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. De gemodificeerde Crank-Nicolsonmethode voor de vectoriéle

bundelpropagatiemethode wordt niet, zoals in de literatuur wordt
beweerd, geintroduceerd om een nauwkeuriger numeriek schema
te bouwen, maar om schijnbare instabiliteiten te onderdrukken
en daarmee dus onnauwkecurigheden te verhullen.

W.P. Huang, C.-H. Xu, S.K. Chaudhuri, “Application of the
finite-difference vector beam propagation method to directional
coupler devices”, IEEE Journal of Quantum Electronics, vol. 28,
no. 6, pp. 1527-1532, 1992

. Een halfgeleiderringlaser met cen interne S-golfgeleider als

terugkoppelingselement om éénrichtingsresonatie te forceren, is
gevocelig voor reflecties vanuit de glasvezel en kan daarom niet
onder de categorie unidirectionele ringlasers worden geplaatst.

J.P. Hohimer and G.A. Vawter, “Unidirectional semiconductor
ring lasers with racetrack cavities”, Applied Physics Letters,
vol. 63, no. 18, pp. 2457-2459, 1993

. Het basisprincipe van het documentopmaakprogramma TEX

is om de schrijver het kostbaarste deel van een mathematisch
getinte tekst ook als zodanig in te laten voeren.

. Het is bekend dat een golfgeleider een 3D-structuur is die met

eerl ZD-leorie besciiteven kay worded. Zu is de oD-bundel propa-
gatiemethode in werkelijkheid gebaseerd op een 2D-algoritme.

. Het opkomende nationalisme in Oost-Europa na het einde van de

koude oorlog en de daarmee gepaard gaande verbrokkeling staat
haaks op de aldaar levende wens om zich bij de Europese Unie
aan te sluiten.




10.

. Het RTL4-TV-programma “De Vakantieman” voerde her-

haaldelijk een onderzoek uit waarin doorsnee-kijkers wordt
gevraagd hun vakantieverblijf alsmede Nederland aan te wijzen
op de landkaart van Europa. De (vaak) negatieve resultaten
lijken aan te geven, dat de meeste kijkers het weerpraatje van
de RTL4-weerman niet begrijpen, zodat de weerman net zo goed
zelf op vakantie kan gaan.

De totale officiéle wachttijd van de forensensneltrein op de
stations tussen Heemstede-Aerdenhout en Delft neemt lincair toe
met het aantal sporen.

Bij de analyse van golfgeleiders met verliezende en/of versterkende
materialen kunnen de propagerende modi niet altijd éénduidig
geclassificeerd worden.

M.J.N. van Stralen, K.F.I. Haak and H. Blok, “On the classifi-
cation of discrete modes in lossy planar waveguides: the modal
analysis revisited”, Optical and Quantum Electronics, vol. 29,
no. 2, pp. 243-262, 1997

. In de paraxiale benadering geldt dat 2 x 27° ~ 41°.

Dit proefschrift bevat de mathematiek van stralen.
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CHAPTER 1

Introduction

In a wide range of nonuniform waveguiding problems, such as in integrated optics,
exploration seismics and underwater acoustics, the medium properties along a pre-
ferred direction of propagation (longitudinal direction) vary slowly compared to the
variation in the plane perpendicular to it (the transverse plane). In such structures,
the wave mainly propagates in the preferred, longitudinal direction while being grad-
ually influenced by the transverse inhomogeneities. For the numerical modeling of
wave propagation in such structures, we propose a directional decomposition of the
wave-field in order to reduce the complexity of the problem and, related to that,
the computational time and data storage. This study concentrates on waveguiding
problems in the field of integrated optics, but also examples from other fields, in
particular exploration seismics and underwater acoustics, are discussed.

The purpose of this thesis is to design and investigate the directional wave-field
decomposition method. The method is used to analyze electromagnetic or acoustic
wave propagation along a chosen direction of preference and finally to compute
or estimate the overall characteristics of a section of a nonuniform waveguiding
structure; such as reflection, gain/loss, etc..

This preliminary chapter presents an overview of the thesis. After a brief in-
troduction to the fields of integrated optics, exploration seismics, and underwater
acoustics, the basic electromagnetic and acoustic equations and the description of
the relevant configuration are discussed. Subsequently, a brief introduction to the
directional decomposition technique and an historical overview of various BPM-type
(Beam Propagation Method) numerical approaches are elucidated. Finally, the or-
ganization of the chapters is explained.



2 Introduction

1.1 Applications of the directional wave-field de-
composition

One-way wave equation methods, such as the parabolic equation method and the di-
rectional wave-field decomposition method, originate from atmospheric wave prop-
agation problems. Such methods became popular tools in underwater acoustics
and exploration seismics in the 1970s, and a few years later also in integrated op-
tics. From a mathematical point of view, these methods are also related to the
Schrodinger equation in quantum mechanics.

In this section, we introduce the fields of application, which are of interest in
this thesis: integrated optics, exploration seismics and underwater acoustics.

1.1.1 Integrated optics

The name integrated optics was introduced by Miller! and refers to the realization
of a number of guided wave optical components on a single substrate to form a more
complicated light-wave communication system. If also driver electronics is integrated
on the substrate, one normally uses the more encompassing term of optoelectronics.
Although integrated optics is today finding a way into other fields such as optical
storage, sensoring and optical computing, light-wave communication (see Figure 1.1,
left) has been and still is the driving force for the evolution of integrated optics.

The first experimental light-wave communication systems stem from the 1960s,
the decade of the first semiconductor laser (1962)? and glass fiber (1966)2. The main
advantages of glass fiber over alternative communication carriers, like coaxial cables,
are the low losses (0.2 dB/km), zero dispersion, high bandwidth and low fabrication
costs. The first two decades of the research in integrated optics were dominated
by the development of the laser, and glass fiber, and the coupling between them.
In more recent years research has been extended to fabrication of more complex
components and the mtegratlon of vanous components As examples, we mentlon
visc \uc;xumupxc.xum 'r‘, uug, lasers” , Upuu,dl receivers® and opucal ampnners””
Fabrication of these components in research laboratories is complicated and expen-
sive, and, therefore, good simulations as part of the design process before product
realization are required. This thesis describes such a simulation method.

There are several numerical and (semi-)analytical methods to model optical cir-
cuits. They differ, for instance, in the complexity of the configuration, the computa-
tional speed, accuracy and dimensionality (1-D, 2-D or 3-D). Well-known examples
are mode solvers!!>12 (for analyzing straight and curved waveguides) and the Beam
Propagation Method!® (BPM) (for more general waveguiding and nonwaveguiding
structures). Computer Aided Design (CAD) software is today used to integrate var-
ious numerical methods. Optical circuit designers use these software packages. At
the Delft University of Technology, Leijtens et al.'* adapted a professional microwave
design system, Hewlett’s Packard’s MDS, for the CAD of optical chips. Most CAD
software divides large optical circuits into the elementary components (waveguides,
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Figure 1.1: Left: impression of an international optical fiber connection with
light-wave telecommunication systems (transmitter, repeater and
receiver). Right: example of an integrated optical component: a
straight rib waveguide connected to a taper on a substrate.

tapers, Y-junctions, etc.) or a subset of these components. The method described
in this thesis is used to model these elementary components; one individual com-
ponentes or a few combined. Integrated optical components are sensitive to the
state of polarization of the transmitted light. Thus, often, detailed information of
electromagnetic fields in such components is needed in the design. As an example,
Figure 1.1 (right) shows a straight waveguide connected to a taper. The light is ex-
pected to propagate mainly in one direction: the preferred or longitudinal direction.

1.1.2 Exploration seismics

Exploration seismics is a remote-sensing technique in which the aim is to record as
detailed a picture as possible of the subsurface geology. One is, especially, interested
in the location of the earth’s minerals, among which are the fossil energy resources.
The seismic data is acquired using a source and an array of geophones (the detectors
or seismometers). The convential seismic source is the explosion of dynamite in a
drilled shot hole at a depth of a few meters. In surface seismics (see Figure 1.2,
right), the source and detectors are located at the earth’s surface, while in cross-
well seismics (or tomography, see Figure 1.2, left), the source is located in one
bore hole and the detectors are located in at least one other bore hole. The sound
waves — generated by the source --- are scattered and radiated in the earth and
recorded by the geophones. The interpretation of the events which appear on the
measured seismic data, consists in identifying them as to their nature (i.e. reflection,
refraction, etc.) and in determining the depth and cause of their origin. This helps
the geophysicists with their structural mapping of the earth’s subsurface.

In exploration seismics one is interested in an inverse problem: the field generated
by the source and the measured ficld at the receiver are known, while the configu-
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Figure 1.2: Left: cross-well seismics between two bore holes. Right: surface
seismics above a salt dome.

ration is unknown. A direct problem is mathematically simpler: the generated field
and the configurations are known, but the field at the detectors is unknown. This
thesis describes a numerical method for the direct problem. It is based upon sepa-
rating different physical propagation phenomena, and therefore can be very useful
in solving inverse problems.

In cross-well seismics, the preferred direction is along the earth’s surface, the
horizon. The layers of the earth trap the acoustic wave. However, in exploration
seismics, the preferred direction is directed downwards — the vertical. In order to
avoid this confusion, we use the more general expressions longitudinal direction for
the preferred direction, and, the transverse plane for the plane perpendicular to the
preferred direction. This nomenclature is commonly used in integrated optics.

For a survey on the theory on and methods in seismology, we refer to Aki and
Richards'®.

1.1.0 uUunderwater acoustics

The water of the oceans covers three-quarters of our planet. It controls the earth
to a greater degree than any other global system. Although mankind has been
interested in the ocean since his early days, the oceans have still not revealed all their
mysteries. In the exploration of the oceans, acoustics plays an important role, since
low frequency sound has low absorption and acoustical information can propagate
over long distances (thousands of kilometers, see Figure 1.3). There are reasons
in abundance to explore the oceans are in abudance; for instance to monitor the
greenhouse effect, earth’s global warming by ocean tomography, to characterize the
seabed, and to explore the ocean’s resources (mineral, biological and others). Other
applications come from the naval industry; detecting submarines is one example.
The ocean environments are described by the speed of sound which depends
mainly (but gradually) on the depth in the ocean. As an example, in the North
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Figure 1.3: Left: Example of long distance wave propagation in the oceans: the
Heard Island experiment. The ray paths from the source to some
receivers are indicated. Right: the sound speed dependence on the
depth

Atlantic ocean at equatorial and moderate latitudes, the speed of sound has a mini-
mum at a depth of rather more than 1000 meters. This profile is due to the opposing
effects of pressure and temperature. The sound energy can be trapped in this sound
channel — in fact it is an acoustical waveguide —, so that very long-range propa-
gation in the ocean is possible. The discoverers, Ewing and Worzel, named it the
SOFAR (sound fixing and ranging) channel’®. Near the surface, a sound channel
can also occur, depending on the weather and climate. The surface mainly scatters
sound, while the ocean bottom also absorbs sound.

In the ocean acoustics experiments, the main interest is in the wave propagation
along the horizon; the direction of preference. Propagation distances are up to a
half-round around the earth, and the ocean depths are mostly around four kilometer.
Frequencies used for underwater acoustic experiments lie somewhere between 1 Hz
and 10 kHz. The lower and upper limits are determined by the ability to generate
sound and the absorption, respectively.

In late January 1991, the Heard Island Feasibility test (HIFT) was carried out
to examine the use of ocean acoustic tomography to measure the possible warming
rates of world’s deep oceans. Signals from the 57 Hz acoustic source near Heard
Island in the southern Indian Ocean were received at 16 sites worldwide (see Figure
1.3). The results of this experiment were published in a volume of the journal
of Acoustical Society of America!”. We mention this experiment to elucidate the
possibilities of underwater acoustics.

Two interesting overviews of underwater acoustics and its techniques are given
by Brekhovskikh and Lysanov'8 and by Tolstoy and Clay'?.
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Figure 1.4: The right-handed Cartesian reference frame and the time.

1.2 Basic equations and notation

We consider electromagnetic and acoustic waves?® in matter occupying some sub-
domain of the three-dimensional Euclidean background space R® and all physical
quantities as being functions of space and time. The position of observation is speci-
fied by the coordinates {z1, z2,z3} in a right-handed Cartesian reference frame with
the origin {O} and the three mutually perpendicular base vectors {21, 12,23} of unit
length each (see Figure 1.4). The nomenclature from the field of integrated optics is
here used for the directions of these vectors: longitudinal (¢3), transverse (¢;) and
also lateral (Z3) directions. The plane spanned by %, and %5 is called the transverse
plane. The symbol ¢ represents the time of observation. The vectors and tensors
that occur are usually given in subscript notation and the summation convention for
repeated subscripts is understood. Unless otherwise specified, lower case Latin sub-
scripts can take the values 1, 2 or 3. In this introductory chapter, the equations are
also repeated in the classical vector notation, in which bold-faced symbols denote
vectors. In particular, © = 2,4; + Zai2 + x3i3 denoies the position vector. Partial
differentiation with respect to x,, is denoted by 9,,. The symbol &; is a reserved
symbol for partial differentiation with respect to time. The symmetrical unit tensor
of rank 2 (Kronecker tensor) is defined by

' .
5 1, Uum=n,
m,n — .
0, ifm#n.

The completely anti-symmetrical unit tensor of rank 3 (Levi-Civita tensor) is defined
by

1, if {m,n,p} is an even permutation of {1,2,3},
Emmnp = 0, if not all subscripts are different,
-1, if {m,n,p} is an odd permutation of {1,2,3}.

In our notation, €m npAnB, denotes the outer product of vectors A and B, while
AnBy, denotes the inner product of .A and B. We employ the International System of
Units (SI) for the representation of the electromagnetic and acoustic field quantities.
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1.2.1 Maxwell’s equations

The description of all electromagnetic problems are based upon Maxwell’s two equa-
tions in the space-time domain {z1, s, z3,t}

— €k,m,p ame +e0 0 = _jl;nat, (11)
€jm,r OmEr + o O H; = =K, (1.2)
or in vector notation
—~V X H+egE = -T™, (1.1)
V x E+pp OH = _’Cmat’ (12,)

where

&, = electric field strength (V/m),
H, = magnetic field strength (A/m),
Ji2 = volume density of material electric current (A/m?),
K3 = volume density of material magnetic current (V/m?),
Eo = ;161052 = permittivity of vacuum (F/m),
po = permeability of vacuum = 47 x 1077 H/m, and,
co = speed of light in vacuum = 299792458 m/s.

The dependence of the fields (£,, H,) and currents (Jx, K;) on the space-time
domain is not explicitly written. These six coupled partial differential equation
were found experimentally in vacuum, for which the right-hand sides equal to zero
(Jgmat = 0, /C;-“at = 0). To account for the presence of matter the right-hand sides
are split up into two contributions, a induced part and an external part, i.e.

Joat = Ji + Jg, I =0 +7°, (1.3)
K = Ky + K8, KM = K' 4 K°, (1.4)

where

Ji = induced part of volume density of material electric current (A/ m?),
Ji = external part of volume density of material electric current (A/m2),

}Cij — induced part of volume density of material magnetic current (V/m?),
and

K¢ = external part of volume density of material magnetic current (V /mz).
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The external parts describe the action of sources that generate the field and are
assumed to be field independent. Traditionally, the induced parts are written as

T = Tk + 0 Px, J =T +P, (1.5)
K} = po 8:Mj;, K' = po M, (1.6)
where
Jx = volume density of electric conduction current (A/m?),
Py = electric polarization (C/m?), and,
M = magnetization (A/m).

Further, it is customary to introduce

Dy =¢0 & +Pr, D=¢y € +P, (1.7)
B; = po(H;+M;), B = po(H+M), (1.8)

where

Dy = electric flux density (C/m?), and,
B; = magnetic flux density (T).

With the aid of the previous equations, Maxwell’s equations, (1.1) and (1.2), can be

rewritten ag

— €km,p 6me+jk+atDk: - j;f; (1.9)
€5,m,r Om&Er+ aB; = - K3, (1.10)
Ar In vrartnr natatinn
-V x 'H+(7+3{D = —Je7 (19’)
VxE+r 8,8 =-K° (1.10°)

These six equations contain 15 unknowns, namely the vectors £, "y, Dk, B, J;. In
order to be able to solve the electromagnetic problem, we need nine extra relations
between the quantities &, Hp, Ji, Dk, B;. These relations contain the macroscopic
media properties and are called the constitutive relations.

Constitutive relations

In this thesis, we choose of the standard form for the constitutive relations and
write the introduced quantities Ji, D, B; as functions of the electromagnetic field
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quantities &, Hp. In almost all known materials, the quantities Jx, D, B; depend
only on one of the two electromagnetic field quantities

Tk = Te(&r), J =J(€), (1.11)
Dy, = Di(Er), D = D(E), (1.12)
B; = B;(H,), B = B(#H). (1.13)

From experiments, these functions are determined and generally one makes a clas-
sification into different material properties: linear vs. nonlinear, time-invariant vs.
time-variant, instantaneously reacting vs. relaxating, locally reacting vs. nonlocally
reacting, homogeneous vs. inhomogeneous and isotropic vs. anisotropic.

Here, we assume that all media are linear, time-invariant and locally react-
ing. For such media the constitutive relations simplify into

Ti(Tom,t) = / nscaz (X, ') Er (T, t — ) dY, (1.14)
0

Di(Tm, t) = €0&x +eo/ K (@mo ') Er (T, t — 1)t (1.15)
0

Bi(xm,t) = poH; + ,uo/ K',gftp) (Tm,t") Hp(Tm,t — t')dt', (1.16)
0

where

ngfz = conductivity relaxation tensor (S/(sm)),

k\F) = dielectric relaxation tensor (s™'), and,
() _ ; ati (=1
K, = magnetic relaxation tensor (s74).

If all media are also instantaneously reacting, the relaxation tensors become delta
distributions with respect to time and the constitutive relations can be written as

Ti(@m) = ok o (Tm) Er(Tm), (1.17)
Dk(l'm) = Ekwr(Im)gr(.’Em), (1.18)
Bj (Im) = ﬂj,p(wm) /Hp(:’:m); (1.19)

where

or.» = conductivity tensor (S/m),
Ek,r = permittivity tensor (F/m), and,

j,p = permeability tensor (H/m),

are functions of the space coordinates only. If all media are also isotropic, the ten-
sorial character of the conductivity, permittivity and permeability tensors vanishes
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and the constitutive relations simplify to

Tk (Zm) = o(xm) Ek(Tm), J(z) = o(x) E(x), (1.20)
Di(zm) = e(zm) Ex(Tm), D(x) = e(x) E(x), (1.21)
Bj(zm) = p(zm) Hj(xm), B(z) = u(z) H(z), (1.22)
where
o = conductivity (S/m),

£ = permittivity (F/m), and,
@ = permeability (H/m).

Boundary conditions

The boundary conditions interrelate the electromagnetic fields on both sides of an
interface. The boundary conditions state that the tangential components of both
the electric and magnetic field strength are continuous across an interface.

Time-Laplace transformation

All sources that generate the electromagnetic field are assumed to be switched on
at an instant ¢ = ¢o. The causality condition requires all field quantities to be equal
to zero in the time interval previous to ¢ = ty, and the time interval

T={teR|t) <t< oo}, (1.23)

is the interval of primary interest. A

The time-Laplace domain (or s-domain) representation A(z1, s, 3, s) of a time-
varying field quantity A(z,z3,s,t) is defined through the time-Laplace transfor-
mation

A(Z‘],l‘g,.’lf:},s) = / e_’gl.A(.’lil,.’Ez,iL‘g,t) dt, seC. (124)

to

For physical (bounded) quantities, the integral is convergent for Re(s) > 0. In
the s-domain, the time coordinate is eliminated from Maxwell’s equations. As dif-
ferentiation with respect to ¢t has been replaced by multiplication by s (assuming
zero-initial state), a field problem in space results, in which the transformation
variable s occurs as a parameter. Causality of the field is taken into account by
taking Re (s) > 0, and requiring that all field quantities are analytic functions of
s in the right half of the complex s plane, 0 < Re(s) < co. The inverse Laplace
transformation is defined as

Az, 22, 23,1) = i et A(zy, 5, 23,5)ds, (1.25)
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in which j is the imaginary unit.
Maxwell’s equations in the time-Laplace domain {z1,z2,z3, s} are

-3

kB = —J¢, (1.26)
pHp = — K5, (1.27)

— €k,m,p

OmH, +
€5,m,r amEr +

L

where

fix.»(8) = transverse admittance per length (5/m)

s€0 Ok r + sE0RLL(s) + fiffr)(s), for general media,
= q S€k,r + Ok,r, for instantaneously reacting media,
(s + o) bk r, for isotropic instantaneously reacting media,

Chj\p(s) = longitudinal impedance per length (£2/m)

Spo 05,p + suok;f;) (s), for general media,
Sl ps for instantaneously reacting media,
sd; p, for isotropic instantaneously reacting media,

in which only the s-dependence is written explicitly. The transverse admittance and
the longitudinal impedance are introduced to simplify the formulas.

At the imaginary s-axis in the s plane, the real and imaginary parts of the causal
functions #(7#) (and thus also 6y, €k, fp and @, €, ji) are interrelated by the
Kramers-Kronig relations.

Steady-state analysis

In the steady-state analysis, all field quantities are assumed to depend harmoni-
cally on time with a common real angular frequency w. Then, every real quan-
tity A(xy, 2, 3,t) is associated with the complex representation Az, T2, 3, jw)
through

A($1;x27I3:t) = Re [A(Il’l,.’l,‘z,l‘g,jw) eth] . (128)

Substitution of the complex quantities of the type A(zl , T2, T3,jw) et in Maxwell’s
equations in the space-time domain yields, except for the common time factor
exp(jwt), a set of equations identical to those in the Laplace domain with s = jw.
Hence, we interpret the steady-state analysis as the limiting case

s =lim (] . 1.2
s = lim (jw + 9) (1.29)
Thus, the fulfillment of the causality condition is assured. Since /i(a:m,—jw) =

A*(,,,jw) (* denotes complex conjugation), we restrict our analysis in the thesis
to positives values of w.
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Maxwell’s equations in the space-frequency domain {z;,z, z3,jw} read

— €km,p am-[;{p + 'f’k,r Erz - "’37 (1.30)
€j,m,r amEr + CAj,p I:Ip: - K; (1.31)
We now discuss some properties of the transverse admittance k,»(jw) and the lon-

gitudinal impedance éj,p(jw) of isotropic and anisotropic dielectric media in more
detail. Dielectrics are materials in which the permeability tensor.is reduced to the
scalar constant yo. The wavelength in vacuum equals Ao = 27¢o/w.

Isotropic dielectrics
The transverse admittance is related to the complex permittivity £ as

A(jw) = juw &(jw). (1.32)
We now consider two kinds of isotropic dielectrics: relaxating without conduction

and instantaneously reacting. The complex permittivity for relaxating dielectrics
without conduction equals

E(jw) = €0 + g0 £ (jw), (1.33)
while the complex permittivity for instantaneously reacting dielectrics is given by
o
E(jw) =+ —. 1.34
() =+ 2 (1.34)
In isotropic dielectrics, it is convenient to introduce the dimensionless relative per-
mittivity as

& egte, (1.35)

and the dimensionless complex plane-wave index of refraction as

AN 1/2
A=n'—jn" % (i) = (&), (1.36)
AN

~u s

From energy considerations we have

n' >0, for passive media,

n' >0, for lossy media,

n' =0, for lossless media, and,
n" <0, for active media.

The complex wave speed ¢ in the medium equals
¢ =¢o/n. (1.37)
The wave speed in lossless media equals

c=co/n'. (1.38)
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Figure 1.5: The orientation of the optic axis within the Cartesian reference
frame.

Anisotropic media

The properties of anisotropic media are characterized by the principal values of the
three material tensors: oy, €x, and pj,. We now assume that only the permit-
tivity shows anisotropy and that no losses occur. In that case, €, is a real and
symmetric tensor, while the conductivity equals o , = 0 and the permeability equals
M5.p = pod; p- The media under investigation are thus lossless anisotropic dielectrics.
An important theorem of linear algebra states that any symmetric matrix can be
diagonalized through a proper choice of basis vectors (principal directions). This
diagonal matrix contains the three principal permittivities (1), e(® | £(3)). Based
upon this, a classification of anisotropy can be made: biaxial, uniaxial and anaxial
(isotropic). The corresponding crystal system are orthorhombic, monoclinic, tri-
clinic (biaxial), tetragonal, trigonal, hexagonal (uniaxial), and cubic (anaxial), see
Nye?!,

The second class of anisotropic media in optics, the uniaxial lossless dielectrics,
are of special interest in this thesis, because of the later-introduced equivalent
medium theory. The (uniaxial) permittivity is defined through

err = e85 + (9 — £9)ere,, (1.39)
where
£(®) = ordinary permittivity (F/m), and,
€(® = extraordinary permittivity (F/m).
It can be verified that the inverse (¢7!)y , is given by

_ 1 1 1
(e e = ROM AR e m)ckcr- (1.40)
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In (1.39), the optic or c-axis is chosen along the principal (¢1®)) permittivity axis of
the uniaxial dielectric medium, see Figure 1.5. The unit vector ¢ along this c-axis
has the components

¢y = sin(@) cos(¢),
¢y = sin(f) sin(@), (1.41)
c3 = cos(f),

with 0 < 8 < 27, 0 < ¢ < 27 and cxcx, = 1. If the c-axis is along one of the Cartesian
base vectors, the permittivity tensor simplifies into a diagonal tensor. If the c-axis
is in the x;,z, plane, we have equatorial uniaxial anisotropy. Its permittivity is
found by taking 8 = 7/2 (¢, = cos(¢), c2 = sin(¢) and c3 = 0)

£® cos?(¢) + @ sin?(¢) (e!® — &(®))sin(¢) cos(¢) O
e= | (@ — ®)sin(¢) cos(¢) &®sin(¢) +£@cos?(p) 0 |.
0 0 glo) (1.42)

In equatorial anisotropic media, wave propagation with respect to the 3 direction
is reciprocal. In general, this type of reciprocal anisotropic media is obtained when

M3, N23, 31, M2, C13, 23, G31, (32 = 0.
Similar to isotropic dielectrics, the relative permittivity tensor is introduced as

Erkr = €5 ek, (1.43)
and the tensorial plane-wave index of refraction is defined through
¢ /e 1/2
g r def (—) . (1.44)
€o k,r

In the numerical implementation, we assume that only the permittivity shows an-

iootropy ¥ laccae aceur | thic affart ie taken into account. bv introducine a complex

permittivity, as was done for isotropic media, see Equation (1.34).

Poynting vector

The transfer of electromagnetic power is governed by the Poynting vector S,,(W/m?)
Sm = €m,rpErHp, S=ExH. (1.45)

The Poynting vector quantifies the amount of electromagnetic power flow per unit
area. In the steady-state analysis, we define the time-averaged Poynting vector
(Sm)T as the quantity S,,(zm,t) averaged over a period T

1 t'+T 1 t'+T
Sadr =2 [ emnptiHpat, Sr=g [ ExHa
=t L=t (1.46)
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Using the complex representation of the type of Equation (1.28), it follows that

(Sm)T = iRe <€m,r,pEr ;) , (S)r = iRe (E X fI*) ) )

The vector S, def emmpE‘rIAI; is known as the complex Poynting vector.

Integrating the x3 component of the time-averaged Poynting vector, 5’3, over the
x1z2 plane yields the time-averaged power transferred through the z,z5 plane at z3
in one period T (guided power along z3)

(P)r(zs) = 1Re [/:;_oo /im Sg(wl,zz,xg)dzldsz . (148)

Polarized fields

In 2-D configurations (z; and z3; invariance in z,), Maxwell’s equations decompose
into two independent sets of cquations, namely one for transverse electric fields
(TE: {E,, Hi, Hs} # 0) and one for transverse magnetic fields (TM: {H,, E,
E3} # 0). It is common practice to make a comparable distinction for fields in
3-D configurations. Because Maxwell’s equations cannot be decomposed into two
independent sets — except in some special situations —, the fields have a hybrid
character. These fields are classified according to their longitudinal components:
quasi-TE polarized fields (Eg =~ 0) and quasi-TM polarized fields (ﬁg =~ 0).

1.2.2 Acoustic wave equations

The description of acoustic waves are based upon the equation of motion2% 22
hp+ P = fr, (1.49)
and the deformation equation
Ayor — O =q. (1.50)
In these equations

p = acoustic pressure (Pa),
&, = mass-flow density rate (kg/m2s?),
fx = volume source density of volume force (N/m?),
vy, = particle velocity (m/s),
(—ji = induced part of the cubic dilatation rate (s~'), and,

q = volume source density of injection rate (s').
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Acoustic constitutive relations

Here, we choose for the standard form for the constitutive relations and write the

introduced quantities &; and @' as functions of the acoustic quantities vx and p.
These relations are established by a physical experiment. In this report we assume
that all media are linear, time-invariant, instantaneously reacting, locally reacting
and isotropic and inhomogeneous in their acoustic behavior. We then have

Br(Tm,t) = p(Tm) Dt vi(Tm,t), (1.51)

and

=1

O = —k(zm) Dy p(zm, t), (1.52)

where

p = volume density of mass (kg/m?), and,

x = compressibility (Pa™!),
are the constitutive coefficients and
Dy = 0y + vi 0k, (1.53)

is the time derivative that an observer experiences when co-moving with the fluid
(with speed vx). In a domain where the constitutive coefficients introduced here
change with position, the fluid is inhomogeneous; in a domain where they are con-
stant, the fluid is homogeneous.

Linearized basic acoustic wave equation

The system of equations that consists of the equation of motion, the deformation
EYUAUIULL iU BLE CULIDLILUGLVE L1CIALIVID UISLUDOTU 1a LiL et vidid Suosooiadin, 10 noh

linear in the particle velocity, due to the occurrence of the latter in the operator D;
of Equation (1.33). Fortunately, in seismic practice, the quantities associated with
the acoustic wave-field are small-amplitude variations on the equilibrium state of the
earth. Then, the results of sufficient accuracy are obtained by solving the linearized
equations. Therefore, we shall employ Equations (1.51)-(1.52) in their low-velocity

approximation, i.e., we replace D; as defined by Equation (1.53) by
D, = 0. (1.54)

The basic linearized acoustic wave equations are then given by

akp-*— patvk = fk, (1.55)
vy +kOp =q. (1.56)
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Steady-state analysis

Analogous to the electromagnetic waves, a steady-state analysis is done for the
acoustice wave equations. In this steady-state analysis, Equations (1.55) and (1.56)
transform into

8kﬁ + jwpf)k = fk’ (157)
OrUy + jwkp = §. (1.58)

Note that acoustic quantities x and p are real valued, while the electromagnetic
quantity €, can be complex valued.

Acoustic Poynting vector

The transfer of acoustic power is governed by the acoustic Poynting vector S,
(W/m?)

Sm =PUnm. (159)

In the steady-state analysis, we define the time averaged Poynting vector (S, )t

1 t’-{—T
(ST = —/ P Uy dt. (1.60)
T t:tl
Using the complex representation of the type of Equation (1.28), it follows that

(ST = 1Re (p3},) (1.61)

The vector S,, def piy, is known as the complex acoustic Poynting vector.

1.3 Description of the configuration

The configurations under investigation are in principle arbitrary. Some restrictions,
however, are dictated by the accuracy of the numerical implementation and the
assumptions made in the mathematical analysis. In general, it is assumed that the
wave propagates mainly in the preferred, longitudinal direction and that the area of
interest is the paraxial region around the longitudinal axis. At this stage, however,
we will not go in more detail about the validity and accuracy of various numerical
approaches, which will be introduced later. In this section, the description of the
configuration is explained by using an example from integrated optics.

In order to elucidate the description of the configuration under investigation, we
consider the Y-junction in an integrated optics configuration as given in Figure 1.6.

This Y-junction contains three main parts: @ the input waveguide —0co < x5 < xgl),

@ the two branching waveguides 2 < z3 < z{™" and ® two exit waveguides
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Figure 1.6: A Y-junction as an example to elucidate the description of the con-
figuration. The is given in the plane z3 = 0.

5 < z3 < 0o. The core of the waveguide has a higher refractive index than the
cladding (nce > na). It is clear that, in the first part, the preferred direction of the

the second part is to split the light into two equal parts, each into one branching
waveguide. In this part, the longitudinal direction cannot coincide with the orien-
tation of both branches. The interest goes primarily to the light leaving the two

B .
branches at the output plane z3 = xg‘"“ ) but also to the light reflected backward
tomrnedo tha iflp"lf nlana m. — N and tho licht radiated awav from the innectinn

T T Sy L -~ -~

At first, a direction of preference is chosen based upon the configuration. This
direction is chosen to coincide with the longitudinal direction. The orientation of
the configuration is chosen such that this longitudinal direction coincides with the
rs-axis. In the case of the Y-junction, the preferred direction coincides with the
input waveguide orientation. We assume that both on the left (x3 < 0) and on the
right (z3 > z{™") side of the configuration under investigation, no reflection occurs
and that the field vanishes at infinity. In the initial plane x3 = 0, a field distribution
belonging to the initial wave propagating to the right is prescribed.

For convenience in the mathematical analysis, we make a classification into three
different classes of configurations based upon the properties of the configuration and
well in order of increasing difficulty (for electromagnetic waves)

e isotropic dielectrics with invariance in the two transverse directions (1-D),
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e isotropic dielectrics with invariance in one transverse direction only (z3) (2-D),
¢ isotropic and anisotropic dielectrics (3-D).

Each class is treated in separate chapters: Chapter 2, Chapters 3-5, and Chap-
ters 6-7, respectively. The mathematics for acoustic wave propagation in 1-D and
2-D configurations is equivalent to the electromagnetic counterpart, while in 3-D
configurations it can be seen as a mathematical simplification of the 3-D electro-
magnetic wave propagation.

1.4 Overview of the directional wave-field decom-
position

In this thesis, the directional wave-field decomposition, based upon the complete
electromagnetic and acoustic field equations is introduced. The approach is linked
with ideas in seismics and underwater acoustics. In this method, we assume that a
direction of preference in the configuration can be chosen. In generalized waveguid-
ing structures — such as in integrated optics, underwater acoustics and cross-well
seismics — and transversely layered structures — such as in surface seismics — this
can be the case. Figure 1.7 shows an example of a section of an arbitrarily nonuni-
form waveguiding structure, the origin of which can vary from the submicron scale,
like parts of optoelectronic circuits, to the large scale of the earth’s layer. In this
figure, we show the three main steps of the procedure described here. First, the ini-
tial field at some reference plane is mathematically decomposed into waves traveling
forward and backward with respect to the preferred direction. The interaction be-
tween the forward- and backward-propagating waves due to inhomogeneities in the
(preferred) direction of propagation is then described by a generalized Bremmer cou-
pling series: the first term (or zeroth order term) describes the forward-propagating
wave, the second term describes the once-reflected wave, the third term describes
the twice-reflected wave, and so forth. If the reflections can be neglected, only the
first term corresponding to the direct wave needs to be determined and the scheme
changes into a simple and fast initial-value problem, in which the longitudinal axis
plays mathematically the role of a time axis. In general, a few terms of the general-
ized Bremmer coupling series must be taken into account. Finally, the forward- and
backward-traveling waves are recomposed in the field at the desired positions. In the
gencral case of a transverse inhomogeneous medium, this decomposition procedure
involves the calculus of pseudo-differential operators (¥DO) and Fourier integral
operators (FIQ)?3-29,

For a brief historical overview of the directional wave-field decomposition, we
mention the early paper of Leontovich and Fock®® (1946), who investigated electro-
magnetic wave propagation along the earth’s surface. Their ideas on transforming
the boundary value problem resulted in the parabolic approximation of the wave
equation, which is a forward-directed scheme and is only valid for paraxial waves,
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transverse directions

preferred direction
(longitudinal direction)

—>

INPUT PLANE

Figure 1.7: Section of a nonuniform waveguiding structure (upper).The purpose
of the directional wave-field decomposition is to evaluate the elec-
tromagnetic field propagation in the direction of preference, and
finally compute or estimate the transmission and reflection of the
nonuniform waveguiding section (lower).

i.e. waves propagating at a small angle with respect to the preferred direction. Their
approximations resulted in a simple and also computationally fast algorithm.

In 1970, Claerbout?! introduced the parabolic equation in seismics for both scalar
and elastic wave propagation, and a few years later Hardin and Tappert®? reported
on the parabolic equation in underwater acoustics.

In the late 1970s, Feit and Fleck®3~35 developed their method which is also based
upon the parabolic approximation, which they named the Propagating Beam Me-
thod (PBM). This method was first applied for the propagation of high energy laser
beams through the atmosphere®® and was later on introduced in integrated optics.
The same method, but only renamed by the now more commonly used name Beam
Propagation Method (BPM), was studied by van Roey3™3% van der Donk®**°,
Lagasse3®41:42 and Baets®!'4? in the early 1980s. Since then, the number of research
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groups working on the BPM and related methods has increased enormously. In
Section 1.5, more details about BPM-type methods are given.

Simultaneously and almost independently, directional wave-field decomposition
methods were studied and developed by groups in the field of underwater acous-
tics and exploration geophysics. Our ideas stem from the Fishman and McCoy’s
papers?%24:43-47 anq de Hoop’s thesis?® *?; They developed general methods based
upon the directional wave-field decomposition, which include the interaction be-
tween the forward- and backward-propagating waves. In their schemes, the pseudo-
differential operator calculus plays an important role. As a starting point, Fishman
and McCoy split the Helmholtz equation into two one-way wave equations: one for
forward- and one for backward-propagating waves. With the use of approximations
in the Weyl symbol calculus for pseudo-differential operators®”-?8, they introduced
the extended parabolic marching algorithms in terms of path integrals. In their
more recent papers, they added the interaction between the counter-propagating
waves and reported numerical results. In 1992, Brent and Fishman®® derived a
scheme based upon Maxwell’s equations. More recent developments are the uniform
expansion of the ¥DO, see Fishman, Gautesen and Sun®, and the two-way wave
marching algorithms based upon the Dirichlet-to-Neumann map®?, which can be
seen as an alternative of the Bremmer series to include two-way wave propagation.
De Hoop?®4® generalized the Bremmer series for transversely heterogeneous config-
urations. The Bremmer series is also discussed in this thesis. Haines and de Hoop®3
describe an invariant imbedding technique in which they carried out a factorization
with respect to the direction of average power flow.

Another important area which, from a mathematical point of view, is related to
directional wave-field decomposition is used in quantum mechanics. This is because
of the formal similarity between the time-dependent Schrédinger equation and the
parabolic wave equation or between the Klein-Gordon equation and the generalized
one-way wave equation, see Kragl®* and Lammerzahl®®. Other applications of the
parabolic wave theory can be found in e.g. X-ray diffraction optics (see Kopylov
et al.55).

1.5 Overview of the Beam Propagation Method

In designing optical communication network devices, powerful and flexible compu-
tational methods are needed to model general waveguiding structures. Such com-
putational methods are directional decomposition methods. A well-known example
is the Beam Propagation Method (BPM), which was introduced by Fleck, Morris
and Feit®® in 1976. At present, various numerical methods are built as computer-
aided-design tools for optical system designers. The validity and accuracy of these
tools, however, are limited and not always clear.

In this section, we discuss first the classical BPM for scalar fields. Subsequently,
we discuss an extended scheme. With this in mind, an overview of the BPM and
related methods is given.
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Classical scalar (FFT-)BPM

The first Beam Propagation Methods were based upon the parabolic or Fresnel
approximation of the 2-D or 3-D Helmholtz equations. In order to elucidate this
method and the original idea of the BPM, we present a short, tutorial derivation
for scalar fields. These fields satisfy the scalar 2-D Helmholtz equation

R + 020 + Wi = 0. (1.62)

This equation is derived from the Maxwell equations and holds, e.g., for TE-fields
(!F E. >, Hy or H. 3) in isotropic dielectric media with invariance in the x5 direction.
Since the orientation of the waveguiding structure is mainly along the longitudinal
axis, the Helmholtz equation can be simplified. The classical BPM of Feit, Fleck
and Morris33-36 contains two main steps

e construction of the Fresnel equation, and,
¢ application of the split-step algorithm.

For the construction of the Fresnel equation, the idea is to eliminate the fast varying
phase (or axial phase) term. The electromagnetic field is then split into a slowly
varying part, ¥, and a fast varying part with respect to the z3 direction

¥ (z1,23) = P(21,73) exp(—jwez3), (1.63)

in which cref is some reference value of the wave speed of the medium: 1) is the field
in a co-moving reference frame with speed crer. Substitution of this relation in the
Helmholtz equation and rearrangement result in

.C c? - 0? A
““asw + 859 = —jw ( _l“’f +— ) . (1.64)
2cref 2Crefw
In the slowly varying envelope approximation (SVEA), it is then assumed that
[l St a2,3ll & 1AW 1 &%y
2w Y1l * ’

This approximation is valid for wave propagation near the longitudinal axis in the
paraxial region. Neglecting the second derivative, changes the Helmholtz equation
into a parabolic equation, which is known as the paraxial or Fresnel equation

N c2_c2 o2 ~
" ~ —jw ref 1 )
5Y ) ( 2¢ 1 2c 1 w? v

ref ref

o (Frar = ) B, (1.66)

where we have introduced the operator f‘pa,. Returning to the original fast varying
quantity ¥, the Fresnel equation becomes

A -~ ~

8s¥ = —jwlpar W. (1.67)
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The operator I° par contains three terms: first, the phase correction term (or lens
correction), which does not involve the derivative 0,

0_2(:1:1)1:3) c:e?

2cref

, (1.68)

~(1)
Fpar(zl ,T3) =

second, the propagation term, which is independent on the coordinates z, and z3,

o) A
(61) = —=%> (1.69)
perl ) = Gk
and also ¢_¢. Thus we have
2 (1) ~(2)
I'par = Fpar + Ipar + € ref (1.70)

Equation (1.66) contains only one first-order derivative with respect to the z3 di-
rection. Thus in Equation (1.66), z3 plays physically the role of a time axis. In an
z3-invariant section, the forward propagation reads

U (z1, 25 + Azs) = exp(—jwAzspar) ¥(z1, 3). (1.71)

The exponent is (dlled the propagator: it propagates the field from z3 to 3 + Azs.

The operators F and 1" however, do not generally commute. This means

par )

AL
exp(Fyoe + Fyus) # exp(l bar) exp(Fme)- (1.72)

In the classical BPM, a higher approximate solution is then constructed by approx-
imating this exponent with a symmetrized split-step, i.e.,

P(z1, 23 + Azs) & exp(— _]a)A.’L‘gF exp(—jwAzsl’

par)
2 "
exp(~jwAzs ) P, 23),  (1.73)

par)

which is recursively solved by marching through the configuration. The spatial

operator exp(— JwA.tgl" is numerically evaluated in the transverse Fourier do-

pur)

main with a fast Fourier transform (FFT). The operator exp(—ijazgf' E,la)r), which
is called the lens correction, can be directly calculated and is evaluated half-way
along the propagation step in order to improve the numerical accuracy. Due to the
FFT routine, the solution becomes periodic in the transverse direction. Adjustable
absorbing boundary conditions must prevent the light from traveling numerically
from one window size to another. Bamberger, Coron and Ghidaglia®” have mathe-
matically analyzed this classical BPM.
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Extended scalar BPM’s

The forward-directed BPM scheme can be simply extended to wider angle schemes.
To achieve this, we split the scalar Helmholtz equation into two one-way wave equa-
tions (the influence of the invariance in the z3 direction is neglected) and write

@ +jwl) 37 =0, (1.74)

@ —jwl) 7 =0, (1.75)

which corresponds to the fields traveling forward (y'/ ) and backward ( ) The
operator I is given by I' = (c=2 +w~282)!/2. The general recursive solution scheme

for forward wave-fields, ¥ (+), is found formally as

(1'1,.’1,‘3 + Az3) = exp(—jwAzsl) SP (:1:1,1'3) (1.76)

The main problem of the extended scalar BPM in equation (1.76) is the way to
tackle the evolution operator or propagator exp( JUJA.’L'3F) This operator contains
the pseudo-differential operator I'. Note that a first-order Taylor approximation of
I" with respect to crer and subsequent application of the split-step numerical solution
method result in the classical (FFT-)BPM of Fleck, Morris and Feit.

Overview of the BPM and related methods

een done by van Roey®” 3 van
der Donk38-40, La.gasse38 41,42 and Baets!42. In the early 1980s, the research was
concentrated on the 2-D split-step algorithms, e.g., Thylen®® 59 and Yevick®® intro-
duced anisotropy in the scheme, Saijonmaa and Yevick®® and Baets and Lagasse®!
applied the BPM to curved waveguides. In the second half of the 1980s, extensions
to the split-steo solution were songht: @ hicher annraximations of the aneratar I
were applied (e.g. the extended Fresnel approximation of Feit and Fleck3% @
the propagation steps were executed with a finite-difference (FD) or finite-element
(FE) algorithm (see Yevick and Hermansson®2-%) or ® higher split-step algorithms
were used (see Glassner, Yevick and Hermansson®>66). However, despite of these
extensions, great variations in the refractive index could not be tackled numerically
accurately enough, except for very dense discretizations (in the order of 1000 points

per wavelength). The resulting errors appear as numerical power leakage and are
~(1)

caused by the fact that the operators Fpa, and e par are noncommuting.

A big breakthrough in numerical speed and the possibility to take into account
the greater variation of the refractive index without numerical leakage came with
the introduction of the Crank-Nicolson scheme (see Accornero et al.5”, Chung and
Dagli®, Scarmozzino and Osgood®®, Kim and Ramaswamy, Clauberg and von

Allmen™). This finite-difference (FD) approximation was based upon the (1,1)

wl, T 1T
Besides Feit and Fleck, much pioncer work has b
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Padé approximation of the paraxial evolution operator after discretization, i.e.,

1&(.’[1,1’3 + A.’L‘g) = (1 —ju)Ail‘gf'pa,)—l(l +ijx3ﬁpar) 1/3(1‘1,.’1,‘3).
(1.77)

This equation results in a tridiagonal system of linear equations for which the numer-
ical implementation is simple and fast. Hadley” " developed special transparent
boundary conditions for this FD-BPM. This caused an increase in the popularity
of the BPM among optical component designers. The validity of this FD-BPM,
however, is still restricted to the paraxial region.

In recent years, various strategies have been developed in order
¢ to broaden the angle of validity (nonparaxiality),
e to include the vectorial nature of electromagnetic fields,

e to increase the numerical efficiency,

to include reflections at plane interfaces and general continuous reflections,
¢ to compute modal properties of waveguides, and,
¢ to investigate curved waveguides.

The angle of validity can be increased by computing the evolution operator more
accurately. The rigorous way is to find the local eigenvalues and eigenvectors of I.
There are several methods for the computation of the longitudinal spectrum of I;
all of them are very time consuming, especially when all the discrete modes and a
great number of continuous modes are taken into account. In 2-D structures, this
latter BPM-type approach is known under the name of Mode Expansion Method
(MEM), see Willems, Haes and Baets” 7% and Haes™®, Sztefka and Nolting””. Many
BPM-type methods in optics are based upon rewriting the evolution operator such
that a faster numerical scheme is possible. In general, a discretization in the form
of a set basis functions is introduced. Thus, the operator I" transforms into a ma-
trix, the square of which is easily determined. We call this square the transverse
Helmholtz operator (notation in this thesis: A). The evolution operator can be
calculated by first computing the eigenpairs of the transverse Helmholtz operator.
If the basis functions are (some of) the local eigenmodes, the matrix representation
of the transverse Helmholtz operator is diagonal. As a second example, the colloca-
tion method, which was introduced by Sharma, Bannerjee and Tanaje®®? in 2-D
structures, uses the Hermite-Gauss basis functions. The matrix representation of
the transverse Helmholtz operator is then small in size, but could be dense. Thylen
and Lee8? proposed a method in which Fourier components (or plane waves) serve
as the basis functions. The matrix representation of the transverse Helmholtz oper-
ator, however, is dense for high contrasts and the diagonalization procedure is time
consuming. Another efficient and probably most used choice is when, for the basis
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functions, triangular-type functions are used. This leads to a Crank-Nicolson finite
difference approximation”-"! or a Douglas finite difference approximation of A (see
Sun and Yip®®). In this way the transverse Helmholtz operator is a tridiagonal
matrix. The evolution operator can be calculated by diagonalizing the transverse
Helmholtz operator, as, e.g., in the methods of Lines (MoL), which is developed by
Pregla, Gerdes, Kornatz, Ahlers, Rogge, Lunitz and Benish®-%9. This is, however,
a time-consuming task. In most situations, only a few eigenpairs are necessary. In
the Lanczos method, as proposed by Ratowsky, Fleck and Fleck?®°2, Hermansson,
Yevick, Bardyszewski and Glasner®® %, and Liu and Li* % only the most rele-
vant eigenpairs are calculated approximately. Higher Padé approximations or other
rational approximations of the evolution operator yield wider-angle propagation
methods (see Hadley®" %8 Hoekstra, Krijnen and Lambeck?19! and Lee, Schulz,
Voges and Glingener'92-104)  Splett, Majd and Petermann®®, Gonthier, Hénault
and Lacroix' and Feit and Fleck!” proposed a Taylor series expansion for the
paraxial evolution operator in order to take higher contrasts into account. The va-
lidity of the Padé and Taylor expansion is restricted to the propagating waves; the
evanescent waves cannot be correctly taken into account.

In principle, the extension to (semi-)vectorial BPM-type methods is straight-
forward. Vectorial BPM-type methods have been studied by many researchers, like
Clauberg and von Allmen”!, Huang, Xu, Chaudhuri, Chu and Chrostowski'?8-110
Li and Gomelsky'!!, Yip and Noutsios!!?, Li, van Brug and Frankena!!3, and
Riveral!?. The main drawbacks of vectorial BPM-type methods are data storage
and that they become very time consuming. Therefore, numerically more efficient
methods are needed. Schmidt!!® proposed an adaptive approach to the scalar Fres-
nel’s wave equation. Kunz, Zimulinda and Heinlein!'® use a split-step solution
which reduces the probiem o simpie equations with tridiagonal matrices, which can
be solved fast.

To date, most BPM-type methods are only forwardly directed. In many applica-
tions, the influence of reflections, however, is important. Recently, it has been shown
that reflections in standard devices today, such as MMIs, may play an important
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the reﬁectlon (appr0x1mately 30%) at the laser facets. It is therefore a surprise that
only a few numerical methods have been developed to include backward-traveling
waves and the interaction between the counterpropagating waves. We mention Kacz-
marski, Lagasse!!®, Lin and Korpel!!® and Yevick, Bardyszewski, Hermansson and
Glasner'?°. And we would also like to mention the bidirectional Mode Expansion
Method, see Haes”®, Sztefka and Nolting”?. Smartt, Benson and Kendall'?! ana-
lyzed waveguide discontinuities along the longitudinal direction, e.g., junctions and
laser facets.

In order to include the interaction between the counter-propagating waves, al-
ternative methods have been developed. These methods are not based upon a di-
rectional wave-field decomposition, although they are used for typical waveguiding
structures. We mention Martin, Dereux and Girard’s method!??; they used an iter-
ative scheme for determining the Green’s function of configuration, and Hadley!??,
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who applied a finite difference scheme directely to the Helmholtz equation.

Several techniques, which have been based upon the BPM, are developed to
analyze the modal properties of waveguides. Feit and Fleck3® used a spectral method
to extract the modal propagation constants and the modal eigenfunctions. Hawkins
introduced the imaginary distance BPM. Wijnands et al. used the same method!?*
and extended it to waveguides with nonlinear materials'?>126. There are two slightly
different versions: the Inverse Iteration Method and the Power Method. These
methods are powerful and useful because of the transparant boundary conditions.

One of the key components on integrated optical chips are waveguiding bends.
These curved waveguides can also be analyzed with the BPM. Recently, Rivera'!?
developed a vectorial BPM for general curving waveguides, such as S-bends. He
formulated the BPM in a local coordinate system. In Figure 1.8, we show a numerical
example of the BPM for curved waveguides.

Some BPM-type methods have also been extended to time-domain and nonlinear
problems. We mention Schulz, Glingener, Néker, Voges!?”, Huang, Xu and Chaud-
huri'?® Gomelsky and Liu'?® and Wijnands, Hoekstra, Krijnen and de Ridder!?®
and Krijnen!3°.

In the last decade, hundreds of papers were published about the BPM. In this
overview we refer only to a few important papers.

In the present thesis, we describe a directional wave-field decomposition, which
can be seen as a bidirectional and wide-angle extension of the BPM-type methods
discussed above. In the general frame of directional wave-field decomposition, all
above BPM-type methods can be placed. It gives us a better understanding of such
methods. We use a Bremmer series to include the interaction between the counter-
propagating waves. We discuss pseudo-differential operators to give a new insight in
wave-field propagation. We build a numerical Bremmer scheme based upon rational
approximations.

1.6 Organization of the thesis

In addition this introductory chapter, the thesis contains seven other chapters. The
thesis discusses the directional wave-field decomposition in a 1-D, 2-D and 3-D
electromagnetic and acoustic configuration.

Chapter 2 is devoted to the 1-D configuration. It introduces the description of
the scattering problem along the longitudinal (preferred) direction. For this purpose,
we use the Bremmer series. A new fast numerical implementation is introduced. The
implementation is the same for higher dimensions and can thus easily be extended.

Chapter 3 extends the theory to two dimensions. For the scattering problem
along the longitudinal direction the Bremmer series is employed. The numerical im-
plementation is analogeous to the 1-D case. The scattering problem in the transverse
direction is described by the slowness operator.

This operator is a square root operator and is of the class of pseudo-differential
operators. In Chapter 4, the theory of pseudo-differential operators is summarized
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Figure 1.8: Evaluation of a Gaussian beam propagating through a bent wave-
guide. Computations were done with a 2-D Lanczos-BPM in polar
coordinates. The wavelength in vacuo is 1.3 um. The refractive
indices are 3.261 (inside) and 3.22 (outside). The outer radius is
200 pm, the waveguide width is 1 pm. At the outer region (between
225 pm and 230 pm), a numerical absorber was positioned. The
step size is 0.01 radian. The plots are made after 50 steps (28.6°).
Prof. Dr. Gy. Veszely is acknowledged for the computations.

and discussed. It, basicly, extends the Fourier analysis for longitudinal invariant
structures to longitudinal variant structures. Special attention is paid to the relation
between the theory on pseudo-differential operators and the modal analysis of slab
waveguides. Subsequently, we go into more detail about the pseudo-differential
onerators for two special confieurations: the anadratic nrofile waveenide and the
symmetric step-index slab waveguide. These configurations are intended to elucidate
the calculus of pseudo-differential operators.

Chapter 5 discusses the numerical implementation of the Bremmer series us-
ing rational approximations for the square root operator (longitudinal slowness),
the propagator and the transverse derivatives. Using an optimization procedure,
a higher degree of accuracy for wide-angle one-way wave propagation is reached.
Numerical results are presented.

Chapter 6 extends the theory of Chapters 2 and 3 to a 3-D configuration
with anisotropic media. In this chapter, special attention is paid to stabilizing the
numerical scheme.

Chapter 7 extends the numerical implementation given in Chapter 5 to a 3-D
configuration. The numerical implementation is based upon rational approxima-
tions. The transverse plane is discretized on a hexagonal grid in order to minimize
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the transverse artificial anisotropy. Using optimization procedures similar in Chap-
ter 5, a higher degree of accuracy is obtained for wide-angle one-way wave propa-
gation. Some different approaches are followed and argued in the text. Numerical
results are presented.

The last chapter, Chapter 8, is devoted to the conclusions and discussion.

All chapters are self-contained and can be read separately. Cross-links are used to
elucidate the extension from 1-D to 2-D and 3-D, and from 2-D to 3-D. Some chapters
go into more detail on one subject than other chapters. We advise the reader who
has no experience with the concept of directional wave-field decomposition to start
with Chapter 2.
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CHAPTER 2

Directional Wave-Field
Decomposition in a
One-dimensional, Isotropic,
Dielectric Configuration

In directional wave-field decomposition, a solution is constructed by separately treat-
ing the problem along the preferred direction and in the directions perpendicular
to it. By doing so, the problem along the preferred direction becomes relatively
simple. However, one has to take the scattering problem in the transverse plane
into account. Before discussing this, we use this chapter to explain the longitudi-
nal scattering problem in a one-dimensional isotropic configuration, in which the
scattering problem in the transverse plane is not present. We choose to solve the
longitudinal scattering problem with the Bremmer series. This chapter deals with
the electromagnetic quantities. The acoustic equivalent is found by a simple substi-
tution.

The chapter is organized as follows. After describing the configuration in Sec-
tion 2.1, we rewrite the Maxwell equations into a differential equation for the field
matrix (Section 2.2). Application of the directional decomposition introduces the
wave matrix. Its differential equation (Section 2.3) are transformed into an integral
equation (Section 2.4). Some special attention is given to the reflection properties
at a single interface. Subsequently, the numerical aspects (Section 2.5) and some
numerical results are discussed (Section 2.6). Finally, the results are discussed in
Section 2.7.
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Figure 2.1: An example of a one-dimensional configuration under investigation.

2.1 Description of the configuration

A typical example of the configurations under investigation is illustrated in Fig-
ure 2.1. This configuration is used only to demonstrate the scattering problem in
the preferred x3 direction. Therefore, the configuration is assumed to be isotropic,
source free and invariant in the transverse z,,xzs plane. This invariance means that
the configuration under investigation is a planarily layered medium. These layers

might be inhomogeneocus with respect to the preferred direction. We assume that

these layers are sandwiched between two homogeneous half-spaces, one at z3 < 0
and one at z3 > z$¥*. Thus, no reflections occur outside the region of interest,
0 < z3 < Tt

The purpose of our method is to find the field at the exit plane x3 = 2§t and at
the incident. nlane z» = (. while the field corresnonding to an incident plane wave
at z3 = 0 is given. This plane wave propagates in the preferred direction. Besides,
one is interested in the field inside the configuration in order to facilitate the design
of optical components.

2.2 Differential equation for the field matrix

In this section, Maxwell’s equations are rewritten into a form suitable for the direc-
tional wave-field decomposition. Subsequently, we list the corresponding quantities
for acoustic wave propagation. Finally, we compare the longitudinal slowness and
the wave number.

In a source-free isotropic configuration with invariance in the transverse plane
(81,0, = 0), the Maxwell’s equations in the frequency domain, (1.30) and (1.31),
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simplify into
83Ey — jwpoHy =0, (2.1)
831%1 —ju.IéEg = 0, (22)

for transverse electric (TE) fields and an equivalent set of equations for the com-
ponents {H,, E,} for transverse magnetic (TM) fields. Here, we discuss the case of
TE fields in order to link up in notation with the next chapter. The resulting equa-
tions contain only the field components which are perpendicular to the preferred
direction. The complex Poynting vector has only a component in that direction,
Sy = —E,H} . The propagation is thus along the preferred axis. The field compo-
nents are organized in the field matrix Fy as

e (_fl) . (2.3)

Due to this choice, the complex Poynting vector component along the preferred
direction equals S3 = Fy Fy. The resulting differential equation for the field matrix
is written as

O Er + jwAr s Fy =0, (2.4)
in which the electromagnetic system matrix Ay ; is given by
Al,l (z3) =0,
Ay 2(z3) = po,
Az 1(z3) = é(z),
Apa(z3) =0

This equation is often referred to as a two-way wave equation. Since matrix Ay y
depends on z3, we cannot construct a simple analytic solution. For further compu-
tations it is more convenient to introduce the wave matrix.

Acoustic field matrix and system matrix

When starting with the complex acoustic wave equations, one introduces the field

matrix Fy as
£ (D
F= (fis) . (2.5)

Now, the acoustic Poynting vector S, also has only one component along the pos-
itive z3 direction: Ss = 12 F.‘2 = po3, while S = S, = 0. The nonzero elements of

the system matrix Ay ; are

Ay 5(x3) = plas),
Azyl(wg) = I‘.‘,(IE3).
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Relation between the longitudinal slowness and the wave number

It is customary in exploration seismics to extract s = jw from the system matrix.
The square root of A2; A1 2 = poé can be interpreted as a longitudinal slowness?° 4

A(az) E (Az1A12)" 2 (25) = [noé(z9)]/?, (26)
and is the reciprocal of the complex wave speed é = (uoe)~1/? of the medium
A(z3) = ¢ (z3). (2.7)

In the field of integrated optics the (longitudinal) wave number (k3) is also often
used

ks = kon = ko£l/2. (2.8)

Here ko = w./Eopio is the wave number in vacuum and is the reciprocal of the free-
space wavelength Ao = 27 /ko. It is customary to normalize the longitudinal wave
number as k3 /ko, which equals the refractive index f. The relation between the
longitudinal wave number and the longitudinal slowness is (taking w > 0)

k3 = w?. (2.9)

Note that the quantities 4 and é have the physical meaning of slowness and wave
speed, respectively, only when dealing with lossless media.

2.3 Differential equation for the wave matrix

In this section, the field is decomposed into forward- and backward-traveling waves
with respect to the preferred direction z3.

The two-way wave equation can be transformed into a one-way wave equation
by diagonalizing the matrix Ay,

AI,JiJ,M = jll,J/iJ,M- (2.10)

Thus, the elements of the diagonal matrix A J.Mm are the longitudinal slownesses £

A= (g _Oﬁ). (2.11)

The matrix L J,M is called the composition matrix, while its inverse is called the
decomposition matrix.

This diagonalization is the fundamental step in the directional wave-field de-
composition. By applying it, the field is decomposed into a wave Wy = W(+)(a:3)
physically traveling in the positive z3 direction and a wave Wy = W(“)(zg) physi-
cally traveling in the negative z3 direction (see Figure 2.2). These waves are gathered
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Figure 2.2: Wave W*) propagates in the positive z3-direction, while wave
W{=) propagates in the negative zz-direction.

in the wave matrix, which is defined through
Wr=(L Y F;. (2.12)
The resulting differential equation for the wave matrix is given by
OsWi + jwArmWar = —(L7) 1,585 Lya) W (2.13)

This equation is often called coupled set of two one-way wave equations. The cou-
pling matrix —(L~1); ;(85L s,m) has the general form

@ =} 5). (214)

in which T and R represent a transmission® and reflection coefficient, respectively.
The coefficients 7" and R vanish in homogeneous layers. This demonstrates that the
two wave matrix components represent forward and backward waves, independently
propagating in a homogeneous layer?3. The following subsection contains more
detailed discussion on these reflection and transmission coefficients.

The columns of the composition equation can be constructed, noting that the
normalization of the wave matrix is still a degree of freedom. In this chapter, we
made the following choice

. (11 s (1 g7
L_(g —g>’ L _§<1 Z) (2.15)

where § is the admittance

g = A739. (2.16)

aNote that within this definition of the transmission coefficient, 7' = 0 if the medium is constant.
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The above choice is called the electric-field strength normalization® (EFN), because
we find that the electric field F; is the sum of the two wave matrices

P = (W<+> + WH) , (2.17)
while the magnetic field 5 depends on the local admittance i

By=g (W - W), (2.18)
Note that two elements of the composition matrix depend on z3. The final results
are independent of the chosen normalization. Some more discussion about the nor-

malization will be held for the 2D and 3D configurations. With our choice for the
normalization we have for the wave matrix

W =1 (Fl + 37"113“2) , (2.19)
W) =1 (Fl - 9—113“2) , (2.20)

while the transmission and reflection coefficients are found as
T=-R=-1§7'05=~147105% = -1~ 10sn. (2.21)

The wave matrix differential equation is a coupled set of two one-way wave equations
(compare with (2.13))

&' +jwAW S = TW + R, (2.22)
W) —jwAW ) = RWE 4 TW ), (2.23)

Reflection and transmission coefficients at an interface

Somd spocial attcntion must B givin 0 mcdia with disContinuitics i theis sudiuan
properties. Let us consider a single interface, as depicted in Figure 2.3. We denote
the waves on the left-hand side of the interface as ngﬁ) and on the right-hand side
as Wr(ifgt. In a similar way we define nje, and nyigne as the refractive indices on the

left-hand side and on right-hand side of the interface, respectively. At the interface
we have in the sense of generalized functions

j7(£) — i) gi(E)

Wi(nterface - % (Wleft + Wright) ’ (2'24)
Tinterface = % (ﬁleft + ﬁright) ) (225)
T = —R = Deft ~ Tright 5000y = T5(z). (2.26)

Rleft + Tright

®For acoustic waves, it is called the acoustic-pressure normalization.
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__ interface
T3 = I3

Figure 2.3: Interface between two media. The notation used in the text is indi-
cated.

Here T’ is introduced as

,j-,, _ _R/ _ Rleft — ﬁright (2 27)
Teft + ﬁright

Integrating the wave matrix differential equation (2.22) and (2.23) over the interval
gipterface _ ¢ to ginterface 4 ¢ and taking the limit € | 0 yields

W(f") — WIH_) = %TIW]EL) + 1T Wr(+) + 1R/‘/Vleft + RIW

right eft ight nght ’
(2.28)
S ) 1) 1 i
Wright - Wl(eft) - %R,Wlseft + %RIWI'(lglzt + IT Wleft) + T erght
(2.29)

This equation can now be written into a more suitable form for making a physical
interpretation. From the boundary conditions (see Page 10)

E,, H; continuous across the interface, (2.30)
we find

(+) F (+
Wleft + Wl(eft AW VA

right nght =0. (231)

Multiplying this by %’f‘ " and adding the result at the left-hand side to the right-hand
side of the Equations (2.28) and (2.29), result in

W(-+) _ Wl(Jr‘) T W +) + R W

right eft nght ’
(2.32)
Wr(nght Wleft RI W + T erght

(2.33)
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— terface
z3_$anera

Figure 2.4: Interface between two media. The arrows symbolize the physical
interpretation of the transmission and reflection coefficients.

These equations can be rewritten into a more suitable form (of the interface)

~ + A Al 2 +
Wr(ig}zt T RO lift)
_ . (2.34)
A (— D (+ Fr(— i(=)
Wl(eft) R T Wright
Here
R(+) _ Plefy — ﬁright — RI (2.35)
ﬁ/ieft i ﬁrig'm ’
R(-) = Twight — et _ 54 (2.36)
Tlefs + Tright ’
P —g_ Mett g p) (2.37)
Preft + Tright
P —g Mgt g p) (2.38)

Rieft + Rright

are the transmission and reflection coefficients at an interface. Their physical inter-
pretation and the relation with the previous introduced transmission and reflection
coefficient, 7' and R', are indicated in Figure 2.4. Equation (2.34) represents the
scattering-matrix relation for the interface between two media.

2.4 Integral equation for the wave matrix
The solution of the set of two coupled one-way wave equations, (2.22) and (2.23),

derived above is constructed by first transforming these equations into corresponding
integral equations. In this approach, the behavior of the left-hand sides of these
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equations is required. The Green functions corresponding to the left-hand sides of
(2.22) and (2.23) satisfy

095G (g3 75) + jw F(3) G (233 25) = (w3 ~ x3), (2.39)
83G7) (23 25) — jw A(ws) G'7) (e5; 75) = 8(zs — 73). (2.40)
With a simple substitution and using the causality conditions

G (zs;24) =0,  for x5 < a, (2.41)
G (xs;25) =0,  for 3 > %, (2.42)

it is found that the Green functions are given by

¢t (z3;23) = H(x3 —z3) exp {:—jw /za 4(z) dz:| , (2.43)
G (z3;2%) = —H(zh — x3) exp [ jw /wa ?(Z)dz} (2.44)

= G (a; x3),

where H(z3) denotes the Heaviside unit step function

0, ifzs<0,
H(IL‘3) = %, if I3 = 0, (245)
1, if z3 > 0.

Using these Green functions, we can transform the differential equation for the
wave matrix into corresponding integral equations. Multiplication of Equation (2.22)
by G(7)(z3;z}) and of Equation (2.40) by W(*+)(z3) and adding the results yield

GO + WH8,60) = GOTWH 1 GO RWE) + WH§(s — ).
(2.46)

Integration of the left-hand side over the interval 0 < z3 < z§** results in

exit

[ 60 @ai0) 00 @) 4 W) 20) 006 (s )] e
1:3:0

exit

= [ 04 [60 @ia W )] oy = -G (0i5) WO0), - (247)

3=0

where we have substituted

G (2§ 2h) = 0, (zh < 2§Y). (2.48)
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Integration of Equation (2.46) over the interval 0 < z3 < 2§** and using (2.44) yield
G (@ 0)WH(0) = W) (zf)

exit

3

_ G (@3.25) [T(20) W (23) + Rlas)W ) (z5)] das. (2.49)

xr3=0

In a similar way, we find

) (x5)

- / G (s 2a) [R@s)W ™ (za) + Tlas) W) (25) ] das. (250)

3=

Knowing the Green functions G(*) and G(=) (as given in (2.39) and (2.40)), we
can also use the superposition principle to obtain the above relations directly from
Equations (2.22) and (2.23). In a compact operator form, the integral equations for
the wave matrix read

(61,0 = Krs(@n)]| Walas) = WO (o), (2:51)

where, for 0 < 23 <
W1 @) = exp | =i [ 3202 W0) (252)
WO (z5) = 0, B (2.53)

are the transmitted forward waves and

rr3 r re3

A ~ 1 A ~
(KW= [ e | [ AE)dz| TOWOQd,

(2.54)
~ ~ zs [ 13 ~ ~
(FiaW )= [ ew|-jo [ a@a] ROV ©a
(2.55)
. a5 I ¢ T
(FaaW)(aa) =~ [ exp|-io [ 4(2)dz| ROW D a,
{=z3 i z=z3 ]
(2.56)
(RaaW)ea) = - [ exp|—jo [ 41 az|TQOW ) ac,
(=z3 L z=x3 |
(2.57)
describe the interaction between the counter-propagating waves. Observe that (2.54)
and (2.55) can be combined into one integral because T' = —R. For the same reason,

Equations (2.56) and (2.57) can be combined.
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2.5 Numerical aspects of the Bremmer coupling
series

The directional wave-field decomposition method contains three main steps:

® directional decomposition of the field of the given incident plane wave (compare
with (2.17))

W (0) = Eiident(0), (2.58)
when the electric field is predescribed, or
WH(0) = —j HPe4e(0), (2.59)
when the magnetic field is predescribed.

@ computation of the counter-propagating waves inside the configuration by solv-
ing the integral equations (2.51), and,

® composition of the counter-propagating waves into the electromagnetic fields
at the positions of interest (Equations (2.17) and (2.18)).

The numerical implementation of the second step deserves some more attention. In
this section we discuss two methods to tackle this: a forward scheme (BPM-type
approach) and the Bremmer coupling series.

2.5.1 BPM-type approach

The classical Beam Propagation Method (BPM) and many related methods assume
that the medium properties vary slowly in the longitudinal direction. In such con-
figurations, the influence of operator K; s can be neglected. The forward-directed
transmitted wave is then dominant

W (25) = W (z3), (2:60)
W) (z3) ~0. (2.61)

In the classical BPM-type methods only the forward-directed waves are calcu-
lated from Equation (2.52) while it is assumed that in (2.54)-(2.57), 031 ~ 0. Hence
Ki. j(z3) ~ 0. This calculation is then performed with a recurrent scheme. In the
current scheme, the forward-directed wave at a particular position z3 = mAz3 is
related to the forward-directed wave at the previous position (m — 1)Azs, see Fig-
ure 2.5. The configuration is then divided into M points and the forward-directed
waves are only calculated at the positions z3 = 0, Azs,--- ,mAzs,---,MAx;
(Azry = x§¥t/M). The recurrent scheme then follows from rewriting Equation (2.52)

©(0) = WH(0), (2.62)
Wf (mAz:g) = Pm)W?[(m — 1)Azs), m>1, (2.63)
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1 Section M

. . Fes
z3 =0 Axs 2Axs (M — 1)A$3 © 3= 2:gxit;

> T3

Figure 2.5: In the BPM-type approach, the field is recursively calculated at a
finite number of x3-positions.

where
“ mAxg
P(m) = exp [—jw/ Y(z) dz| . (2.64)
z=(m—1)Az3

The (positive) distance Az3 is often called the propagation step. In the numerical
implementation, we can approximate P(m) by its value half-way

P(m) ~ exp {—jw¥ [(m — L)Azs) Az3} + O(Azs), (2.65)

where the error is of order Azz. The application of the trapezoidal rule to the
integral in (2.64), however, results in a more accurate scheme (error of order (Ax3)?)

P(m) = exp {—jwi4[(m — 1) Axs]Azs } exp [—jwlF(mAz;)Az;] + O(Az3).
(2.66)

We refer to this numerical scheme as the one-dimensional forward BPM-type scheme.

2.5.2 Bremmer coupling series

In many applications, the interaction between the counter-propagating waves is
weak. In such a case we may assume that the norm of the operator Ky ; is less than

1, so that the Neumann expansion can be applied to the inverse of (§;, 5 — K 7,J) in

Equation (2.51). This leads to the Bremmer coupling series?% 131
W] = Z(}A{j)I,JW‘;O) = WI(O) + R—],‘]W}()) + (IA{?)],JW_;O) + .-
j=0 (2.67)

It is convenient to write

o0
Wr =Y WP, (2.68)
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] 5t ]
interface 1 interface 2

Figure 2.6: An impression of the Bremmer coupling series. The subscripts of
the reflection and transmission coefficients denote the corresponding
interface.

in which
W = Ky Wi, (G > 1), (2.69)

can be interpreted as the j-times reflected/transmitted wave, see Figure 2.6. This
equation shows that the solution is found by solving an iterative scheme. The
separate terms are subsequently determined in a similar way. The total number of
computed terms, J, is limited. Often J = 0, 1 or 2. The BPM corresponds to J = 0.
The conditions for convergence of the 1-D Bremmer coupling series are discussed by
Atkinson!3? in detail.

To show the numerical implementation of each term of the Bremmer coupling se-
ries, we first consider one element on the right-hand side of (2.69), e.g., K1,1 Wl(] -1,
For convenience we introduce the shorthand notation

QP () ¥ T(OWF (), (2.70)

) (m) & (Rr W) (mAgs), 2.71)
and

[P} m) & (K12 W) (mAgs). (2.72)

In a way similar to that of the case of the forward BPM-type scheme, a recursive
scheme for 1Y) (m) is constructed
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=¢

mAzs
exp [ —jw ¥(2) dZJ

. mAzs mAxzxs P
19 (m) = / exp [~jw / a<z)dz] QY (¢) ¢

z2=(m—1)Az;

m—1)Az; (m—1)Azs P
/( exp [ jw/ (z) dz] QY’(C)d

0 =
mAzg mAzs
—j Y d A(F) d
+/ (m—1)Azs exp[ Jw/z:( (2) Z] QY7 (Q)d¢
= p(m)Il,l (m-1)+ tﬁq (m), (2.73)

where P(m) is given in (2.64) and
20y =0, (2.74)
( ) mAIs mAza " ( )
i2m) = [ exp l—jw [ dz] QPO de.
< z

=(m-1)4zs = (2.75)

In the numerically implementation we apply the trapezoidal rule to q(J )( )
@1 (m) = $ Azs {QF) (mAzs) + P)QY[(m - 1) Azs]} + O(Azd),
(2.76)

Wlu(,ll Ild.b al error Ul l;llt: uxue: \Al.l,:i} 5 auu we dpply a uuu,e uuu::lcuuf d.ppxuxuud-

tionto R=-T = 397109 = 171050

fi [(m+ §)Azs] — A [(m — 1)Azs]
~ A{al(m + 3)Azs] + al(m — §)Azs]} Azs

R(mAgzs) ~ +0O(Az2).  (2.77)
The error is of the order of (Az3)?.

We are now in a position to show the equivalence between this numerical dis-
cretized scheme applied to a configuration with one interface and the analytical
result obtained in Subsection 2.3. In Figure 2.7, each term on the right-hand side
of Equation (2.28) is symbolized by an arrow. These terms corresponds to the con-
stituents of the forward-propagating field in our numerical scheme. As an example,
on the left-hand side of the interface (section m), only the first term of q("’ ) in Equa-
tion (2.76) is nonzero. This term is generated near the interface on the right-hand
side of section m and is subsequently propagated (multiplied by P(m + 1)) to the

position 3 = (m + 1)Azz. On the right-hand side of the interface (section m + 1),

only the second term of qu ) in Equation (2.76) is nonzero. This term is generated

near the interface on the left-hand side of section m + 1. Both contributions are
equal and are indicated in the Figure 2.7. A similar analysis can be done for (jg).
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section m

interface
I3

T3

Figure 2.7: Interface between two media. The contributions to the forward-
propagating wave are indicated in the figure. A comparison between
the analytic quantities and quantities of the numerical scheme is
made.

Similarly, the other terms on the right-hand side of (2.69) can be determined.
Our numerical scheme for the j-times reflected wave reads

W (mAzs) = 19)(m) — IP)(m), (2.78)
W (mAzs) = —19) (m) + I} (m), (2.79)
(j,m =0,1,2,---) with
19 m)y = Pm) 9 (m—1) +¢7)(m), m>1, (2.80)
19 (m) = P(m + DI} (m + 1) + 455 (m), m <M -1, (2.81)
in which
() mAzs mAxs A ()
49} (m) = / exp [-do [ 3z QP&
(=(m—1)Az; 2=(

1

1 Axs {Qy)(mAxg) + p(771)6}y)[(m - I)Am3]} ,
(2.82)

) mAzs
i) om) = | exp
¢(=(m+1)Az;3

mAzxs .
jw / &(z)dz} G (¢) dg

=¢

~ — 1823 { QY (mAwg) + Pm + 1)QF [(m + 1)Aas]}
(2.83)
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where
QY (mAzs) = T(mAzs)W Y™ (mAzs), j>1, (2.84)
and with the initial values
FA() = WH)(0), (2.85)
19)(0) =0, (2.86)
oy =o, (2.87)
OV (mAzs) = 0. (2.88)

The whole numerical scheme is given in a flow chart, see Figure 2.8. Observe that | 1(’1)
and fl(]% in (2.80) (and also fé{) and fé’z) in (2.81)) can be computed simultaneously.

The computer capacity for data storing might be too small, because in every term
J of the Bremmer coupling series, the reflected and transmitted field Q(J“'l) (mAzx3)

must be calculated and stored. In an z3-invariant region, however, Q(J"H)(mAzg)
equals 0. In a very slowly varying region, the transmitted. and reflected fields are
small and can be neglected. An energy criterion for detecting these neglectable
fields can be introduced through which the amount of data to be stored is reduced.
Time-domain results are obtained using a time-Fourier transform and its inverse.

2.6 Numerical simulations

We have implemented the Bremmer coupling series and have tested its convergence.
We have not seen divergence of the method for any tested configuration, not even
for high contrasts and periodic structures. Two numerical experiments demonstrate
the possibilities and accuracy of the method. General convergence has not been

'nrnvpr‘

Dielectric barrier

We have compared our results to those of Martin, Dereux and Girard!??, who have
presented another independent method, based upon a solution of the domain-integral
equation method. In Figure 2.9, a plane-wave is incident on a barrier with different
permittivities. The calculated total field is illustrated and agrees very well with the
results from Martin et al.1?2,

An analytic solution can be easily obtained!??2. To examine the accuracy, we
introduce the global root mean-square error ERR as

2pum | £ I
® |E2exact _ Eg“"‘I? d$3

0,
ERR = #m 2Am | Frexact|s
X

(2.89)
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g;ncidtmt (0, t)

Fourier transformation — Eircident(Q, w)

For every w

decomposition: W;(0) = Eincident(()

For every term j of Bremmer Coupling Series (j =0,1,2,---)

17,0) = 0, 1%(0) = W) (0)

For every forward propagation step m (m =1,2,3,--- , M)

10} m) = Pm) 1) (m = 1) + ¢ (m)

WO (mAzg) = 1) (m) ~ 17)(m)

Calculate Q5j+1)(mAw3) + storage

composition — F l(j ) and 13,2(]‘ )

adding to previous fields + storage

i) =0

For every backward propagation step m (m = M —1,---,0)

19 (m) = P(m + )i} (m + 1) + ¢ (m)

W) (mAzs) = — 1) (m) + 1Y) (m)

Calculate QY H)(mAxg) + storage

composition —» F‘l(j ) and F’z(j )

adding to previous fields 4 storage

Inverse Fourier transform — &2(z3,t) and H;(x3,t) at the positions of interest

Figure 2.8:

Flow chart of the numerical implementation of the one-dimensional

Bremmer coupling series.
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Figure 2.9:  Amplitude of the computed field in a geometry consisting of a di-
electric barrier sandwiched between two half-spaces. Three dielec-
tric barriers with different absorption values are investigated. The
wavelength of the incoming wave is \g = 0.8 um. The mesh size
for the calculation was Azz = 0.01 pm. The results correspond to
those in the literature?2.

Note that ERR > 0 and that ERR = 0 if and only if Epum = fexact The error is
normalized such that ERR = 1 if Ef"™ = 0. Using the same configuration as above
(no losses), we have determined the convergence of the Bremmer coupling series,
see Figure 2.10. After five terms, the error is already less than 10~°. This suggests
that only a few terms of the Bremmer coupling series have to be taken into account
to obtain accurate results.

Due to the discretization, the exact location of the interface is lost: it is some-
where between two grid points. If the interface is at a grid point, the numerical
scheme converges to the exact solution. If not, an error remains. This error is indi-
cated in Figure 2.11. In the following chapters, the permittivity will be numerically
smoothed. The error for a numerically smoothed configuration is indicated in the
same figure. This error is more or less constant over the interval and is lower for
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Figure 2.10: The error ERR in the field versus the number of terms of the Brem-
mer coupling series.
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Al-]—
Figure 2.11: The error ERR in the field when changing the barrier’s width from

0.5 pm—Azxsz to 0.5 um+Azs. The position of the barrier’s center is
not changed. The deviation is denoted as A (see inset); the barrier’s
width is 0.5 pm+A. The dashed curve corresponds to a smoothed
medium, while the full curve corresponds to the original discretized

medium.
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larger distance between the interface and the grid point.

Time-domain results

Time-domain results of a pulsed magnetic sheet source are obtained with a dis-
crete time-Fourier transformation. The source excitation is translated into an ini-
tial field at z3 = 0 according to By = K fe). This short-pulse excitation estimates
the transient-pulse response of the configuration. Here, the pulse used has a source
signature with trapezoidal spectrum, as depicted in Figure 2.12. Its positive corner
frequencies are 100, 200, 250 and 400 THz (Ao = 3.0, 1.5, 1.2, 0.75 pm, respec-
tively)c. The negative corner frequencies are -100, -200, -250, -400 THz. Now, E(w)
is an even function of w and £(t) is real. Therefore, to compute the inverse Fourier
transform we can restrict ourselves to positive frequencies

E(t) =2Re [L/ ej“’tE(w)’dw] . (2.90)
2r Jy
Thus
- 1
E;l &) = m%@{sin(wgt) —sin(w; t)] + E[sin(wgt) — sin(wst)]
wq . .
m[Sln(Uhﬂf) - Sln(CU:;t)] + m[COS(Wzt) - cos(wlt)]
m[COS(&Mt) - COS(w:;t)] + m[&)‘z sm(wgt) — w1 sm(wl t)]
1 . .
(0 — (24) [W4 Sln(&)4t) Tws Sln(w3t)]’ t 76 O’ (291)
and
- 1
Erax&2(0) = %(ws +wy — w1 — wy), (2.92)

where wy, ws, w3z and wy are the positive angular corner frequencies and Emax is the
maximum value of £(w). Numerically, the inverse Fourier transtorm is discretized
as

Nt

Et)~2 > AfRe [ej“’tE(27mA f)] , (2.93)
n=1

with Af = 1/(2AT Npt). We have taken an inverse Fourier transformation with
Npt = 512 points and AT = 0.4 fs. The pulse shape is shown by letting the wave
propagate through the free space, see Figure 2.12. The time- and z3-axis are then
interchangeable. In the same figure, a snapshot of the electromagnetic field &£, in
the configuration of Figure 2.1 at 40 fs and its reflected part are shown (i.e. all
terms exact the first one). We chose z§¥1* = 10 um, min(é,) = 1, max(é,) = 4.2 and
Azz = 0.1 pm.

°In acoustic configurations, we choose the corner frequencies as 10, 20, 25 and 40 Hz.
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Figure 2.12:
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Spectrum of the source and three computed snapshots of the elec-
tromagnetic field £;. The Nyquist frequency is 1250 THz. The first
snapshot is made at 20 fs in free space (£, = 1). The two other
snapshots are made at 40 fs and correspond to the configuration
described in Figure 2.1: the second snapshot shows the total field,
while the last snapshot shows the reflected field. We used r$¥t = 10
pm, min(é;) = 1, max(é,) = 4.2 and Azs = 0.1 pm.
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2.7 Discussion of the results

We have introduced the Bremmer coupling series for the scattering problem along
the longitudinal direction. A new numerical implementation has been developed.
Numerical simulations showed good results which provides a reason to use the Brem-
mer coupling series also for the longitudinal scattering problem in higher-dimensional
configurations (see Chapter 3 and 6).




CHAPTER 3

Directional Wave-Field
Decomposition in a
Two-dimensional, Isotropic,
Dielectric Configuration

In the previous chapter, the longitudinal scattering problem was introduced in a one-
dimensional configuration. In this chapter, this theory is extended to TE-polarized
waves in two-dimensional, isotropic dielectric media. The equations are equivalent to
those for acoustic waves in a two-dimensional configuration with a constant volume
density of mass p.

This chapter is organized as follows. In Section 3.1, the configuration is de-
scribed. Following the previous chapter, we rewrite the Maxwell equations into a
differential equation for the field matrix (Section 3.2). Application of the directional
decomposition introduces the wave matrix. Its differential equation (Section 3.3) is
transformed into an integral equation (Section 3.4). The numerical scheme for the
longitudinal scattering problem is derived in Section 3.5. Finally, the results are
discussed in Section 3.6.

This chapter contains one appendix, in which the relation between the forward
and backward Green functions is described.

3.1 Description of the configuration

The configuration has already been described in Section 1.3. In this chapter, we
only consider one transverse direction.
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3.2 Differential equation for the field matrix

In this section, the Maxwell equations are rewritten into a form suitable for the
directional wave-field decomposition.

In a source-free isotropic configuration with invariance in one transverse direction
(8;=0), the equations of Maxwell in frequency domain, (1.30) and (1.31), decompose
into two independent sets of equations, namely one for transverse electric fields (TE:
{Ez,Hl ,H3} # 0) and one for transverse magnetic fields (TM: {Hz,El ,E3} #0). In
this chapter, we only consider TE fields in dielectric media (€ = eoé;, i = o). We
assume that the permittivity € is a smooth, i.e., an infinitely differentiable function
of the position. The Maxwell equations, (1.30)—(1.31), then simplify into

83 Ea—jwpo Hy =0, (3.1)
63]?1 —jwéEz h 61 3 = 0 (32)
jwpoHs + 81E, = 0. (3.3)

Before applying the directional wave-field decomposition along the longitudinal z3
direction, we introduce the field matrix F1 as

F= ( I‘L’;’:’) (3.4)

Due to this choice, the complex Poynting vector component in the preferred direction
equals S5 = Fy F2 The resulting differential equation for the field matrix is

G3F7 + jwAy g Fy =0, (3.5)

with the electromagnetic system matrix operator A ,J%

Ay (z1,23) =0,

Ay2(z1,%3) = po,

Ay (z1,x3) = £(21,73) + py w202,
A2,2($1,$3) =0.

This equation is often referred to as a two-way wave equation. In contrast to the
one-dimensional configuration, A2 1 is now a differential operator. Since the matrix

AI,J depends on 3, we cannot construct a simple analytic solution. For further
computations it is more convenient to introduce the wave matrix.

2In this notation, operator Ag 1 interacts with the function A as

(Ag,1h)(21,23) = é(z1,z3)h(T1, 23) + pg tw ™2 (02 R)(z1, 23).
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Acoustic field matrix and system matrix

When starting with the acoustic wave equations, one introduces the field matrix Ey

as

n_ (P

F= (63) . (3.6)
Due to this ch01ce the complex Poynting vector component in the preferred direction
equals S5 = po; = =F F2 In order to obtain equivalent equations to those for TE-

polarized electromagnetic waves, we assume that the volume density of mass p is
constant. The compressibility « is a smooth function of the position. The nonzero
elements of the system matrix A; ; are

A1,2($19x3) =p, (37)
Ay (x1,23) = k(z1,23) + W 2H 105 (3.8)

Thus, the compressibility « is equivalent to the permittivity € in this chapter. In
the remainder of the chapter, we concentrate on the electromagnetic equations. The
acoustic analog is found by some simple substitutions

Ho -+ p,
&(zy,z3) = K(x1,T3).
3.3 Differential equation for the wave matrix

Below, the field is decomposed into waves traveling forward and backward with
respect to the preferred direction.

3.3.1 Diagonalization procedure

The two-way wave equation can be transformed into a one-way wave equation by
formally diagonalizing the matrix operator Ay j, i.e.,

Az,JﬁJ,M = fJI,J/iJ,M- (3.9)

The elements of the diagonal matrix operator A J,m are denoted as the operators r

and —I"
- ([ 0
A= (O —f’) . (3.10)

The matrix operator L J.M is called the composition matrix operator.
This diagonalization is the fundamental step in the directional wave-field decom-
position. By applying it, the field is decomposed into a wave Wy = W(+)(a:1 z3)
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physically traveling in the positive z3 direction and a wave W, = W(_)(.'Ej,.’lfg)
physically traveling in the negative z3 direction (see Figure 2.2). These waves are
gathered in the wave matrix, which is defined through

Wy = (IA/_I)LJFJ. (3.11)
The resulting differential equation for the wave matrix is given by®
8sWr + jwAr mWar = —(L7Y) 1, 5 (BsLyar)Was. (3.13)

This equation is often called the one-way wave equation. The coupling matrix
operator ~(L~1); ;(83L s a) has the general form

- - T R
—LY &L=~ .}, 3.14
@0 = (4 1) (3.14)
in which T and R represent a transmission and reflection operator, respectively.
The operators T' and R vanish in homogeneous layers. This demonstrates that the

two wave matrix components represent forward and backward waves, independently
propagating in a homogeneous layer.

3.3.2 Electric-field strength normalization analog

It has been shown by De Hoop?®® that Equation (3.9) has nontrivial solutions if A 1.J
is an off-diagonal matrix operator. Appendix 3.A contains some discussion about
several choices for diagonalising A7 ;. In the electric-field strength normalization
analog® (EFN), the composition matrix operator is found as

- 1 1
L= (Y —Y’) , (3.15)
and its inverse, the decomposition matrix operator, is given by
- 1 y-!
-1 _ 1

where Y is the admittance operator

Y = A7LT. (3.17)
1,2

bIn this equation (Ggﬁj,M) equals the commutator. This commutator has been introduced as
the chain rule

(03, Ly ma)War = 83(Lg W) =Ly m(0sWar) = (83 L a0) Wt
Ne————

B3L g MWy (3.12)

Note that, in general, 3L # (83L): 83 in (8aL) act on the coefficients of L only.
°For acoustic waves: the acoustic-pressure normalization analog; sce De Hoop49.
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In the EFN, the operator I equals
[ = (Ay1A12)Y? = (uoé + w202)1/2 (3.18)

which we call, in analogy with the 1-D case, the longitudinal slowness operator.
From (3.18), we observe that I is a pseudo-differential operator (¥DO). Some basic
properties about pseudo-differential operators are discussed in Section 4. Until
Section 4, we use only some operator properties of the pseudo-differential operators.
For convenience, the symbol A is introduced as the square of r

“ .2 - - R o

AY P = Ay Ay = poé + w202, (3.19)

Note that A is a differential operatord. We call operator A the transverse Helmholtz
operator, see also Fishman??.

In the electric field strength normalization analog, we find for the electric field®

Fy

B = <W<+) +W">) , (3.20)

and for the magnetic field Ey

B=Y (W<+) - WH) : (3.21)
The wave matrices are then found asf
W =1 (13“1 + i’—lﬁz) , (3.22)
w) =1 (Fl - Y—lﬁz) . (3.23)
Further, we have
T = —R=—1V"18,7) = —L[ ' (8s1). (3.24)
The wave matrix differential equation is a coupled set of two one-way wave equations
BWH +jwIWH =TW™ 4 R, (3.25)
W) —jw I'WE) = RWH) 4 TWw (), (3.26)

In a longitudinal invariant configuration, the coupling terms vanish and two uncou-
pled one-way wave equations remain. They correspond to the left-hand sides of the
above equations and are called the forward and backward one-way wave equations,
respectively. Sometimes, the terms “forward and backward Helmholtz equations”
are used, see Mirz'*. In a longitudinal invariant configuration, slowness operator
I is also called the Dirichlet-to-Neumann operator, see Fishman®?: it maps Dirichlet

data (Ek,) to Neumann data (93 Ey), since according to (3.25), 3 = —jwl.

d¥or the acoustic waves: A = pE + w_2812
eFor the acoustic waves: Fy = (W) 4 W)y,
fFor the acoustic waves: W{¥) = %(1‘"1 + )A"II:’Q).
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3.4 Integral equations for the wave matrix

The solution of the set of two coupled one-way wave equations, (3.25) and (3.26),
derived above are constructed by first transforming these equations into correspond-
ing integral equations. For this transformation, we must assume, for the time being,
the existence of the powers of the operator A. We use the property that A and its
square root are symmetric. In order to show this, we introduce a special bilinear
form. Subsequently, we can derive the integral equations for the wave matrix using
the Green functions. Finally, these equations are also expressed in terms of the
evolution operators.

3.4.1 Symmetry of the longitudinal slowness operator

We introduce the Lj-inner product, discuss the symmetry of an operator and prove
that the transverse Helmholtz operator A and the longitudinal slowness I" are sym-
metric

Function spaces and inner product

The Hilbert space of all complex-valued square integrable functions is denoted by
Ls. The La-inner product of the functions 4i(x;) and w(z) is defined by

(i, w) & / Oi @(z)w* (1) day, (3.27)

and the Le-norm of i(z;) by
lall = (a,a)*/. (3.28)

Here, we represent the complex conjugate of w by @*. Note that (i,w) = (w0, a)*.
In this thesis, the notation (i, W)y is reserved for the bilinear form, defined as

acY

(@, )y ¥ / a(z))w () dzy = (@, w*). (3.29)
T1=—00
This is also known as the real or formal Ly-inner product!2.It is not an inner product
in the mathematical sense because it is not positive definite. R
The adjoint operator (or Hermite transposed) BY of an operator B is defined as

(Ba, 0), & (@, (BH)* )y, or (Ba, b)) < (a4, BYw).
(3.30)

The transposed operator BT of an operator B is defined as
P

(Ba, v), ' (4, BTw)y, or  (Bi,w) % (a,(BT)*w).

[=3
iy

(3.31)
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The above notation, the superscripts * and Y| is used to emphasize the equivalence
with the linear algebra. We also define the terms symmetric and skew-symmetric in
correspondance to their equivalent expressions in the linear algebra. An operator B
is

self-adjoint if B=BH,
symmetric if B =BT, and,
skew-symmetric if B=—BT.

Now, we show that operator A and I are symmetric.

Symmetry of operator A

From (3.29) follows that

(@, w)p = (b, 4)p, (3.32)
and
(€, W), = (0, D). (3.33)
Using the identity
—w(824) = = () + O (4 ) — W(DFD), (3.34)

Gauss’ theorem and the causality condition that the field at infinity vanishes (also
known as the outgoing radiation condition), it follows that

(071, w)p = (@, 07 10)y. (3.35)

Combining (3.33) and (3.35) yields that A = poé + w=207 is symmetric, i.e.,

A =AT (3.36)

If there are no losses, the permittivity is real-valued and the operator A is also
self-adjoint.

Symmetry of operator I’

Let I's be the symmetric part of I’

Fo=Yl+1") =1, (3.37)

2
and let I'_, be the skew-symmetric part of r

P =YP-1"y=-I", (3.38)

2 —
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so that

F=ry+rI_,. (3.39)

- 2
Since A is symmetric, the skew-symmetric part of I" has to be 0 and thus

[ o=-I_,T%. (3.40)

The symmetry properties of I" depends on the choice of the square root. It is
well known that the square root is a two-valued function. For energy conservation
considerations, we show that there is only one physical choice for the square root
and that within this choice, I" is symmetric.

Consider a forward-travelling wave in an xz-invariant configuration. The wave
propagation is then described by the homogeneous version of Equation (3.25)

Wt +jwl'Wt =0. (3.41)

The power transferred through the transverse plane at z3 equals (see Equation
(1.48))

(P)r(zs) = iRe (S5, 1)) , (3.42)

with Sg F, 1 FZ Since we consider an z3-invariant structure, the composmon oper-
ator Y = ug ' I" is invariant, and therefore it is sufficient to show that 85 (W, W)
is negative (attenuation) or zero (no attenuation). Using (3.41) yields

AN A
Us\u, w; =

[
4
S
~

!
~

i, ) + 2w (Im(s)it, ). (3.43)
Since (take 4 = w = W)

(Re(I'_)W ™, WT) = —(WH, Re(I'_ )W) = —(Re(I'_ )W+, W)",
(3.44)

it is imaginary and the first term on the right-hand side of (3.43) is real valued
(positive or negative). However,
(Im(F )W Wy = (W Im(F )W) = (Im(F) W, W)*,
(3.45)
and thus the second term on the right-hand side of (3.43) is also real valued. This

term is negative if —Im(f“s) is positive definite and thus if we choose Im[(.)l/ 1<0
for passive media.
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_ In order to have a physical wave propagation, we have to choose a symmetrical
r

F=r,=I". (3.46)

For passive media, we choose a square root with Im[(.)}/?] < 0 (branch-cut along
the real positive axis). For active media, one chooses Re[(.)]*/? > 0.

In the further computations, we use this symmetry property of operator I
The same result can be obtained via an eigenvalue analysis, see Wapenaar and
Grimbergen!®4,

3.4.2 Green’s functions

The solution of the set of two coupled one-way wave equations, (3.25) and (3.26)
derived above is constructed by first transforming these equations into corresponding
integral equations. In this approach, the behavior of the left-hand sides of these
equations is required. The Green functions corresponding to the left-hand sides of
(3.25) and (3.26), satisfy®

856 (x1, w3; 24, 2h) +jwl (21, 23)G) (21, 23; 21, 74) = b(z1 — 2], 23 — a}),
(3.47)

8;;§(‘)(z1,x3;x’l,x'3) —jwf(xl,zg)g(')(xl,xg;z’l,xg) = §(xy — ®),x3 — x%).
(3.48)

The explicit expressions is discussed later. Due to reciprocity, the relation between
these Green functions is (see Appendix 3.A)

g(+) (xl y I3, mlla ml3) = _g(_) (z{l ) 1':'7,; T, 1'3). (349)
Using these Green functions, we can transform the differential equations for the
wave matrices into the corresponding integral equations. Multiplication of Equation

(3.25) by G(-) (2, z3; 2}, z}) and Equation (3.48) by W) (z;,z3) yield
1,13

GaW ™ + WHa,60) 4 GO IW ) — WHjwlgH)
— GOTWE 4 GORWE) 4 WH§(2) — o), 25 — 2).  (3.50)

Note that the last two terms on the left-hand side do not vanish. Using the symmetry
of I', the integration of these two terms over the interval —oco < x; < oo yields

(G jwl WD)y — (W) jwlG ), = 0. (3.51)

8In this notation I'(z1,23)G(z1,z3) stands for (I'G)(z1,z3).
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The integration of (3.50) over the entire transverse x,-line results in

o0
/ 9y [Q<')(z1,xs;x’1,xé) W(“(xl,za)] dz,

1=—00

o0
= / GOV (@, w3 2, ) Py, wa) W (1, 23) dary
X

+/ G (@1, z35 2}, 74) R(zy, 23) W) (2, 23) day
T1=—00

+ W (2], 25)d(x3 — ). (3.52)

The next step is the integration of Equation (3.52) over the interval 0 < z3 < z§*it:
the finite section of the structure between the entrance plane z3 = 0 and the exit
plane z3 = z§**. Using the relation

exit

13 oo . ~
/ / 03 [g(_)(ﬂtl,mza;z'l,:L"3)W(+)(:cl,$3)] dzidz3
T T1=—00

3=0
o0
- _/ G (w1, 0; 24, 2 W) (21,0) dzy,  (3.53)
IZ1=-—-0C

where we substituted
Gy, 2§ 2!, k) = 0, (zf <z, (3.54)
and with (3.49) we find

oo
[ el i, 0 ) (2,0)d
r1=—0Q
=W (a}, zh)
:cg"" 0 R R .
—/ / g(*)(a:'l,:cg;zl,zg)T(:vl,xg)W("')(zl,xg) dxdxs
x T1==Q

3=0

exit

3 A ~ N A
- / / g(+)(l‘l1,12é;.l'1,2'3) R(ZL‘l,ZL‘3)W(—)(IE1,$3) dl‘ldiltg.
z3=0 Jx1=—00
(3.55)

In a similar way, we find

0= Vi/'(“)(z'1 ,T5)

exit

Ty (e o} . . .
- / / g<*)(a:’1,z’3;a:1,x3) R(zy,z3)W) (21, 23) dz1 dzs
x3=0 Jz oo

1=—

exit

T3 00 N R R
—/ / g(i)(.’l,'ll,ité;.’l)l,l';;)T(.’Cl,l‘g)W(_)(IL'l,.’I:;;) dl‘ld(l?g.
13:0 T1=—0Q

(3.56)
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Knowing the Green functions G(*) and G(=) (solutions of (3.47) and (3.48)), we
can also use the superposition principle to obtain the above relations directly from
Equations (3.25) and (3.26). In a compact operator form, the integral equations for
the wave matrix reads

(61,5 — Kr.0)(@1,23)Wy(ay,23) = Wﬁo)(rl,’%); (3.57)
where
-~ <X) ~ ~
Wi (zy,23) = / G (1, zq4: ), 0) WP (2], 0) dz}, (3.58)
ryi=—00
W;O) (z1,23) =0, (3.59)

are the direct waves and the terms

(foalv )z = [ [~ 09,0 (F) (4, aria,
(3.60)
(fﬁ,zw(_))(xl,%) :/;30 /:O_ G (a1, 23527, ¢) (RW ) (21, €) dz3d¢,

(3.61)

exn.

(Kz 1W(+))($1 z3) = / G (z1,23; 27, C) (RW(+)) (z},¢) dzyd,
C=z3 Jzi

(3.62)

exnt

(Kz W ) (x1,x3 / / (21, 73327, ¢) (TW(—)) (1, ¢) day d,
(=a3
(3.63)

describe the interaction between the forward- and backward-propagating waves.
Because T = — R, the above four terms can be combined into two terms.

3.4.3 Evolution operators

In some approaches, the expressions derived above are rewritten in terms of evolu-
tion operators, which are also called Green’s operators or propagators. This has the
advantage of a compact notational form and it serves also as basis for the numer-
ical implementation. The relation between the evolution operators and the Green
functions is shown first.

Multiplying (3.47) by some test function a(z},z%) and integrating over the in-
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Figure 3.1: Two longitudinal invariant sections.

terval —oo < x] < oo yield
o [ G zxial, i) 35) dah
zi=—00
+jwl(zy, .’L’3)/ G (zy, x3; 2}, xh)ii(x,, xh) Az}
Ti=-—00
=d(zy,zy)0(z3 — z5). (3.64)

We now introduce the forward evolution operator or forward Green operator G
as

o0
(G(Hﬁ)(ﬂﬁl,l‘z;ﬂ?’s)dg/ G (21, 235 7y, 75 (e, 2y) day.
zi=-o00 (3.65)
Equation (3.64) reduces to

33(C P a)(zy, 3 74) + jwl (1, 23 (G 0) (21, 235 25) = a(zy,xh)6(xs — ).
(3.66)

For the construction of the forward evolution operator G we first examine a
longitudinal invariant section. With a simple substitution and using the causality
conditions

(G ) (2, z3525) =0, for z3 < xj, (3.67)
it is checked whether the evolution operator in a longitudinal invariant section equals

(G D) (x1, z5;2) = H(zs — 24) exp [—jw(:rg - zg)ﬁ(xl)] Wy, zh).
(3.68)
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Figure 3.2: Cascading of M longitudinal invariant sections.

By considering two longitudinal invariant sections, as shown in Figure 3.1, the overall
evolution operator results from the cascading of two forward evolution operators

(G (zy,z332,) = (GG a) (2, 245 )
3 3

second ' first

= H(I'B - -Z'g) exp [—jW(.'Es - wg)fsecond(wl )}

H(zy — x4) exp [—jw(mg’ — xé)ﬁﬁrst(zl)} w(zy,Ty).

(3.69)

Note that the operators in the exponents do not commute in general. The full-range
evolution operator over an arbitrary longitudinal variant structure is derived by first
cascading M evolution operators which are chosen such that they span the full range
(x4, 3), and by subsequently taking the limit M — oo with Azg = (zz —x4)/M >0
(see Figure 3.2)

(GD )y, 2525) = (G -+ GGl (@, 7352%)

last second ~ first

= H(xz —z3) lim exp [—jwﬂmsﬁlast(xl)]
M—o
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_!
Z=Ty

def H(z3 — x3) { H exp [—-jwf’(:vl, z) dz] } a(zy, zh). (3.70)

Here we introduced the product integral, for which the above ordering rules apply
(see DeWitt-Morette, Maheshwari and Nelson'3®). With a similar analysis we find
the full range backward evolution operator as

- .
(GOa)(zy,z3;24) & / G (@1, z3; 24, 24 )i(a}, x4 )}
Ti=—00

= — H(zy — 13) { H exp[jwf(zl,z)dz]} w(z1, z3).

z=xy
(3.71)

Using these explicit expressions of the evolution operators in terms of product inte-
grals, the Equations (3.58)-(3.63) transform into for 0 < z3 < x§*

W% (z1,25) = H(xs — ) { ﬁ exp[~jwl (21, 2) dz]} Wi(21,0),  (3.72)

—d
2=x3

Wi (z1,23) = 0, (3.73)
(f(l,l WH)) (-731 y 1'3)

= /: {Hexp[ jwl xl,z)dz]} TW +) (1:1 ¢)d¢, (3.74)

=0 | ;=
(kl,ZW(—))(xl , T3)

w3

&3
= / i H exp[—jwl(x1,2)dz] § (RW

z2=¢

a:l,() d¢, (3.75)

\
} )
(R2,1W(+))(xl,x3)
. /< : {Heprwr :z:l,z)dz]} (B (1,0 d, .76
(Raa W) (21, 25)

} i

(- ’ (xl,odc (3.77)

=—/ ’ {HeprwF (@1, 2)dz]
(=z3

z=¢
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3.5 Numerical aspects of the Bremmer coupling
series

In the previous sections, we have derived the Bremmer coupling series. Assuming
that the square root operator I is known, we discuss the numerical aspects of the
BPM-type approach and the Bremmer series in this section.

The directional wave-field decomposition method contains three main steps:

® directional decomposition of the field of the given incident wave (compare
with (3.20))

W(+)(.’L‘1,0) - Eizncident(xl,o)’ (3.78)
if the electric field is predescribed, and
[/i/'(+)(‘7:1 , 0) — _f/—l f{incident(xl’o)’ (379)

if the magnetic field is predescribed,

@ computation of the counter-propagating waves inside the configuration by solv-
ing the integral Equation (3.57), and,

® composition of the counter-propagating waves into the electromagnetic fields
at the positions of interest (Equations (3.20) and (3.21)).

The numerical implementation is thus split into two scattering problems: one in
the longitudinal direction and one in the transverse direction. In here, we have
discussed only the scattering problem in the longitudinal directional. Its numerical
implementation is similar to that in 1-D structures and is discussed below. For this,
we consider two methods: the classical BPM-type approach and the approach using
the Bremmer coupling series. In the next two chapters, the scattering problem in
the transverse direction will be discussed.

3.5.1 BPM-type approach

The classical BPM-type approaches assume that the medium properties vary slowly
in the longitudinal direction. In such configurations, the influence of operator K; s
in (3.57) can be neglected and the forward-directed transmitted field is dominant,
hence

W(+)($1,.’E3) ~ WI(O)(.Z'l,.’L'g), (380)
Wz, 23) ~ 0. (3.81)

The calculation of these forward-directed waves is performed with a recurrent scheme.
In this recurrent scheme, the forward-directed wave at a particular transverse plane
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(or slice) z3 = mAz; is related to the forward-directed wave at the previous
transverse plane 23 = (m — 1) Az3. The configuration is then divided into M points
and the forward-directed waves are only calculated at the transverse planes z3 =
0, Azz,--- ,mAzs, - ,MAzx3 (Azz = z5* /M), see Figure 2.5. It is, however, not
necessary to use a fixed propagation step Axz: Az3 may vary along the longitudinal
direction. This recurrent scheme follows from rewriting Equation (3.72) as

W (21,0) = W (1,0) (3.82)
W (@1, mazs) = Pla,mW ey, (m—1)dzs),  m>1, (389

where the operator f’(a:l,m) equals

mAz;
P(zy,m) = H exp [—-jwf’(;vl, z) dz] . (3.84)

z=(m—1)Azs
The distance Azxs is often called the propagation step. In the numerical implemen-
tation, we can approximate P(z;,m) by its half-way value
P(zy,m) ~ exp {—jwf [z1,(m — §)Azs] A.’II3} + O(Az3), (3.85)
or by taking a higher approximation as

P(z1,m) ~ exp [—jw%f‘(zl,mAm) A.’L‘g]

exnd il e (m— 1 Ax
Rtk l D ) el hadt ¥ 2L S =)=

We refer this numerical scheme to the two-dimensional forward BPM-type scheme.

3.5.2 Bremmer coupling series

In many applications in the field of integrated optics, geoelectromagnetics and acous-
tics the interaction between the counter-propagating waves is weak. In such a case
we may assume that the norm of the operator K 1,7 18 less than 1, so that the Neu-
mann expansion can be applied to the inverse of (d;,; — K 1,7) in Equation (3.57).
This leads to the Bremmer coupling series?® 131

o0
W] = Z(K’);,Jvff}o) = WI(O) + R[}JW}O) + (kz)I,JW§O) + -
i=o (3.87)

To emphasize the physical nature of the expansion, we write

oo}
Wy =3 WP, (3.88)
=0
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in which
W =KWy, (G2, (3.89)

can be interpreted by the j-times reflected/transmitted or scattered wave. This
equation shows that the solution is found by solving an iterative scheme. The
separate terms are subsequently determined in a similar way.

To show the numerical implementation of each term of the Bremmer coupling
series, we first consider one element on the right-hand side of (3.89), e.g. K1, W1(] -,
For convenience, we introduce the shorthand notation

29 (21,0 & (TW}j'l)) (x1,), (3.90)

1) (@1 m) & (K1 W) (01, mAas), (3.91)
and

fﬁfg(zl,m) def (I?1,2W§j'1)) (z1,mAzs). (3.92)

Similarly to the case of the forward BPM-type scheme, a recursive scheme for
11(91) (x1,m) is constructed

=0

. mAzg | mAzs A o
2 (@y,m) = /C { [T exv [-iwl(@,2)dz] § QP (1,0 dC
2=¢

mAxs

= H exp [—jwf’(zl,z) dz]

z=(m—1)Az3

(m—1)Az3 mAxg R ()
/ H exp [—ij(z‘l,z) dz] Q' (x1,¢)d¢
<

=0 iy
mAzsg mAz; R s
+ / H exp [—ij(zl,z) dz] D (y,¢)d¢
(=(m—-1)Az; =
= P(l‘um)igl) (117'”1 - 1) + qu (zlam)7 (393)

where the operator P(z;,m) is given in (3.84) and

17)(21,0) =0, (3.94)

, mAzs mazs R .
@) (z1,m) = / [T exp [-iwl(1,2)dz] § QY (@1, Q) dC.
¢

=(m~—1)Az; 2=C

(3.95)
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In the numerical implementation, we apply an approximation to the product integral
s 5(9)
in §y’; (z1,m)

Q§{}(11,m) ~ L Axg {ng)(l'l, mAzs) + P(zy,m)QY [z, (m — 1)A$3]}
+ O[(Az3)?]. (3.96)

The other terms on the right-hand side of (3.89) can be determined in a similar way.
Our numerical scheme for the j-times, reflected wave reads

Wl(j)(xl,mAzg) = ffjl) (z1,m) — fl(?z)(ml,m), (3.97)
W;j) (x1,mAz3) = —fé,jl)(xl,m) + fé{g(xl,m), (3.98)
(,m=0,1,2,---) with
fl({}(:cl,m) = P(:cl,m) fff}(zl,m -1+ ég‘),(zl,m), m>1,
(3.99)
ig?}(th) = P(mlam + l)jé':}(l'],m + 1) + q'é{,)](xlam)z m S. M - 17
(3.100)
in which
) mAzz mAzs . .
i em) = | IT e [-iwler,2)dz] § 01, 0) g
{=(m—1)Azj 2=
jad %Al‘(} {QA_(]j)(xl7mAI3) + P(z‘l’m)QA.(]j)[wl’ (m - I)A(L'g]} 3
(3.101)
() mazs : A 5)
i) (21, m) = / { [T exp[-iwli(e,2) dz]} Q¥ (1,0 d¢
(:(m+1)413 =mAzs
~ —%am {fo}(xl,maxg) + P(wl,m + 1‘)(;}3:"\[:101, m + 1)4\x3]} ,
(3.102)
in which
OY) (21, mAzs) = (T‘W}f—”) (z1,mAz3), >0, (3.103)
and with the initial values
1%(z,,0) =W (gy,0), (3.104)
19)(z1,0) =0, (3.105)
(@, M) =0, (3.106)

)V (x,,mAzs) = 0. (3.107)
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The flow chart for this numerical scheme is very similar to the flow chart of the 1-D

scheme, see Figure 2.8. Observe that fl(Jl) and [ fjg (and also fé’l) and IAy?)) can be

computed simultaneously.
The computer capacity for data storing might be too small, because in ev-
ery term j of the Bremmer coupling series, the reflected and transmitted field

A(Jﬂl)(acl,m.ﬂzg) must be calculated and stored. In an xs-invariant section, how-

ever, Q(Jj+1)(w1,7nAa:3) = 0. If the variation in the x3 direction is very slow, the
transmitted and reflected fields are small and can be neglected. An energy criterion
for detecting these small fields can be introduced by which the amount of data to be
stored is reduced. The energy criterion rules can be determined by some numerical
tests.

In this Bremmer coupling series, we still need to compute the operators P(z1,m)
and T(ml ,mAzs). Besides, for the computation of the magnetic fields one also needs
to calculate the operator I" (see Equation (3.21)). If the magnetic field of the incident

- A1 )
wave is prescribed, then the decomposition operator I" ~ has to be determined, too.
These operators are all determined by the description of the scattering problem in
the transverse direction. This is discussed in the next chapter.

3.6 Discussion of the results

In analogy with the 1-D configuration, we have introduced the Bremmer coupling
series for the scattering problem along the longitudinal direction. Assuming that the
scattering in the transverse direction is known, a new numerical implementation has
been developed. The only thing which has still to be done, is computing the square
root operator I for describing the scattering problem in the transverse direction. In
this chapter, we showed that this operator is symmetric. In the next chapter, the
square root operator will be analyzed.
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Appendix

3.A Relation between the forward and backward
Green functions

To construct the Bremmer series in Section 3.4, we need the relation between the
forward and backward Green functions. This relation is derived with use of the
reciprocal forward Green function.

We introduce the reciprocal forward Green function Q(T+)(m1,zg; zh, %) as

QAf(rH(ll,ws;x'pl'é) « G (@), 75 21, 23). (3A.1)

We now derive the differential equation for QA%H(xl,zg; zy,xh).
Consider the differential Equation (3.47) for G(*). By multiplying this equation
by Q’Sr+) and integrating over z; and x3, we find the following global relation

oo
/ (3569 + jwlGH) Gy das
z3=—00

= / (6(z1 — 2,23 — 25),65") dzs. (3A.2)

3=—00
The integrand on the right-hand side can be rewritten
(8(z1 - i, 23 — 4),G5")

= G (@1, g5 24, )6 (21 — &), 25 — 24) Ay

V]

o0
5(+
= / g& )(z'l,zg;xl,:vg)é(zl —z),23 — x4) day
1 =—00

o0
- / =6 (zy, x5 2}, 24)6(a1 — o), 75 — xh) Ay
r1=—00

= (G, —5(z) -z, 23 — a})). (3A.3)
Since
= / 83(gh(+)gA’(1‘+)) dzz = / [(33é(+))G(T+) + (j(+)(33g"fr+))] dzs,

(3A4)
and operator I is symmetric (see Equation (3.46)), the left-hand side of Equa-
tion (3A.2) equals

/ (DG 4 PG G da

3=—00

= / (G, “836(;) +jWﬁgAr(r+)) dzz. (3A.5)

3=—00
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—g(+)($'17$'3;1‘171‘3) .,
(z1,23)

(z1,73) -
G (1, x5; 70, 7h)

Figure 3.3: The forward and backward Green functions between (r1,73) and

(2, 2%).
From Equations (3A.3) and (3A.5) we find the differential equation for the reciprocal
forward Green operator
5391(;') - jwﬁéfr+) = 8(r) — =\, 23 — 75). (3A.6)

This equation is the transposed version of Equation (3.47). By comparing this
equation and equation (3.48) we can conclude that

Q(T+)($17$3;$;,I§) = g(‘)($17$13§m3’$/3)' (3A.7)

Thus the relation between the forward and backward Green functions is (compare
with Equation (3A.1))

g(_)(xl,xg; Ty, xy) = "G(+)(Ill,l':’3;$1,$3). (3A.8)

Figure 3.3 shows this relationship graphically.
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CHAPTER 4

Scattering in the transverse
direction: pseudo-differential
operators

In this chapter we consider the longitudinal slowness operator r

[(@1,5) = [poé (w1, 23) + w‘Qaf]lﬂ :

(4.1)
This operator describes the scattering problem in the transverse direction. Due to
the x;-dependence of ¢ and due to the square root, the numerical implementation
is not trivial. For instance, if £ were independent of the transverse coordinate x;,
we could use a Fourier transformation with respect to z; in order to simplify the
operator into a multiplication (see Section 4.1). Similarly, if the square root were
not present, a finite-difference or a finite-element method could be directly used
for the numerical implementation. From asymptotic considerations, we know that
I = |8y], if the second derivative is dominant in (4.1), and I" = (uoé)"/?, if poé
dominates.

Our main goal is a fast numerical algorithm. A numerical scheme can be fast if,
e.g., it contains a sparse matrix representation of I'. To derive such a scheme, we
consider the calculus of pseudo-differential operators (¥DO), since the longitudinal
slowness operator I is a pseudo-differential operator. In this section, we discuss
some basic properties of pseudo-differential operators. First, we take a closer look
to the operators involved in a transverse homogeneous space (Section 4.1). In Sec-
tion 4.2, we give a sketchy overview of some properties of the pseudo-differential
operators. For more details about the pseudo-differential operator calculus, we refer
to Hérmander?”, Taylor?® and Duistermaat?®. For an overview of the occurence of
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the pseudo-differential operators in directional wave-field decomposition, we refer to
Fishman and McCoy?* 2%, Fishman?®, McCoy and Frazer?®, de Hoop*® and Haines
and de Hoop®3.

Sections 4.3 and 4.4 are dedicated to two configurations leading to analytical
results: the quadratic profile and the step-index waveguides, respectively. For these
media, analytic expressions of the functions which are introduced in Section 4.2
can be found. Section 4.3 deals with a waveguide with a quadratic profile, while
Section 4.4 deals with a step-index waveguide. A derivation using the modal expan-
sion has been chosen: thus the relation between the normal mode expansion and
pseudo-differential operators is elucidated. These results have been presented at an
international meeting, see de Hoop et al.'3%. Exact solutions of the Weyl and left
symbol for some analytical profiles have already been found by Fishman®%137: gen-
eral quadratic case®® (and as a special limit, the linear case), delta function profile,
discontinuity profile, square well profile!3” and certain cases from the hyperbolic
function profile®?2.

In Section 4.5, the results are discussed. This chapter contains one appendix, in
which formulae of special functions referred to from other books are listed.

Since the longitudinal slowness operator I" describes only the scattering in the
transverse plane, we freely omit the longitudinal dependence (x3) of I in this sec-
tion.

4.1 Transverse homogeneous medium

In this section, the longitudinal slowness operator I" in a transverse homogeneous
medium is analyzed. First we introduce its symbol and analyze the corresponding
dispersion curve. Subsequently, we discuss the parabolic approximation and derive
the corresponding wavefront. Finally, the operators of interest are given.

Symbol and dispersion curve

When investigating a transverse homogeneous space, where the permittivity ¢ is
independent of z,, it is advantegeous to introduce the Fourier transform F with
respect to the transverse coordinate x,

o0

i(en) = (Fii)(ay) = / T (2 oy, (4.2)

— 00

where o is a normalized transformation parameter and is called the transverse
slowness in analogy with the longitudinal slowness operator I". The inverse Fourier
transform is given by

o0

a(xy) = (Fla)(z) = %/ e T g(a) ) day. (4.3)

— 00
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Let us consider the transverse Helmholtz operator A = uoé + w™?07 in Equation
(3.19), but now ¢ is independent of z;. The Fourier transform of (Ad)(z;) equals
(an)(ay), where

a(xr, 1) = &(an) = poé — af, (4.4)

is called the symbol of operator A. Similarly, the Fourier transform of (I'@)(z;)
equals (ya)(ct;), where the longitudinal slowness

oy, 1) = () = ()% = (noé = a})'/?, Im()"/? <0, (4.5)

is the symbol of operator I". Tt is closely related to the longitudinal wave number
k3

ks = w¥. (4.6)
The slownesses ¥ and «; satisfy the dispersion relation
VP rat=¢2 (4.7)

where ¢ = (10€)~1/? is the complex wave speed of the medium. In analogy with 4,

o is related to the transverse wave number k; (remember that w > 0)
k)l = wag. (4.8)

Let us rewrite (4.5) as
R 1/2

ey =[1-(car)?]"".
In Figure 4.1, the slowness ¢y and the dispersion curve are shown. The interval
cay € [—1,1] corresponds to the wave propagation under an angle from -90 to 90
degrees and is called the pre-critical region. The interval cay € (—o0,—1) U (1, 0)
corresponds to the evanescent wave constituents and is called the post-critical region.
The terms critical refers to the critical angle from Snell’s law (90°). The dispersion
curve is commonly used to analyze the wide-angle properties of an approximate
one-way wave equation, see Claerbout!®® and Beats and Lagasse!°.

(4.9)

Parabolic approximation

In order to gain more insight into the parabolic approximation in the theory of the
one-way wave equation, we take a closer look at the parabolic approximation (the
first-order Taylor expansion of the square root with respect to 1)

¢y~ 1— 1 (can)’. (4.10)

Because this relation is quadratic, this approximation is known as the parabolic
approximation. The exact and parabolic slownesses are plotted in Figure 4.1. We
observe that the parabolic approximation is valid for small values of |a,|: the parax-
ial region. Note, that the wave propagation is no longer isotropic in the parabolic
approximation and that the evanescent waves become propagating waves. These
waves have a lower wave speed than the exact waves.
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critical
angle

2 2
artificial
propagating —>

waves evanescent

waves

post-critical pre-critical ‘ post-critical
region : region { region

Figure 4.1: Dispersion curve: the longitudinal slowness (cy) as a function of
the transverse slowness cay. The dashed curve corresponds to the
exact slowness (real part), while the solid curve corresponds to the
slowness in the parabolic approximation. The imaginairy part of the
exact slowness is dotted. Some terms used in the text are indicated.

Wavefront

Some transient wave phenomena can be extracted from the slowness. We will now
show the relation between the siowness and the wavefront.

The time-domain expression for steady-state plane waves in a homogeneous
medium is

u(zy,z3,t) = Re{exp| jwt — jw(aiz1 + Fx3)]}. (4.11)
The wavefront (z,,z3) at time ¢ is found from
airy + 4T3 =t. (4.12)

Differentiate both sides with respect to 4 and note that 4 = (€ — a?)'/2 is inde-
pendent of time ¢ and the coordinates x; and x3 (¢ = constant)

da
d—’;xl +x3 =0. (4.13)

Substituting this result in (4.12) yields

d
a3y — ’3’ d(: Ty =1t. (414)




4.1 Transverse homogeneous medium 79

z3/ ctT

. paraxial region

artificial 7 \

\ critical

-t
~

z1/ct

Figure 4.2: The wavefront corrsponding to the slownesses in Figure 4.1. The
dashed curve corresponds to the exact wavefront, while the solid
curve corresponds to the wavefront in the parabolic approximation.
Some terms used in the text are indicated.

Thus
t
r = R dO!] y (415)
Qay — 7 d—&
and
¥ - a‘a;

describe the wavefront at time ¢. The graphical construction of the wavefront is
described by Aki and Richards!'®.

Figure 4.2 shows the wavefront of the exact slowness and the wavefront of the
slowness in the parabolic approximation. Again, we note that the parabolic equation
is only valid in the paraxial region. Since we are dealing with a one-way wave
equation, the wavefront is only present for 3 > 0. We see that in the parabolic
approximation there is no critical angle.

Operators of interest

In a tranverse homogeneous space, a Fourier transformation with respect to the
transverse coordinate z; can be applied to the operators of interest (compare with
Equations (3.85) and (3.24))

P(a;,m) ~ exp {—jwY [on, (m — })Az;] Azs}, (4.17)
T(on, mAzs) ~ —1 (37'039) (a1, mAxs). (4.18)

As an example, Figure 4.3 shows the propagator P.
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1
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critical | L ¢
angle : !
. 1 /
N e T T A L
post-critical pre-critical post-critical
region region region
Figure 4.3: The propagator P: the real part (solid), the imaginairy part (dash-
dot) and the absolute value (dashed). Here é; =1 and koAz3 = 2.
Some terms used in the text are indicated.
4.2 Transverse inhomogeneous medium

We review some tools for pseudo-differential operators. We do that, in arbitrary
order, ® by reviewing some basic tools for (partial differential) operators, @ by
extending some parts of the theory on pseudo-differential operators in the s-domain
to the w-domain and @ by integrating the modal analysis of waveguides with the
theory of pseudo-differential operators.

We first take a closer look at the partial differential operator A (Subsection 4.2.1)
and subsequently the pseudo-differential operator I.

S id 2T i mwendb A A
AL A varvacLr \ll.l\.n‘ LUuvwa - &

Now, we consider the partial differential operator A = I = poé +w™20? on C, as
defined in (3.19). The permittivity é(z;) may vary along the transverse direction
z1. The operator is well defined on the space C§° of smooth functions with compact
support in C. It can be extended as a bounded operator in an appropriate Sobolev
space?®.

It is noted that in the time-Laplace transform domain (s-domain) the transverse
Helmholtz operator A(s) = poé — s 28?7 is elliptic and positive definite. In the
w-domain where our analysis is performed, the operator A is neither elliptic nor
positive definite (see Figure 4.4). Consequently, the analysis becomes more complex:
artificial singularities are introduced (branch-cut of the square root) and the symbol
is purely imaginary for real € in the post-critical region. Most proofs come from the
s-domain?? and are translated to the w-domain by the arguments of modal analysis.
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Figure 4.4: The symbol of the elliptic operator A(a:l;s) and the nonelliptic op-

erator A(z;jw). A(xi;jw) is not elliptic, since its symbol a only
positive between cay = —1 and ca; = 1.

Note that we always consider s = jw + § with § > 0 (see Equation (1.29)).

Sobolev space

The Sobolev space H™(C) is the totality of functions f(z) such that for all || <7,
the derivatives 0! f(z) in the sense of distributions belong to L,(C)

H" ={aeI'|(c? - 52080 € Ly(0)}, (4.19)
which is a Banach space provided with the norm
lall e = 1™ = 57200 %L, (4.20)

It is observed that the Sobolev space H® equals the space L. R

Note that operator A : Ly — H~2 is a bounded operator, while A : Ly — Ly,
is not bounded. A Sobolev space of lower class contains rougher functions and
distributions. A good example of such an operator is the second-order derivative
0?. The Heaviside function H(z;) is bounded in L., while 8] H (1) = é'(x1) is not
bounded in L, but it is bounded in H 2.

Schwartz kernel of A

In the operational context of the partial differential operator A, it is useful to intro-
duce the with this operator associated Schwartz kernel A. The operator A is related
to its Schwartz kernel A as

o)

(Ad)(xzy) :/ Az, zh) u(z)) dz). (4.21)
ri=—00
This Schwartz kernel is a distribution, i.e.,

A(zy,2) = poé 8(zy — i) + w28 (21 — z}), (4.22)

in which / indicates the differentiation with respect to its argument.
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Figure 4.5: Uniform numerical grid. There are N,, grid points along the trans-
verse direction 1. The transverse sampling interval is Az,. There
are M grid points along the longitudinal direction 3. The longitu-
dinal sampling interval is Azs.

Matrix representation

The Schwartz kernel of an operator is closely related to the matrix representation
of the operator A. In order to show this, we introduce a numerical uniform grid in
the transverse direction x;, see Figure 4.5. The discretization in the z3 direction
has already been introduced by the Bremmer series.

In the previous sections, we showed that the discretization in the longitudinal
direction can be nonuniform. The transverse samgling interval is denoted as Ax;.
To arrive at an explicit matrix representation for A, we introduce the array

ui(z3) = (x4, 23), (4.23)

where
Ty = 1421, (4.24)
and 1 = 1,---, N, labels the samples in the tranverse direction. In this notation,

the matrix equivalent of Equation (4.21) is
(Ad); = A, i (4.25)
By replacing §(z, — z}) by the identity matrix é; ; and its second derivative §" (21 —

2
7)) by ( - sinh ™! %‘-) ~ (see Mitchell and Griffiths'*?), the matrix representation
g

1

of A is found as

A Af - 2 - 51 2
Aij = poé(idxy) i + w2 (ZE sinh ™! -2—)” : (4.26)
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Here, 4, is the central difference operator in the z; direction
51&(11) = ’[t(.’l?l + %Al‘l) - fL(.Z‘l - %AIL‘I) (427)

In this notation we have

(6% = Lo - (4.28)

Artifacts occur at the finite boundaries of the computational window and are an
important numerical issue (see Section 5.4).

Spectrum

The spectrum of the operator A is defined as o(A). In analogy with matrices, the
elements A\() € o(A) of the spectrum are found as the eigenvalues of A

(A0 (21) = XD (21). (4.29)

The corresponding functions ¢U)(z1) are the eigenfunctions of A. In general, the
spectrum contains a discrete set of J eigenfunctions {¢()(x;),j =0,---,J —1} and
a continuum {pa(z1,A), A € Ba}. Here, Ba stands for the branch-cut, see Blok!4!.
Thus, the spectrum equals

oAy ={A\9) j=0,---,J—1;A € Ba}. (4.30)

Figure 4.6 shows spectra for some typical configurations: homogeneous space, quad-
ratic gradient waveguide and step-index slab waveguide. For simplicity, we have
chosen those eigenfunctions which are normalized as

/OO ¢ (21)9V) (z1) dan = b 5, (4.31)
[ #@)aai N dn =0, (4.32)
[ ba@sN)daten X day = o600 - X) (4.3

These eigenmodes ¢\ satisfy the completeness relation

3 60D (&) = b} — ). (4.34

7
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Figure 4.6: Spectra of the free space (upper), a waveguide with a parabolic per-
mittivity profile (middle) and a step-index slab waveguide (lower).
For each spectrum two ecigenmodes ¢ (z,) are shown. Here the
free-space wavelength Ao is 1 pm.




4.2 Transverse inhomogeneous medium 85

Here, we used the above shorthand notation for notationally merging the discrete
set and the continuum. Substituting (4.21) in (4.29) yields for one mode

oo ~ . . A .
[ A a)i) @) dat = 3049 @), (4.35)
zi=—00
Multiplying both sides by ¢(¥) (/) and taking the summation over all j give

S0 [T A )80 @) daf = 33D @r.
j #y=—00 i (4.36)

With use of the completeness relation (4.34) we recognize the modal expansion of
the Schwartz kernel A

A(zy,2f) =3 D (@))eD (21)AV). (4.37)
J

This expansion has only meaning in the distributional sense, since interchanging the
summation and integration is only allowed under some restricted conditions.
Resolvent and Helmholtz-Green’s function

Let A be a complex variable. The resolvent R of A satisfies the relation
(A-XD Ry =1, (4.38)

where [ is the identity operator. It exists for A ¢ o(A). Since A is a partial differ-
ential operator, R is an operator of the indefinite integration type. The resolvent
can be expressed in its kernel Ry (z;,2]) as

(Rau)(zy) = / Ra(zy, o) yu(z)) d). (4.39)
From (4.38) and (4.39) follows
[w_'z(?f + poé(xy) — /\] Ralzy, ) = 8(x; — ). (4.40)

This equation is very similar to the 2-D Helmholz equation with an zz-invariant
permittivity €. The Green function G(z,,z3; ), x}) corresponding to this Helmholtz
equation satisfies

[a‘f + 03 +w2[l,oé(271)] G(zl,xg;zﬂ,xg) = —§(xy — ), T3 — x5).
(4.41)



86 Scattering in the transverse direction: ¥DOs

Since in the latter equation € is rz-invariant, we can apply a longitudinal Fourier
transformation with respect to (z3 — z%)

0F — k3 + wzuoé(zl)]g(xl,xi; k3) = —6(x; — x}), (4.42)

where k3 is the longitudinal Fourier parameter or wave number (see Equation (2.8)
and (4.6)). Comparison of (4.42) and (4.40) yields a relation between the resolvent
and the Green function corresponding to the z3-invariant, 2-D Helmholtz equation

Ra(z1,70) = —w?G (21,21 wAY?). (4.43)

Hence for a fixed value of z3, the spectrum of A is related to the spectrum of
G. In the case of a local waveguiding structure, we interpret the discrete set of
eigenfunctions of A as the discrete set of guided modes of the local waveguide and
the continuum of eigenfunctions of A as the continuum of radiation modes of the
local waveguide. For more details about the modal theory of waveguides, we refer
the reader to Blok'4!, Marcuse!*?, Snyder and Love!4% and Vassallo!*. In the case
of non-guiding structures, only a continuum of eigenfunctions is present.

The resolvent can also be expressed in the the solutions 1,/)3“(1:1) of the homoge-
neous equation (compare with Equation (4.40))

(w287 — X+ poé(x1)] P* (1) =0, (4.44)
with
vE(zy) =0, for z; = too. (4.45)

Then the Schwartz kernel of the resolvent equals
Ra(an,a1) = W al) [ (e — 28" (@10~ (@)
R « 1
+ H(zy — ) )TPT(fl‘l)?/f(fCi)J ) (4.40)
where W (z}) = W is the Wronskian, defined through
W (a}) = §* (21)0 97 (2}) — ¥~ (21)0, 9 (1), (4.47)
and is independent of z}.

4.2.2 Pseudo-differential operator r

Below, we introduce fractional powers of A, the left symbol, the Schwartz kernel
and the co-kernel of pseudo-differential operators. Subsequently, we discuss several
ways to construct the left symbol: several composition equations and the polyho-
mogeneous and uniform expansion.
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Figure 4.7: The integration contour B for the Dunford integral. The contour B
is along a semicircular arc at infinity in the upper and lower half of
the A-plane. The branch cut of A* (z < 0) is along the positive real

axis. The spectrum o(A) of a passive configuration lies in the lower
half of the A-plane.

Negative fractional powers of the operator A

Let the power A\* of a complex variable A with z € R be defined as*®

A = |AI® exp[jz arg(N)], (4.48)

with arg(A) € (0,27). With this definition, the branch cut of A* is along the
positive real axis, see Subsection 3.4.1. Let B be a contour of integration in the A
plane around the branch cut of A*, counter-clockwise oriented, staying away a small
but finite distance from the origin (the branch point), not intersecting the spectrum

o(A), and going along a semicircular arc at infinity in the upper and lower hf of the
A plane (sce Figure 4.7). Then, for z < 0, the Dunford integral

- 1 .
A: = - /\:[{)\ d)\7 (449)
27 Jxen

converges in the operator norm |.|,., 2. on the Sobolev space H" (sce de Hoop*?).
The Schwartz kernel of A. is given by

- , 1

A(xy, 7)) = o /AEB NRy(zy, z)) dA (4.50)
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The Dunford integral representation satisfies the composition equation

~ ~

ALA, =4, (4.51)

for z,w < 0 (see de Hoop?®). Thus for negative powers of A (z < 0)

A* =A,. (4.52)

Nonnegative fractional powers of the operator A

With the aid of Equation (4.49) a nonnegative fractional power of A can be readily
introduced through?®

Az = A*A,_,, (4.53)

where k is an integer such that k¥ > 2. The resulting operators behave, again, like
ordinary powers, i.e.,

A7 AY = A*tv, (4.54)
(note that A and its resolvent commute). Thus

F=A"V2=AA_,,. (4.55)

Functions of A (spectrum)

The Schwartz kernel of A* with Re(z) < 0 can be expressed in the eigenfunctions
and eigenvalues of A

Az, i) =) 49 (21)dY) (21) Az, (4.56)
J
To prove this, we start with (4.53) where the positive powers of A are found as

(Aa)(z,) = AF / Ak (z1, ))i(2)) dz)

1=—00

[ 806 [0 e0] 09y Fi)az
T1==00

Il

1=

[ S a0Eh [0 89 @)] 00 *ateh) oz

[ S0 )00 i) dat. (457)
Ti=—00 7




4.2 Transverse inhomogeneous medium 89

The corresponding Schwartz kernel equals Equation (4.56) in the distributional
sense. We can generalize this to more general functions f(A) of A. The Schwartz
kernel belonging to the operator f(A) equals

> 760 ()W) (1) FAD)). (4.58)

J

We now consider a few examples of these functions of the operator A I f(A) =1,
the completeness relation of the eigenfunctions is retained (see Equation (4.34))

Oy — i) =Y oY) (2})d" (a1). (4.59)
J

If f(A) = H(zs — ) exp[—jwA/?(z3 — 3)], we find the forward one-way wave
Green function

GO (21,25}, ) = Hizs — 2) 3 69 (1)) (1) exp [ ~ihontd) (a5 — 23],
J
(4.60)
where ngf} = ¢o(AU))1/2 is the effective refractive index of eigenfunction cﬁm(m]).
The forward one-way wave Green function is the Schwartz kernel of the evolution
operator (sce Equation (3.65)). X
If f(A) = —H(zy — x3) exp| jwA/?(z3 — a})], we find the backward one-wave
way Green function

GO (@1, waial ah) = —H(xh = 3) Z 39 (@) (@) exp [hon) (xs — a5)]
(4.61)

For the function f(A) = (2jwA'/?) L exp(—jwAl/?|z3 — 4]), the modal represen-
tation (see Blok!?!) of the Helmholtz Green function in Equation (4.41) is found
as

~ T T . J
G(ay, g0, 23) = Z e prE)e () exXp (_Jkonijﬂ")|~773 - ~'§z|> :
; 21kon (4.62)

In particular, we are interested in the propagator P(xy,m) in (3.85) and the
transmission operator T'(r;, mAzs) in (3.24). The Schwartz kernel of the approxi-
mation of P(z;,m) in (3.85) is found as

Pz, z),m Z(/) )9 ( xl)exp{—jkkogniﬁ) [(m - %)A.’Eg]}
(4.63)
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Note that the eigenfunctions é(j)(:tl) may vary along the rz-axis. The Schwartz
kernel of the transmission operator equals (compare with Equation (3.24))

Tz, ), m) = -1 / S 60 ()39 (1) (n%) !
zy=—00 P,

25 |39 ()¢ (e))n | dat. (4.64)
J

~ ~—1
The Schwartz kernel corresponding to I" and its inverse I" ~ are

Clar,zh) = D 69 (1)) (z1) (AD)!/2, (4.65)

J

and

Coaf,a)) =Y V) ()Y (z1)(AV)) /2, (4.66)
J

respectively. Again, we have to emphasize that Equation (4.64) and (4.65) have
only meaning in distributional sense. In order to arrive at a convergent expression,
a special regularization procedure has to be performed.
Left symbol
A linear partial differential operator A(zl,Dl) is defined as a polynomial in D} =
jw™to

R oo

A(z1,D1) = AW (2,)Di. (4.67)

i=0

We can reformulate (Ad)(z;) by means of the transverse spatial Fourier transfor-
LIALIVLL (SEeE (4.2 )= (4.9))

(Ai)(z1) = AW (@)D] [%/m e N T () dey

=0 a1==00
= ZA(i)(xl); e wNTiat (o ) doy
i=0 T Jag==00
w [ .
- %/ e AT A2 oy )ii(on ) da, (4.68)
a3 =—00
where
>° ~ . .
Az, 1) =Y AW (z))ad, (4.69)

i=0
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denotes the left symbol of operator A. As an_example, the symbol a(z;, o) =
woé(xy) — a? is associated with the operator A(zy,jw™181) = poé(z1) + w282,
This equation can be generalized by replacing the polynomial &(z;, ;) in a3 by an
arbitrary function in such a way that the integral still makes sense. The longitudinal

slowness operator can be expressed in its left (or standard) symbol 4(z1,a1) as

o0

(ﬁﬂ)(.’lll) = i/ e_j“”’”"?(xl,al)ﬂ(al)dal. (470)

2 a1 =—00
All operators of this kind are called pseudo-differential operators. We note that
the left symbol #(z1,a1) of the longitudinal slowness operator I'(z;, —jw'8,) =
(Hoé(zy) + w20%)1/2 is, in general, not equal to (uoé(x1) — o?)/2. This is only
true in a transverse homogencous section (€(z1) = € = constant). Equation (4.70)
implies that

[(z1,Dy)e 9N% = 3(x),0p) e w1 (4.71)

This is a plane-wave decomposition. The left symbol of an operator is defined
through the plane-wave interaction with the same operator. The left symbol gener-
alizes the longitudinal slowness in transversely homogeneous media to transversely
inhomogeneous media. Therefore it is also called the generalized slowness. Note
that the left symbol of a partial differential operator is a local operator. The left
symbol of a pseudo-differential operator is pseudo-local®?.

In the following two sections, the physical interpretation is elucidated with aid
of two analytical examples. In a similar way, the tight and Weyl symbols can be
introduced, see see McCoy and Frazer?® and Hérmander??.

Schwartz kernel of I’

The pseudo-differential operator can be expressed in its Schwartz kernel. First, we
replace @(a;) explicitly by applying the spatial Fourier transformation for @(z;) in
(4.70) and subsequently we collect all terms in the integrand

I'(z1,Dy)i(z,) = %/ [/ edwet (@ —2)5(z) a1)a(r)) dr! | day.

ayp=—00 j=—o0
(4.72)
Interchanging the integrals in (4.72) results in
(Fd)(x1) = / (1, 2,)i(z)) de), (4.73)
xf=—00

where we introduced the Schwartz kernel C(z;,}) as

w

6(1‘1,1"1) = %

)
/ ejwa1(:c'1—:c1),‘y(xl’al)dal_ (4.74)
Qp—=—00
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The left symbol is related to the Schwartz kernel through the transverse spatial
Fourier transform

o0
H(z1, ) = / AL (4.75)
zi=—00

The left symbol 5{z1, ;) can also be expressed in its spectrum
Az, 0) = 2017 37 G0 ()0 (an) (A1 12. (4.76)
J

Note that the modal expansion was introduced for Schwartz kernels in the distribu-
tional sense (see (4.37)). The left symbol itself is not a distribution. The summation
is, in general, not convergent. A special reguralization procedure should be applied,
see Chapter 4 for some examples.

Co-kernel

A transverse space-Fourier transformation to (4.70) results in

o0
(fﬂ)(al) = / eju)oqzl (F’&,)(l‘l)d.’l}l

W e ppe

=5 [/ elw(a‘_al)z"?(xl,a'l) dzq | 4(a}) da)
a1 =—00 T1=—00

w *° ~ ' PN~ !

= o F(on — o], a7)i(a) day, (4.77)
where 7 is the co-kernel of I
o0 -
¥(ar,0)) = / ety (g o)) dx;. (4.78)
T1=—00

The ca-kernel :y(\rv:v rv:\ can also he expressed in its snectrum
F(ar,ah) =D 69 (a1)V (of — ay) (AD)H/2. (4.79)
J
Since

(Ra(ar) = { [ (i) - ot e)

=2 [,uoé(al —ay) — af] a(a)) day, (4.80)

27 aj=—o0
(‘#’ indicates the convolution operator with respect to a;) the co-kernel of A equals

é(al,a'l) = [.Loi;:(al) - (al + (1’1)2. (481)




4.2 Transverse inhomogeneous medium 93

Composition equation for operators, kernels, symbols and co-kernels

A construction method for the left symbol is based upon the composition equation
for left symbols. We now present the derivation of this equation. Substitution of
the standard operator form (4.73) in the composition equattion for operators

[A(z1, Dy)i)(21) = {I'(z1, D) (1, Dy)al} (z1), (4.82)

yields

/ Az, 2})a(z)) dz}

= / . Clna) [ / , é(r;',.r;)a(x;)dz;] da!

1

= /IOO__ l:/io_— (1'1 -’Bl )C(T .T'l)d:rll'] ﬂ(zll)d.lfll (4.83)

1

The outer integrals are equal on both sides and therefore the Schwartz kernel equals

./i(xl,a:'l)zf C(xy, 2 )C (2}, x}) Azl (4.84)

" _
1 =00

This is the composition equation for the Schwartz kernels. The corresponding left
symbol follows from Equation (4.75)

ot e e
r;=—00 ] =0

oo o
a(ry,ap) = / e Tiwan (i —21) [/ (f(zl,z'l')(f(a:'l',w'l)dx'l'} dz;.
T x
(4.85)

Using the definition of the Schwartz kernels (4.74) yields

w 0 00 3] ) ) ,
rr, o) = 2 e eentri—r)
27 f=—o0 Jz=—oc0 Jaj=—c0 Ja) =~

elwi(z —m) g —jwed (#1200 5 (4, o)y (2, ) dof o, dz!! dz, (4.86)

and subsequently performing two of the integrations yields the composition equation
for left symbols

o0 o0
a(ry,ay) = i/ / edvtea—a)(@1=20) 52, o))y(z}, o) deda) .
27 =—c0 Ja)=
(4.87)

Note that as w — 00, the composition of the left symbol tends to an ordinary
multiplication, and the solution of Equation (4.87) reduces to the principal parts of
the symbols.
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Composition equation for co-kernels

Another construction method is based upon the composition equation for co-kernels.
Its derivation starts by substituting the composition equation for left symbols in
Equation (4.78) for & and subsequently interchanging some integrals

oo
ala), 1) = / e T14(xy, o) day
T1=—00
wl o0
- S(ar +af — al, al)i(al -~ ar,an)dal.  (4.88)

27‘- a'I:—oo

Symbol class

A symbol class S¢(R x R) for a real number d is defined in the following way. The
symbol &4 lies in a space S4(R x R) if there is a constant Cpn.n such that

(07 074)] < Crmynl(c™2 + @) /24, (4.89)

for all z; € R and oy € R. The corresponding operator has the same degree: Az .
H® — H?*. As an example, the operator A~! is of the (double) integration-type:
it produces smoother functions and distributions. However, the operator A is of the
second-order differentiation type: it produces rougher functions and distributions.
The elements of successive lower symbol classes corresponds to successive smoother

operators. A complex-valued function b is called positively homogeneous of degree
m, if4®

b(zy1,tay) = t™b(z1, a1). (4.90)

Polyhomogeneous expansion of the left symbol

S LI - 3 ' L I 1 e .. -
4340 WP PLVALLIAUUL DY LUIUL CULIO UL BULIUERL ) G SULULLIVLE UL UIMD CULLLPUDLILIVEL STYUALIULL 1D

discussed by de Hoop*®. If s is real, the left symbol is an elliptic operator and an
approximate construction is the polyhomogeneous expansion of the left symbol

aron) = (uoe + 272 {1
+ é‘(ll'()é + af)‘z [— %jals_l(c')luoé) + 8_2(612[10&:)]
+ (o€ +a3)™* .- } (4.91)
This is an asymptotic expansion in homogeneous functions of a; of decreasing orders.

The lower-order symbols have smoother contributions. If s = jw, the left symbol
is no longer elliptic. Consequently, the asymptotic expansion of the left symbol for
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w — 00 contains, besides an algebraic branch (as above with s = jw),

(@1, a1) = (poé — 03)1/2{1
+ 5 (noé — a7)7* [Fienw ™ (81 poé) — w2 (F poé)]

+ (o —af)™" -+ }, (4.92)

also an oscillatory exponential branch (sce Fishman®?). Neglecting this oscillatory
exponential branch lcads to inaccuracy for the post-critical phenomena®?. The lead-
ing term of the polyhomogeneous expansion, (ué — a?)!/2, is called the principal
part of the left symbol: it contains the main contribution of the behavior of the left
symbol.

Ray theory restricts itself to the principal part, the high-frequency limit. Using
the generalized slowness, e.g., the first terms of the polyhomogeneous expansion,
instead of its high-frequency equivalent, extends the ray theory to lower frequencies.

The left symbol is pseudo-local. In a locally transverse homogeneous region, the
left symbol equals its principal part (uoé — o3 )/2. In transversely varying media,
only the properties of the medium in the vicinity of z; influence the left symbol.
This property is very useful when making fast numerical schemes and analyzing the
accuracy of those numerical schemes.

Uniform expansion

For s = jw, the polyhomogencous expansion no longer provides a uniformly valid,
phase space, operator symbol approximation, but is only valid in the outer phase
space regime. Fishman, Gautesen and Sun®! constructed a uniform expasion of the
symbol. They start with the identity

ey, ) = (¢ = af)'/? + [“”7(931701) — (7 - a(f)m] : (4.93)

in order to extract the singular term (first term), which corresponds to the locally
homogeneous or high-frequency limit. We subsequently rewrite the retaining non-
singular term with use of the Helmholtz Green function (see Equation (4.41)) and
apply the WKB method to determine the w — co asymptotic expansion. For more
details, we refer to Fishman, Gautesen and Sun®!.

4.3 Quadratic profile waveguide

The pseudo-differential operator theory is now applied to the longitudinal slowness
operator I corresponding to a medium with a quadratic profile for &;

&(z1) =a—Lbal, (4.94)
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2 L1

o2

Figure 4.8: Medium with a quadratic profile for the relative permittivity £,.

as depicted in Figure 4.8. Here, we consider b € RY; the configuration is a waveguide
(a focussing medium). The quadratic medium with b € R™ — an anti-waveguiding
structure (a defocussing medium) has been analyzed by Fishman®2. To ensure
causality, we take —& < Im (a) < 0, with § | 0. This is equivalent to assuming that
w has a small negative imaginary part.

For the derivation, we need some formulae from the “Handbook of Mathemat-
ical Function” by Abramowitz and Stegun'#®, the “Table of Integrals, Series and
Products” by Gradshteyn and Ryzhik'4® and the “Formulas and Theorems for the
Special Functions of Mathematical Physics” by Magnus, Oberhettinger and Soni!”.
Thesc formulae are repeated in Appendix 4.A.

This section is organized as follows. First, the theory is discussed, subsequently
the numerical issues and, finally, the results.

4.3.1 Theory

Below, we derive the left symbol of the slowness operator, starting with the trans-

verse Helmholtz operator, analyzing its spectrum and deforming the Dunford con-
tonr and finally we arive at a cnmmation aver noles.

Consider the transverse Helmholtz operator A
A(x1) = poé(wy) + w207 = w207 + ¢ *(a — Lbai). (4.95)

The Schwartz kernel representation of the resolvent R, satisfies (compare with Equa-
tion (4.40) and (4.42))

[0 = K (—a+ bba? + V)] [~o 2 Raan, )| = ~b(a1 —a).
(4.96)
Now, introduce the new variables

2]

& = (b‘/"’ko)l/_ xy, (4.97)
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1/2 oA
Q [(bl/zko)l/%l, (b1/2k0)1/2z’1] = (bl/%o) (—w Ra)(z1, 2}),
(4.98)

and
ar () = (ko/bY?) (A — a). (4.99)

Here, £, can be interpreted as a scaled transverse coordinate and @ is the Green
function of the 2-D Helmholtz equation (compare with Equation (4.43)). Using
these abbreviations, we find the differential equation

(02 — (as + 1)) Q(&1,€) = —6(& — &) (4.100)

This equation is now written in the same form as Equation (4A.2).

The solutions of the homogencous equation corresponding to (4.100) are We-
ber parabolic cylinder functions, U(ay,+&;). From (4.100) follows (compare with
Equation (4.46))

) 1
Q(&1,6) = —EF(% +ay)
[H(& — &)U ay, —&)U (a4, &) + H(& — &)U (ar, &)U (ag, —€1)]. (4.101)
Note that the Wronskian
W(&, &) = —v2rT7 (5 + ay), (4.102)
is independent of & and £]. The singularities of the Gamma function I'(y) follow
from Equation (4A.1)

. 1
ygrzlm @ =0, form=0,1,2,---. (4.103)

Therefore R (z1, ;) has poles at (see Figure 4.6)

b1/2
A =AM =52 (Ta+’m + a) , (4.104)
0
where
apm = —%—m, withm =0,1,2,---. (4.105)

In order to compute the Schwartz kernel A, of operator A= we start with the
theorem of residues for calculating the scaled Schwartz kernel Q of R »- By deforming
the Dunford integration contour, the Dunford integral is then transformed into a
summation over poles (compare with Equation (4.50))

o0

1
NOELE) dA =37 lim Q(6,€) A (A= A™).
m=0 Al

27 JreB (4.106)
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Here, we used that a, and thus also A™), has a small negative imaginary part (see
also Figure 4.7). In order to compute this limit, we need two extra relations. Using
(see Appendix 4.A)

) _ (_l)nz _
yll)lemI‘(y)(y +m) = T M= 0,1,2,---, (4.107)

we find the first relation

bl/‘Z

lim T(3+as)(A = A™) = lim (3 +ay) (s + 5 +m)

A A(m koc3 ay—>-m-1
= Z;/C; %, m=0,1,2,---. (4.108)
The parabolic cylindric function U(a4, &) is even for ay = —m — 3 with m even
U(-m-L1&6)= U(-m- 3, —&1), m=---,-2,0,2,4,---, (4.109)
and is odd for ay = —m — % with m odd
Ul-m-3,&)=-U(-m-4%-&), m=---,-1,1,3,---.  (4.110)

This leads to the second relation

H(é; - §1)U(_m - %7 _fi)U(_m - %751) +
H(&G —&)U(-m - 5,6)U(-m — 1, -&)
=(-1)"U(~m — §,€)U(-m - 1, &), for m integer. (4.111)

Combining these two relations yields

.
— A? ,€1) dA
27U NeB Q(El 61)
pr/2 : L ()\(m))z
=1 -U(-m~ 3 -m—16) ——"—. (41
kocgmzzo Vim=p ) Uem=5.8) (e (112

The parabolic cylindric function U(—m — %, &) (m=0,1,2,---) can be expressed
in the Hermite polynomials (see Equation (4A.3))

U(-m - £,&) = e Si/4 Hm(%) 2 /2, (4.113)

It is well known that these functions are the guided modes of a waveguide with
quadratic profile!**. They form an orthogonal and complete set. The Schwartz
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kernel of A% (Re(z) < 0) can be expressed in these modes

1

—/ )\27%,)‘(1‘1,1‘/1)(1/\
reB

Az(xlvxll) = 27

_ z(b1/zk) 1/22 )\ZQ[(bl/‘zko)l/?xl’(b1/2k0)1/2l_l]] d\
) Jaen

— (b1/2k0)1/2 i (E}\;Z') U[-m _ %,(bl/2k0)1/2$1]

Ul-m — 1, (b"%ko)/?x}). (4.114)

m=0

In particular (compare with Equation (4.59)),
Ao(zy,2)) = 6(z) — 7). (4.115)

For z > 0, A, becomes a higher-order distribution. With use of (sce Equation
(4A.5))

[ee}
/ exp(—jwgiat)e @ H (é yde; = 2vmjme” D) Hp (—v2wal),
§i=-00 V2 (4.116)
where o is a rescaled transverse slowness

of = (0 7ko) T a, (4.117)

the left symbol of A% (Re(z) < 0) is found as (compare with Equation (4.76))

o0
b, an) = / A, 7)Y exp [jw(z) — 2))aa] da]

Y
| =—00

= (b*/2ky) /2 Z (L\/ﬂ—gn')U[_m - %,(bl/Qko)l/le] exp(jwria1)
m=0 N

oC
/ Ul—m — 1, (6*/2ko)*/? 2] exp(—jwzian) dz)
zi=-—00

1=

2 exp ( b1/2a1 + jwria) — —bl/lkj T )

>/ Alm)y2 2k \ /2 CoN1/2
3y (-21) ( m') H, [(b—l/%) | Hu [(%bl/zko) xl].

=0
(4.118)

Here, we also used the reflection Formula (4A.9). Numerical tests show that con-
vergence is also obtained for z = 0: dg(z1,n1) = 1. This is in full agreement with
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Equation (4A.7). For Re(z) > 0, the above series is not convergent. This can be
easily clarified with the Christoffel-Darboux Formula (4A.8) and the estimation of
the Hermite polynomials (4A.4).

To make a convergent series for Re(z) > 0, we can start with constructing the
left symbol &, for 0 < Re(z) < 1. The composition equation for operators is (see
Equation (4.54))

A7 = AA*L (4.119)

Higher-order powers of A (Re(z) > 1) are constructed by repeatedly applying the
composition Equation (4.119). By letting the operators in (4.119) act on a plane
wave and replace the operators then by their left symbol

b.e ikomami = Ay, e ~ihomizy (4.120)
we find an equation for computing the left symbol 4, from &,_;

a: = [cg” (a - }ba}) — af] 4.y + w2 (BF4.—1) — 2jw oy (Dramn).
(4.121)

Substituting the series (4.118) for 4._; in the above equation, one might atempt
to interchange the derivatives, 97 and 9;, and the infinite summation. Doing thus,
results in the same series as in (4.118), but now with Re(z) < 1. Interchanging
the infinite summation and the derivatives is, however, not allowed, and instead,
a special regularization procedure should be used. We use Fourier-type filtering
techniques to regularize the divergent series, as described in the next subsection.

4.3.2 Numerical issues

This subsection is addressed to computing the series (4.118). First, we discuss how
to compute successively one term from the previous term with low numerical effort.
Second, we discuss how to regularize the series in order to obtain a convergent series.

Individual terms

The series in (4.118) can be written in the form

ax(z1,01) = C(z1,01) Z T(m,z,a1,11), (4.122)

m=0

with constant C(z;, ;) (independent of )

ko .
C(zy,a1) = V2 exp <—bl%af + jwzyay — ib1/2k01f> ,
(4.123)
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and the terms T'(m, z, T1, 1)

—i\™ (A\(m))z 2k \ 172 ) 1/2
T(m,z,xl,al) = (—2—J) ( Tn') Hm [(bl—/(;) (03] Hm I:(%bl/zk0> .’L‘l:| .

(4.124)

The numerical implementation of the Hermite polynomials is based upon the re-
cursion Formula (4A.6). Because m! and (—j/2)™ occur also in T(m, z, 21, 1),
numerical overflows will occur for higher order terms (for m! already if m > 200).
Thercfore an alternative recursion scheme is employed. Set

2% 1/2
T(Tnvzlyal) = Tm [(51702) (831

with the recursion relation for T,

1/2
T, [(%b1/2k0> 1‘1} (A2,

(4.125)

Tm(y) =2y (j/2)1/2 m~!/? Tm-1(y) —i(m = 1) Trp2[m(m — 1)]A1/2a
(4.126)

and its initial conditions are To(y) = 1 and T} (y) = (2j)!/?y.

The series

The series for &, in (4.118) is convergent for Re (z) < 0. Computing a finite number
of terms gives a good approximation. The derivatives in the composition Equa-
tion (4.121) can be computed with a finite difference scheme. This is equivalent
to computing the discrete derivative of the terms of the series directly. Slow con-
vergence is obtained when taking a more accurate discrete derivative. Oscillation
effects appear in 4,. These effects are very similar to the Gibbs phenomena (see for
instance Lanczos!*® or Scaife'#®). This prompted us to search for a similar approach
to avoid oscillation effects and divergence of the series. We designed a very simple
filter (see Figure 4.9) for this purpose

17 ifm< Ml,
fm) = ¢ (My = M>)"" m+ (1= My/My)™",  if m < My,

Every term of the series is now multiplied by the filter f(m). Equation (4.122)
becomes

M2

az(z1, ) = Clar,a1) Y f(m) T(m,z,a,2y). (4.128)

m=0

The infinite summation is now approximated by a finite sum with some filter in
it. Now, it is permitted to change the order of the summation and the derivatives.
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Figure 4.9: Filter used to regularize the divergent series.

We use Equation (4.128) for computing &, with arbitrary z. In order to estimate
the accuracy of the series, we compare the analytical left symbol a5 = ¢, 2(a -
1bz}) — of and the corresponding approximate left symbol a{PP from Equation
(4.128) with different f(m). Since the convergence is slower for larger Re(z), the
errors in computing &, /, are smaller. This comparison indicates that the accuracy
is high for M, > 1000.

4.3.3 Results

Having derived the left symbol for the slowness in a quadratic profile medium, we
are now in a position to analyze it. For this purpose we consider a configuration
with a = 1, w = 1 57!, ¢ = 1 m/s. Then, the transverse Helmholtz operator A
simplifies into

A=1-1ba}+07 (4.129)

and the longitudinal slowness operator r

1/2

I'=(1-1Yba}+07) (4.130)

Flgure 4.10 illustrates the longitudinal slowness at the origin for several values of

1 4 14 oM . B s YU, | B AP SR RSO < ,\A‘.\I.nnnfl..w
(I, ¥Wiiuc 1 LE,uLt, .11 AAAlLOlLuhL/u vl ;uub;uuu AAMNL AL VH LA LA U rr s adaaae s —ras

different transverse positions z;. We now discuss the asymptotic behavior and the
physical interpretation.

Asymptotic behavior

It is clear from Figure 4.10 that for slowly varying media (b is small), the lon-
gitudinal slowness behaves as the longitudinal slowness in a homogeneous space.
This corresponds to high frequencies. The asymptotic behavior for large transverse
slownesses, a1 — +oo, is correct: ¥ — —jlas|.

For high variation of the speed (b large: > 4) the waveguiding properties (i.e.
the real part equals 0) vanish and for higher values of b the attenuation becomes
high. At the critical value b = 4, the first eigenvalue A(®) equals 0 (see Equation
(4.104)). For higher values of b, all eigenvalues A(™) are imaginarily valued.
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Physical interpretation

Wave phenomena in very slowly varying media are usually analyzed with ray theory.
The ray theory describes waves in the high-frequency limit. In faster, varying media,
the ray approximation is no longer accurate enough. When lowering the frequency
(or increasing the medium variation), we can generalize the ray theory and examine
the generalized slowness. The heterogeneity of the medium is then translated into
anisotropic properties in the generalized slowness: heterogeneity and anisotropy are
seen to coexist.

Wave propagation in slowly varying media (b < 0.004 m~?) behaves like wave
propagation in the homogeneous space and is close to the high-frequency asymptotics
(half circle). From the number of oscillations in the slowness, we can estimate the
number of propagating modes present in the waveguiding structure.

Figure 4.11 shows that at a positive off-set, the wave propagation towards the
origin (a; < 0) is stimulated. This can be seen from the shift of the amplified part
of the longitudinal slowness (Im(%) > 0). This behavior characterizes waveguides.

The post-critical wave propagation is correctly described and can be used to
investigate the artificial post-critical wave propagation in any approximate method.
Some nonphysical phenomena occur due to the negative speeds in the outer regions
of our waveguiding model.

The wave propagation depends on the frequency, which causes (waveguiding)
dispersion. The local wavefront for one frequency component can be found through
the path integral*®>. The one-dimensional lower theory of waveguiding modes is con-
nected with transient phenomena through the left symbol. All the wave propagation
information is inside the left symbol.

We showed the first graphs of the generalized slowness in waveguiding structures.
The longitudinal slowness generalized ray theory to lower frequencies.

4.4 Symmetrical step-index slab waveguide

The pseudo-differential operator theory is now applied to the slowness operator
for the case of a symmetrical step-index slab waveguide (see Figure 4.12) (“square
well”). The refractive index is given by

Tl(:l,'l) _ {n(zm ,1’1| <a, (4131)

The thickness of the waveguide equals 2a.
Here, we consider ¢, > ne; the configuration is a waveguide (focussing medium).
The anti-waveguiding structure (a defocussing medium n., < n¢) is not considered.
This section is organized as follows. First, the theory is discussed, subsequently
the numerical issues, and finally the results.
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Figure 4.10: The real and (negative) imaginary part of the left symbol ¥ in a
waveguide with quadratic profile.
figure; the position is fixed at the origin (z; = 0).

The value of b varies in every
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Figure 4.11: The real and (negative) imaginary part of the left symbol ¥ in a
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every figure.
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Figure 4.12: Symmetrical slab dielectric waveguide. All the media are homoge-
neous, with permeability ug.

4.4.1 Theory

In the derivation of the left symbols, we use the analytical expressions for the guided
and radiating modes in a symmetrical (step-index) slab waveguide. These expres-
sions are summarized in several books, see e.g., Marcuse'*?, Snyder and Love!%3,
and Vassallo'**. Below, we give a short summary of the modal analysis in a sym-
metrical step-index slab waveguide. First, we introduce some useful waveguiding
parameters and, subsequently, we list the analytical expressions for the waveguide
modes. Finally, the left symbol is derived.

Waveguide parameters

It is customary to introduce the normalized frequency

V = koay/n2, — n?, (4.132)

the core parameters

a = koy/n2, — nlg, U = koay/n2, —nZ; = aa, (4.133)

(nef is the effective index, see Equation (4.60)), the cladding parameters for bound

modes
k = koy/nZg —n?, W = koay/n2g — n? = ka, (4.134)

and the cladding parameters for radiating modes

v=koy/nd —nly =ik, Q =koay/n —nZg =va=jW. (4.135)
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We observe that the core parameter a depends on the cladding parameter v

a(v) = /K32, — n2) + 12, (4.136)
and that the normalized frequency V satisfies
2=U% + W2, V2=U? - Q% (4.137)

Here, the wave number in vacuum is ko = wy/Eotlo. With these parameters, we can
introduce the expressions for the guided and radiating modes.

Guided modes

The guided (or discrete) TE modes are found as

30 (2y) = N~1/? cos(azy), (lz1] < a),
$7 (@) = N, {COS(U)QXP[—K(lel—a)], (lz1] > a), (4.138)

for even guided modes (j = 0,2,4,---) with the dispersion relation

W = Utan(U), (4.139)
and
20) B Vl/g sin(axy ), (lz1] < a),
)= {sgnm)sin(U)exp[—nw—a)l, (=11 > @), (4140)

for odd guided modes (j = 1,3,5,---) with the dispersion relation
W = —-U/tan(U). (4.141)

The cigenvalues A9 = ¢52(nl2))? follow from solving the corresponding dispersion
equations. The effective refractlve indices are real valued, positive and bounded by

na < n% < neo. (4.142)
The norm of the discrete modes equals
N; =a(l+W; "), (4.143)

where W; is the core parameter W of mode j. The guided modes satisfy the or-
thogonality relation (sce Equation (4.31))

/Oo 39 (21109 (21) day = 8i. (4.144)
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Radiating modes
The even radiating TE modes are found as

cos(¥®) cos™H(U) cos(az1), (|z1] < a),

cosfr(lz1| — a) + v¥°], (lz1} > a), (4.145)

‘Z’even(iﬁ; V) =g 1/2 {

while the odd radiating modes TE modes

sin(y°) sin™! (U) sin(az, ), (lx1] < a),
sgn(z1)sinfr(lz1| — a) +¢¥°], (|z1| > a).

boaa(z1;v) = m71/2 { (4.146)

Here, the phase factor v is derived from

tan(y®) = %tan(U), (4.147)

tan(y°) = gtan(U). (4.148)

The radiating modes satisfy the orthogonality relation

/ ¢p(x1;v)dr(z1;0') dey = 6(v — v')op.r, (4.149)

with parity P, R = even or odd.

Completeness relation

e . e .« . — . PRI
L 0€ CULULPICLTELEDD LEIALIVLL IS BIVELL DY (€€ LYUaLiOlL (4.04))

J-1
6(z1 —zy) = Z &‘”(m)&‘“(z’l)
j=0

+ &even(x/ﬁ’/) Qgeven(zlﬂ/) dv
v=0
00

+ Bodd(T1;V) Poda(z);v) do, (4.150)

v=0

where J is the number of guided modes. We note that the radiating modes are
normalized in a different way than those in Section 4.2, see Equations (4.31)-(4.33).
Here, the branch-cut integral is rewritten into an integral over v from 0 to oo.
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Waveguide modes in spatial Fourier transform domain

To compute the left symbols, we need the Fourier transformations of the guided and
radiating modes. The Fourier transform F with respect to the transverse coordinate
z1 was introduced in Equation (4.2). The even guided TE modes in spatial Fourier
transform domain are

¢\ ()
= ~2Nj_1/2{(a2 ~ w?a?)7! [way sin(awa ) cos(aa) — a cos(awa ) sin(aa))]
+ cos(U)(k* + w?a}) ! [wo sin(away) — K cos(away )]}, (4.151)
while the odd guided TE modes in spatial Fourier transform domain are
- j(i(j)(al)
= —2Nj_1/2{(a2 — w?a?) 7! [way cos(awa ) sin(aa) — asin(awa, ) cos(aa))]
+sin(U)(k* + w?ai) 7! [way cos(awan ) + ksin(awan)]}.  (4.152)
The Fourier transformations of the even TE radiating modes are
even(@15v) = 2071/ cos(y®) cos ! (U)(a” ~ w?af) ™!
[@ cos(awa ) sin(aa) — way sin(awa; ) cos(aw)]

— 77V (1 — way) 7 sin(y® — awan) — 72 (v + wan) L sin(Y® + away)

+ 7 28(v — way) cos(Y® — away) + T/206(v + way ) cos(Y + away),  (4.153)
while the Fourier transformations of the odd TE radiating modes are

— jpodalar;v) = 202 sin(¢°) sin ™} (U)(a? — w?a?)
[ sin(awa ) cos(aa) — way cos(awa ) sin(aa)]

+ 772 (0 — won) " sin(Y° — awon) — 7Y (v + wag) "L sin(y° + away)

— 7' 25(v — way ) cos(¥° — away) + 7 26(v + war ) cos(¥® + away).  (4.154)
There are two types of singularitics at v = twa;. First, there is an essential
singularity due to the Dirac delta distribution. Second, there is a pole singularity.
Note that the Fourier transformation of the even modes are real even functions of

o, while the Fourier transformations of the odd modes are imaginary odd function
of Q.

Derivation of the left symbol

Consider the operator A

A1) = poé(z1) + w285, (4.155)
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and its (fractional) power
A*(z1) = (noé(z1) +w™20})%, (4.156)

with the permittivity é = g9é, = gon?. Special attention is given to z = 1/2: the
longitudinal slowness

I'=AY2 (4.157)
The symbol (left, right or Weyl) of operator A equals
a = poé(xy) ~ a3 (4.158)
The left symbol of operator A* is found as (compare with Equation (4.76))

J—-1

i (zT1,01) = elwanm Z qg(j)(xl)é(j) (al)(/\(]’))z
j=0

+ ejwoq:ln (Z)even (ml ; V)(Z)even (al H V) [/\(I/)]'z dv
v=0

+ elwonz / (ZASodd(fl’l; v) (iodd (a1;v)[A(V)]* dv.  (4.159)
v=0

The eigenvalues are

A0 = 52 (ng;,gf , (4.160)
for discrete modes, and
Av) = ¢g?n? — w2, (4.161)
for continuous modes.
4.4.2 DMumecricel inouss

This section is addressed to compute the left symbol in (4.159). We split the ex-
pression in several parts and compute them separately. The left symbol can be
decomposed in several parts

é-z(xl,al) — égulded + azven radiating + agdd radlat,mg, (4162)

which are, on their turn, decomposed into

seven radiating __ ser del serinv aer
a$ = &g + A" 4+ 47, (4.163)

é,‘z)dd radiating _ a(;r del + acz)r inv + é(;r’ (4164)

J—1
jouided _ Z al). (4.165)
j=0
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This splitting is made in order to treat the several singularities separately. Due
to symmetry properties (symmetry axis: z; = «a3), we can restrict our analysis to
aj > 0. The two singularities have

e an essential nature (§(v — way) in $(ay;v)), and,
e a discrete nature ({(r — wa;) ™! in ¢lay;v)).

Their contributions deserve some more attention.

Contribution from the essential singularity

For very weak waveguiding, the essential singularities in ¢(a;;v) dominates. The
corresponding terms are

a%r del(z), aq) = ¥ ™1 cos[y® (wary ) — awan ] cos[y®(way )] cos[u(way )]~

cos{a(wan)z1] [eg nd — af]z , lz1] <a, (4.166)

A del(z) o) = eI ™M1 cog[ih® (way ) — away ] cos[Y® (way) + way (|21] — a)]

z

[cg?n? — oi]”, |z1] > a, (4.167)

jasT ez, ay) = eIV cos[Y® (way ) — away | sin[y° (way )] sinfu(waes )]

sinja(wai )z ] [C(;Qn‘cz,l - aﬂz ) |z1] < a, (4.168)
827 (21, 1) = €101 cosfy way) — awanr] sgn(e) sinfy (wan )+ wan (1| —a)]
[co?n? — 2", |z1] > a.  (4.169)

In the limit of a homogencous space (a | 0) and in the low-frequencies limit (w | 0),
we find

a.(z1,00) = (cg°nZ — ai). (4.170)

The essential singularity due to the Dirac delta distribution 6(v + waq) lies
outside the integration interval — we restrict ourselves to only a; > 0; v > 0 —
and therefore the corresponding integral vanishes.

Contribution from the discrete singularity

The pole singularity at v = v,ge = wa, due to q;(al; v) in Equations (4.153) and
g b
(4.154) is analytically integrated, using the identity

/0 | v f dv = f(Vpole)/O I(V — Vpote) ' dv + A FICTD) dv

— Vpole 0 V = Vpole
" f () = f(Vpole) dv
b

0 V — Vpole

= f(Vpole) ln(l/l /Vpole - ]-) + (4171)
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with 11 > vpole > 0. This trick is very similar to the one used for deriving the
uniform expansion of the left symbol, see Equation (4.93). Choosing v, = 2vp0le
the first integral vanishes. The other integral has to be computed numerically.
Numerical problems will arise when vpo1e = 0. Therefore we choose a larger v,. For
even functions (see (4.153))

feven(T1, 015 v) = _gT12 sin[¢®(v) — awal](ﬁeven(xl; V)(CSanl - ),
(4.172)

and for odd functions (see (4.154))

ifoda(z1,ar;v) = —p1/2 sin[y°(v) — awallqgudd(zl; V)(cg?‘ng] — )=,
(4.173)
The pole is situated at ¥ = Vpole = wai. Thus, in the numerical implementation,
we compute a5 '™ in three parts
&gr inv — éiri 1 + é(zeri 2 + diri 3’ (4174)
where
a1 (z1,01) = feven In[tn /(wen) — 1], (4.175)
a2 (o o) = [ Jeven) = Sevenlpore) g, (4.176)
0 V — Vpole
oo
&2r;3(l_1,al) _ feven(V) dv. (4_177)
vy ¥V — Vpole

For the numerical implementation, a filter is used to compute the last two integrals.
The same filter is present in computing a¥*. This Fourier-type filter regularize the
divergent integral, as discussed in the previous section. For z = 1, this process has
been numerically validated. Other numerical approaches are possible. In a similar
way a°" '™ is calculated. The numerical integration is done by an adaptive recursive
Newton Cotes 8 panel rule, see the Matlab manual’”".

4.4.3 Results

Having introduced the left symbol of the slowness in a symmetrical step-index wave-
guide, we are in the position to analyze it. For this purpose, we consider a configu-
ration with the following values

Ao = 1.5 pm,

= 1\9 ~ (0.247 pm,
2n

ne =1,
Neo = 1.5.
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Then the transverse Helmholtz operator equals
BA(zy,jw ™ 0) = é(z1) + kg 208, (4.178)
and its left symbol equals
c2a(zy,01) = &(x1) — (con)”. (4.179)

Now, we compute the left symbol of the slowness operator at several transverse
positions z;: 0, 0.5a, 0.9a, 0.98a, 1.02a, 1.1a, 1.5a and 2a. Figure 4.13 shows the
longitudinal slowness operator for the slab waveguide at several positions.

Asymptotic behavior

Toward the limit of transverse homogeneous medium, the essential singularity has
the biggest contribution in the left symbol. From (4.170), it is observed that the left
symbol equals the left symbol in a transverse homogeneous medium. The asymptotic
behavior for large transverse slownesses, a1 — £00, is also correct: ¥ = %j|a;]. For
smaller values of the transverse slowness (Ja;| > 2), the longitudinal slowness be-
haves as the local high-frequency slowness. For large transverse positions, z; — +oo,
the outer refractive index dominates the left symbol. In this limit, the longitudinal
slowness equals

col = (ndy + kg 207)'/?, as x; — +o0. (4.180)

In the middle of the core, the inner refractive index dominates.
The longitudinal slowness in the low-frequency limit equals

col’ — (n3 + ky 201)% (4.181)

the slab waveguide is not visible for waves with low frequencies.

Physical interpretation

The left symbols still show the critical angle phenomena. Inside the waveguide,
the imaginary part of ¥ is positive: wave propagation is stimulated. Outside the
waveguide, only wave propagation towards the waveguide is stimulated. Especially
wave propagation at the critical angle of the core is stimulated.

4.5 Discussion of the results

In this chapter, we took a closer look at the square root operator. First, we discussed
the properties in a transverse homogeneous medium and subsequently in a transverse
inhomogeneous medium. To describe the scattering problem in an inhomogeneous
medium, we introduced two descriptions of the pseudo-differential operators under
investigation.
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Figure 4.13: The real and (negative) imaginary part of the left symbol ¥ in a
step-index slab waveguide. The position x| varies for every figure;
the thickness 2a = )\ /w, wavelength Ao = 1.55 pm, n., = 1.5.
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The first description was based upon the eigenvalues and eigenfunctions. This
description gives much insight into the relation between the well-known theory on
waveguides and the pseudo-differential operator calculus. This description is, how-
ever, not useful for a fast numerical scheme, because for a high degree of numerical
accuracy, many eigenfunctions should be determined. These eigenfunctions are glob-
ally defined and therefore their computation is a time-consuming task, especially for
3-D problems.

The second description was based upon the left symbol from the pseudo-dif-
ferential operator calculus. This description will be used to make fast numerical
schemes and analyzing the accuracy of those numerical schemes in the following
chapter. The left symbols are (pseudo-)locally defined. In a locally transverse
homogeneous region, the left symbols equal their principal parts. In transversely
varying media, the left symbol is more complex and can be estimated from the
polyhomogeneous expansion of the left symbol or from the composition equation.
Since the longitudinal slowness operator is not elliptic if s = jw, the left symbol
contains an oscillatory exponential branch. The influence of this branch cannot
always be neglected.

The numerical implementation of the pseudo-differential operators will be done
for the Schwartz kernel and its matrix representations. In this thesis, we chose to
implement the square root operator by using a rational approximation. In addition,
we also studied other promising techniques, like the Lanczos method. These methods
are, however, beyond the scope of the thesis.

We presented a new method to compute the left symbol for analytical configura-
tions. The method is based upon the eigenvalue analysis. A special regularization,
which is similar to Fourier-type filtering techniques, has been introduced to com-
pute the integrals over the spectrum. Results have been shown for the quadratic
profile and the step-index slab waveguides. These results will be used to analyze
the numerical schemes in the following chapter.

These analytical results can also be used to compose an accurate propagation
scheme for more general profiles. In the transverse direction, the medium variations
must be locally of the two discussed profiles or any other analytical profile, which
has still to be constructed. This was discussed by de Hoop et al.'36.
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Appendix

4.A Formulae used

In Section 4.3, several formulae from other books were used. For convenience, they
are repeated here.

From the “Handbook of Mathematical Function” by Abramowitz and Stegun'4®
we used Equation (6.1.7) (poles of the Gamma function)

1 1
= = 2 --- .
My T Cao (=012} (A1)

Equation (19.1.2), (differential equation for the Weber parabolic cylindric functions)

dy ~ (2% +a)y =0, (4A.2)

Equation (19.13.1) (when n is a nonnegative integer),
U(-n—12) =e * /" Hep(z) =272 e "= /A H,(z/V2), (4A.3)
where

U(a, ) = Weber parabolic cylindric function,
H,(x) = Hermite polynomial,
He,(z) = 27 ™/*H,(z/V?),

and Equation (22.14.17)

Hp(z)| < e® /2 k272 /nl, k =~ 1.086435. (4A.4)
are CoTt . PRI - Y O R
Ul.l 1.[(]45\4 huU, \LL\; LVLIVYY ALLb L\4 AARNL A% AL tr AAVUS AL

I'(z) is single valued and analytic over the entire complex plane, save for
the points z = —n (n = 0,1,2,--.) where it possesses simple poles with
residue (—1)"/n!.

From “Table of Integrals, Series and Products” by Gradshteyn and Ryzhik!'4¢ we
used Equation (7.376.1)
e s 2 /e 5 2 -
/ el e T 2H (2) dx = (2m)Y% eV /2 Hy(y) ", (4A.5)
—00

and the recursion Formula (8.952.2)

H,(z) =2x Hp_y(z) —2(n— 1) H,_s(x), (4A.6)
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with the initial condtions Ho(z) = 1 and H;(z) = 2z (see (8.956.1) and (8.956.2)).
From “Formulas and Theorems for the Special Functions of Mathematical Phy-
sics” by Magnus, Oberhettinger and Soni, we used

2 2 w22
(1 _22)—1/2 exp [17 -y (z — y2) ]

2 1-—22
s 2 2 Zn
=Y e =2 Hey(2v2) He,(yV2) — <1, (A7)
n=~0 ’

on page 253 and the Christoffel-Darboux Formula (sec also Equation (22.12.1) in

Abramowitz!4%)

i: i H (T) H, (y) = Q‘n“l H"+1(m) H"(y) — Hn(z)Hn+1(y)
=S n! Ty (1A.8)

on page 255 and the reflection formula for Hermite polynomials (page 250)

H,(=z) = (—=1)"H,(x). (4A.9)
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CHAPTER 5

2-D Numerical
Implementation:

Third-Order Thiele
Approximation

In the Bremmer series approach to the modeling of waveguiding structures, we en-
counter pseudo-differential operators in the directional (de)composition as well as in
the forward and backward propagation, and in the reflections and transmissions due
to variations in the medium properties in the preferred direction (de Hoop*® 4%).
For the numerical implementation, we employ a total rational-approximation ap-
proach to find, upon discretization, sparse matrix representations of these pseudo-
differential operators. The rational approximation has its roots in the parabolic
equation (PE) method (Claerbout®', and Tappert'®!), and has been extended and
explored by Ma'®?, Greene!®3, Halpern and Trefethen'® | and Collins'®®. The ra-
tional approximation should be carried out in a delicate way, so as to ensure the
conservation of power flow, see also Collins and Westwood!®®. For fixed sampling
rates, allowing the numerical grid to be coarse, we consider optimizations of the
matrix representations for the three steps, (de)composition, propagation and inter-
action, such that the numerical dispersion is minimized. The ideca of optimization
has been exploited by Collins'®” and Cederberg ct al.'®8; the numerical dispersion
has been carefully analyzed by Trefethen'™ | Beaumont et al.'% and Holberg!6!: 162,

The improvement in accuracy and efficiency, and extensions of rational approxi-
mation techniques still need significant attention. Recent advances in the application
to exploration seismics can be found in Graves and Clayton'®3, and Riihl et al.1%4.
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They controlled the errors at large scattering angles by initiating the propagation
with a transversely homogeneous background phase shift. In the field of integrated
optics, Hadley®”® introduced the Padé approximation. Hoekstra et al.?®10! also
analyzed its accuracy.

The discretization of the one-way wave equation, the propagation step, is based
on the third-order Thiele-type approximation of the longitudinal slowness symbol.
We enforce the associated longitudinal slowness operator to be self-adjoint (energy-
conserving), since the exact one is self-adjoint in the real L,. This implies that
we depart from the usual principal symbol analysis. The one-way wave equation
is thus approximated by a partial differential equation. By discretizing the trans-
verse derivatives (the Laplace operator) according to a rational approximation of its
spectrum, this partial differential equation is transformed into a system of ordinary
differential equations. The solution of this system is formally written as a product
integral. The exponent in the discretized version of the product integral is then
replaced by its (n,n)-Padé approximation. Such a procedure guarantees numerical
stability. We pay most attention to the (1,1)-Padé approximation, which yields the
Crank-Nicolson implicit finite-difference scheme in the preferred direction. The re-
sulting algebraic equations, which now involve sparse matrices, can be solved rapidly
with standard procedures available in various software libraries. In two dimensions,
direct matrix inversions are carried out; in three dimensions, iterative techniques
are applied (see Chapter 6).

The longitudinal phase and group slownesses associated with the ultimate system
of algebraic equations can be evaluated, and they are used to analyze the numerical
artifacts introduced by the various rational approximations. The accuracy of the
longitudinal group slowness as compared to the exact longitudinal slowness is in-
dicative of the numerical anisotropy; the difference between the longitudinal phase
and group slownesses is indicative of the numerical dissipation. To arrive at an
optimal system of algebraic equations, fixing the bandwidth of the wave-field and
the sampling rate, a simultaneous optimization of the Thiele-type approximation,
the transverse finite-difference, and the longitudinal finite-difference representations

T I S [QF PN N Lo S PVUR. DDA DU DDV RURIA DV E) F DR | SRR SRR | i AN
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optimal parameter set varies with frequency and position as well. The optimization
procedure is repeated for the composition, decomposition, reflection and transmis-
sion operators. With the various matrix representations, the Bremmer coupling
series solution of the wave equation can now be computed.

In Sections 5.1-5.3, the one-way wave equations are discretized for the purpose
of solving the one-way Green’s functions. In Section 5.4, transverse, transparent
boundaries are introduced. In Section 5.5, the optimization procedure for the one-
way propagation is explained. Sections 5.6 and 5.7 contain the discretizations and
optimizations of the (de)composition and interaction operators. Our algorithm is
illustrated in Section 5.8 by various numerical examples. Finally, we discuss the
results in 5.9. This chapter contains one appendix, in which the FORTRAN code for
constructing the involved matrices is discussed.

The major part of this material has been published in international journals, see
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Stralen et al.1%%166 and presented at international conferences'¢”:168. This chapter

is written in the terminology of exploration seismics and underwater acoustics.

5.1 Rational approximation of the one-way wave
propagator

Consider the homogeneous one-way wave cquation (the homogeneous version of
Equation (3.25))

W 4 jwrw® =0, 23 € (0,251, (5.1)

which is satisfied by the lcading-order term of the Bremmer series. In this chapter,
we derive a sparse matrix representation for its propagator, 13(7*1 ,m), seec Equation
(3.84). In the following approximations, we maintain the hyperbolicity of the time-
domain-equivalent equations, but we deform the post-critical regime.

In this section, we introduce the third-order Thiele approximation, optimize it
in the pre-critical region, introduce a small dissipation for reducing post-critical
artifacts and employ the local co-moving frame of reference.

5.1.1 Third-order Thiele approximation

The principal part of the left longitudinal wave-slowness symbol is given by (see
Equation (4.92))

~ — 911/2
’Ypp(l‘lv:rS,al) = [C 2($lax3) - a%] / 3 (52)

and it is equal to the symbol in a transversely homogeneous space (see Equa-
tion (4.5)). For our numerical scheme, we consider Thiele’s third-order continued
fraction approximation of the left symbol (see Serafini and de Hoop'®® and de Hoop
and de Hoop!™). The Thiele approximation of the square root reads

(1 +2)Y2 > 14 (1 + Bsx) "  (Brz + Baz?). (5.3)

Applying this to (5.2) yields

~1
1 ) . )
Yoo = - + (1 - g3c2a5> (—ﬁlcaf + 62c3a‘}). (5.4)

The wavefront associated with this approximation is free from artificial cusps in
a cone of propagation angles about the longitudinal axis, unlike the second-order
approximation that is commonly used, sce Figure 5.1. The operator associated with
this left symbol is neither symmetric nor self-adjoint. To create a symmetric Thiele
approximation, we extract the local wave speed ¢ from the square root expression;
then, the longitudinal slowness operator becomes

e V214 2222 (5.5)
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Figure 5.1: The wavefront of the third (left) and second (right) order Thiele ap-
proximation of the longitudinal slowness. The second-order Thiele
approximation has a cusp propagating along the logitudinal axis,
while the cusps of the third-order Thiele approximation are only
present at large angles (> 45°). See also Figure 4.2

where

s

= w2 cdiec. (5.6)

This approximation is valid for small values of the commutator [¢,w™18,], which will

be the case for media varying smoothly on the scale of the dominant wavelength.

Large differences between the media properties in the configuration are allowed.
The third-order Thiele approximation is now applied to the symbol of the oper-

- ~111
ator {1 4 EY1/2 This loads to & symmetric onerator tha nrincinal curmhnl of
ater (1 + =Z)7=. tc o symmetric gperater I' | the prir 2! symbaol of

which still equals the expression in Equation (5.4),
AT o—1/2 Ay—1 =23\ —1/2 5
r 1+ (14 B3)  (BE + BZ0)| /2 (5.7)

~ 111 L .. .
Lne mternal structure or 1S sucn tnat 18 Sympoi captures some OrI tne contri-

butions beyond the principal part. From now on, we freely omit the superscript
11

5.1.2 Optimization

According to Thiele’s formula, we have
B =1/2, B2 =1/8, B3 =1/2. (5.8)

The parameters, 3y, 32 and (3, however, can be adjusted by minimizing the dif-
ference between the exact spectral-domain longitudinal slowness and its continued-
fraction approximation, defined by Equation (5.4), with respect to the L, norm, over
all the propagating waves (i.e., the real slowness surface). In this minimization, we
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Figure 5.2: The third-order Thiele approximation of the longitudinal slowness
with B = 1/2, B2 = 1/8, B3 = 1/2 (left) and with 8; = 0.531,
B2 = 0.364, 83 = 0.825 (right). The dotted line corresponds to the
real part of the exact longitudinal slowness. In the bottom row the
differences between the approximants and the exact expressions are
shown.

must be aware of the fact that the pole (at (a])? = ¢728;"'), introduced by the
Thiele-type approximation will lie outside the pre-critical region of the a)-plane.
The optimization procedure can be viewed as a replacement of Thiele’s continued
fraction by Newtonian interpolation.

Using an optimization routine based on the simplex method!™, the following
values are obtained

B, =0.526, B2 =0.364, B3 =0.825. (5.9)

When the propagation angles appearing in the wave-field are restricted, the op-
timization should be carried out accordingly. This type of optimization was also
considered by Lee and Suh!”? and followed by Bunks!™.

Figure 5.2 shows the exact and approximated longitudinal slownesses with 3,
B2 and 85 as in Equation (5.8) and as in Equation (5.9), respectively. In the second
row of figures, the differences with the exact slowness are drawn. In Figure 5.3,
the real part of the longitudinal slownesses as a function of complex-valued ca; is
shown. In these figures, we recognize the singularities in the longitudinal slownesses:
a branch cut from ca; = 1 to +o00 in the exact longitudinal slowness and poles at
V2 and 1.10 for the two approximated longitudinal slownesses, respectively. Since
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Figure 5.3: The real parts of the exact (left) and approximated longitudinal
slownesses as functions of a complex « are shown. The middle and
right figures corresponds to Equations (5.8) and (5.9), respectively.
The contour lines correspond to the values 0.1, 0.2, ---, 2.0.
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Figure 5.4: The wavefront of the third-order optimized Thiele approximation of
the longitudinal slowness: 31 = 0.531, 8 = 0.364, 33 = 0.825.

no singularities are present on the imaginary axis, the approximation is accurate for
a wide range of imaginary values of ca;. The corresponding wavefront is illustrated
in Figure 5.4.

Fundamental differences between the approximate and exact longitudinal slow-
nesses occur near-the singularities in the transverse slowness plane. Since it is
impossible to approximate a branch cut with a finite set of poles from a rational
approximation, we have to restrict ourselves to approximating the pre-critical wave
propagation as completely as possible. The influences of the artificial post-critical
wave propagation must then be suppressed. A dissipation trick can be designed for
that purpose.
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Figure 5.5: The Q-factor (left) and the corresponding amplification factor
(right) associated with the dissipation trick in the third-order Thiele
approximation; $; = 0.526, 8 = 0.364 and (33 = 0.825. The rel-
ative imaginary circular frequency f2 = 0.02. Note that the notch
occurs beyond the critical angle.

5.1.3 Dissipation trick

To suppress artifacts and aliasing (which may arise in the discretization to be carried
out in the transverse direction) from the large transverse wave number components,
we may replace the real frequency w by a complex one,

W =w(l-j0),

just in the expression for jwl" (and later in M and M’, see equations (5.25)). The
integration contour of the inverse Laplace Transformation (1.25) is now slightly de-
formed from the imaginary axis into the complex plane. In a homogeneous medium,
this implies per Fourier component or plane wave, A(z3, a1,w) exp(—jwaizy), an
amplification factor of the form

WALL’3

A(z: A/'7 ) A 3 ) = YT Y
At Ao A @Dl =P 7300w D] T (510

The amplification factor is attenuative in nature. The Q-factor is given by

1
Im{2 M a;w(l — i)}’

Qay,w,jf2) = (5.11)
for ¢ € Rt and is plotted in Figure 5.5. Here, §2 is assumed to be very small
(2 € 1). This particular “complexification” results in a local band-limitation filter
that suppresses the artifacts associated with the post-critically propagating waves.
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5.1.4 Co-moving frame of reference

To reduce discretization artifacts in the longitudinal derivative, the numerical com-
putations are done in a local co-moving frame of reference, traveling in the direction
of preference. The accuracy is improved, since this transformation enables us to

take exactly into account the leading phase shift. The change of frame yields (see
Claerbout?®!)

il(zk,w) = exp|jwT(zk)] Wfo)(mk,w), (5.12)
in which
") = [ Mo, (5.13)
¢=0

is the local longitudinal travel time. Substituting Equation (5.12) into Equation
(5.1), leads to

Bzh + jw [exp(jun') fexp(—jwr) - cﬁl] h=0. (5.14)

5.2 Discretization in the transverse direction

Now, we introduce the discretization in the transverse direction, of the partial
differentiation 0?. In three-dimensional wave propagation this would be the two-
dimensional Laplace operator, see Equation (7.33). Our starting point is a low-order,
implicit, finite-difference approximation. The spectrum or symbol of the resulting
operator is a rational function in the transverse slowness. The medium has to be
smooth on the scale of the size of the operator. A uniform grid is employed in the
transverse direction, see Figure 4.5. The transverse sampling interval is denoted as
Azxy. To ensure that the medium is smooth, we employ equivalent medium aver-
aging at any point over a box that is twice the spatial sample size, see Coates and
Scnoenberg-”* *7C,

The discretization of the one-dimensional Laplace operator is formulated in
terms of recursive filters based on nearest-neighbors interaction (see Mitchell and
Griffiths!%). It is also known as the Douglas scheme, e.g. see Sun and Yip®!. Our
recursive filter acting on a function h is defined through

(1 + ax82)(82h) = (Azy) 20, 63h, (5.15)
where
62h = h(z), + Azy) — 2h(z,) + h(z, — Azy). (5.16)

In Equation (5.15), 1 denotes the identity operator and (92h) = (97 )h represents the
approximate Laplace operator having acted on h. Using a Taylor series expansion
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of h at ) + Az, about z, the following values of a; and a, are found (see Mitchell
and Griffiths!4?)

a; =1, ay =1/12. (5.17)
Then
(07) = 8 + O[(An)"). (5.18)

For a finite-bandwidth solution generated at a given sampling interval, however, we
leave this order estimate, and use as as a parameter to improve the overall accuracy.
Requiring that in the limit Az; | 0 the spectrum of (9?) tends to the spectrum
of the Laplace operator up the lowest order, leads necessarily to a; = 1. The
parameter a; is then determined by minimizing nonlinearly the difference between
the approximate and the exact Laplace operator spectra with respect to the L, norm
over the Nyquist interval. Thus a more accurate approximate spectrum is obtained
over the spatial bandwidth as a whole. Using an optimization routine based on the
simplex method!™ | the following value for a, is obtained

as = 0.130. (5.19)

It is noted, however, that if it is known beforehand that the actual spatial bandwidth
of the wave-field to be extrapolated is limited by a transverse wave number, less the
Nyquist wave number k; nyq = 7/Az1, the optimization should be carried out over
this subband only.

Figure 5.6 illustrates the spectra of the exact and the approximate Laplace op-
erators with a; and as as in Equation (5.19) and as in Equation (5.17), respectively.
The approximated Laplace operator has poles at

o = ozll“wlaCe = (wAz;) ! [:t arccos (1 — %a;l) + 2m7r] , (5.20)

(m = 0,%1,£2,---). In practice, as < 1, and these poles are situated in the
complex a;-plane at Re(a;) = 7/(wAx,) (determined by the Nyquist theorem), far
away from the rcal axis.

The poles of the approximate Laplace operator carry over in the approximation
of the longitudinal slowness operator. The longitudinal slowness symbol becomes
periodic in accordance with the Nyquist theorem, and the Laplace poles are slightly
shifted:

alldap]ace - (u)AiL‘l)_l {iarccos [1 _ %((l;l —+—QJA.’L'1 ﬁ3)] + 2‘"),71’},
(5.21)

sec Figure 5.7. For example, taking a» = 0.130, 83 = 0.825, and a sampling rate of
8 points per wavelength, the poles are located at

o] =£1.1023+8m,  and o™ = £(4 - 2.4010 j) + 8m.
(5.22)
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Figure 5.6: The spectra or symbols of the approximate §? operators with a, =
1/12 (upper left) and a, = 0.130 (upper right). The bottom figures
show the corresponding differences with the exact spectra, which
are also dotted in the upper figures. Here w = 1s7! and Az; =«
m.

5.3 Matrix representation of the one-way wave pro-
pagator

Tilt’ thblt:'bitt:\,‘l La,pldbc upL a‘llul ia LUwW aLL‘l)mLii,lALt:d 1uLU ‘h;lt? vl wWay wave EquaLluu
(5.14). A system of ordinary differential equations is derived by integrating the
longitudinal derivative and discretizing the field at a finite number of points.

5.3.1 System of ordinary differential equations

Substituting (8%), i.e., Equation (5.15), into Equation (5.6) and the result into the
one-way wave equation (5.14) with longitudinal slowness (5.7), we obtain a system
of ordinary differential equations of the form

Mdsh + jwM'C ' h = 0. (5.23)

The operators involved are M = M(xg,w;xl,éf,Axl), M = M’(;cg,w;:rl,éf,ﬂxl)
and C = C(x3,w;x1,0%, Axy); they are sparse, viz., 3, 5 and 3 bands, respectively,
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Figure 5.7: The third-order Thiele approximation of the longitudinal slowness
symbol including the spectrum of the discretized Laplace operator
(a2 = 0.130, By = 0.526, 3> = 0.364, 33 = 0.825, and a sampling
rate of 8 points per wavelength). The poles are located at a; =~
1.102, 6.898, 9.102, - -

and are given by

=(1+ a>62> ¢V exp(—jwr) + Byric T2 07c*? exp(—jwr),  (5.24)
M = BirZe? (1 4 ax6?) 62 + Baric 462262, (5.25)

while
C = exp(jwT) 12 (1 + a26]), (5.26)

with reference transverse-sampling rate

c
= . 5.27
Tt WAz, ( )

The quantity 27r, cquals the number of grid points per wavelength in the local
medium.

5.3.2 Integration of the longitudinal derivative

The solution of equation (5.23) can formally be written as a product integral. This
product integral have to be evaluated, recursively, for every propagation step with
size Azxy. The product integral is given by (see also Equation (3.70))

r3+Azxs
h(zy,z3 + Axs) = H exp [—jw(M’lM’ C Yz, 0) dC} hizy,x3).
(=zs (5.28)
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It is appoximated by

h(xzy,z3 + Azxy) ~ exp [~ijx3 (I\7I_1|\7|' C’I)(xl,mg + %A.’L‘g)] il(l?],.’l){;).
(5.29)

To speed up the computations, the exponent is approximated by the solution of
a unitary matrix equation. The (n,n)-Padé approximants can be used for this

purpose. They are given by (see Numerical Recipes!””)
%gz-g, lowest order: (1,1),
exp(Z) =~
1+BUZ> (1+[31()Z) . (5.30)
,  higher order: (2,2),
(1—/3112 1-poz) 8 (2.2)
where
Z = A.’L‘g 83 , (531)
3 + Az /2

is the derivative that appears in Equation (5.23). The higher the order of the

approximation is, the larger is the step size Azz. For stability considerations of the

associated higher-order implicit finite-difference schemes, see Widlund!"®.
According to Padé’s formula, we have

Bo=1/2. (5.32)

Instead of taking this exact value, we let B9 be a free parameter for an optimization
procedure. Minimizing the difference for the pre-critical wave constituents, gives

By = 0.766, for 2 points per wavelength, (5.33)
Be = 0.540, for 5 points per wavelength, (5.34)
B¢ = 0.510, for 10 points per wavelength. (5.35)

The (1,1)-Padé approximation of the exponent yields the well-known Crank-Nicol-
son scheme (see Kichtmeyer and NVIOIton j, il VUL LULALIULL givew wy

(MC)(a3 + L Azs) (64 (z3))
= (—jBs wAz3) M (x5 + J Az3) [ (z3) + B (23 + Axs)],  (5.36)
with
(Oyh')(z3) = h' (23 + Azs) — b/ (23), (5.37)

where

RO C (e + LAzs) R(C),  for (€ (w33 + Azs).

(5.38)

The scheme in Equation (5.36) should be interpreted as a centered difference ap-
proximation of the longitudinal derivative, and hence is accurate up to O[(Az3)?].
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5.3.3 Propagator matrix

To arrive at an explicit matrix representation for the one-way propagator, we intro-
duce the array,

hi(zs,w) = h(z1;, 23, w), (5.39)

where
z1; = 1Az, (5.40)
and ¢ = 1,-.-,N;, labels the samples in the tranverse direction. In this nota-

tion, with the aid of Equations (5.36) and (5.38), the approximate one-way wave
propagation can finally be written in the matrix form

hi(zs + Azz,w) = Cij(A1); kAL (C Y im m(23,w),

h

where the matrices A, Al and C are functions of x3 and w, and are constructed from
the operators M, M" and C:

A =MC +jBywAzs M, (5.42)
Al = y C ~j[39 WA.’L'g M’. (543)

The matrices A and A’ contain five nonvanishing bands, while C has three nonvan-
ishing bands only. Observe that

Allw) = A(-w), (5.44)
thus A’(w) = A(w) if w is real-valued (2 = 0).
The numerical scheme following Equation (5.41), involves two matrix-vector mul-
tiplications and twice solving a matrix equation per propagation step:

Cimh! (z3,w) = hy(z3,w), (5.45)

Ry (23,w) = A;yliL;(Ig,W), (5.46)

A ihl(z3 + Azs,w) = il;-’(l‘g,w), (5.47)
hi(zs + Azs,w) = C; jh) (x5 + Azs,w). (5.48)

The first and last steps adjust for the change to the co-moving frame of reference.
Introduce the diagonal matrix T, representing the change of frame, with diagonal
elements (cf. Equation (5.12)) (no summation convention)

Tm,m(fcii) = CXP[—jWT(ﬂflm,m)]- (549)
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Then the propagator matrix (cf. Equations (3.84) and (5.41)) is given by

Plom(m +1) = To (s + A23) Coy(A),A (€ i .
(P)im(m +1) i (z3 + Axs) ,J( )j,k k,,(C ), 5+ Az /2 550

Appendix 5.A contains the FORTRAN code for constructing the various matrices.
There are several techniques for carrying out the matrix inversions!®?. The inversion
of the tridiagonal matrix C in Equation (5.45) is carried out by forward/backward
substitution (see Numerical Recipes!™").

5.4 Transverse boundaries

Our discretization coexists with applying periodic boundary conditions in the trans-
verse direction. It is standard practice to make the boundaries of the computational
domain absorbing, to simulate an unbounded configuration instead. Several ap-
proaches to this adjustment have been developed; we mention the work of Clayton
and Engquist!®! based on the parabolic equation in the transverse directions. Com-
peting approaches are the Transparent Boundary Condition (TBC) by Hadley™ 73,
and the one by Bérenger'®? based on a perfectly matched layer for absorption at
the boundary. The latter approach is also applied in the BPM, see Vassallo and
van der Keur!®?, We follow the methodology described by Arai et al.l®% which
is a generalization of Hadley’s approach. Arai et al. arrived at a linear boundary
condition and made it adaptive. We employ its simplest form, the Robin conditions.

The Robin boundary condition employs the one-way wave equations (as in Equa-
tion (5.1)) in both transverse directions at the edges of the computational domain,

o1 h +jwn(i)ﬁ =0, atmz: = 0 and at z; =2 (Nz, +1)Azy.
(5.51)

By choosing 7{*) adaptively, we will show that these boundary conditions can be
made highly transparern.

The key matrices in our numerical scheme consist of five bands. We require
estimates of the field at two discretization points outside the computational domain,
in accordance with transparent boundary conditions. The estimate of the field at
the farthest sample points is based on the additional constraint,

612;1 +jwn(i)81iz = invariant, at x 2 0 and at =, &) (Nz, + DAz,
(5.52)

We will illustrate the estimation procedure at the left boundary at z; = Az,. Then
the field samples hg and h_; have to be determined. In terms of a lowest-order
finite-difference representation, Equation (5.51) becomes,

ill — il(] +JWA£II17](_)iL0 = (. (553)
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This leads to
ilo = (1 *—ijIjT](_))_lily (554)

The constraint (5.52) is used to construct h_1, with the finite-difference represen-
tation

il] - 2ilo + i?._l +jUJ77(") ]:Lo - il_l _ hy — h1 + ho +,]'C/J77(-) ill - i),o
(A.'El)z Al'l ( ) Al’] ' (555)
with the solution
W by + hy [ij:nm(‘) -3+(1 —jwAz (3 = ijA;cln(‘))]
o !t dedel (5.50

The numerical scheme associated with the Robin boundary condition is
e neutrally stable if Re(n{™)) = 0,
e stable if Re(n{™)) < 0,
e unstable if Re(n~)) > 0.

The boundary conditions reduce to the Neumann boundary condition for n{=) =0,
and to the Dirichlet boundary condition for 5(~) — co.

We adapt the value of n{*) by assuming that the field behaves like a plane wave
(~ exp(—jwn* 1)) near the computational boundaries. The transverse slowness
associated with this plane wave can be estimated at the previous propagation step;
at the current step, that value of 7(*) can then be applied. At the left boundaries,
with Equation (5.53), we get

7~ (jwAzy) (1 - hi) . (5.57)

hl

If the plane wave were to travel inward (Re(n{™)) > 0 at the left boundary), n'*) is
reset to its imaginary part Im(n*)). Thus, inward travelling waves are attenuated.
The effectiveness of the transparent boundary conditions can be determined from the
graph of the reflection coefficient associated with a plane wave hitting the boundary,
see Clayton and Engquist!®!. Keys!®® extended the one-way absorbing boundary
equation to the case where two distinguishable plane waves hit the computational
boundary simultaneously.

In our numerical scheme, the transparent boundary conditions are translated
into an adjustment of the outer elements of the matrices A" and A. For example,
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the left boundary elements of A become (cf. Equations (5.54)-(5.56))
Avy = Ay + (1 - jwAan )~ {AI,O +Ay

lijzm(_) -3+ (1 -jwAzint)"1(3 ~ 2ij$17,<->)] } (5.58)

Arz = Arg+ (1~ jwdain) 7 Ay, (5.59)
Azy — Agy + (1 = jwAzin' D) Ag,. (5.60)

5.5 Longitudinal phase and group slownesses

In order to analyze and improve our numerical scheme, we study the longitudinal
phase and group slownesses. First, we discuss their physical meaning, subsequently
their form after discretization. We employ an optimization procedure to increase
the accuracy and analyze the slowness in heterogeneous media. The wave-field in
free space is analyzed.

An amplitude-modulated plane-wave constituent has the general form

w(zy, z3,t) = a(t) cos {we[t — a1z1 — F(we)zs]}, (5.61)

where w. denotes the angular frequency of the carrier. The “amplitude” a(t) of the
signal is assumed to be frequency (band)limited with support ~Aw/2 < w < Aw/2.
For a pulsed amplitude function with Fourier transform

SPEEEN ‘
. (Aw) *, when —Aw/2 < w < Aw/2,
a{w) =

0, when lw| > Aw/2, (5.62)

and with Aw/w, small, the corresponding plane wave in the time domain is approx-
imately

w(wy,x3,t) ~ 7 sinc{(Aw/2)[t — ayz) — 48" (we)x3]}
cos {welt — onzy — PP (we)xs]},  (5.63)
with the group slowness
A = 8, (wiP"), (5.64)

and the phase slowness 4P" = 4. Equation (5.63) describes the distortion of a
modulated sinc pulse traveling over a distance z;. It elucidates the concepts of the
longitudinal phase and group slownesses 4P and 48". Now, we derive expressions for
4Ph and 48°. The analysis of the accuracy of finite-difference propagation schemes
with phase and group velocities can be found in Trefethen'®®, Beaumont et al.'%°
and Holberg!®!: 162 assessed and improved the accuracy of such schemes.
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5.5.1 Slownesses after discretization
Substitute a plane wave constituent into Equations (5.12) and (5.48):

Wi (21, Azs;w) = exp(—jwi? Azs) exp(—jwan Az1), (5.65)
or, in the moving frame of reference,

h(zy, Aws;w) = exp(jwr) exp(—jwiPP Azs) exp(—jwa; Az, ).
(5.66)

We then obtain the amplification factor of the finite-difference scheme (see Richt-
meyer and Morton'?® and Equation (5.50)),

a~la’ = exp(—jwi™Axs) exp(jwe™ Axy), (5.67)

in which 4Ph 3 and a’ are the left symbols of the numerical representation for I A
and A/, respectively. For a homogeneous medium (constant ¢), we find

a= AM + 2A,iy,»+1 cos(way Axy) + 2Ai,¢+2 cos(2way Axy), (5.68)

independent of 7, together with a similar expression for a’, replacing A by A’. For
real valued w, we have a’(w) = a{—w), thus |]a—!a’'| = 1 in a homogeneous medium.
The symbol of the finite difference scheme is the longitudinal phase slowness 4P"
given by

~1 In(a7'a’)

~ph — ¢ 5
APy, w) = ¢ AT, (5.69)
which reduces, if w is real-valued, to
AP (ap,w) = ¢t + arg(a). (5.70)
L3

From the longitudinal phase slowness the longitudinal group slowness 48" can be
derived, viz.,

FE = 0, (wi™) = 47" + w(B,4™"). (5.71)

The second term can be related to ¢ (d,,4P"), which can be identified with the delay
of the envelope per wavelength. Together with Equation (5.67), this leads to

A8 (0, w) = ¢t = j(Axy) T [a7 00a — (1) 1A', (5.72)
and reduces, if w is real-valued, to
A8 (e, w) = ¢~ — 2(Axz) Im (a7 0.a) . (5.73)

It is observed that 4P" and 4% are functions of the transverse and longitudinal
sampling rates per wavelengths, r, = ¢/{wAz;) and r = ¢/(wAx3). For a dense
discretization (Axzq, Azz — 0), the difference between the two slownesses disappear
(]5P" = 48"| — 0). Note that 48" — 4 is indicative of the numerical anisotropy,
whereas 4P! — 47 is indicative of the numerical dissipation.
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Figure 5.8: The phase slowness (upper left) and the group slowness (upper
right) associated with the discretized, approximate, one-way wave
equation with f1 = 1/2, 82 = 1/8, B3 = 1/2, as = 1/12 and
By = 1/2, and a sampling rate of 5 points per wavelength (parame-
ter set 1). The real part of the exact longitudinal slowness is dotted.
In the bottom row, the difference between the phase slowness and
the group slowness, and the difference between the group slowness
and the exact slowness are plotted.

5.5.2 Optimization
The longitudinal phase and group slownesses are functions of our parameters {3,
B2, B3, a2, PBs, §2} arising from the various approximations made to arrive at a
sparse matrix representation for the propagator. So far, we have found two distinct
narameter sets: one arising from consistent rational expansions, and one arising from
step-wise optimization. For a sampling rate of 5 points per wavelengtn in poti Lue
transverse and longitudinal directions (4z; = Axzz = 0.2)) the phase and group
slownesses for the first parameter set are shown in Figure 5.8. The exact longitudinal
slowness is shown in the same graph. Significant deviations are observed for wide
propagation angles. The parameter set corresponding to the step-wise optimization
leads to a better result (Figure 5.9). In the step-wise optimization, however, it is
hard to control the movement, of the poles in the complex transverse slowness plane,
which is introduced by the approximations. One can control this movement in an
optimization scheme of the phase and group slownesses for all parameters together;
then one expects a more accurate result as well.

The optimization of the phase and group slownesses results in a minimization
of numerical anisotropy and numerical dissipation for the pre-critical wave con-
stituents. In the optimization procedure, special attention must be paid to the
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Idem as for Figure 5.8, but now with parameter set 2: 51 = 0.526,
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Figure 5.10: Idem as for Figure 5.8, but now with parameter set 3: 31 = 0.486,
By = 0.349, 83 = 0.841, as = 0.114 and By = 0.529
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constraint that the poles of a stay outside the pre-critical region in the a;-plane.
The overall optimization is carried out for an objective function given by the sum
of the squared differences between 48" and 4, and 4" and 48". The results are
illustrated in Figure 5.10, as before for 5 points per wavelength. From numerical
tests, we find that the accuracy remains more or less the same when we vary the
transverse sampling rate from 6 to 2.5 points per wavelength, keeping the longitudi-
nal sampling rate the same. The procedure is even less sensitive to the longitudinal
sampling rate.

Thus far, the optimization procedure has been focussed on the real slowness
surface. However, as we have seen in the preceeding sections, the approximations
lead to artifacts in the post-critical regime. In fact, the post-critical constituents
have been mapped on propagating constituents (slow waves). We have designed a
dissipation trick to attenuate these constituents. In addition to this trick, some of
the artificial constituents are forced to leave the computational domain through the
transparent boundary conditions. The dissipation trick induces a “complexification”
of the parameters used in the optimization, and hence it seems to be natural to com-
plexify the optimization procedure accordingly (see also Collins'®¢). Pursuing this
complexification, the optimization procedure is extended with the constraint that
the post-critical power is attenuated markedly while the attenuation/amplification
in the pre-critical region is kept minimal (less than 5%). The resulting parameter
set is shown in the fourth column of Table 5.1. The first column of this table rep-
resents the expansion values, and the second column represents the values obtained
by step-wise optimization. The accuracy of the complex parameter set is illustrated
in Figure 5.11.

We note, however, that the complexification of parameters is not always desired.
For exaple, in the application of our numerical scheme to long-range propagation
in low-lossy waveguides, the accumulative power loss is of key importance. In such
configurations, we set {2 = 0 and keep the parameters real. The optimization leads
to the third column of Table 5.1.

The poles arising in longitudinal phase slowness, for the different parameter sets,
ara Sivon in Tahle 5§ 9

5.5.3 Slowness in transverse varying media

Figures 5.12 and 5.13 show the real and imaginary parts of the discretized lon-
gitudinal slownesses in a transverse varying medium at several transverse posi-
tions. The medium is chosen to be a waveguide with quadratic waveguiding profile
(e(x1) = 1 — x3/10), for which the exact slowness is depicted in Figures 4.10 and
4.11. All graphs corresponds to densely discretized slownesses (167 points per wave-
length). The first graph shows the slowness with a nonrationally discretized Laplace
operator (thus az = 0). The error appears to be small. Subsequently, we plotted
the approximated slowness in Equation (5.5). Since we are especially interested in
pre-critical wave propagation, we split this slowness into two contributions, one due
to evanescent modes and the other due to propagation modes. Deviations appear
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Figurc 5.11: The difference between the real parts of the phase slowness and
the group slowness (upper left), and the difference between the real
parts of the group slowness and the exact slowness (upper right).
The middle row shows the imaginary parts of the phase slowness
(left) and the group slowness (right). The parameter set is given in
column 4 of Table 5.1. Two sampling rates are shown: 5 points per
wave length (solid line) and 10 points per wave length (dotted line).
The bottom figure shows the imaginary parts of the phase slowness
(solid line) and the group slowness (dotted line) on a larger scale.
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Figure 5.12: The real part of the left symbol of our numerical scheme in a trans-
verse heterogeneous medium with quatratic profile and Dirichlet
conditions at the computational window. Here ¢(z1) = 1 — 23/10
m™2 2, =0,05,1,1.5 2m, Az = Azz =0.125m, N,, = 64 (last
graph: Ny, = 256).
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Table 5.1:  The parameter sets for propagation.

| parameterset | 1 | 2 | 3 I 4 |
Az /o 02 | 02 0.2 0.2
Az /Ao 02 | 02 0.2 0.2
Re{f} 1/2 | 0.526 | 0.486 0.5104
Im{f,} 0 0 0 -0.0340
Re{8:} 1/8 | 0.364 | 0.349 0.2207
Im{f,} 0 0 0 -0.0131
Re{3s} 1/2 | 0.825 | 0.841 0.6685
Im{3s} 0 0 0 -0.0310
Re{as} 1/12 | 0.089 | 0.114 0.1207
Im{a,} 0 0 0 0.0063
Re{fo} 1/2 | 0.540 | 0.529 0.4679
Im{3s} 0 0 0 -0.0066
N 0 0 0 0.0406
Figures 5.8 5.9 5.10 5.11, 5.15
5.14 5.21,5.22 | 5.18, 5.20
5.23-5.29

Table 5.2:  The poles of the numerical longitudinal phase slowness.

| parameter set | pole 1 { pole 2 |
1 1.4588 +0.2807 j | 1.7135+ 1.3074 )
2 1.1054 — 0.0040 j | 2.2899 + 1.7530 j
3 1.0762 — 0.0271 ] | 1.3686 + 1.1214 j
4 1.5974 — 1.1406 j | 1.1816 — 0.1211

for large transverse slownesses, mainly in the post-critical region. The contributions
due to the evanescent and propagating modes are spread out into the pre-critical and
post-critical regions, respectively. Subsequently, we plotted the left symbol of the a
third-order Thiele approximation. Although it is different, we see in the next graph
that the pre-critical part is well approximated. The last graph shows the left symbol
of the whole numerical scheme. It is accurate for pre-critical wave propagtion.
When taking a higher-order Thiele approximation, the pre-critical part of the
left symbol is better approximated, see Fishman®?. However, when taking a Taylor
approximation of the square root, only the pre-critical part in the high-frequency
limit is well approximated. It is noted that we choose a local co-moving reference
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Figure 5.14: Snapshot at t = 0.3 s of a vertical line-force response in a homoge-
neous medium (¢ = 1900 m/s). The right-hand side was obtained
analytically, while the left-hand side wass obtained with our numer-
ical scheme. Here, we used parameter set 1 of Table 5.1.

frame for the Thiele approximation and therefore the accuracy of the approximated
left symbol is independent of local permittivity, while it depends on the variation in
the permittivity. This is in contrast to a transversely constant co-moving reference
frame, where the slownesses are best approximated where the local permittivity is
approximately equal to the reference permittivity.

5.5.4 Numerical example

We illustrate the final, optimized, one-way propagation by computing the wave-field
excited by a line source in a homogeneous acoustic medium. The wave speed of the
medium is chosen to be ¢ = 1900 m/s. The numerical grid consists of 99 points
along the 2, direction and 60 points along the z3 direction. The discretization step
is 16 m in both directions. Given a source-signature with trapezoidal spectrum with
corner frequencies 10, 20, 23, and 40 Hz (see Figure 2.12), we cncounter sampling
rates of 2.97 to 11.9 points per wavclength. The line source is located at z; = 800
m, £z = 0 m, and we show snapshots of the pressure field at ¢ = 0.3 s. The source
is a longitudinal line force. We have analytic expressions for this configuration.

In Figure 5.14, the snapshot is shown using the first paramecter set, while in
Figure 5.15, the snapshot for the fourth parameter set is shown. The left parts of
the figures (0 m < z, < 800 m) represent the numerical solutions, while the right
parts (800 m< x; < 1600 m) represent the exact solution. The errors occurring in
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Figure 5.15: Snapshot at t = 0.3 s of a vertical line-force response in a homoge-
neous medium (¢ = 1900 m/s). The right-hand side was obtained
analytically, while the left-hand side was obtained with our numer-
ical scheme. Here, we used parameter set 4 of Table 5.1.
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Figure 5.16: The absolute error (0 m< z, < 800 m) and the relative error (800
m< z; < 1600 m) of the snapshot shown in the previous figure. The

relative error is in %.
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Figure 5.15 are illustrated in Figure 5.16, the absolute ones for 0 m< z; < 800 m
and the relative ones for 800 m< z; < 1600 m. From this figure we find that the
relative error at the numerical wave front is less than 2.5% up to angles of approxi-
mately 65 degrees. Repeating this accuracy analysis for the other parameter sets, we
conclude that the approximations are acceptable up to 20 degrees, 40 degrees, and
80 degrees for the standard parabolic approximation, parameter set 1, and param-
eter set 3, respectively. The third parameter set is more accurate for higher angles
than the fourth parameter set; however, post-critical artifacts remain apparent in
the numerical results obtained with this real-valued parameter set.

5.6 Sparse matrix representation of the (de)com-
position operator
The computation of the generalized Bremmer coupling series starts with the decom-

position of the initial field into forward- and backward-traveling constituents, see
also Equations (3.22)-(3.23)

Wi\ _ (1 YR\ (R
Wo) 2\ v B

Upon completing the calculation of a sufficiently large number of terms of the Brem-
mer coupling series, the constituents are recomposed into observables, see also Equa-

tions (3.20)-(3.21)
(2)-G 5) )

In these procedures, the operator I" and its inverse must be computed Y = pglf).
Here, using the results of Sections 5.3-5.5, we derive sparse matrix representations
for these operators. A numerical example illustrates the accuracy.

5.6.1 Composition operator

The composition operator contains the longitudinal slowness operator. To find a
sparsc matrix representation for this operator, we use the same approximation as
that in Equation (5.7) for one-way wave propagation. We write, however, the frac-
tion in a slightly different way,

= e [1+ 8.2+ (14 3:2) 7 3, 2] /2, (5.74)

with

By = &, Bs = 8y — é (5.75)
3 B3
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We set
= f"lln + fIQH» (5.76)
with
Al=crrarpde B =c|(1em2) 2| o
(5.77)

Substituting discretization Equation (5.15) into Equation (5.6) and the result into
these operators, yields

(1 +a8]) (VAP RY) = [(1+ add)e™ + Burke267] (c12h)
(5.78)

[(1+ axdd)e™ + Byrte=262] (20 1) = parze263 (1/%h).

(5.79)
The two equations contain tridiagonal matrices only. Hence, they can be solved

rapidly with the forward/backward substitution procedure (see Numerical Reci-
177
pes' ).

5.6.2 Decomposition operator

The decomposition operator essentially contains the inverse of the longitudinal slow-
ness operator. Using approximation (5.7) as before, we find that

~ 11

AP 2 B (14 B 2) B + B (B + B)E+ 2T (5.80)

Factoring the operator between brackets, yields

BV By B+ B)E 4 B = (B — 2) (B - 2), (5.81)
with
5 1/2
Bs = (262) " {—Bl — B3+ [(,81 +083)" — 4{:’2] } , (5.82)
) 1/2
b= {0 = - i3+ ot -] (5.8

Then, it is straightforward to invert the longitudinal slowness operator, viz.,

(fm)—l RV [551(67 _ é)_l(ﬂﬁ - é)—l(l + 555)] /2 (5.84)
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Observe that the symbol of this operator has two poles on either side of the origin
(the zero crossings of 4'1).

Using the factorization, we decompose the inverse longitudinal slowness into
three operators,

(M = T, (5.85)
with

T =(1+p2)c?, To=(8s - 2), Ts=(fr—Z)Bc V2
(5.86)

The inverse longitudinal slowness operator is then applied in two steps,
X ~ N -1, .~
T {Tg [(r‘”) h]} =Tih, (5.87)

which involves twice solving an equation. Substituting Equation (5.6), with the aid
of Equation (5.15), the two equations are discretized

(861 + a207) = r2e263e?) {e M (Bl ) }

= [(1+ as8?) + Borze™263e] (/%) (5.88)

Bs [[37(1 + ay62) — rfc‘zéfcz] [6-3/2((1;111)_1;1)]
= (1 + a62) {c—1<f3[(ﬁI")—1h])} . (5.89)

The associated tridiagonal matrices are inverted using the forward/backward sub-
stitution procedure (see Numerical Recipes!””).

5.6.3 Numerical example

At the computational boundaries we apply, as before, the Robin boundary conditions
(Section 5.4). We also employ an optimization procedure for the (de)composition
operators, considering the parameter subset {31, 32, 83, a2, 2}. To avoid instabili-
ties, we have to move the poles arising in the symbols of the approximate operators
into the complex transverse slowness plane. Table 5.3 contains the outcome of the
optimization for a sampling rate of 5 points per wavelength. Figure 5.17 shows the
symbols of the composition operator for different values of 2.

To demonstrate the effect of wave-field decomposition, we have computed the
pressure excited by an explosion line source. The configuration was otherwise the
same as those in Figures 5.14-5.15. Figure 5.18 shows a snapshot at t = 0.3 s. The
radiation pattern becomes close to isotropic.
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Figure 5.17: The real part of the symbol of the vertical slowness (composition)
operator (right figure) and its difference with the exact symbol (left
figure). The dotted line corresponds to the real part of the exact
slowness symbol; the other lines correspond to 31 = 0.526, 3, =
0.364, 85 = 0.825 and as = 0.130, while 2 equals 0 (solid line), 0.01
(dashed line) and 0.1 (dashdot line).

Figure 5.18: Snapshot of an explosion line-source in a homogeneous medium (c =
1900 m/s). The right-hand side is obtained analytically, while the
left-hand side is obtained with our numerical scheme.
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Table 5.3:  The parametcr sct for the (de)composition operator.

| parameter set | 2" |

A.Tl /)\0 0.2
AJ’:3/)\0 0.2
Jo) 0.526
B2 0.364
B3 0.825
as 0.13
n 0.01

5.7 Sparse matrix representation of the reflection
and transmission operators

The reflection and transmission operators describe the coupling between the forward-
and backward-propagating waves. Using the results of the previous sections, we
derive sparse matrix representations for these operators. A numerical example il-
lustrates the accuracy.

From Equation (3.24), we obtain the reflection and transmission operators,

T=—-R=-1I""(30). (5.90)
Up to principal parts, we can simplify these operators, since then
(851 ~ 1P (93¢ 72). (5.91)
Substituting this approximation into Equation (5.90), yields
R~ 1A (95¢72); (5.92)

no rational approximation is required to arrive at a sparse matrix representation,
and its validity extends into the post-critical regime. To stay conceptually close to
the original expression (5.90) we replace d3¢=2 by 2¢7!893¢™!. This replacement is
justified prior to applying the finite-difference approximation only. In this approxi-
mation, we have

;cagc_l Ii_Q) 1 C71(1:3 + %A.Eg) - C*](.’E;; — %Al‘g)’
2 Axs 0_1(1'3 + %A:Eg) + C—l(;'L‘g — %A.Lg)

(5.93)

which resembles the linearized reflection coefficient at normal incidence.
On the principal symbol level, the operator ordering can be further interchanged.
Thus, the reflection operator can be written in the symmetric form

R~ Lem1 /293¢~ ) 2A- e 12 (957 1)V 2, (5.94)
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This form guarantees that the reflection/transmision operators vanish in any region
where the medium is z3 invariant. Upon discretizing this equation, using Equations
(3.19) and (5.15), we get

2[(1+ a26})c™? +ric26%] [((‘.%c_l)“l/zcl/2 (Ril)]

= (1 + ax6?) [0_1/2(836_1)1/2 ﬁ] . (5.95)

Numerical example

The discretized reflection operator contains only two free parameters: a, and (2,
through r¢. To optimize for these parameters, we would have to consider every
possible change in the wave speed. It turns out, however, that the optimization is
rather insensitive to the medium changes, so that we can restrict ourselves to using
a single parameter set,

az=1/12, 2=01. (5.96)

The value of (2 is taken negative, to move the pole at 90 degrees propagation angle
into the complex transverse slowness plane.

Figure 5.19 shows the symbol of the discretized reflection operator for a; = 1/12
and 2 = 0 (the plane-wave reflection coefficient). In this figure are also shown the
symbols for 2 = 0.05 and 2 = 0.1, as well as the exact reflection coefficient. In
Figure 5.20, we show a snapshot of the pressure field corresponding to the first two
terms of the Bremmer series, excited by a longitudinal line force in a two-layered
medium. The numerical grid, and the position of the source, are the same as in
Figures 5.14-5.15. The upper medium has a wave speed ¢ = 1900 m/s and the lower
medium has a wave speed ¢ = 3800 m/s. The interface is located at z3 = 400 m, and
the snapshot time is 0.3 s, as before. The reflection and transmission are accurately
modeled; the head wave, however, is only mimiced by our numerical scheme (for
details, see de Hoop and de Hoop'®").

5.8 Numerical simulations

In this section, we show examples of wave-field modeling in various configurations,
using our Bremmer coupling series algorithm. First, we consider two examples that
originate from integrated optics. Here, we have translated the first configuration
into its acoustic counterpart. Second, we consider an example from exploration
seismics, viz., a salt structure embedded in a sparse system of sedimentary layers.

5.8.1 Waveguide

Our first example is, in fact, a benchmark test (see Nolting!®®). It considers the
propagation of a single mode through a waveguide (see, for example, Vassallo!#),
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Figure 5.19: The real part of the symbols of the discretized and the exact (dotted
line) reflection operators (plane-wave reflection coefficients). The
differences between the discretized and exact symbols are plotted in
the lower figure. The wave speed equals 1 above and 2 below the
interface. We used a» = 1/12, and 2 = 0,0.1,0.05 (solid, dashed
and dashed-dotted lines, respectively).
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Figure 5.20: Reflection and transmission at an interface.
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Figure 5.21: The fundamental waveguiding mode at the entrance plane (upper
figure) and at the exit plane (bottom figure). The waveguide on the
left-hand side is not tilted with respect to the coordinate system,
while the waveguide on the right-hand side is tilted with an angle
of 20 degrees with respect to the coordinate system. (Leading term
of the Bremmer coupling series only).

oriented under different angles with respect to the numerical grid. The details of
this test configuration can be found in Nolting!'®®. The wave speed is approximately
1825 m/s inside the waveguide and 1900 m /s outside. The waveguide has a thickness
of approximately 180 m. The frequency is 190 Hz. We take a numerical grid with
779 points along the z; direction and 1360 points along the z3 direction. The
discretization step is approximately 1.5 m in both directions (about 6.7 points per
wavelength). The total length of the waveguide is 2.04 km. In this simulation, we
used the third (real-valued) parameter set. In this waveguide only 11 discrete modes
can propagate.

Two of the waveguide modes (the fundamental and the tenth mode) are launch-
ed into the waveguide. In the first experiment the wall of the waveguide is parallel
to the zz-axis. In the second experiment, the waveguide is tilted with respect to
the computational coordinate system by 20 degrees. The field at the output level
plane is compared with the original field at the input level plane. Theoretically,
these fields must be identical. Figure 5.21 shows the fundamental mode at the end
of the longitudinal waveguide (left-hand side), and the fundamental mode at the
end of the tilted waveguide (right-hand side). Figure 5.22 is the same, but then
for the tenth-order mode. It is conjectured that some of the radiating modes (the
propagating part) can be properly modeled with our scheme as well.

5.8.2 Block

The second example is an extension of the 1-D example in Figure 2.9 to two dimen-
sions. We investigate the time-harmonic plane wave interaction in a homogeneous
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Figure 5.22: The tenth-order waveguide mode at the entrance plane (upper fig-
ure) and at the exit plane (bottom figure). The wavecguide on the
left-hand side is not tilted with respect to the coordinate system,
while the waveguide on the right-hand side is tiltedwith an angle of
20 degrees with respect to the coordinate system. (Leading term of
the Bremmer coupling series only).
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Figure 5.23: Plane wave (from the top) response in a configuration with a block
in a homogeneous embedding. The left half of the figure is the
Bremmer series solution, the right half is the full solution obtained
by an iterative integral-equation technique based upon minimizing
an integrated square crror criterion (see van den Berg!'$’). The
differences are indicated in the right figure.
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Figure 5.24: Plane wave (from the top) response in a configuration with a block in
a homogeneous embedding. Leading term of the Bremmer coupling

series.
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Figure 5.25: Plane wave (from the top) response in a configuration with a block in
a homogeneous embedding. Second term of the Bremmer coupling
series.
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Figure 5.26: Wave speeds of a two-dimensional salt model (see also Figure 1.2).

medium (n = 1) with a square block (sized 1.05 um by 1.05 um) with a signifi-
cantly larger refractive index (n = 2). The wavelength is 1 gm?®. The numerical
grid contains 99 points along the z; direction and 60 points along the 3 direc-
tion. We plot only 59 points along the z; direction. The discretization step is 0.05
pm in both directions (14.8 grid points per wavelength inside the heterogeneity).
Full, accurate, numerical responses have been presented by Martin et al.'?2. Our
results, shown in Figure 5.23, are very similar to theirs. The left half of the figure
is the Bremmer series solution, the right half is the full solution obtained by an
iterative integral-equation technique based upon minimizing an integrated square
error criterion (see van den Berg!®®). Figure 5.25 corresponds to the second term
of the Bremmer coupling series, while Figure 5.24 shows the field corresponding to
the leading term of the Bremmer coupling series. The higher-order terms in the
Bremmer series become rapidly smaller. For the calculations, we used parameter
set 4; in the reflection operator, we set 12 = 0.02.
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Figure 5.27: Snapshot at t = 0.750 s of the acoustic pressure due to a vertical
line force in the model of Figure 5.26. Six terms of the Bremmer
coupling series.

5.8.3 Geological dome

As a third example, we consider the salt model shown in Figure 5.26, see de Hoop?®.
This model contains three sedimentary layers. The wave speed is constant in the
upper and bottom layers, while the wave speed varies linearly with z; (while constant
in the xo direction) in the left part of the middle layer. An approximate, transient
langitudinal line force is annlied at v = 1600 m, z3 = 0 m. Figures 5.27-5.29
show snapshots at 0.75 s. For the calculations we used parameter set 4. The
numerical grid contains 199 points in the z; direction and 156 points in the z3
direction. The discretization step is 16 m in both directions. We used parameter set
4. In Figure 5.27, we calculated the first six terms of the Bremmer coupling series.
The computation time was 50780 s on a Hewlett Packard 9000/735 workstation.
Figures 5.28 and 5.29 show snapshots of the leading term (890 s CPU) and the
second term of the series. We computed 512 frequencies in total.

This example illustrates that our approximate scheme models the transmitted
and reflected body waves accurately up to large scattering angles. Also the line
diffraction at the major kink of the second deepest interface is captured by the
method. Some head-wave energy is mimiced by the artifacts of our approximations,

2The acoustic equivalent configuration has the media ¢ = 1900 m/s and c¢ =~ 1344 m/s, sizes of
105 m by 105 m, frequency 19 Hz and a 5 m discretization step.
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Figure 5.28: Idem as for Figure 5.26. Leading term of the Bremmer coupling
series.
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Figure 5.29: Idem as for Figure 5.26. Second term of the Bremmer coupling
series.
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but is inaccurate.

5.9 Discussion of the results

We have developed a fast numerical implementation of the Bremmer coupling series
in two dimensions, for scattering angles up to critical. The key ingredient was a ra-
tional approximation of the longitudinal slowness in terms of the transverse slowness.
Our scheme has added to the various existing one-way wave propagation and BPM
schemes in the following ways: we considered the third-order Thiele approximation
rather than the first- or second-order one, to enhance the accuracy and to remove
artificial body waves around the longitudinal direction, we enhanced the accuracy
by optimizing the phase and group slowness surfaces for any desired sampling rates;
we have improved the transformation to a moving frame of reference; we introduced
(de)composition operators to incorporate any desired source- or receiver-type with
the appropriate radiation characteristics; we have taken care of the backscattered
field with the aid of the Bremmer coupling series.

We have illustrated the generalized Bremmer series with rational approximation
with various examples. The examples have been taken from the different fields of
application of the method. With a view to exploration geophysics, the waveguide
can be associated with a coal bed. In migration, the Bremmer series approach is
particularly useful if multiple arrivals play a role in creating a proper image.

When critical angle phenomena (post-critical waves) are important, a more pre-
cise symbol for the longitudinal slowness operator has to be used. A candidate is the
uniform expansion developed by Fishman, Gautesen and Sun®'. Then the thin slab
propagator is directly evaluated using Fourier transforms. The Lanczos algorithm,
as described in Section 1.5, is another candidate.

A fast construction of the relevant matrices is not straight-forward. A special
procedure has been written to compute the permittivity for many practical config-
urations, which can be input in a “user-friendly” way (see Appendix 5.A). At the
time of publication, the numerical code has already been used by researchers as a
design tool 1n integrated optics and as a migration tool 1N eXploraion seisiics.
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Appendix

5.A FORTRAN code for constructing the involved
matrices

The FORTRAN code for setting up the matrices in the propagation scheme, consists
of two subroutines. Int one subroutine, the following global constants are calculated,
once for every frequency,

rt = (1D0,0D0)/ (omega* (1D0+(0DQ, 1D0) *omegIm) *DeltaX) **2

const =
constl
const2

const3 =

const4
constb

const6 =

const7

const8 =

const9

const10
constil
const12

(

fl

0DO0, 1D0) *omega*DeltaX3*betad
-2xbetal2*rt*rt*const
betal*rt*(1-4*a2)*const
(1-2*a2) *a2

-2xa2xbetald*rt
beta3xrt*(1-2*a2)
beta2*rt*rt*xconst
betal*rt*(6*a2-2)*const
a2*a?2

(1-2%a2) **2

beta3*xrt*a2
~betald*rt*2x(1-2%a2)
betal*rt*al2*const

where omegIm = (2. In the second subroutine, the matrix elements of A and A’ are
evaluated. In this subroutine, we set

cp = c(i+1)
cc = c(i)
cm = c(i-1)
dp = 1D0/cp
dd = 1D0/cc
dm = 1D0O/cm
gp = cp*cp

gg = ccxcc
gm = cm*cm

The function ¢ (i) returns the value of ¢ at position x, = iAzx,. Since most config-
urations will contain large homogeneous regions, the above variables have not to be
recalculated at every position.
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The evaluation of the elements of matrices A and A’ are very similar. We show

the set up and storage of matrix A,

A3,i+2) = Atz (5A.1)
A4,i+1) = Aiil, (5A.2)
AG5,1) = A, (5A.3)
AG6,i-1) = Ajioy, (5A.4)
A(7,i-2) = Asis. (5A.5)

The matrix elements follow as

A(3,i+2) = constl12+constb*gp+const8xdp+const10*cp

A(4,i+1) = constix(gg+gp)+const2+const3* (dd+dp) +constd*cc
& +constb5*cp

A(5,i) = const6x(4*gg+gmtgp)+const7+const8*dm+const9*dd
& +const8*dp+const10*cm+constli*xcc+constlO*cp

A(6,i-1) = constl*(gg+gm)+const2+const3*(dd+dm)+constd*cc
& +const5*cm

A(7,i-2) = constl2+const6*gm+const8*dm+const10*cm

The matrix C is stored in a similar manner,

K(2,i+1) = G, (5A.6)
K(3,1) = Cii, (5A.7)
K(4,i-1) = G-, (5A.8)
and its elements follow as
K(4,i-1) = a2*e(i)/sqrt(cc)
K(3,i ) = e(i)/sqrt(cc)*(1-2*a2)
K(2.i+1) = a2xe(i)/sart(cc)

where the function e(i) returns the value

e = CDEXP((0DO,1D0)*DeltaX3/c(i)*0Omega)

A special subroutine has been developed to compute the permittivity after equiv-
alent medium averaging for many practical configurations. These configurations
must be described by interfaces of which straight lines are their segments. In one-way
wave propagation, the matrices at the next transverse plane are constructed from

the previous matrices by adjusting only the elements where the medium changes.



CHAPTER 6

Directional Wave-Field
Decomposition in a
Three-dimensional,
Anisotropic Dielectric
Configuration

In Chapters 2 and 3, the longitudinal scattering problem was introduced in a one-
and two-dimensional configuration. This chapter extends the theory to arbitrary
polarized electromagnetic waves in a three-dimensional anisotropic dielectric con-
figuration. With a simple reduction, the equivalent equations for acoustic waves in
anisotropic fluids can be found. The chapter concentrates on the differences between
Chapter 3 and this chapter. Special attention is paid to the different normalizations
of the involved equations and, in connection to that, creating a stable forward nu-
merical scheme.

This chapter is organized as follows. Section 6.1 describes the configuration
under investigation. We distinguish two types of anisotropy: anisotropy with for-
ward /backward symmetry, and general anisotropy. To increase the accuracy of dis-
cretizating rapidly varying media, we apply the equivalent medium theory. Then, an
isotropic dielectric becomes an uniaxial anisotropic diclectric in the regions where
the medium varies. Following Chapters 2 and 3, we rewrite the Maxwell equations
into a differential equation for the field matrix (Section 6.2). Application of the
dircctional wave-field decomposition introduces the wave matrix. We analyze both
media with forward/backward symmetry (Section 6.3) as well as morc general media
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(Section 6.4). Special attention is paid to the different normalization analogs and
symmetry properties of the involved operators. Section 6.5 briefly reports on 3-D
aspects in deriving the Bremmer coupling series. Section 6.6 discusses the numer-
ical aspects of the Bremmer coupling series. Special attention is addressed to the
stability of the one-way wave equation and the symmetry relation of the matrices
and operators. Finally, the results are discussed in Section 6.7.

This chapter contains one appendix. In Appendix 6.A, the notation is elucidated,
some useful inner products are introduced and the symmetry properties of operators
are discussed.

6.1 Description of the configuration

The configuration under investigation has already been described in Section 1.3. In
Subsection 6.1, a distinction between two types of anisotropic dielectrics is made.
The equivalent medium theory is employed to describe the medium on a numerical
grid (Subsection 6.1): it turns out that a heterogeneous isotropic dielectric becomes
a heterogeneous uniaxial dielectric after smoothing.

Anisotropic dielectrics
In this chapter, we distinguish two types of anisotropic dielectrics
@ restricted anisotropy with the permittivity (¢; 3 = £2,3 = 0)
( €11 €12 O \
eE=1¢&12 €292 0 s (6.1)
\ 0 0 63,3/
and
@ general anisotropy with the permittivity (e1 3,223 # 0)

€11 €12 &13
E= €12 €22 €23].- (6.2)
£1,3 €23 €33

Remember that the permeability tensor in a dielectric is constant and scalar

1jp(Tk) = Hodjp. (6.3)

In the first class of anisotropic dielectrics, symmetry in forward and backward prop-
agation occurs. In exploration seismics the name up/down symimetry is used (see
e.g. de Hoop and de Hoop!%?). In integrated optics (see Vassallo'4?), the waveguide
is said to be bidirectional: a field propagating in the forward direction can be trans-
formed into a symmetrical field propagating reverse. Following Vassallo, we used
the term bidirectional anisotropy for this class of anisotropy.
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o

Figure 6.1: Interface between two media in the neighborhood of a point in a
local reference frame {i},1%,}. The sphere represents the compu-
tational cell.

Equivalent medium smoothing

In certain regions of the configuration, the medium properties may vary rapidly.
We take these variations numerically into account by smoothing the medium. To
ensure that the medium is numerically smooth, we employ the equivalent medium
smoothing! ™ 178 by averaging at any point over a computational cell, which is rep-
resented by a sphere in Figure 6.1. Thus, the local permittivity is replaced by a
smoothed permittivity. Here, we present a short summary of this theory.

Consider a local Cartesian reference frame with three mutually perpendicular
base vectors of unit length each, {2}, 45,45}, which is obtained by rotating the origi-
nal reference frame, see Figure 6.1. The permittivity is averaged over the computa-
tional cell. The electric flux density in the frequency domain, Dy, equals (compare
with Equation (1.18))

ﬁk = €k’,~EA1,.. (64)

At an interface between two media in the xja} plane (see Figure 6.1), the com-
ponents Dl,Ef),Eg are continuous, while El,Dg,Dg are discontinuous across the

interface. Let us first consider isotropic dielectrics, then (compare with Equation
(1.21))

[)[C = EEk. (65)

The relation between the discontinuous components E\, D5, D3 and the continuous
components D, E», E; follows as

1 =¢e"'Dy, (6.6)
s = ekFy, (6.7)
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fh ::6E3. (68)

Averaging over a numerical cell with size Az (notation: (.)) and assuming that
Dl,Ez, F5 are locally constant yields

Dy = (Y 'E, (6.9)
Dy = () Es, (6.10)
D3 = () Es. (6.11)

The validy of this assumption can be checked afterwards. Equations (6.9)-(6.11)
show that an isotropic medium behaves after spatially averaging as a uniaxial an-
isotropic medium with the ordinary and extraordinary permittivities given by (see
Equation (1.39))

e = (g), (6.12)

gl® = (g71)~L, (6.13)
Rotating back to the original reference frame, the permittivity is given as in (1.39)
or, in case of bidirectional anisotropy, as in (1.42).

After a similar analysis for any arbitrary symmetric permittivity tensor ¢y ,, we
find after averaging the substitution

ern = (erg) (6.14)
—1\—1 £1,2
g12 = (€11)” (=), (6.15)
€11
e1s = (er ) =D, (6.16)
€11
1y —1,€ E
22 = (E71) =22 4 (e — ), (6.17)
€1,1 €111
Fan o (rTVTUEL2YELSy |,  EL3C23, (6.18)
€11 €11 €11 ' ’
2
— £ £
ea 2 DT s ) (6.19)

)

The permittivity after averaging describes biaxial anisotropy. With the use of an
eigenvalue analysis the permittivity can be transformed to its principal axis, with
the elements: (1), £(2) and €. The permittivity diagonal can also be rotated back
to the original reference frame {1,12,%3}.

6.2 Differential equation for the field matrix

Below, Maxwell’s equations are rewritten into a form suitable for the directional
wave-field decomposition. We will discuss a hierarchy of increasing symmetry: the
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generic case, anisotropic dielectrics, isotropic dielectrics and the semi-vectorial ap-
proximation. In the sequel of this chapter, we will constrain ourselves to anisotropic
dielectrics.

6.2.1 Generic case

Directional wave-field decomposition requires a separate handling of the transverse
components of the electromagnetic field {ET, flp}. Using Maxwell’s equations in
space-frequency domain, (1.30) and (1.31), the longitudinal components can be ex-
pressed in terms of the transverse ones:

ﬁ:agEl—aléz_ﬁﬁluwH R’e

3 : 3 — ——, (6.20)
Jwis 3 13,3 H3.3 JwWits 3
. O01Hy— 0H, €31 - €32~ Je
R I O (6.21)
Jwesz g €33 €33 JWeg 3

leaving, upon substitution, the matrix differential equation — known as the two-way
wave equation —

(8581 7 + jwAp ;) Ey = Ny, (6.22)

or, in tensor-product notation

B (A A 2) (Fl (N1>
O3 | = | +jwli 27 P A 6.23
: (FQ) ! <A2,1 Azp) \F> N (6:23)
The elements of F; are chosen such that FlT FZ" represents the longitudinal compo-
nent S3 of the complex Poynting vector. A valid choice is

B o= @;) B = (_H;) : (6.24)

The electromagnetic system matrix operator Ay reveals a 2 by 2 block structure.
Its entries are found to be operators

N o [ Overter s + pg ks 30 85_623 I 0
Ay = ()™ 1€3,351,3 l.a_,fﬂm 2 9133 33/123 1 (6.25)
a‘253 3€1,3 — M3 3H1, 302 8253 3623 + pi3 3/51 30

P w ey 381 +phy w2dieg 30 — #21 (6.26)
12 = 29,219 20,65 30 1 .
W 253 301 .“1,2 w 265 302 + 1] 1
. ( 232#3 339 tely —w By 01 + 533) (6.27)
Azl = - 3 ' -
2,1 w2 iy, 20y +eh wTOipz30n +eh,
- 53 351 381 + 82/"'3 3:“2,3 6;5517382 - 82“3_;‘“1’3
Ay = -1 -1 - (6:28)
53 352 30 — 51#; 323 531352,3(92 + 31,“3,3“1,3
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Here,

_ -1
Evp = Ev,p — €3 3E1,3E3 p, (6.29)

is the reduced 2 by 2 permittivity matrix, whereas

Hy p = Hu.p — Mg 38,3143 p- (6.30)

is the reduced 2 by 2 permeability matrix. The elements of the source matrix are
found as

Nl _{~ :: 61 (jw53 3)4 jS + /"’5113/"2 3K3 (631)
K§ — 8y (jwez 3) ™ J§ — pg 3, s K§
. _ Je _ : —1fre - e
A ‘92(1_‘*’/‘3‘3)7151 teggea i) (6.32)
—J5 + 01(jwpa,z) " K5 + €3 362,35

Operator and symbol analysis

Assuming that the medium be reciprocal, the permeability and the permittivity
tensors are symmetric. (One-way wave propagation in nonreciprocal magnetooptic

nnnnnnnnnnnnnnn P cezes mend T2 Ll 182

vv(mv&g,uldbo is discussed b Uy €.8. Shamomnin O 15Uji aila KOSniva ) Then, with
respect to the real L, inner product defined on the transverse (electric and magnetic)
field components (see also Equation (6A.3)), A1 2 and Az 1 are symmetric, while

Ayy = —AT .1+ In absence of any loss mechanisms these operators are also Hermitean
with Iespect to the complex L, inner product.

6.2.2 Anisotropic dielectrics

Now, we discuss the reduction of the above equations for anisotropic dielectrics.
In a dielectric, the permeability tensor is isotropic and constant, i.e.

Hip(Tm) = Hodi p- (6.33)
As a consequence of this constraint, we have p, 3 =0 (v = 1,2) and

w = po. (6.34)
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Hence, we can rewrite elements of the electromagnetic system matrix operator A as
A _ .1 (O —1
A= (jw) By €33 (51,3 52,3) ; (6.35)
M ei@ o) (6.36)
62 3,3 1 2/ .
Ayp=¢ +w? ( 05 ) pol (02 —d1), (6.37)
—01
(EI'B) £33 (01 D2). (6.38)
2.3 ;

Note that Al’g and AQJ are symmetric, i.e. (see Subappendix 6.A.2 for the definition
of symmetry)

Al = Ay, AT = A ). (6.39)
If no losses occur, ¢ is real valued and

1411[2 = Al,‘z: AIQIJ: /12,17 (6.40)
while 121272 = “4}:1.

Reduction for bidirectional anisotropy

Bidirectional anisotropy imposes the additional constraint of forward/backward
symmetry'®. Then

€13 =¢€23 =0, (6.41)
and as a consequence of this
Evp = Evips (6.42)
while now
A =0, and Ayy =0. (6.43)

The system matrix operator A becomes block off-diagonal.

6.2.3 Isotropic dielectrics

Now, we discuss the reduction of the above equations to isotropic dielectrics.
In isotropic materials the permittivity tensor is reduced to a scalar

Eij = E(si’]‘. (644)
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The isotropic system matrix operator has two nonzero symietrical elements
AL 2 (01 1
Al’g = o +w s £ ((91 82) s (6.45)

Ayi=e +w gt (_051) (8, —01). (6.46)

6.2.4 Semi-vectorial approximation

In an isotropic dielectric, when one polarization component dominates the wave
phenomena, the system matrix operator can be approximated in the following fash-
ion. Distinguishing two different possible dominant polarizations (see Stern'%®), i.e.,
quasi-TE (with E; = 0) and quasi-TM (with H, = 0) leads to the following two
reductions.

For quasi-TE scattering, we reduce the representation of F\ to E» and in accor-
dance with this reduction, we remove the first row of /112 as well as the first column
of AQYI :

/11,-2 :E (w72826*181 Mo + w_2826ﬁ132) s (647)
N T_E —uglw_28162
iy, B (E ) (6.48)

For quasi-TM scattering, we reduce the representation of F, to H; and in accordance
with this reduction, we remove the second column of A, » as well as the second row
of _j_g 1l

i TM [po +w 20e™'0y
Al = ( w2010, , (6.49)
Ay = (e + py w203 —pglw™20,0,) . (6.50)

These approximations are commonly referred to as the semi-vectorial approxima-
tions. In effect, they neglect the coupling to 1 (TE) or the coupling to Hy (TM).

6.3 Differential equation of the wave matrix: bidi-
rectional anisotropy

In this section, the electromagnetic field in a bidirectionally anisotropic dielectric
is decomposed into waves traveling forward and backward. First, we formulate the
diagonalization procedure for the system matrix. Subsequently, we discuss two dif-
ferent normalizations: one based on the electric field and one based on the magnetic
field. These normalizations can be transformed to one another. Finally, we analyze
the properties of the associated transverse Helmholtz operator.
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6.3.1 Diagonalization procedure

To distinguish forward- and backward-traveling constituents in the wave-field, we
construct an appropriate operator Ly j with

Fr=1L;,W,, (6.51)
that, with aid of the commutation relation,
(8sL1,4) = 83, L14], (6.52)
([.,.] denotes the commutator), transforms Equation (6.22) into
L1,y (85850 + jwAsa)War = —(83L1,4) W + Ny, (6.53)
so as to make Ay a7, satisfying
Ay gLy =LisAsm, (6.54)

a diagonal matrix of matrix operators. We denote ﬁLJ as the composition operator
and Wy as the wave matrix. The expression in parentheses on the left-hand side
of Equation (6.53) represents the two one-way wave operators. The first term on
the right-hand side of Equation (6.53) is representative of the scattering due to
variations of the medium properties in the longitudinal direction. The scattering
due to variations of the medinm properties in the transverse directions is contained
in AAJ’]W and, implicitly, in .z/]”]‘

To investigate whether solutions to Equation (6.54) exist, we introduce the col-
umn matrix (generalized eigenvector) operators ﬁ(li) according to

AT A LY =Lps. (6.55)
Upon writing the (block-)diagonal entries (generalized eigenvalues) of Ay ar as
Ay =17, Ao =17, (6.56)
Equation (6.54) decomposes into two systems of equations
ApgL = pxr™. (6.57)

In analogy with the case where the medium is translationally invariant in the trans-
N R

verse directions, we denote F( ) as the longitudinal slowness operators. Note that

the operators i;§*> compose the electric field and that the operators Lgi) compose

the magnetic field. Through mutual elimination, the equations for [:gi) and Uf)
can be decoupled as follows

gi)f‘(i)f(i) (6.58)
Ap Ay B = BB PO (6.59)
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The partial differential operators on the left-hand sides differ from each another.

To ensure that nontrivial solutions of Equations (6.58) and (6.59) exist, one
equation must imply the other. To construct a formal solution, an Ansatz is intro-
duced in the form of a commutation relation for one of the components ﬁf that
restricts the freedom in the choice for the other component. We now consider two
choices??: the electric-field strength normalization analog and the magnetic-field
strength normalization analog.

6.3.2 Electric-field strength normalization analog

In the electric-field strength normalization analog (EFN) one assumes that, i‘f) can
be chosen such that*®

Ag Ay B = B3P A 54, (6.60)

. (+
In view of Equation (6.59), the slowness operator in the EFN, F;F)N, must then
satisfy

(£) AlF)

ArpAsy = Pipn ey = 0. (6.61)
The relation for f;gi) follows as

and a possible solution to Equation (6.57) (and thus also a possible solution to
Equation (6.54)) is

B =1, L =2y, (6.63)

Here, we introduce the admittance operator ¥ according to

Y = Arifien. (6.64)

Since I:gi) as given by Equation (6.63) satisfies (6.60), the Ansatz is justified. The
solutions of Equation (6.61) are written as
+) ~(—) p A i3
P = Pk = Pren = AV2 Agpn = A1 24, (6.65)
We denote operator A as the transverse (vectorial) Helmholtz operator. Operator
A:H 5> H ?isa partial differential operator of order 2, while I" : H™ — H7—!

is a pseudo-differential operator of order 1. Both operators are nonelliptic. The
composition matrix operator becomes

Legpx = (;, _1);) . (6.66)




6.3 Differential equation of the wave matrix: bidirectional anisotropy 171

Its inverse, the decomposition matrix operator, becomes

. 1y~
BN = 3 (1 _y;l) - (6.67)

Thus the electric field is represented by
By = Wik + Wik, (6.68)
while the magnetic field is represented by

L, =Y (WEFN WéFN) (6.69)

6.3.3 Magnetic-field strength normalization analog

In the magnetic-field strength normalization analog (MFN), one assumes that ﬁ.gi)

can be chosen such that
1&2,1/‘11,2£5i) = Lgi)AQ’I/'iLQ. (670)
‘e find the longitudinal slowness operator and the transverse Helmholtz operator

~(+) ~(—) A s 2
I'ypny = —Iyen = DN = AMFN, Ampn = Az 1Ay,

(6.71)

The composition operator and decomposition operators follow as

. zZ -z - z-t 1

Paen = (1 : ) L Ly =1! ( L 1) . (6.72)
Here, Z is the impedance

2= Ay} Prpn. (6.73)

The electric field is found as

B =2 (Wi - W) (6.74)

and the magnetic field as

WMJ;‘)\J + WMFN (6.75)
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6.3.4 Transformation between the two normalization analogs

We now discuss the relation between the two introduced normalization analogs, EFN
and MFN.

Since the operators A, 2 and A ; are symmetric (see Equation (6.39)), the trans-
verse Helmholtz operator in the MFN is the transpose of the transverse Helmholtz
operator in the EFN

Amrn = ALy (6.76)

This prompts us to introduce an alternative vector inner product, see Subappendix
6.A.2. As a consequence of (6.76) the longitudinal slowness operators are related in
a similar way

. T
I'meN = I'gFy- (6.77)

We can derive the following equivalent expressions for the impedance operator (use
Equations (6.61), (6.64), (6.71), (6.73) and (6.77))

~ ~ ~ ~ ~—1 ~ " A—1 ~ - N
Z = A;1Pwrn = A1 p Dy = TernAs ] = FgpnAre =Y 71 = 27, (6.78)

in a similar way, we find the equivalent expressions for the admittance operator

1A P | - A S U o
Y = AT lepn = Ao Tppny = DvrnAT ) = DypnAen = 271 = Y7, (6.79)

Observe the absence of derivatives of the medium parameters in the expression for
Ay (Equation (6.37)). However, A; 5 contains such derivatives (Equation (6.36)).
Hence, for computational convenience, the expressions without A, .2 are the preferred
ones.

‘I'he (de)composition Operators 1n the tTWo NOrMmallzatlons are reiated as

i;\r/IFN = 2I:1?3}%‘N']1 -EEFN = 2LA’I\—/11FNJ7 (6-80)

01

with J = (1 0

tions is

). The relation between the waves in the two different normaliza-

i(£ i (E
e = Y WEEL. (6.81)

6.3.5 Transverse Helmholtz operator and its properties

In this subsection, we take a closer look at the transverse Helmholtz operator.
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Now, we can write the transverse Helmholtz operator Agpy = Al gy = A1 242
as

AEFN = API{/‘IFN = /.toE’ + w‘z [(g;) 53 3 (8 82) e+ <_a§1) ((92 —61)]

rotug (3)ess 0 2 (%) @ -a.
N— e’
=0 (6.82)

In order to emphasize that the terms of order w™* vanish, we have written them

explicitely. The transverse Helmholtz operator is not symmetric, but from the sym-
metries of A1 2 and Az .1 it follows that that

AppnArz = A1 2Afex, Az Appn = Afpn Ay (6.83)
In the transverse Helmholtz operator we distinguish three contributions, viz.,
A — Aprop + Aunipo] + Aiso,pOI’ (684)
where
ARE = (ARR)T = noe’ + 020,09,
=AMER = (AERD)T, (6.85)
ani.po A ani. T — 0 -
AR = AR = w7 (al) (0 82) (53¢’ — 1), (6.86)
l" o 8 —_—
Ajopol — (AReRONT — (- < 1) ((re53) (Baegy)) €. (6.87)

The first contribution controls the forward propagation; the second contribution
contains two parts, the principal part represents the phenomenon that the polariza-
tions are not aligned with the coordinate axes while the smoothing part represents
the polarization interaction both due to the presence of anisotropy, and the third
contribution describes polarization interaction solely due to transverse heterogene-
ity.

When investigating the operators in the MFN, the orders of the symbols are
easily determined

R € 8,

Aam pol 2

avrn € 5%

Axso pol 1

dypn €57
Thus the orders of the geometrical polarization operator owing to heterogeneity
is one degree lower than the principal part of the transverse Helmholtz operator.

Consequently, it is a smoother operator and does not introduce new singularities in
the wavefront.
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Symmetry property of A
Using the symmetry of A; 5 and A, ;, see Equations (6.39) and (6.39), the following
symmetry properties of Agpn = A;{AFN are found
AEFNAI,‘Z = Al,zAEpN, (6.88)
AZ,IAEFN = AEFNAZ,L (6.89)

Symmetry property of r

Using the expressions for the admittance ¥ in (6.78), the following symmetry prop-

erties of ['gpn = IA“'I\F,IFN are found
. . . AT
I'ernA12 = A1 2T 'ErNs (6.90)
A . T .
Ay I'ern = I'gpnAay. (6.91)

The longitudinal slowness operator is thus symmetric in sense of the bilinear form
(.,-)g (see Subappendix 6.A.2).

6.3.6 Coupled set of two one-way wave equations

Using the decomposition operator, Equation (6.53) transforms into

W 4+ jw I'WH =TWH + RIWE) 4 X4, (6.92)
GW —jw IW) - R + TW) 4 X0 (6.93)

which can be interpreted as a coupled system of one-way wave equations. The
coupling between the counter-propagating components, W{+) and W(-) is apparent
in the source-like term on the right-hand side. We have the coupling matrix operator

—-L Y (8:L) = G—{ ?) , (6.94)

in which R and T are given by

Rprny = —Tern = 1V 7165, (6.95)
Ruvpn = ~Tven = 3274032) = 1Y 71(8:Y) = Tern = —Rupn,  (6.96)

and represent the reflection and transmission matrix operators, respectively. The
source terms are

XM = (LY, m N, (6.97)
X(ﬁ) = (IA/_I)Q‘A/[NA/[. (6.98)
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6.4 Differential equation of the wave matrix: gen-
eral anisotropy

In this section, the electromagnetic field in a bidirectionally anisotropic dielectric
is decomposed into waves traveling forward and backward. First, we formulate an
approximate diagonalization procedure for the system matrix. Subsequently, we
discuss two different normalizations: one based on the electric field and one based
on the magnetic field. These normalizations can be transformed to one another.
Finally, we analyze the properties of the associated transverse Helmholtz operator.

Diagonalization procedure

The diagonalization of a 2 by 2 matrix operator is not straightforward and an explicit
diagonalization might be impossible. If 50, one should search for a correction to an
approximate diagonalization. Here, we discuss such a correcting method. It is noted
that a similar problem arises in the decomposition into the polarization states, see
Brent and Fishman®°. They applied the diagonalization to the symbols on the
principal symbol level.

Starting from the exact solution for the case that /il‘l = 0, we construct an
approximate diagonalization procedure for 141,1 # 0. Let

i- (11/ _;) , (6.99)

and take Y the same as in Equation (6.79). Now, we scarch for a correction when
Ay 1 # 0. For this purpose, we evaluate the full action

LYAL=A+R, (6.100)
with
A= (F(H A?_)). (6.101)
0 I
Let
M = A, £ ALY, (6.102)

then the rest matrix operator R equals

. . < Ly e -1 001
R=1(A; +Y 1‘4},1)/)(1 _1), (6.103)

which vanishes when A, 1 = 0. Correcting the decomposition equation (6.100) yields

(0rg + Z’?I,J)(‘Erl).],KfiK,LifL,Al = /if,M, (6.104)
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where the correction matrix operator !/ is found as

- -1

U=- (1 + /17“%—1) . (6.105)

Taking the first term of the Neumann expansion of the inverse operator in (6.105),
the correction matrix operator I{ becomes approximately

U~-RA . (6.106)

6.4.1 Electric-field strength normalization analog

In the electric-field strength normalization analog (EFN), the electric field is decom-
posed into two counterpropagating waves

B = FEP 4+ B = Wik + Wik (6.107)

The admittances Y(+) and Y(~) interrelate the electric- and magnetic-field compo-
nents according to

EE = y®E®) (6.108)
Now we search for an explicit expression for the admittance V() and slowness I” =)
Substituting (6.108) into Equation (6.54) yields the system of equations

-L\

Ay + A YE) =177, (6.109)

Ayy — AT, Y =y &) (6.110)

Substituting Equation (6.109) into Equation (6.110) results in the quadratic equa-

};ALZ? Y//i + /'i;r,lf/ - /i271 =0, (6111)

with solutions Y(*). It is noted that (Y(*))T are also solutions of the quadratic
equation. From these solutions, we can reconstruct the quadratic equation

Va5 A (YY) =0 (6.112)
[ = ()] A (- 7)

and thus Y en Y(=) are solutions of the quadratic equation in Y. Then

"o~ o - Ty . . PN - (my . .
YAl,QY - (Y(i>) AI,QY - YAI,QY(;) + (}/(i)) ALQY(:F) = 0.
(6.113)
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Combining (6.111) and (6.113) yieclds
(y(i))m AoV = _ 4, (6.114)
and
(yw)m AoV + VAV VA, + AT, ¥ =0, (6.115)

The latter equation can only be fulfilled for a subset of Y's.
Let us take a closer look at the same configuration apart from permittivity

elements €3, = —¢£3,, (¥ = 1,2). The corresponding system matrix A equals
Ay = —Ap, (6.116)
A=Ay, (6.117)
Ayq = Ay, (6.118)

From (6.114), we assume that V() s independent of ‘41,1. Under this assumption,
the equivalent of Equations (6.109)-(6.110)

— Ay + AV = T(i), (6.119)
Apy + AT, YE = y@& TS (6.120)
Adding (6.119) to (6.109)
24,,YH =T +T, (6.121)
and adding (6.120) to (6.110)
245, =Y (I + T, (6.122)
yield
Ay = VA LY, (6.123)
Substracting (6.119) from (6.109)
24,,=I-T, (6.124)
and substracting (6.120) from (6.110)
24, YE =YE(-T), (6.125)

yield

—AL YW =y 4, (6.126)
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Thus, under the assumption that Y (¥ is independent of A, ;, the rest matrix R
vanishes. Under this assumption, the admittance Y (¥) equals

R 1/2 L L2
Y =2y = (Al 24s 1) = (142,1/11,2) AT

a A —1/2 . A s —1/2 N

= (Aipdan) " Aoy = Az (Aopdin) T =VT, (6.127)
A (4)
and the slowness I'gpy equals
- (£) N R N 1/2
Pgpn = A1n £ (A1,2A2,1> . (6.128)

6.4.2 Magnetic-field strength normalization analog

In the magnetic-field strength normalization analog (MFN), one decomposes the
magentic field as

By =B 4 B = Wi+ Wik (6.129)

The impedances Z(t) and Z(~) interrelate the electric- and magnetic-field compo-
nents according to

F®H) = 2B ED), (6.130)
With a similar ana,lyns as above and under the assumption that Z(#) is independent
of A A1, the i uuycuauun opcrator Z(:t) is found as

7w (A 5 As )~1/2 Ao =Aiy (442,1/11,2>—1/2

= A7) (A1 24, 1)1/2 = (/1-2,1/11,2)1/2 A1 =Y"1=2T (6.131)

NEs
while the forward and backward slownesses I’ ;AF)N are found as

(£ 12
F%VIF)‘N = 4?,1 + (A‘Z,IAI,‘Z) . (6.132)

6.4.3 Coupled set of two one-way wave equations

Using the decomposition operator (dr,; + Ur.1)M sk, Equation (6.53) transforms
into

W 4w PP W DWW L REOWE) 4 X&) (6.133)

(7

W) 4w FTWE) = RO | T"“’WH + X)) (6.134)
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which can be interpreted as a coupled system of one-way wave equations. The
coupling between the counter-propagating components, W) and W(-) | is apparent
in the source-like term on the right-hand side. We have the coupling matrix operator

T(+) f{(ﬂ)

B PO (6.135)

(VT + G (051) = (
in which R®) and T are given by

—21) = (1420 )V VSl - G Ve @98, (6.136)
—2RC) = (142 )Viin B Yamd)—  tha V@ Vied),  (6.137)

2R = Uy Vi OsYagh) — (14U o) Ve (35V4EL), (6.138)
“2T ) = Uy Ve (B Vi) - (14 )V (0 Vi00),  (6.139)

and represent the reflection and transmission matrix operators, respectively. The
source terms are X (+) and X ().

The decomposition matrix operator M + 2 M needs only to be computed for the
decomposition of the initial field or source and for the coupling operator.

6.5 Integral equation for the wave matrix

The derivation of the integral equation for 3-D wave propagation is very similar to
the 2-D case. Below, we discuss only the main differences.

In the 3-D configurations, the transverse Helmholtz operator is a 2 by 2 ma-
trix operator instead of a scalar operator. In the electric-field and magnetic-field
strength normalization analog, the square root matrix operator I is not symmet-
ric. Therefore, to derive the integral equation for the wave matrix, we start with
the reciprocal forward Green function, instead of the backward Green function (see
Equation (3.47)).

The solution of the two coupled one-way wave equations, (6.133) and (6.134) de-
rived above, are constructed by first transforming these equations into corresponding
integral equations. In this approach, the behaviour of the left-hand sides of these
equations is required. The Green functions corresponding to the left-hand sides of
(6.133) and (6.134), and satisfy

9G M (w13 3) + jw ' (@) G (s 2)) = 8k — 71, (6.140)
3G (@i ) + w7 (@) GO (a5 24) = Sk — L), (6.141)

respectively. The explicit expressions will be derived later. To derive an integral
representation for W*), we introduce the reciprocal Green functions Crp through

G(Ti)(x;c; 2) = —GE) (24, z}). (6.142)
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The reciprocal Green functions satisfy the transposed one-way wave equations

83G) (zr; 7h) — (T )Y (@)D (zhs 2h) = S(ap — ), (6.143)
0G5 (@i 7h) — w (T (@) G (aaiah) = S(ae —af).  (6.144)

Ifl fact, if GF) = GAS;)N then GA'(Ti) = G;ﬁzN Multiplying Equation (6.133) by
G£r+)(IL'k;:L';c) and Equation (6.141) by W) yields

G0 + W HaGY +jw [GF T W L (P TE)]

= G(T+>T<+>W<+> + G ROWE) L WHg(ay — ). (6.145)
Note that the last two terms on the left-hand side do not vanish. After integrating
over the entire transverse plane, these terms vanish because

(+)

(GO, POW Oy = (W, () TE ). (6.146)

Integrating (6.145) over the entire transverse plane, and following the derivation
in Subsection 3.4.2, yield the integral equations for the wave matrix, similar to
Equations (3.57)-(3.63). In operator form

(61,0 — K1) Wy =W}, (6.147)
with

W1(0)($u,3?3) = H(x3 — x3) ! ” exp [ jwf“(ﬂ(x,,,z)dz]l Wi(zy,0),
L2, (6.148)

while

(BraW)(asan) = [ { [T exo [~ P, 2 dz]} (FHW) (21,0 dc,

R / AY
S L #=¢ ) \3119/

and so on.

6.6 Numerical aspects of the Bremmer coupling
series

The numerical aspects of the Bremmer coupling series are nearly the same as for the
2-D case. We therefore refer to Section 3.5. Here, we discuss some aspects of the
stability of the one-way wave cquation: the BPM-type approach. In Section 6.6.2,
the combined Bremmer series is discussed. For reasons of stability, the Bremmer
series is computed twice: once in the electric-field strength normalization analog,
and once in the magnetic-field strength normalization analog.
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i3

12

Figure 6.2: Rib waveguide on an optical chip (right) and an optical fiber (left).

6.6.1 BPM-type approach

The classical Beam Propagation Method (BPM) and many related methods assume
that the medium properties vary slowly in the longitudinal direction. In such config-
urations, the influence of operator K 1,; vanishes. The forward-directed transmitted
wave is then dominant

W (23) = WD (x3), (6.150)
W (z3) ~ 0. (6.151)

The numerical aspect of the scattering in the longitudinal direction is the same as
those in the 1-D and 2-D configurations, see Sections 2.5 and 3.5. We now discuss the
corresponding one-way wave equations and the power flow in longitudinal invariant
media.

Wave propagation in longitudinally invariant structures

)

Consider a wave Wé;:N propagating in the positive x3 direction in an z3 invariant
structure with bidirectional anisotropy: e.g., a waveguide (see Figure 6.2). Due to
the invariance in the preferred direction, the corresponding one-way wave equations
for the transverse electric and magnetic-field vectors are found to be (compare with
Equation (6.92))

O Fy + jwlgrn Fy = 0, (6.152)
8 Fy + jwlmenFy = 0, (6.153)

respectively. In this formulation, the decomposition and composition operators do
not have to be computed. In the field of integrated optics, these equations are
also known as the wide-angle BPM equations in the electric-field formulation and
magnetic-field formulation, respectively. Both equations need to be evaluated in
order to compute the guided power along the preferred axis x3.
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One-way power flow in longitudinal invariant media

By analyzing the power flow in longitudinal invariant media, one finds several im-
portants properties of the one-way wave equation. We show that the power flow is
stable for a special choice of the square root operator I.

The symmetry properties of I'ern depend on the choice of the square root. It is
well known that the square root is a two-valued function. For energy conservation
considerations, we show that there is only one physical choice for the square root.

Consider a forward-traveling wave in an zs-invariant configuration. The wave
propagation is then described by the homogeneous version of Equation (6.92)

OsWien + iwlern Wiy = 0. (6.154)

The power transferred through the transverse plane at z3 equals (see Equation
(1.48))

(P)r(a3) = §Re ((5,1)) , (6.155)

with S3 = FTF;. We must now show that (S3,1) = 9s(Wian, Y Wihy) is negative
(attenuation) or zero (no attenuation). Substituting (6.154) in (6.155) yields
Os (Wi, VWERR) = (s Wik, YWEER) + Wik, Y as W)
YWih) + (Witk, —iw¥ Tepn WEEL)
= —jw ({[Fern — Pepn] Witk YWERL)

= 2w (Im(Prrn ) WERL, YWERL),

(6.156)
where
Im(Fgrn) = L(Fern — Dgpn)- (6.157)
Since
Im(Fgen)Y = Y Im(Igpn), (6.158)
the expression
(Im(ﬁEFN)WEFN7?W]3—FN> = (Im(ﬁEFN)WEFNIYWgFN)*a (6.150)

is real valued and thus the right-hand side of (6.156) is also real valued. This term
is negative if —Im(/'grn) is positive definite and thus if we choose Im[(.)1/2] < 0 for
passive media. With this choice for the square root, stable power flow is ensured

(P)r(zs) < (P)r(0). (6.160)




6.6 Numerical aspects of the Bremmer coupling series 183

6.6.2 Bremmer coupling series
Combined Bremmer coupling series

If, as we will see in the next chapter, in the numerical discretization procedure, the
symmetry relations are lost, stability can no longer be guaranteed (although the
instability might be small). In order to obtain a stable scheme, one should compute
the wave propagation in both normalization analogs simultaneously: the electric-
field strength normalization analog and its transposed analog, the magnetic-field
strength normalization analog. Consequently, the corresponding numerical scheme
becomes twice as time consuming, compared to a single one-way wave propagation
scheme. The final magnetic field has to be computed from the waves in the magnetic-
field strength normalization analog instead of from the final electric field. Then
stability is ensured. Executing a similar analysis as above, starting with

By= WL, (6.161)
By = Wik (6.162)

yields (compare with Equation (6.156))
D5 (Wi, Wit = 20(Im(Deen) WER, W) (6.163)
Again, stable power flow is ensured
(Pyr(zs) < (P)r(0). (6.164)

In this alternative approach, the computation time is increased by a factor two.

Figure 6.3 illustrates the numerical implementation of the combined Bremmer
coupling series; the Bremmer series is simultaneously computed in the electric-field
and magnetic-field strength normalization analog. Note that in the derivation of the
coupled set of two one-way wave integral equations, we used both normalization.

In different words, the one-way wave equation for the clectric-field is not stable in
the standard vector L, inner product, but it is stable in the alternative vector inner
product in Equation (6A.5). This stability is only ensured if the slowness operator
is symmetric in this inner product. If this condition is not met, stability can be
enforced by doing the computations in both normalization analogs simultaneously.
In practice, however, computing the magnetic ficld from the clectric field gives often
nearly stable results.

General anisotropy

In order to obtain a stable scheme for general anisotropy, the one-way wave equations
should also be computed in one normalization analog (e.g., electric field) and its
transposed normalization analog.
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Figure 6.3: Flow chart of the numerical implementation of the three-dimensio-
nal combined and single Bremmer coupling series.

6.7 Discussion of the results

Tn analacy with the 1.N and 2-N ranficuratinne weo intradnerad the Rrommor canc
: v o ,

pling series for the scattering problem along the longitudinal direction. We made a
distinction between two type of anisotropic dielectrics: bidirectional anisotropy and
general anisotropy. For the both classes, the directional wave-field decomposition
is analog with the lower dimensional configurations. For general anisotropy, a cor-
rection to an approximate diagonalization was derived. We discussed two types of
normalization analogs: the electric-field and magnetic-field strength normalization
analogs. These analogs are each other’s transpose. We showed that stability of the
forward scheme is ensured as long as some symmetry relations are conserved. If
not, we introduced the combined Bremmer approach. The forward scheme is then
unconditionally stable.

The transverse scattering problem is described by slowness operator. We showed
its symmetry properties. It contains two contributions: a square root operator of
the transverse Helmholtz operator and a partial differential operator (fil 1)- The
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transverse Helmholtz opecrator can be decomposed into three operators, each of
them describing a different physical effect: propagation, geometrical polarization
and physical polarization. The operator A;; described the directional-dependent
propagation. The geometrical polarization operator’s symbol belongs to a lower
symbol space. Consequently, the polarization interaction smooths the wave propa-
gation.

Alternatively, we could have introduced the electromagnetic power-flux normal-
ization analog (PFN), see de Hoop?®. Then the transverse Helmholtz operator and
its square root, the longitudinal slowness, are symmetric, which forces stability of
the forward scheme. A disadvantage of the PFN is the numerical implementa-
tion; it is more difficult due to the occurance of the square root of the longitudinal
slowness and its inverse in the composition and decomposition operators and the
additional square root Ai/; in the slowness. Therefore, the electric-field or magnetic-
field strength normalization analogs are preferred in our numerical implementation
above the power-flux normalization analog. However, it is easier to ensure stability.
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Appendix

6.A Notation

6.A.1 Matrix representations
See also Section 1.2. In this and the next chapter, four types of vectors and matrices
are used
@ scalars, denoted as a,
@ vectors of length 2, denoted as (lower-case Greek letters will be used for sub-
sripts: v, p,--- =1,2)
a=a, =
- v az ?
2 by 2 matrices, denoted as a,, ,,
® vectors of length 3, denoted as (lower-case Latin letters will be used for sub-
scripts: k,r,---=1,2,3)
a
a=ar = a2 3
as
3 by 3 matrices, denoted as ay,r,
@ vectors of length 4, containing two vectors of length 2, denoted as (upper-case

Latin letters will be used for subscripts: I,.J,--- =1,2)

/((11)1\
v=er= ()= e
(a2)2

4 by 4 matrices, containing four 2 by 2 matrices, denoted as a; ;.

/4
As an example, the two elements of vector a = KCV) are vectors of length 2:
p

b=b, =a; = (E(‘ﬁ;i) andc=c, =ay = (EZ’%I))

The vectors of length 2 will be loosely written without subscript. In order to
emphasize the inner product notation, we also use the following notation with su-
perscript ©

aya, = ala.

For 2 by 2 matrices, the identity matrix I = <(1) (1)) will be often neglected in

R . . . (0 0)\ .
multiplication with a scalar and often written as 1. The zero matrix (O 0) is

often written as 0.
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6.A.2 Function (tensor product) spaces, inner products

In this chapter, many mathematical manipulations with operators are performed.
These operators are defined on a function space. These spaces and their inner
products are introduced here.

L, inner product

The vector L, inner product of vector functions 9,(z;) and w,(zy) is defined by
(see also Equation (3.27))

def o0 )
(D, 10,,) é/ / Dy (2, 2) W (21, 29) dzy dzs, (6A.1)
I1==00 JI2==—00

where we used the summation convention. The L; norm of #(z1) equals
6] = (B, 0,)"/. (6A.2)

In this thesis, the notation (0, w)g is reserved for the corresponding (vector) bilinear
form, defined as (without complex conjugation)

o0 o0
~ ~ def n N ~ “
(0, ) 22 / / 8y (21, €2y (21, 72) day dy = (b, 073).
T1=—00 v T2—=—0C0

(6A.3)
Alternative inner product
Note that the transposed operator of Agpy equals (compare with (6.76))
AEFN = 42,1141,2 = Amrn, (6A.4)

which is the transverse Helmholtz operator of the magnetic-field strength normaliza-
tion analog (6.71): the equations in the electric-field strength normalization analog
are the transposed equations of the magnetic-field strength normalization analog.
This prompts us to introduce an alternative vector inner product

[e9) (oS

~ ” def < ~ ~

(vll)wl/)L é\/ / (A2,1)u,pvp($17$2)w;(zlax2)dxlde
T Ty=—00

I ==-—00

= ((AZ,I)V,p'[}pa'lbu)a (6A5)

(for lossless bidirectionally anisotropic dielectrics) and an alternative vector bilinear
form

oo [e.9]

~ ” def - N N

(0y, Wy )p é/ / (A21)up05(z1, 2)Wy (21, z2) dzydxy
r1——00 To2=—00

= <(A2,1),,,pf)p,1f}:>, (GA-6)




188 3-D Configuration

(for bidirectionally anisotropic dielectrics) to analyze the wave propagation. Clearly
— using the symmetry of A; » and A, ;, see Equations (6.39) and (6.39),

(A, )5 = (0, Ab)g. (6A.7)

The transverse Helmholtz operator A is thus self-adjoint within this bilinear form.
In the lossless case, the transverse Helmholtz operator is also self-adjoint within the
above inner product, see also Marz!33.

For general anisotropy one should usc a different inner product in which both
counter-propagating waves, are included.

6.A.3 Operator symmetries

The adjoint operator (BY), , = (B, ,)H of the operator B, , is defined as

(Bu,ytp i) % (0, (BM): i), or (B pbp, 1) % (0, (BY), ,i,).
(6A.8)

The transposed operator (BT), , = (B,,)T of the operator B, , is defined as

(Bu,ptps ) = (0, (BT),pt0,)8, or  (Bu,bp,i) ¥ (0, (BT ).
(6A.9)

The operator Bis

self-adjoini if By, = (B,
symmetric if B,,= (BM), e
skew-symmetric if B,,=-(B"),,.

Three important examples are

ar =-a,, for v = 1,2, (6A.10)
(€0,)T = —d,e, forv=1,2, (6A.11)
(8,0,)F = 8,0, (6A.12)




CHAPTER 7

3-D Numerical

Implementation:
Third-Order Thiele

Approximation on a
Transverse Hexagonal Grid

This chapter extends the numerical total rational-approximation approach of Chap-
ter 5 to a three-dimensional anisotropic configuration. The vectorial electromag-
nctic wave propagation is considered. Due to the increased complexity, some small
changes are made in the numerical implementation. The extension to the acoustic
wave propagation, which is mathematically simpler due to the absence of different
polarization states, is not discussed and left as an exersize to the reader.

Several researchers have investigated and developed a vectorial Beam Propa-
gation Method. Some of them are Rivera!'4, Li'®* Huang et al.!®® and Liisse et
al.'%®. For an overview, we refer to Section 1.5. Some authors restrict themselves to
semi-vectorial wave propagation. The coupling between the occuring states of po-
larization is then neglected, see Stern'®3. As far as the author knows, the inclusion
of reflection in a 3-D vectorial scheme has only been considered by Pregla et al.®8,
who developed the MoL-BPM, a beam propagation method based upon the method
of lines.

In discretizing the coupled set of two one-way wave equations on a hexagonal
grid, we can, in principle, follow two strategies. We now describe both strategies.

In the first strategy we optimize the discretization of the transverse Helmholtz
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operator directly. By doing this, the propagation and the polarization coupling can
be made accurate up to O[(Az)*], where Az is the distance between two discretiza-
tion points. The original building operators of the transverse Helmholtz operator,
A] 5 and A, 1, cannot be extracted from the discretized transverse Helmholtz oper-
ator, and the symmetry relation (6.88) is lost. To create a stable numerical scheme,
we must compute the wave propagation in both normalization analogs simultane-
ously: the electric-field strength normalization analog and its transposed analog,
the magnetic-field strength normalization analog, see Section 6.6. Consequently,
the corresponding numerical scheme becomes twice as time consuming, compared
to a single one-way wave propagation scheme.

In the second strategy, we start with discretizing the original building operators,
fh,g and Azyl. In order to keep the matrices sparse, we replace each first-order
derivative by an elementary difference operator. This.approach conserves the sym-
metry relations and thus also the stability. The accuracy of the coupling term,
however, is decreased to O[(Az)]. In order to save the symmetry relations for the
rational finite difference operators, the corresponding matrices become denser. An
alternative discretization scheme will lead to a more accurate polarization coupling
term, but then the forward propagation looses its accuracy; reducing to O[(Ax)].

Choosing a different discretization scheme, which is not based upon discretizing
1‘11,2 and Az,l first, the term of order w~* will probably remain. Neglecting this term
leads to instabilities, which must be suppressed by other means, as it is done in the
modified Crank-Nicolson scheme (see Huang et al'®® and Li'®'), or a combined
Bremmer approach (as presented here, see Section 6.6).

This chapter is organized as follows. In Section 7.1, the one-way wave equation
is simplified for the numerical scheme: the square root operator is approximated by
a third-order Thiele-type approximation, the optimization procedure for improving
the accuracv is addressed to, and the dissipation trick and co-moving reference frame
are introduced. Section 7.2 describes the discretization on a transverse hexagonal
grid. The derivatives are approximated by finite difference operators; their accuracy
is discussed in detail. In Section 7.3, the numerical scheme in derived. The stabil-
ity of the numerical scheme is emphasized. Section 7.4 discusses the transparent
boundary conditions for decreasing the influence of the computational window. In
Section 7.5, the group and phase slownesses are determined. An optimization proce-
dure is introduced to minimize the numerical anisotropy and numerical dissipation.
In Section 7.6 and Section 7.7, the composition and decomposition operators and
the reflection operator are discretized, respectively. Finally, the results are discussed
(Section 7.8).

This method has been presented at an international meeting, see van Stralen et

al.'v7.
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7.1 Rational approximation of the one-way wave
propagator

Consider the homogeneous one-way equation (the homogeneous version of Equations
(6.133) and (6.134))

oW + jw Wl Wl =0, z3 € (0,54, (7.1)

which is satistied by the loading—oxder term of the Bremmer series. In this section, we
derive a sparse matrix representation for its propagator, P(21, m) (3-D eqmvalent
of P(z, m) in Equation (3.84)). In the associated approximations, we maintain the
hyperbolicity of the time-domain-equivalent equations. The key towards sparsifica-
tion is deforming the evanescent regime into an artificial propagating counterpart.

7.1.1 Third-order Thiele approximation

The longitudinal slowness operator contains a square root operator
NES .
P = A kel + 52 (7.2)

Here, cref(3) is some (transverse constant) reference wave speed and = is a scaled
and normalized transverse Helmholtz operator (or contrast transverse Helmholtz
operator)

£= (cfef[\ - 1) . (7.3)

For our numerical scheme, we consider Thiele’s third-order continued fractions ap-
proximation (see Equation (5.3)). The Thicle approximation of the square root
reads

(1+2) 2 =1+ (1 + Bsz) Bz + Boz?). (7.4)

The Thiele’s third-order continued fractions approximation caries over to the slow-
ness operator as

~ () STI1 (+) - _ _ ES 2 a2
' ~r =Aintep ey (L+BE)THGHE+ HE). (7.5)

Because we use a transverse constant reference medium, the symmetry between the
two normalization analogs, EFN and MFN, is preserved in the Thiele approximation.
From now on, we freely omit the superscript 1.

Scaled transverse Helmholtz operator

The scaled transverse Helmholtz operator in the electric-field strength normalization
analog (see Equations (6.82) and (6.128)) is given by

2 ref \ 2 C —
Epen = x + ((wf) [(gl) s (B &) + ( 551) (0, —al)}
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In the magnetic-field strength normalization analog (see Equations (6.82) and (6.132))

we have
N rref \ 2 , -~ .
EMFN = X T (wa) {5 (g;) 53,]3 (B, 92) + (—651) (02 —31)}

In here, the contrast matrix x is given by

X =¢€qe — 1. (7.6)
The scaled transverse Helmholtz operator is decomposed into three suboperators

(see Equations (6.85)-(6.87))

ani.pol iso.pol

+ £ += : (7.7)
each operator describes a different physical phenomenon, namely
. ~prop
e propagation (£ ),

~ani.pol

¢ physical polarization interaction owing to anisotropy (= ), and,

).
It is noted that AM in I contributes to the directionally varying propagation owing

to general anisotropy. First, the forward propagation is described by the propagation
term of the transverse Helmholtz operator (see Equation (6.85))

. T . . . 2iso.pol
¢ geometrical polarization interaction owing to heterogeneity (=

~.Ppro A pro Cre 2 5 - 1 0
=@t =xr (S @ (g 1) 73)

Second, the physical polarization coupling owing to anisotropy between the two
polarization states is described by (compare with Equation (6.86))

~ani.pol ~ani.pol Cre 279 -
:EF;J) = (SMF;)JO )T = ( wf) (3:) (81 82) (E:s,ésl -1), (7.9)

Third, the geometrical polarization coupling owing to heterogeneity between two
polarizations states is described by (sce Equation (6.87))

~iso.pol ~iso.pol

ZEKFN  — (-:MFN )T = (Crd)z (gi}) ((0163'_,§)(3259::13)) e'. (7.10)

w

Operator 41,1 describes the directionally varying propagation owing to general an-
isotropy

4 1 (0 _
Ay = (w! (é) (e1,3,€2:3) €33 (7.11)

Examining the above equations, we see that it is necesary to discretize the second-
order derivatives 07 and 0%, the first-order derivative 9, and J> and the mixed
second-order derivative 9,0;.
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7.1.2 Optimization

As in Section 5.1, the Thiele parameters are
Bi=1/2,  B=1/8,  fBy=1/2. (7.12)

The parameters 3y, 3> and 83, however, can be adjusted by minimizing the difference
between the principal parts of the longitudinal slowness and its continued-fraction
approximation, defined by Equation (7.5), with respect to the L, norm over all the
propagating modes (i.e., the real slowness surface). Thus, the artificial azimuthal an-
isotropy is minimized. The optimization is for the principal part of the left symbols,
thus the polarization interaction owing to heterogeneity is excluded. For conve-
nience, we restrict ourselves to isotropic media for the optimization procedure. The
extension of the optimization procedure to anisotropic media is straightforward. Us-
ing an optimization routine based on the simplex method (E04CCF - NAG Fortran
Library Routine), the following values are obtained for ¢ = c;ef

By = 0.531, Ba = 0.379, B = 0.835. (7.13)

These values differ slightly from the values in (5.9), which belong to the 2-D wave
propagation.

7.1.3 Dissipation trick

To suppress artifacts and aliasing (which may arise from the discretization to be
carried out in the transverse direction) from the large transverse wave number com-
ponents present in the wave-field, we may replace the real frequency w by a complex
one

W = w(l—j0), (7.14)

just in the expression for jwf’ . See Subsection 5.1.3 for more details. This procedure
results in a complexification of the expansion coefficient.

7.1.4 Co-moving frame of reference

To suppress artifacts in the longitudinal derivative, the numerical computations are
done in a co-moving frame of reference, traveling in the direction of preference.
In order to preserve the commutation relations between the internal terms of the
longitudinal slowness (Zs in Equation (7.5)), we introduce a co-moving reference
frame in which crer(23) is independent of z; and z,. The change of frame yields

h(xy,w) = exp(jwret) W (zx, w), (7.15)

in which

rur(e) = [ © 0 e, (7.16)
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is a reference longitudinal travel time. Substituting (7.15) in (7.1) yields

Bk + jw (ﬁ(“ ) h=0. (7.17)
Note that in Chapter 5, we introduced a local reference frame. This is especially
useful for analyzing transient wave phenomena in media with large (but not fast)
variations. Here, we introduced a transverse constant reference frame, because then
the symmetry relations are preserved. These relations play an important role in the
polarization coupling.

7.2 Discretization in the transverse directions

The transverse derivatives are approximated by finite-difference operators on a
hexagonal grid. First, we discuss the criteria for discretizing. Subsequently, we
analyze this hexagonal grid, the matrix reprentations of general finite-difference
stencils and the elementary differencing. Then, we analyze some elementary differ-
ence operators, which are useful for analyzing the stability of the numerical scheme.
Finally, we discuss the second-order derivatives, the first-order derivatives and the
mixed second-order derivatives.

7.2.1 Discretization criteria

Our main goals are to create a fast numerical scheme with an as high as possible
degree of accuracy. In discretizing the differential Equation (7.17), several criteria
play a role. These criteria are now discussed. The final scheme will be a trade-off

discuss the representation in time-domain and summarize three reasons for using a
hexagonal grid. Finally, we discuss our choices.

In order to create a fast numerical scheme, we must search for sparse and small
matrix representations for the involved operators. A sparse matrix representation
Canl e LbLalted by ueing aec Jifcrence or Snite clomont annreavimations Tt s
noted that a finite-difference approximation and its rational extension require, un-
der some conditions, the same density of the matrices for our rational approximation
of the square root operator. Another important condition is that all rational ap-
proximations have the same denominator. However, this might have consequences
for the accuracy. A small matrix representation can be obtained by reducing the
computational window size with the aid of accurate absorbing boudary conditions
and taking only a few discretization points per wavelength (the Nyquist limit is
2). Another possibility would be to use a nonuniform grid: there are many grid
points in the neighborhood of the core of the configuration and fewer towards the
outer regions. But when taking only a few points per wavelength, there is not much
freedom left for varying the grid spacing.

In order to create an accurate numerical scheme, we must search for accu-
rate approximations of the involved derivatives (first-order, second-order and mixed
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second-order). It turns out that finite-difference approximations on a hexagonal grid
maintain rotational symmetry in the leading order error term. This has consider-
able advantages in modeling wave propagation. A rational approximation does not
necessarily lead to denser matrices. Using a rational finite-difference approximation
of the involved derivatives is consistent with the third-order Thiele approximation
of the square root and the (1,1) Padé approximation for integrating the longitudi-
nal derivative. The rational spectral approximations have also consistent orders of
accuracy: the matrices are not denser, but they are more diflicult to invert due to
the bad condition numbers.

Time-domain results are obtained by combining the computations at several
frequencies. These computations should be performed at the same relative grid
size: the number of points per wavelength in the reference medium should be the
same for all frequencies. Consequently, the physical dimensions of the grid, Az and
Axg, differ between the frequencies. An interpolation procedure must be used to
compute the field values at the grid, on which the numerical results are presented.
This procedure has not yet been implemented.

The reason for using a hexagonal grid instead of an ordinary rectangular grid
is threefold. First, the artificial azimuthal anisotropy due to the discretization in
the transverse direction is the better suppressed, see Mersereau'®®, and Peterson
and Middleton'%®. Second, there is the advantage of the reduced number of grid
points: a square grid requires 15.5% (2/v/3) more grid points than a hexagonal
grid in order to model the same Nyquist region. Third, rational approximations of
the derivatives can be introduced to increase the accuray with two orders. These
rational approximations do not increase the density of the final matrices in the Thiele
approach, through which they are very attractive and useful. Besides, it is noted
that a hexagonal grid is very attractive for a discrete Fourier transform, see also
Mersereau'®®, and Peterson and Middleton!'®®. However, for the analysis presented
here, no Fourier transform has been employed.

With the above discussion in mind, we choose for rational finite differences on a
coarse uniform hexagonal grid. This is discussed in the remainder of this section.

7.2.2 Hexagonal grids, indices

A uniform hexagonal or triangular spatial grid (see Figure 7.1) is employed in the
transverse x> plane. The mesh has the structure of a honey comb. Prisms form
the cells of the mesh.

Since, in optoclectronic circuits, the waveguiding structures are often layered
in one of the directions this direction is perpendicular to the chip surface and
is mostly called the transverse direction; it is common practice to draw it as the
vertical direction in the plots — we choose the orientation of the grid according, see
Figure 7.1. In addition, it is noted that the circular shape of optical glass fibers can
be described very accurately on a hexagonal grid.
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Figure 7.1: Hexagonal grid. The upper figure shows the transverse cross-section
of the 3-D grid in the lower figure. See text for the notation used.
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The transverse sampling interval is denoted as Az; the sampling interval equals

Az, = 1V3Az, Azy = As, (7.18)
and the number of grid points equals N,, and N,, along the ¢;-and <, directions,
respectively. The total number of transverse grid points is Nz, = N, Ny,. In the
numerical implementation and in the figures in this thesis we choose V., to be even.
The edges of the outer cells constitute the computational window. The restriction
introduced by this computational window causes numerical artifacts and therefore
needs some special attention, see Section 7.4. The longitudinal grid spacing is
denoted as Azg. This mesh parameter can be adaptively chosen along the preferred
direction, which makes the grid nonuniformn along the 23 direction. In order to write
the relevant operators in matrix form, we introduce a slice index 1 in the transverse
plane (slice) according to

(1) = (s (Gyiz = 1), (50, 2), o0, (i, Nip), (i1 + 1, 1), 000). (7.19)

The ordering over first i and subsequently over ¢, is preferred, since waveguiding
properties in the z, direction are assumed to be weaker in many configurations
under investigation. Thus, this formulation is a straightforward extension of the
2-D configuration. X

The wave matrices, W) and W), and the field vector, Fy and F,, contain
two components each. For the discretized vector the notation

Rz, 22, 733 0), ifl1<i<Ng,
hQ(Ill;i—N,l,’I‘Iz;i—N%vxﬁw)a if Ny, <1< 2N, (7.20)

ili({L'3§UJ) :{

will be employed, where

21 = i1 (1) AzvV3/2 = i, (i) Axy, (7.21)

3

T2 = [i2(2) + 1/2]Az — [4; (1) mod 2] Az /2, (7.22)
with the transverse slice indices

11(4) = int[(F — 1)/n2] + 1, (7.23)
12(1) = tmodns, (7.24)

in which int[.] denotes the entier. Here, xy,; and z»;; arc the coordinates of the first
component and z7,; and z3; are the coordinates of the second component of the
field/wave matrix. For the second component, we use either the same grid (first
strategy)

wll;i = L1i, (7.25)

.’L‘lzl = T2;i, (726)
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grid 1

grid 2

Figure 7.2: The three grids: grid 1 (dashed line and triangular dots), grid 2
(solid lines and solid dots) and grid 3 (square dots).

or a shifted grid (second strategy)

xy.; = T, — Ay /3 = [ia(i) — 1/3]A2, (7.27)
Iilz;i = T2; t+ /_‘12/2 = {Lg(l) T 1];‘:‘1, - {L](L) mod Z]Ax/‘z (728)

In the second strategy, different grids (staggered grids) are used for the two com-
ponents of each wave matrix W™ and W(=) and one intermediate grid where the
medium properties have to be evaluated (see Figure 7.2).

As for the longitudinal slowness, we CMpIOY & ratlondl Appruxiiaiion vl L
spectra of the relevant partial differential operators.

7.2.3 Matrix representations of general finite-difference sten-
cils

The discretization of the pseudo-differential equation is based upon a finite-difference
scheme. The derivatives is replaced by fractions of finite-difference quotients. First,
some basics of elementary finite-difference operators on hexagonal grids are dis-
cussed. Computational molecules represent these operators. They are also called
stencils. The graphical symbolizations of the molecules used here are given in Fig-
ures 7.4, 7.5, 7.10, 7.12 and 7.13.
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Let us consider a general molecule M(z), z2) on a hexagonal grid

(Mﬂ)(’tl A(L’, ’ig A.L'g)

= m, ()ifz, +V3Az/2, 25 — Ax/2)  + ma()i(z + VIAL/2, Ty + Az/2)
+my(i)a(x, T2 — Ax) + myg(i)u(z, z2)
+ ms(i)a(xy, z2 + Ax) + mg(i)i(r) - V3Azx/2,z9 — Azx/2)
+ mr(8)i(z) — V3AZ/2, 22 + Ax)2) + mg(i)i(x, + V3Az/2, 20 — 3A2/2)
+ mo(@)i(z; — V3Azr/2,zs + 3A2/2), (7.29)

with its pictorial representation

mg my 2
\ /
g — IRy —— TFLy
/ \
Mg my Mg

The structure of the corresponding matrix is shown in Figure 7.3. The matrix has
three diagonal blocks that are themselves tridiagonal. This form is called tridiagonal
with fringes. A Taylor series expansion of @ about (z,, z2) will be used to determine
the accuracy of the difference operator. The transposed molecule M’ = M* of M is
given by (left-hand side if 4, is odd; right-hand side if i; is even)

mi (i) = m7(i + N, — 1), my (i) = mz(i + Ny, ),
mg(i) = ma(i — Ny,), mg(i) = ma(t — Ny, — 1),
my(i1) =my(i — Ny, + 1), m4 (i) = mi(i — Ny,),
mg (i) = mi (i + Ny, — 2), mg (i) = my(i + Ny, — 1),
WLIQ(i):ml(i_N12+2)a Wl;(i):ml(i~N12+1),
and
my (i) = ms(i — 1),
m (i) = ma(i),
mg(i) = ma(i + 1).
A molecule M is said to be symmetric if MT = M, skew-symmetric if MT = —M,

and self-adjoint if M = (MT)* = M. We will use only use 7-points (m;-m7) and
4-points molecules (ma4-mg, mg or my-my, Mg Or My, M3, My, Me)-
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mams mao
ms3mgms mimso
ms3mg4 iy mgingms
m31mgMms mgmymsa
mszmgygmMms mgmyms
ms3my mgimimo
MegM7 My myms mpma
mMeMM7Mg mz gy mis mgm, ms
Mgy My msamgyqms mgmimeo
MegM7Myg mazmams mgmi ms
me My msnmgyms mgmyms
me mamgy mgm,
mrmMmg myms
Me M7 My mg‘m4 ms
mem7 Mg mM3mM4MmMs
MmeMmM7Mg m3myamMms
memrmg M3 M4 My
memy m3my
Figure 7.3: The structure of the matrix corresponding to molecule M. Here,

N, = 6. All elements not shown are zero.

Some elementary difference operators build up all other finite-difference operators.
In this section, we investigate these elementary difference operators, which are the
elementary molecules. Figure 7.4 shows the pictorial representation of these opera-

LULED.

The accuracy of these elementary difference operators can be analyzed using a
Taylor series expansion. The gray dot indicates were the first-order derivative is
approximated and reveals the shifts from one (input) grid to another shifted grid
(output):

51, 62 : grid 1 — grid 3,

=T _T

51 5 62 . grid 3 — grid 1,

3y : grid 2 — grid 3,
T

5 : grid 3 - grid 2.
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O O O O

il
i
=

O O D O

Figure 7.4: Pictorial representation of the elementary difference operators. The
gray dot indicates where the first-order derivative is approximated.

The accuracy of the difference operators is found as

51 = V3Axd, — H(Az)* (97 + 82) + LV3(Az)*0,(0] + 93) + O[(Ax)"],

(7.30)
8, = V3428, + 1V3(Ar)*0} + O[(Ax)®), (7.31)
0y = Azdy + £(Az)*83 + O[(Ax)°]. (7.32)

The corresponding pictorial representations are shown in Figure 7.4. The arrows
indicate the direction of the shifting of the grids. Note that leading order error term
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in &y is rotationally symmetric. In principal, the molecules 4, and 8, can be used
to construct the numerical scheme. However, if we would like to construct the more
gencral molecules only on the neighboring grid points, we must use the molecule §;.
This is shown in the next subsections.

We also introduce a neutral difference operator dy for later use. The neutral
operator equals 0 up to order O[(Az)?] (see Figure 7.10).

7.2.5 Laplace operator and second-order derivatives

In this section, the discretization of the Laplace operator 8,8, = 8? + 92 and its
two terms, the second-order derivatives 87 and 7 is discussed.

Laplace operator

The discretization of the Laplace operator (8,8, = 87 +82) is formulated in terms of
recursive filters based on nearest-neighbors interactions. Our recursive filter acting
on a test function 4 is defined through

(1+ a207)(8,0,1) = (Az) 20,62 4, (7.33)
where the molecule 62
(61a) (21, 22)
= (z1, T2 + Az) + 4(21, 72 — Az) + 0(z) + V3AZ/2, 25 + Az/2)
+a(z) — V3Ax/2,z5 + Az/2)  + (21 + V3AT/2, 22 — Az/2)
+i(z1 — V3Ax/2, 20 — Az/2) — 66z, x2), (7.34)

is graphically symbolized in Figure 7.5. In Equation (7.33), 1 denotes the identity
and (9,0,u) = (9,0, )t represents the approximate Laplace operator having acted
on %. The molecule 82 is symmetric and thus the approximate Laplace operator is
symmetric, 100. 1he mtroduced rational approximation does not make the matrix
representation of the longitudinal slowness denser. Using a Taylor series expansion
of & about (21,x2), 62 is found as

&1 = {3(A2)%0,0. + £ (A2)*(8,9,)* + O[(Az)®]} . (7.35)
Hence, the discretized Laplace operator equals

@,0,) = Sar {1+ 2as(A2)20,0, + O[(Ax)*]}
{1+ £(A2)28,0, + O[(A2)"]} 8,0,. (7.36)

Taking the following values of a; and a»

ay = 2/3, ay = 1/24, (7.37)
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Figure 7.5: The graphical symbolizations of the molecules 62, 6 and 83, that
correspond to the Laplace operator 8,8, and the operators 8% and

a2,

an crror of order O[(Az)*] is obtained. The scheme is consistent and fourth-order
accurate. Note that the leading order error term is rotationally symmetric. Instead,
however, a; and a; are used as fitting parameters. Requiring that, in the limit
Ax | 0, the spectrumn (or left symbol) of (9,9, ) tends to the spectrum of the Laplace
operator up to the lowest order, leads necessarily to (using a Taylor series) a; = 2/3.
The parameter a, is determined by minimizing nonlinearly the difference between
the spectra of the approximate and the exact Laplace operators with respect to
the L, norm over the Nyquist interval. Thus, a more accurate spectrum over the
spatial bandwidth as a whole is obtained. Using an optimization routine based on
the simplex method (E04CCF - NAG Fortran Library Routine), the following value
for as is obtained

as = 0.0621. (7.38)

It is noted, however, that if it is known beforehand that the actual bandwidth
of the wave-field to be extrapolated, is limited by a radial transverse wave number
kdais < kg Nyq = 27r/(\/§Ax), the optimization should be carried out over this sub-
band. This will be discussed later on. Figure 7.6 and Figure 7.7 illustrate the
spectra of the exact and the approximated Laplace operators with a; and ax as
in Equation (7.37) and as in Equation (7.38), respectively. A relatively large grid
spacing is chosen to elucidate numerical artifacts. Note that the region between
the azimuthal angles 0° and 30° contains all information of the spectrum. For
comparison, Figure 7.8 illustrates the spectra of the approximated Laplace operator
on a square grid. The corresponding discretized Laplace operator equals

(8,0,) = 0,0, + 5(Ax)? (8] +83) + O[(Ax)*]. (7.39)

The leading order error term is no longer rotationally symmetric, which is apparent
in the figure.
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The spectrum or symbol of the approximate Laplace operator 0,0,
with a; = 1/24 (solid line; upper left), the exact Laplace operator
(dotted line; upper and lower left) and their difference (upper right).
The corresponding curves for «; = 0 and « 2 = 0 are drawn in the
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in the upper figure indicates the borders of the Nyquist region and
the structure of the grid in the Fourier domain. Here, w = 1 s !

and Ary = 7 m.

Second-order derivatives

The Laplace molecule can be split into two parts

62 =62 + 42, (7.40)

The difference operators 67 and 63 correspond to derivatives 87 and 93, respectively.
They are graphically symbolized in Figure 7.5. The leading order error term is not
rotationally symmetric

2550 = (Az)?050 + & (Az)*034 + O[(Ax)S). (7.41)
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Figure 7.7: Idem as for Figure 7.6, but now with a; = 0.0621.

The difference operators 87 and 63 can be split into compositions of two correspond-
ing elementary difference operators,

oy
&

Il

|
=1
gl

(7.42)
. (7.43)

Figure 7.9 shows the spectrum of the approximated second-order derivatives 67 and
53.

7.2.6 First-order derivatives

Here, the discretization of the first-order derivatives 0; and 9, is discussed.

The discretization of the polarization coupling operator is also formulated in
terms of recursive filters based upon nearest-neighbours interactions. These polar-
ization coupling terms contain the first-order derivatives 8; and 8>. Our recursive
filter acting on @ is defined through

(1+ a46%)(0,4,) = (Az) ' as(6,4,), (7.44)
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Figure 7.9: The real part of the spectrum or symbol of the approximate (solid)
and exact (dotted) second-order derivatives 8} (left) and 93 (right)
with a; = 0.0621. Herew = 1 s~ ! and Az; = 7 m.
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Figure 7.10:  The graphical symbolizations of the molecules d,, 6, and oy that
correspond to the first derivatives 8, and O, and the zero matrix
up to O[(Ax)?].

where the molecules §, and 8, are

(614) (1, 22) = V3 i) + VBAz/2,25 + Ax/2) — iz, — V3A2/2, 22 — Ax/2)

—u(r; — \/§A:r,/2, T2 + Ax/2) + a(x; + \/34\10/2,1'3 - A$/2)},
(7.45)

and

(020) (21, 22) = 2 4(x1, 79 + Ax) — 240(zy, 22 — Azx)
+a(xy +V3Az/2, ) + Az/2)+ Q(x; — V3Ax/2, 25 + Az /2)
—a(r +V3Az/2, 25 — Az/2)~ iz, — V3A2/2, 25 — Az/2),
(7.46)
and 07 as in (7.34). Figure 7.10 shows their graphical symbolizations. Due to the
rotational symmetry of the leading order term, the same denominator as for the

Laplace operator can be used. Using a Taylor series expansion of @ about (1,22),
01 and &, are found as

0, = {64 + §(A2)°0,0, + O[(Ax)*]} 9, (7.47)
The discretized derivative (9,) equals

(D) = 6az {1+ 2ay(A2)20,0, + O(Dx)*]}
{1+ §(42)%0,0, + O[(Ax)*]} 0, (7.48)
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Figure 7.11: The imaginary part of the spectrum or symbol of the approximate
(solid) and exact (dotted) derivatives &y (left) and O; (right) with
as =1/12. Here w = 15! and Az, = 7 m.

Taking the following values of a3 and a4
asz = 1/6, aq = 1/12, (749)

an error of order O[(Az)*] is obtained. Note that the leading order error term is
rotationally symmetric. Instead, however, a3 and a4 are used as ﬁtting parameters.
Requiring that, in the limit Az | U, the spectrum of (G,) tends io the spectrum
of the derivative up to the lowest order, leads necessarily to (using a Taylor series)
a3 = 1/6. The parameter a4 is determined by minimizing nonlinearly the difference
between the spectra of the approximate and the exact derivatives with respect to
the Ly, norm over the Nyquist interval. Thus, a more accurate spectrum over the
spaiiai Dandwidil as o whule 1o Jhtaancd. Inctond of neing an antimization rontine
based on the simplex method (EQ04CCF - NAG Fortran lerary Routine), as we
have done for determining a2, we choose

ag = az. (750)

The main advantage of this choice is that the approximate Laplace operator and
the approximate first-order derivatives have a common denominator. Therefore, the
final scheme will contain sparser matrices. Figure 7.11 illustrates the spectrum of the
exact and approximated derivatives 8, and J» with a3 and a4 as in Equation (7.49).
The deviation between the exact and numerical derivatives is reasonable large near
the boundaries of the grid, because these numerical molecules were not optimized.

The difference operators 8; and d, can be split into the elementary difference
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operators,

= :T
6 =V3 (51 - 51) , (7.51)
;=3 (32 -~ S;P) + on, (7.52)

where d is the neutral difference operator: it is a zero operator up to O[(Az)?] (see
Figure 7.10). By discretizing the polarization coupling in this way, high degree of
accuracy for the molecules is obtained, but corresponding discretization of the orig-
inal operators, A 1,2 and AQ 1 is lost. This problem is also faced to on a rectangular
grid, but it is solved by using a staggered rectangular grid.

7.2.7 Mixed second-order derivative

The discretization of the mixed second-order derivative, 8,82, can be accomplished
in several ways.

Discretization of 8,9,

For the operator /11,2 we neced to compute d1092. Note that this operator cannot be
defined on a square grid using only the four neighboring grid points, sec Rivera'%.
Our recursive filter acting on @ is defined through the rational equation

(1 + (136% + a;;()g)(alaz’ll) (ACL‘) a7612 u, (753)

where the molecule §;5 is

(0128) (21, 22) = Gi(z) + V3Az/2, 20 + Ax/2) — i(z) — V3Az/)2, 25 + Az/2)
—4(zy + V3Ax/2, 1y — Az/2) + G(x, — V3Az/2, 25 — Azx/2).
(7.54)

The pictorial representation of the molecule ;2 is shown in Figure 7.12. Using a
Taylor series expansion of @ about (z1,x3), 812 is found as

612 = V3(Az)? [1 + -é%(m)%?,af + 03)] 010,. (7.55)

It is observed that also on a hexagonal grid, we have to pay a price: the leading
order error term is not rotationally symmetric. The discretized operator 8;8> equals

(01058) = arV/3 {1 + g(Ax)‘Z(aga‘f + agd2) + O[(A;z:)4]}~

{1+ Hanea o +olan} o @50
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Figure 7.12: Left: pictorial representation of the molecule 6,5. Right: the real
part of the spectrum or symbol of the approximate (solid) and ex-

act (dotted) second-order derivative 0,0, with a; = 0.0621. Here
Ail'l =T.

Taking the following values of a7, ag and ag

1 1 1
—, ag = — ag = —, 7.57
7 8 9 (7.57)

an error of order O[(Ax)*] is obtained. Instead, however, ag and ag are chosen to
be

ar =

ag = ag = as. (7.58)

By doing this, the numerical scheme preserves big sparseness. Figure 7.12 illustrates
the spectrum of the discretized (0; 024).
The molecule ;2 can be split into two elementary difference operators

612 = “31321 . (759)

Discretization of 9,9, based upon the molecules —3'11‘52 and _g;rgl

Figure 7.13 shows the pictorial representation of the molecules —3?32 and -6, d;.

Using a Taylor series expansion, —3?32 and —3;‘31 are found as
3185 = V3(Ar)2010, + L(Ax)?0:(07 + 82) + O[(Ax)*], (7.60)
3,31 = V3(Az)?0,0, — L(Ar)?8,(87 + B2) + O[(Ax)]. (7.61)

When using the molecule §1 , a higher accuracy is obtained (O[(Az)?]) for (8201 ), see
Equations (7.59) and (7.55), but the accuracy of the corresponding Laplace operator
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Figure 7.13: Pictorial representations of the molecules —8, 85 and —4,0,. The
gray dot indicates where the mixed second-order derivative is ap-
proximated.

=—=T— — T —
(01 01 + 02 d2) deteriorates, namely to O[(Az)]. The leading order error term has
partly rotational symmetry.

To compute the molecules involving €, as in —3355‘;31, €3,3 should be determined
on the intermediate grid 3.

In view of the order of accuracy, this discretization has a few disadvantages: in
order to increase the accuracy of the Laplace operator, a rational approximation of
the finite difference operators can be employed. The accuracy of (0,0,) is, however,
then not increased.

With creating a simple and stable numerical scheme in view, this discretization
has the preference.

7.3 Matrix representation of the one-way propaga-
tor

Having introduced the transverse discretization, we can discretize the scaled trans-
verse Helmholtz operator. We discuss two strategies. In the first strategy we di-
rectly discretize the transverse Helmholtz operator. The second strategy is based
upon discretization the building blocks of the transverse Helmholtz operator. These
discretizations lead to systems of ordinary differential equations. These equation are
integrated over a finite distance, which leads to matrix equation: the propagator can
be extracted. The propagator contains two sparse matrix multplications and two
sparse matrix inversions. The condition number of these matrices is estimated in
order to control the computational speed of the matrix inversions.
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Table 7.1:  The two strategies and the molecules used.

8,0, o2 82 | 5o, ) By

strategy 1 (Si (Sf 5% 812 o1 42

strategy 2 | —3. 81 — 8985 | —8, 01 | —85082 | —8, 32 | 81, —8,

7.3.1 Discretized transverse Helmholtz operator: first strat-
egy

After discretization the scaled transverse Helmholtz operators obtain the following
forms,

(ZpFn) = C'M, (7.62)
<éMP‘N> =MTCL (7.63)

Matrix C represents the common denominator and is found to be (see Equation

/77 99\
\.09))

= (1 + az6%). (7.64)

It is convenient to split matrix M into two parts

= - - Dn e
VI = Vi + 1y Vi, .LE)
where 7, is the reference transverse sampling rate
Cref
ry = ——. 7.66
wAzx ( )

In a general anisotropic configuration, the matrices M; and M; are given by
My = (1+a20%)(eope’ — 1), (7.67)
_ (115% ard12) , 1 a15§ —a7612
M2 - ((17612 (1155 ¢ 63’3 + —a7612 a16‘12

+agm(5>((ala ) (Besl)) € (7.68)
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However, by discretizing the transverse Helmholtz operator in this way the equality
between the transverse Helmholtz operator Agpn and the composition of operators
ALQ and A271 is lost:

(Aprn) = (A1 2)(4s.1), (Ampn) ~ (Ay 1) (A o). (7.69)

In addition, the operators (Alyz) and (AgJ) themselves must preserve their symme-
try. Therefore, the symmetry relation in Equation (6.88) and also stability might
have been lost in the above discretization procedure. In order to force numeric stabil-
ity, the whole scheme has to be eveluated in both the electric-field and magnetic-field
strength normalization analogs. See also the detailed discussion in Subsection 6.6.2.

7.3.2 Discretized transverse Helmholtz operator: second strat-
egy

An alternative approach “ensuring stability” vyields discretizing the operators /11 2
and A, first, as given in Equations (6.36) and (6.37). In order to obtain a scheme on
the smallest molecule of a hexagonal grid we substitute §; (82) for the derivative 0
(8,) on the right-hand side, and their transpose for the derivatives on the left-hand
side. By doing this, we find the symmetric operators

=T
(‘;11'-3> = lg + W_Q(A;L')_z <_61(_5/~[\\/§) 63 3 (51/\/_ (52) (7.70)

—0y
(Ao ) = " + pp tw™2(Ax) 2 B2 (_5'1‘ 5" /\/g) . (7.71)
2, 0 _51/\/3 2 1
The corresponding discretized transverse Helmholtz operator equals
(Aprx) = (A12)(421), (Avrn) = (A20)(A1 2). (7.72)

Note that the terms of order w™* vanish (compare with Equation (6.82)). This term

also vanishes by taking 31 instead of §;. It is, however, not clear how to introduce
the common denominator (1 + a262) in Equation (7.70) without disturbing the
symmetry. The scaled transverse Helmholtz operator equals

(Zern) = (Zurpn) T = CMY, (7.73)
with
M’ = M, + rZMj. (7.74)
In a general anisotropic configuration, the matrix M5 equals
M, = C (“511_/;/3) e (V3 B)e + g (fg ) (-3 3vE)<
o 1 (7.75)

It is observed that this scheme has denser matrices than the scheme in the previous
subsection. This is due to the presence of C in Mj.
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7.3.3 System of ordinary differential equations

Substituting the discretized transverse Helmholtz operator into the onc-way wave
equation (7.1) with longitudinal slowness (7.5), we obtain a system of ordinary
differential equations of the form

(14 B3(2)Dsh + jwergt (B1(Z) + B2(Z) + crer(L + Bo(2))(A11))h.
(7.76)
7.3.4 Integration of the longitudinal derivative

The solution of (7.76) can formally be written as a product integral. This product
integral has to be evaluated, recursively, for every propagation step with size Axs.
The product integral is given by

z3+Ary
h(.?,‘,,,l'g + A.’L‘:;) = H

¢=x3
exp { —jo [erat (1 + B(2) 7 (B1(E) + 8:45)) + ()] (0,0 dc )
h(zy,x3). (7.77)
It is approximated by
h(z,,x3 + Axs) ~
exp { ~jwdes [f 1+ B(E)THAUE) + BAE)) + ()] (0w + SAzy))
h(z,,z3). (7.78)

To speed up the computations, the exponent is approximated by a (n,n)-Padé ap-
proximant. The (1,1)-Padé approximant is given by

1+ 32 , ;
eXp(Z/)’l’l—_/B~g7, ((.1Y)
where
Z = All,’gag s (780)
3 + _\I3/2

is the derivative that appears in Equation (7.76). According to Padé’s formula, we
have

By = 1/2. (7.81)

Instead of taking this exact value, we let 3y be a free parameter for an optimization
procedure. If A4, .1 = 0, the numerical scheme can be written as a two-step scheme:
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the (1,1)-Padé approximation of the exponent yiclds
(1 - Bu(E)) (1 = B12(E)) hlws + Azz) = (1 + B13(2)) (1 + Bua(=)) h(zs),

(7.82)
with
. ) L 1/2 _'
ﬂ“ _——ﬁg—zjﬂqu )31 3 [ ,33 + ZJ,BS)TI :61) - 4Jﬂ9r] 132] (/83)
. _ 1/2
Bra =—503—5ifor ' Br+% [ B3 + 5iBary 6) - 4jBor| 15’] (7.84)
o s 1/2
Bz = %ﬁ-’i_%.wgrl_lﬁl_% — 5iBory B1)” + 4jBor, 1/62] (7.85)
S 1/2
B = $683—5iBer Brt+3 [(ﬁs A 151) + 4jBory 152] (7.86)
and the reference longitudinal sampling rate
p o= et (7.87)

wAzxs

Note that Bi1 = —(f13)* and B2 = —(Br4)* if ¢rer is real.
If A, 1 # 0, the scheme is written as a denser one-step scheme

{(1 +ﬂs<é>) = Bocret(B1(Z =) + ﬂ2<é> ) = Bo(1+ B3(= ))(410] h(zs + Azs)
= [(14 Bu(EN) + Bocear (B1(2) + Ba(2)?) + a1 + Bu(D)) (A1) i) (7.88)

7.3.5 Propagator matrix

Equation (7.82) is decomposed into a two-step algorithm. The resulting scheme is
il(.’l?g + A.’L‘g) = Ql—ll P13Q1_2]P14FL(1'3), (789)
in the clectric-field strength normalization analog, and
h(zs + Azs) = PT(QR) TP Q) Th(zs), (7.90)
in the magnetic-field strength normalization analog, with
P, =C+3;M, (7.91)
Q; = C - B;M, (7.92)

for 7 = 11,12,13, 14. Introduce the diagonal matrix f, representing the change of
reference frame, with diagonal elements (see Equation (7.16)) (no subscript summa-
tion)

Ti,i = exp [jwrer (2154, T25i, 3)] - (7.93)
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The propagator matrix equals

(Pin)(m+1) = Ti;(Q11);£(P13)k1(Q13 )tm (Pra)m.n- (7.94)

The extension to a higher-order Thiele approximation for the square root in (7.4)
and higher-order Padé approximations for the exponent in (7.79) is straightforward.

7.3.6 Condition number

The matrix inversions are performed using the Biconjugate Gradient method, see
Gutknecht??® and Rivera'’*. A preconditioner and initial guess can improve the
speed of matrix inversion. In addition, good numerical performance (accurate and
fast) is obtained if the spectrum of Q; stays away from the origin. The location of
the spectrum can partly be controlled in the optimization procedure.

We have made a lot of numerical experiments in order to investigate the condition
number.

We observed that, in general, the matrices are better conditioned for a coarser
grids. Consequently, we do not recommand to use a total rational-approximation
scheme for dense discretizations (> 10 points per wavelength).

7.4 Transverse boundaries

At the boundaries of the computational window, linear boundary conditions are
employed. These boundary conditions are also known as Robin’s boundary con-
ditions or impedance conditions. These boundary coundiiions do not influence the
symmetry relations which are satisfied by the transverse Helmholtz operator A and
the longitudinal slowness operator I.

In Section 5.4, we discussed the boundary condition implementation in the 2-
D scheme. Here, we extend the method to the 3-D scheme. It is noted that the
unpiCiucubatiun 15 sugasy dibcrent {and oimpler) due to tha nee of a cnomaving
reference frame with respect to an z;- and z;-independent reference frame (see
Subsection 7.1.4): the numerical scheme now contains two sparse matrix equations
instead of one with denser matrices.

We now make a distinction between the left/right and lower/upper boundaries.
At the left /right boundary

dsh +jwn(i’2)(x1)fz =0, at ro = 0 and zp = (N,, + 1)Az.
(7.95)

while at the lower/upper boundary

o1h +jwn(i’1)(zg)fz =0, at z; =0 and z1 = (N, + 1)Ax;.
(7.96)
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By choosing 7*1) and {2 adapatively, the boundary conditions can be made
highly transparent. As an example, at the left boundary the derivative 0, is replaced
by 02

82k + jwAzn T (z))h = 0. (7.97)

A similar boundary condition is applied at the other boundaries.

7.5 Longitudinal group and phase slowness

In this section, we derive the slowness surfaces associated with the numerical scheme.
An optimization procedure is introduced to match the numerical and exact slowness
surfaces. For simplicity, we restrict ourselves to isotropic media. The extension to
anisotropic media is straightforward.

7.5.1 Slownesses after discretization

Substitute a plane-wave constituent in Equation (7.89)

iL(ile, 12 AT, I3 ATz, w) = expljwTrer(izAxs)] exp(—jw’y"l‘Awg)
exp[—jw(aii; Az + azis Axp)]. (7.98)

We then obtain the amplification factor of the finite-difference scheme
P13d1y P1adys = exp(—jwy*" Azz) exp(jwer Azy), (7.99)

in which 4P", p; and q; are the left symbols of the numerical representation for I,
P; and Qj, respectively. Note that in a homogeneous isotropic medium (constant
¢ = 1/,/€np), the polarization interaction vanishes and the operator of interest I’
equals

I' = (e +w26,8,) (é ?) : (7.100)
Its left symbol cquals
AP = (uoe — wla, ) <(1) (1)> . (7.101)

For a homogeneous isotropic medium, we find (we only consider the nonzero ele-
ments: the diagonal elements, which are equal)

p; = ng) + Péj) 4 cos(wan Az [2) cos(V3way Az/2) + 2cos(wa2AJ:)] ,
(7.102)
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and
q; = QY + Q¥ [4 cos(was Az /2) cos(V3way Az /2) + 200s(wa2A$)] ;

(7.103)

with
PY) =1 —6a, + B;[(1 = 6az)x—6a,r?], (7.104)
py) = as + B;( as x+ aird), (7.105)
Q(lj) =1- 6(12 — ,3][(1 — 60,2))("6(117‘,;2], (7106)
D= B as xt ard). (7.107)

The symbol of the finite difference scheme is the longitudinal phase slowness 4PP
given by

_1 In(pizagipiaais)

~ph _ -
VP 0w, w) = e jwAzs

= crof — (jwAz3) ™! [In(p13) + In(p14) — In(qu1) — In(gs2)],(7.108)

which reduces, if w is real valued, to

-1

) 2
AP (0, w) = cp + —— [arg(pia) + arg(p1a) — arg(qn1) — arg(qi2)] -
wAxs

(7.109)

Note that 9P"(0,w) = ¢! is only ensured if ¢ = ¢ef. The spectrum of I'is periodic.
The period is determined by the cosines in (7.102) and (7.103). The longitudinal
group slowness can be derived from the longitudinal phase slowness, see Section 5.5

P = A+ w(0.57)
= Cof +3(A23) 7! (4770011 + a15 iz — P13 Outia — Py Duqua) -
(7.110)

Note that 48" — 4 is indicative of the numerical anisotropy, whereas 3PP — 48% is
indicative of the numerical dissipation.

7.5.2 Optimization

The longitudinal phase and group slownesses are functions of our parameters {3;,
B2, B3, a2, Bo, 12, crer}, arising from the various approximations made to arrive at
a sparse matrix representation for the propagator. The optimization procedure is
analogeous to the optimization procedure described in Subsection 5.1.2. However,
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Table 7.2:  The parameter sets for propagation (cer = ¢).

[ parameter set f 1 | 2 [ 3 | 4 _l
Az [ Ao - 0.2 0.2 0.2
Axy /Ao - 0.2 0.2 0.2
Re(/) 1/2 | 0.635 | 0.405 0.357
Im(31) 0 0 0 -0.112
Re(52) 1/8 | 0.215 | 0.139 | 0.142
Im(32) 0 0 0 -0.015
Re(ds) 1/2 1 0.706 | 0.699 | 0.728
Im(3s) 0 0 0 -0.031
Re(a-) 1/24 | 0.038 | 0.039 0.036
Im(as) 0 0 0 0.011
Re(0g) 1/2 | 0.353 | 0.564 0.572
Im(3s) 0 0 0 0.166

N 0 0 0 >0.031

it is noted that the optimization here also depends on the chosen reference speed
Cref-

As motivated in Subsection 5.1.2, we choose an overall optimization procedure to
determine the parameter set. The overall optimization procedure is carried out by
minimizing an objective function, which might be subject to some constraints. These
constraints arise, c.g., from forcing artificial poles out of the pre-critical region or
from introducing attenuation in the artificial post-critical region. The optimization
procedure is used as a tool to design an accurate pre-critical one-way propagation
algorithm. The final optimization procedure depends on, e.g., the configuration
or the taste of the user. If a higher accuracy is required, the fifth-order Thiele
approximation can be considered. Then, the computation time increases by roughly
50%. Here, we discuss our choices for designing the parameters. The corresponding
parameter sets are listed in Table 7.2.

Without optimization

First, we consider parameter set 1. The values arise from the consistent rational
expansions; thus without any optimization procedure. Figure 7.14 shows the corre-
sponding phase and group slownesses. The sampling rate is 5 points per wavelength.
The longitudinal slowness for isotropic media is still highly isotropic after discretiza-
tion; this is due to the nearly isotropic discretization of the Laplace operator on a
hexagonal grid. Only outside the pre-critical region, thus in the post-critical region,
is weak anisotropy present. Significant deviations are observed for larger propaga-
tion angles.
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Figure 7.14: The group slowness (left 0°-45°) and the phase slowness (left 45°-
90°) associated with the discretized, one-way wave equation with
B =1/2, B2 = 1/8, B3 = 1/2, ay = 1/24 and By = 1/2, and a
sampling rate of 5 points per wavelength. The exact slowness Is
dotted. The corresponding differences (8" — ¢y and ¢yPP — ¢¥5")
are drawn on the right-hand side.

Pre-critical optimization

In the optimization procedure, we introduce the objective function as
fovjlar,a2) = |78 — 41> + 13" — 4% (7.111)

As a second approach, we optimize this function in the pre-critical region. In this
approach, we introduce polar coordinates in the transverse spatial frequency domain

ay = Rcos(d), sy = Rsin(¢). (7.112)

- -

1he pre-crivical region is Lhen desclived vy U X 7t < 1 aud O < ¢ < 2a. Thoe opii
mization is performed by integrating over the pre-critical region; i.e., by minimizing
the integral

w/6 rl
/ fobj(R, ¢)R dRd¢. (7.113)
o}

=0 JR=0

The obtained parameter set — number 2 — benefits wave propagation at higher an-
gles, because the wide-angle wave propagation covers a larger area in the pre-critical
region (which is a circle in the ajas plane) than the small-angle wave propagation.

As a third aproach, we introduce a weighting function f(R,¢) in the integral
(7.113). The weighting function f,(R,¢) = 1/R is used to equally treat wave
propagation at different angles. Executing the optimization procedure results in
parameter sct 3. We now compare the above, introduced parameter sets, see Figure
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Figure 7.15: The phase slownesses (left) and the group slownesscs (right) at a; =0
associated with the discretized, approximate, one-way wave equa-
tion. The real part of the exact slowness is dotted. (a) Parameter
set 1 (solid), 2 (dashed-dotted), 3 (dashed). The dashed-dotted and
dashed curves optically coincide for cas < 1.5. (b) Parameter set
3. Different values for the reference speed are used: crerfc = 1.1
(solid), cre¢/c = 1.5 (dashed-dotted) and cer/c = 3 (dashed).

7.15a: surprisingly, the difference between the second and the third parameter sets
is small and even neglectable in the pre-critical region.

Since, for the 3-D numerical implementation, we have chosen to approximate the
slowness with respect to the inverse of a reference speed instead of the local speed,
the dependence on the reference speed has to be investigated, too. Figure 7.15b
illustrates the phase and group slownesses for different contrasts using parameter
set 3. Clearly, the slownesses differ from the exact slowness. It is observed that

A1 = 0) = ¢! is only ensured if ¢ = ¢ref.
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Complex optimization

Thus far, the optimization procedure has becn focussed on the real slowness surface.
However, as we have seen in the preceeding sections, the approximations lead to ar-
tifacts in the post-critical regime. In fact, the post-critical constituents have been
mapped on propagating constituents (slow waves). We have designed the dissipa-
tion trick to attenuate these constituents. In addition to this trick, some artificial
constituents are forced to leave the computational domain through the transparent
boundary conditions. This dissipation trick introduces a “complexification” of the
parameters used in the optimization, and hence it seems to be natural to complexify
the procedure accordingly (see also Collins!®6). Pursuing this complexification, the
optimization procedure is extended with the constraint that the post-critical power
is attenuated strongly while the attenuation/amplification in the pre-critical region
is kept minimal (less than 5%). In more detail, we used the object function

Fobj(Ry @) = |35 — ¢5°%|% + |¢4P" — 452 + 10 [Im(c§P™)|? + [Im(c5%) %,
(7.114)

for the precritical region (0 < R < 1), and

fonj(R, ¢) = 10° H[Im(cyP") + 0.15] [Im(c3P") + 0.15)7,
(7.115)

for the main part of the post-critical region (1.25 < R < Rnyq = 5). The imaginary
part of the corresponding phase slowness for other spatial sampling rates can be
positive: an amplificative nature. By increasing the imaginary frequency (2 to
0.041, the phase slownesses have a negative imaginary part in a range from 12 to
2 sampling points per wavelength. This parameter set is used for most numerical
results. The resulting parameter set is shown in the fourth column of Table 7.2.
The accuracy of the complex parameter set is illustrated in Figure 7.16.

Comparing the 3-D optimization procedure with the 2-D version in Chapter 5,
we observe that two extra contraints are included

@ [,he dept:udeuu: Ul Crefy au\l
® the numerical speed to invert the matrices.

This pushes the third-order Thiele approximation to its limits, and accuracy at
higher angles is lost.

7.5.3 Numerical examples

Three configurations are selected to demonstrate the forward propagation scheme.
The configurations are: free space, an optical fiber and a rib waveguide.

It is noted that, in the present numerical implementation, the construction of
the matrices requires much time. Therefore, we compute the relevant matrices
in advance, and save them on a disk. A special and “smart” procedure must be
developed for this task.
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Figure 7.16: The group slownesses (solid) and the phase slownesses (dashed-
dotted) at a; = 0 associated with the discretized, approximate,
one-way wave equation with parameter set 4. The real part is plot-
ted in the left figure, while the imaginary part is plotted in the right
figure. The exact slowness is dotted.

Free space

In order to demonstrate the wide-angle behavior of our numerical scheme, we show
the electric field of the time response of a pulsed magnetic current point-source K. S
in free space (n = 1). We choose this point-source because, for this type of point-
source, we do not have to implement any additional opecrator. For instance, for an
electric point source jle we also have to implement the decomposition operator. This
is discussed in Subsection 7.6.7.

The numerical grid consists of 114, 99, 60 points along the z1, x5 and x3 direc-
tions, respectively. The discretization step is 0.25 pm in the transverse plane and
in the longitudinal direction. Given a source signature with a trapezoidal spectrum
with corner frequencies 100, 200, 250, and 400 THz (see Figure 2.12), we encounter
sampling rates of 3 to 12 points per wavelength. The point source is located at the
origin, which is chosen to be the center of the transverse input plane. We have taken
an inverse Fourier transform with 128 points and AT = 0.4 fs. We show snapshots
of the electric field at 30 fs. The point source is an magnetic current with a com-
ponent only in the z; direction: N{ = (K$ 0). The wave propagation problem is
reduced in dimension since only one polarization is excited (E; # 0, E» = 0). In
Figure 7.17, the snapshot is shown using the fourth parameter set and an analytical
expression (on the left-hand side and right-hand side, respectively). The snapshot
is taken in a plane at 60 degrees with respect to the z; direction. This configuration
is equivalent to the 2-D acoustic example in Figure 5.15.

The size of the matrices is 22572-by-22572 elements. The computation time was
24800 s (342 hours) on a Hewlett Packet 735/125 workstation using Matlab for the
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Figure 7.17: Snapshot at t = 30 fs of a magnetic current point-source response in
free space. The right-hand side is obtained analytically, while the
left-hand side is obtained with our numerical scheme. The lower
figure shows the snapshot in the transverse plane at T3 = 5 pm.
Here, we used parameter set 4 of Table 7.2.
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full vectorial scheme. Most matrices were constructed in advance. The computation
of the matrix inverses costs most time. We used BiCGStab without preconditioning
with tolerance 107°. One propagation steps consistes of two matrix inversion. The
first matrix inversion takes about 20 iterations for lower frequencies and 3 iteretions
for higher frequencies, while the second matrix inversion takes about 400 iterations
for lower frequencies and 12 iteretions for higher frequencies. Near the source,
more iterations are needed (1.5 to 5 times more, for lower and higher frequencies,
respectively).

Optical fiber

As a second numerical example, we consider wave progation through an optical
fiber, see Figure 7.18. The refractive index of the fiber’s core is n¢, = 1.469, while
the refractive index of the cladding is no) = 1.46. The even and odd HE;; modes
are the fundamental modes, since they are not cut off when reducing the frequency
or radius. Choosing the radius 7 to be 3 ym and the wavelength to be 1.3 pm,
the optical fiber is single moded. The normalized frequency® V equals 2.35417,
see Snyder and Love'*®. This fiber has also been analyzed by Huang et al.® and
Rivera'!®. The latter modeled a glas fiber with radius r = 2 um.

We now perform the following BPM experiment. A Gaussian beam is launched
into this fiber, by which only the even modes are excited. At single-mode operation,
there is only one guided (even) mode, namely the even HE;; mode. After a certain
propagation distance along the fiber, this mode will not die out, while all other
modes are radiated away. Now, we can compare the exact mode with our above-
given numerical test.

There are several ways to extract the modal propagation constants from this
BPM experiment. We used Feit and Fleck’s spectral method®®. Recently, this
method was also described by Li'®* and Rivera!!® in their dissertations. Although
the spectral method is not accurate, it gives some indications of the forward prop-
agation.

The input Gaussian beam has a width of 0.3 pm in both transverse directions
and is polarized along the z, direction: Ei® = 0, Ei® # 0. The numerical grid
consists of 78, 68, 3450 points along the 1, 2 and z3 directions, respectively. The
discretization step is approximately 1.77 um in the transverse plane and in the lon-
gitudinal direction. This corresponds to exactly 5 points per wavelength in the core
of the glass fiber. The reference refrative index is chosen to be equal to the core’s
refractive index: n.ef = 1.469. We have chosen the complex parameter set 4 for
the forward propagation. The tolerance of the biconjugate gradient method was set
at 107°. In each propagation step, about 3 and 30 iterations for the biconjugate

2The normalized frequency!44 V is defined as (see also Equation (4.132))

V= kor\/ngo - ngl,
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Figure 7.18: Illustration of the evaluation of a Gaussian beam through an optical
glass fiber. The absolute value of the electric field strength after a
})Iupdsdbiuu u'ianauuc ufcll i 1 ahuwu. Thc ou;;u' Huc FRe7 v coCIIbD
the dielectric interface. Here: 1 = 3 pm, A = 1.3 pm, n., = 1.469,
na = 1.46, N, = 78, N,, = 68, N, = 3450 and 5 discretization
points per wavelength inside the core.

gradient method were needed for the two matrix inversions, respectively. This corre-
sponds to less than 16 seconds per propagation step on a Hewlett Packett 735/125
workstation using Matlab! The computation of the matrices is excluded, which
costs relatively much time. There are several ways to reduce the time to create the
matrices. One way is to store frequently used matrices on disc.

The numerical propagation constant, the effective refractive index neg, of the
fundamental mode is found to be 1.46559 4+ 0.00106. Using the spectral method
of Feit and Fleck®®, the effective refractive index is corrected to 1.46495. This
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value is very close to the exact value of 1.46466. The error (nf%/ng™ — 1) is
0.02%. It can be compared to the errors found by Huang et al.%9: approximately
0.01% for a sligly smaller sampling rate and 0.08% for slightly larger sampling rate.
They used a rectangular grid without the equivalent medium theory. They also
found irregularities near the dielectric boundary. For better comparison with other
methods and configurations, we also computed the core parameter® U. It equals
1.581 or 1.636, respectively. The corresponding crror (U®*/U™™ — 1) is 3.5%. This
definition of the error is more indicative of the accuracy of our method, or any other
method.

As discussed above, the field after propagating through the 611 pum long optical
fiber contains mainly the fundamental HE;; mode. Parts of the propagating radia-
tion modes still remain in the field and an interference pattern is still observed after
611 pm. The ratio between the amplitudes of £; and F, at the end of this fiber is
found to be about 636, thereby the modal ficld is primary z» polarized. The ratio
of the exact fundamental HE;; mode is about 499.

Rib waveguide

As a third numerical example, we consider a BPM-benchmark test for wave prop-
agation through a rib waveguide, sce i.e., Li!*. Both laterally (E, = 0, E, # 0)
and transversely polarized (El # 0, Ey = 0) Gaussian beams with a beam width
of 0.3 um are launched into a rib waveguide at 3 = 0 um. Our results for the
parabolic approximation are very similar to the results obtained by Li'®*, but then
for a coarser grid.

7.6 Sparse matrix representation of the (de)com-
position operators
The computation of the generalized Bremmer coupling series starts with the decom-

position of the field into forward and backward propagating constituents; e.g. in the
electric field normalization analog (see Equation (6.67))

. .
Wik ) — <' Z) <5) . (7.116)
Werd L -z) \F

Upon completing the calculation of a sufficiently large number of terms of the Brem-
mer coupling series, the constituents ave recomposed into observables (see Equation

It

YThe core parameter!*3 U is defined as (sec also Equation (1.133))

U = kor \/n';fu —nle.
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(6.66))

(2) - (}1’ —Y) <xg:2> (7.117)

In these procedures, the admittance operator Y and impedance operator Z must be
computed. Here, using the results of Section 7.3, we will derive sparse matrix rep-
resentations for these operators. These operators contain the longitudinal slowness
operators Igrn and [N, and operators Ay 2 and/or Ay, (see Equations (6.78)
and (6.78)). Since A2 1 does not contain any derivative of the medium properties —
this is in contrast to A1 9 — hlgher numerical accuracy is reached if an expression
containing A2 1 is used, e.g., Y = A, 1FE—FN =zl

7.6.1 Inverse slowness operator

The decomposition operator essentially contains the inverse of the longitudinal slow-

ess operator. To find a sparse matrix representation of FMFN and its transposed
I erN» We use the same Thiele approximation as in Equation (7.5). We write, how-
ever, the fraction in a slightly different way

P = (14 o) (L4 (B + B)E + 2] (7.118)

Factoring the operator between brackets, yields (compare with Equation (5.81))

14 B+ B)E + 32" = (1= B63) (1 - 3:5), (7.119)
with
Be = -1 {3, NP (AT R (7.120)
L 4 )
) ) 1/2
Br=~3 {,Bl + B3 — [(ﬂ1 +83)" — 452] } . (7.121)

Then it is straightforward to invert the longitudinal slowness operator, viz.,

(fnl)'l =l (14 B5(2)) (1~ Be(ENT (1 = Br(EN.
(7.122)

Observe that the symbol of this operator has two poles on either side of the origin
(the zero crossings of 4'!'). The discretized inverse slowness operator becomes

(M) ™Y = €1 Qe 'P3Q7 ' C. (7.123)
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7.6.2 Slowness operator

Note that the composition operator, and thus also the slowness operator, are not
computed in the combined Bremmer approach.
Using the results for the slowness operator in Equation (7.123), we find

111 _
(I'grn) = CrefC%1Q7P3 'Qs. (7.124)

Observe that the symbol of this operator has one pole on both sides of the origin.

7.6.3 Operator /12,1

The operator /12, 1 equals (see Equation (6.36))

Az = (Z‘ ib) +w ! (_d;l) (B —8y). (7.125)
The discretization yields

(Ay1h) = eresC N, (7.126)

with
N = N; + 72Ny, (7.127)

and
Ny = (1 4 @287 e 1€ = Cei€, (7.128)
Ny = (_‘2‘7‘22 _;:(%12) . (7.129)

From numerical tests follows that this matrix is badly conditioned for inversion.

7.6.4 Operator A1,2
The operator A; » equals (see Equation (6.37))
; 10 o [0 Lo (1253
Al)g = o ( 1) + w 263:13 (al) (81 82) —w 2 <(al i’; ) (81 82) .
0 TG (%263.5) (7.130)
The discretization of A, » yields
(A1 2h) = poN'C1h, (7.131)
with

N = N} + r2NJ, (7.132)
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and

N, = (1 + azd) (5 (IJ) - (7.133)

o _ Eref (@167 azdiz Az(dre3
N2_€3,3 (a7612 a1 63 Eref Az(5253_,é (as0 asda) . (7.134)

The corresponding transverse Helmholtz operator Agpy equals

(Appn) = (A1 24s 1) = 2NN (7.135)

7.6.5 Admittance operator

The admittance operator can numerically be computed by

A .1

YV = Ay 1 Dppn = CraberetCTINQG 1P3Q; 1 C. (7.136)

Note that ¥ = YT is no longer guaranteed. A small discretization error has been
made: O[(Az)4].

7.6.6 Impedance operator

The impedance operator is numerical computed by
~ Aeml _ _ _ N
Z = I'gpnAi2 = gt 10Qq 'P3Q; TCN'CL (7.137)

The matrices Qg and Q7 are hard to invert with the preconditioned BiCGStab-
routine due to the poles.

7.6.7 Numerical example

At the computational boundaries we apply, as before, the Robin boundary conditions
(Section 7.4). We also apply an optimization procedure for the (de)composition op-
erators, considering the parameter subset {31, B2, B3, a2, £2}. To avoid instabilities,
we have to move the poles arising in the symbols of the approximate operators into
the complex transverse slowness plane. The outcome of the pre-critical optimization
for a sampling rate of 5 points per wavelength is

B = 0.508, (7.138)
By = 0.332, (7.139)
B3 = 0.707, (7.140)
az = 0.122, (7.141)
2 = -0.01. (7.142)
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Figure 7.19: Snapshot at t = 30 fs of an clectric current point-source response in
free space. The right-hand side is obtained analytically, while the
left-hand side is obtained with our numerical scheme. Here, we used
parameter set 4 of Table 7.2.

When optimizing for several sampling rates (3, 5, 10 and 50 points per wavelength),
the outcome is

B, = 0.522, (7.143)
By = 0.359, (7.144)
B = 0.820, (7.145)
ay = 0.048. (7.146)

Subsequently, the poles are moved into the complex plane by setting

2 = —-0.01 (7.147)

This is equivalent with deforming the integration contour into the complex plane.
We illustrate the final optimized, one-way propagation and decomposition by
computing the electric wave-field excited by a electric point source in free space
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(n = 1). The point source under consideration is an electric current with only one

component in the z, direction: Nf = <_jfe) 0). Two electric field components

are excited: E; and E,. This is due the presence of operator A; 5 (or Az1) in

the admittance operator. From the expression Y=o ;leNAm’ it is clear that the
coupling terms in free space are small far away from the source, because they contain
the derivatives 8,8, only: these derivatives are zero where the source is absent. The
radiation pattern of the point-source under consideration is a dipole: its field is zero
along the r; and z, direction. We expect an isoptropic radiation pattern in the
T1z3 plane.

We used the same discretization as in Subsection 7.5.3. In Figure 7.19, the
snapshot is shown, using the the fourth parameter set.

Note that similar radiation patterns are obtained for the magnetic field with
a magnetic point source. In the electric field strength normalization analog, the
composition operator has to be computed at every z3 position, while in the mag-
netic field strength normalization analog the decomposition operator has only to be
computed at the z3 position of the source.

7.7 Sparse matrix representation of the reflection
and transmission operators

The coupling matrix equals

a3 =3
ha :U’

~L~Y(&5L) = ( ) , (7.148)

with the reflection and transmission operators in both EFN and MFN analog

Tern = —Repn = Y 7H(35Y), (7.149)

IMFN = —RiMFN = 2 (034). (7-100)
There are two numerical implementations under investigation. The first one is the
straightforward extension of the 2-D implemention in Section 5.7. The second im-
plementation is based upon the boundary conditions and employs the admittance
matrix operator and its derivative.
For the second approach, the results of the previous section are used.

7.8 Discusion of the results

We employed a total rational-approximation approach to find, upon discretization,
sparse matrix representations of the relevant pseudo-differential operators. This
discretization is based upon the third-order Thiele approximation of the longitudinal
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slowness. Similarly, the transverse and longitudinal derivatives are replaced by
their rational approximations. We introduced a hexagonal numerical grid. The
advantages above the usual rectangular grids are: (1) less numerical anisotropy, (2)
possibility to construct a rational approximation in order to increase the accuracy
and (3) fewer numerical grid points to model the desired Nyquist region. The
longitudinal phase and group slownesses of this numerical scheme are derived and
used to analyze the numerical scheme. The difference between the phase and group
slowness is identified with the numerical dissipation, while the difference between
the group slowness and exact slowness is a measure for the numerical anisotropy.

In the optimization procedure, the numerical anisotropy and dissipation are si-
multaneously minimized in the pre-critical region. Numerical artifacts in the post-
critical regions can be suppressed by using a complex optimization procedure. This
optimization procedure leads to an improvement of the numerical scheme without
increasing the numerical effort. The accuracy is high and nearly constant up to
five (or even less) discretization points per wavelength. A transparent boundary
condition decreases the size of the relevant matrices.

A 3-D fully vectorial forward numerical scheme for anisotropic media has been
derived and implemented. The numerical scheme is accurate up to high propagation
angles (< 80°) and a few points per wavelength (3-5 points). This is due to a total
higher-order rational-approximation approach and the optimization procedure. The
(de)composition operator has also been derived and numerically implemented. All
operators can now be integrated into a 3-D Bremmer scheme. The construction
of the relevant matrices for different configurations is time consuming. A fast and
“user-friendly” pre-processing procedure should be developed for this task.
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CHAPTER 8

Conclusions and Discussion

In this thesis, we have introduced a directional wave-field decomposition and dis-
cussed 1its implementation. It is a powerful method for modeling electromagnetic
and acoustic wave propagation in nonuniform anisotropic waveguiding structures
and in heterogeneously layered configurations. It can be seen as an extension of
existing parabolic equation methods toward wider propagation angles, and includ-
ing backscattering. Both electromagnetic and acoustic wave propagation have been
discussed. It has been applied to a few typical, simple configurations, in order to
elucidate its accuracyand its principles.

The areas of interest are integrated optics, exploration seismics and underwater
acoustics. We have given a short overview of the directional wave-field decomposition
in general and an extented overview on the Beam Propagation Method (BPM), the
name under which the method is known in the field of integrated optics. The acoustic
methods which are equivalent to the BPM, are widely known under the name of the
“parabolic equation” method.

The directional wave-field decomposition method is applied to model wave prop-
agation in nonuniform waveguides and general layered media. In such structures,
the wave propagates dominantly in one direction, the preferred direction, while it is
gradually influenced by the transverse inhomogeneities. Accordingly, the directional
decomposition method splits the wave-scattering problem into two different parts:
(1) the scattering problem along the preferred (or longitudinal) direction, and (2)
the scattering problem in the plane perpendicular to it (transverse plane).

In the first part, the field is decomposed into two types of waves: one prop-
agating forward in the preferred direction and one propagating backward in the
preferred direction. The longitudinal scattering is analyzed by the Bremmer series.
Physically, the Bremmer series can be interpreted as containing multiple reflected
and transmitted waves along the preferred direction. This gives us more physical
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insight into the wave scattering. As an example, the first term contains the forward
directed wave, which is also computed in the BPM, while the second term contains
the once-reflected and transmitted waves. In the Bremmer series approach, we en-
counter pseudo-differential operators in the directional decomposition as well as in
the forward and backward propagation, and in the reflections and transmissions due
to variations in the medium properties in the preferred direction. We showed the
symmetry properties of these operators and the interrelation between different nor-
malization analogs. For the numerical implementation, we derived a novel scheme.
Numerical examples show good results for only a few terms.

In the second part, the scattering in the transverse plane is described by a
pseudo-differential operator: the well-known square root operator and functions of
it. In a transverse homogeneous medium, Fourier techniques are used to transform
the square root operator into a symbol: the longitudinal slowness. By studying
this symbol, we define the pre-critical region, i.e., wave propagation between 0°
and 90°, and the post-critical region, i.e., the region of evanescent waves. In a
transverse heterogeneous medium, we have studied two different approaches. The
first approach is based upon the eigenvalues and eigenfunctions. This approach is
closely related to the modal analysis of waveguides. Together with the Bremmer
series, it extends the uniform waveguiding theory to nonuniform waveguides. The
second approach is based upon the left symbol from the pseudo-differential operator
calculus. It is a plane-wave decomposition. The interaction between the square root
operator and a plane-wave is replaced by a multiplication of its left symbol and the
same plane-wave. A closer analysis gives us the relation between the two approaches
presented above. This relation is used to compute the left symbol in two special
cases: the quadratic profile waveguide and the symmetric slab waveguide.

For the numerical implemcentation, we cmploy a total rational-approximation
approach to find, upon discretization, sparse matrix representations of the rele-
vant pseudo-differential operators. This discretization is based upon the third-order
Thiele approximation of the longitudinal slowness. Similarly, the transverse and
longitudinal derivatives are replaced by their rational approximations. In 3-D con-
fionratinna a hexagonal nnmerical erid is emoloved. The advantages above the usual
rectangular grids are: (1) less numerical anisotropy, (2) possibility to construct a
rational approximation in order to increase the accuracy and (3) fewer numerical
grid points to model the desired Nyquist region. The longitudinal phase and group
slownesses of this numerical scheme are derived and used to analyze the numerical
scheme. The difference between the phase and group slowness is identified with the
numerical dissipation, while the difference between the group slowness and exact
slowness is a measure for the numerical anisotropy.

In the optimization procedure, the numerical anisotropy and dissipation are si-
multaneously minimized in the pre-critical region. Numerical artifacts in the post-
critical regions can be suppressed by using a complex optimization procedure. This
optimization procedure leads to an improvement of the numerical scheme without
increasing the numerical effort. The accuracy is high and nearly constant up to
five (or even less) discretization points per wavelength. A transparent boundary
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condition decreases the size of the relevant matrices. Alternatively, the numerical
method can also be seen as an extension of the previously used parabolic methods,
like the BPM: the wide-angle behavior is increased by using higher-order rational
approximations for the square root operators and derivatives, and by the optimiza-
tion procedure. The Bremmer series extends the classical one-way BPM to a coupled
bidirectional scheme; the interaction between the counter-propagating waves is in-
cluded.

Summarizing the results that are new in this thesis:

e A bidirectional scheme based upon one-way wave propagation has been de-
rived. The internal reflections are described by a Bremuer serics. A novel
numerical scheme has been built for 1-D and 2-D configurations. Often only
a few terms of the Bremmer series have to be taken into account.

An analysis based upon the left symbol from the pseudo-differential theory
has been introduced. The left symbols in a quadratic profile waveguide and in
a symmetric slab waveguide have been computed. This analysis gives a new
insight into the one-way wave schemes.

An 2-D, isotropic TE scalar and a 3-D, anisotropic, fully vectorial forward
scheme have been derived and implemented. The numerical scheme is accurate
up to high propagation angles (< 80°) and a few points per wavelength (3-5
points). This is due to a total higher-order rational-approximation approach
and the optimization procedure.

An equivalent medium averaging has been employed in the numerical code in
order to include rapid variation and discontinuities in the medium properties.

The (de)composition and reflection /transmission operators and the propagator
have been derived and numerically implemented. These operators have not
been integrated into a 2-D Bremmer scheme, but they have not yet numerically
been integrated into a 3-D Bremmer scheme.

The construction of the relevant matrices for different configurations is time
consuming. A fast and “user-friendly” procedure has been developed for the
2-D numerical scheme.

Future work

e Integration of the (de)composition and reflection/transmission operators and
the propagator into a 3-D Bremmer scheme.

e The direct construction of the relevant matrices for 3-D configurations is very
time consuming. A special and “smart” procedure must be developed for that
task.
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Alternative methods must be developed to include post-critical wave propa-
gation. Methods based upon approximate eigenvalue decomposition, such as
the Lanczos method, and methods based upon the uniform expansion of the
symbols or kernels seem to be good candidates.

Other boundary conditions can be investigated to decrease the computational
window.

A fifth-order Thiele approximation can be used to increase the accuracy. A
seventh-order Thiele approximation is not recommended, because the gain in
accuracy is assumed to be low at the cost of increased computing time.

One should take a closer look at discontinuities of the medium properties at
tilted interfaces and study the corresponding propagator and the reflection
operator.
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Samenvatting

Het numeriek modelleren van golfvoortplanting in willekeurige, grote structuren
is rekenintensief en vereist zeer snelle computers met grote geheugens. Daarom
zoekt men naar alternaticve rekenmethoden op maat gemaakt voor een groep van
configuraties met gemeenschappelijke eigenschappen, die nauwkeurig en toch snel
zijn.

In golfgeleidende structuren kan men een voorkeursrichting van de golfvoort-
planting aanwijzen. Hierin variéren de cigenschappen van de structuur langzamer
in de voorkeursrichting dan in de richting loodrecht daarop. Een richtingsafhan-
kelijke decompositie van elektromagnetische of akoestische golven is een methode
om dit veldprobleem te beschrijven. Daarbij valt de beschrijving uiteen in twee
deelproblemen: (a) de golfvoortplanting in de voorkeursrichting en (b) de verstrooi-
ing ten gevolge van variaties in het vlak loodrecht daarop. Daarvoor wordt gebruik
gemaakt van Bremmer’s reeks ontwikkeling en de theorie van de pseudo-differentiaal
operatoren.

Eén van de tocpassingsgebieden is de geintegrecrde optica. De grote drijfveer
hierachter is de glasvezeltelecommunicatie. Met de huidige techniek kan men com-
plexe ontvangers en zenders op ecn optische chip maken waarin naast lichtgeneratie
en detectie ook ingewikkelde signaalbewerkingen optisch worden uitgevoerd. Voor
het ontwerpen van zulke chips is er behoefte aan numerieke methoden om de elek-
tromagnetische velden in de voorkomende golfgeleidende structuren te berekenen.
In de jaren 70 is de ontwikkeling van de Bundel Propagatie Methode (BPM) be-
gonnen. Sindsdien is deze methode sterk verbeterd. In feite is de BPM een primitief
voorbeeld van de richtingsafhankelijke golfvelddecompositie.

Andere toepassingen komen uit de exploratiegeofysica en onderwaterakoestiek.
Naast de akoestische golfgeleiding in de aardlagen tussen twee boorgaten, kan men
ook golfvoortplanting loodrecht op de aardlagen met een directionele golfvelddecom-
positie beschrijven en modelleren. In de literatuur behandelt men vaak methoden
die gebaseerd zijn op de zogenaamde parabolische benadering. Deze methoden zijn
het akoestische equivalent van de BPM.

De in dit proefschrift beschreven methode wordt in frequentie-domein uitgevoerd.
Een inverse Fourier transformatie vertaalt het resultaat eventueel naar het tijd-
domein. Na de keuze van de voorkeursrichting wordt het elektromagnetische veld in
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een willekeurige dwarsdoorsnede in twee verschillende golfconstituenten ontrafeld:
één in de voorkeursrichting en één in de tegengestelde richting. De reeks van Brem-
mer is een wiskundige methode om de interactie tussen deze twee golven te beschrij-
ven. Sommatie van die golven levert uiteindelijk het te berekenen veld.

De afzonderlijke termen in de reeks van Bremmer kunnen fysisch geinterpre-
teerd worden als de golven die een aantal keren heen en weer hebben gelopen door de
configuratie. Zo komt de eerste term overeen met de golf in voorwaartse richting, die
ook in de BPM berekend wordt, terwijl de tweede term de één keer gereflecteerde golf
beschrijft. De numerieke implementatie van Bremmer’s reeks is relatief eenvoudig
en leidt tot een nieuw efficiént rekenschema. Numerieke voorbeelden tonen aan dat
vaak een beperkt aantal termen van deze reeks al nauwkeurige resultaten geeft.

Het verstrooiingsprobleem in het dwarsvlak is wiskundig een stuk lastiger. Pseu-
do-differentiaaloperatoren (of worteloperatoren) beschrijven namelijk dit verstrooi-
ingsprobleem. Een grondige analyse geeft ons twee wiskundige gereedschappen: (a)
een eigenwaardenontbinding en (b) een vlakkegolfontbinding. De eigenwaardena-
nalyse is nauw verwant met de modale analyse van golfgeleiders. Het geeft ons
samen met de reeks van Bremmer de mogelijkheid om het modelleren van uniforme
(rechte) golfgeleiders uit de breiden naar niet-uniforme golfgeleiders. Daartegenover
staat de vlakkegolfontbinding. De interactie van de worteloperator met een vlakke
golf wordt daarbij vervangen door een vermenigvuldiging van een linker symbool
met dezelfde vlakke golf. In feite breidt de theorie voor golfvoortplanting in een
homogeen gelaagde structuur zich zo uit naar een heterogeen gelaagde structuur.
Een nadere analyse van het linker symbool verduidelijkt het verband tussen dit
symbool en de modale analyse. Voor twee specifieke configuraties wordt dit symbool
berekend en gebruikt voor de analyse van het rekenschema: een golfgeleider met
kwadratisch profiel en een symmetrische drie-lagen golfgeieider.

Doel bij de numerieke implementatie is een snel en nauwkeurigheid rekenschema.
Hiervoor dient men kleine ijle matrixrepresentaties van de relevante operatoren
te ontwerpen. Als eerste krijgt de twee dimensionale configuratie alle aandacht.
De in dit proefschrift gevolgde numerieke strategie is gebaseerd op de derde-orde-
Denadeniug vau Tuicic’s unbwinnciag ven ac wortcloporater. Doornooc ¢ wrorden
alle ruimtelijke afgeleiden ook vervangen door hun rationale eindige-differenties be-
naderingen. Om de uiteindelijke nauwkeurigheid op een grof rooster op te voeren,
wordt met behulp van de linker symbolen een zodanige optimalisatie geintroduceerd
dat de golfvoortplanting in het rekenschema tot bijna 90 graden nauwkeurig beschre-
ven wordt, terwijl de numerieke optredende artefacten minimaal zijn. Een soortge-
lijke analyse wordt uitgevoerd voor de reflectie- en (de)compositie-operatoren. Dit
alles leidt tot een snel en nauwkeurig rekenschema. Een aantal numerieke voor-
beelden verduidelijken de reeks van Bremmer.

Als proef op de som wordt de methode ook toegepast op elektromagnetische
velden in drie dimensionale configuraties met anisotrope materialen. Bij het ont-
rafelen van het veld in tegen elkaar inlopende golven, dient men de symmetrieén
van de relevante operatoren nauwlettend in de gaten te houden. Daarnaast ver-
dient ook de elektromagnetische polarisatiewisselwerking extra aandacht. Aan de
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basis van de numericke implementatie liggen wederom de derde-orde-benadering
van Thiele’s ontwikkeling van de worteloperator en de rationale benaderingen van
spatiéle afgeleiden. Om cen snel rekenschema op een grof rooster te ontwikkelen wor-
den hexagonale roosters gebruikt. De optredende fout is dan rotatie-symmetrisch,
wat niet tot noemenswaardige numerieke anisotropie leidt. Een aantal numerieke
voorbeelden verduidelijken de methode.

Dit proefschrift geeft een uitvoerige beschrijving van een algemene wiskundige me-
thode voor golfveldverstrooiing in structuren met een richtingsafhankelijkheid. Men
kan de methode ook zien als een uitbreiding van de standaard parabolische me-
thoden, zoals de bundelpropagatiemethode. Er zijn twee belangrijke numerieke as-
pecten: (1) de recks van Bremmer neemt ook de interactie tussen de tegen elkaar
inlopende golven mee en (2) de numerieke voortplantingshoek wordt vergroot door
het gebruik van rationele benaderingen van de relevante operatoren en een optima-
lisatieprocedure.
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