Entity Type="Wall">
408 <X>2134.7255369927989</X>
409 <Y>272.22327032773779</Y>
410 <RelX>91.64677804295934</RelX>
411 <RelY>−162.7012987012987</RelY>
412 <Angle>0</Angle>
413 </Entity>
414 <Entity Type="Wall">
415 <X>1397.8854415274473</X>
416 <Y>462.13495863941552</Y>
417 <RelX>−150.30071599049575</RelX>
418 <RelY>−114.171428571418</RelY>
419 <Angle>0</Angle>
420 </Entity>
421 <Entity Type="Wall">
422 <X>1247.5847255369515</X>
423 <Y>347.96353006799751</Y>
424 <RelX>−128.3054892601433</RelX>
425 <RelY>−143.06493506493496</RelY>
426 <Angle>0</Angle>
427 </Entity>
428 <Entity Type="Wall">
429 <X>1119.2792362768082</X>
430 <Y>204.89859500306255</Y>
431 <RelX>−190.62529832935547</RelX>
432 <RelY>−145.87012987012997</RelY>
433 <Angle>0</Angle>
434 </Entity>
435 <Entity Type="Wall">
436 <X>928.65393794745273</X>
437 <Y>59.028465132932581</Y>
438 <RelX>−234.615751789976</RelX>
439 <RelY>−84.155844155844363</RelY>
440 <Angle>0</Angle>
441 </Entity>
442 <Entity Type="Wall">
443 <X>694.03818615747673</X>
444 <Y>−25.127379022911782</Y>
445 <RelX>−340.92601431980904</RelX>
446 <RelY>−64.519480519480737</RelY>
447 <Angle>0</Angle>
448 </Entity>
449 <Entity Type="Wall">
450 <X>353.11217183766769</X>
451 <Y>−89.646859542392519</Y>
452 <RelX>−157.63245823389019</RelX>
453 <RelY>16.831168831168725</RelY>
454 <Angle>0</Angle>
455 </Entity>
456 <Entity Type="Wall">
457 <X>195.4797136037775</X>
458 <Y>−72.8156907112238</Y>
459 <RelX>−260.27684964200449</RelX>
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460 <RelY>53.298701298701076</RelY>
461 <Angle>0</Angle>
462 </Entity>
463 <Entity Type="Wall">
464 <X>−64.797136038227</X>
465 <Y>−19.516989412522719</Y>
466 <RelX>−164.96420047732698</RelX>
467 <RelY>129.03896103896096</RelY>
468 <Angle>0</Angle>
469 </Entity>
470 <Entity Type="Wall">
471 <X>−229.76133651555398</X>
472 <Y>109.52197162643824</Y>
473 <RelX>−80.649164677804322</RelX>
474 <RelY>165.50649350649354</RelY>
475 <Angle>0</Angle>
476 </Entity>
477 <Entity Type="Wall">
478 <X>−310.4105011933583</X>
479 <Y>275.02846513293179</Y>
480 <RelX>7.3317422434367927</RelX>
481 <RelY>232.83116883116918</RelY>
482 <Angle>0</Angle>
483 </Entity>
484 <Entity Type="Wall">
485 <X>−303.07875894992151</X>
486 <Y>507.85963396410096</Y>
487 <RelX>120.97374701670645</RelX>
488 <RelY>207.584415584415</RelY>
489 <Angle>0</Angle>
490 </Entity>
491 <Entity Type="Wall">
492 <X>−182.10501193321505</X>
493 <Y>715.444049548516</Y>
494 <RelX>278.60620525059659</RelX>
495 <RelY>193.55844155844147</RelY>
496 <Angle>0</Angle>
497 </Entity>
498 <Entity Type="Wall">
499 <X>96.501193317381535</X>
500 <Y>909.00249110695745</Y>
501 <RelX>208.95465393794734</RelX>
502 <RelY>165.5064935064936</RelY>
503 <Angle>0</Angle>
504 </Entity>
505 <Entity Type="Wall">
506 <X>305.45584725532888</X>
507 <Y>1074.508984613451</Y>
508 <RelX>109.97613365155144</RelX>
509 <RelY>145.87012987012963</RelY>
510 <Angle>0</Angle>
511 </Entity>
512 <Entity Type="Wall">
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513 <X>415.43198090688031</X>
514 <Y>1220.3791144835807</Y>
515 <RelX>−10.997613365154905</RelX>
516 <RelY>120.623376623377</RelY>
517 <Angle>0</Angle>
518 </Entity>
519 <Entity Type="Wall">
520 <X>404.43436754172541</X>
521 <Y>1341.0024911069577</Y>
522 <RelX>−153.96658711217174</RelX>
523 <RelY>151.48051948051943</RelY>
524 <Angle>0</Angle>
525 </Entity>
526 <Entity Type="Wall">
527 <X>250.46778042955367</X>
528 <Y>1492.4830105874771</Y>
529 <RelX>−245.61336515513125</RelX>
530 <RelY>193.55844155844147</RelY>
531 <Angle>0</Angle>
532 </Entity>
533 <Entity Type="Wall">
534 <X>4.854415274422422</X>
535 <Y>1686.0414521459186</Y>
536 <RelX>−245.61336515513119</RelX>
537 <RelY>235.63636363636351</RelY>
538 <Angle>0</Angle>
539 </Entity>
540 <Entity Type="Wall">
541 <X>−240.75894988070877</X>
542 <Y>1921.6778157822821</Y>
543 <RelX>−142.96897374701678</RelX>
544 <RelY>238.44155844155807</RelY>
545 <Angle>0</Angle>
546 </Entity>
547 <Entity Type="Wall">
548 <X>−383.72792362772554</X>
549 <Y>2160.11937422384</Y>
550 <RelX>1</RelX>
551 <RelY>266.49350649350663</RelY>
552 <Angle>0</Angle>
553 </Entity>
554 <Entity Type="Wall">
555 <X>−382.72792362772554</X>
556 <Y>2426.6128807173468</Y>
557 <RelX>113.64200477326949</RelX>
558 <RelY>143.06493506493507</RelY>
559 <Angle>0</Angle>
560 </Entity>
561 <Entity Type="Wall">
562 <X>−270.08591885445605</X>
563 <Y>2569.6778157822819</Y>
564 <RelX>263.94272076372317</RelX>
565 <RelY>103.79220779220759</RelY>
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566 <Angle>0</Angle>
567 </Entity>
568 <Entity Type="Wall">
569 <X>−6.1431980907328807</X>
570 <Y>2673.4700235744895</Y>
571 <RelX>421.57517899761331</RelX>
572 <RelY>14.025974025973483</RelY>
573 <Angle>0</Angle>
574 </Entity>
575 <Entity Type="Wall">
576 <X>415.43198090688043</X>
577 <Y>2687.4959976004629</Y>
578 <RelX>344.59188544152744</RelX>
579 <RelY>−109.40259740259808</RelY>
580 <Angle>0</Angle>
581 </Entity>
582 <Entity Type="Wall">
583 <X>760.02386634840786</X>
584 <Y>2578.0934001978649</Y>
585 <RelX>260.27684964200466</RelX>
586 <RelY>−154.28571428571377</RelY>
587 <Angle>0</Angle>
588 </Entity>
589 <Entity Type="Wall">
590 <X>1020.3007159904125</X>
591 <Y>2423.8076859121511</Y>
592 <RelX>304.26730310262519</RelX>
593 <RelY>−291.74025974025972</RelY>
594 <Angle>0</Angle>
595 </Entity>
596 <Entity Type="Wall">
597 <X>1324.5680190930377</X>
598 <Y>2132.0674261718914</Y>
599 <RelX>201.62291169450987</RelX>
600 <RelY>−100.9870129870128</RelY>
601 <Angle>0</Angle>
602 </Entity>
603 <Entity Type="Wall">
604 <X>1526.1909307875476</X>
605 <Y>2031.0804131848786</Y>
606 <RelX>263.94272076372363</RelX>
607 <RelY>5.610389610389575</RelY>
608 <Angle>0</Angle>
609 </Entity>
610 <Entity Type="Wall">
611 <X>1790.1336515512712</X>
612 <Y>2036.6908027952682</Y>
613 <RelX>546.2147971360373</RelX>
614 <RelY>356.25974025973892</RelY>
615 <Angle>0</Angle>
616 </Entity>
617 <Entity Type="Wall">
618 <X>2336.3484486873085</X>
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619 <Y>2392.9505430550071</Y>
620 <RelX>318.93078758949878</RelX>
621 <RelY>148.6753246753251</RelY>
622 <Angle>0</Angle>
623 </Entity>
624 <Entity Type="Wall">
625 <X>2655.2792362768073</X>
626 <Y>2541.6258677303322</Y>
627 <RelX>421.57517899761342</RelX>
628 <RelY>84.155844155843624</RelY>
629 <Angle>0</Angle>
630 </Entity>
631 <Entity Type="Wall">
632 <X>3076.8544152744207</X>
633 <Y>2625.7817118861758</Y>
634 <RelX>377.58472553699266</RelX>
635 <RelY>−22.4415584415583</RelY>
636 <Angle>0</Angle>
637 </Entity>
638 <Entity Type="Wall">
639 <X>3454.4391408114134</X>
640 <Y>2603.3401534446175</Y>
641 <RelX>194.29116945107398</RelX>
642 <RelY>−58.909090909090082</RelY>
643 <Angle>0</Angle>
644 </Entity>
645 <Entity Type="Wall">
646 <X>3648.7303102624874</X>
647 <Y>2544.4310625355274</Y>
648 <RelX>87.9809069212406</RelX>
649 <RelY>−218.80519480519524</RelY>
650 <Angle>0</Angle>
651 </Entity>
652 <Entity Type="Wall">
653 <X>3736.711217183728</X>
654 <Y>2325.6258677303322</Y>
655 <RelX>−40.324582338901564</RelX>
656 <RelY>−277.71428571428532</RelY>
657 <Angle>0</Angle>
658 </Entity>
659 <Entity Type="Wall">
660 <X>3696.3866348448264</X>
661 <Y>2047.9115820160469</Y>
662 <RelX>−109.97613365155121</RelX>
663 <RelY>−246.85714285714266</RelY>
664 <Angle>0</Angle>
665 </Entity>
666 <Entity Type="Wall">
667 <X>3586.4105011932752</X>
668 <Y>1801.0544391589042</Y>
669 <RelX>−373.91885441527484</RelX>
670 <RelY>−336.62337662337677</RelY>
671 <Angle>0</Angle>
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672 </Entity>
673 <Entity Type="Wall">
674 <X>3212.4916467780004</X>
675 <Y>1464.4310625355274</Y>
676 <RelX>−362.92124105011862</RelX>
677 <RelY>−210.38961038961043</RelY>
678 <Angle>0</Angle>
679 </Entity>
680 <Entity Type="Wall">
681 <X>2849.5704057278817</X>
682 <Y>1254.041452145917</Y>
683 <RelX>−40.324582338902474</RelX>
684 <RelY>−117.81818181818198</RelY>
685 <Angle>0</Angle>
686 </Entity>
687 <Entity Type="Wall">
688 <X>2809.2458233889793</X>
689 <Y>1136.223270327735</Y>
690 <RelX>120.97374701670651</RelX>
691 <RelY>−224.41558441558402</RelY>
692 <Angle>0</Angle>
693 </Entity>
694 <Entity Type="Wall">
695 <X>2930.2195704056858</X>
696 <Y>911.807685912151</Y>
697 <RelX>359.2553699284008</RelX>
698 <RelY>−336.62337662337654</RelY>
699 <Angle>0</Angle>
700 </Entity>
701 <Entity Type="Wall">
702 <X>3289.4749403340866</X>
703 <Y>575.18430928877444</Y>
704 <RelX>168.63007159904555</RelX>
705 <RelY>−361.87012987012986</RelY>
706 <Angle>0</Angle>
707 </Entity>
708 <Entity Type="Wall">
709 <X>3458.1050119331321</X>
710 <Y>213.31417941864458</Y>
711 <RelX>7.3317422434374748</RelX>
712 <RelY>−272.10389610389575</RelY>
713 <Angle>0</Angle>
714 </Entity>
715 <Entity Type="Wall">
716 <X>3465.4367541765696</X>
717 <Y>−58.789716685251165</Y>
718 <RelX>−131.97136038186181</RelX>
719 <RelY>−204.77922077922074</RelY>
720 <Angle>0</Angle>
721 </Entity>
722 <Entity Type="Wall">
723 <X>3333.4653937947078</X>
724 <Y>−263.5689374644719</Y>
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725 <RelX>−366.58711217183782</RelX>
726 <RelY>−123.4285714285715</RelY>
727 <Angle>0</Angle>
728 </Entity>
729 <Entity Type="Wall">
730 <X>2966.87828162287</X>
731 <Y>−386.9975088930434</Y>
732 <RelX>−315.26491646778049</RelX>
733 <RelY>25.246753246753258</RelY>
734 <Angle>0</Angle>
735 </Entity>
736 <Entity Type="Wall">
737 <X>2651.6133651550895</X>
738 <Y>−361.75075564629014</Y>
739 <RelX>−205.28878281622883</RelX>
740 <RelY>100.98701298701297</RelY>
741 <Angle>0</Angle>
742 </Entity>
743 <Entity Type="Wall">
744 <X>2446.3245823388606</X>
745 <Y>−260.76374265927717</Y>
746 <RelX>−131.97136038186181</RelX>
747 <RelY>109.40259740259688</RelY>
748 <Angle>0</Angle>
749 </Entity>
750 <Entity Type="Wall">
751 <X>2314.3532219569988</X>
752 <Y>−151.36114525668029</Y>
753 <RelX>0</RelX>
754 <RelY>0</RelY>
755 <Angle>0</Angle>
756 </Entity>
757 <Entity Type="Wall">
758 <X>2314.3532219569988</X>
759 <Y>−151.36114525668029</Y>
760 <RelX>−87.9809069212406</RelX>
761 <RelY>260.88311688311938</RelY>
762 <Angle>0</Angle>
763 </Entity>
764 <Entity Type="Point">
765 <X>1619.212410501194</X>
766 <Y>1275.6414521459071</Y>
767 <RelX>0</RelX>
768 <RelY>0</RelY>
769 <Angle>0</Angle>
770 </Entity>
771 </Map>

-1-3 Agent

CarMazeEnv.py
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1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jun 14 00:28:13 2018
4
5 @author: ajdin
6 """
7 import numpy as np
8
9 import pygame

10 import visualnet
11 import agent_functions as funs
12 import novelty
13
14 from configs import MapBuilder
15 from envmanager import EnvManager
16 from controllers import ControlScheme as control
17 from modulation import ModulationScheme , ModulationSignal
18 from rangefinder import RangeFinderGroup as sensors
19 from net3 import NeuralNetwork3 as nn3
20 from net3 import Agent
21 from performance import Performance
22
23 ###########################################################
24
25 black = (0 , 0 , 0)
26 white = (255 , 255 , 255)
27 red = (255 , 0 , 0)
28 redcolor = (0xff , 0 , 0 )
29
30 def drawText (font , text , pos , display ) :
31 textSurf = font . render (text , False , black )
32 display . blit ( textSurf , pos )
33
34 def drawCenter (pos , display , options ) :
35 x_scale = options [ ’x_scale’ ]
36 x_translate = options [ ’x_translate’ ]
37 position = tuple ( int ( x_scale∗x+x_translate ) for x in pos )
38 pygame . draw . circle ( display , redcolor , position , 5 , 2)
39
40
41 mapbuilder = MapBuilder ( )
42
43 class CarEnv :
44 OPTIONS = {’x_scale’ : 0 .2184233207295375 ,
45 ’yScale’ : 0 .22767977831846448 ,
46 ’x_translate’ : 133.81512733541817 ,
47 ’yTranslate’ : 138.1115070345661 ,
48 ’rotation’ : 180}
49
50 def __init__ ( self ) :
51 MAP_BUILDER = MapBuilder ( )
52 self . car = MAP_BUILDER . car
53 self . walls = MAP_BUILDER . walls
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54 self . center_point = MAP_BUILDER . point
55 self . rangefinder_group = sensors ( self . car )
56 self . performer = Performance ( self . rangefinder_group , self .

center_point )
57 # initialize environment variables
58 self . rangefinder_group . update ( self . walls )
59 self . performance = 0
60 self . ticks = 0
61 # render variables
62 self . options = self . OPTIONS
63 self . game_display = None
64 self . font = None
65 self . clock = None
66
67 def step (self , action ) :
68 if len ( action ) == 1 :
69 u_theta , u_speed = action [ 0 ] , 0 . 5
70 self . car . reset_speed = False
71 elif len ( action ) == 2 :
72 self . car . reset_speed = True
73 u_theta , u_speed = action
74 else :
75 self . car . reset_speed = False
76 u_theta , u_speed = 0 .5 , 0 . 5
77 self . car . angle += float ( u_theta ) ∗self . car . ROTATE_RANGE − self . car .

ROTATE_SPEED
78 self . car . speed_x += float ( u_speed ) ∗self . car . ACCELERATION_RANGE − self

. car . ACCELERATION
79 self . car . update ( self . walls )
80 self . rangefinder_group . update ( self . walls )
81 self . performance += self . performer . normlaps ( ) / 360
82 self . ticks += 1
83 info = {’position’ : self . car . center ,
84 ’orientation’ : self . car . angle ,
85 ’can move’ : self . car . can_move ,
86 ’time tick’ : self . ticks}
87 return self . rangefinder_group . activations , np . abs ( self . performance ) ,

False , info
88
89 def reset ( self ) :
90 MAP_BUILDER = MapBuilder ( )
91 self . car = MAP_BUILDER . car
92 self . rangefinder_group = sensors ( self . car )
93 self . rangefinder_group . update ( self . walls )
94 self . ticks = 0
95 return self . rangefinder_group . activations
96
97 def draw_environment ( self ) :
98 for wall in self . walls :
99 wall . draw ( self . game_display , self . options )

100 self . rangefinder_group . draw ( self . game_display , self . options )
101 self . car . draw ( self . game_display , self . options )
102
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103 def render (self , size=(1600 , 1440) , fps=45, drawparams={’functions’ :
[ ] , ’arguments’ : [ ] } ) :

104 # Draw the display and objects
105 if self . game_display is None :
106 pygame . init ( )
107 pygame . font . init ( )
108 self . game_display = pygame . display . set_mode ( size )
109 pygame . display . set_caption (’2D Autonomous Car Driving Simulation’ )
110 if self . font is None :
111 self . font = pygame . font . SysFont (’Arial’ , 30)
112 if self . clock is None :
113 self . clock = pygame . time . Clock ( )
114 self . game_display . fill ( white )
115 self . draw_environment ( )
116 # Draw the texts
117 drawText ( self . font , ’tick: ’+str ( self . ticks ) , (10 , 10) , self .

game_display )
118 drawText ( self . font , ’FPS: ’+"%.1f" % self . clock . get_fps ( ) , (200 , 10) ,

self . game_display )
119 drawText ( self . font , ’Performance: ’+ ’%.2f’ % np . abs ( self . performance

) , (400 , 10) , self . game_display )
120 drawText ( self . font , ’Forward velocity: ’ + ’%.1f’ % np . linalg . norm (

list ( self . car . speed ) ) ,
121 (700 , 10) , self . game_display )
122 drawCenter ( self . center_point , self . game_display , self . options )
123 if self . game_display is not None :
124 for function , args in zip ( drawparams [ ’functions’ ] , drawparams [ ’

arguments’ ] ) :
125 function (∗ args )
126 # Render the next frame
127 pygame . display . flip ( )
128 self . clock . tick ( fps )
129
130 def close ( self ) :
131 pygame . quit ( )
132
133
134 class CarMazeEnv :
135 # MAP_BUILDER = MapBuilder()
136 DISPLAY_WIDTH = 1000
137 DISPLAY_HEIGHT = 800
138 hebbian_hyper_parameters = {"num_nodes" : [ 1 1 , 1 ] ,
139 "activation_functions" : [ funs . linu , funs . logistic ] ,
140 "training_functions" : [ funs . hebbian1 ] ,
141 "learning_rates" : [ 1 . 0 ] ,
142 "output_noise" : [ 0 , 0 . 1 ] ,
143 "weight_noise" : [ 0 . 1 ] ,
144 "buffers" : [ None ] ,
145 "tag" : ’Pure Hebbian’}
146
147 raahn_hyper_parameters = {"num_nodes" : [ 1 1 , 5 , 1 ] ,
148 "activation_functions" : [ funs . linu , funs . logistic ,

funs . logistic ] ,
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149 "training_functions" : [ funs . autoencoder , funs .
hebbian1 ] ,

150 "learning_rates" : [ 0 . 1 , 1 . 0 ] ,
151 "output_noise" : [ 0 , 0 , 0 . 1 ] ,
152 "weight_noise" : [ 0 , 0 . 1 ] ,
153 "buffers" : [ novelty . NoveltyBuffer (500) , None ] ,
154 "tag" : ’novelty -Raahn’}
155
156 grewards_hyper_params = {"num_nodes" : [ 1 1 , 5 , 2 ] ,
157 "activation_functions" : [ funs . linu , funs . logistic ,

funs . logistic ] ,
158 "training_functions" : [ funs . autoencoder , funs .

hebbian1 ] ,
159 "learning_rates" : [ 0 . 1 , 1 . 0 ] ,
160 "output_noise" : [ 0 , 0 , 0 . 1 ] ,
161 "weight_noise" : [ 0 , 0 . 1 ] ,
162 "buffers" : [ novelty . NoveltyBuffer (500) , None ] ,
163 "tag" : ’Hebbian with global rewards’}
164
165 def __init__ ( self ) :
166 # initialize map objects
167 self . environment = CarEnv ( ) # --> new!
168 # initialize game variables
169 self . resolution = ( self . DISPLAY_WIDTH , self . DISPLAY_HEIGHT )
170 self . game_ext = False
171 self . episode = 1
172 # initialize algorithm settings
173 self . agent = Agent ( self . raahn_hyper_parameters )
174 self . activations = None
175 self . modulation_scheme = ModulationScheme ( self . environment .

rangefinder_group , self . environment . walls )
176 # Initialize visual settings
177 self . options = self . environment . OPTIONS
178 self . bounds = None
179 self . calculate_bounds ( )
180 self . network_visualizer = visualnet . NetworkVisualizer ( self .

network_parameters ,
181 [ self . bounds

[ 0 ] , 0 ,
1600 , self .
bounds [ 1 ] ] )

182
183 self . crashes = [ ]
184 self . performances = [ ]
185 self . avg_objectives = [ ]
186 pygame . init ( )
187 pygame . font . init ( )
188
189 def step ( self ) :
190 # num_crashes = self.env.car.num_crashes
191 # control.range_finder_control(self.network , self.rangefinder_group ,

angle_control=True)
192 observation = self . environment . rangefinder_group . activations
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193 # self.network.add_experience(observation)
194 self . activations = self . agent . propagate ( observation )
195 # action = tuple(self.network.activations[-1])
196 action = tuple ( self . activations [−1])
197 self . environment . step ( action )
198 self . modulation_scheme . wall_avoidance ( )
199 modulation = self . modulation_scheme . modulations [ 0 ]
200 # self.network.modulation_signal.modulations[0] = modulation
201 # self.network.train()
202 self . agent . train ( modulation , self . activations )
203
204 def convergence_test ( self ) :
205 if self . episode == 15 :
206 self . game_ext = True
207 observation = self . environment . rangefinder_group . activations
208 self . activations = self . agent . propagate ( observation )
209 action = tuple ( self . activations [−1])
210 self . environment . step ( action )
211 self . modulation_scheme . wall_avoidance2 ( )
212 global_reward = self . environment . performer . objective_func ( )
213 self . avg_objectives . append ( global_reward )
214 modulation = self . modulation_scheme . modulations [ 0 ]
215 if self . environment . ticks == 1200 :
216 print (np . mean ( self . avg_objectives ) )
217 self . avg_objectives = [ ]
218 del self . environment
219 self . environment = CarEnv ( )
220 self . modulation_scheme = ModulationScheme ( self . environment .

rangefinder_group , self . environment . walls )
221 self . episode += 1
222 else :
223 self . agent . train ( modulation , self . activations )
224
225
226 def crashcounting_test ( self ) :
227 if self . episode >= 50 or self . environment . ticks == 10000 :
228 self . game_ext = True
229 self . performances . append ( self . environment . performance )
230 self . crashes . append ( self . environment . car . num_crashes )
231 print (’Episode: ’ , self . episode , ’ Num crashes: ’ , self . crashes

[−1] ,
232 ’ Perf.: ’ , abs ( self . performances [−1]) , ’\n’ )
233 # num_crashes = self.environment.car.num_crashes
234 observation = self . environment . rangefinder_group . activations
235 self . activations = self . agent . propagate ( observation )
236 action = tuple ( self . activations [−1])
237 self . environment . step ( action )
238 self . modulation_scheme . wall_avoidance ( )
239 global_reward = self . environment . performer . objective_func ( )
240 self . avg_objectives . append ( global_reward )
241 modulation = self . modulation_scheme . modulations [ 0 ]
242 if self . environment . car . num_crashes > 0 and self . environment . ticks >=

2500 :
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243 self . crashes . append ( self . environment . car . num_crashes )
244 self . performances . append ( self . environment . performance )
245 print (’Episode: ’ , self . episode , ’ Num crashes: ’ , self . crashes

[−1] ,
246 ’ Perf.: ’ , abs ( self . performances [−1]) , ’\n’ )
247 del self . environment
248 self . environment = CarEnv ( )
249 self . modulation_scheme = ModulationScheme ( self . environment .

rangefinder_group , self . environment . walls )
250 self . episode += 1
251 else :
252 self . agent . train ( modulation , self . activations )
253
254 # self.Reward = self.envmanager.Reward
255 # self.avg_objectives.append(self.Reward)
256 # if self.car.num_crashes > num_crashes and self.ticks >= 1000:
257 # num_crashes = self.car.num_crashes
258 # self.performances.append(self.performance)
259 # self.crashes.append(num_crashes)
260 # self.reset()
261 # self.performance = 0
262 # print(self.crashes)
263 # elif self.episode >= 100 or self.ticks == 11000:
264 # self.game_ext = True
265 # self.performances.append(self.performance)
266 # self.crashes.append(self.car.num_crashes)
267 # else:
268 # self.envmanager.handle_env(training=True)
269 # if self.ticks == 1000:
270 # self.performances.append(self.performance)
271 # self.crashes.append((self.episode , num_crashes))
272
273 def reset (self , keep_performance=True ) :
274 MAP_BUILDER = MapBuilder ( )
275 if keep_performance :
276 performances = self . performances
277 self . car = MAP_BUILDER . car
278 self . rangefinder_group = sensors ( self . car )
279 self . rangefinder_group . update ( self . walls )
280 self . envmanager = EnvManager ( self )
281 self . performances = performances
282 self . episode += 1
283 self . ticks = 0
284 return self . rangefinder_group . activations
285
286 def render (self , size=(None ) ) :
287 drawparams = {’functions’ : [ ] , ’arguments’ : [ ] }
288 if self . environment . game_display is not None :
289 text_args1 = ( self . environment . font , ’Modulation: ’ + ’%.3f’ % self

. modulation_scheme . modulations [ 0 ] ,
290 (400 , 40) , self . environment . game_display )
291 text_args2 = ( self . environment . font , ’Episode: ’ + str ( self . episode

) ,
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292 (10 ,40) , self . environment . game_display )
293 text_args3 = ( self . environment . font , ’Global Reward: ’ + ’%.2f’ %

self . avg_objectives [−1] ,
294 (400 , 70) , self . environment . game_display )
295 visual_args = ( self . network_parameters , self . environment .

game_display )
296 drawparams = {’functions’ : [ drawText , drawText , drawText , self .

network_visualizer . visualize ] ,
297 ’arguments’ : [ text_args1 , text_args2 , text_args3 ,

visual_args ] }
298 # self.network_visualizer.visualize(self.network_parameters , self.

environment.game_display , self.environment.font)
299 self . environment . render ( drawparams=drawparams )
300
301 def close ( self ) :
302 self . game_ext = True
303 self . environment . close ( )
304
305 def calculate_bounds ( self ) :
306 if not self . bounds :
307 xbound = 0
308 ybound = 0
309 for wall in self . environment . walls :
310 maxboundWallx = max ( wall . startPoint [ 0 ] , wall . endPoint [ 0 ] )
311 maxboundWally = max ( wall . startPoint [ 1 ] , wall . endPoint [ 1 ] )
312 xbound = max ( xbound , maxboundWallx )
313 ybound = max ( ybound , maxboundWally )
314 xbound = self . options [ ’x_scale’ ]∗ xbound+self . options [ ’x_translate’ ]
315 ybound = self . options [ ’x_scale’ ]∗ ybound+self . options [ ’x_translate’ ]
316 self . bounds = ( xbound , ybound )
317
318 @property
319 def network_parameters ( self ) :
320 network_parameters = {’num_nodes’ : self . agent . num_neurons ,
321 ’weights’ : self . agent . weights ,
322 ’activations’ : self . activations ,
323 ’weight_cap’ : self . agent . weight_cap}
324 return network_parameters
325
326
327 def visualize_network (self , display , options ) :
328 self . network_visualizer . visualize ( display )
329
330 #%% Experiments with supervised Hebbian learning
331 #from collections import deque
332 #
333 #if __name__== "__main__":
334 # supervised_params = {"num_nodes": [11, 15, 15, 5],
335 # "activation_functions": [funs.linu, np.sign, np.sign,

np.sign],
336 # "training_functions": [funs.hebbian3 , funs.hebbian3 ,

funs.hebbian3],
337 # "learning_rates": [1.0, 1.0, 1.0],
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338 # "output_noise": [0, 0, 0, 0],
339 # "weight_noise": [0, 0, 0],
340 # "buffers": [None, None, None]}
341 # agent = Agent(supervised_params)
342 # shape = (supervised_params["num_nodes"][-1], supervised_params["

num_nodes"][0])
343 # weight_des = np.random.uniform(-1,1, shape)
344 # errors = deque(maxlen=100)
345 # for i in range(10000):
346 # activations = agent.propagate(np.random.choice([-1,1], (11,)))
347 # output_des = weight_des @ activations[0]
348 # output = activations[-1]
349 # distance1 = np.abs(output -output_des)
350 # modulation1 = np.multiply(distance1 , output)
351 # distance2 = np.linalg.norm(output -output_des)
352 # modulation2 = distance2*output
353 # agent.train(modulation2
354 # , activations)
355 # errors.append(distance1)
356 # if i%20==0:
357 # print(’error:’, np.mean(errors))

agent_functions.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Mar 6 15:22:56 2018
4
5 @author: ajdin
6 """
7 import numpy as np
8
9 # Activation functions

10 def linu (x ) :
11 #return arg
12 return x
13
14 def step (x ) :
15 #step function
16 return 1 ∗ (x > 0)
17
18 def relu (x ) :
19 #rectified linear unit
20 return np . maximum (x , 0)
21
22 def logistic (x ) :
23 return 1 .0 / ( 1 . 0 + np . exp(−x ) )
24
25 def logistic_derivative (x ) :
26 return x ∗ ( 1 . 0 − x )
27
28 #tangent hyperbolic
29 tanh = np . tanh
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30
31 #Exponentailly Varied Weight Adjustment
32 def evwa (self , learning_rate , reward ) :
33 rho = 0.02
34 adjustment = [ ]
35 for i in range ( self . num_layers ) :
36 adjustment . append ( learning_rate ∗( rho∗∗reward ) )
37 return adjustment
38
39 #Linearly Varied Weight Adjustment
40 def lvwa (self , learning_rate , reward ) :
41 adjustment = [ ]
42 for i in range ( self . num_layers ) :
43 adjustment . append ( learning_rate∗(1−reward ) )
44 return adjustment
45
46 # Compute node values in layers
47 def layer_output ( activation_fun , parameters , input_nodes , noise_magtd

=0.0) :
48 output_nodes = activation_fun (np . dot ( parameters , input_nodes ) )
49 if noise_magtd :
50 output_nodes += np . random . uniform(−noise_magtd , noise_magtd , np . shape

( output_nodes ) )
51 return output_nodes
52
53 # train weights
54 def train ( mod_vector , input_samples , output_samples , learning_rate ) :
55 for i in range ( len ( mod_vector ) ) :
56 modulation = mod_vector [ i ]
57 input_sample = np . reshape ( input_samples [ i ] , (−1 ,1) )
58 output_sample = np . reshape ( output_samples [ i ] , (−1 ,1) )
59 plasticity = output_sample @ input_sample . T
60 if i == 0 :
61 weight_delta = learning_rate∗modulation∗plasticity
62 else :
63 weight_delta += learning_rate∗modulation∗plasticity
64 return weight_delta
65
66 def hebbian1 ( layer_parameters , presynaptic , postsynaptic ) :
67 lr = layer_parameters [ "learning_rate" ]
68 modulation = layer_parameters [ "modulation" ]
69 noise_magtd = layer_parameters [ "weight_noise" ]
70 presynaptic = np . array ( presynaptic )
71 postsynaptic = np . array ( postsynaptic )∗2−1
72 if presynaptic . ndim == 1 :
73 presynaptic = np . reshape ( presynaptic , (−1 ,1) )
74 if postsynaptic . ndim == 1 :
75 postsynaptic = np . reshape ( postsynaptic , (−1 ,1) )
76 update = lr∗modulation ∗( postsynaptic @ presynaptic . T )
77 if noise_magtd :
78 update += np . random . uniform(−noise_magtd , noise_magtd , np . shape (

update ) )
79 return update
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80
81 def hebbian2 ( layer_parameters , presynaptic , postsynaptic ) :
82 lr = layer_parameters [ "learning_rate" ]
83 modulation = layer_parameters [ "modulation" ]
84 noise_magtd = layer_parameters [ "weight_noise" ]
85 presynaptic = np . array ( presynaptic )
86 postsynaptic = np . array ( postsynaptic )
87 if presynaptic . ndim == 1 :
88 presynaptic = np . reshape ( presynaptic , (−1 ,1) )
89 if postsynaptic . ndim == 1 :
90 postsynaptic = np . reshape ( postsynaptic , (−1 ,1) )
91 update = lr∗modulation ∗( postsynaptic @ presynaptic . T )
92 if noise_magtd :
93 update += np . random . uniform(−noise_magtd , noise_magtd , np . shape (

update ) )
94 return update
95
96 def hebbian3 ( layer_parameters , presynaptic , postsynaptic ) :
97 """
98 Supervised -type hebbian algorithm.
99 Modulation equals the 2 norm of the discrepancy between actual and

desired output ,
100 times the desired output.
101 """
102 lr = layer_parameters [ "learning_rate" ]
103 modulation = layer_parameters [ "modulation" ]
104 noise_magtd = layer_parameters [ "weight_noise" ]
105 presynaptic = np . array ( presynaptic )
106 postsynaptic = np . array ( postsynaptic )
107 if presynaptic . ndim == 1 :
108 presynaptic = np . reshape ( presynaptic , (−1 ,1) )
109 if postsynaptic . ndim == 1 :
110 postsynaptic = np . reshape ( postsynaptic , (−1 ,1) )
111 modulation . shape = postsynaptic . shape
112 update = lr ∗( modulation @ presynaptic . T )
113 if noise_magtd :
114 update += np . random . uniform(−noise_magtd , noise_magtd , np . shape (

update ) )
115 return update
116
117
118 def autoencoder ( layer_parameters , presynaptic , postsynaptic ) :
119 lr = layer_parameters [ "learning_rate" ]
120 weights = layer_parameters [ "weights" ]
121 noise_magtd = layer_parameters [ "weight_noise" ]
122 presynaptic = np . array ( presynaptic )
123 postsynaptic = np . array ( postsynaptic )
124 if presynaptic . ndim == 1 :
125 presynaptic = np . reshape ( presynaptic , (−1 ,1) )
126 if postsynaptic . ndim == 1 :
127 postsynaptic = np . reshape ( postsynaptic , (−1 ,1) )
128 reconstruction = logistic ( weights . T @ postsynaptic )
129 error = presynaptic − reconstruction
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130 deltas = np . multiply ( error , logistic_derivative ( reconstruction ) )
131 back_prop_deltas = np . multiply ( logistic_derivative ( postsynaptic ) , (

weights @ deltas ) )
132 error_weight_delta = lr ∗( postsynaptic @ deltas . T )
133 backprop_weight_delta = lr ∗( back_prop_deltas @ presynaptic . T )
134 weight_delta = error_weight_delta + backprop_weight_delta
135 if noise_magtd :
136 weight_delta += np . random . uniform(−noise_magtd , noise_magtd , np . shape

( weight_delta ) )
137 return weight_delta
138
139 def select_several ( layer_parameters ) :
140 novelty_buffer = layer_parameters [ ’buffers’ ]
141 # error = 0.0
142 samples = [ ] #linkedList
143 experiences = [ ]
144 for occupant in iter ( novelty_buffer ) :
145 samples . append ( occupant . experience )
146 sample_count = min (20 , len ( novelty_buffer ) )
147 for i in range ( sample_count ) :
148 index = np . random . randint ( len ( samples ) )
149 sample = samples . pop ( index )
150 experiences . append (np . array ( sample ) )
151 return experiences

modulation.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Aug 19 18:40:16 2018
4
5 @author: ajdin
6 """
7 import numpy as np
8
9 import buffer

10
11 from rangefinder import RangeFinder
12 from lines import get_dist
13 from collections import deque
14
15
16 class ModulationSignal :
17 NO_MODULATION = 0.0
18
19 def __init__ ( self ) :
20 self . modulations = [ ]
21
22 def add_signal (self , ∗args ) :
23 if len ( args ) == 0 :
24 self . modulations . append ( self . NO_MODULATION )
25 elif len ( args ) == 1 :
26 self . modulations . append ( args [ 0 ] )
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27 return len ( self . modulations ) − 1
28
29
30 class ModulationScheme :
31 MODULATION_STRENGTH = 1.0
32 MODULATION_RESET = 0.0
33 MODULATION_NOT_RESET = −1.0
34 PERPENDICULAR = 90.0
35 SCHEME_STRINGS = [ ’WallAvoidance’ , ’Acceleration’ , ’NaiveWallAvoidance’

, ’NaiveAcceleration’ ]
36
37 def __init__ (self , rangefinder_group , walls ) :
38 self . rangefinder_group = rangefinder_group
39 self . previous_fitness = None
40 self . N_size = 5
41 self . reward_history = deque ( maxlen=self . N_size )
42 self . Reward = 0
43 self . acceleration
44 self . walls = walls
45 self . view_distance = 400.0
46 self . viewline = RangeFinder ( self . rangefinder_group . car , self .

view_distance )
47 self . modulations = [ 0 . 0 ] ∗ len ( self . SCHEME_STRINGS )
48 # Initializes for no former experience
49 self . last_angle_between = None
50 self . last_wall_in_range = None
51 self . compare_wall = None
52 self . last_nearest_dist = None
53
54 def wall_avoidance2 ( self ) :
55 """
56 Minimize the average sensor values. Total reward is Negative mean of

sensor outputs.
57 Change in gradient (objective increase) equals the negative mean

sensor values of current time
58 tick, minus the negative mean sensor values of previous time tick.
59 """
60 params = ( self . rangefinder_group . activations , self . rangefinder_group .

car . speed )
61 self . reward_history . append ( self . local_reward (∗ params ) )
62 self . modulations [ 0 ] = 0 .0
63
64 if len ( self . reward_history )==self . reward_history . maxlen :
65 change_in_objective = self . reward_history [−1] − self . Reward
66 self . modulations [ 0 ] = np . tanh (10∗ change_in_objective )
67 self . modulations [ 0 ] = change_in_objective
68 self . Reward = self . reward_history [ 0 ]
69
70 def local_reward (self , ∗params ) :
71 activations , speed = params
72 avg_distance = np . mean (1 − activations [ 5 ] )
73 norm_speed = np . linalg . norm ( speed )
74 local_reward = (1 . 3∗ avg_distance + 0.3∗ norm_speed ) /self . N_size
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75 return local_reward
76
77 def modulate ( self ) :
78 """
79 Modulates all schemes ever defined , so that a combination of schemes

may be integrated.
80 """
81 self . viewline . update_position ( )
82 walls_in_bounds = self . viewline . entities_in_bounds ( self . walls )
83 last_angle = None
84 nearest_wall = None
85 nearest_dist = self . view_distance
86 # Get nearest wall or None
87 for wall in walls_in_bounds :
88 intersections = self . viewline . intersects ( wall )
89 if len ( intersections ) > 0 :
90 dist = get_dist ( self . rangefinder_group . car . center , intersections

[ 0 ] )
91 if dist < nearest_dist :
92 nearest_dist = dist
93 nearest_wall = wall
94
95 # No previous wall yields nothing to modulate
96 if not self . last_wall_in_range :
97 self . modulations [ 0 ] = 0 .0
98 self . modulations [ 1 ] = 0 .0
99 else :

100 angle_between = self . viewline . angle_between ( self . last_wall_in_range
)

101 last_intersection = self . viewline . intersects ( self .
last_wall_in_range ) [ 0 ]

102 distance = get_dist ( self . rangefinder_group . car . center ,
last_intersection )

103 delta = angle_between − self . last_angle_between
104 gamma = distance − self . last_nearest_dist
105 if angle_between > self . PERPENDICULAR :
106 modulation1 = self . MODULATION_STRENGTH∗delta / self .

rangefinder_group . car . ROTATE_SPEED
107 else :
108 modulation1 = −self . MODULATION_STRENGTH∗delta / self .

rangefinder_group . car . ROTATE_SPEED
109 modulation2 = self . MODULATION_STRENGTH∗gamma / self .

rangefinder_group . car . ACCELERATION
110 self . modulations [ 0 ] = modulation1
111 self . modulations [ 1 ] = modulation2
112
113 # No current wall yields no angle to store
114 if nearest_wall :
115 last_angle = self . viewline . angle_between ( nearest_wall )
116 # Store last wall and angle in any case (may be None)
117 self . last_angle_between = last_angle
118 self . last_nearest_dist = nearest_dist
119 self . last_wall_in_range = nearest_wall
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120
121 def wall_avoidance ( self ) :
122 # print(’computing wall avoidance modulation: ’, self.modulations[0])
123 self . viewline . update_position ( )
124 walls_in_bounds = self . viewline . entities_in_bounds ( self . walls )
125 compare_wall = None
126 nearest_dist = self . viewline . default_length
127 # Get the nearest wall in the view_distance if any
128 for wall in walls_in_bounds :
129 intersections = self . viewline . intersects ( wall )
130 if len ( intersections ) > 0 :
131 dist = get_dist ( self . rangefinder_group . car . center , intersections

[ 0 ] )
132 if dist < nearest_dist :
133 nearest_dist = dist
134 compare_wall = wall
135 self . compare_wall = compare_wall
136 # The angle to use for modulation. Should never be zero when the

angle delta is calculated.
137 # If it is, then there must be a bug.
138 angle_between = 0.0
139 new_last_angle = self . MODULATION_NOT_RESET
140
141 # If there is no nearest wall
142 if not compare_wall :
143 # If there is no previous wall, set the modulation to zero and

reset the last angle
144 if not self . last_wall_in_range :
145 if self . last_angle_between != self . MODULATION_RESET :
146 self . last_angle_between = self . MODULATION_RESET
147 self . modulations [ 0 ] = 0 .0
148 # nothing to modulate , and nothing to save, Don’t Continue
149 return
150 # Just left a wall
151 else :
152 angle_between = self . viewline . angle_between ( self .

last_wall_in_range )
153
154 # If the wall has changed
155 elif compare_wall != self . last_wall_in_range :
156 # There was a last wall that is different from the current wall
157 if self . last_wall_in_range :
158 angle_between = self . viewline . angle_between ( self .

last_wall_in_range )
159 new_last_angle = self . viewline . angle_between ( compare_wall )
160 # It is the first time any wall was hit, don’t continue
161 # Save the angle between last and current wall
162 else :
163 angle_between = self . viewline . angle_between ( compare_wall )
164 self . last_angle_between = angle_between
165 self . last_wall_in_range = compare_wall
166 return
167
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168 # The usual case, the last wall is equal to the current wall
169 else :
170 angle_between = self . viewline . angle_between ( compare_wall )
171 new_last_angle = angle_between
172 delta = angle_between − self . last_angle_between
173 modulation = self . MODULATION_STRENGTH
174
175 if angle_between > self . PERPENDICULAR :
176 modulation ∗= delta / self . rangefinder_group . car . ROTATE_SPEED
177 else :
178 modulation ∗= −delta / self . rangefinder_group . car . ROTATE_SPEED
179 self . modulations [ 0 ] = modulation
180 self . last_angle_between = new_last_angle
181 self . last_wall_in_range = compare_wall
182
183 def performance_increase ( self ) :
184 pass
185
186 def naive_wall_avoidance ( self ) :
187 print ( self . modulations )
188 self . modulations [ 0 ] = self . last_forward_activation − self .

rangefinder_group . activations [ 5 ]
189 self . last_forward_activation = self . rangefinder_group . activations [ 5 ]
190 pass
191
192 def naive_acceleration ( self ) :
193 # if self.last_wall_in_range:
194 # intersections = self.viewline.intersects(self.last_wall_in_range)
195 self . modulations [ 1 ] = 1−2∗abs ( self . modulations [ 0 ] )
196 # print(’computing acceleration modulation: ’, self.modulations[1])
197 return
198
199 def acceleration ( self ) :
200 # If there is no nearest wall in range
201 if not self . last_wall_in_range :
202 if self . last_nearest_dist :
203 self . last_nearest_dist = None
204 self . modulations [ 1 ] = 0 .0
205 return
206 else :
207 intersection = self . viewline . intersects ( self . last_wall_in_range ) [ 0 ]
208 nearest_dist = get_dist ( self . rangefinder_group . car . center ,

intersection )
209
210 pass
211
212 SCHEMES = [ wall_avoidance , acceleration , naive_wall_avoidance ,

naive_acceleration ]
213
214 @staticmethod
215 def get_scheme_from_string ( scheme_string ) :
216 for i in range ( len ( ModulationScheme . SCHEME_STRINGS ) ) :
217 if scheme_string == ModulationScheme . SCHEME_STRINGS [ i ] :
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218 return i
219 return −1
220
221 @staticmethod
222 def getSchemeFunction ( scheme ) :
223 if scheme >= 0 and scheme < len ( ModulationScheme . SCHEMES ) :
224 return ModulationScheme . SCHEMES [ scheme ]
225 else :
226 return None
227
228 def reset ( self ) :
229 self . last_angle_between = self . MODULATION_RESET
230 self . last_wall_in_range = None

net3.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri Oct 12 12:52:38 2018
4
5 @author: ajdin
6 """
7
8 import numpy as np
9 import configs

10 import novelty
11
12 # from RaahnXmlConfig import NeuralNetworkConfig , LayerConfig
13 from collections import deque
14
15 from functions import Activation
16 from training import TrainingMethod
17 from modulation import ModulationScheme , ModulationSignal
18 from buffer import Buffer
19 from eligibility import Eligibility
20
21 class NeuralNetwork3 :
22 """
23 Creates a NeuralNetwork that strictly uses three layers at max:

inputlayer , hiddenlayer ,
24 and outputlayer. hiddenlayer is optional.
25 parameters (optional keyword arguments):
26 inputcount: number of neurons in the input layer
27 hiddencount: number of neurons in the hidden layer.
28 outputcount: number of neurons in the output layer
29
30 attributes:
31 activations: list of neuron values for each layer
32 layers: list of NetworkLayers containing the neuron connections
33 output_noise_mag: magnitude of random noise to be applied after

computing activation
34 weight_noise_mag: magnitude of random noise to be applied after

updating weights
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35 weight_cap: weights will not grow beyond upper limit weight_cap and
lower limit -weight_cap.

36 # use_novelty: boolean determing whether a novelty buffer will be
used.

37
38 methods:
39 set_up: initializes the NeuralNetwork3 layers based on parameters

arguments.
40 configure: configures hyper -parameters of the network , based on

RaahnXmlConfig.
41 init_neurons: returns numpy array of neurons with values 0.0
42 add_experience: adds a sample experience to the network’s input

layer
43 propagate_signal: maps the input activation to the output

activation
44 train: trains all connections that are present within the network
45 """
46 WEIGHT_SCALE = 6.0
47 ACTIVATION = Activation . logistic
48 ACTIVATION_DERIVATIVE = Activation . logistic_derivative
49 TRAINING_METHODS = {’Hebbian’ : TrainingMethod . hebbian_learning ,
50 ’HebbianHistory’ : TrainingMethod .

hebbian_history_learning ,
51 ’HebbianEligibility’ : TrainingMethod .

hebbian_eligibility ,
52 ’HebbianLongterm’ : TrainingMethod .

hebbian_longterm ,
53 ’HebbianEpisodic’ : TrainingMethod .

hebbian_episodic ,
54 ’NoTraining’ : TrainingMethod . no_training ,
55 ’Autoencoder’ : TrainingMethod . sparse_autoencoder ,
56 ’LinAutoencoder’ : TrainingMethod .

linear_autoencoder}
57 MOD_SCHEMES = {’WallAvoidance’ : ModulationScheme . wall_avoidance ,
58 ’WallAvoidance2’ : ModulationScheme . wall_avoidance2}
59
60 def __init__ (self , ∗∗kwargs ) :
61 self . activations = [ ]
62 self . layers = [ ]
63 # set up the layers if specified
64 self . set_up (∗∗ kwargs )
65 # configure hyper -parameters of the network.
66 self . configure ( )
67 # ready up for training
68 self . compile_network ( )
69
70 @classmethod
71 def default (cls , filename=None ) :
72 if filename :
73 config = configs . Net3Config ( filename )
74 else :
75 config = configs . Net3Config ( )
76 net3 = NeuralNetwork3 ( )
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77 net3 . activations . append ( net3 . init_neurons ( config . input_count ) )
78
79 return config
80
81
82 def set_up (self , ∗∗kwargs ) :
83 inputcount = kwargs . get (’inputcount’ )
84 hiddencount = kwargs . get (’hiddencount’ )
85 outputcount = kwargs . get (’outputcount’ )
86 if self . valid_neuron_count ( inputcount ) and self . valid_neuron_count (

outputcount ) :
87 self . activations . append ( self . init_neurons ( inputcount ) )
88 if self . valid_neuron_count ( hiddencount ) :
89 self . activations . append ( self . init_neurons ( hiddencount ) )
90 add_layer = NetworkLayer (self , hiddencount )
91 self . layers . append ( add_layer )
92 self . activations . append ( self . init_neurons ( outputcount ) )
93 add_layer = NetworkLayer (self , outputcount )
94 self . layers . append ( add_layer )
95
96 def valid_neuron_count (self , count ) :
97 if isinstance ( count , int ) :
98 if count > 0 :
99 return True

100 return False
101
102 def configure (self , output_noise_mag=0.1 , weight_noise_mag=0.1) :
103 self . output_noise_mag = output_noise_mag
104 self . weight_noise_mag = weight_noise_mag
105 self . weight_cap = 10.0
106 self . modulation_signal = ModulationSignal ( )
107 self . modulation_signal . add_signal ( )
108 #activation functions
109 self . activation_func = NeuralNetwork3 . ACTIVATION
110 self . activation_deriv = NeuralNetwork3 . ACTIVATION_DERIVATIVE
111 # specify buffer settings if any
112 self . initlen = 1
113 self . maxlen = 200
114 self . growth = 1.0
115
116 def init_neurons (self , count ) :
117 return np . ones ( count ) ∗0 .0
118
119 def add_experience (self , experience ) :
120 # add experience to the very first layer , and propagate it
121 self . activations [ 0 ] = np . array ( experience )
122 self . propagate_signal ( )
123 # add experience to any buffers if specified
124 for layer in self . layers :
125 input_sample = np . array ( layer . network . activations [ layer .

current_layer ] )
126 if not layer . usenovelty :
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127 output_sample = np . array ( layer . network . activations [ layer .
current_layer + 1 ] )

128 sample = ( input_sample , output_sample )
129 layer . history_buffer . append ( sample )
130 # layer.estim_window.add_sample(sample)
131 if layer . usenovelty :
132 new_occupant = novelty . NoveltyOccupant ( experience=input_sample )
133 new_distances = layer . novelty_buffer . compute_new_distances (

new_occupant )
134 if len ( layer . novelty_buffer ) == layer . history_size :
135 least_novel = layer . novelty_buffer [ 0 ]
136 if new_occupant . novelty_score > least_novel . novelty_score :
137 layer . novelty_buffer . remove_novelty ( least_novel )
138 layer . novelty_buffer . add_novelty ( new_occupant ,

new_distances )
139 else :
140 layer . novelty_buffer . add_novelty ( new_occupant , new_distances )
141
142 def propagate_signal ( self ) :
143 for layer in self . layers :
144 layer . propagate_signal ( )
145
146 def compile_network (self , training_method=’HebbianLongterm’ ,

modulation_scheme=’WallAvoidance2’ ) :
147 for layer in self . layers :
148 layer . training_method = NeuralNetwork3 . TRAINING_METHODS [

training_method ]
149 layer . modulation_scheme = NeuralNetwork3 . MOD_SCHEMES [

modulation_scheme ]
150 # layer.history_buffer = Buffer(self.initlen , maxlen=self.maxlen ,

growth_fact=self.growth)
151 layer . learning_rate = 1.0
152 if len ( self . layers ) > 1 :
153 self . layers [ 0 ] . usenovelty = True
154 self . layers [ 0 ] . history_size = 500
155 self . layers [ 0 ] . samples_per_tick = 20
156 self . layers [ 0 ] . training_method = NeuralNetwork3 . TRAINING_METHODS [

’Autoencoder’ ]
157 self . layers [ 0 ] . learning_rate = 0.1
158 self . layers [ 0 ] . novelty_buffer = novelty . NoveltyBuffer ( self . layers

[ 0 ] . history_size )
159 self . layers [ 0 ] . errorbuffer = deque ( maxlen=self . layers [ 0 ] .

history_size )
160 self . layers [ 1 ] . history_buffer = deque ( maxlen=self . initlen )
161
162 def train ( self ) :
163 for layer in self . layers :
164 layer . train ( )
165
166
167 class NetworkLayer :
168 """
169 Creates a fully connected NetworkLayer in a given NeuralNetwork3

Master of Science Thesis Ajdin Husić



86 Source Code

170 parameters:
171 network: NeuralNetwork3 in which the NetworkLayer is added
172 neuron_count: number of neurons in current layer
173 learning_rate: sets the learning rate for training (optional),

default is 1.0
174 training_method: set the training method for current layer , None

value averts training
175
176 attributes:
177 current_layer: denotes the index of the current layer
178 shape: denotes the dimension that the weights Matrix will assume
179 weights: weight matrix , used to map the preceding neurons linearly to

the current neurons
180
181 """
182 def __init__ (self , network , neuron_count , learning_rate=1.0 ,

training_method=None ) :
183 self . network = network
184 self . current_layer = len ( self . network . layers )
185 self . neuron_count = neuron_count
186 self . usenovelty = False
187 self . learning_rate = learning_rate
188 self . training_method = training_method
189 self . history_buffer = deque ( maxlen=1)
190 self . history_size = 1
191 # self.estim_window = Buffer(140, maxlen=140)
192 self . averages = np . zeros ( ( neuron_count , 1) )
193 # initialize the weights
194 self . init_weights ( )
195 # self.elig_trace = Eligibility(self)
196
197 self . average_error = 0.0
198
199 def init_weights ( self ) :
200 input_count = len ( self . network . activations [ self . current_layer ] )
201 self . shape = ( self . neuron_count , input_count )
202 total_neurons = sum ( self . shape )
203 range_ = np . sqrt ( self . network . WEIGHT_SCALE / total_neurons )
204 self . weights = np . random . uniform(−range_ , range_ , self . shape )
205
206 def propagate_signal ( self ) :
207 forwarded_activation = self . weights @ self . network . activations [ self .

current_layer ]
208 magnitude = self . network . output_noise_mag
209 noise = np . random . uniform(−magnitude , magnitude , forwarded_activation

. shape ) if not self . usenovelty else 0
210 forwarded_activation = NeuralNetwork3 . ACTIVATION ( forwarded_activation

) + noise
211 self . network . activations [ self . current_layer + 1 ] =

forwarded_activation
212
213 def train ( self ) :
214 if self . usenovelty :

Ajdin Husić Master of Science Thesis



-1 Python code for the autonomous car agent 87

215 error = self . train_several ( )
216 self . errorbuffer . append ( error )
217 self . average_error = np . mean ( self . errorbuffer )
218 else :
219 return self . training_method (self , self . network . modulation_signal .

modulations [ 0 ] )
220
221 def train_several ( self ) :
222 error = 0.0
223 samples = [ ] #linkedList
224 for occupant in iter ( self . novelty_buffer ) :
225 samples . append ( occupant . experience )
226 sample_count = min ( self . samples_per_tick , len ( self . novelty_buffer ) )
227 for i in range ( sample_count ) :
228 index = np . random . randint ( len ( samples ) )
229 sample = samples . pop ( index )
230 self . network . activations [ 0 ] = np . array ( sample )
231 self . network . propagate_signal ( )
232 self . update_averages ( )
233 error += self . training_method ( self )
234 error /= sample_count
235 return error
236
237 def train_recent ( self ) :
238 return
239
240 def update_averages ( self ) :
241 exponent = 1.0 / self . history_size
242 decay = 0.01∗∗ exponent
243 neurons = np . reshape ( self . network . activations [ self . current_layer +

1 ] , (−1 ,1) )
244 self . averages = ( decay∗self . averages ) + (1.0−decay ) ∗neurons
245
246 #%%
247 import agent_functions as funs
248 # import novelty
249
250 hyper_parameters = {"num_nodes" : [ 4 , 12 , 24 , 1 ] ,
251 "activation_functions" : [ funs . linu , np . tanh , np . tanh ,

np . tanh ] ,
252 "training_functions" : [ funs . hebbian2 , funs . hebbian2 ,

funs . hebbian2 ] ,
253 "learning_rates" : [ 1 . 0 , 1 . 0 , 1 . 0 ] ,
254 "output_noise" : [ 0 , 0 , 0 , 0 . 1 ] ,
255 "weight_noise" : [ 0 , 0 , 0 . 1 ] ,
256 "buffers" : [ novelty . NoveltyBuffer (500) ,None , None ] }
257
258 class Agent :
259 def __init__ (self , hyper_params ) :
260 self . tag = hyper_params . get (’tag’ , ’Not Specified’ )
261 self . num_layers = len ( hyper_params [ "num_nodes" ] ) − 1
262 self . num_neurons = hyper_params [ "num_nodes" ]
263 self . activation_funs = hyper_params [ "activation_functions" ]
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264 self . training_funs = hyper_params [ "training_functions" ]
265 self . learning_rates = hyper_params [ "learning_rates" ]
266 self . buffers = hyper_params [ "buffers" ]
267 self . output_noise = hyper_params [ "output_noise" ]
268 self . weight_noise = hyper_params [ "weight_noise" ]
269 self . weight_cap = 10
270 self . weights = [ ]
271 for i in range ( self . num_layers ) :
272 randomw = np . random . randn ( self . num_neurons [ i+1] , self . num_neurons [ i

] )
273 self . weights . append ( randomw )
274 print (’Initialized Agent: ’ + self . tag + ’\n’ )
275
276 def propagate (self , experience ) :
277 input_activation = np . array ( experience )
278 activations = [ ]
279 activations . append ( self . activation_funs [ 0 ] ( input_activation ) )
280 for i in range ( self . num_layers ) :
281 activations . append ( funs . layer_output ( self . activation_funs [ i+1] ,

self . weights [ i ] ,
282 activations [ i ] , noise_magtd=

self . output_noise [ i+1]) )
283 if self . buffers [ i ] is not None :
284 self . update_novelty ( activations [ i ] , self . buffers [ i ] )
285 return activations
286
287 def update_novelty (self , experience , novelty_buffer ) :
288 input_sample = np . array ( experience )
289 new_occupant = novelty . NoveltyOccupant ( experience=input_sample )
290 new_distances = novelty_buffer . compute_new_distances ( new_occupant )
291 if len ( novelty_buffer ) == novelty_buffer . history_size :
292 least_novel = novelty_buffer [ 0 ]
293 if new_occupant . novelty_score > least_novel . novelty_score :
294 novelty_buffer . remove_novelty ( least_novel )
295 novelty_buffer . add_novelty ( new_occupant , new_distances )
296 else :
297 novelty_buffer . add_novelty ( new_occupant , new_distances )
298
299 def train (self , modulation , activations ) :
300 for i in range ( self . num_layers ) :
301 layer_parameters = {’weights’ : self . weights [ i ] ,
302 ’weight_noise’ : self . weight_noise [ i ] ,
303 ’learning_rate’ : self . learning_rates [ i ] ,
304 ’buffers’ : self . buffers [ i ] ,
305 ’modulation’ : modulation}
306 if self . buffers [ i ] is not None :
307 experiences = funs . select_several ( layer_parameters )
308 for experience in experiences :
309 postsynaptic = funs . layer_output ( self . activation_funs [ i+1] ,

self . weights [ i ] ,
310 experience , noise_magtd=self .

output_noise [ i+1])
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311 delta_weights = self . training_funs [ i ] ( layer_parameters ,
experience , postsynaptic )

312 self . weights [ i ] = np . clip ( self . weights [ i ] + delta_weights , −
self . weight_cap , self . weight_cap )

313 layer_parameters [ ’weights’ ] = self . weights [ i ]
314 else :
315 delta_weights = self . training_funs [ i ] ( layer_parameters ,

activations [ i ] , activations [ i+1])
316 self . weights [ i ] = np . clip ( self . weights [ i ] + delta_weights , −self .

weight_cap , self . weight_cap )
317
318
319 # --------------------------------
320 if __name__ == "__main__" :
321 agent = Agent ( hyper_parameters )
322 rand_exp = np . random . uniform (0 , 1 , ( 4 , ) )
323 activations = agent . propagate ( rand_exp )
324 for i in range ( agent . num_layers ) :
325 print ("weight shape: " , agent . weights [ i ] . shape )
326 print ("activation shape: " , activations [ i+1] . shape , "\n" )

performance.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Oct 14 21:05:14 2018
4
5 @author: ajdin
6 """
7 import numpy as np
8
9 from collections import deque

10
11 class Performance :
12
13 def __init__ (self , rangefinder_group , center ) :
14 self . rangefinder_group = rangefinder_group
15 self . center_point = center
16 self . N_size = 5
17 self . gamma = 1.0
18 self . reward_history = deque ( maxlen=self . N_size )
19 self . Reward = 0
20
21 def normlaps ( self ) :
22 center2_last = tuple (np . subtract ( self . rangefinder_group . car . lastpos ,

self . center_point ) )
23 center2_current = tuple (np . subtract ( self . rangefinder_group . car . center

, self . center_point ) )
24 cur_angle = np . arctan2 (∗ center2_current [ : : − 1 ] )
25 last_angle = np . arctan2 (∗ center2_last [ : : − 1 ] )
26 # anti-clockwise gives positive performance
27 angle_diff = np . degrees ( cur_angle − last_angle )
28 if np . abs ( angle_diff ) > 90 :

Master of Science Thesis Ajdin Husić



90 Source Code

29 change = 360 − np . abs ( angle_diff )
30 if angle_diff < 0 . 0 :
31 return change
32 else :
33 return −change
34 return angle_diff
35
36 def objective_func ( self ) :
37 params = ( self . rangefinder_group . activations , self . rangefinder_group .

car . speed )
38 self . reward_history . append ( self . local_reward (∗ params ) )
39 weighted_avg = np . multiply (np . array ( self . reward_history ) , self . gamma

∗∗np . arange ( len ( self . reward_history ) ) )
40 return np . mean ( weighted_avg )
41
42 def local_reward (self , ∗params ) :
43 activations , speed = params
44 avg_distance = np . mean (1 − activations [ 5 ] )
45 norm_speed = np . linalg . norm ( speed )
46 local_reward = (1 . 3∗ avg_distance + 0.3∗ norm_speed )
47 return local_reward

visualnet.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Sep 15 12:51:39 2018
4
5 @author: ajdin
6 """
7 import pygame
8 import numpy as np
9

10 RADIUS = 25
11 THICKNESS = 2
12 BLACK = (0 , 0 , 0)
13 WHITE = (255 , 255 , 255)
14
15 class NetworkVisualizer :
16 FONT = ’Arial’
17 FONT_SIZE = 18
18
19 def __init__ (self , network , box ) :
20 self . network = network
21 self . box = box #(lower_x , lower_y , upper_x , upper_y)
22 self . neuron_descriptions = [ ]
23 self . connection_descriptions = [ ]
24 self . layer_count = len ( network . layers ) + 1
25
26 self . set_up ( )
27 self . set_up_grid ( )
28 self . set_up_connections ( )
29
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30 pygame . font . init ( )
31 self . font = pygame . font . SysFont ( self . FONT , self . FONT_SIZE , bold=True )
32
33 def set_up ( self ) :
34 for i in range ( self . layer_count ) :
35 neuron_description = NeuronGroupDescription ( self . network , i )
36 self . neuron_descriptions . append ( neuron_description )
37
38 def set_up_grid ( self ) :
39 y_values = np . linspace ( self . box [ 1 ] , self . box [ 3 ] , self . layer_count+1,

endpoint=False ) [ 1 : ]
40 for i in range ( self . layer_count ) :
41 self . neuron_descriptions [ i ] . y_value = y_values [ i ]
42 neuron_count = len ( self . neuron_descriptions [ i ] . values )
43 self . neuron_descriptions [ i ] . x_values = np . linspace ( self . box [ 0 ] ,

self . box [ 2 ] , \
44 neuron_count+1,

endpoint=
False ) [ 1 : ]

45
46 def set_up_connections ( self ) :
47 for i in range ( self . layer_count − 1) :
48 connection_description = ConnectionDescription ( self . network , i )
49 connection_description . input_neuron_description = self .

neuron_descriptions [ i ]
50 connection_description . output_neuron_description = self .

neuron_descriptions [ i+1]
51 self . connection_descriptions . append ( connection_description )
52
53 def visualize (self , display ) :
54 self . draw_connections ( display )
55 self . draw_neurons ( display )
56 self . draw_legend ( display )
57
58 def draw_neurons (self , display ) :
59 for i in range ( self . layer_count ) :
60 self . neuron_descriptions [ i ] . draw ( display , self . font )
61
62 def draw_connections (self , display ) :
63 for i in range ( len ( self . connection_descriptions ) ) :
64 self . connection_descriptions [ i ] . draw ( display , self . font )
65
66 def draw_legend (self , display ) :
67 y_offset = 50
68 bar_length = 400
69 box_center = ( self . box [0 ]+ self . box [ 2 ] ) / 2
70 x_start = box_center − 1/2∗bar_length
71 x_end = box_center + 1/2∗bar_length
72 color_positions = np . arange ( x_start , x_end , 1)
73 cap = self . network . weight_cap
74 color_bar = np . linspace(−cap , cap , len ( color_positions )−1 )
75 for i in range ( len ( color_bar ) ) :
76 weight = color_bar [ i ]
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77 color = [ ( cap+weight ) /(2∗ cap ) ∗x for x in (255 , 80 , 0) ]
78 thickness = 2∗weight/cap + 3
79 start_point = ( color_positions [ i ] , y_offset )
80 end_point = ( color_positions [ i+1] , y_offset )
81 pygame . draw . line ( display , color , start_point , end_point , int (

thickness ) )
82 if i==0 or (i+1)% 50 == 0 or i==398:
83 text = ’%.1f’ % weight
84 text_surface = self . font . render (text , False , BLACK )
85 display . blit ( text_surface , start_point )
86 pass
87
88
89 class NeuronGroupDescription :
90
91 def __init__ (self , network , values_index ) :
92 self . network = network
93 self . idx = values_index
94 self . y_value = None
95 self . x_values = None
96
97 @property
98 def values ( self ) :
99 return self . network . activations [ self . idx ]

100
101 def draw (self , display , font ) :
102 color = BLACK
103 radius = RADIUS
104 thickness = THICKNESS
105 values = self . values
106 for i in range ( len ( values ) ) :
107 position = ( int ( self . x_values [ i ] ) , int ( self . y_value ) )
108 pygame . draw . circle ( display , WHITE , position , radius , 0)
109 pygame . draw . circle ( display , color , position , radius , thickness )
110 text = ’%.1f’ % values [ i ]
111 text_surface = font . render (text , False , BLACK )
112 rect = text_surface . get_rect ( center=position )
113 display . blit ( text_surface , rect )
114
115
116 class ConnectionDescription :
117
118 def __init__ (self , network , layer_index ) :
119 self . network = network
120 self . idx = layer_index
121 self . input_neuron_description = None
122 self . output_neuron_description = None
123 self . cap = self . network . weight_cap
124
125 @property
126 def connections ( self ) :
127 return self . network . layers [ self . idx ] . weights
128
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129 def draw (self , display , font ) :
130 for i in range ( self . connections . shape [ 0 ] ) :
131 for j in range ( self . connections . shape [ 1 ] ) :
132 in_index = j
133 out_index = i
134 weight = self . connections [ i ] [ j ]
135 start_point = ( self . input_neuron_description . x_values [ in_index ] ,
136 self . input_neuron_description . y_value )
137 end_point = ( self . output_neuron_description . x_values [ out_index ] ,
138 self . output_neuron_description . y_value )
139 color = [ ( self . cap+weight ) /(2∗ self . cap ) ∗x for x in (255 , 80 , 0) ]
140 thick = 2∗weight/self . cap + 3
141 pygame . draw . line ( display , color , start_point , end_point , int (

thick ) )

-2 Python Code for the cartpole implementation

-2-1 Cartpole.py

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Nov 24 13:20:24 2018
4
5 @author: ajdin
6 """
7
8 import numpy as np
9 import gym

10 import time
11 import functions
12 import agent_functions as funs
13
14 from net3 import NeuralNetwork3 as nn3
15 from collections import deque
16
17 # make the environment
18 cartpole = gym . make (’CartPole -v0’ )
19
20 # agent settings
21 max_episodes = 100
22 network = nn3 ( inputcount=4, hiddencount=7, outputcount=1)
23 N_size = 1
24 reward_history = deque ( maxlen=N_size )
25 R = 0
26 old_R = 0
27 Reward = lambda queue : np . mean ( queue )
28 p_reward = lambda state : −np . linalg . norm (np . multiply ( state , np . array

( [ 0 . 1 , 0 . 1 , 1 . 3 , 0 . 1 ] ) ) )
29 gamma = 0.9
30 raw_rewards = [ ]
31
32 # options
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33 rendering = False
34
35 # data sampling
36 s1 = [ ]
37 s2 = [ ]
38 s3 = [ ]
39 s4 = [ ]
40
41
42
43
44 # discount rewards
45 def discount_rewards (r , gamma=0.9) :
46 # Init discount reward matrix
47 discounted_reward= np . zeros_like (r )
48 # Running_add: store sum of reward
49 running_add = 0
50 # Foreach rewards
51 for t in reversed ( range (0 , len (r ) ) ) :
52 running_add = running_add ∗ gamma + r [ t ] # sum * y (gamma) + reward
53 discounted_reward [ t ] = running_add
54 return discounted_reward
55
56 #linearly varied weight adjustment
57 def lvwa ( learning_rate , reward ) :
58 return learning_rate∗(1−reward )
59
60 last_num_steps = None
61 for episode in range (1 , max_episodes+1) :
62 old_R = None
63 modulations = [ ]
64 R = 0
65 state = cartpole . reset ( )
66 network . modulation_signal . modulations [ 0 ] = 0 .0
67 network . layers [ 1 ] . history_buffer . clear ( )
68 network . layers [ 1 ] . history_size = 200
69 features = [ ]
70 outputs = [ ]
71 for n in range (200) :
72 if rendering :
73 start = time . time ( )
74 cartpole . render ( )
75 preprocess_state = np . multiply ( state , np . array ( [ 1 , 1/4 , 2 , 1/6 ] ) ) +

np . array ( [ 0 . 5 , 0 . 5 , 0 . 25 , 0 . 5 ] )
76 reward_history . append ( p_reward ( state ) )
77 modulation = 0.0
78
79 if len ( reward_history ) == reward_history . maxlen :
80 R = Reward ( reward_history )
81 if old_R is not None :
82 modulation = np . tanh (2∗ ( R − old_R ) )#*(1-last_num_steps/200)
83 modulation = modulation∗1 if modulation > 0 else modulation
84 else :
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85 modulation = 0
86 # print(modulation)
87 old_R = R
88 # print(’modul: ’, modulation)
89
90 network . add_experience ( preprocess_state )
91 features . append ( network . activations [ 1 ] )
92 outputs . append ( network . activations [−1])
93 modulations . append ( modulation )
94
95 state , reward , flag , info = cartpole . step ( int ( round ( network .

activations [ − 1 ] [ 0 ] ) ) )
96 network . modulation_signal . modulations [ 0 ] = modulation
97 network . train ( )
98 # print(np.mean(network.layers[1].weights))
99

100 network . layers [ 1 ] . weights += funs . train ( modulations , features ,
outputs , 1 . 0 )

101 modulations . clear ( )
102 features . clear ( )
103 outputs . clear ( )
104
105
106
107 if rendering :
108 time . sleep ( max (1 . /40 − ( time . time ( ) − start ) , 0) )
109 if flag :
110 last_num_steps = (n+1)
111 if last_num_steps is not None :
112 mean_mod = 1 − last_num_steps /200
113 else :
114 mean_mod = 0.0
115
116 reward = last_num_steps /200
117 # mean_mod = np.mean(modulations)
118 modulations = [ mean_mod for x in modulations ]
119
120 # modulation = lvwa(1.0, reward)
121 # network.modulation_signal.modulations[0] = modulation
122 # network.layers[1].history_size = last_num_steps
123
124 # particular_reward = (n+1) - old_R
125 # raw_rewards = [0.02*particular_reward]*(n + 1)
126 # old_R = n+1
127 # discounted = discount_rewards(raw_rewards , gamma=0.99)
128 # network.modulation_signal.modulations[0] = discounted
129
130 # print(’episode: ’, ’ steps: ’, n+1, ’ history: ’, network.layers

[1].history_buffer)
131 # print(’final training: ’, episode ,’\n\n’)
132 # print(’num samples: ’, len(network.layers[1].history_buffer),

discounted)
133
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134 print (’episode: ’ , episode , ’. Steps completed: ’ , n+1, ’ avg error
: ’ , ’%.4f’ % network . layers [ 0 ] . average_error ,

135 ’ mean mod: %.3f’ %mean_mod , ’max mod: %.2f’ %0.0)
136 # print(’\n’, ’ discounted: ’, discounted)
137 # print(network.layers[1].history_buffer , ’\n\n’)
138
139 # network.train()
140 reward_history . clear ( )
141 break
142 # network.train()
143
144 cartpole . close ( )
145
146
147 #%% render the learned policy
148
149
150 cartpole = gym . make (’CartPole -v0’ )
151 state = cartpole . reset ( )
152 for i in range (200) :
153 start = time . time ( )
154 cartpole . render ( )
155 preprocess_state = np . multiply ( state , np . array ( [ 1 , 1/4 , 2 , 1/6 ] ) ) + np .

array ( [ 0 . 5 , 0 . 5 , 0 . 25 , 0 . 5 ] )
156 network . add_experience ( preprocess_state )
157 state , reward , done , info = cartpole . step ( int ( round ( network . activations

[ − 1 ] [ 0 ] ) ) )
158 time . sleep ( max (1 . /40 − ( time . time ( ) − start ) , 0) )
159 if done :
160 break
161 print (’done after ’ , i+1, ’ steps.’ )
162 cartpole . close ( )
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