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Abstract. Aviation aims to reduce its climate effect by adopt-
ing trajectories that avoid regions of the atmosphere where
aviation emissions have a large impact. To that end, proto-
type algorithmic climate change functions (aCCFs) can be
used, which provide spatially and temporally resolved infor-
mation on aviation’s climate effect in terms of future near-
surface temperature change. These aCCFs can be calculated
with meteorological input data obtained from, e.g., numer-
ical weather prediction models. We present here the open-
source Python library called CLIMaCCF, an easy-to-use and
flexible tool which efficiently calculates both the individual
aCCFs (i.e., aCCF of water vapor, nitrogen oxide (NOx)-
induced ozone production and methane depletion, and con-
trail cirrus) and the merged non-CO2 aCCFs that combine
all these individual contributions. To construct merged aC-
CFs all individual aCCFs are converted to the same physi-
cal unit. This unit conversion needs the technical specifica-
tion of aircraft and engine parameters, i.e., NOx emission in-
dices and flown distance per kilogram of burned fuel. These
aircraft- and engine-specific values are provided within CLI-
MaCCF version V1.0 for a set of aggregated aircraft and en-
gine classes (i.e., regional, single-aisle, wide-body). More-
over, CLIMaCCF allows the user to choose from a range of
physical climate metrics (i.e., average temperature response
for pulse or future scenario emissions over the time horizons
of 20, 50, or 100 years). Finally, we demonstrate the abilities
of CLIMaCCF through a series of example applications.

1 Introduction

Global aviation significantly contributes to anthropogenic
climate change through CO2 and non-CO2 emissions. Not all
non-CO2 emissions have a direct effect on climate. Aircraft
NOx emissions are not radiatively active themselves, but they
are very effective in the photochemical production of ozone
(O3), causing a positive radiative forcing. At the same time
increased NOx and O3 concentrations lead to increased oxi-
dation of methane (CH4), causing a negative radiative forc-
ing (e.g., Stevenson et al., 2004; Terrenoire et al., 2022).
This destruction of methane leads to a subsequent reduction
in the ozone productivity, which reduces background ozone
concentrations (PMO, primary-mode ozone; e.g., Stevenson
et al., 2004), also causing a negative forcing. Furthermore,
induced by non-CO2 emissions, contrails and contrail cirrus
can form in ice-supersaturated regions and alter the radiation
budget (e.g., Kärcher, 2018). Overall, as recently reviewed
by Lee et al. (2021), global aviation contributes 3.5 % of
the total anthropogenic radiative forcing (RF). The total avi-
ation RF comprises about one-third CO2 effects and about
two-thirds non-CO2 effects. The largest single contribution
to aviation RF comes from contrails and contrail cirrus, but
this estimate is affected by a very large uncertainty, as well as
from NOx effects (Grewe et al., 2019). In contrast to the CO2
effect, the non-CO2 effects reveal a strong dependence on
atmospheric conditions. Thus, the non-CO2 effects depend
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on the geographical location, altitude, and time of aircraft
emission (e.g., Grewe et al., 2014; Frömming et al., 2021).
In order to provide information on the spatially and tempo-
rally resolved climate effect of these non-CO2 effects, cli-
mate change functions (CCFs) were developed with an atmo-
spheric chemistry–climate model system (Frömming et al.,
2021). These CCFs provide a measure of the spatial and tem-
poral climate effect for a given emission by using the metric
of average temperature response (ATR). These CCFs were
calculated for a wide range of time steps and for eight repre-
sentative weather types in summer and winter classified after
Irvine et al. (2013) over the North Atlantic region (Frömming
et al., 2021).

Based on these CCFs, Grewe et al. (2014) investigated the
transatlantic air traffic for one single winter day and analyzed
the routing changes that are required to achieve a reduction
in the effect of air traffic on climate. Thus, this study pro-
vides the first comprehensive and valuable basis for weather-
dependent flight trajectory optimization with respect to min-
imum climate effect. However, as the calculation of these
CCFs within a global chemistry–climate model system re-
quires large computational cost, it cannot be used for oper-
ational climate-optimized flight planning. To address this is-
sue, the initial concept of CCFs was extended to algorithmic
climate change functions (aCCFs). These functions provide a
very fast computation of the individual non-CO2 climate ef-
fect as they are based on mathematical formulas which only
need a fairly limited number of relevant local meteorological
parameters as input (e.g., Matthes et al., 2017; van Manen
and Grewe, 2019; Yin et al., 2023). To derive the mathemat-
ical formulation of the individual aCCFs (a detailed formu-
lation of these prototype aCCFs is given in Appendix A),
statistical methods were used. A detailed explanation of the
concept of the aCCF approach can be found in van Manen
and Grewe (2019) for the NOx-emission-induced effect on
the species ozone and methane (as NOx acts as a precursor
to ozone production and methane depletion), as well as for
water vapor. In the case of the contrail aCCFs approach, a de-
tailed description is available in the Supplement of Yin et al.
(2023). These aCCF formulas facilitate the prediction of the
climate effect of individual species by means of meteoro-
logical input data from, e.g., weather forecast, without com-
putationally extensive recalculation using chemistry–climate
models. Of course, a number of assumptions and simplifi-
cations are necessary for this kind of statistical approach.
Nevertheless, it was shown in the studies of van Manen and
Grewe (2019) and Yin et al. (2023) that these prototype aC-
CFs are in broad agreement with the climate change metric
of earlier studies, i.e., CCFs (Frömming et al., 2021).

Indeed, aCCFs can be used for trajectory planning pur-
poses. The weather-dependent rerouting of flight trajectories
in order to reduce the climate effect of air traffic needs the
information on regions that are highly sensitive to aviation
emissions. In order to quantify the potential of mitigating
aviation’s climate effect, case studies with optimized aircraft

trajectories that use the aCCFs described above were per-
formed. These studies showed that rerouting has large po-
tential to reduce air traffic’s contribution to climate change.
Even small changes in the flight trajectory can lead to sig-
nificant reduction of the climate effect (see, e.g., Matthes
et al., 2017, 2020; Lührs et al., 2021; Castino et al., 2021;
Rao et al., 2022).

Nevertheless, a climate-optimal trajectory (interested
readers are also referred to Simorgh et al., 2022, for a recent,
thorough survey on climate-optimal aircraft trajectory plan-
ning) requires a quantitative estimate of CO2 and non-CO2
climate effects. The latter is needed as a four-dimensional
data set (latitude, longitude, altitude, time). This location-
and time-dependent quantitative estimate can be generated
by combining the individual aCCFs of water vapor, NOx-
induced ozone (production), NOx-induced methane (deple-
tion), and contrail cirrus into a merged non-CO2 aCCF by
means of a consistent climate metric. However, for combin-
ing the individual aCCFs, it has to be considered that the
aCCF algorithms provide their estimates in average temper-
ature change per emitted mass of the relevant species, e.g.,
in K kg(NO2)−1, for the ozone aCCF. Thus, before merging
the individual aCCFs, all individual aCCFs have to be con-
verted to the unit of K kg(fuel)−1. For this conversion the
information on NOx emission indices and flown distance per
kilogram of burned fuel (specific range) is needed. Based on
these generated merged non-CO2 aCCFs, climate-optimized
trajectories that aim to avoid climate-sensitive regions can be
calculated efficiently. Note that the total merged aCCFs (non-
CO2 as well as CO2 effects included) can also be calculated;
however, as the CO2 aCCF is a constant in location and time,
we focus on the merged non-CO2 aCCFs.

The development of the Python library, CLI-
MaCCF, which will be released together with this
paper (available on Zenodo with the software DOI:
https://doi.org/10.5281/zenodo.6977272, Dietmüller, 2022),
represents a technical enabler to seamlessly integrate in-
formation on spatially and temporally dependent non-CO2
climate effects (in terms of individual and also merged non-
CO2 aCCFs) in a trajectory optimization tool. In this paper
we will present both the scientific background of merging
aCCFs and the technical framework of the user-friendly and
flexible Python library CLIMaCCF V1.0.

The paper is structured as follows. In Sect. 2 we explain
how individual aCCFs are combined into a merged non-CO2
by making assumptions about emission indices of NOx and
flown distance per kilogram of burned fuel. We also pro-
vide a detailed overview of the scientific climate background
needed to understand which decisions have to be made before
generating the merged aCCFs. This includes insights into
physical climate metrics and forcing-dependent efficacies. In
Sect. 3 the technical implementation (general architecture)
of the Python library CLIMaCCF is given by describing how
the user can generate individual and merged aCCFs in a flex-
ible manner. Sect. 4 provides various analyses of the individ-
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ual aCCFs and the merged aCCFs, showing their character-
istic patterns. Moreover, the sensitivity of merged aCCFs to
different assumptions, as well as identifying regions of high
climate sensitivity in the presence of aircraft emissions, is
given. A discussion about the capability and limitations of
the Python library follows (Sect. 5), before the conclusions
are drawn in Sect. 6.

2 Generation of merged aCCFs

Based on aCCFs that represent the individual effects of
water vapor, NOx-induced ozone increase, NOx-induced
methane decrease, and contrail cirrus, a single aCCF func-
tion which combines these individual CO2 and non-CO2 ef-
fects can be generated (i.e., merged aCCFs). This merged
aCCF can be used as advanced meteorological (MET) in-
formation for flight planning, as a climate-optimized trajec-
tory requires the quantification of the total climate effect as
a four-dimensional data set (latitude, longitude, altitude, and
time). Such a merged aCCF can only be constructed by using
assumptions on several aircraft- and engine-specific param-
eters as well as consistent climate metrics. In the following,
we describe the concept of merging aCCFs and the under-
lying assumptions (choice of aircraft and engine parameters,
climate metric, and efficacy) in detail.

2.1 Mathematical formulation of individual aCCFs

As mentioned in the Introduction, aCCFs were developed to
provide a computationally fast way to calculate the climate
effect of individual non-CO2 aviation emissions as a function
of their geographical location, altitude, time, and weather.
Correlations and statistical methods were used to derive the
individual prototype aCCFs of water vapor, NOx-induced
ozone (production), NOx-induced methane (destruction),
and contrail cirrus. For water vapor, ozone, and methane
aCCFs, this was done by linking a large range of climate
change function (CCF) data, which were calculated in a de-
tailed chemistry–climate model simulation (Frömming et al.,
2021), to selected meteorological data, such as temperature
or geopotential height (van Manen and Grewe, 2019). The al-
gorithm for contrail aCCFs was developed differently. Con-
trail aCCFs are obtained from contrail radiative forcing cal-
culations, which are based on European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis and contrail
trajectory data (Yin et al., 2023). A short overview of the
mathematical formulation of these emission-type-dependent
prototype aCCFs is given in Appendix A of this document.
For a detailed description of the first complete and consistent
set of prototype aCCFs (aCCF-V1.0) the reader is referred
to Yin et al. (2023). Moreover, within the EU project Fly-
ATM4E an updated set of aCCFs (aCCF-V1.0A) was devel-
oped that considers the current level of scientific understand-
ing of aviation’s climate effects: for more details, readers

are referred to Matthes et al. (2023b) and FlyATM4E-D1.2
(2023). Overall, for the development of the aCCF a number
of assumptions and simplifications were necessary, e.g., in
the statistical approach or in the calculation of the CCF data
in a climate–chemistry model. Nevertheless, it was shown
that these aCCFs are in broad agreement with the climate
change metric of earlier studies (e.g., van Manen and Grewe,
2019; Yin et al., 2023).

2.2 Merged non-CO2 aCCFs and total aCCFs

To build the merged non-CO2 aCCFs, all individual aC-
CFs are consistently converted to the same physical units
of [K kg(fuel)−1]. In order to be independent of the air-
craft type the individual aCCFs (except the water vapor
aCCF) are given in specific units, i.e., K km−1 for con-
trail aCCFs or K kg(NO2)−1 for the NOx-induced ozone and
methane aCCF. By simply multiplying the NOx-induced aC-
CFs (aCCFO3 , aCCFCH4 and aCCFPMO) by the NOx emis-
sion indices (EINOx in g(NO2) kg(fuel)−1) and the contrail-
cirrus aCCF (aCCFcontrail) by flown distance per kilogram
burned fuel (Fkm in [km kg(fuel)−1]) all individual aCCFs
are converted to the same unit (K kg(fuel)−1), and in a sec-
ond step the converted individual aCCFs are combined into a
merged aCCF (see Eq. 1). Note that the water vapor aCCF
formula is already fuel-related and thus does not need to
be multiplied by the emission index of water vapor. Typical
transatlantic fleet mean values of EINOx and of Fkm are avail-
able from the literature: the transatlantic fleet mean value
for Fkm is 0.16 km kg(fuel)−1 (Graver and Rutherford, 2018
and Florian Linke, TU Hamburg, personal communication,
2020) and for EINOx it is 13 g(NO2) kg(fuel)−1 (e.g., Penner
et al., 1999), respectively. Another possibility is to take spe-
cific emitted amounts of NOx emissions and fuel consump-
tion values from an engine performance model. In this study
we also provide altitude-dependent mean emission indices
for NOx and flown distance per kilogram of burned fuel for
aggregated aircraft and engine classifications (e.g., regional,
single-aisle, and wide-body; see Sect. 2.3) and combine that
with the choice of climate metric (Sect. 2.4) and the use of
forcing efficacies (Sect. 2.5) to merge non-CO2 aCCFs:

aCCFnon-CO2
merged (t,x,y,z, iac, ir , iCM)=

aCCFO3 (t,x,y,z)×EINOx (iac,z)× rO3 (ir )×CMO3 (iCM)

+ aCCFCH4 (t,x,y,z)×EINOx (iac,z)× rCH4 (ir )×CMCH4 (iCM)

+ aCCFPMO(t,x,y,z)×EINOx (iac,z)× rPMO(ir )×CMPMO(iCM)

+ aCCFcontrail(t,x,y,z)×Fkm(iac,z)× rcontrail(ir )×CMcontrail(iCM)

+ aCCFH2O(t,x,y,z)× rH2O(ir )×CMH2O(iCM), (1)

where aCCFX represents the algorithmic climate change
functions for species X, i.e., water vapor (H2O), ozone (O3),
methane (CH4), primary-mode ozone (PMO), and contrail
cirrus. The variables t,x,y, and z indicate the three spa-
tial variables (x,y,z) and time (t). iac is the identifier for
three mean aircraft and engine classes: regional, single-
aisle, and wide-body (see Sect. 2.3). rX(ir) is the effi-
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cacy (see Sect. 2.5) of the species X with the switch ir ∈
{0,1} for disregarding or using the efficacies (i.e., rX(0)=1),
and CMX(iCM) is the climate metric conversion factor (see
Sect. 2.4) for species X and the choice of currently four cli-
mate metrics iCM ∈ {0,1,2,3}.

By additionally including the aviation climate effect of
CO2 the total merged aCCF is given.

aCCFtotal
merged(t,x,y,z, iac, ir , iCM)=

= aCCFCO2 ×CMCO2 (iCM)+ aCCFnon-CO2
merged (t,x,y,z, iac, ir , iCM) (2)

Note that the CO2 aCCF is independent of the location
x,y,z, efficacy (rX), and aircraft class.

For a merged aCCF it is required that the individual aC-
CFs are based on the same physical climate metric, emis-
sion scenario, and time horizon. The recent publication of
Yin et al. (2023) comprises such a consistent set of individ-
ual updated prototype aCCFs. Note that earlier publications
(e.g., Yamashita et al., 2020) provided mathematical formu-
lations that assumed different emission scenarios for water
vapor and NOx aCCFs as well as for contrail aCCFs, as they
were developed separately.

Overall, merged aCCFs are a function not only of time and
location, but also of aircraft- and engine-specific data, cli-
mate metric, and efficacy. For an efficient and flexible provi-
sion of such merged aCCFs we developed the Python library
CLIMaCCF.

2.3 Choice of aircraft- and engine-specific parameters

The calculation of merged non-CO2 aCCFs requires knowl-
edge about the emission index of NOx , EINOx , and the flown
distance per kilogram of burned fuel, Fkm (see Eq. 1). As
these indices vary depending on the actual aircraft–engine
combination (iac) and the cruise altitude (z), the use of global
mean emission indices should be avoided. Moreover, there is
a strong altitude dependency of the NOx emission index and
flown distance Fkm, which should be considered as well. Ag-
gregated values for altitude-dependent emission indices are
derived from trajectory simulation and emission inventory
data. Similarly, aggregated values for the specific range (i.e.,
flown distance per kilogram of burned fuel) Fkm are obtained.

For instance, analyzing the 10 most frequented routes in
the North Atlantic flight corridor (NAFC) with the 10 most
used aircraft types in 2012 yields an average flown dis-
tance per kilogram of burned fuel of 0.16 km kg(fuel)−1 (Flo-
rian Linke, personal communication, 2020) for transatlantic
flights. More differentiated values are obtained by analyz-
ing available emission inventory data from the DLR project
“Transport and Climate” (TraK). These data contain the air
traffic emission distribution in the year 2015 and can be eval-
uated separately per aircraft type, altitude, or region. The ba-
sis for the development of these emission inventories was a
database of reduced emission profiles within the Global Air
Traffic Emission Distribution Laboratory (GRIDLAB, Linke

et al., 2017). Those profiles were created by simulating air-
craft trajectories for various ranges and load conditions with
aircraft performance models from EUROCONTROL’s Base
of Aircraft Data (BADA, Nuic and Mouillet, 2012) model
families 3 and 4. Along those trajectories engine emissions
were calculated using the EUROCONTROL-modified Boe-
ing fuel flow method 2 (DuBois and Paynter, 2006; Jelinek,
2004) applied to engine certification data for the landing
and take-off cycle (LTO) taken from the International Civil
Aviation Organization (ICAO) engine emission database. In
order to create the reduced profiles, those trajectory emis-
sion data were finally resampled to only consider key points
along the profile such as transitions between flight phases.
The emission inventory contains gridded data at a resolu-
tion of 0.25◦× 0.25◦× 1000 ft. Associated with each grid
cell are the amounts of the individual emission species as
well as the flown distance in that grid cell. The aggregated
mean EINOx value at a given altitude is calculated by divid-
ing the sum of the amounts of emissions per species in all
grid cells at that altitude by the sum of burned fuel at that al-
titude. The specific range is calculated accordingly. We eval-
uated aggregated fleet-level values for EINOx (iac, z) and the
specific range Fkm(iac, z) for a variety of aircraft and engine
classes. As the aircraft-specific values are similar for certain
aircraft and engine classes, we group those aircraft classes
and provide their average fleet values and their standard de-
viation in Tables 1 and 2. Three different aircraft types are
given: regional (small aircraft with a short range, up to 100
seats), single-aisle (short- to medium-range narrow-body air-
craft), and wide-body (medium- to long-range aircraft, 250–
600 seats).

Table 1 clearly shows that average EINOx values increase
with increasing aircraft class and size, while EINOx values
decrease with increasing altitude. NOx emissions are pro-
duced during combustion due to high combustion tempera-
tures, which are connected to high thrust settings and engine
load conditions. In general, the thrust requirement increases
with the aircraft size. Increasing the thrust requirement leads
to an increase in the combustion temperature and therefore
an increase in NOx emissions. Below cruise altitude, e.g.,
during climb, the aircraft is operated with climb thrust and
during descent with nearly idle conditions, leading to higher
average engine loads at lower altitudes than during cruise.
The flown distance in Table 2 increases with altitude, as the
aircraft is operated in nearly fuel-optimal conditions during
cruise. On the other hand, larger aircraft tend to have a lower
specific range than aircraft with shorter range, as they be-
come less fuel-efficient on longer ranges, on which they have
to carry additional fuel solely for the purpose of transporting
a higher fuel mass over a long distance.

2.4 Choice of physical climate metric

Physical climate metrics can be understood as methods to di-
rectly compare the climate effect of different forcing agents

Geosci. Model Dev., 16, 4405–4425, 2023 https://doi.org/10.5194/gmd-16-4405-2023



S. Dietmüller et al.: CLIMaCCF V1.0 4409

Table 1. Average specific NOx emission indices and their standard deviation (in g(NO2) kg(fuel)−1) for the three aircraft classes (regional,
single-aisle, wide-body) derived from the global TraK emission inventory. EINOx ((iac, z)) values are shown for various typical flight altitudes
(20 000–40 000 ft). Besides the flight altitude in feet, the corresponding pressure level under ICAO standard atmosphere is given (hPa).

Flight altitude Pressure level Regional Single-aisle Wide-body
[ft] [hPa] [g(NO2) kg(fuel)−1] [g(NO2) kg(fuel)−1] [g(NO2) kg(fuel)−1]

20 000 466 11.464± 1.270 17.242± 1.008 24.765± 0.928
25 000 376 10.168± 1.144 14.765± 0.859 22.229± 0.835
30 000 301 9.377± 1.026 13.602± 0.792 19.230± 0.743
35 000 238 7.968± 0.827 11.248± 0.686 15.423± 0.579
40 000 188 6.567± 0.795 8.563± 0.642 12.730± 0.434

Table 2. Average flown distances per burned fuel and their standard deviation (in km kg(fuel)−1) for the three aircraft classes (regional,
single-aisle, wide-body) derived from the global TraK emission inventory. Fkm(iac, z) values are shown as a function of typical flight altitude
(20 000–40 000 ft). Besides the flight altitude in feet, the corresponding pressure level under ICAO standard atmosphere is given (hPa).

Flight altitude Pressure level Regional Single-aisle Wide-body
[ft] [hPa] [km kg(fuel)−1] [km kg(fuel)−1] [km kg(fuel)−1]

20 000 466 0.340± 0.070 0.252± 0.013 0.096± 0.004
25 000 376 0.450± 0.075 0.282± 0.015 0.107± 0.004
30 000 301 0.470± 0.081 0.287± 0.015 0.117± 0.005
35 000 238 0.488± 0.086 0.324± 0.018 0.116± 0.005
40 000 188 0.682± 0.108 0.401± 0.024 0.157± 0.007

or different sectors and sources (Fuglestvedt et al., 2010). A
climate metric is a combination of a climate indicator (e.g.,
average temperature response – ATR – or global warming
potential – GWP), time horizon (e.g., 20, 50, or 100 years),
and emission scenario (Fuglestvedt et al., 2010). For the
time development of aircraft emissions a pulse (emission at
a certain time), sustained (emission sustained at a certain
time), or future increasing (emission continue to develop)
scenario might be considered (Grewe and Dahlmann, 2015).
The choice of an adequate climate effect metric depends
on the specific question of climate effect (e.g., what is the
contribution to the current climate effect? What is the long-
term climate effect?) to be answered (Grewe and Dahlmann,
2015). Thus, depending on the question different climate ef-
fect metrics should be used.

The aCCFs were developed based on the climate metric of
average temperature response over a time horizon of 20 years
(ATR20). The emission scenario assumed was either based
on pulse emission (P ) or on the future business-as-usual
emission scenario (F ). This inconsistency has been discov-
ered, and a revision of the aCCFs is given in the recent pub-
lication of Yin et al. (2023). Now all direct outputs of aCCF
formulas are given in P-ATR20 (ATR20 based on pulse emis-
sion). P-ATR20 may not be well suited for all questions; e.g.,
for the question of the climate effect reduction of steadily
applying a certain routing strategy, future emission scenar-
ios are more suitable. Thus, we introduced conversion fac-
tors CMX(iCM) (see Eq. 1) which make it possible to switch
from the P-ATR20 metric (which is the basis of the aCCF-

V1.0 formulas in the Appendix A) to other physical climate
metrics, such as ATR based on the future emission scenario
(i.e., business as usual) with different time horizons (i.e., F-
ATR20, F-ATR50, or F-ATR100). To calculate these conver-
sion factors we use the nonlinear climate response model Air-
Clim (Grewe and Stenke, 2008; Dahlmann et al., 2016) and
perform several simulations with different emission scenar-
ios. A first set of conversion factors for four different metrics
(iCM) is presented in Table 3. Note that for the conversion
factor the time development of the forcing is important. As
we use the impact on an annual basis the time development of
O3 and H2O forcing is the same. Therefore, the conversion
factors for O3 and H2O are also the same. The conversion
factors of PMO and CH4 are the same, as the time develop-
ment (and forcing) of PMO is coupled with the time devel-
opment (and forcing) of CH4. Conversion factors for other
emission scenarios and other climate indicators will be pre-
sented in an upcoming publication.

2.5 Choice of climate-forcing-related efficacy

Radiative forcing (RF, in W m−2) describes the change in
the planetary energy balance. RF is often used as a metric
for comparing the global climate effect of specific forcing
components (e.g., CO2, ozone, aerosols). What makes RF so
useful for comparison is its empirically based linear relation-
ship to the steady-state global mean near-surface tempera-
ture change (e.g., Forster et al., 1997). The model-dependent
constant, which relates these two parameters, is the so-called
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Table 3. Climate metric conversion factors CMx from P-ATR20
(pulse-emission-based ATR over 20 years) to F-ATR20 (future-
emission-based ATR over 20 years), F-ATR50 (future-emission-
based ATR over 50 years), and F-ATR100 (future-emission-based
ATR over 100 years) for water vapor, ozone, methane, primary-
mode ozone (PMO), contrail-cirrus, and CO2 aCCFs.

F-ATR20 F-ATR50 F-ATR100

Water vapor aCCF 14.5 34.1 58.3
Ozone aCCF 14.5 34.1 58.3
Methane aCCF 10.8 42.5 98.2
PMO aCCF 10.8 42.5 98.2
Contrail aCCF 13.6 30.16 48.9
CO2 aCCF 9.4 44.0 125.0

climate sensitivity parameter λ (e.g., Hansen et al., 2005;
Cess et al., 1989). This relation is a good approximation for
many spatially homogeneously distributed climate forcing
components, such as CO2. However, for radiatively active
gases with a distinctly inhomogeneous structure (vertically
and horizontally), like ozone change patterns from precur-
sor emissions of the aviation sectors and contrail cirrus, the
relation with the constant climate sensitivity parameter fails
(e.g., Joshi et al., 2003; Stuber et al., 2005; Hansen et al.,
2005). Thus, RF of some non-CO2 forcing agents may be
more or less effective in changing global mean temperature
per unit forcing compared to the response of CO2 forcing. As
pointed out by, e.g., Rieger et al. (2017) and Richardson et al.
(2019), this can be explained by the fact that such nonho-
mogeneous forcings trigger feedbacks that differ from those
induced by CO2 (giving a climate response different from
CO2). A way to account for this is to introduce a forcing-
dependent efficacy parameter, which is defined as warming
per unit global average forcing divided by the warming per
unit forcing from CO2. By considering this efficacy (Hansen
et al., 2005; Ponater et al., 2006; Lee et al., 2021), a better
prediction of the expected global mean temperature change
is given.

As mentioned before, aCCFs are based on the climate met-
ric average temperature response (ATR) over a certain time
horizon, a useful metric to assess the aviation-induced cli-
mate effect (Dahlmann et al., 2016). However, here ATR was
calculated without taking the efficacy of the different non-
CO2 forcing components into account. Integrating the effica-
cies rX of water vapor, ozone, methane, and contrail cirrus
into the merged aCCFs (see Eq. 1) has the potential to make
the predictions of aviation-induced temperature change and
climate effect more reliable. Efficacies were recently summa-
rized in Lee et al. (2021) and are shown in Table 4. The effi-
cacy of the NOx-induced short-term ozone and NOx-induced
methane is larger than 1. This means that ozone and methane
RFs have a higher impact on the temperature response than
CO2. However, the efficacy values provided by Lee et al.
(2021) may require updates, e.g., other values for ozone effi-

Table 4. Overview of efficacies rX of NOx -induced ozone,
methane, PMO, water vapor, and contrail cirrus. Respective refer-
ences are given on the right side of the table.

Efficacy Reference

Ozone 1.37 Ponater et al. (2006)

Methane 1.18 Ponater et al. (2006)

PMO 1.18 Lee et al. (2021)

H2O 1 Lee et al. (2021)

Contrail cirrus 0.59 Ponater et al. (2005)
0.31 Rap et al. (2010)
0.35 Bickel et al. (2020)

0.42∗ Lee et al. (2021)

∗ The Lee et al. (2021) value is the mean over the values given by
Bickel et al. (2020), Ponater et al. (2005), and Rap et al. (2010).

cacies were provided by Ponater (2010), using a more realis-
tic ozone change pattern from aviation emission. Moreover,
Lee et al. (2021) assume the PMO efficacy to be equal to that
for methane, although the PMO change pattern is largely un-
known and there are no dedicated PMO climate sensitivity
simulations available. For contrails, the efficacy given in Lee
et al. (2021) is lower than 1, meaning that contrail RF has a
lower impact on the global temperature response than CO2.
Note that the contrail efficacy of 0.42 in Lee et al. (2021)
is based on three different contrail efficacy estimates from
earlier studies, including an estimate of 0.59 (Ponater et al.,
2005), an estimate of 0.31 (Rap et al., 2010), and an esti-
mate of 0.35 (Bickel et al., 2020). Efficacies strongly devi-
ating from unity (as in the case of contrail cirrus) can sub-
stantially affect the assessment of mitigation measures (e.g.,
Deuber et al., 2013; Irvine et al., 2014), but it would be de-
sirable to have more model studies on the subject to establish
more reliable values.

3 Technical implementation of individual and merged
aCCFs in the Python library CLIMaCCF version 1.0

The generation of individual and merged non-CO2 aCCFs
will be performed by using a user-friendly library devel-
oped with Python, called CLIMaCCF. The scope of CLI-
MaCCF is to provide individual and merged aCCFs as spa-
tially and temporally resolved information considering mete-
orology from the actual synoptical situation, the engine and
aircraft type, the selected physical climate metric, and the
selected version of prototype algorithms in individual aCCFs
(i.e., aCCF-V1.0 and aCCF-V1.0AQ; see Sect. 2.1). In the
following, some details on the technical implementation of
the Python library are presented. For more comprehensive
documentation, the reader is referred to the CLIMaCCF user
manual that is provided as a Supplement to this paper. Over-
all, the Python library consists of three main blocks: input
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block, processing block, and output block (see the schematic
workflow in Fig. 1). In the input block, the Python library
obtains the weather data (e.g., forecast, reanalysis) contain-
ing the required meteorological input and configurations like
the climate metric as well as the aircraft and engine class.
In the processing block, the individual aCCFs are calculated
and merged aCCFs are generated. In the output block the in-
dividual and merged aCCFs are stored. In the following we
describe these three blocks in more detail.

3.1 Input block

Within the input block (left box in Fig. 1), the meteorolog-
ical input data needed to calculate aCCFs are specified by
the user. All meteorological input data needed to calculate
the individual aCCFs are summarized in Table 5. The current
implementation of the library is compatible and tested with
several data products of the European Centre for Medium-
Range Weather Forecasts (ECMWF) (i.e., reanalysis data
ERA5 and ERA-Interim, forecast). These user settings in-
clude the selections of geographical area, horizontal resolu-
tion, and several output options (e.g., the output file can in-
clude merged aCCFs, individual aCCFs, and the input data
used). Besides the specification of meteorological input data,
users can select the version of aCCFs they aim to use. These
options include aCCF-V1.0, which is the first consistent and
complete set of aCCFs (Yin et al., 2023), aCCF-V1.0A, in
which the aCCF-V1.0 is calibrated to the climate response
model AirClim (see Matthes et al., 2023b; FlyATM4E-D1.2,
2023). Additionally user-defined scaling factors can be ap-
plied to the selected aCCF version. These scaling factors
are set to 1 by default; however, if a scaling of the aCCFs
(to higher or lower values) is desired (e.g., for sensitivity
studies) the user can adopt them accordingly. User settings
for the generation of individual and merged aCCFs can also
be selected. Here, the user can choose different assumptions
for aircraft-specific parameters and the physical climate met-
ric (emission scenario, physical climate indicator, time hori-
zons). Moreover, the user can decide if the aCCF calcula-
tion is performed with or without consideration of efficacy.
As for efficacy, users can use the values reported by Lee
et al. (2021) or use efficacy values provided by other stud-
ies. As the selection of aircraft and engine classification is an
important factor in determining reliable merged aCCF (see
Sect. 2), we have implemented an initial set of specific emis-
sion indices for some selected aircraft–engine combinations.
By selecting an aggregated aircraft and engine type, tabulated
flight-level-dependent NOx emission indices and flown dis-
tance per burned fuel values are used to calculate the merged
aCCFs. An additional functionality is the identification of ar-
eas that are very sensitive to aviation emission, in the fol-
lowing called “climate hotspots”. To quantify these areas, a
threshold value is used to identify the regions with very large
effects induced by aviation. The threshold to determine these
climate hotspot areas is also considered an adjustable param-

eter (for details, see Sect. 4). In the end, the users can specify
output parameters such as merged aCCFs or the aCCFs of
each species. In the case of using ensemble forecasts, one can
also receive the ensemble mean and ensemble spread of the
resulting individual or merged aCCFs from CLIMaCCF. The
user can select the output format (either netCDF or PICKLE).
There is also a possibility to output the climate hotspots in the
GeoJSON file format.

3.2 Processing block

The processing block (upper right box in Fig. 1) performs the
aCCF calculations using the given weather data and the user
settings described above. The processing block includes, for
the aCCF calculation, preprocessing of input variables, the
calculation of individual and merged aCCFs, and the calcu-
lation of climate-sensitive regions (climate hotspots). A more
detailed description of these calculations is given in the fol-
lowing.

Before calculating individual and merged aCCFs, prepro-
cessing of several input data is needed.

– Processing weather data. In an initial step, based on
the user preferences, the geographical areas where the
merged aCCFs are calculated can be reduced, or the de-
fault resolutions can be changed. In these cases, some
modifications are applied to the original input weather
data. Notice that the horizontal resolution cannot be in-
creased, and the decrease in resolution is a factor i of
natural numbers. For instance, if the resolution of me-
teorological input data is 0.25◦× 0.25◦, the resolution
can be reduced to i× 0.25◦× i× 0.25◦ for i ∈ N.

– Calculate required weather variables form alternative
variables. If some required meteorological variables are
missing in the input data set, they can be retrieved from
alternative variables included in the data set, but only
if alternative variables described in Table 5 exist in the
data set, as they will be employed to calculate the re-
quired variables.

– Tabulated aircraft- and engine-specific parameters. In
the database of the library, NOx emission indices
(EINOx ) and flown distances (Fkm) are provided for dif-
ferent types of aircraft (i.e., regional, single-aisle, wide-
body) at different flight levels. By using spline interpo-
lations, these indices are calculated for any given flight
level (or pressure level).

– Calculate persistent contrail formation areas. The units
of the daytime and nighttime contrail aCCFs are
[K km−1], meaning that they are defined only in ar-
eas where the formation of persistent contrails is possi-
ble, called persistent contrail formation areas (PCFAs).
These regions are identified by two atmospheric con-
ditions (e.g., Gierens et al., 2020): first, the Schmidt–
Appleman condition (SAC) (Appleman, 1953), stating
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Figure 1. Schematic workflow of calculating individual and merged aCCFs using the Python library CLIMaCCF version 1.0. The left box
describes the input block, the upper right box the processing block, and the lower left box the output block.

that contrails form if the exhaust–air mixture in the ex-
panding plume reaches water saturation, has to be ful-
filled. SAC describes the formation of both short-lived
and long-lasting (or persistent) contrails. For the persis-
tence of contrails a second criteria is needed: the am-
bient air has to be supersaturated with respect to ice,
meaning that the relative humidity over ice (rhumice) is
higher than 100 %. Within CLIMaCCF the PCFAs are
calculated in the processing step. Here the user has two
possibilities: the first possibility is to calculate PCFA by
using the thresholds of ice-supersaturated regions (IS-
SRs) with the temperature threshold of T < 235 K and
the threshold of relative humidity over ice> 100 % (see
the Supplement of Yin et al., 2023) (PCFA-ISSR). The
second possibility, which is more accurate, is to cal-
culate SAC explicitly to define the temperature thresh-
old and then additionally assume ice supersaturation
(PCFA-SAC). Note, however, that for the exact calcu-
lation of SAC, parameters of aircraft and engine prop-
erties are also needed.

– The calculation of the individual and merged aCCFs
within CLIMaCCF is based on the aCCF formulas of
Yin et al. (2023) (see Appendix A). By using the pro-
vided original and preprocessed input data the individ-
ual and merged aCCFs are calculated. Moreover, user-
specific conversion factors due to the selected physical
climate metric, efficacy, and aircraft-specific emission
indices are needed. Table 6 summarizes all the individ-
ual aCCFs and parameters needed to calculate merged

aCCFs. Additionally the processing block includes the
calculation of climate hotspots, areas that are very sen-
sitive to aviation emissions. The calculation of climate
hotspots is based on the calculated merged aCCFs. To
identify these climate hotspots a threshold based on the
merged aCCFs is needed. This threshold can either be
fixed to a user-defined parameter or determined dynam-
ically within CLIMaCCF by calculating the percentile
value (e.g., 90 % or 95 %) of the merged aCCF (a more
detailed explanation of the dynamical approach is given
in Sect. 4).

3.3 Output block

In the output block (lower right box in Fig. 1), the processed
aCCFs are saved. In the current version, for saving aCCFs
(e.g., individual aCCFs, merged aCCF, and climate hotspots)
and weather variables (if selected), NetCDF and PICKLE file
formats can be selected. In addition, the user can choose the
GeoJSON format for storing polygons of climate-sensitive
regions (i.e., climate hotspots).

4 Application of CLIMaCCF to ERA5 reanalysis data

The Python library CLIMaCCF allows easily generating out-
put of the spatially and temporally resolved climate effect
of aviation emissions by using available aCCFs. As men-
tioned above the individual aCCFs of NOx-induced ozone
and methane, water vapor, and contrail cirrus, as well as the
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Table 5. Meteorological variables and their alternatives needed to calculate aCCFs.

Meteorological variables Alternatives

Potential vorticity unit [10−6 K m2 s−1 kg−1] Temperature [K], components of wind [m s−1]
Relative humidity [%] Specific humidity [kg kg−1]
Outgoing longwave radiation∗ (OLR) [W m−2] Top net thermal radiation∗ (ttr) [J m−2]
Incoming solar radiation at top of the atmosphere [W m−2] Date, declination angle
Temperature [K]
Geopotential [m2 s−2]

∗ Values of OLR and ttr have to be negative.

merged non-CO2 aCCFs, can be calculated with CLIMaCCF.
In this section, we describe different characteristic patterns
of individual and merged aCCFs over the European airspace.
We use the aCCFs over the whole European airspace (al-
though they were developed over the NAFC), as weather
pattern analysis showed that Europe is highly influenced by
North Atlantic dynamics. We also compare merged aCCFs
using different assumptions of aircraft types and metrics, and
we explain how to identify regions that are very sensitive
to aviation emissions (so-called climate hotspots) and how
these climate hotspots behave.

The meteorological input data used for calculating the aC-
CFs within the CLIMaCCF were taken from the ERA5 high-
resolution realization reanalysis data set (Hersbach et al.,
2020). ERA5 is the fifth generation of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) atmo-
spheric reanalysis. ERA5 high-resolution (HRES) data are
archived with a horizontal resolution of 0.28◦× 0.28◦.

4.1 Analysis of individual and merged aCCFs by using
the Python library CLIMaCCF

As an application example we show typical summer patterns
of water vapor, NOx-induced (including ozone, methane,
and PMO), contrail-cirrus, and merged non-CO2 aCCFs at
12:00 UTC (under daytime conditions) on 15 June 2018 over
the geographical region of Europe (15◦W–30◦ E, 35–60◦ N)
at a pressure level of 250 hPa. With this analysis we aim to
give an impression of the typical structure and of gradients of
the specific aCCFs over the European airspace. Note that in
this subsection, we generated individual and merged aCCFs
using aCCF-V1.0A and by assuming the climate metric of F-
ATR20 with inclusion of efficacies. For merging we used typ-
ical transatlantic fleet mean parameters (see Sect. 2). In the
case of merged aCCFs we will focus on the merged non-CO2
aCCFs (Eq. 1), as the merged aCCF pattern does not change
if including the CO2 aCCF, which has a constant value in
time and location. But of course, for climate-optimal trajec-
tory optimization, fuel consumption also has to be taken into
account, as this is directly linked to CO2 emissions.

Figure 2. Water vapor aCCF at a pressure level of 250 hPa
over Europe at 12:00 UTC on 15 June 2018. Units are given
in [K kg(fuel)−1]. Overlaid green lines indicate positive (solid
line) and negative (dashed line) geopotential height anomalies (in
m2 s−2).

4.1.1 Water vapor aCCF

Figure 2 presents the typical water vapor aCCFs over Europe
for the specific summer day. As aircraft-induced water vapor
emissions have a warming effect, the water vapor aCCFs re-
veal positive values in all regions. The values of water vapor
aCCF are highly variable, and they vary with location by a
factor of about 3. This regional variation in the aCCFs pat-
tern highly follows the weather pattern; the maximum value
can be observed over the region with negative geopotential
height anomalies (see overlaid green lines), indicating low
pressure and a low tropopause.

4.1.2 NOx-induced aCCFs

To better understand the total NOx-induced aCCF, the NOx
aCCF is displayed in Fig. 3 together with the ozone and
methane aCCF. Note that the long-term primary-mode ozone
(PMO) is included here in the methane aCCF. The ozone
aCCF (Fig. 3a) is positive (warming), as NOx emissions from
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Table 6. The functions and variables needed to calculate merged aCCFs.

Function Unit Physical input parameter Range

aCCFO3 K kg(NO2)−1 Geopotential, temperature ≥ 0 (warming)

aCCFCH4 K kg(NO2)−1 Geopotential, solar radiation ≤ 0 (cooling)

aCCFH2O K kg(fuel)−1 Potential vorticity unit ≥ 0 (warming)

aCCFcontrail-day K km−1 Outgoing longwave radiation, relative humidity,
temperature

−10−10
≤ aCCFcontrail-day ≤ 1010 (cooling/warming)

aCCFcontrail-night K km−1 Temperature, relative humidity aCCFcontrail-night ≥ 0 (warming)

EINOx g(NO2) kg(fuel)−1 Aircraft/engine EINOx ≥ 0

Fkm km kg(fuel)−1 Aircraft/engine Fkm ≥ 0

PCFA – Threshold for relative humidity over ice and
temperature, aircraft/engine properties

PCFA= [0,1]

aviation induce the production of the greenhouse gas ozone.
It reveals generally higher values in southern regions, as pho-
tochemical ozone formation increases with the availability
of sunlight as well as with temperature. Additionally, the
synoptical weather pattern influences the ozone aCCF val-
ues, as emitted NOx that is transported to lower latitudes
experiences more solar radiation, and thus photochemical
ozone production is higher compared to that which remains
at higher latitudes. The methane aCCF is negative (Fig. 3b),
as NOx emissions cause a decrease in methane concentra-
tions, as there is a decrease in warming from methane. The
resulting total NOx aCCF (Fig. 3c), a combination of ozone
warming and methane net cooling effects, reveals that the
ozone effect dominates the overall warming effect of NOx
emissions. Note that by using the metric of ATR20 and an un-
derlying future emission scenario, the differences in lifetime
between NOx , ozone, and methane are taken into account.

4.1.3 Contrail-cirrus aCCFs

Only if the atmospheric conditions allow for a contrail for-
mation is the contrail aCCF nonzero. Figure 4 shows the
daytime contrail-cirrus aCCF that can lead to either a pos-
itive or negative climate effect. Whether the climate effect is
positive or negative depends mainly on the solar insolation,
as contrails not only reduce the outgoing longwave radiation
(warming) but also reflect the shortwave incoming radiation
(cooling). The spatial variability in the contrail aCCF is very
high and ranges from zero (regions with no persistent contrail
formation) to high positive or negative values. This is clear
as the formation of persistent contrails is highly sensitive to
the actual atmospheric conditions.

4.1.4 Merged non-CO2 aCCFs

Figure 5 shows the merged non-CO2 aCCF, which combines
the water vapor, NOx-induced, and contrail-cirrus aCCFs.
The shown merged aCCF is calculated based on the climate

metric of F-ATR20, taking into account the different effica-
cies of contrails, ozone, and methane. Moreover, the typical
averaged fleet mean values of transatlantic flights are taken
for the NOx emission index and the specific range. The com-
parison of the individual aCCF components (see Figs. 2–4)
with the merged non-CO2 aCCF (Fig. 5) clearly shows that
the contrail-cirrus aCCF dominates the non-CO2 climate ef-
fect in the regions where contrails form. By converting all
the individual aCCFs to the same unit (K kg(fuel)−1), the
direct comparison of the aCCFs can be allowed (see Ap-
pendix B, Fig. B2 first row). This shows that contrail aCCFs
have the highest climate effect in the contrail formation ar-
eas, followed by the NOx-induced aCCF, whereas the water
vapor aCCF is of negligible magnitude in this case. Thus,
adding the high values of the positive contrail aCCF to the
smaller positive NOx aCCF values leads to very high values
in the merged aCCF, whereas areas of negative contrail aCCF
mostly lead to the negative merged aCCF, as the magnitude
of the negative aCCF is often higher than that of the NOx-
induced aCCF. On the basis of the merged aCCF (Fig. 5), a
hypothetical climate-optimized European flight (which will
stay on this pressure level for simplification) would certainly
try to avoid the areas with high positive merged aCCFs. Fur-
ther, this flight trajectory will probably find a compromise
between avoiding long distances through enhanced climate
warming areas and at the same time avoiding long detours
as these would induce a penalty with respect to CO2 aCCF.
Thus, if the trajectory is optimized based on the merged non-
CO2 aCCF, this penalty is not taken into account.

4.2 Sensitivity of merged aCCFs to different aircraft
and aircraft classes as well as climate metrics

As mentioned above, the merged aCCFs can be used as ad-
vanced MET information for flight planning, as CLIMaCCF
enables quantifying the total non-CO2 climate effect as a
four-dimensional data set (latitude, longitude, altitude, and
time) that is necessary for a climate-optimized trajectory.
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Figure 3. (a) Ozone aCCF, (b) methane aCCF (including PMO), and (c) total NOx aCCF (sum of ozone, methane, and PMO aCCFs) at
a pressure level of 250 hPa over Europe at 12:00 UTC on 15 June 2018. Units are given in [K kg(NO2)−1]. Overlaid green lines indicate
positive (solid line) and negative (dashed line) geopotential height anomalies (in m2 s−2).

Figure 4. Daytime contrail aCCF at a pressure level of 250 hPa
over Europe at 12:00 UTC on 15 June 2018. Units are given in
[K km−1]. Overlaid green lines indicate positive (solid line) and
negative (dashed line) geopotential height anomalies (in m2 s−2).

In Sect. 4.1, we showed the merged aCCF constructed with
CLIMaCCF assuming the climate metric of F-ATR20 (the ef-
ficacies included) as well as the transatlantic fleet mean value
of the NOx emission index and the specific range. How-
ever, as described in Sect. 2, there are several choices for
generating the merged aCCFs. These choices are related to
the climate objective (climate metric) and the emission be-
havior of the aircraft type, and they depend of course on a
user objective. In the following, we investigate how sensi-
tive the merged non-CO2 aCCFs are to different assumptions.
Table 7 summarizes the different considerations of merged
non-CO2 aCCFs that were performed with CLIMaCCF. The
reference calculation is the same as shown in Sect. 4.1 (us-
ing the climate metric F-ATR20, inclusion of efficacies, and
emission indices of typical fleet mean values of transatlantic
flights). Additionally, we conducted three sensitivity calcu-
lations with height-dependent emission indices and specific

Figure 5. Merged non-CO2 aCCF at a pressure level of 250 hPa
over Europe at 12:00 UTC on 15 June 2018. Units are given
in [K kg(fuel)−1]. Overlaid green lines indicate positive (solid
line) and negative (dashed line) geopotential height anomalies (in
m2 s−2).

ranges of different aircraft types (i.e., regional, single-aisle,
and wide-body), as well as one sensitivity calculation with a
different climate metric of F-ATR100.

In the first three sensitivity calculations (SENS-AC1,
SENS-AC2, and SENS-AC3), we varied the emission indices
by using different aircraft types. By choosing different ag-
gregated aircraft types (i.e., regional, single-aisle, and wide-
body), the respective values of Fkm and EINOx were used (see
Tables 1 and 2). Note, moreover, that, in contrast to the mean
fleet value used for the reference calculation, EINOx and spe-
cific range values are flight-altitude-dependent. These sen-
sitivity calculations are used to investigate how the aircraft
type influences the overall climate effect in terms of the av-
erage temperature change. Figure 6 shows the merged aC-
CFs for the reference calculation (REF) and for the aircraft-
dependent sensitivity calculations (SENS-AC1, SENS-AC2,
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Table 7. Overview of the conducted calculations of merged non-CO2 aCCFs. Besides the reference calculation (REF), which uses transat-
lantic fleet mean values, there are three sensitivity calculations using height-dependent aircraft and engine parameters (i.e., EINOx , Fkm) of
different aggregated aircraft types (SENS-AC1, SENS-AC2, and SENS-AC3) as well as one sensitivity calculation using a different climate
metric (SENS-M1). Efficacy is taken into account for all simulations.

REF SENS-AC1 SENS-AC2 SENS-AC3 SENS-M1

Climate metric F-ATR20 F-ATR20 F-ATR20 F-ATR20 F-ATR100
Aircraft/engine class fleet mean regional single-aisle wide-body fleet mean

and SENS-AC3) on 15 June 2018 at a pressure level of
250 hPa. Additionally, Fig. B1 in Appendix B provides
aircraft- and engine-dependent merged aCCF patterns to-
gether with the respective water vapor, NOx , and contrail-
cirrus aCCFs, all given in the same unit (K kg(fuel)−1). Gen-
erally, for all aggregated aircraft types, the highest climate
effect is found in the areas of contrail formation. Comparing
the aircraft-type-dependent merged aCCFs reveals that con-
trails are more dominant for the regional and single-aisle air-
craft types. In the case of regional (SENS-AC1) and single-
aisle (SENS-AC2) aircraft types, the merged aCCFs have
very high contrail aCCF values (see Fig. B1), leading to the
high absolute merged aCCF values. The maximum merged
aCCF values are smaller if the transatlantic fleet mean (REF)
and the wide-body (SENS-AC3) aircraft type emission in-
dices are chosen. Moreover, in regions where no contrails
form, the NOx-induced aCCF (i.e., the sum of the ozone,
methane, and PMO aCCFs) shows relatively high values for
REF and SENS-AC3 compared to those for SENS-AC1 and
SENS-AC2. Compared to the aircraft- and engine-dependent
NOx emission indices and flown distances at a flight alti-
tude of 35 000 ft (roughly corresponding to the pressure layer
of 250 hPa) in Tables 1 and 2, these differences can be ex-
plained: at this cruise altitude the aggregated regional aircraft
type shows the lowest EINOx (7.968 g(NO2) kg(fuel)−1) but
the highest flown distance values Fkm (0.488 km kg(fuel)−1).

To generate a merged non-CO2 aCCF, it is necessary to
choose a consistent climate metric for all individual aCCFs.
As mentioned in Sect. 2.4, there are many metrics used in the
literature to assess the climate effect; however, the choice of
the metric depends on the objective of the study (e.g., Grewe
and Dahlmann, 2015). CLIMaCCF provides the possibility
to choose between a set of different climate metrics. Thus,
we can show how different metrics influence the merged non-
CO2 aCCF. As an example we compare the reference calcu-
lation (REF), which is based on F-ATR20 (Fig. 7a), to the
SENS-M1 calculation, which assumes the climate metric of
F-ATR100 (Fig. 7b). For the F-ATR100 metric, the focus lies
more on long-term mitigation effects, whereas the choice of
the F-ATR20 metric focuses on the short-term mitigation ef-
fect. Choosing the time horizon of 100 years for the F-ATR
largely impacts the absolute values of the merged aCCF, as
the metric conversion factor of all species is higher for F-
ATR100 (see Table 3). Moreover, in Fig. B2 (Appendix B)

the individual aCCFs for these two metrics are shown in
terms of the same unit (K kg(fuel)−1), and we see that the
climate effect of NOx-induced emissions gets more impor-
tant compared to the contrail aCCFs in the case of ATR100.

4.3 Identification of climate-sensitive regions (climate
hotspots)

Any trajectory planning tool capable for planning climate-
optimized aircraft trajectories (see Simorgh et al., 2022) can
use the information on the location-, altitude-, and time-
dependent climate effect of non-CO2 emissions and aim to
avoid such highly sensitive regions by planning for an alter-
native, climate-optimized, or eco-efficient aircraft trajectory.
CLIMaCCF offers the possibility to identify regions with a
large climate effect, called climate hotspots. Threshold val-
ues that define these climate hotspots have to be provided.
These threshold values are based on the merged non-CO2
aCCF values: if the merged aCCF exceeds a certain thresh-
old value of the merged aCCF the region is defined as a cli-
mate hotspot. As the merged aCCFs highly vary with sea-
son, flight altitude, geographical latitude, daytime and night-
time conditions, and synoptic weather situation, these thresh-
old values should be determined dynamically for every time
step and flight altitude over a certain geographical region
(e.g., European airspace). To do so, we calculate the per-
centile (e.g., 95th percentile) of the merged aCCF distribu-
tion over all grid points spanning, e.g., the European airspace
(in our example we use the geographical region of 35–60◦ N,
15◦W–30◦ E). This percentile then provides the time step
and level-dependent threshold of the merged aCCF. As men-
tioned above, regions are defined as climate hotspots if the
corresponding merged aCCF lies above this threshold. Thus,
e.g., in the case of the 95th percentile the highest 5 % of
the merged aCCFs are declared as climate hotspots. In CLI-
MaCCF the user has the possibility to select the geographical
region over which the percentile of the merged aCCF is cal-
culated as well as the percentage (e.g., 90 %, 95 %) of the
percentile.

Figure 8 illustrates such climate hotspots (in red) over the
European airspace at the different cruise altitudes of 200,
250, and 300 hPa for 15 June 2018 at 12:00 UTC. The un-
derlying merged non-CO2 aCCF used here is based on the
REF calculation (see Table 7 and Fig. 5). By selecting the
95th percentile for the calculations we get different threshold
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Figure 6. Merged non-CO2 aCCF at a pressure level of 250 hPa over Europe on 15 June 2018 (12:00 UTC) using four different assumptions
for the NOx emission index and the flown distance values: (a) typical transatlantic fleet mean, (b) regional aircraft type, (c) single-aisle
aircraft type, and (d) wide-body aircraft type. Units are all given in [K kg(fuel)−1].

Figure 7. Merged non-CO2 aCCF at a pressure level of 250 hPa over Europe at 12:00 UTC on 15 June 2018 using two different assumptions
for the climate metric: (a) F-ATR20 (REF) and (b) F-ATR100 (SENS-M1).

values for different altitudes: 2.945×10−13 K kg(fuel)−1 for
200 hPa, 3.256×10−13 K kg(fuel)−1 for 250 hPa, and 2.687×
10−13 K kg(fuel)−1 for 300 hPa. The threshold at 250 hPa has
the highest value, meaning that aviation’s climate effect (in
terms of merged non-CO2 aCCFs) is generally larger here.
Comparing the climate hotspot patterns in Fig. 8, it is clear
that these regions vary a lot for different altitudes.

5 Discussion

5.1 CLIMaCCF configuration

With the open-source Python library CLIMaCCF we pro-
vide a simple and easy-to-use framework for quantifying the
spatially and temporally resolved climate effect of aviation
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Figure 8. Climate hotspots over the European airspace on the 15 June 2018 (12:00 UTC) for the flight altitudes (a) 200 hPa, (b) 250 hPa, and
(c) 300 hPa. The thresholds are based on the respective (pressure-level-dependent) 95th percentile of the merged non-CO2 aCCF.

emissions by making use of the aCCFs that are published
in the studies of van Manen and Grewe (2019), Yamashita
et al. (2020), Yin et al. (2023), and Matthes et al. (2023b).
CLIMaCCF is easy to install and to run, and it efficiently
calculates the individual and merged non-CO2 aCCFs, tak-
ing the actual meteorological situation into account. Merged
non-CO2 aCCFs are generated by combining the individ-
ual aCCFs of water vapor, NOx-induced ozone, methane,
and contrail cirrus by making assumptions on the technical
specification of the engine–aircraft combination (i.e., EINOx
and Fkm) and on an appropriate physical climate metric.
With this newly developed Python library, the user has the
possibility to investigate merged aCCFs for three different
aggregated aircraft types (regional, single-aisle, wide-body)
that provide flight-level-dependent values of EINOx and Fkm
(for details see Tables 1 and 2). This novel feature of cal-
culating merged aCCFs by considering the flight-level- and
aircraft-dependent values of EINOx and Fkm, rather than us-
ing the transatlantic fleet mean values, leads to a better rep-
resentation of aviation’s non-CO2 climate effect. Compared
to the study of Frömming et al. (2021), which showed avi-
ation’s merged climate effect (in terms of CCFs) by using
transatlantic fleet mean values, this is a real improvement, as
merged aCCFs vary significantly for different aircraft types
as also shown in Fig. 6.

Moreover, CLIMaCCF offers the possibility to calculate
aCCFs for a set of different physical climate metrics. For in-
stance, the user has the flexibility to calculate the aCCFs for
the climate metric of global average temperature response
(ATR) with pulse emission or future emission scenario over
the time horizons of 20, 50, and 100 years. However, we want
to point out here that any optimization study has to carefully
choose an adequate physical climate metric (i.e., its climate
indicator, emission scenario, and time horizon) so that it is
suitable for the specific application, which depends on strate-
gic decisions, on given constraints, and on policy assump-
tions (e.g., Fuglestvedt et al., 2010; Grewe and Dahlmann,
2015). For example, a pulse emission compares the future
climate effect in a given year, whereas a future emission sce-
nario compares the effect of increasing emissions over a fu-

ture time period. This leads to different estimates of the ATR,
as also shown in Fig. 7.

5.2 Threshold of relative humidity for
ice-supersaturated regions (ISSRs)

Besides the wise selection of an appropriate climate met-
ric, other configuration parameters also have to be chosen
carefully by the user. Thus, if using the Python library CLI-
MaCCF for calculating the climate effect of contrails the
user has to pay special attention to defining the threshold of
relative humidity for ice-supersaturated regions (ISSRs). In
the case of contrail aCCFs we need to determine these IS-
SRs, as persistent contrails can only form in these regions,
and the contrail aCCF is calculated only for these regions.
These ISSRs are identified by two conditions: the tempera-
ture is below 235 K (in order to avoid identification of mixed-
phase regions Pruppacher et al., 1998), and the relative hu-
midity with respect to ice (RHice) exceeds 100 % (see, e.g.,
Yin et al., 2023, their Supplement on contrail aCCFs). How-
ever, for considering the sub-grid-scale variability in the rel-
ative humidity field in numerical weather forecast model
data, e.g., ERA5, RHice thresholds below 100 % are needed.
For example, Irvine et al. (2014) showed that the relatively
coarse resolution of the ERA-Interim data leads to a grid
box with a grid mean humidity slightly below 100 %, as it
is likely within this grid box that some air parcels show rel-
ative humidity values above 100 %. In the following we ex-
plain how we derive the threshold value of RHice in order
to consider the sub-grid-scale variability for the data prod-
uct ERA5 HRES (see Sect. 4). To do so we calculated the
annual mean (2009–2010) ISSR frequency over the Euro-
pean region (5◦W–30◦ E, 40–60◦ N) using the ERA5 data
set. For the ISSR frequency calculation we varied the thresh-
old value of RHice (i.e., taking 90 % and 95 %), but leaving
the temperature threshold of 235 K constant, and compared
the results to the observationally based ISSR frequency val-
ues of the study of Petzold et al. (2020). This study used in
situ measurement data for temperature and RHice from the
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full MOZAIC program1 over the period 1995–2010. Table 8
summarizes the results of our ERA5-based ISSR calcula-
tions together with the results of Petzold et al. (2020) ob-
tained by observational data. The frequency of ISSR in the
European area is shown for three different vertical levels, the
tropopause layer (TPL, thermal tropopause), the upper tropo-
sphere (UT, 30 hPa below thermal tropopause), and the lower
stratosphere (LS, 30 hPa above thermal tropopause). From
this table we see that by setting the RHice threshold value to
90 % for ERA5 the ISSR values of Petzold et al. (2020) are
best matched. Thus, taking RHice threshold values of 90 %,
the ISSR frequency of Petzold et al. (2020) is only slightly
overestimated in the TPL (2 %) and in the UT (1 %). Note
that the threshold values for the RHice have to be adopted if
using other resolutions of ERA5 data or other data products.
The contrail aCCF shown in Sect. 4 of this publication uses
the 90 % threshold, as it is based on ERA5 HRES input data.

5.3 Limitations of prototype aCCFs

It is also essential to note here that CLIMaCCF is facing lim-
itations. An important limitation is the prototype character of
the aCCFs. As described in Sect. 2.1 the aCCF algorithms
were developed based on a set of detailed comprehensive cli-
mate model simulations for meteorological summer and win-
ter conditions with a focus on the North Atlantic flight cor-
ridor (van Manen and Grewe, 2019; Frömming et al., 2021).
We do not recommend off-design use of these aCCFs, espe-
cially using the aCCFs for tropical regions or for spring and
autumn. However, the development of the aCCFs is a cur-
rent research activity, and an expansion of their geographic
scope and seasonal representation is ongoing. New develop-
ments and improved understanding in aCCF algorithms will
provide updated aCCF formulas that will be included in fu-
ture versions of CLIMaCCF as soon as they are published.
As the current version of CLIMaCCF provides the possibil-
ity to chose between different aCCF versions, it will be easy
to implement further aCCF versions.

Moreover, aCCFs are associated with different aspects of
uncertainties, as current scientific understanding still recog-
nizes uncertainties in the quantitative estimates of weather
forecast and climate effect prediction. The uncertainty range
of the individual aviation climate effects was recently speci-
fied in Lee et al. (2021) (see the confidence interval of the
RF estimates in their Fig. 3). They showed that large un-
certainties of individual non-CO2 effect (i.e., contrail cir-
rus, NOx , water vapor, and the indirect aerosol effect) esti-
mates still exist. Within the EU project FlyATM4E, a con-
cept is developed that incorporates these uncertainties in or-
der to generate robust aCCFs (Matthes et al., 2023a). Thus,

1The MOZAIC (Measurement of Ozone, Water Vapour, Carbon
Monoxide and Nitrogen Oxides by Airbus In-Service Aircraft) pro-
gram was designed to collect trace gases by using automatic equip-
ment installed on board five long-range Airbus A340 aircraft oper-
ated by European airlines. See Marenco et al. (1998).

for this purpose, aCCF-V1.0A was developed (Matthes et al.,
2023b; FlyATM4E-D1.2, 2023) in order to calibrate the in-
dividual aCCF quantities to the state-of-the-art climate re-
sponse model AirClim. The option to choose aCCF-V1.0A is
included in CLIMaCCF and can be selected in the configu-
ration script. A more detailed description on aCCF-V1.0A is
given in Matthes et al. (2023b) and FlyATM4E-D1.2 (2023).
Besides choosing between two different aCCF versions (i.e.,
aCCF-V1.0, aCCF-V1.0A), the individual aCCFs (either ver-
sion 1.0 or version 1.0A) can be modified by being multiplied
by any factors specified by the user. By using these alterna-
tive factors the user has the possibility to generate upper- and
lower-limit estimates of the aCCF. With that the different de-
grees of level of scientific understanding can be reflected.

5.4 Application using ERA5 reanalysis data

CLIMaCCF was successfully applied to ERA5 HRES re-
analysis data. Obtained results show the characteristic pat-
terns of the individual and merged aCCFs for a single day
in June 2018 over the European airspace. The patterns of the
individual aCCFs show the overall positive climate effect of
NOx and water vapor emissions as well as negative and pos-
itive values for the daytime contrail aCCFs. These features
were found in several studies before (e.g., Frömming et al.,
2021; Yamashita et al., 2021; Yin et al., 2023). Looking at
the merged aCCFs it is clear that NOx and contrail aCCFs
dominate the magnitude of merged aCCFs, while the water
vapor aCCF only plays a minor role for the total non-CO2
aCCF. Overall, the merged aCCF pattern is highly dominated
by the very variable contrail aCCF pattern, and thus avoiding
the contrail climate effect leads to the most promising miti-
gation potential. This is in line with earlier studies that also
showed the dominating effect of contrail cirrus (e.g., Fröm-
ming et al., 2021; Yin et al., 2023; Castino et al., 2021).

Applying CLIMaCCF to data sets other than ERA5 HRES
can influence the aCCF patterns in magnitude and granular-
ity. This depends on how the meteorological input data and
also their vertical and horizontal resolution differ from the
ERA5 HRES data set used in this study.

6 Conclusions

In this publication we developed a tool for efficiently cal-
culating the spatially and temporally resolved climate effect
of aviation emissions by making use of aCCFs. In the novel
Python library CLIMaCCF, these aCCFs can be simply cal-
culated with meteorological input data from the forecast or
reanalysis data products of ECMWF. Besides the individ-
ual aCCFs of water vapor, nitrogen oxide (NOx)-induced
ozone and methane, and contrail cirrus, CLIMaCCF gen-
erates merged (non-CO2) aCCFs that combine the individ-
ual spatially and temporally resolved aCCFs. However, these
merged aCCFs can only be constructed with the technical
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Table 8. Frequency and coverage area of annual mean ISSR (in %) over the European region (5◦W–30◦ E, 40–60◦ N) at the TPL, LS (30 hPa
above thermal tropopause), and UT (30 hPa below thermal tropopause). Values are shown for MOZAIC in situ measurement data (Petzold
et al., 2020) and for ERA5 HRES using RHice thresholds of 90 % and 95 %,

Petzold et al. (2020) RHice= 90 % RHice= 95 %

TPL 18.8 % 20.55 % 16.7 %
LS(TPL− 30 hPa) 1.6 % 0.65 % 0.4 %
UT(TPL+ 30 hPa) 30.95 % 31.85 26.75 %

specification of the EINOx and Fkm of a selected engine and
aircraft type. Additionally, these merged aCCFs can be cal-
culated for a range of user-defined parameters, such as the
choice of a physical climate metric. Thus, generating user-
defined merged non-CO2 aCCFs can serve as advanced MET
information for trajectory flight planning. Additionally, CLI-
MaCCF provides a method to identify regions that are very
sensitive to aviation emissions.

We apply CLIMaCCF to the ERA5 HRES reanalysis data
set and show the characteristic pattern of the individual and
merged aCCFs for a single day in June 2018 over the Euro-
pean airspace. Our results describe the geographical distribu-
tions of individual and merged non-CO2 aCCFs. Comparing
the individual aCCFs to the merged aCCF shows that contrail
aCCFs dominate the total non-CO2 effect. These merged aC-
CFs were calculated for different aircraft–engine combina-
tions and with different metrics, showing that magnitude and
structure of merged aCCFs vary with different assumptions
for aircraft–engine combinations or for climate metrics.

Current limitations of CLIMaCCF could be addressed in
future development. Overall, future efforts should be directed
towards improvement of aCCFs and expansion of user con-
figuration parameters. At the moment CLIMaCCF is de-
signed for ECMWF data; thus, possible future extensions of
CLIMaCCF could, for example, include the adaption to other
data products, such as climate–chemistry model data or other
numerical weather forecast data. This would be possible by
simply adopting the source code of the library. Additionally,
future versions of CLIMaCCF could include metric conver-
sion factors for a larger set of climate metrics, such as green-
house warming potential. Also, an expansion of the emission
indices to further engine–aircraft combinations or to future
aircraft types is possible.

Thus, overall, with CLIMaCCF we provide a user-friendly
tool that can be used for climate-optimized trajectory plan-
ning.

Appendix A: Mathematical formulation of aCCFs-V1.0

A detailed explanation of the aCCFs approach can be found
in van Manen and Grewe (2019) for NOx-induced species
and water vapor, and in the case of the contrail aCCFs ap-
proach, a detailed description is given in Yin et al. (2023). In
the following we describe the mathematical formulation of

the individual aCCFs (aCCF-V1.0, see Yin et al., 2023). We
want to mention here that the aCCF-V1.0 (Yin et al., 2023)
is not identical to van Manen and Grewe (2019) but differs
by certain factors (explanation is given in Yin et al., 2023).
Note, moreover, that all aCCF formulations are consistently
given in P-ATR20, and efficacy is excluded.

A1 NOx-induced aCCFs

The total NOx aCCF is a combined effect of the NOx-
induced ozone aCCFs and the NOx-induced methane aCCFs.
This can be explained by the fact that the NOx emissions
of aviation lead to the formation of ozone (O3), which in-
duces a warming of the atmosphere. Additionally, NOx emis-
sions lead to the destruction of the long-lived greenhouse gas
(GHG) methane (CH4), which then induces a cooling of the
atmosphere. In the following, the mathematical formulation
of both the ozone and the methane aCCFs are described.

A2 NOx-induced ozone aCCFs

The mathematical formulation of the ozone aCCFs is based
on temperature T [K] and geopotential8 [m2 s−2]. Note here
that although the solar incoming radiation highly influences
ozone production, the meteorological parameters T and 8
turned out to give the best correlations (see Table 3 in van
Manen and Grewe, 2019). Thus, the relation for the ozone
aCCFs (aCCFO3 ) at a specific atmospheric location and time
is given in temperature change per emitted NO2 emission
[K kg(NO2)−1]:

aCCFO3 =


−2.64× 10−11

+ 1.17× 10−13
× T

+2.46× 10−16
×8− 1.04× 10−18

× T ×8,

if aCCFO3 ≥ 0
0, if aCCFO3 < 0

(A1)

Accordingly, the ozone aCCFs takes positive values and is
set to 0 in the case of negative aCCF values.

A3 NOx-induced methane aCCFs

The methane aCCF is based on the geopotential 8 [m2 s−2]
and the incoming solar radiation at the top of the atmosphere
Fin [W m−2]. The relation of the methane aCCF (aCCFCH4 )
at a specific location and time is given in temperature change
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per emitted NO2 emission [K kg(NO2)−1].

aCCFCH4(8,Fin)=



−4.84× 10−13
+ 9.79× 10−19

×8− 3.11× 10−16
×Fin

+3.01× 10−21
×8×Fin,

if aCCFCH4 < 0
0, if aCCFCH4 > 0

(A2)

Thus, the methane aCCF is negatively defined. It is set
to 0 if the term aCCFCH4 is 0 or positive. Fin is de-
fined as incoming solar radiation at the top of the atmo-
sphere as a maximum value over all longitudes and is cal-
culated by Fin = S× cosθ , with total solar irradiance S =
1360 W m−2, cosθ = sin(ϕ)sin(d)+ cos(ϕ)cos(d) and d =
−23.44◦× cos(360◦/365◦× (N + 10)). Here θ is the solar
zenith angle, ϕ is latitude, and d is the declination angle,
which defines the time of year via the day of the year N .

The mathematical formulation of the ozone aCCF is only
valid for the short-term ozone effect of NOx . The primary-
mode ozone (PMO), which describes the long-term decrease
in the background ozone as result of a methane decrease, is
not included (van Manen and Grewe, 2019). Also, the strato-
spheric water vapor decrease via the methane oxidation is
not included. Thus, if merging the total NOx effect be aware
that only the NOx effect on short-term ozone increase and on
methane decrease is taken into account. For the NOx-induced
PMO climate effect we have the possibility to include it to the
total NOx aCCF, as the PMO aCCF can be derived by apply-
ing a constant factor of 0.29 to the methane aCCF (Dahlmann
et al., 2016). Thus, aCCFPMO = 0.29× aCCFCH4 .

A4 Water vapor aCCFs

The water vapor aCCF is based on the potential vorticity
(PV) given in standard PV units [10−6 K m2 s−1 kg−1]. The
relation of the water vapor aCCF (aCCFH2O) at a specific
location and time is given in temperature change per fuel
[K kg(fuel)−1].

aCCFH2O(PV)= 2.11× 10−16
+ 7.70× 10−17

× |PV| (A3)

The absolute value of the PV is taken to enable a calculation
for the Southern Hemisphere, where PV has a negative sign.

A5 Contrail aCCFs

The algorithm that generates contrail aCCFs is obtained by
the calculation of the contrail radiative forcing using ERA-
Interim data as input (Yin et al., 2023). In contrast, the
NOx and water vapor aCCFs described above are based on
CCFs that were calculated with the chemistry–climate model
EMAC (Jöckel et al., 2016). Contrail aCCFs are calculated
separately for daytime and nighttime contrails because their
climate effect differs between daylight and darkness, as the

shortwave forcing is only relevant for daylight conditions. To
differentiate between daytime and nighttime contrail aCCFs,
the local time and solar zenith angle are calculated. For loca-
tions in darkness, the time of sunrise is calculated. In order to
determine the contrail aCCFs, the RF of daytime or nighttime
contrails is calculated as described in the following.

The RF of daytime contrails (RFaCCF-day in [W m−2]) is
based on the outgoing longwave radiation (OLR) at the top
of the atmosphere in [W m−2] at the time and location of the
contrail formation. For a specific atmospheric location and
time, the RFaCCF-day is given by

RFaCCF-day(OLR)= 10−10
× (−1.7−0.0088×OLR). (A4)

Note that the values of the OLR always have to be nega-
tive (although OLR is normally positive defined). Thus, ac-
cording to the equation, the RF for the daytime contrails can
take positive and negative values, depending on the OLR
(i.e., negative RF for OLR<−193 W m−2 and positive RF
for any larger OLR values). The RF of nighttime contrails
(RFaCCF-night) in [W m−2] is based on temperature (T ) in [K].
For an atmospheric location (x, y, z) at time t ,

RFaCCF-night(T )= 10−10
× (0.0073× 100.0107×T

− 1.03). (A5)

For temperatures less than 201 K, the nighttime contrail is
set to zero. The RF of contrails calculated above can be con-
verted to global temperature change (P-ATR20) by multiply-
ing with a constant factor of 0.0151 K (W m−2)−1 (Yin et al.,
2023). The resulting contrail aCCFs are then given in tem-
perature change per flown kilometer [K km−1].

Contrail aCCFs are only relevant at locations where per-
sistent contrails can form, and accordingly regions without
persistent contrails have to be set to zero. Locations in which
persistent contrails can form have to be calculated. Persis-
tent contrails can be identified by two conditions: tempera-
ture below 235 K and relative humidity with respect to ice at
or above 100 % (see the Supplement of Yin et al., 2023). Al-
ternatively, the more accurate Schmidt–Appleman criterion
(Appleman, 1953), which additionally considers the aircraft
engine type, could be used.

A6 CO2 aCCF

In order to compare these merged non-CO2 aCCFs to the
climate effect of CO2 a value for a CO2 aCCF is calcu-
lated with the climate–chemistry response model AirClim
(Dahlmann et al., 2016). In the case of the pulse scenario
also used for the aCCFs above, the CO2 is given by 7.48×
10−16 [K kg(fuel)−1] (Yin et al., 2023). Note that the CO2
aCCFs also vary with the emission scenario used.
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Appendix B: Additional figures

Figure B1. Individual aCCFs of water vapor, NOx , and contrail cirrus together with merged aCCFs at a pressure level of 250 hPa over Europe
on 15 June 2018 (12:00 UTC) using four different assumptions for the NOx emission index and the specific range values (typical transatlantic
fleet mean) (first row): regional aircraft type (second row), single-aisle aircraft type (third row), and wide-body aircraft type (last row). Units
are all given in [K kg(fuel)−1]. Note that water vapor aCCFs require no conversion (see Eq. 1).

Figure B2. Individual aCCFs of water vapor, NOx , and contrail cirrus together with merged aCCFs at a pressure level of 250 hPa over Europe
on 15 June 2018 (12:00 UTC) using two different assumptions for the metric: ATR20 and ATR100. Units are all given in [K kg(fuel)−1].

Geosci. Model Dev., 16, 4405–4425, 2023 https://doi.org/10.5194/gmd-16-4405-2023



S. Dietmüller et al.: CLIMaCCF V1.0 4423

Code availability. CLIMaCCF is a newly developed open-source
Python library. It is developed at https://github.com/dlr-pa/climaccf/
(last access: 5 June 2022) and is available via the DOI
(https://doi.org/10.5281/zenodo.6977272, Dietmüller, 2022). It is
distributed under the GNU Lesser General Public License (version
3.0). The respective user manual, which includes details on the soft-
ware and its user configuration, is included as the Supplement to this
paper.

Data availability. The ERA5 data sets used in this study can be
freely accessed from the respective repositories after registration.
ERA5 data were retrieved from the Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/, last access: 8 May 2022, Hers-
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