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Trajectory Optimization and Situational Analysis
Framework for Autonomous Overtaking With

Visibility Maximization
Hans Andersen , Javier Alonso-Mora , You Hong Eng, Daniela Rus , Fellow, IEEE, and Marcelo H. Ang, Jr.

Abstract—In this article we present a trajectory generation
method for autonomous overtaking of unexpected obstacles in a
dynamic urban environment. In these settings, blind spots can
arise from perception limitations. For example when overtaking
unexpected objects on the vehicle’s ego lane on a two-way street. In
this case, a human driver would first make sure that the opposite
lane is free and that there is enough room to successfully execute the
maneuver, and then it would cut into the opposite lane in order to
execute the maneuver successfully. We consider the practical prob-
lem of autonomous overtaking when the coverage of the perception
system is impaired due to occlusion. Safe trajectories are generated
by solving, in real-time, a non-linear constrained optimization,
formulated as a receding horizon planner that maximizes the ego
vehicle’s visibility. The planner is complemented by a high-level
behavior planner, which takes into account the occupancy of other
traffic participants, the information from the vehicle’s perception
system, and the risk associated with the overtaking maneuver,
to determine when the overtake maneuver should happen. The
approach is validated in simulation and in experiments in real
world traffic.

Index Terms—Intelligent vehicles, autonomous systems,
autonomous vehicles motion control, motion planning.

I. INTRODUCTION

AUTONOMOUS vehicles offer potential for additional
safety, increased productivity, greater accessibility, better

road efficiency, and positive impact to the environment. And
providing mobility on demand as a service with a fleet of au-
tonomous vehicles has added potentials such as higher through-
put, better vehicle utilization, reduced number of vehicles on
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Fig. 1. Unexpected static obstacle in the form of an illegally parked car on a
two-way street.

the road, less congestion and travel time, better accessibility,
and lower cost [1].

The problem of urban driving is both interesting and difficult
because it encompasses increased environmental complexity
with respect to highway driving. Therefore, decision making
for autonomous driving in urban areas has seen a lot of interest
in recent years. Recent surveys by Paden et al. [2], Pendleton
et al. [3], and Schwarting et al. [4] describe different approaches
with their strengths and limitations.

Reacting to potentially hazardous unexpected situations is one
of the key issues in autonomous driving in an urban environ-
ment [5]. An example scenario that we encounter very frequently
during our autonomous vehicle deployment at the One-North
area in Singapore is depicted in Fig. 1. In this scenario, a
car is illegally parked on the vehicle’s ego lane and therefore
has to be overtaken. However, as this is a two-way traffic, the
overtaking implies that the vehicle invades to the opposite lane,
and therefore will take the traffic head-on, causing a safety
hazard. In this case, a human driver may have to move slightly
into the opposite lane in order to clearly see what is in front of
the car ahead. Once he has gathered enough information about
the road ahead, then he can safely overtake.

The problem of overtaking unexpected obstacles on a two way
street has been discussed in our earlier work [6]. We formulated
the problem as a constrained optimization and computed a
locally optimal trajectory in a receding horizon manner. In this
paper, we address further issues that may arise when attempting
such safety critical maneuvers. A comprehensive situational
analysis of the scenario is therefore important to obtain a safe
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planning framework capable of tackling such situations. Fur-
thermore, in this extended version we validate our approach in
real experiments in urban roads.

There are three main issues that we address with the situational
analysis framework:
� Do we have enough time to safely complete the overtaking

maneuver?
� How much information do we need before deciding

whether to commit to the overtaking maneuver?
� What is the latest time when we have to make the decision

on whether to commit to the overtaking maneuver or return
to the ego lane?

To answer these questions, the main contributions of this paper
are:
� A Model Predictive Control formulation that maximizes

the amount of information that the autonomous vehicle
gains along its trajectory. This allows the vehicle to make
a more informed and therefore safer decision before over-
taking the obstacle.

� A deterministic decision making framework for behav-
ior planning that takes into account the risk, information
sufficiency, and reachability associated with the planned
trajectory. The proposed state machine enables overtaking
in situations with limited perception coverage.

� Experimental results in simulation and real traffic scenar-
ios, that demonstrate the capabilities of the algorithm in
generating safe trajectories for autonomous overtaking in
an urban environment.

The remaining of this paper is organized as follows. Related
works are presented in Section II. Section III gives an overview
of our method, followed by the state machine formulation in
Section IV. The trajectory planner method is then described
in Section V. The road occupancy, information sufficiency and
vehicle reachability analysis are discussed in Section VI. The
simulation results are discussed in Section VII, and in experi-
mental results VIII, we demonstrate the capability of the planner
in scenarios that require the ego car to break the traffic rule in
order to proceed over illegally parked vehicle on a two-way
street. Section IX concludes this paper.

II. RELATED WORKS

A practical application of motion planning is autonomous
overtaking, which has also been widely researched in the litera-
ture. Sampling-based methods, such as Rapidly-Expanding Ran-
dom Trees (RRT) and its variants [7], are popular for trajectory
planning. Their strength is probabilistic completeness. However,
probabilistic motion planning suffers from inherent accuracy
due to discretization limits, and the computational complexity
that rises exponentially as the dimensionality of the planning
state space increases. Several approaches have been proposed
in the recent literature to handle some of these issues. One
notable variant is Minimum Violation RRT* (MVRRT*) [8].
where the authors express traffic rules as formulas using Linear
Temporal Logic (LTL), and propose an incremental algorithm to
generate a trajectory of a dynamical system that systematically
picks which safety rules to violate and minimizes the level of

Fig. 2. Snapshot of unsuccessful overtaking path planning with probabilistic
method. Left window shows robot visualization, right window shows simulation
setup.

risk involved. The system assumes static environment, and that
the environment is known a priori. The proposed system also
relies on the carefully designed set of rules and formulations. In
contrast, our method operates in dynamic environments and can
reason about risk directly.

The sampling based method of [9] has been implemented
on Singapore-MIT Alliance for Research adn Technology’s
(SMART) autonomous vehicles and tested on both pedestrian,
and urban environments.1 Although it was successful in simple
scenarios, it failed in the second scenario shown in Fig. 2,
where the vehicle has to overtake multiple obstacles parked in
parallel. Due to occlusion, the system is not able to determine
an appropriate goal, and therefore reverts to a configuration at a
fixed distance ahead. However, as the vehicle proceeds with the
overtaking, the rest of the obstacle comes into view, and therefore
the vehicle has to stop and re-plan. The planning process takes a
substantial amount of processing resources and time and thus the
vehicle has to be stopped. This poses a safety hazard since other
vehicles may come from the other side of the lane. Furthermore,
the vehicle may get stuck and not find an appropriate path after
committing to the overtaking maneuver, as shown in the video.

A framework based on inverse reinforcement learning and
Gaussian process to address this issue was proposed by [11].
Real world data collected from expert drivers is used to train a
trajectory generator. Using the pre-trained weight, the optimal
trajectory can be evaluated on-line. This approach also relies on
manually defined and engineered features that have to be care-
fully chosen. The method also suffers from discretization error
due to discontinuity in the problem formulation and training.
In general, learning based motion planning methods often act
as black boxes that are very difficult to systematically analyze
and therefore prove safety. Acceptable driving styles under
unexpected situations can differ from one place to another, and
therefore a network that has been trained under one circumstance
may not be applicable in the other.

Several recent works aimed at addressing the issue of limited
visibility in autonomous driving. [12] proposed a method to

1A short video that showcases the planners capabilities and shortcomings can
be accessed here: [10].
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abstract dynamic objects and static obstacles as time depen-
dent geometric bodies, and used optimization to compute the
reachable trajectory based on this information. [13] considered
the problem of driving through blind intersection. The authors
proposed a model that considers the sensor coverage of the
vehicle, and used optimization methods to compute speed limit
of the vehicle. In contrast, our method considers visibility as
a part of both decision making and trajectory generation, such
that the planned trajectory is safe and maximizes the information
gain.

The problem of information sufficiency is often addressed
in the literature by geometric methods. For instance, Davis
et al. [14] proposed a method for quantifying coverage sensing
uncertainty of a robot, and uses this to plan locally optimal cov-
erage path. Roelofsen et al. [15] proposed a reciprocal collision
avoidance algorithm that guarantees collision avoidance when
the robots are only capable of sensing the environment with
limited field of view and Richter and [16] proposed a learning
based method to plan for visibility in unknown environment.

In general, risk assessment can be broadly grouped to two
categories: probabilistic and deterministic. Dou [17] used a gated
branch neural network to probabilistically model lane changing
behaviour on highways. Probabilistic methods take into account
uncertainties that are present in the system. This approach is
less conservative compared to deterministic approaches, but it
can be computationally expensive, and prone to modeling error
that may lead to overly aggressive and unpredictable behavior.

Deterministic risk assessment approaches on the other hand
are relatively simpler and computationally efficient. For exam-
ple, [18] performed formal verification of autonomous vehicle
trajectory using reachability analysis. [19] used reachability
analysis for safe behavior in autonomous vehicle convoy. Deter-
ministic approaches can be prone to uncertainties, therefore the
analysis has to be performed in a more conservative way.

However, the above mentioned works have not addressed all
of these issues together, i.e. the problem of information and
reachability in a holistic way. We believe that this is an important
issue that has to be addressed in order to manage the risk without
being too conservative. In this paper, we take the more conserva-
tive approach and use deterministic risk assessment. This is due
to the fact that the designed behavior planner explicitly breaks
the traffic rule in order to progress along the vehicle’s course.

Autonomous driving in urban environments often requires
smoothness and accurate modeling the car dynamics. These
requirements render Receding Horizon optimization schemes,
such as MPC, well suited for solving these problems. MPC
has seen many applications in autonomous driving, specially in
trajectory tracking applications. For example in [20] generates
and tracks trajectory in highway context. It has also been applied
as parallel autonomy planner, in which the autonomous system
works hand in hand with a human driver [21]. Furthermore, [22]
proposed an MPC based trajectory planner for autonomous driv-
ing along the Bertha- Benz Memorial Route. Static and dynamic
obstacles are represented as polygons, and road boundaries are
used as heuristics on which side of the obstacle to overtake from.

In this paper, we employ a MPC-based local motion planner,
which captures the dynamics of the car, avoids obstacles, and

Fig. 3. Overall planner architecture.

consider visibility maximization, to generate overtaking trajec-
tories that take into account the perception limitations of the ego
vehicle.

III. OVERVIEW

The overall planner architecture is described in Fig. 3. The
method can be briefly summarized as follows. Assuming that
the lane boundaries are known a priori, the perception system
will detect obstacles in both the ego lane and the opposite lane.
The perception system also estimates the amount of blind spot
caused by the occluding obstacle in the ego lane.

The state machine then makes a decision based on inputs
from the perception system, that determines the behavior of
the system. Different system behaviors, such as overtaking or
remaining on the lane are specified by modifying the parameters,
but not the formulation of the Receding Horizon planner. The
optimizer then generates a safe trajectory by solving a non-linear
constrained optimization in a MPC style. The cost and reward
terms of the problem consist of:
� path following errors
� progress along the desired path
� velocity error
� size of blind spot (visible area)
� control inputs
While the constraints of the problem consist of:
� motion model of the vehicle
� collision avoidance with respect to obstacles
� maximum yaw rate
� maximum angular deviation from the path
� maintenance within the road boundaries
An off-the-shelf non-linear optimizer is then periodically

called to solve the optimization problem, and the optimal input
is given to the system.

IV. BEHAVIORAL PLANNER

A finite state automata, shown in Fig. 4 has been designed for
behavioral level planning. The behavior planner has 5 states and
11 transitions.
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Fig. 4. Behavior planning finite state machine diagram.

Formally, we can write the state machine asM = (S,Σ, ν, s0)
where
� S is a finite set of states.
� Σ is the state machine alphabet.
� ν : S × Σ → S is the transition function.
� s0 ∈ S is the start state.
The set of states consists of S = {F,V,O,M,W}. Each

state correspond to specific set of parameters that is used in
the optimizer, and thus a different expected behavior from the
planned trajectory. The state machine is initialized at s0 = F.

The states and the possible transitions can be described as:
� F: Follow ego-lane: In this state, the vehicle follows its

own course. Therefore there should be relatively high cost
of path deviation.

� V: Visibility maximization: In this state, the MPC will try
to find a trajectory that maximizes the sensor visibility, and
thus in the MPC formulation, the weight on the visibility
cost has to be non zero, while the weight on the path
deviation cost has to be reduced.

� O: Overtake: When the vehicle has committed to the
overtaking maneuver, the additional guidance path has
to be computed. The MPC planner will therefore plan a
trajectory that follows the suggested guidance path, while
complying to obstacle avoidance constraints.

� M: Merge back: In this state the vehicle merges back to its
own lane, and therefore the guidance path is restored to its
original guidance path.

� W: Wait: The wait state is meant to be a placeholder state
where the system waits for a change in situation to reassess
the appropriate action. In this case the trajectory planner
will plan a comfortable deceleration trajectory to stop.

Each transition from one state to the other is triggered by
specific alphabet unique to the state. The alphabet consists of
Σ = {σ1, σ2 . . . σ11}, where
� σ1 : Obstacle to be overtaken in ego lane detected.
� σ2 : Visibility and overtaking time is sufficient / no feasible

ego lane trajectory.
� σ3 : Complete occlusion.
� σ4 : Overtaking maneuver is completed.
� σ5 : Incoming traffic in opposite lane detected and over-

taking time is insufficient.
� σ6 : Incoming traffic is cleared, and sufficiency criteria not

yet fulfilled.

Fig. 5. Kinematic bicycle model of an Ackermann-steered vehicle.

� σ7 : Incoming traffic in opposite lane detected and over-
taking time is insufficient.

� σ8 : Incoming traffic is cleared, and sufficiency criteria are
fulfilled.

� σ9 : Incoming traffic in opposite lane detected and over-
taking time is insufficient.

� σ10 : Incoming traffic is cleared, and overtaking maneuver
is completed or canceled.

� σ11 : Merging maneuver is completed.
In the following we describe the trajectory optimization plan-

ner and the behavioral analysis.

V. TRAJECTORY GENERATION

Based on the desired behavior, a locally optimal trajectory
can be generated in a receding horizon manner.

A. Vehicle Model

In this work we employ a bicycle kinematic model Fig. 5, due
to the relatively low driving speed application. The proposed
method could also be combined with a nonlinear combined slip
vehicle model [21] for driving at higher speed. Denote by t0
the initial planning time and by Δti the i-th timestep of the
planner. We consider a discrete time system with time tk =
to +

∑k
i=1 Δti. The configuration of the ego vehicle at time

k is denoted as zk = [pk, φk, δk, vk] ∈ Z , where pk = [xk, yk]
is the position, φk is the orientation, vk is the linear velocity,
and δk is the steering angle of the vehicle in the global frame.
The control input to the system at time k is denoted as uk =
[uδ

k, u
a
k] ∈ U , where uδ

k is the steering rate δ̇k and ua
k is the

linear acceleration ak.
The continuous state-space equation of the system can be

written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ

ẏ

φ̇

δ̇

v̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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ż

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v cos(φ)

v sin(φ)

( v tanδ
L )

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

0 0

1 0

0 1

⎤
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⎥
⎥
⎥
⎥
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]

︸ ︷︷ ︸
u

(1)
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where L is the wheelbase of the vehicle. The discrete time state
space system

zk+1 = f(zk,uk) (2)

can be approximated with the integration model zk+1 =

f(zk,uk) = zk +
∫ k+Δt

k ż dt. In the optimizer we use fourth
order Runge-Kutta integration method is used in the optimizer
for sufficient accuracy.

The states of the system (steering angle ‖δ‖ ≤ δmax, lon-
gitudinal speed v ≤ vmax yaw rate ‖φ̇‖ ≤ φ̇max), as well as
the control inputs (steering rate ‖uδ‖ ≤ δ̇max and acceleration
amin ≤ ua ≤ amax) are limited to our vehicle’s specifications.

B. Path Representation and Tracking

In nominal conditions the autonomous car follows centre line
of the driving lane. To track the centre line while avoiding
obstacles we follow [21] and formulate a Model Predictive
Contouring Control (MPCC) [23] problem. MPCC optimizes the
progress along the path, while considering nonlinear projection
of the vehicle’s position onto the desired path. The desired path
contour is the centre line of the lane, and is parametrized as
piecewise continuous, continuously differentiable cubic splines
with multiple knots along the path.

At a given timek, the vehicle’s anchor point positionpk tracks
a continuously differentiable reference path (xp(θ), yp(θ)) with
path parameter θ. The vehicle’s progress along the path is
parametrized by arc length s with (∂θ/∂s = 1), and can be used
to approximate the change in path parameter θ by

Δθ ≈ Δs = vΔt, (3)

and therefore for one timestep, the evolution of parameter can
be approximated by

θk+1 = θk + vkΔtk, (4)

In the ideal case, the path parameter θp(xk, yk) should be
computed in closed form inside the optimizer as the projection
of (xk, yk) to the path. However, for computational efficiency,
θp(xk, yk) is approximated by the evolution over time during
the optimization process. This approximation introduces two
errors, namely the longitudinal (lag) error elk along the path and
the lateral (contouring) error ecknormal to the path as shown in
Fig. 6.

The lag error can be approximated by projecting the position
error of the vehicle’s position to θk along the path’s tangent
vector t(θk), formally

ẽl(zk, , θk) = − cosφp(θk)(xk − xp(θk))

− sinφp(θk)(yk − yp(θk)) (5)

The contouring error, which measures how far the vehicle
deviates from the reference path, can be approximated by pro-
jecting the position error of the vehicle’s position to θk along
the path’s normal vector n(θk), formally

ẽc(zk, , θk) = sinφp(θk)(xk − xp(θk))

− cosφp(θk)(yk − yp(θk)) (6)

Fig. 6. Approximation of lag and contouring cost along the path.

The errors are formulated into a Receding Horizon planner
(described in the forthcoming Section V) as additional cost
terms, while the progress along the path is formulated as reward,

JMPCC(zk, θk) = eTkQek − γvkΔtk cos(φk − φp(θk)), (7)

where Q ∈ S2
+ and γ ∈ R+ are predefined weights and the path

error vector ek is given by the approximated lag and contouring
errors,

ek =

⎡

⎣
ẽl(zk, θk)

ẽc(zk, θk).

⎤

⎦ (8)

C. Road Boundaries

We follow the description of road boundaries by [21], in which
the ego vehicle is represented as a union of a set of 4 circles
Rj(zk, j ∈ {1, . . . , 4}) of radius rdisc. This value is chosen to
enclose the vehicle’s footprint, as shown in Fig. 7. The lateral
distance d(zk, θk) of the ego vehicle’s position to the reference
path is given by the normal projection vector at θP . Since we
approximate θP ≈ θk, we can approximate the lateral distance
by the contouring error d(zk, θk) ≈ ẽc(zk, θk).

The drivable region at θk is limited by the road boundaries.
The left road boundary is at distance bl and the right road
boundary is at distance br. To ensure that the ego vehicle drives
within the limits of the road, we enforce the constraint

bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax, (9)

where wmax is an upper bound of the vehicle’s outline projected
onto the reference path’s normal. For practical purposes, it can
be set as an additional padding to rdisc. To ensure that the
vehicle can follow the desired path well in situations where road
boundaries are tight, we introduce an additional constraint on
the path heading difference,

‖φk − φp(θk)‖ ≤ Δφmax. (10)
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Fig. 7. Figure illustrating a maneuver to increase the visibility, i.e. the area that was previously occluded.

D. Obstacle Representation

Each obstacle i, such as the wrongly parked truck, is mod-
eled by a rectangle of length aiobs and width biobs, such that
aiobs ≥ biobs, whose centroid is located at (xi

obs, y
i
obs) in the

global reference frame and which has orientation φi
obs.

A coordinate frame is attached to each obstacle, originating
at its centroid, with the x axis parallel to its length and the y
axis parallel to its width. Consider the origin of the j-th circle
that describes the footprint of the vehicle, its position in the i-th
obstacle’s coordinate frame is x

obs(i)
disc(j), y

obs(i)
disc(j). The collision

constraint between the obstacle and the circle at time k can be
formulated as

Δx
obs(i)
k,disc(j) = max

(−aiobs
2

,min

(

x
obs(i)
k,disc(j),

aiobs
2

))

(11a)

Δy
obs(i)
k,disc(j) = max

(−biobs
2

,min

(

y
obs(i)
k,disc(j),

biobs
2

))

(11b)

c
obs(i)
k,disc(j)(zk) =

(Δx
obs(i)
k,disc(j))

2 + (Δy
obs(i)
k,disc(j))

2

(rdisc + rovertake)2
≥ 1, (11c)

where rovertake is the additional safe overtaking distance.
We also employ a dynamic virtual bumper (DVB) [24] to

generate a safe advisory speed vref for the vehicle. The DVB is
a tube-shaped zone with its centerline as the vehicle’s local path,
and its width and height given by quadratic functions dependent
on the vehicle’s speed vk, and the obstacles in the region.

The speed deviation is incorporated into the optimization as
an additional cost term

Jv(zk, θk) = ζ(vref − vk)
2, (12)

where ζ ∈ R+.

Fig. 8. Complete occlusion (top) and blind spot (bottom) of a vehicle ap-
proaching an obstacle.

E. Visibility Maximization

Consider an autonomous vehicle equipped with a sensor (we
use a LIDAR, but the method can be applied to other sensor
types) with a limited sensing range and field of view. Now
consider a scenario, when the vehicle is approaching an obstacle
in a straight line section, such as the case shown in Fig. 8. We
assume that the car is driving on the left side of the road and
therefore has to overtake on the right side of the obstacle. Our
goal is generate a motion for the vehicle such that the visibility
ahead of the obstacle is maximized. For this, we first provide
a definition of blind spot and then describe the cost term to be
added in the Receding Horizon planner.

In the top image of Fig. 8 we show a case where an obstacle
in the ego lane generates a complete occlusion along the left
road boundary. For obstacle 1, we consider a frontier point (blue
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dot) located to the right of the centreline of the sensor located
at (xsensor, ysensor) and with orientation (φsensor). We define
the frontier point of a set of measurement points as the point, at
position (x1

f , y
1
f ), that has the smallest field-of-view angleφFoV ,

measured from the centreline of the sensor. When complete
occlusion happens, φFoV has negative value. The yellow point
in the figure is the exact opposite of the frontier point, i.e. it has
the largest field-of-view angle in the set.

As the vehicle moves towards the right boundary of the ego
lane, as shown in Fig. 7 (bottom), (φFoV ) increases. When the
angle (φFoV ) is positive, a blind spot appears, i.e. a section along
the left road boundary is not covered by the sensor. This event
causes a loss of information, which is necessary to determine if
the overtake maneuver is safe and the autonomous vehicle can
safely return to its ego lane. As seen in Fig. 7, the autonomous
vehicle may need to move into the opposite lane to minimize the
blind spot, and therefore maximize visibility, until it is able to
make a safe decision to overtake.

Therefore, to minimize the blind spot along a trajectory we
have to maximize the visibility, i.e. the field-of-view. The angle
φFoV can be encoded into the optimization problem as a reward
term:

JFoV (zk, θk) = −λφFoV , λ ∈ R+ (13)

The weighting between visibility maximization and tracking was
tuned in simulation. Increasing the visibility maximization cost
resulted in the vehicle deviating from the path earlier and more
abrupt, leading to frequent wait or merge back cases when an
oncoming car comes into the vehicle’s sensor range. Reducing
visibility maximization resulted in later and less abrupt devi-
ation, leading to overtaking trajectories that are too late to be
aborted. We tune the costs for a good tradeoff in performance.

F. MPC Formulation

We formulate a Receding Horizon planner that includes all
of the aforementioned cost terms and constraints. We write the
following non-linear constrained optimization,

minimize
u0:N−1

Jt(zN , θN ) +

N−1∑

k=0

J(zk,uk, θk)Δtk (14a)

subject to zk+1 = f(zk,uk) (14b)

θk+1 = θk + vkΔtk (14c)

zmin ≤ zk ≤ zmax (14d)

umin ≤ uk ≤ umax (14e)

‖φ̇‖ ≤ φ̇max (14f)

‖φk − φp(θk)‖ ≤ Δφmax (14g)

bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax

(14h)

c
obs(i)
k,disc(j)(zk) > 1, i = {1, . . . ,m},

j = {1, . . . , 4}
∀k ∈ {0, . . . , N}, (14i)

where N is the prediction horizon and m is the number of
detected obstacles.

Recalling the previous sections, the cost term is given by

J(zk,uk, θk) = JMPCC(zk, θk) + Jv(zk, θk)

+ JFoV (zk, θk) + uT
kRuk, (15)

where R ∈ S2
+ is the control input cost, which is a design

parameter.
The terminal cost is defined as

Jt(zN , θN ) = eTNQteN , (16)

where Qt ∈ S2
+ is the terminal cost, which is another design

parameter.
In both simulation and on vehicle implementation, the MPC

optimization is solved at 10 Hz, with 50 steps horizon, and 0.1 s
time step, with the code generated by FORCES Pro [25], a
commercial code generator for optimization solvers, that imple-
ments interior-point methods for multistage nonlinear noncon-
vex optimization problems. It is noted that solving the nonlinear
MPC with nonconvexity coming from collision avoidance and
curvature constraints can be challenging. Due to the nonlinear
and nonconvex nature of the optimization problem, the problem
is prone to convergence to local minima. To speed up such
convergence, the problem is initialized with the solution from
the last MPC iteration. It is also not possible to guarantee real
time computation speed of the MPC, and therefore the solver is
limited by the iterations and time budget. If the solver couldn’t
proceed within 10 Hz, the command from a backup path tracker
that tracks the trajectory generated from previous iteration is
used. The backup tracker used is the same as discussed in
Section VI-C.

VI. SITUATIONAL ANALYSIS FRAMEWORK

Understanding the scene within the road context is key to
efficient and safe planning.

A. Occupancy of Other Traffic Participants

To determine the desired behavior of the vehicle through lane
assignment we employ the Frenet frame [26]. The longitudinal
dimension along the road is denoted as s, while the orthogonal
direction is denoted as d. Path segments are represented using
piecewise cubic splines.

Occupancy of the traffic participants can be visualized as
lane occupancy diagrams, see Figs. 9–10 for different traffic
scenarios and the corresponding lane occupancy diagrams. In
the lane occupancy diagram, the abscissa represents time, and
coordinate represents length of the road section in Frenet frame
s. Blue shaded areas represent occupancy in the vehicle’s ego
lane. Red shaded areas represent occupancy in the opposite lane.

Fig. 9a and Fig. 9b show the representation of a static obstacle
in the lane occupancy diagram. In Fig. 9a, an object is completely
occluding the ego vehicle, if the line of sight from the vehicle’s
sensor to the frontier point (blue dot) does not intersect the left
boundary of the road (assuming the vehicle is driving on the
left side of the road). In this case, the lane occupancy cannot be
determined and therefore has to be accounted as occupied when
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Fig. 9. Representation of (a) a complete occlusion, and (b) a blind spot by an obstacle in the lane occupancy diagram.

Fig. 10. Representation of incoming traffic risk in the lane occupancy diagram.

planning the trajectory. On the other hand, if the obstacle is not
causing full occlusion (Fig. 9b) the occupancy of the obstacle is
its length in the Frenet frame and is static from t = 0 until the
required prediction horizon.

Due to the limitation in the sensing range, it is therefore neces-
sary to account for the possibility of undetected incoming traffic
in the opposite lane during the overtaking. This is accounted
by taking the worst case scenario of a vehicle moving at the

Fig. 11. Computation of available overtaking time form the lane occupancy
diagram.

maximum traffic speed limit vmax at the edge of the perception.
This is shown in Fig. 10, at t = 0 the opposite lane is assumed
to be occupied at s = sensing range and vmax is the slope of
this occupancy region. When incoming traffic is detected, the
assumed occupancy is no longer required and replaced by the
occupancy of the traffic.

Referring to Fig. 11, the amount of overtaking time can be
computed by finding the free region in the lane occupancy
diagram. The occupancy set for i-th object in ego lane can
be written as Oi

ego, and on the opposite lane is Oi
opposite. By

inverting the occupancy set we get the action set Ai
ego, and

on the opposite lane is Ai
opposite. The total action space in the

corresponding lane can be written as

Aego =

n⋂

i=1

Ai
ego (17a)

Aopposite =
n⋂

i=1

Ai
opposite (17b)
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Fig. 12. Information sufficiency criteria, green area shows the sensor cover-
age, magenta line shows the information sufficiency boundary, 2rdisc is the
accounted width of the vehicle for obstacle avoidance.

In order to determine whether it is possible to overtake the i-th
obstacle in the ego lane, there should exist intersection between
the action space in the opposite lane and the obstacle space in
ego lane:

Ai
overtake = Oi

ego ∩ Aopposite 
= ∅ (18)

And the available overtaking time tiovertake.is the minimum time
in the set Ai

overtake.

B. Information Sufficiency

Getting sufficient information is important in planning the
behavior of the vehicle. The trajectory planner described in
Section V has already taken into account the information gain
in the optimization cost. It is then necessary to define a criteria
for sufficient information before making further decision on
whether to overtake or merge back to the lane.

An intuitive sufficiency criteria will be the minimum allow-
able blind spot, which is determined by the intersection between
the road’s left boundary and line of sight that connects the
sensor with the frontier point of the obstacle. However, it is
often not necessary to have sensor coverage of the objects on
the road boundary. A more useful criteria would be amount of
information needed such that the vehicle can safely come back
to its ego lane.

This criteria is visualized in Fig. 12. In this case, the suf-
ficiency criteria is parametrized as ssufficient, which is the
distance in Frenet frame along the line that is 2rdisc away
from the right boundary of the ego lane, where 2rdisc is the
accounted width of the vehicle for obstacle avoidance. The
value of ssufficient determines how aggressive/ conservative
the behavior will be. In this work, we select ssufficient to be the
typical length of a vehicle (4.0 m), to make sure that there is no
parked vehicle directly in front of the obstacle.

The sufficiency line is defined as the line of sight from this
point to the frontier point of the obstacle. And therefore as the
sensor of the vehicle crosses the sufficiency line, the behavior
planner can conclude that the information sufficiency criteria
has been fulfilled.

Fig. 13. Overtaking and backup trajectory generation. Blue shaded region
represents the dynamic virtual bumper safety region for the backup trajectory,
while the red shaded region represents the dynamic virtual bumper safety region
for the overtaking trajectory.

C. Overtaking Maneuver Risk Assessment

In order to assess the risk of an overtaking maneuver, it is
necessary to know before committing the overtaking maneuver
whether there is a possible trajectory that merges the vehicle
back to the vehicle’s ego lane. This analysis can be performed by
simulating the speed profile generation and path tracking method
described in [27], where maximum speed constraint is generated
by considering time-to-collision in the dynamic virtual bumper.
The simulation is carried with the kinematic car model with 0.1 s
time step. When the dynamic virtual bumper assesses that the
obstacle is already too close to the vehicle or when the pure
pursuit controller is not able to find a safe tracking path, the
behavior planner has to decide whether to commit the overtaking
path or stop and reassess the situation.

This computation is performed in parallel to the MPC based
overtaking trajectory generator as shown in Fig. 13. Another
advantage of computing this backup trajectory is that as the
MPC optimization is highly nonlinear, there can be instances
whereby the optimizer failed to generate an optimal trajectory
in time, and therefore the backup command can be used instead
of waiting for the next MPC plan or use the previously planned
MPC solution.

Another aspect that has to be considered is the amount of
time needed for the overtaking maneuver to be completed. As
the length of the obstacle may not be completely known. A safe
compromise would be computing the amount of time needed
for the vehicle to completely pass the visible obstacles. This is
performed by projecting the position extracted from the state
of the MPC solution into the Frenet frame. As the time step is
known, the amount of time that the vehicle needs in order to
reach/overtake the last visible s of the obstacle can be extracted.

After the behaviour planner has decided to commit the over-
taking maneuver, a suggested guidance path is given to both
the MPC and backup trajectory generator. This is performed
by offsetting the original guidance path parallel to the lane by
a distance that takes into account the obstacle width and over-
taking safety margin as shown in Fig. 14. The path is reverted
to the original guidance path when the overtaking maneuver is
completed and the vehicle has to merge back to its ego lane. In
this way, the overall overtaking maneuver can be seen as two
lane changes maneuver, and therefore the methods described
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Fig. 14. Additional guidance path generation for overtaking maneuver.

Fig. 15. Snapshot of simulation scenario 1.

here can be easily adapted to different scenarios, e.g. legal lane
change.

VII. SIMULATION RESULTS

We conduct simulations with Stage within the ROS frame-
work. We use a previously mapped area of One North in Singa-
pore. The simulation set up mimics the single SICK LMS-151
that has been installed on our autonomous vehicle, with 180° the
field-of-view, 0, 5o its precision, and 50 m the sensing range.

The simulated vehicle has a maximum cruising speed of
5 m/s. Laser scan points in the ego lane are first clustered, a
rectangle is then fitted, and the blind spot frontier point extracted
from the individual clusters.

A video that showcases the simulation results can be ac-
cessed at [28]. Snapshots of the different scenarios are shown in
Figs. 15–17. The window of the left displays the visualization
of the ego vehicle’s perception and planning intentions. Purple
lines indicate road boundaries, green lines indicate the center
line of the path, black line indicates the MPC plan, and the red
line is the backup trajectory. The MPC dynamic virtual bumper is
displayed as the red polygon, and the backup trajectory dynamic
virtual bumper is displayed as the yellow polygon. While white
points outline the rectangular obstacle clusters in the ego lane
and blue points outline the rectangular obstacle clusters in the
opposite lane. The window on the top right right is the simulator.
The red box is the ego vehicle and blue and yellow boxes are
the obstacles. And the window on the bottom left corner is the

Fig. 16. Snapshot of simulation scenario 2.

Fig. 17. Snapshot of simulation scenario 3.

lane occupancy diagram. Blue area shows occupancy in the ego
lane, and red area shows occupancy in the opposite lane.

In the first scenario Fig. 15, the vehicle must overtake three
vehicles parked in parallel, in this case the length of the obstacle
is first unknown to the vehicle. When the distance to the closest
obstacle is close enough, the vehicle will gather information by
visibility maximization. When it gets enough information of the
size of the obstacle it executes the overtaking maneuver and
safely merges back into its own lane. In this case the vehicle
does not need to make use of the whole road section, as long as
the information sufficiency criteria is fulfilled, the vehicle can
then commit to the overtaking maneuver, and overtake within
the safety distance with respect to the obstacle.

In the second scenario Fig. 16, a moving obstacle is present in
the opposite lane.In this case the vehicle will move to maximize
visibility without invading into the opposite lane, The behavior
planner then decide to let the vehicle in the opposite direction
and clear the lane before proceeding with its own overtaking
maneuver.

In the third scenario Fig. 17, the vehicle has to overtake a
slow moving obstacle int its ego lane, while reacting to a moving
car in the opposite direction. In this case the vehicle will slow
down and let the car in the opposite direction to pass by and
clear the lane before proceeding with its own course. Another
point to note is that when the obstacle in the opposite lane is
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Fig. 18. Map of One North, with the particular area of interest. White pixels
represent empty space, while black pixels represent vertical features extracted
with the synthetic 2D LIDAR.

Fig. 19. Snapshot of real world experiment scenario 1.

detected when the vehicle already committed to the overtaking
maneuver, the vehicle therefore go to the wait state, but when
the opposite lane is already cleared, the sufficiency criteria are
no longer fulfilled, and therefore the vehicle will transition back
to visibility maximization state and restart the whole overtaking
process again.

VIII. AUTONOMOUS OVERTAKING EXPERIMENTAL RESULTS

The autonomous overtaking experiment is conducted in One
north, in particular the segment shown in Fig. 18 using SMART’s
converted iMIEV.

The start and end of the path section is marked in the inset,
the centerline of the vehicle ego lane is marked with dashed
blue line, while the centerline of the opposite lane is marked
with dashed red line. The road boundaries are marked with solid
black line. In this simulation, we assume that the road boundaries
are known a priori. Road boundary information is used for two
purposes: to constraint the motion of the vehicle in the MPC,
and to determine whether an obstacle lies within the ego lane
and/or the opposite lane.

A video showing the experimental results can be accessed
at [29]. As the experiments are conducted in real world traffic,

Fig. 20. Longitudinal distance, lateral distance and visibility view angle to
closest obstacle plots for experiment scenario 1.

Fig. 21. Vehicle and obstacle positions, vehicle speed, and steering wheel
angle plots for experiment scenario 1.

only interesting scenarios that highlight the planners capabilities
are discussed here. Snapshots of the different scenarios are
shown in Figs. 19, 22, 25. The window of the left displays the
visualization of the ego vehicle’s perception and planning inten-
tions. The top left window shows the snapshot of the scenario
from outside of the vehicle, and the bottom right window is the
lane occupancy diagram. Figs. 20, 23, 25 show the lateral and
longitudinal distances, as well as the visibility angle to the clos-
est obstacle at different stages of the maneuver. The distances are
measured are relative to the vehicle’s front LIDAR frame, which
is located at the front center of the vehicle. Figs. 21, 24, 27 shows
the location of the vehicle, and the closest point of the obstacles
in both ego and opposite lane during the overtaking maneuver.
The figures also show the commanded speed constraints and
the vehicle’s actual speed, as well as the commanded steering
wheel angle and the vehicle’s steering wheel position. The speed
constraint is the maximum allowable velocity that is computed
by the dynamic virtual bumper safety region on the given
MPC trajectory, this is the reference speed in the next iteration
of the MPC.
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Fig. 22. Snapshot of real world experiment scenario 2.

Fig. 23. Longitudinal distance, lateral distance and visibility view angle to
closest obstacle plots for experiment scenario 2.

Fig. 24. Vehicle and obstacle positions, vehicle speed, and steering wheel
angle plots for experiment scenario 2.

In the first scenario Fig. 19, the vehicle simply has to overtake
an illegally parked car. Similar to the simulation results in
scenario 6.1, the vehicle first gathers information by visibility
maximization. When it gets enough information of the size of the
obstacle it executes the overtaking maneuver and safely merges
back into its own lane. Throughout the maneuver the minimum
lateral distance to the closest obstacle is measured at 1.7272 m,
this measurement is made from the vehicle’s front LIDAR.
with the vehicle half width physically measured at 1.0 m, the
minimum clearance to the closest obstacle is 0.7272 m.

In the second scenario Fig. 22, the vehicle starts slightly of
center of the road, it tries to merge back after being overtaken

Fig. 25. Snapshot of real world experiment scenario 3.

Fig. 26. Longitudinal distance, lateral distance and visibility view angle to
closest obstacle plots for experiment scenario 3.

Fig. 27. Vehicle and obstacle positions, vehicle speed, and steering wheel
angle plots for experiment scenario 3.

by a vehicle in in the ego lane, before detecting the occluding
vehicle and executing the overtaking maneuver. While executing
the maneuver, the vehicle detects obstacles in the opposite lane
and waits for the scenario to change and reassesses the con-
dition before finally completing the maneuver. Throughout the
maneuver the minimum lateral distance to the closest obstacle
in the ego lane is measured at 1.8354 m, and therefore the
minimum clearance to the closest obstacle is 0.8354 m., while
the minimum lateral distance to closest obstacle in opposite lane
is measured at 2.2472 m, and therefore the minimum clearance
is 1.2472 m.
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In the third scenario Fig. 26, the vehicle has to overtake
multiple illegally parked obstacles. But, as it has already com-
mitted to its overtaking maneuver, a jaywalker suddenly ap-
pears. The vehicle reacts by braking hard and stops for the
jaywalker and safely proceed with its own overtaking maneuver.
The hard brake behavior is triggered by the backup trajectory
generator that senses obstacle suddenly coming into its dynamic
virtual bumper and therefore its is necessary to reduce the speed
rapidly. Throughout the maneuver the minimum lateral distance
to the closest obstacle in the ego lane is measured at 1.1987 m,
and therefore the minimum clearance to the closest obstacle
is 0.1987 m., while the minimum lateral distance to closest
obstacle in opposite lane is measured at 1.5135 m, and therefore
the minimum clearance is 0.5135 m.

There are potential deadlocks in the state machine, for ex-
ample when the obstacle is detected very late, and reversing
is needed to proceed. The current planning framework does
not allow the vehicle to unstuck itself by performing a reverse
maneuver or a 3-point turn, and may result in the ego vehicle
waiting for indefinite amount of time. Another possible deadlock
situation may occur if the incoming traffic in the opposite direc-
tion is also stuck due to the ego-vehicle’s overtaking maneuver,
in which human drivers would be able to communicate and
coordinate with each other to get unstuck.

The state machine may also enter cyclic states and is unable
to proceed (i.e caught in a livelock). For example, when the
system is cyclically stuck within statesV,W, andO. A possible
scenario in this case is overtaking a stop go situation, in which the
vehicle’s progress is blocked by the preceding vehicle. Another
possible scenario is overtaking an infinitely long obstacle. e.g
a jam. In such situation, the overtaking maneuver has to be
aborted, and the ego vehicle has to merge back to the original
preferred lane.

In the above mentioned scenarios, the role of safety driver
is still important in order to make sure that the vehicle can be
unstuck when such situations occur. An autonomous vehicle is
a complex system that consists of many interdependent com-
ponents, and removing safety driver from behind the steering
wheel is still a great challenge and should be addressed in future
works in order to achieve full autonomy.

IX. CONCLUSION

In this paper we have investigated the problem of overtaking
unexpected obstacles on a two-way street in an urban environ-
ment. We have proposed a Receding Horizon formulation that
takes into account the blind spot caused by occluding obstacles
and maximizes visibility. We have also proposed a framework for
analyzing the traffic situations, as well as planning the behavior
of the vehicle. Our work addresses the issues of determining
the amount of overtaking time available by representing the
occupancy of obstacles, especially those that fully occlude the
visibility of the vehicle, and may unexpectedly come from
beyond the sensing range of the vehicle. Obstacle free regions
are extracted from the lane occupancy diagram to determine the
available overtaking time. The work in this paper also addressed

the issue of information sufficiency, by determining a blind spot
sufficiency criteria. The risk associated with the overtaking ma-
neuver is addressed by determining whether a safe merge back
trajectory is available and a decision is made based on a finite
state machine. Simulation results and real world autonomous
driving experiments have shown that the behavior planning
framework is capable of handling unexpected scenarios when
driving in urban environments, such as overtaking an illegally
parked vehicle on a two way street.
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