
 
 

Delft University of Technology

Use of AI-driven Code Generation Models in Teaching and Learning Programming
a Systematic Literature Review
Cambaz, Doga; Zhang, Xiaoling

DOI
10.1145/3626252.3630958
Publication date
2024
Document Version
Final published version
Published in
SIGCSE 2024 - Proceedings of the 55th ACM Technical Symposium on Computer Science Education

Citation (APA)
Cambaz, D., & Zhang, X. (2024). Use of AI-driven Code Generation Models in Teaching and Learning
Programming: a Systematic Literature Review. In SIGCSE 2024 - Proceedings of the 55th ACM Technical
Symposium on Computer Science Education (pp. 172-178). (SIGCSE 2024 - Proceedings of the 55th ACM
Technical Symposium on Computer Science Education; Vol. 1). ACM.
https://doi.org/10.1145/3626252.3630958
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3626252.3630958
https://doi.org/10.1145/3626252.3630958


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Use of AI-driven Code Generation Models in Teaching and
Learning Programming: a Systematic Literature Review

Doga Cambaz
dogacambaz@gmail.com

Delft University of Technology
Delft, The Netherlands

Xiaoling Zhang
X.Zhang-14@tudelft.nl

Delft University of Technology
Delft, The Netherlands

ABSTRACT
The recent emergence of LLM-based code generation models can
potentially transform programming education. To pinpoint the
current state of research on using LLM-based code generators to
support the teaching and learning of programming, we conducted
a systematic literature review of 21 papers published since 2018.
The review focuses on (1) the teaching and learning practices in
programming education that utilized LLM-based code generation
models, (2) characteristics and (3) performance indicators of the
models, and (4) aspects to consider when utilizing the models in
programming education, including the risks and challenges. We
found that the most commonly reported uses of LLM-based code
generation models for teachers are generating assignments and
evaluating student work, while for students, the models function
as virtual tutors. We identified that the models exhibit accuracy
limitations; generated content often contains minor errors that
are manageable by instructors but pose risks for novice learners.
Moreover, risks such as academic misconduct and over-reliance on
the models are critical when considering integrating these models
into education. Overall, LLM-based code generation models can be
an assistive tool for both learners and instructors if the risks are
mitigated.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Computing methodologies → Natural language generation.

KEYWORDS
Systematic review, Artificial intelligence in education, Program-
ming education, Code generation models, Large language models
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1 INTRODUCTION
Large Language Models (LLMs) such as OpenAI’s Generative Pre-
trained Transformer (GPT) and the Codex, can function as AI-driven
code generation models to generate code from natural language
descriptions. These models enable natural language programming
and can perform code-to-code operations such as code completion,
translation, and repair, as well as language-to-code operations such
as code explanation [11]. Given their availability and accessibility,
AI-driven code generation models can potentially transform the
learning and teaching of programming.

These AI-driven code generation models offer opportunities and
challenges in programming education. One of the opportunities
is using code generators to automatically correct syntax, allowing
students to concentrate more on the problem-solving components
of computational thinking [1]. Moreover, another study shows
that AI-driven code generators allowed novice programmers to
perform better and faster with less frustration while keeping their
performance on manual code modification or writing code without
the code generator [11]. Meanwhile, by producing programming
exercises and explanations for the solutions, these tools could help
educators develop curricula [1]. However, auto-generated code
raises concerns about academic integrity and the risk of users’
over-reliance on generated outputs [11].

AI-driven code generation models are growing as a part of the
education landscape. However, the rapid emergence of these tools
may catch educators off-guard, leaving them unprepared for the
significant impact of code generation models on education [1]. Yet
there is limited understanding of how best to adapt our teaching
practices to manage the challenges and benefits associated with
their use effectively. Hence, it is critical to review and adapt our
educational practices to incorporate these new technologies.

This study aims to provide a comprehensive review of the current
state of the use of AI-driven code generation models, specifically
LLM-based code generation models, in teaching and learning pro-
gramming. We formulated the following research questions (RQs)
to guide our systematic literature review.

RQ1 What are the teaching and learning practices involving LLM-
based code generation models used in programming educa-
tion?

RQ2 What are the characteristics of the LLM-based code genera-
tion models used in teaching and learning programming?

RQ3 Which indicators are used for evaluating the performance of
LLM-based code generation models in teaching and learning
programming?

RQ4 Which aspects should be considered when utilizing LLM-
based code generation models in programming education?
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2 METHODS
We conducted a systematic literature review according to the guide-
lines proposed by Kitchenham and Charters [12]. Details are pre-
sented in the following subsections.

2.1 Search Process
Three databases were used for searching relevant papers: ACM
Digital Library, Scopus, and Google Scholar. ACM Digital Library
is selected as it covers a wide range of computer science topics.
Scopus is included to access papers that are not presented in the
ACM database as it is a multidisciplinary database with articles
from various academic fields. Furthermore, since the topic of this
review is rapidly evolving, we also choose to include Google Scholar,
which enabled expanding the search to include unpublished work
and identify additional resources to address publication bias.

The search query was created by pinpointing search terms from
the research questions, listing their synonyms, and including spe-
cific LLMs or code generation tools like ChatGPT and Github Copi-
lot. For Google Scholar, a more strict query is used to search in
the full text of publications as it offers limited options to combine
multiple search terms and does not allow limiting the search to title,
abstract, and keywords. The search queries are listed as follows:

• ACMDigital Library and Scopus: (“code generationmodel*"
OR Codex OR “Github Copilot" OR ChatGPT OR “AI coding
assistants" OR “AI code-generators" OR “code generation")
AND (teaching OR education OR learning OR educat* OR
learn* OR instructor*) AND (“computer science" OR “comput-
ing education" OR programming OR “coding practices" OR
“software engineering") AND (assessment* OR curriculum
OR curricula OR practices OR proposal OR tools)

• Google Scholar: education learning teaching Codex OR
“Github Copilot" OR ChatGPT OR “AI coding assistants"
OR “code generation models" “computing education" OR
“programming education" curricula OR practices OR proposal
OR tools OR strategies “large language models"

The search on 08/05/2023 was limited to papers published in
the last 5 years (2018-2023), considering the novelty of LLMs for
code generation. Search results were recorded in a spreadsheet1 to
identify duplicates and record subsequent screening.

2.2 Criteria
The following inclusion and exclusion criteria were applied to filter
articles to match the scope of our research.
Inclusion Criteria:

• Published or unpublished full papers in English
• Papers that present or discuss the use of LLMs for code
generation for educational purposes

• Papers published in the last five years (2018-2023)
• Papers that focus on the impact of AI code generation on
Computer Science and programming education

Exclusion Criteria:
• Papers irrelevant to LLM-based code generation models
• Papers irrelevant to use of code generation models in pro-
gramming education

1bit.ly/code-gen-models-reviewresults

• Papers that are inaccessible

2.3 Selection Process
Figure 1 displays the steps and the results of the selection process,
including Identification, Screening, and Eligibility. We identified 162
records from the ACM database (n=47) and Scopus (n=115) and
79 records from Google Scholar. Excluding duplicated results, 217
records remained for the screening process. For Screening, following
the criteria in Section 2.2, we screened the title and abstract of
articles and it yielded 36 records. Regarding Eligibility, we reviewed
the methodology, discussion, and conclusion sections of the articles.
This step ensured that the selected papers conform to the criteria
in Section 2.2 and address at least one of the research questions.
This step resulted in 21 articles for further analysis.

Figure 1: PRISMA flow diagram

2.4 Coding and Information Extraction
Using the Atlas.ti2 software, we extracted information by coding
deductively and inductively. Initially, themes and codes were de-
rived deductively from the research questions; subsequently, new
codes were generated by iteratively reviewing the articles.

During the coding process, we matched quotes to relevant codes
or themes. For RQ1, the theme was educational practices, includ-
ing teaching, learning practices, and tools. Additional codes like
assessment and content generation were added during the iterative
process. For RQ2, the theme was characteristics of code generation
models, with subcategories like performance, and limitations. For
RQ3, the theme was performance indicators; we further categorized
relevant quotes as quantitative and qualitative metrics. For RQ4,
we included categories of risks, ethical use, and alignment with
learning objectives, which were refined upon reading the articles.

3 RESULTS
All reviewed papers employed or evaluated OpenAI’s GPT models
for code generation. Six studies [2, 5, 7, 11, 20, 25] used OpenAI
2https://atlasti.com/
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Activity Activity Detail References

Automatic
generation of
assignments

Exercise descriptions, sample
answers and explanations

[10, 13, 14, 20,
24]

Test cases for the exercises [3, 10, 20]
Personalized problems [3, 14, 20]
Variations of questions [8, 20]

Assessment and
evaluation

Grading Assignment [10, 18, 19]
Identifying areas students are
struggling

[10]

Feedback Generation [10, 19, 20, 24]
Table 1: Teaching practices using Code Generation Models

Activity References
Generate practice exercises [8, 10, 13, 19, 20]
Generate exemplar solutions [1, 2, 13, 19, 20]
Generate alternative solutions [1, 8, 16, 20]
Improve student code [19, 25]
Clarify error messages and provide sugges-
tions

[1, 8, 14]

Support conceptual understanding [1, 8, 14, 18, 19, 21]
Provide syntax tips [8, 16]
Code explanations [1, 3, 14, 15, 18, 21]
Table 2: Learning practices using Code Generation Models

Codex, while three studies [14, 16, 17] focused on analyzing Github
Copilot powered by Codex. One study [15] used GPT-3, while [21]
studied both GPT-3 and GPT-3.5. Six studies [6, 8, 10, 13, 18, 19] ex-
plored the use of ChatGPT on various educational tasks, while only
one [6] used its latest version, GPT-4. Lastly, [1, 3, 4, 24] focused on
the educational opportunities and challenges of AI code generation
without specifying an LLM-based code generation model.

3.1 RQ1: Educational Practices That Use Code
Generation Models

We identified three subcategories: teaching practices, learning prac-
tices, and educational tools that use LLM-based code generation
models. Findings indicate that teachers can mainly use the mod-
els to generate assignments and evaluate student work, while for
students, the models function as virtual tutors. Tables 1 and 2 list
teaching and learning activities that use code generation models,
with references to the corresponding papers.

3.1.1 Teaching Practices. LLM-based code generation models are
mainly used in two kinds of teaching activities: automatic genera-
tion of assignments, and assessment and evaluation.

Regarding the automatic generation of assignments, we identi-
fied four subcategories. First, five papers [10, 13, 14, 20, 24] discuss
the generation of exercise descriptions, sample answers, and expla-
nations, while three papers [3, 10, 20] propose the generation of
test cases for the exercises. Among these papers, while the others
suggest or propose such teaching activities, only one paper [20]
presents an empirical study that uses Codex to generate exercises
and code explanations and evaluates the quality of the generated
exercises. This paper [20] demonstrated that the majority of the
automatically generated content is novel, sensible, including an

appropriate sample solution, and in some cases, is ready to use.
Moreover, according to three papers [3, 14, 20], models such as
ChatGPT and Codex possess the capability to contextualize prob-
lem statements and generate personalized questions tailored to
students’ interests, resulting in more engaging questions. For in-
stance, [3] emphasizes the potential of generating personalized
Parsons problems based on students’ incorrect solutions. Finally,
according to [8, 20], these models also enable instructors to create
new exercise variations from existing ones.

Furthermore, regarding using LLM-based code generation mod-
els for assessment and evaluation, we identified three subcategories.
First, three papers [10, 18, 19] argue that the models can be used to
grade assignments and quizzes, which can save teachers a signifi-
cant amount of time. [10, 19] also underline the possibility of using
the models to check for plagiarism in student work. Moreover, [10]
mentions that ChatGPT can semi-automate grading by highlighting
the potential strengths and weaknesses of the work in question.
Lastly, four papers [10, 19, 20, 24] discuss ChatGPT’s and Codex’s
capability of providing individualized feedback on programming
assignments as well as writing assignments.

Finally, all of the papers referenced in Table 1 acknowledge the
need for manual review of AI-generated materials to ensure accu-
racy and clarity due to the unreliability of LLMs. Nevertheless, re-
searchers agree that using these models reduces teachers’ workload
compared to creating exercises from scratch. For example, Sarsa
et al. [20] mentions that code generation tools help instructors
overcome writer’s block and generate ideas, even if the resulting
exercises are not used directly. Additionally, Geng et al. [8] suggests
that instructors and teaching assistants can manually review the
generated material to ensure correctness and appropriateness.

3.1.2 Learning Practices. Overall, code generation models can help
students study and practice programming by generating person-
alized learning materials and functioning as a tutor, especially for
students who do not have access to tutoring. Table 2 shows eight
activities that use code generation models in learning practices.

LLM-based code generation models can create additional learn-
ing resources in programming education, such as practice exer-
cises [8, 10, 13, 19, 20] and sample answers [1, 2, 13, 19, 20]. Ac-
cording to Geng et al. [8], these models can generate personalized
exercises tailored to the student’s proficiency level, improving the
learning experience. The models can also offer multiple alternative
solutions to a given programming problem, introducing students
to different problem-solving approaches [1, 8, 16, 20]. Furthermore,
tools like Github Copilot and ChatGPT offer valuable assistance
to learners by providing immediate feedback on their code. They
achieve this by explaining the code [1, 3, 14, 15, 18, 21], suggesting
optimizations [19, 25], providing syntax tips [8, 16], clarifying error
messages and suggesting ways to fix the errors [1, 8, 14] . They also
support conceptual understand by ,for instance, explaining under-
stand algorithmic concepts [1, 8, 14, 18, 19, 21]. Moreover, these
tools are capable of various types of code explanations. Given a
code snippet, GPT-3 can analyze time complexity, identify common
mistakes, summarize code, trace execution, fix bugs and explain
how they were fixed, create real-world analogies, list relevant pro-
gramming concepts, and predict console output [15].
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Furthermore, [10, 19] noted ChatGPT’s advantage of generating
conversational dialogues, enabling learners to ask questions as if
they ask their tutors. This makes the learning processmore intuitive,
interactive, and beginner-friendly. Additionally, [8] highlights that
since students can input their own prompts, they can learn at their
preferred pace and in alignment with their learning style.

3.1.3 Educational Tools. Three papers [5, 11, 25] extensively ex-
plain and evaluate educational tools that use LLM-based code gener-
ation models. These tools are The Coding Steps web app for learning
basic Python programming [11], the Robosourcingmodel for scalable
practice programming question generation [5], and the MMAPR
model [25] for repairing bugs in student code. All three tools use
OpenAI Codex. The Coding Steps [11] stands apart by offering a
user interface tailored for novice programmers to interact with an
AI code generator. To ensure the generated code is beginner-level
and contextually relevant, the system customizes prompt messages
for Codex by combining six predefined examples, existing code
in the editor, and the user’s requested behavior. Their research
demonstrates improved task completion and correctness scores
with reduced errors and completion times when using the AI code
generator in The Coding Steps. Similarly, the Robosourcing model [5]
tailors prompts by combining problem statements, sample solutions,
and relevant themes to generate a pool of exercises. The model suc-
cessfully produces coherent programming exercises with sample
solutions and automated tests, despite minor accuracy concerns
that were manageable through manual adjustments [5].

3.2 RQ2: Characteristics of the Code Generation
Models

In total, ten papers [5–8, 17–21, 25] feature empirical studies ex-
amining the performance and characteristics of LLM-based code
generation models for programming education. Among these, six
papers [6–8, 17–19, 21] argue that while the models can generally
produce well-structured and accurate solutions for programming
assignments, they have several limitations. Furthermore, [5, 20]
discuss the limitations of Codex in generating programming assign-
ments, while [20] delves into the characteristics of generated code
explanations.

Regarding the performance of LLM-based code generation mod-
els on question types, [21] found that GPT models perform better
in handling questions involving code generation or explanation
than multiple-choice questions (MCQs). MCQs with code snippets
were particularly challenging for GPT models compared to those
without. While fill-in-the-blank questions and completing natural
language statements were handled relatively well, questions requir-
ing analysis and reasoning about code, such as true/false questions
or predicting output, posed the most difficulties. [6] supported
these findings, demonstrating that even the latest GPT model, GPT-
4, struggled with various question types, frequently selecting only
some of the correct options in MCQs. GPT-4 also faced challenges
with questions involving graph traversal and executing search al-
gorithms only based on textual descriptions.

Regarding the performance of LLM-based code generation mod-
els on programming tasks, five papers [7, 8, 17–19] evaluated the
performance of ChatGPT, Codex, and Github CoPilot on solving
programming assignments, and all emphasized that adjustments

were often needed for error-free compilation despite achieving
decent code accuracy.

Regarding the generation of programming exercises, [5] found
that approximately one-third of the exercises generated by Codex
were immediately usable for teaching purposes and served as start-
ing points for learners to evaluate and modify. Likewise, [20] also
noted that Codex-generated programming exercises often required
adjustments before using them in a course, as problem statements
frequently did not address corner cases, and many exercises either
lacked tests or had flawed ones.

Finally, regarding code explanations provided by LLM-based
code generationmodels, [20] found that Codex covers around 90% of
the code but contains inaccuracies in about 67.2% of the explanation
lines. These errors are generally minor and can be quickly addressed
by instructors or teaching assistants. The study highlights Codex’s
limitations in generating high-level code descriptions, as it tends
to provide line-by-line explanations despite using various explicit
priming statements.

3.3 RQ3: Indicators for Evaluating the
Performance of Code Generation Models

Three papers [5, 11, 20] systematically analyze the performance of
LLM-based code generation models with a list of performance indi-
cators. Denny et al. [5] and Sarsa et al. [20] used a list of qualitative
and quantitative metrics to evaluate the performance of the mod-
els for automatically generating exercises, sample solutions, and
code explanations. The metrics and their definitions are provided
in Table 3. On the other hand, Kazemitabaar et al. [11] focused
on evaluating the impact of AI code generators on learner behav-
ior rather than directly examining the performance of the models,
which are categorized into three groups: (i) overall training metrics
which include indicators like completion rate and the amount of
received feedback, (ii) per-task performance which involves cor-
rectness score, completion time, and encountered errors, and (iii) AI
code generator usage that includes metrics such as the percentage
of code written by Codex, and the Jaccard text similarity between
final submission and Codex-generated code.

3.4 RQ4: Aspects to Be Considered When Using
Code Generation Models

We identified six aspects to be considered when using code gen-
eration models in teaching and learning programming, including
academic integrity, over-reliance on the models, accuracy and relia-
bility of the models, appropriateness for beginners, ethical concerns,
and the models’ role in programming education.

3.4.1 Academic Integrity. Eleven papers [1, 5, 7, 8, 10, 13, 16–19, 21]
discuss the risk of AI code generators facilitating plagiarism and
compromising academic integrity. Introducing LLM-based code
generation models may increase plagiarism [5] and burden the de-
tection of AI-generated answers [7, 16, 19]. Moreover, these tools
may undermine the validity of academic assessments [8]. To miti-
gate these risks, [18] suggests revising academic integrity policies
and honor codes to address the use of AI tools, providing clear and
simple guidelines for the proper use of LLMs in education, and
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Qualitative Metrics for Programming Exercises Definition

Sensibleness whether the problem statement describes a practical problem that could be given to students to
solve [5, 20]

Novelty whether the copy of the programming exercise or a similar programming exercise already exists and
can be found online [5, 20]

Topicality whether the generated problem incorporates the provided theme and concepts from the required sets
(e.g. matches the CS concepts provided in the prompt) [5]

Readiness for Use the amount of manual work a teacher would have to make for the exercises and the associated sample
solution and tests [5, 20]

Quantitative Indicators for Programming Exercises Definition

Executability of Sample Solutions whether the sample solutions could be run [5, 20]
Automated Tests whether the sample solution passed the automated tests [5, 20]
Statement Coverage the statement coverage of the automated tests when the code runs [5, 20]
Metrics for Code Explanations Definition

Presence and Frequency of Mistakes the types of mistakes present and determining and how common they were in the explanations for the
different priming programs [20]

Completeness of Code Explanations whether all parts of the code were explained in the generated explanations (Yes/No) [20]

Accuracy of Explained Lines the proportion of correctly explained lines out of all the generated explanation lines, indicating the
accuracy of the code explanations [20]

Table 3: Metrics used for evaluating automatically generated programming exercises and code explanations. The qualitative
metrics were first assessed by Yes / No / Maybe statements and then were quantitatively analyzed by counting Yes / No / Maybes.

training students on academic integrity to ensure they fully under-
stand the importance of maintaining ethical standards. additionally,
papers encourage research on new analysis techniques to distin-
guish AI-generated text [10, 19], and incentives to develop curricula
and assessments that require the creative and complementary use
of code generation models [10, 18].

3.4.2 Over-reliance. Eight papers [1, 2, 8, 10, 16, 18, 19, 21] high-
light the risk of over-reliance on code generation tools. [19] and [10]
accentuated that the use of these tools can be a barrier to improving
learners’ critical thinking and problem-solving skills. Over-reliance
on the models can lead to the loss of creativity [18], and amplify
laziness [19]. Likewise, [16] hypothesized that “over-reliance on
tools like Copilot could possibly worsen a novice’s metacogni-
tive programming skills and behaviors.” Moreover, [1] stated that
novices using models like Github Copilot may become reliant on
auto-suggested solutions, potentially resulting in careless reading
of problem statements and missing critical thinking for problem-
solving. [8] argues that this dependency on AI-generated code could
gradually diminish the quality of education and devalue computer
science degrees. [19] adds to that by appealing for additional re-
search to develop academic curricula, question-and-answer formats,
and exams to effectively tackle the challenges.

3.4.3 Accuracy and Reliability of the Models. Five papers [1, 6, 10,
13, 18] highlight the accuracy and reliability concerns of Codex and
ChatGPT. ChatGPT has a tendency to generate solutions with non-
existent rules or equations and provides unreliable, untraceable,
and unverifiable answers [18]. It can also make errors in arithmetic
and deduction but supports them with excellent explanations [6].
This makes it challenging for students to distinguish between errors
and verified information, leading them to accept false or misleading
information as true [10]. Likewise, according to [1], Codex can

recommend syntactically incorrect code, including undefined vari-
ables, functions, and attributes, which may seem correct at first
glance. To mitigate the risks, [10] stresses educating students on
the critical evaluation of information and teaching strategies for
exploration, investigation, and verification.

3.4.4 Appropriateness for Beginners. Papers [1, 7, 10] raise con-
cerns about the appropriateness of these code generation models
for beginners. According to [7], students using Codex to gener-
ate model solutions for exercises may hinder their learning if the
generated solutions are incorrect or of poor style, resulting in the
adoption of inappropriate conventions and poor coding style. While
this is a risk with any crowd-sourced solution, the customized na-
ture of Codex’s solutions may lead students to perceive them as
more credible. Furthermore, [1] states that the coding styles of
publicly available code are potentially more advanced compared to
those of novice programmers. Given that these models are trained
on publicly available code, the style of the generated code may differ
from those of typical novice programmers and their instructors.

3.4.5 Ethical Implications. Five papers [1, 5, 10, 16, 19] highlight
the issue of harmful bias, claiming that code generation models are
not immune to the bias in AI, and can possibly reflect stereotypes,
represent only certain groups of people, etc. Furthermore, two
papers [1, 16] mention licensing and attribution challenges. Publicly
available codes that are used to train these models may have various
licenses. However, AI-generated code often lacks clear attribution,
leading to potential license violations. Thus, instructors should
educate their students about how the models are trained and their
responsibilities when reusing code.

3.4.6 The Position of Code Generation Models in Programming Ed-
ucation. Two papers [6, 7] propose contextualized, specific, and
applied assessments that enable students to utilize code generation
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tools while still engaging in problem-solving. Likewise, [4] advo-
cates shifting the focus from detecting and preventing the use of
these tools to embracing and integrating them.

Furthermore, [1, 14] suggested a shift in the focus of program-
ming courses from syntax and basic programming principles to
higher-level algorithms, as code generation models can handle low-
level implementation tasks. This could lead to a teaching approach
that prioritizes algorithmic problem-solving, utilizing AI code gen-
eration for implementation and delaying syntax discussions until
later stages [1]. Similarly, software engineering courses might pivot
towards prompt engineering, code evaluation, and debugging [14].

Finally, Dobslaw and Bergh [6], Geng et al. [8] discuss the need
for a transitional period for novice programmers. Understanding
and assessing AI-generated code may be challenging for new pro-
grammers; thus, programming education is still crucial for indi-
viduals to effectively use code generation tools [8]. Instead of in-
troducing students to these technologies from day one, it may be
more beneficial for them to prioritize building a strong foundation
in core computing concepts [6].

4 DISCUSSION
The findings suggested that LLM-based code generators can poten-
tially improve teaching and learning as a teacher’s assistant or a
student’s virtual tutor. However, their performance is unguaranteed,
and the risks of using them should always be considered.

Regarding RQ1, we noted fewer papers on educational tools
compared to those that propose learning and teaching practices,
suggesting limited examples of active use of code generation mod-
els in education. Therefore, further research is crucial to address
knowledge gaps and uncertainties among educators for effective
integration of these models. Furthermore, results show overlap-
ping use of LLM-based code generation models in teaching and
learning activities, particularly in exercise creation. The models
only act as assistive tools for teachers but are more valuable to
learners since they can provide immediate feedback on student
work. Studies have noted immediate feedback on code significantly
improves student learning outcomes and engagement [9, 22, 23].
Yet, using these models for learning poses higher risks than for
teaching, as novice programmers may overlook inaccuracies in the
outputs. Therefore, we encourage further research to investigate
ways to mitigate the risks for beginner programmers. The Coding
Steps web app [11] exemplifies how an AI coding assistant pow-
ered by Codex can support complete beginners while incorporating
control mechanisms to prevent over-utilization. Considering this,
we believe that especially for novices, prompts can be tailored to
limit the generation of huge chunks of code and constraints can be
imposed to prevent direct use of generated code.

Answering RQ2 proved challenging due to the diversity of code
generation models examined in the papers and their varying ver-
sions, making it difficult to generalize their characteristics. Addition-
ally, the empirical studies differed significantly in their experimen-
tal designs, ranging from large-scale evaluations using hundreds
of programming questions to smaller-scale evaluations involving
twenty students. Nevertheless, common limitations emerged. While
excelling in code and explanations, models face challenges with
reasoning-based questions like MCQs. We believe it is crucial to

clearly communicate the limitations of these models to students so
that they do not consider the generated answers as the hard truth.

In response to RQ3, while evaluating the accuracy of the gener-
ated material is crucial, the qualitative metrics proposed by [8, 11] -
sensibleness, novelty, topicality, and readiness for use - offer valu-
able insights for other researchers and educators to evaluate the
AI-generated code and teaching material.

Regarding RQ4, the reviewed papers discussed the challenges
of using models in education but lacked specific actionable guide-
lines for educators to ensure safe student interaction. Further re-
search in developing new technologies, such as ways to obstruct
over-utilization or AI-based plagiarism detectors to safeguard the
integrity of education, is necessary. Furthermore, we suggest devel-
oping novice-friendly user interfaces and tools to promote the safe
and appropriate use of code generation models in education, ad-
dressing academic integrity, over-reliance, and reliability concerns.

Finally, unequal access to education persists due to the domi-
nance of English-based innovations. Only 4 out of 21 reviewed pa-
pers [10, 11, 20, 24] address the research and innovation gap in this
area for non-English languages. While LLMs hold promise for en-
hancing programming education in English, they can lead to unfair
access to educational technologies for non-English speakers. Un-
fortunately, the impact of code generation models on non-English
programming education remains unexplored.

5 THREATS TO VALIDITY
The study faces several threats to its validity due to limitations
in its design and execution. Firstly, the research area is new and
still developing, underscoring the possibility of omitting recent
significant developments. To mitigate this, we chose to include un-
published work [4, 6, 8, 16, 18, 21, 24, 25]. Consequently, the review
might be reporting results that have not been filtered through a
scientific review process. Moreover, the dynamic nature of LLMs
means that results based on current and older versions may not
hold for future versions, altering the educational practices and rec-
ommendations provided in the study. Another limitation stems
from focusing solely on English literature; this decision may have
excluded relevant studies in other languages, potentially introduc-
ing bias and limiting generalisability. Despite these limitations, the
study aims to contribute to a better understanding of the use of
LLM-based code generation models in programming education and
stimulate further research.

6 CONCLUSION
This systematic review of 21 articles emphasized the use of LLM-
based code generation models in programming education and its
potential advantages as a teacher’s assistant in the creation and
evaluation of assessments and as a student’s virtual tutor. However,
generated content often contains minor errors that are manage-
able by instructors but pose risks for novice learners. LLM-based
code generation models offer transformative teaching and learning
possibilities, but addressing accuracy limitations and risks like mis-
conduct and over-reliance is vital. Future studies should explore
integrating AI code generators in classrooms and designing pro-
gramming assessments that encourage critical thinking rather than
relying on these tools as answer generators.
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