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Abstract

Falling remains a large source of (traumatic) injuries and healthcare costs. Over the past years,
different actuators have been developed in the field of wearable robotics to help prevent injuries from
falling. To increase the wearability of these systems, the weight of power storage can be decreased
with intermittent instead of continuous control. A fall detector is then needed for these systems to
trigger the activation of the actuator to prevent the fall. A proof of concept for a model-based fall
detector that is aimed at using only wearable sensor measurements is presented. The algorithm is
based on a single inertial measurement unit placed on the lower back. The upper-body orientation
and centre of mass velocity are estimated with two separate Kalman filters. The velocity is estimated
with a gait model consisting of a spring-damper-legged point mass in three-dimensional space. The
balance of the subject is evaluated with the velocity estimates and the extrapolated centre of mass
method. The presented model is verified on a non-falling treadmill walking dataset of real humans
and shows accurate estimates of the centre of mass velocity. Furthermore, a planar falling simulation
is performed to show successful pre-impact fall detection. This resulted in no false alarms outside the
initial estimation settling time, and a successful detection with a lead time of 680 ms. This lead time
is long enough to provide a trigger for fall mitigation devices.
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Chapter 1

Introduction

Many people fall every year and a large fraction of these falls are caused by slips or trips. It is observed
by multiple studies in different regions that most falls leading to injury happen during walking [1, 2].
More and older fallers are visiting the emergency department and more have been admitted since
1997 [3]. In line with this, the burden of disease from falling has increased sharply in the Netherlands
since 1990 [4]. Fallers report a reduced quality of life up to nine months after sustaining an injury [5].
Even death due to falling is not uncommon: in the Netherlands it is found that 8% of hospital-
admitted elderly fallers die because of it [6]. Apart from physical injuries, falling also incurs a mental
load. There is a strong correlation between fear of falling and depression [7].

Apart from the physical and psychological burden of falling, the economic cost of the resulting health-
care is large. Of all healthcare costs over all ages in the Netherlands, 44% is attributed to falls [8].
The falls by the elderly alone amount to 21% of the total healthcare costs [5].

A solution to falling that yields a completely functional fall-prevention product will need to overcome
many remaining problems. It would need to be wearable, lightweight, and low-power, but it would also
need to be consumer-friendly and attractive to wear [9]. An issue in any wearable electronic device is
balancing power storage versus product weight. A control scheme that does not continuously consume
power, such as the output feedback controllers presented by Lemus et al. [10] for example, can be of
great value to further reduce the weight of fall-prevention systems. Such an intermittent-actuation
solution would require a trigger to switch the system from inactive to active when a wearer needs
assistance during walking.

A trigger that enables such fall recovery or mitigation control schemes is conventionally created by
a detection system designed to detect (the onset of) falls. The author is not aware of any existing
publications on pre-impact, model-based fall detectors based on wearable sensors. Such a detector is
expected to have three main advantages. Firstly, a decreased detection time, consequently an increased
lead time, is expected of model-based approaches when compared to signal-based methods [11, 12].
Secondly, the differentiation between activities of daily life and (near-)falls is expected to be simplified
with respect to signal-based methods. This is because it is possible to determine whether the measured
system (the human subject) is adhering to the dynamics of walking through fault detection methods.
Lastly, a small number of directly measurable or qualitative parameters are expected to fully define the
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2 1. Introduction

model, resulting in straightforward person-specific implementation, as opposed to the large amounts
of data that are necessary for machine learning methods.

The introduction of such a model-based approach paves the way to gather information useful in
different fields, such as: (i) the basic knowledge about posture this method yields at the moment of
detection is significantly more in-depth than the traditional four way fall direction classification that
current detection methods usually incorporate. (ii) The method introduces the possibility to analyse
strategies applied to regain balance and incorporate this knowledge in controlled-environment balance
training. (iii) It creates an objective way of reconstructing (near-)falls for the purposes of forensics,
research, fall-risk assessment, or fall prevention training for example.

For this proof-of-concept detector, the assumed motion will be forward walking on a flat surface, with
a constant velocity. The subject’s preferred step length and cadence are such that walking could go
on indefinitely. The group of interest is the healthy elderly. This excludes the groups affected by for
example multiple sclerosis, Parkinson’s disease or paraplegia. This choice to limit the target group
gives a homogenous population to demonstrate the detector with for the first time, before having to
consider confounding factors.

The investigated hypothesis is that wearable, model-based systems to detect falls are feasible. More-
over, these detectors are expected to perform better by resulting in longer lead times, and yielding
more information than their signal-based or machine-learning-based counterparts.

Sachin A. Umans Master of Science Thesis



Chapter 2

Background

2-1 Gait Phase Cycle

Steady-state gait, with no falls, is a cyclical process and is often divided into two phases [13–18], the
swing phase and the stance phase. A different division of the cycle takes both feet into account and
divides the gait into single support, when one foot is on the ground, and double support, when both
feet are in contact with the ground [17]. In the gait cycle, two instantaneous events at the start of
phases are defined: Toe Off (TO) at the start of swing phase and Heel Strike (HS) at the start of
stance phase [15, 19–21]. An overview is given in Figure 2-1.

Heel
Strike

Toe
O

Heel
O

Toe Strike

Stance Phase Swing Phase

Single
Stance

Single
Stance

Double
Stance

Double
Stance

a)

b)

Figure 2-1: Visualisation of the gait cycle, including different segmentations of the cycle. (a) Monopedal
stride segmentation of the outlined foot. (b) Bipedal stride segmentation of both the outlined and the
shaded feet.
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4 2. Background

2-2 Defining Falls

Discrepancies in definitions for falling may lead to conflicting situations. To create uniformity, the
World Health Organization has defined falling as

Fall: “an event which results in a person coming to rest inadvertently on the ground or
floor or other lower level.” [22]

This definition is also broadly used in literature [23]. Detection schemes are split into two categories,
pre- and post-impact detection. The impact itself is considered to be instantaneous at the moment a
body part other than the feet contact the ground or floor.

Different types of falls are usually considered in experimentation. Most common are the body-relative
directions, i.e. forward, backwards, or sideways [9, 24]. Relatively straight downwards is called a
collapse or crumple [25]. Researchers have also included differentiation in preservative movements
during the fall, such as twisting from the back to the side [26].

Most often, the causes of unintentional falls are divided into three types: slips, trips, and missteps [25].
Slips concern a perturbation of the stance leg, usually a sudden loss of support due to slipping of the
foot. Trips do not have a conventional definition in the available literature. Broadly speaking, however,
a trip is a perturbation of the swing leg, usually through unintended collisions of the swinging foot
with an object or the floor. A misstep is the umbrella term used to capture all other types of falls [25].

2-3 Measures of Dynamic Stability

Stable gait can be divided into three separate control objectives: (i) stance, redirecting the Centre
of Mass (CoM) through ground reaction forces; (ii) swing, cycling between stance legs; and (iii)
balance, keeping the body kinematics within acceptable regions [27]. Assessing how well these three
processes are operating, and if they successfully generate stable gait in humans, remains an unresolved
topic. Many measures based on determining the stability of the limit cycle corresponding to gait
exist. Examples of these measures are the maximum Lyapunov exponent [28], maximum Floquet
multiplier [29], or fractional stability [30]. Other methods look to the variability of gait parameters [31–
35] or to the long term correlation [36] to yield a measure of stability. Researchers have also applied
tools such as spectral analysis to obtain more insight into the complex dynamics of gait [37]. All these
methods yield global measures of stability, however, and do not produce measures that indicate the
instantaneous assessment of stability. They are more suited to assess a subject’s risk of falling, but
not necessarily if they are falling at any given moment.

The measures that do give information about instantaneous balance commonly originate from biome-
chanical principles. The review made by Bruijn et al. gives a practical and insightful overview of the
existing measures of this type, including the method of the ‘extrapolated centre of mass’ [36]. To ex-
plain this method, an example model of a linear inverted pendulum is taken, as depicted in Figure 2-2.
The linear inverted pendulum is a popular and accurate complexity reduction for modelling gait.

The extrapolated centre of mass method is based on extending static balancing principles to dy-
namic ones. It states that, if for static balance the CoM should be within the Base of Support (BoS),
then for dynamic balance the projected CoM should stay within the BoS. With the example model

Sachin A. Umans Master of Science Thesis



2. Background 5

umin
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xz

Fz

mg

Figure 2-2: Inverted pendulum model of the body for the measure of dynamic stability

(Figure 2-2), Hof et al. present an implementation of the extrapolated centre of mass method [38]. In
summary, the derivation is as follows; given the length ℓ of the pendulum, the linearised equations of
motion can be constructed as

ẍ(t) = −g

ℓ
(u(t) − x(t)), (2-1)

where u and x are the horizontal positions of the ground reaction force and the tip of the pendulum,
respectively, relative to the pivot point, as depicted in Figure 2-2. This is a second order differential
equation that can be solved for arbitrary initial conditions. Considering the example where the initial
velocity, ẋ0, of the CoM is in the forward direction, then the physical limit of the ground reaction
force is that it cannot move past the toes. In other words, the ground reaction force cannot move
outside the BoS. As long as the CoM does not cross over the toe in the forward direction, the resultant
moment will counteract the forward velocity of the CoM. However, if this crossing does happen, the
resultant moment will accelerate the forward velocity, resulting in unstable growth, i.e. fall forward.
As a constraint, this is expressed as

x(t) < umax ∀t ∈ R+. (2-2)

Knowing the analytical solution for the equations of motion of the CoM, assuming the ground reaction
force is constant at its maximum and placed at the toes, the maximum velocity can be calculated such
that the CoM trajectory stays behind the toes. This derivation starts with solving Equation 2-1 to
obtain the CoM trajectory as

x(t) = umax + (x0 − umax) cosh (ω0t) + ẋ0

ω0
sinh (ω0t) , (2-3)

where ω0 =
√

g
ℓ is the eigenfrequency of the non-inverted pendulum. Substituting into the constraint

yields
(x0 − umax) cosh (ω0t) + ẋ0

ω0
sinh (ω0t) < 0. (2-4)

Master of Science Thesis Sachin A. Umans



6 2. Background

This can be transformed into
x0 − umax < − ẋ0

ω0
tanh (ω0t) . (2-5)

Since the codomain of the hyperbolic tangent is ⟨−1, 1⟩, this can be reduced to

x0 + 1
ω0

ẋ0 < umax. (2-6)

Thus, any position and velocity measured that violates this inequality would theoretically result in a
fall.

Two measures of stability can be extracted from this method, the margin of stability, b, and the time-
to-contact, bτ . The margin of stability is defined as the distance of the extrapolated centre of mass to
the edge of the BoS, or

b =
∣∣∣∣umax −

(
x + 1

ω0
ẋ

)∣∣∣∣ . (2-7)

The time-to-contact is defined as the margin of stability divided over the current velocity of the CoM,
or [36, 38]

bτ = b

ẋ
. (2-8)

2-4 Pre-Impact Fall Detection Methods

Many attempts at detecting falls before the individual makes impact with the ground have been quite
successful, with recent publications presenting lead times (time between detection and impact) of up
to nearly 900 ms. These pre-impact fall detectors are listed in Table 2-I, where the last three columns
are performance measures.

Figure 2-3 shows a plot of the numerical values of Table 2-I for a more comprehensive comparison.
To compare the performance through a scalar, the Euclidean norm of the sensitivity, specificity, and
accuracy is calculated. Only sources that present at least two of these measures are included in the
plot. For a fair, yet conservative comparison, the empty fields in Table 2-I are filled with the smaller
value of the other two known fields (i.e. the accuracy of [52] is taken to be 95%). Model-based
methods in wearable forms have not been found in the available literature, but the Kinect-based
systems presented by Otanasap and Boonbrahm, and Li et al. perform relatively well [11, 12].

The results presented by Otanasap and Boonbrahm, and Li et al. support the hypothesis that model-
based detectors perform relatively well [11, 12]. Moreover, the prevalence of wearable detector config-
urations in the literature suggests that wearable sensors yield enough information for a model-based
approach.

Sachin A. Umans Master of Science Thesis



2. Background 7

Table 2-I: Pre-impact fall detectors gathered from the available literature. Se: Sensitivity, Sp: Speci-
ficity, Ac: Accuracy, Thr: Threshold-based method, Mod: Model-based method, SVM: Support Vector
Machine, ML: Machine Learning method, MoCap: Motion Capture system.

Source Sensors (amount, place-
ment)

Method Lead time (s) Se (%) Sp (%) Ac (%)

[39] IMU (1, front-waist) Thr 0.07 - - -
[40] IMU (2, back- and right-

waist)
ML 0.15 - 100 97

[41] IMU (1, waist) Thr 0.26 93 98 -
[42] IMU (1, sternum) Thr 0.26 100 96 -
[26] IMU (1, lower-back) Thr 0.28 96 91 92
[43] IMU (1, lower-back) Thr 0.33 96 83 89
[44] MoCap (39 markers, full-

body)
ML 0.35 93 98 95

[45] IMU (1, front-waist) Thr 0.36 94 96 -
[46] IMU (1, sternum) Thr 0.37 99 95 97
[47] IMU (1, shank) Thr 0.37 - - -
[48] IMU (2, front-waist, front-

right-thigh)
ML 0.38 96 97 -

[43] IMU (1, lower-back) SVM 0.39 100 95 97
[43] IMU (1, lower-back) ML 0.40 99 99 99
[49] IMU (1, front-waist) Thr 0.40 100 78 87
[50] IMU (waist, front) Thr 0.40 100 100 -
[49] IMU (1, front-waist) Thr 0.43 100 84 90
[51] IMU (1, waist or lower-

back)
ML 0.50 99 - 98

[11] Kinect Mod 0.52 97 100 96
[52] IMU (2, waist and thigh) Thr 0.70 95 100 -
[12] Kinect Mod 0.87 100 81 92
[53] IMU (1, front-waist) SVM - 97 94 95

Master of Science Thesis Sachin A. Umans



8 2. Background
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Figure 2-3: Comparison of existing pre-impact fall detectors. Se: Sensitivity, Sp: Specificity, Ac: Accu-
racy, Thr: Threshold-based method, Mod: Model-based method, ML/SVM: Machine Learning method
or Support Vector Machine.

Sachin A. Umans Master of Science Thesis



Chapter 3

Method

Body 

Measurements

State

Estimator

Fall

Detector

Foot

Placement

Estimator

y x̂

F̂

Yes/no fall

Figure 3-1: Block scheme of the detector

3-1 Overview

To answer the presented hypotheses, a detection scheme was used consisting of four main components,
depicted in Figure 3-1. Firstly, the body measurement block consists of the walking human and
sensors, and yields the sensor measurement stream, y. The state estimator reconstructs the state
and orientation of the subject from the sensor measurements. These state estimates, consisting of the
Centre of Mass (CoM) velocity estimate x̂, are then used to determine if the person has initiated a
fall by the fall detector. Lastly, it is assumed the time instances of heel strikes are known. Given
these instances and the state estimate, the estimated foot position, F̂, at heel strike is determined by
the foot placement estimator. For clarity, the symbol x is used for the state in a filtering context and
ȮB/N is used in a modelling context, but these symbols represent the same value, i.e.

x = ȮB/N . (3-1)

In order to define points in space and on the body, two coordinate systems are used. The first is the
inertial world frame N , where the placement of the origin is arbitrary. The second coordinate system
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10 3. Method

Table 3-I: Notation used throughout this thesis

Notation Description

a Scalar, a ∈ R

a Vector, unspecified in what frame; a ∈ R3

N a Vector expressed in frame N

N Frame, triplet of orthogonal unit vectors (Nx, Ny, Nz); or coordi-
nate system, quadruplet of three orthogonal unit vectors and an
origin (Nx, Ny, Nz, ON )

Nx Unit vector x of frame/coordinate system N

ã Matrix-vector notation of the cross product, skew antisymmetric;
ã ∈ R3×3

q Quaternion; q ∈ R4

N qB Rotation quaternion used to translate any Ba to N a

||a|| The 2-norm of a

â Estimated value of a

A Matrix, A ∈ Rn×m

Ei Identity matrix of size i × i

a− The value of a at the previous timestep

a+ The value of a at the next timestep

OB/N The origin B relative to the world origin N

is the body-fixed frame B, with the origin relative to ON , OB/N , placed at the CoM. The whole-body
CoM is difficult to determine accurately [54], but is often approximated by markers on the pelvis (i.e.
the average of the sacrum and the anterior superior iliac spines). The body-fixed coordinate system
is defined such that the Bz axis is parallel to the spine and the x axis is in the anterior direction
and perpendicular to Bz and the pelvis. This results in the By pointing to the left of the subject.
Optical markers are used for training as well as finding the CoM. The symbol for the position of
optical markers will be r, subscripted with the corresponding abbreviation of the location defined in
Table 3-II and depicted in Figure 3-2. In general, the notation conventions held onto are tabulated in
Table 3-I.

The CoM and the origin of coordinate system B, relative to the world origin, can then be estimated
through

N OB/N ≈ 1
3(N rLASI + N rRASI + N rSACR). (3-2)

Sachin A. Umans Master of Science Thesis



3. Method 11

RAC
LAC

RASI
LASI

RGTR LGTR

SACR

Sensor

Figure 3-2: Positioning and names of optical markers indicated with purple spheres and positioning of
sensor unit on the lower back indicated with an orange bar. Abbreviations are listed in Table 3-II. Adapted
from model included with OpenSim [55].

3-2 Sensor Configuration

A single 6-Degrees Of Freedom (DOFs) Inertial Measurement Unit (IMU) is the only sensor necessary
for the presented algorithm. The six DOFs are three axes of acceleration and three axes of angular
velocity. An IMU is a fitting sensor for the target use-case, since it is low-cost, low-power, and
small [24]. Additionally, these sensors are light-weight, user-friendly, and robust to environmental
influences.

There is no definitive consensus on the optimal placement of IMUs on the body [56]. However,
multiple results indicate that proximity to the CoM is beneficial to the gathered information [9, 57, 58].
Following these findings, the IMU is placed on the lower back of the subject. Assuming the IMU is
placed in the same sagittal plane as the CoM, the definition of the position relative to the CoM, S, is
given by

BS =

s1
0
s3

 . (3-3)

For subject-specific parameter determination these two parameters can be estimated from physical
measurements. Given the approximation of the position of the CoM, and assuming the vertices

Master of Science Thesis Sachin A. Umans



12 3. Method

Table 3-II: Body location abbreviations and the full marker set necessary to perform the model training
procedures.

Abbreviation Location
LAC Left acromion
RAC Right acromion
LASI Left anterior superior iliac spine
RASI Right anterior superior iliac spine
LGTR Left greater trochanter
RGTR Right greater trochanter
SACR Sacrum

{rRASI, rLASI, rSACR} form an isosceles triangle, s1 may be estimated as

s1 = −2
3dpelvis, (3-4)

where dpelvis is the body thickness in Bx direction at a height between the sacrum and the anterior
superior iliac spines. The placement height on the back is highly dependent of the attachment method,
i.e. belt, pelvis harness, shoulder harness. Under the same assumptions as for the estimation of s1, the
height from the sacrum to the sensor can be measured and subtracting a third of the height difference
between the sacrum and the anterior superior iliac spines will yield an estimate for s3.

3-3 State Estimator

3-3-1 Overview

The model-based approach relies on the estimation of the state of a dynamical model representing
gait. As depicted in Figure 3-3, this starts with a (noisy) IMU measurement y, that consists of the
body-relative angular velocities, Bω, and acceleration including gravity, Bag. The angular velocity
measurements are used to estimate the actual angular velocity N q̇B in quaternion form, the upper-
body orientation quaternion N qB that maps vectors in B to N , and the angular acceleration N q̈B.
These estimates are stacked into

ˆ̄q =
(

N q̂B N ˆ̇q
B N ˆ̈q

B
)T

(3-5)

and combined with the current foot position estimate, F̂, to obtain the gait model input

û =
(

BF̂ ˆ̄q
)T

. (3-6)

This input and the previous state estimate, x̂−, drive an Extended Kalman Filter (EKF) to obtain the
velocity prediction x̂′−, which is then updated with the IMU measurement to get the drifted velocity
estimate x̂′. This estimate is dedrifted with a PI controller to obtain the final velocity estimate x̂.
For an introduction to quaternions, see Vallery and Schwab [59, app. D] and Sabatini [60, app. A].

3-3-2 Orientation Estimation

The orientation estimation is performed by a Kalman Filter (KF) smoothing the angular velocity
measurements. Taking inspiration from Joukov et al. [61], it is assumed that due to the cyclical
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Figure 3-3: Block scheme of the state estimator subsystem

nature of walking, all elements of N qB, N q̇B and N q̈B can be modelled as simple oscillators with an
equal frequency, ϕsway. For example, the dynamical model for the first element of N qB, N qB

1 , is ẋq1 =
(

0 1
−(2πϕsway)2 0

)
xq1 +

(
0
1

)
uq,1

N qB
1 =

(
1 0

)
xq1.

(3-7)

Appending four of these systems diagonally allows for filtering the whole quaternions with a single
KF, such that the filtering procedure can be expressed as a function, KF(N qB

meas), of the measured
quaternion.

The estimation procedure at timestep k starts with calculating the measured quaternion derivative as

N q̇B
meas[k + 1] = 1

2Q[k]
(

0
Bω[k]

)
, (3-8)

where Q is the left quaternion multiplication matrix. For example, this matrix for a quaternion q is
expressed as

Q =
(

q0 qT

q q0E3 + q̃

)
, q =

(
q0
q

)
. (3-9)
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14 3. Method

This measurement is then smoothed with the KF, such that

N ˆ̇q
B

[k + 1] = KF(N q̇B
meas[k + 1]). (3-10)

Using the forward Euler integration method for a sampling period ∆t, the measured orientation is
obtained as

N qB′
meas[k + 1] = N q̂B[k] + ∆t

N ˆ̇q
B

[k] (3-11)

and normalised to obtain a valid rotation quaternion,

N qB
meas[k + 1] = 1

∥N qB′
meas[k + 1]∥

N qB′
meas[k + 1]. (3-12)

This is again smoothed as

N q̂B′[k + 1] = KF(N qB
meas[k + 1] − N qB

steady), (3-13)

where N qB
steady is the steady state orientation. The quaternion N q̂B′ is then normalised as

N q̂B[k + 1] = 1
∥N q̂B′[k + 1]∥

N q̂B′[k + 1] + N qB
steady. (3-14)

Lastly, the angular acceleration is calculated with forward differentiation as

N q̈B
meas[k + 1] = 1

∆t

(N ˆ̇q
B

[k + 1] −
N ˆ̇q

B
[k]
)

(3-15)

and smoothed as
N ˆ̈q

B
[k + 1] = KF(N q̈B

meas[k + 1]). (3-16)

The exact formulation of KF(N qB
meas) is elaborated on in Appendix A.

3-3-3 Centre of Mass Velocity Estimation

Dynamical Model

The velocity estimates of the CoM are made with an EKF driven by a hybrid dynamical model, f ,
representing gait, and a measurement model, g, that links the state to sensor readings. The EKF
algorithm is very similar to the regular KF algorithm, except that the system is linearised at every
time step for the current state. The exact algorithm is given by Särkkä [62, p. 69, 70] and presented
in Appendix A.

Furthermore, the model consists of four modes, p, with different dynamics: single and double stance
for both left and right legs. The mode transitions are depicted in Figure 3-4a. The model switches
from single stance to double stance at every heel strike, and after five sampling periods in double
stance, continues to single stance again on the other leg. It is assumed that heel strike events occur
at known time instances. The shifting of the centre of pressure from the back foot to the new stance
foot, takes roughly these five sampling periods in double stance.

The continuous model, f ′ such that ÖB/N = f ′(ȮB/N , u, p), with gait phase p, is synthesised to be
similar to the broadly-used Spring-Loaded Inverted Pendulum (SLIP)-model [63] and is similar to the
model presented by Paiman et al.[64]. It consists of a point, OB/N , at the CoM in 3D-space, and two

Sachin A. Umans Master of Science Thesis



3. Method 15

Left

Double Stance

Left

Single Stance

Right

Double Stance

Right

Single Stance

[T ]HS

[T ] HS

(a) Switching modes of the gait dynamics.
HS: Heel Strike, [T ] indicates mode transi-
tions after T time has passed.

N

z
y

x

B
z

y
x

F

(b) Sketch of the continuous model with the
red vector indicating the foot position vector.

Figure 3-4: Switching modes and single mode dynamics of the dynamical model

spring-damper legs connected to it with ball joints. It is assumed there is only one foot exerting a
Ground Reaction Force (GRF), R, at any given moment and its origin relative to the CoM is the foot
position denoted as F. The model is sketched in Figure 3-4b. The state of this model is the velocity
of the CoM, BȮB/N , and the input is

u =
(BF q̄

)T
. (3-17)

The GRF is the only force besides gravity acting on the CoM. The direction of the GRF is in the
opposite direction of F. Its magnitude is dependent upon the spring and damper constants and the
untensioned length of the leg, K, b and ℓ0 respectively. Denoting the leg length with ℓℓ gives

∥R∥ = K(ℓ0 − ℓℓ) + bℓ̇ℓ. (3-18)

The damper in the leg does not necessarily dissipate energy. If the training performance improves
because the damper adds energy to the system, it is allowed to be a negative damper, i.e. b can be
both negative and positive.

The derivative ℓ̇ℓ is not easily determined, because for example the centre of pressure moves beneath
the foot, or the foot can slip. However, if it is assumed that F is static in N , or in other words, that
the centre of pressure does not move, then

Ḟ = −ȮB/N . (3-19)

Then the leg length derivative can be calculated by projecting this foot velocity onto the leg direction
as

ℓ̇ℓ = 1
∥F∥

(−ȮB/N · F). (3-20)

The final force is then found through
R = ∥R∥ −F

∥F∥
. (3-21)

During double stance, the x component of R is set to zero to correct for the shifting of the centre of
pressure from one foot to the other.
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16 3. Method

The gravitational force, Z, is defined in the world frame as

N Z = mN g = m
(
0 0 −g

)T
, (3-22)

where g is the gravitational constant and m is the whole-body mass. With the inverse of the input
N qB, this can be rotated to BZ. The acceleration of the CoM can then be found by

mBÖB/N = BR + BZ (3-23)

⇒ f ′(ȮB/N , u, p) = BÖB/N = 1
m

(BR + BZ
)

. (3-24)

This can then be discretised through forward Euler integration as

N Ȯ+
B/N = N ȮB/N + ∆tN ÖB/N (3-25)

⇒ f(ȮB/N , u, p) = BȮ+
B/N . (3-26)

Only one discontinuous reset map is applied during state transitions. Due to how the model is defined,
the GRF is too small during the last part of the swing phase. The CoM is therefore not accelerated
upwards whilst measurement data indicates it should be. The Bz velocity is set to zero at every heel
strike to compensate for this missing upward motion.

Measurement Model

To estimate the CoM velocity, the EKF requires a function that relates the velocity to the measure-
ment. This function is g(ȮB/N , u, p) and describes the relation between body movement and IMU
measurements. Given the CoM acceleration ÖB/N = f ′(ȮB/N , u, p) and the orientation quaternion
and its derivatives, the body-relative angular velocity and acceleration, ω and ω̇ respectively, can be
found through [59, app. D] (

0
Bω

)
= 2QTN q̇B, and (3-27)(

0
Bω̇

)
= 2QTN q̈B. (3-28)

Then, the acceleration of S is calculated as [59]

BS̈ = BÖB/N + Bω̇ × BS + Bω ×
(Bω × BS

)
+ Bg. (3-29)

The complete IMU measurement function then becomes

g(ȮB/N , u, p) =
(Bω

BS̈

)
. (3-30)

Knowing the expressions of the dynamical and measurement models, the states can be estimated
with an EKF. The precise filtering equations are described by Särkkä [62] and elaborated upon in
Appendix A.
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3-3-4 Dedrifting

Due to integration of measurement errors, the CoM velocities are prone to drift from their true
nominal values. To counteract this drifting, it is assumed that the Bx velocity stays near to the
nominal walking velocity, v0, and the By velocity is centred around zero. These assumptions allow
the use of a diagonal PI-controller to compensate for the integration drift. The assumption that v0 is
known poses a practical limitation, since v0 can not be obtained directly from accelerometry.
The two tuning parameters for this drift controller are κx and κy for x and y direction, respectively.
The dedrifting is then accomplished by{

I+
x =Ix + (x̂′

x − v0) ∆t

x̂x =x̂′
x − κxIx

(3-31)

and {
I+

y = Iy + x̂′
y∆t

x̂y = x̂′
y − κyIy,

(3-32)

where Ix and Iy are the error integral terms for x and y velocities, respectively. Both Ix and Iy are
bounded to the range [−0.15, 0.15] to prevent integral windup during the initial transient.

3-4 Foot Placement Estimator

The Foot Placement Estimator (FPE) is similar to the Extrapolated Centre of Mass (XCoM) method
in the sense that it relies on the CoM velocity [38]. Ignoring the vertical component, the new foot
placement at heel strike, F̂new, is determined in two steps where the first is

F̂′
new =

0.1 0 0
0 ζW 0
0 0 0

 ȮB/N +

ζL

0
0

 . (3-33)

Here, ζL and ζW are tuning parameters. The factor 0.1 in the diagonal matrix is a mean-removal
approximation, where it is assumed the Bx velocity deviates roughly 10% around its nominal value.
The final placement estimate is determined in the second step by finding the z component such that
the leg at heel strike has length ℓmax throughF̂new = F̂′

new +
(

0 0 −
√

ℓ2
max − ∥F̂′

new∥2
)T

, ∥F̂′
new∥ ≤ ℓmax

F̂new =
(
0.48 0 −

√
ℓ2

max − 0.482
)T

, ∥F̂′
new∥ > ℓmax.

(3-34)

The second option is added to prevent complex estimates, whilst still yielding a realistic output.
Outside of heel strike events, during the swing phase it is assumed the stance foot does not slip. The
system B does move, so the foot moves with respect to B as [59]

F̂+ = F̂ + ∆t
(

−Ȯ+
B/N + ωB/N × F̂

)
, (3-35)

where (
0

ωB/N

)
= 2QTN q̇B. (3-36)

The foot estimate is also prevented from crossing the zero line in the y direction to keep the model
from accelerating in the wrong direction.
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18 3. Method

3-5 Fall Detector

The XCoM method as described in Section 2-3, is applied in 3-dimensional space for this model to
detect falls given the CoM [38]. The eigenfrequency of the non-inverted pendulum of equal length,
without spring or damper, is assumed to be

ω0 =
√

g

ℓmax
. (3-37)

The XCoM, denoted by xCoM, is calculated as

xCoM =

1 0 0
0 1 0
0 0 0

xCoM ⊘ ω0, (3-38)

where ⊘ is the Hadamard (elementwise) division.

The Base of Support (BoS), B, has no conventional definition for dynamic walking. By describing
human gait as a static walking process instead, the BoS would include only the envelope of the feet
contact areas. The BoS for a dynamic walking process turns the problem into a classification problem
where it has to be determined what states (trajectories) belong to steady-state walking and unstable
walking, respectively. In this detector proposal, these problems are avoided by simplifying the BoS
based on observations from stable walking. The BoS is defined as a triangle with its vertices at

B0
0
0

 ,

BBx

By

0

 ,

B Bx

−By

0


 . (3-39)

The detector indicates falling by setting the value of a Boolean variable Λ, when xCoM moves outside
of B, or

xCoM /∈ B ↔ Λ = true. (3-40)

The reason for B being defined in B is to decouple it from the orientation estimation. Even though B
will not coincide with the real-world floor, this is outweighed by the advantage of having it decoupled
from the orientation estimate. This is further supported by the fact that the upper-body tilt is
generally within small-angle magnitudes.

3-6 Parameter Training

The dynamical model described in Section 3-3-3 allows for subject-specific customisation to best reflect
their gait. Aside from the dynamical model parameters, the other blocks have tunable parameters as
well, which are listed in Table 3-III.

The system parameters are determined through experimental training data [65] that includes optical
marker data retrieved through a motion capture system and the ground reaction force, including the
centre of pressure position, obtained by a force plate sensor. The list of necessary markers is given in
Table 3-II.

To train the dynamical model, the marker measurements are parsed to obtain the reference state and
input trajectories first. This starts with obtaining the body-fixed frame B, where Bz is defined as the
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Table 3-III: Detection system parameters

Symbol Description Range Unit
Dynamical Model

m Whole-body mass R+ kg
KL Left leg spring constant [0, 104] N m−1

bL Left leg damper constant [−5 · 103, 5 · 103] N s m−1

ℓ0L Left leg untensioned length [0, 2] m
KR Right leg spring constant [0, 104] N m−1

bR Right leg damper constant [−5 · 103, 5 · 103] N s m−1

ℓ0R Right leg untensioned length [0, 2] m
FPE
ζW,L Left leg step width correction R s
ζL,L Left leg step length correction R m
ζW,R Right leg step width correction R s
ζL,R Right leg step length correction R m
ℓmax Heel strike leg length R+ m

Orientation Estimator
ϕsway Upper-body oscillation frequency [0.5, 2] Hz

Fall Detector
Bx Anterior boundary of base of support R+ m
By Lateral boundary of base of support R+ m

direction from the CoM to the centre of the shoulders, such that

N Bz = 1
2(N rLAC + N rRAC) − N OB/N . (3-41)

It is then assumed that the anterior direction, N Bx, is perpendicular to the pelvis and N Bz, and
therefore

N Bx = (N rLASI − N rRASI) × N Bz. (3-42)

The complete frame B is found with
N By = N Bz × N Bx (3-43)

and normalising the directions. Building the rotation matrix and converting it to a quaternion, gives
the rotation quaternion N qB that transforms vectors from frame B to N .

The velocity of the CoM is numerically derived from the measured position via the symmetric deriva-
tive. Given the sampling time, ∆t, the velocity is approximated as

N ȮB/N [k] =
N OB/N [k + 1] − N OB/N [k − 1]

2∆t
. (3-44)

With the same derivative formula, N q̇B and N q̈B are determined.

Secondly, the foot positions are obtained from the force plate measurements. Since the model has
point feet and no-slip is assumed, the foot placement is determined to be the weighted average centre
of pressure over a stride. The weights in this average are the GRF magnitudes. With these foot
positions, the full state and input trajectories are known of the training data.
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Orientation Estimation

The only parameter needed for the orientation estimation is the most prominent frequency in the upper
body sway. This could be the stepping frequency or one of its harmonics. In this case, the parameter
ϕsway is heuristically determined from the frequency composition of the measured orientations. The
steady-state orientation is determined as the average orientation over the training period.

Dynamical Model

The model-training goal is to find a good initialisation point for a gradient-based nonlinear optimisation
function. Knowing the stance leg length, ℓℓ, and the GRF, R, the spring, damper and untensioned
length parameters can be found through a quadratic optimisation. The GRF magnitude parallel to
the foot direction ∥R//F∥, is expressed as

∥R//F∥ = K(ℓ0 − ℓℓ) + bℓ̇ℓ. (3-45)

Expanding and reordering yields the equation

Kℓ0 − Kℓℓ + bℓ̇ℓ − ∥R//F∥ = 0. (3-46)

Stacking this equation over time and taking the squared norm gives the optimisation problem

min
K,b,ℓ0

(
Kℓ01 − Kℓℓ + bℓ̇ℓ − ∥R//F∥

)T (
Kℓ01 − Kℓℓ + bℓ̇ℓ − ∥R//F∥

)
. (3-47)

Applying the substitution κ = Kℓ0 yields

min
K,b,ℓ0

(
κ1 − Kℓℓ + bℓ̇ℓ − ∥R//F∥

)T (
κ1 − Kℓℓ + bℓ̇ℓ − ∥R//F∥

)
⇐⇒ min

K,b,ℓ0
κ21T1 − κK1Tℓℓ + κb1Tℓ̇ℓ − κ1T∥R//F∥ − κKℓT

ℓ 1 + K2ℓT
ℓ ℓℓ − KbℓT

ℓ ℓ̇ℓ

+ KℓT
ℓ ∥R//F∥ + κbℓ̇T

ℓ 1 − Kbℓ̇T
ℓ ℓℓ + b2ℓ̇T

ℓ ℓ̇ℓ − bℓ̇T
ℓ ∥R//F∥

− κ∥R//F∥T1 + K∥R//F∥Tℓℓ − b∥R//F∥Tℓ̇ℓ + ∥R//F∥T∥R//F∥. (3-48)

Substituting ς =

κ
K
b

 allows for the matrix notation

min
ς

1
2ςT

 21T1 −1Tℓℓ − ℓT
ℓ 1 1Tℓ̇ℓ + ℓ̇T

ℓ 1
−1Tℓℓ − ℓT

ℓ 1 2ℓT
ℓ ℓℓ −ℓT

ℓ ℓ̇ℓ − ℓ̇T
ℓ ℓℓ

1Tℓ̇ℓ + ℓ̇T
ℓ 1 −ℓT

ℓ ℓ̇ℓ − ℓ̇T
ℓ ℓℓ 2ℓ̇T

ℓ ℓ̇ℓ

 ς

+

−1T∥R//F∥ − ∥R//F∥T1
ℓT

ℓ ∥R//F∥ + ∥R//F∥Tℓℓ

ℓ̇T
ℓ ∥R//F∥ − ∥R//F∥Tℓ̇ℓ

T

ς +
(
∥R//F∥T∥R//F∥

)

⇐⇒ min
ς

1
2ςT

 21T1 −21Tℓℓ 21Tℓ̇ℓ

−21Tℓℓ 2ℓT
ℓ ℓℓ −2ℓT

ℓ ℓ̇ℓ

21Tℓ̇ℓ −2ℓT
ℓ ℓ̇ℓ 2ℓ̇T

ℓ ℓ̇ℓ

 ς

+

−21T∥R//F∥
2ℓT

ℓ ∥R//F∥
−2ℓ̇T

ℓ ∥R//F∥

T

ς +
(
∥R//F∥T∥R//F∥

)
. (3-49)
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This is the standard quadratic programming problem, thus the optimal leg constants vector, ς∗, is
found to be

ς∗ =

 21T1 −21Tℓℓ 21Tℓ̇ℓ

−21Tℓℓ 2ℓT
ℓ ℓℓ −2ℓT

ℓ ℓ̇ℓ

21Tℓ̇ℓ −2ℓT
ℓ ℓ̇ℓ 2ℓ̇T

ℓ ℓ̇ℓ

−1 21T∥R//F∥
−2ℓT

ℓ ∥R//F∥
2ℓ̇T

ℓ ∥R//F∥

 . (3-50)

In the quadratic optimisation, κ and K are bound to be positive values, hence Equation 3-50 is only
true if these bounds remain inactive.

For the final optimisation, ς∗ will be used as the initialisation point. The bounds for all parameters
are given in Table 3-III. The objective function is defined as the weighted square error between the
measured state trajectory and the modelled state trajectory, when the model state is corrected to
the measured state at every heel strike. The weight is a user-defined parameter and indicates how
important accurate modelling of the components of ȮB/N are relative to each other. The nonlinear,
gradient-based optimisation function fmincon in Matlab is used to retrieve the final parameters.
In this last step, perfect input is not assumed. The measured feet positions are still used, but the
velocity error is integrated and added to the foot displacement. This puts a slight preference for the
early phase model fit, since these errors have a longer effect and incur a greater cost relative to the
model fit at the end of the stance phase.

Foot Placement Estimator

The FPE parameters are calculated through comparing uncorrected and measured foot placements.
The measured placements have already been derived from the force plate measurements. The heel
strike leg length, ℓmax, is defined as the maximum measured leg length, such that

ℓmax = max∥F[k]∥. (3-51)

The foot placements are stored in ξ0 and ξmeas, both in RN×3, for the uncorrected and measured heel
strike positions. Then the step length correction is determined as

ζL = avg(ξmeas,x − ξ0,x). (3-52)

The step width correction is determined similarly as

ζW = avg(ξmeas,y ⊘ ξ0,y). (3-53)

Fall Detection

The parameters for B can be determined in two manners. The first option is to determine Bx and
By heuristically, based on measured data of healthy gait. The second option is measuring a subject’s
healthy gait at different walking velocities and retrieving the maximum posterior excursions of xCoM.
Performing a linear regression on the retrieved data points yields a linear relation between the walking
velocity and Bx.

3-7 Experiment Description

The functionality of the detection scheme is verified in two manners. Firstly, the state estimation is
evaluated on the dataset published by van der Zee et al. [65]. This dataset consists of a full-body
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marker set and a force plate sensor per foot, measured during treadmill walking. It includes 10 distinct
subjects, who performed 33 walking trials each, with varying speed, step length, step frequency, and
step width. To demonstrate the state estimation, the data of one example participant (21 years,
57.3 kg, 1.64 m) is used when walking at 1.6 m s−1 and all other trial parameters are self-selected
(subject #2, trial #11). The data is 60 s long and measured at 120 Hz. This set is split up into
training and verification data, and will be referred to as the Van der Zee [65] (VdZ) dataset. This
subject is relatively short and lightweight, walking slightly fast considering the target group consisting
of the elderly. The reason this subject is chosen is to make the test less advantageous to the algorithm,
since a shorter person creates a shorter arm between the ground contact and sensor, resulting in smaller
acceleration measurement magnitudes. The faster walking speed results in faster changes in velocity
and orientation, making them more difficult to estimate.

Secondly, the simulation environment OpenSim is used to obtain measurements of a fall, since no real-
life measurements are openly available [66, 67]. A secondary optimisation tool, SCONE [68], is used to
generate realistic gait with the humanoid model, H0918M_osim4 [55].1 This model is planar, meaning
that there is no lateral movement possible. Two simulations are performed at 100 Hz to gather both
healthy training data and measurements of a fall. A situational sketch of the walking and falling is
given in Figure 3-5. The gait is generated by optimising the reflex-controller parameters presented by
Geyer and Herr [70] for 40 generations, with an objective reflecting steady-state gait without falling.
The same optimised muscle activations are used to drive the model in the tripping scenario.

Figure 3-5: Situation sketch for gathered falling data. Retrieved from SCONE. From left to right is
demonstrated: normal gait, contact instance, and impact instance.

1In-file model description: “Planar model with 9 degrees-of-freedom and 18 muscles. Adapted for SCONE from
Gait2392 by Thomas Geijtenbeek.” Gait2392 refers to [69].
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Chapter 4

Results

4-1 Model Validation

4-1-1 Training Results

The verification of the models requires the training of the system parameters on steady-state gait.
The training of each relevant part of the detector is elaborated upon to motivate and show what the
process entails and what quantities and qualities may affect the training procedure. The length of
the training dataset is 15 s for the Van der Zee [65] (VdZ) dataset. This training length is relatively
short, but due to the limited amount of available data and the need to allow for a settling time during
verification, this is the remaining available data.

Orientation Estimation

The choice of ϕsway is based on the frequency composition of the training data. The spectrum of
the VdZ training data is graphed in Figure 4-1. The value at 1.2 Hz is annotated and because of the
flatness of the middle two peaks, ϕsway is chosen to be 1.16 Hz.
This choice for ϕsway is the only parameter necessary to estimate the upper-body sway. These results
are plotted and compared to the ground truth in Figure 4-2. The root mean square errors and variances
accounted for are tabulated in Table 4-I. These performance measures are calculated as [71]

RMSE(x, x̂) =
√

∥x − x̂∥2

N
, x, x̂ ∈ RN (4-1)

and
VAF(x, x̂) = max

(
0, min

(
1, 1 − ∥x − x̂ − avg (x − x̂) ∥2

∥x − avg (x) ∥2

))
. (4-2)

The value for ϕsway obtained from the VdZ training is also used for the orientation estimation in the
OpenSim environment. This is because the model used in this simulation focuses on the lower half of
the body, but the upper body is of very low complexity.
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Table 4-I: Performance measures of models. The results of the trained models are compared to the
measurements through the Root Mean Square Error (RMSE) and the Variance Accounted For (VAF).
Low RMSE and high VAF indicate good performance. Subscripts indicate the direction or element of the
vector. Fields in the OpenSim columns are empty, because there was no training and the model is planar.
The first 15 s of the OpenSim verification estimates are not considered.

Van der Zee OpenSim Unit
Training Verification Verification

RMSE
(
ȮB/N

)
x

0.076 0.177 0.189 m s−1(
ȮB/N

)
y

0.094 0.213 m s−1(
ȮB/N

)
z

0.097 0.210 0.271 m s−1

N qB
1 0.001 0.001 0.000 -

N qB
2 0.007 0.009 0.000 -

N qB
3 0.014 0.013 0.007 -

N qB
4 0.012 0.011 0.000 -

N q̇B
1 0.006 0.006 0.004 s−1

N q̇B
2 0.069 0.069 0.002 s−1

N q̇B
3 0.050 0.048 0.089 s−1

N q̇B
4 0.117 0.115 0.002 s−1

N q̈B
1 0.256 0.262 0.175 s−2

N q̈B
2 1.517 1.437 0.035 s−2

N q̈B
3 1.985 1.931 4.024 s−2

N q̈B
4 5.356 4.995 0.037 s−2

VAF
(
ȮB/N

)
x

0.996 0.984 0.975(
ȮB/N

)
y

0.983 0.911(
ȮB/N

)
z

0.975 0.905 0.848
N qB

1 1.000 1.000 1.000
N qB

2 0.999 0.999 1.000
N qB

3 0.998 0.997 1.000
N qB

4 0.999 0.998 1.000
N q̇B

1 0.723 0.725 0.883
N q̇B

2 0.485 0.508 0.875
N q̇B

3 0.795 0.824 0.878
N q̇B

4 0.810 0.823 0.874
N q̈B

1 0.000 0.000 0.216
N q̈B

2 0.128 0.164 0.147
N q̈B

3 0.000 0.019 0.189
N q̈B

4 0.111 0.147 0.173
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Figure 4-1: Frequency contents of the upper-body sway quaternion, analysed from the VdZ dataset.
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Figure 4-3: Linear fit between average walking velocity and anterior XCoM excursions in steady-state
gait, analysed from the VdZ dataset.

Base of Support

The VdZ dataset contains multiple walking speeds with otherwise self-selected parameters and this
enables performing the linear regression on Bx. The results of the linear regression are plotted in
Figure 4-3. The obtained upper bound of the anterior excursion with a 75% confidence interval is

Bx = 0.116 + 0.316v0 (4-3)

for the subject in the VdZ data. Thus, the found value is

v0 = 1.6 m s−1 → Bx = 0.622 m. (4-4)

Foot Placement Estimator

The parameters for the Foot Placement Estimator (FPE) are found through comparing the untuned
values with the measured values. Following the training procedure for both training datasets yields
the estimates as plotted in Figure 4-4. The mean absolute placement errors after training are 0.026 m
and 0.015 m for the VdZ and OpenSim sets, respectively.

State Estimation

The model is trained through a combination of a quadratic programming problem on the Ground
Reaction Force (GRF), followed by a nonlinear optimisation fitting of the model state trajectories to
the measured trajectories. The errors in all states are weighed equally for this training. Executing
this training procedure yields values for the spring-damper constants of both legs. The results of this
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28 4. Results

optimisation are plotted in Figure 4-5 for the VdZ data. This training method is not suitable for the
planar nature of the OpenSim model, therefore the trained leg parameters obtained from the VdZ
subject will also be used for the OpenSim dynamical model.
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Figure 4-4: Training performance of the foot placement estimator given heel strike instances
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Table 4-II: Obtained system parameters after training

Parameter VdZ OpenSim Unit
m 57.3 74.5 kg
KL 4.51 · 103 4.51 · 103 N m−1

bL −1.09 · 103 −1.09 · 103 N s m−1

ℓ0L 1.078 1.078 m
KR 7.07 · 103 7.07 · 103 N m−1

bR −1.57 · 103 −1.57 · 103 N s m−1

ℓ0R 1.034 1.034 m
ζW,L 0.458 s
ζL,L 0.305 0.371 m
ζW,R 0.591 s
ζL,R 0.283 0.361 m
ℓmax 1.038 1.092 m
ϕsway 1.16 1.16 Hz
Bx 0.622 0.550 m
By 0.178 m

All trained parameters are tabulated in Table 4-II. Completing the training procedure takes roughly
80 s for the VdZ training set, which contains 15 s of data. Table 4-I lists the training performance in
terms of root mean square error and variance accounted for.

4-1-2 System Verification

Different data than the training set is employed to verify the state estimation algorithm using the
entire system. After manual tuning, the values of the process noise covariance matrix, QKF, the
measurement noise covariance matrix, RKF, and the initial estimate covariance matrix, P0,KF , are
found as tabulated in Table 4-III. Using these parameters and inputting the Inertial Measurement
Unit (IMU) measurements into the system, yields the orientation and Centre of Mass (CoM) velocity
estimates of both verification sets. The IMU measurements for the VdZ set are emulated by twice
deriving the marker positions to find the necessary acceleration of the point BS. The position of the
sensor, BS, for the VdZ data is chosen to be

BS =

−0.07
0

0.042

 , (4-5)

where 0.042 is 10% of the torso height, which is a suitable value for attaching the sensor to a waist
belt. The IMU measurements of the OpenSim simulations are extracted directly from OpenSim. The
position of the sensor is not known exactly, but is estimated from Figure 3-2 to be

BS =

−0.07
0

0.154

 , (4-6)

where 0.154 is 30% of the torso height. For a more realistic experiment, Gaussian noise of zero
mean and a variance of 10−3 and 10−2 is added to the accelerometer and gyroscope measurements,
respectively for the VdZ dataset, and noise with a variance of 10−4 is added to all six measurement
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Table 4-III: Obtained filter parameters after tuning

Parameter VdZ OpenSim
QKF 10−3E3 10−3E3
RKF 10−3E6 10−4E6
P0,KF 10−2E3 10−2E3
κx 5 · 10−2 8 · 10−2

κy 10−3

channels of the OpenSim data. The estimates given the verification measurements are plotted in
Figure 4-6 through 4-9. Table 4-I gives the performance measures of the models.

Assessing the observability of the model analytically is difficult since the expressions for f and g are
complex. However, the observability of the pair of Jacobians of f and g with respect to x, (Fx, Gx),
can be assessed as the linearised system at every time step. This analysis of the VdZ verification data
determines that at every time step the linearised system has one observable mode and two unobservable
and unstable modes. This implies that the system is undetectable. However, at every time step the
unstable unobservable modes are numerically found to have eigenvalues between 1 and 1+10−14. This
means that the modes are either marginally stable or slightly unstable, depending on if the distance
outside the unit circle is a numerical error.
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4. Results 37

The estimated output is also compared to the IMU measurements for both of these estimates. These
comparisons are plotted in Figure 4-10.

The foot placement estimates at every heel strike of the VdZ measurements are plotted in Figure 4-11.
Since the FPE is calculated from the estimated CoM velocity, its performance is largely dependent on
the quality of the velocity estimate at the end of single stance.

The measured Extrapolated Centre of Mass (XCoM) over time is also plotted in Figure 4-12, in order
to compare it to the Base of Support (BoS). The estimated XCoM is plotted in Figure 4-13 and it is
shown that there are no erroneous detections, since the XCoM does not leave the BoS.
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Figure 4-10: Comparison between actual and estimated output measurements. These are representative
windows, the complete plots are given in Appendix C, Figure C-7.
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Figure 4-12: Measured extrapolated centre of mass trajectory during normal walking compared to the
chosen base of support, analysed from the VdZ verification data.
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40 4. Results

Figure 4-13: Estimated extrapolated centre of mass trajectory obtained from the VdZ verification dataset.
The estimates during the settling time are excluded.
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4. Results 41

4-2 Detector Validation

IMU measurements from a falling scenario, as sketched in Figure 3-5, enable the verification of the
entire detector system. The orientation and state estimations are plotted in Figure 4-14 and Figure 4-
15. The initial contact with the tripping object is at time t = 66.32 s, and the first detection occurs
at t = 66.78 s. The first contact of the knee with the floor is at t = 67.46 s. Therefore, in this case,
the detection time is 460 ms and the lead time is 680 ms. The ratio of computation time to analysed
time is

Computation time
Data time duration = 66.4 s

67.4 s ≈ 99% (4-7)

on a consumer-grade laptop with a 6-core, 2.60 GHz CPU.

To indicate the margin of detection, the anterior XCoM component is plotted over time in Figure 4-16.
The detection threshold is shown as well in Figure 4-16, indicated by the black bar.
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Figure 4-16: XCoM anterior excursion around the time of falling. This is the window around the falling
event, the complete plot is provided in Appendix C, Figure C-8.
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Chapter 5

Discussion

5-1 State Estimation Performances

As visible in Figure 3-3, all of the signals in the developed state estimator are physically measurable
and the estimates are compared to the ground truths as presented in Chapter 4. Firstly, the model
was fitted to a specific individual. The training of the parameterised model to this individual required
little data (15 s), especially compared to machine learning-based methods. The presented method
does, however, require training, whereas in signal-based methods, it is often not necessary to tune to
individuals [46, 50]. One advantage of the detection method is that a small marker set is required.
This entails that for real-life training procedures, the data collection time with the subject can be
short, whereafter the data processing can be left to a non-healthcare professional.
The first estimate made in the detection algorithm is the orientation estimate. As can be seen in
Figure 4-2, 4-6, and 4-7, the oscillation Kalman Filter (KF) described in Section 3-3-2 is capable
of estimating the upper-body orientation sufficiently with a root mean square error in the order of
10−2, 10−2, and 100 for the zeroth, first, and second derivative respectively. The parameterisation
of this filter results in low-complexity, intuitive tuning, based on measurable spectra. The filter is
computationally more expensive than the often-used direct integration method employed for orienta-
tion estimation, but it does not suffer from integration drift. The orientation estimation shows good
performance with low root mean square error and high variance accounted for, while the angular
acceleration shows the opposite. This is likely due to the low-pass nature of derivators. The single-
frequency assumption that holds for the orientation model may not hold for the angular acceleration
model, or it may hold for a different frequency.
Using the orientation estimate, the Centre of Mass (CoM) velocity was estimated with the Extended
Kalman Filter (EKF). From Figure 4-5 it is inferred that the model can capture the gait dynamics
reasonably well with a root mean square error between 0.1 and 0.3 and a variance accounted for of more
than 90%. It is also visible that most of the cyclical shape factors of the measured trajectory are also
present in the estimated trajectory. Only the last moments of single stance, just before heel strike, are
consistently estimated incorrectly in the Bz direction. The estimate keeps moving downwards, whilst
the measurement bends up. This indicates that there is an unmodelled upward force acting on the
CoM.
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46 5. Discussion

The training procedure for determining the spring-damper leg parameters was not fit for training with
the planar data generated from the OpenSim scenario. However, the verification of the model using the
Van der Zee [65] (VdZ) leg parameters for the OpenSim dynamical model, yielded comparable results
to the training and verification results for the subject it was trained on, as tabulated in Table 4-I.
This gives a strong indication of robustness to modelling errors for these parameters and also indicates
that different variations of gait by the same subject may be captured by a single model.

The state estimation given the Inertial Measurement Unit (IMU) measurements, shown in Appendix C,
Figure C-5 and C-6, have a relatively long settling time of around 20 s and 13 s respectively. After this
settling time, the estimate stays near the ground truth, indicating that the filter is capable of accurately
estimating the CoM velocity. The modelling error in the Bz direction at the end of single stance phase
is also apparent here, meaning the filter is not able to compensate for this model-mismatch. The
estimated outputs shown in Figure 4-10 also indicate that the filter is generating feasible estimates,
as the estimated output magnitudes and cycle shape correspond closely to the sensor measurements.
This also signifies that the filter is rejecting measurement noise. The fact that the estimates seem
to settle around the true mean shows that the EKF and the PI dedrifting block have a balanced
interaction. This is despite the fact that the model itself is determined to be undetectable by a small
margin. The model shows to have two unstable, unobservable modes, highlighting the necessity for
dedrifting two the state estimations.

The estimates around the falling scenario are plotted for the orientation estimation and CoM velocity
estimation in Figure 4-14 and 4-16, respectively. These plots show that both estimation algorithms
are flexible and fast enough to generate detectable changes in the estimates when not given walking
measurements, but falling measurements.

The current orientation estimator is separate from the velocity estimator and it is not built on biome-
chanical principles. In the developing process of the presented method, the initial starting point was
indeed to estimate the velocity and orientation at the same time, based on biomechanical models, such
that a single filter would suffice. This necessitates a more complete model than the one presented for
the velocity estimation, such that it includes angular dynamics equations. An approach to this more
elaborate model was attempted, but abandoned during development due to the increased estimation
difficulty. The model is described in Appendix B.

5-2 Foot Placement Estimator Performance

The plot in Figure 4-11 depicts the verification performance of the Foot Placement Estimator (FPE).
It shows that the estimated step length is accurate compared to the real placements, but the step width
is often too narrow. This could be caused by an interaction with the state estimate, where the lateral
velocity magnitude is often underestimated at heel strike. This underestimation of the velocity results
in a narrower foot placement estimation, which in turn results in more vertical modelled Ground
Reaction Forces (GRFs). The model therefore suggests less lateral acceleration, resulting again in
underestimation of the lateral velocity at the next heel strike.

5-3 Detector Performance

The Extrapolated Centre of Mass (XCoM) based detector relies on an accurate and precise estimate
of both the XCoM itself and the Base of Support (BoS). The plot in Figure 4-12 shows there is a
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delimited region where the XCoM exists during normal walking. The definition of the BoS during
walking is difficult to find for dynamic walking. The XCoM method was found to be hardly suitable
for stability analysis during walking. However, the triangular choice of BoS used in this algorithm
yields no false alarms during steady-state gait, excluding the estimation settling time, in both the
verification data and falling data. The detector successfully detected the simulated fall with a lead
time of 680 ms. Relating this result to the comparative algorithms plotted in Figure 2-3, it performs
better than most other methods in this regard.

These two datasets are however not sufficient to perform quantitative analyses on either the state esti-
mation or the fall detection. To the author’s knowledge, there are no publicly available measurement
sets containing all the necessary information to perform and test the presented method. Therefore, it
would be required to obtain data through a new experiment, where people are intentionally brought
to fall in a controlled setting and where their movements are measured.

5-4 Conclusions

In the considered literature, no model-based fall detection methods based on wearable sensors have
been found. A proof-of-concept version of such a detector is presented, employing a single IMU placed
on the lower back. The detection is determined through the extrapolated centre of mass method,
where the CoM velocity is estimated through a combination of upper-body orientation estimation
and foot placement estimation. The CoM velocity is estimated with an EKF driven by a gait model
consisting of a three-dimensional point mass supported by spring-damper legs.

The presented method is not the first model-based fall detector, since Otanasap and Boonbrahm, and
Li et al. have given examples of these methods already [11, 12]. However, it is the first method that has
the possibility to function outside of laboratory settings, because it relies solely on wearable sensors.
The exception is the training phase, which is necessary to perform in a laboratory setting.

The presented results prove the feasibility of a model-based pre-impact fall detector, using only a
single wearable sensor. More specifically, it shows that a model-based approach is not too complex
to implement, the estimation is accurate and fast enough to detect falls a relatively long time before
impact, and that an individual’s gait can be modelled with 12 parameters. Of these 12, only one
(ϕsway) is determined heuristically based on measured data.

The falling simulation yielded a lead time of 680 ms. This shows that for at least this scenario the lead
time would be sufficient to trigger a multitude of assistive machines. The detector could therefore be
used in practical settings with existing actuators.

The computation time of the detector is found to be roughly equal to the sampling period. Combined
with the facts that the implemented code is not optimised and the sampling time is relatively high
compared to the dynamics, this shows a strong indication that the detector could run in real-time.
These results suggest that the final goal of a functional wearable fall detector is feasible concerning
the computation time. More broadly, it shows that model-based approaches for these applications do
not always take too long to compute.

5-5 Future Work

A fundamental problem of the presented method lies in the theory of the XCoM. The definition of
the BoS is important for the balance analysis of gait. Strictly, this BoS should be the envelope of
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foot-ground contact areas when considering static walking. As can be seen in Figure 4-12, it is highly
unlikely that the XCoM will reside in this stricter BoS definition and will therefore not work for balance
evaluation. It is difficult to find a BoS to differentiate between stable and unstable dynamic walking.
The alternative method of N -step capturability is suggested by Hof [38] in personal correspondence.
This method relies on the principle of estimating if the body state resides in a subspace where it is
possible to come to a halt in a finite number of steps [72]. It seems that this method is well suited to
replace the detection method of XCoM in the presented system, because the state estimation procedure
would not require many changes.

Another apparent issue lies in the interaction between the lateral velocity and the lateral foot placement
estimation at heel strike. The model suggests a larger lateral acceleration during the stride when the
foot placement at the start is placed further away laterally. Underestimation of the lateral velocity
yields a too small estimate of step width, yielding an underestimation of the lateral velocity over
the next stride. To accurately counteract this phenomenon, more information on the feet positions is
necessary. An option is to add another IMU sensor to one foot or both feet. These measurements enable
algorithm additions that could solve or improve multiple issues. For example, an input estimation
algorithm could be added to the state estimation to correct initial foot placement estimation errors.
Another problem that could be solved is that by doing zero velocity detection on the feet [15, 18, 73–
75], the step length and cadence could be estimated. These two estimates could in turn yield an
estimate of the walking speed and remove the assumption that this speed is known. Furthermore, a
large assumption in the presented method is that the times of heel strike and the gait phase are known.
This assumption can be made obsolete, by using the feet-IMU measurements and the resulting zero
velocity detections to determine the gait phase and the transition events.

Moreover, the proposed dynamical gait model is not perfect, as can be seen from the training per-
formance. In particular, the model yields a too small GRF at the end of single stance, causing the
estimated CoM velocity in the Bz direction to wrongfully keep decreasing. Combined with the obser-
vation that the measured Bz velocity strongly resembles a sinusoid, the model for this channel might
be replaced with the sinusoidal model that is also used for the orientation estimation (Equation 3-7).
If the accelerations due to angular velocity and acceleration are small enough in the Bz direction, it
might be sufficient to only use a direct integral of the z channel of the IMU accelerometry to estimate
the Bz CoM velocity.

Lastly, for a practical implementation of the presented method, the robustness should be analysed.
There are many influential parameters in the algorithm, where it is unknown how sensitive the results
are to errors in these parameters. For example, the influences of sensor placement errors or model
parameter errors could be investigated to obtain a measure of robustness of the detection results.
Furthermore, in these results the measurement noise added is zero-mean Gaussian noise. This is
not realistic, since the slack in the attachment interface between the sensor and the subject would
introduce more low-frequency noise. The effects of this coloured noise should be investigated.
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Appendix A

Filtering Equations

A-1 Kalman Filter

The filter used for the orientation estimation presented in Section 3-3-2 is implementable for linear
systems with additive white noise [71, Sec. 5.3]. For a system{

x[k] = Ax[k − 1] + Bu[k] + q[k]
y[k] = Cx[k] + Du[k] + r[k],

(A-1)

with state matrices A, B, C, D, state x[k], input u[k], output y[k], process noise q[k], and output
noise r[k]. The noise is zero-mean and normally distributed such that

E

[(
q[k]
r[k]

)(
q[j]
r[j]

)T
]

=
(

Q 0
0 R

)
∆(k − j) ≥ 0 (A-2)

R > 0, (A-3)
where ∆(k) is the unit impulse. The covariance belonging to the estimate x̂[k|k − 1], P [k|k − 1], is

P [k|k − 1] = E
[
(x[k] − x̂[k|k − 1]) (x[k] − x̂[k|k − 1])T

]
≥ 0. (A-4)

The measurement update equations are
K = P [k|k − 1]CT(R + CP [k|k − 1]CT)−1

P [k|k] = P [k|k − 1] − KCP [k|k − 1]
x̂[k|k] = x̂[k|k − 1] + K (y − Du[k] − Cx̂[k|k − 1]) .

(A-5)

The prediction equations are
S = AP [k|k − 1]CT (R + CP [k|k − 1]CT)−1

P [k + 1|k] = AP [k|k − 1]AT + Q − S
(
AP [k|k − 1]CT)T

x̂[k + 1|k] = Ax̂[k|k − 1] + Bu[k] + S (y − Du[k] − Cx̂[k|k − 1]) .

(A-6)

The proof for this filter is given by Verhaegen and Verdult [71, p. 137-139].
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50 A. Filtering Equations

A-2 Extended Kalman Filter

The filter used to estimate the Centre of Mass (CoM) velocity as presented in Section 3-3-3 also works
for nonlinear systems with additive white noise. For a nonlinear system{

x[k] = f(x[k − 1], u[k]) + q[k]
y[k] = g(x[k], u[k]) + r[k],

(A-7)

where Equations A-2, A-3, and A-4 hold, the prediction equations are{
m−[k] = f(x̂[k − 1], u[k])
P −[k] = FxP [k − 1]F T

x + Q,
(A-8)

where Fx is the Jacobian of f with respect to x. The measurement update equations are then

v = y − g(m−[k], u[k])
S = GxP −[k]GT

x + R

K = P −[k]GT
x S−1

x̂[k] = m−[k] + Kv
P [k] = P −[k] − KSKT,

(A-9)

where Gx is the Jacobian of g with respect to x. The proof for this filter is given by Särkkä [62, p.
70].
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Appendix B

Dynamics: Complete Model

The model presented by Paiman et al. is adapted to three-dimensional space [64]. Furthermore, the
upper body is modelled as a pair of body-fixed gyroscopes rigidly attached to a beam. The gyroscopes
are necessary, because a rigid beam alone is not able to capture the oscillatory character of real-life
upper-body sway. See Figure B-1 for a sketch of the model.

The Sagittal Virtual Pendulum Point (VPP-S), PS , is defined as a body fixed point above the Centre
of Mass (CoM) in the sagittal plane. The virtual pendulum points are the body fixed points that
define the direction of the Ground Reaction Force (GRF). When the virtual pendulum point is above
the CoM, the upper body will behave like a pendulum [64, 76, 77]. In the lateral plane, Firouzi et al.
presents a similar Lateral Virtual Pendulum Point (VPP-L), PL, below the CoM during single stance
and above in double stance [78]. It is assumed the VPPs in different planes can be combined. For
both theories, the proposed directions of the ground reaction force in two dimensions becomes a plane
in three dimensions.

The VPPs are defined relative to the CoM as BPS =
(
0 0 p1

)T and BPL =
(
0 0 p2

)T. On the
same line lies the point BHC = −

(
0 0 h

)T, representing the center of the hip. The parameter W

is defined as the physical distance between the greater trochanters, so BHL = BHC +
(
0 W

2 0
)T

and BHR = BHC +
(
0 − W

2 0
)T. The parameterised dynamics are symmetric, so points such as the

left foot position, FL, or the right foot position, FR, will be denoted without subscripts, F, when the
side of the stance foot is of no consequence to the dynamics.

B-1 Direction of the Ground Reaction Force

The plane for the VPP-S goes through F, PS , and a point on the floor in the direction of Bx with
respect to F.

Projecting Bx onto the floor gives this direction as

sx = Bx − (Bx · Nz)Nz. (B-1)

Master of Science Thesis Sachin A. Umans



52 B. Dynamics: Complete Model

N

x

y
z

B

x
y

z

FR

FL

HL

HC

HR

CM

Figure B-1: Model sketch of the body
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A normalvector, ns, of this plane is therefore

ns = (PS − F) × (F + sx − F) . (B-2)

This simplifies to
ns = (PS − F) × sx. (B-3)

Suppose both single and double stance are considered and the VPP is interchangable. Then the other
plane belonging to the VPP-L goes through F, PL, and F + sy. Constructing a normalvector in a
similar manner yields

nl = (PL − F) × sy, (B-4)
where

sy = By − (By · Nz)Nz. (B-5)

The direction, rG, of this intersection, and therefore the direction of the ground reaction force G, is
orthogonal to both ns and nl. Hence,

rG = ns × nl. (B-6)
Normalising yields the unit direction

r̂G = rG

∥rG∥
. (B-7)

B-2 Magnitude of the Ground Reaction Force

The projection of the ground reaction force, G = ∥G∥r̂G, onto the ‘leg’, (H − F), should equal the
spring-dampener force according to the theory of the VPP-S [76]. Suppose that the leg has a loadless
length ℓ0 and can only compress. The unit direction, r̂S , from F to H is defined as

r̂S = H − F
∥H − F∥

. (B-8)

The magnitude of the spring-dampener force in a leg is then

k(ℓ0 − ∥H − F∥) − b( ∂

∂t
(H − F) · r̂S), (B-9)

where k and b are the spring and dampener constants, respectively. The projection of the ground
reaction force onto the leg can be expressed as

proj(G, r̂S) = ∥G∥r̂G · r̂S

∥r̂S∥
r̂S = ∥G∥(r̂G · r̂S)r̂S . (B-10)

Therefore, the magnitude is
∥proj(G, r̂S)∥ = ∥G∥(r̂G · r̂S), (B-11)

and this should equal the spring-dampener force magnitude

∥G∥(r̂G · r̂S) = k(ℓ0 − ∥H − F∥) − b( ∂

∂t
(H − F) · r̂S). (B-12)

Solving for the ground reaction force magnitude yields

∥G∥ = 1
r̂G · r̂S

[
k(ℓ0 − ∥H − F∥) − b( ∂

∂t
(H − F) · r̂S)

]
. (B-13)
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54 B. Dynamics: Complete Model

The Time Derivative d
dt (H−F) can be calculated relative to either B or N . Since the differentiation

operator is distributive,
d
dt

(H − F) = dH
dt

− dF
dt

= Ḣ − Ḟ (B-14)

and noting that F is assumed stationary in N and H relative to CM stationary in B, the choice seems
arbitrary. However, since measurements are made in N , the derivative will be calculated in this frame,
relative to CM . The velocity of world-stationary F is then

N Ḟ = 0

⇒
(

N Ḟ
)

CM

= −N ĊM .
(B-15)

The velocity of H can be calculated with [59, Eq. 4.50], that states(
N Ḣ

)
CM

= N ĊM +
N ( d

dt
(H − CM )

)
B

+ N ωB/N ×
(N H − N CM

)
, (B-16)

where ωB/N is the angular velocity of B with respect to N . Because H and CM are body-fixed,

N ( d
dt

(H − CM )
)

B
= 0. (B-17)

Therefore, (
N Ḣ

)
CM

= N ĊM + N ωB/N ×
(N H − N CM

)
. (B-18)

The ultimate derivative is then expressed as(
N Ḣ − N Ḟ

)
CM

= N ĊM + N ωB/N ×
(N H − N CM

)
+ N ĊM

= 2N ĊM + N ωB/N ×
(N H − N CM

)
.

(B-19)

B-3 Body Dynamics

B-3-1 Cartesian Equations of Motion

The translational equations of motion are

mC̈M = GL + GR + Z, (B-20)

where m is the body mass, GL and GR the ground reaction force of respectively the left and right
feet, and Z is gravity. The moment around the CoM is then

MC = (FL − CM ) × GL + (FR − CM ) × GR. (B-21)

The inertia of the cylindrical gyroscopes are determined to be

BJgyr,x =

1 0 0
0 1

2 0
0 0 1

2

αmr2
x and BJgyr,y =

 1
2 0 0
0 1 0
0 0 1

2

 (α − 1)mr2
y, (B-22)
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where rx and ry are the radii of the gyroscopes and α is a distribution parameter. The inertia around
the CoM is

BJC = BJgyr,x + BJgyr,y. (B-23)

Then the angular momentum, ΨC , is calculated as

ΨC = JCωB/N + Jgyr,x

γx

0
0

+ Jgyr,y

 0
γy

0

 , (B-24)

where γx and γy are the angular velocities at which the gyroscopes spin, respectively. Taking the time
derivative of this yields

Ψ̇C = J̇CωB/N + JC ω̇B/N = JC ω̇B/N . (B-25)

Applying the transport theorem to Euler’s second law gives

MC = (Ψ̇C)B + ωB/N × ΨC . (B-26)

Substitution of the angular momentum and its derivative gives the equation

MC = JC ω̇B/N + ωB/N ×

JCωB/N + Jgyr,x

γx

0
0

+ Jgyr,y

 0
γy

0

 . (B-27)

Reordering of this equation yields

JC ω̇B/N = MC − ωB/N ×

JCωB/N + Jgyr,x

γx

0
0

+ Jgyr,y

 0
γy

0

 , (B-28)

and since the cross product is distributive over addition

JC ω̇B/N = MC − ωB/N ×
(
JCωB/N

)
− ωB/N ×

Jgyr,x

γx

0
0

+ Jgyr,y

 0
γy

0

 . (B-29)

Expanding the rightmost term gives

JC ω̇B/N = MC − ωB/N ×
(
JCωB/N

)
− ωB/N ×

 γxαmr2
x

γy(α − 1)mr2
y

0

 (B-30)

and substituting  γxαmr2
x

γy(α − 1)mr2
y

0

 = BΓ (B-31)

yields
JC ω̇B/N = MC − ωB/N ×

(
JCωB/N

)
− ωB/N × Γ. (B-32)
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B-3-2 Expressing in Quaternions

It is desired to express these equations of motion in quaternion space instead of Cartesian space. A
derivation similar to [59, App. D] is presented. The norm constraint, Cq, on the unit quaternion is
expressed as

Cq = N qBTN qB − 1 = 0. (B-33)

The virtual constraint rate is therefore

δĊq = 2N qBT
δN q̇B. (B-34)

By introducing the Lagrangian multiplier λ and expressing all terms in the body fixed frame, the
resulting virtual power equation is

(BMC − BJC
Bω̇B/N − BωB/N × BJC

BωB/N + BωB/N × BΓ
)T

δBωB/N = λδĊq = 2λN qBTδN q̇B.

(B-35)

Stacking a row of zeros on top of the left hand side of the equation and substituting

BJC =
(

0 0
0 BJC

)
(B-36)

yields

((
0

BMC

)
− BJC

(
0

Bω̇B/N

)
−
(

0
BωB/N

)
◦ BJC

(
0

BωB/N

)
−
(

0
BΓ

)
◦
(

0
BωB/N

))T
δ

(
0

BωB/N

)
= 2λN qBTδN q̇B, (B-37)

where ◦ is the quaternion multiplication operator as defined by Vallery and Schwab [59]. Substitution
of (

0
Bω̇B/N

)
= 2QTN q̈B + 2

(
∥N q̇B∥2

0

)
,(

0
BωB/N

)
= 2QTN q̇B,(

0
BMC

)
= BMC and

BΓ =
(

0 −BΓT

BΓ BΓ̃

)
,

where
N qB =

(
q0
q

)
⇒ Q =

(
q0 −qT

q q0E3 + q̃

)
⇒ N qB ◦ p = Qp ∀ p ∈ R4

into the equations of motion returns

(
BMC − BJC

(
2QTN q̈B + 2

(
∥N q̇B∥2

0

))
− (2QTN q̇B) ◦ BJC(2QTN q̇B) − 2BΓQTN q̇B

)T

2QTδN q̇B = 2λN qBTδN q̇B. (B-38)
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Using that
BJC

(
∥N q̇B∥2

0

)
= 0, (B-39)

this simplifies to(
BMC − 2BJCQTN q̈B − 4(QTN q̇B) ◦ BJC(QTN q̇B) − 2BΓQTN q̇B

)T
2QTδN q̇B = 2λN qBTδN q̇B.

(B-40)
Moving all terms to the left hand side gives((

BMC − 2BJCQTN q̈B − 4(QTN q̇B) ◦ BJC(QTN q̇B) − 2BΓQTN q̇B
)T

2QT − 2λN qBT
)

δN q̇B = 0

(B-41)
and therefore(

BMC − 2BJCQTN q̈B − 4(QTN q̇B) ◦ BJC(QTN q̇B) − 2BΓQTN q̇B
)T

2QT − 2λN qBT = 0. (B-42)

The transpose of this equation is

2Q
(

BMC − 2BJCQTN q̈B − 4(QTN q̇B) ◦ BJC(QTN q̇B) − 2BΓQTN q̇B
)

− 2λN qB = 0. (B-43)

Expansion of the brackets and rearranging gives

4QBJCQTN q̈B + 2λN qB = 2QBMC − 8Q(QTN q̇B) ◦ BJC(QTN q̇B) − 4QBΓQTN q̇B. (B-44)

Then using the fact that
QQT = E4, (B-45)

this equation simplifies to

4QBJCQTN q̈B + 2λN qB = 2QBMC − 8Q̇BJCQTN q̇B − 4QBΓQTN q̇B. (B-46)

Application of the identity
QTq̇ = −Q̇T q, (B-47)

yields
4QBJCQTN q̈B + 2λN qB = 2QBMC + 8Q̇BJCQ̇TN qB − 4QBΓQTN q̇B. (B-48)

Matricising the left hand side gives

(
4QBJCQT 2N qB)(N q̈B

λ

)
= 2QBMC + 8Q̇BJCQ̇TN qB − 4QBΓQTN q̇B. (B-49)

Addition of the constraint on acceleration obtained from(
0

Bω̇B/N

)
= 2QTN q̈B + 2

(
∥N q̇B∥2

0

)
⇒ 0 = N qBTN q̈B + ∥N q̇B∥2 (B-50)

yields the equations of motion(
4QBJCQT 2N qB

N qBT 0

)(N q̈B

λ

)
=
(

2QBMC + 8Q̇BJCQ̇TN qB − 4QBΓQTN q̇B

−∥N q̇B∥2

)
. (B-51)
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The Lagrangian multiplier is identified by left-multiplying Equation B-49 with N qB and using that

N qBT
Q =

(
1 0 0 0

)
,

then
2λ = 8N qBT

Q̇BJCQ̇TN qB − 4
(

0 −BΓT
)

QTN q̇B. (B-52)

Implementing the identity in Equation B-47 again and extracting common factors yields

λ =
(

4N qBT
Q̇BJC − 2

(
0 BΓT

))
Q̇TN qB. (B-53)

Moving the Lagrangian term to the right hand side of the equations of motion gives(
4QBJCQT

N qBT

)
N q̈B =

(
2QBMC + 8Q̇BJCQ̇TN qB − 4QBΓQTN q̇B − 2λN qB

−∥N q̇B∥2

)
(B-54)

and defining

E =
(

4QBJCQT

N qBT

)
and

D =
(

2QBMC + 8Q̇BJCQ̇TN qB − 4QBΓQTN q̇B − 2λN qB

−∥N q̇B∥2

)
,

such that
EN q̈B = D, (B-55)

where E ∈ R5×4 and D ∈ R5. The structure of BJC shows that QBJCQT is rank deficient, due to the
zero row and column. Because the calculation of the analytical pseudo-inverse of E is computationally
heavier than a normal analytical inverse, E∗ is defined as the last four rows of E. The right-hand side
D∗ is defined likewise, such that {

E∗ = E2:5,:

D∗ = D2:5.
(B-56)

This square matrix E∗ can be analytically inverted, by which the explicit equations of motion are
found as

N q̈B = E−∗D∗. (B-57)

B-3-3 State-Space Formulation

Taking the velocity and orientation of the body and its first derivatives as the state, x such that

x =
(
ĊM

N qB N q̇B)T
,

and the input, u, is the feet position
u =

(
FL FR

)T
.

The dynamics can then be expressed as the function f defined as

ẋ = f(x, u) =

 1
m (GL + GR + Z)

N q̇B

E−∗D∗

 (B-58)
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60 C. Full-time-length Plots
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Figure C-7: Comparison between actual and estimated output measurements.
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Appendix D

Software User’s Guide

This appendix gives a user’s guide accompanying the code archived at [79] that contains the software
used to obtain the results of this paper. It will exclude the OpenSim dataset and only show the
three-dimensional case, since this is the default use-case. Known bugs and minor improvements to be
done are tracked in [80].

D-1 Training

To train the model, open System>Model>TrainModelAndFPE.m. The first 62 lines have to be adjusted
to fit the data structure of the gathered optical marker measurements. In these lines the optimisation
weight for the model states are also defined, as well as the ground reaction force threshold used to
detect heel strikes. The rest of this script should function without adjustments. Note that the script
will run significantly faster if the Parallel Computation Toolbox in Matlabis installed. The user
will be prompted with the option to tune the initial leg parameters manually if desired, but this is
often unnecessary. After the training procedure, the gait phase transitions are analysed and plotted to
check there are no missing reset maps. On line 348, the value of ϕsway is entered as a function input.
The trained parameters are saved on line 354.

The value of ϕsway can be determined by running System>Model>OrientationEstimationTuner.m.
The start of this script needs to be adjusted to the data structure again. After running once, the
frequency spectrum of the sway will be plotted and the value of ϕsway can be chosen. Then, on line
124 the determined ϕsway can be entered to check if the estimation works.

The Base of Support (BoS) values can either be determined heuristically, or if measurements at multiple
walking speeds are available, System>SystemBlocks>XCoM>TrainXCoM.m can be used to analyse the
measurements. It is likely that the first 50 lines will need to be adjusted to the specific datastructure.
The analysis itself, however, is performed on lines 55 through 95.

Before running any script containing an observer, the explicit equations of motion have to be updated
by running System>Model>SymbolicModelFunctions>Create_EoM.m.
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D-2 Running the Detector

The script System>ExecutableScenarios>FallDetection>DetectFall.m is currently configured to
simulate a sensor failure due to the lack of falling data. If the user inputs falling data in lines 52 to 84,
the lines 20, 21, 220-229, and 343-345 should be removed. The filter parameters are defined in lines
30 to 50 and the sensor position is set on line 105. These should be the only adjustments necessary
to run this script and the result will be plots of the estimated state, including detection time.
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Glossary

List of Acronyms

TO Toe Off
HS Heel Strike
SLIP Spring-Loaded Inverted Pendulum
IMU Inertial Measurement Unit
CoM Centre of Mass
DOF Degree of Freedom
VPP-L Lateral Virtual Pendulum Point
VPP-S Sagittal Virtual Pendulum Point
GRF Ground Reaction Force
FPE Foot Placement Estimator
KF Kalman Filter
EKF Extended Kalman Filter
XCoM Extrapolated Centre of Mass
BoS Base of Support
VdZ Van der Zee [65]
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List of Symbols

ω Upper-body angular velocity

ς Optimisation variable in quadratic optimisation problem for leg parameters for the
model

∆t Sampling period

ℓmax Estimated leg length at heel strike

κ Integral term in PI-controller

Λ Detection Boolean

ℓ0 Untensioned spring length

q̄ Stacking of the 0th to 2nd time-derivative of N qB

F Foot position relative to CoM

g Gravity vector

R Ground reaction force

r Optical marker position

S Sensor positon relative to the CoM

u Input signal to the EKF, consists of q̄ and F

x Dedrifted state of model, CoM velocity

x′ Drifted state of model, CoM velocity

xCoM Extrapolated centre of mass position

y IMU measurements, 6-DoF, three channels acceleration and three channels angular
velocity

Z Gravity force

B Body fixed-coordinate system with its origin at the CoM
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82 List of Symbols

N Inertial world-coordinate system

B Base of support

ω0 The eigenfrequency of the non-inverted pendulum in the XCoM method

ϕsway Prevalent upper-body sway frequency

ζL Step length correction parameter

ζW Step width correction parameter

b Damper constant

f Discrete-time dynamical model function

f ′ Continuous-time dynamical model function

g Measurement model function

I Error integral in PI-controller

K Spring constant

m Body mass

p Gait phase

v0 Nominal walking velocity
N qB Rotation quaternion from B to N

OB/N Centre of Mass, origin of B
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