
Examining Cross Browser Inconsistencies with Web Based Event
Loggers
Rahul Kochar

Dr. David Maxwell (Supervisor)
Dr. Claudia Hauff (Supervisor)

Technische Universiteit Delft
Delft, Netherlands

ABSTRACT
Cross Browser Inconsistencies (XBI) were created when different
browser vendors implemented their products without deciding
upon common protocols for interoperability. It is hard to pinpoint
these inconsistencies with precision because of a lack of a good
tool. Here we show how to use a web-based event logger (LogUI)
to find XBI at a granular level. LogUI attaches itself to the DOM
of a webpage and makes a log file based on how the browser re-
sponds to user interactions. A test suite is made by simulating user
interactions (Selenium WebDriver) to test different browsers and
interaction events (individually and in sequences) to generate log
files which are then analyzed to spot differences in the actions
performed and entries logged. It is found that XBI are few and hard
to find, the two XBI found are that browsers load differently and
sometimes change the order of actions being performed.

KEYWORDS
Web based event logging, User simulation and testing, Selenium
WebDriver, LogUI

1 INTRODUCTION
Different browsers use different engines which means pages can
be rendered differently and browsers can respond to user interac-
tions differently. Dowden and Dowden [1] has multiple examples
of differences in CSS code across different browsers and [2] found
that specific HTML5[3] and CSS3[4] features are at fault leading to
differences in HTML/CSS grammar across browsers. Unfortunately,
their work is limited to PhantomJS1, Mozilla Servo2 and Mozilla
Firefox leaving a hole for other popular browsers like Chrome, Sa-
fari and Edge.

In the famous first browser war3 in 1995 where different browser
vendors had their ideas and implemented their standards leading to
widespread incompatibility issues. The nascent internet as a whole
was built and developed to outdo fierce and ruthless competitors.
This is chaotic for consumers and annoying for all stakeholders to
say the least.

1https://phantomjs.org/
2https://servo.org/
3https://en.wikipedia.org/wiki/Browser_wars

CSE3000, TU Delft,
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

26 years later, in 2021, the narrative is very different on the sur-
face because organizations like W3C[5] and Internet Engineering
Task Force (IETF)[6] which attempt to bring all stakeholders on the
same page to agree on standards and protocols which benefit all in-
volved. IEFT has undeniably seen success, however, as they write on
their front page[?], "The Internet, a loosely-organized international
collaboration of autonomous, interconnected networks, supports
communication through voluntary adherence to open protocols
and procedures defined by Internet Standards." with the keywords
being "loosely-organized" and "voluntary adherence". Many stake-
holders do not see eye to eye yet and differences continue to exist.
Watanabe1 et al. [7] did a literature survey on XBI and it is evident
that differences in browser standards was a large problem in the
1990s and it, unambiguously exists today.

2 BACKGROUND
It is from here that our suspicions about the performance of event
driver logging by various browser engines arise. Table 1 shows
different engines used by different browsers and are expected to
result in observable and substantial differences. Apple attempted
to solve this problem by requiring all browser vendors to use Ap-
pleWebKit4 thus enforcing a standard and forcefully making the
engine they developed, mainstay. Fortunately, Microsoft did not fol-
low this approach and the open source communities behind Linux
were among the first to criticize Apple because this limits creativity
and fair competition by outright banning all competitors. To accom-
modate MacOS users, browser vendors made their browsers such
that they can be used with different engines example Firefox uses
AppleWebKit[8] on MacOS but Gecko/SpiderMonkey on others.

This leads to the formulation of research questions and require-
ments (of test suite).

• RQ1: How do web browsers handle different interac-
tion events?
Are different interaction events logged?

• RQ2: How do different browsers report a sequence of
events, and what differences exist, if any?
How accurately do the log files represent the sequence of
actions performed by WebDriver? This is broad and includes
the sequence of events, time delays between events and
number of occurrences of events.

This is a list of requirements/features that will help answer the
research questions.
4https://en.wikipedia.org/wiki/WebKit

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CSE3000, TU Delft,

Rahul Kochar
Dr. David Maxwell (Supervisor)
Dr. Claudia Hauff (Supervisor)

Browser Rendering Engine JavaScript Engine
Firefox Gecko, Quantum SpiderMonkey
Chrome Blink, Webkit V8
Edge EdgeHTML V8 (Chromium)
Safari WebKit Nitro, JavaScriptCore
Opera Blink (Chromium), Presto Chrome V8
Internet Explorer Trident Chakra, JScript

Table 1: Modern Browser Engines.

• F1: All tests should be completely automated
No human interaction should be required after starting.

• F2: Tests should be deterministic (repeatable)
Tests runs in similar conditions should yield similar results.

• F3: Test multiple browsers
At least 2, ideally more - Chrome, Firefox, Safari, Opera and
Edge

2.1 Finding Browser Inconsistencies
Lots of literature has been written on the differences and adher-
ence of agreements by browser vendors in the last decades. ([9]
shows the logical construction of a compliance test to evaluate
the extent of compliance of agreements, standards and protocols
among browser vendors. Their paper is about proving the logi-
cal strength of an approach to quantify compliance so that web
standards can be formalized. Features are not exhaustively tested
on different browsers. Nyrhinen and Mikkonen [10], [11]) are two
other papers that explore similar ideas but do not attempt to test
a sufficient number of features such that compliance by different
browser vendors can be quantified. Their work is theoretical with
some experimental proof. An easier approach is to simply try out
all possible interactions and count which ones are consistent, which
ones are not. Checking all of them can be hard and therefore a list
of most frequently used interactions could be used to estimate con-
sistency of a feature and individual browser compliance by dividing
the number of consistent/compliant features with inconsistent/non-
compliant features. Such a compliance table as described already
exists and is maintained by Mozilla. A paper that uses this data
to quantify browser compliance could not be found. More impor-
tantly, this table checks compliance of features individually and not
in sequences whereas users perform a sequence of actions when
interacting with a web page. Mozilla has trusted browser vendors
to find these inconsistencies which may pop up in a sequence of
actions themselves.

Automated tools have been built to find inconsistencies in browser
behaviour, called Cross-Browser Issues (XBI) using concepts like
Machine Learning [12], Search-Based techniques [13] and Rule-
Based ([14], [15]. These approaches have issues for example ma-
chine learning has a cost attached to accuracy, training time. These
approaches require large amounts of data in the form of training set
which is hard to procure. A test suite that tries out different interac-
tions on different browsers one at a time (similar to unit testing) is
easier to make, use and scale. It was earlier mentioned that [2] has
identified specific CSS and HTML elements that are troublesome,

[16] solves this problem, very neatly by making an automated tool
to fix these inconsistencies in HTML and CSS grammar.

3 LEVERAGING MODERNWEB
TECHNOLOGY

3.1 The Web Page
Modern web page consists of two main things, browser elements
(tabs, search bars, plugins, etc) and a DOM (Document Object
Model)[17]. DOM is a tree-like structure that contains elements
that make the web page interesting. Browser vendors initially did
not agree upon protocols to work with DOM leading to incompati-
bilities and inconsistencies.

3.2 LogUI
An easy way to check if browsers treat elements of DOM equitably
is to gather and evaluate user interactions. Unfortunately, gathering
user interaction data is not a trivial task, fraught with difficulties
because of dynamic behaviour(s) in web pages and other inherent
complexities. To compound the problem, there is a lack of a good
one size fits all tool because individual researchers make their own
apparatus specific to their work. LogUI[18] is a simple to use yet
powerful user interaction logging software made possible by lever-
aging modern web technology. A listener is attached to elements
of the DOM and is triggered by an action performed by a user. The
listener logs an entry into a log file when it is triggered thus giving
an inside view of how elements of DOM are treated.

There are six types of tests for web applications (Functional Testing,
Usability Testing, Interface Testing, Compatibility Testing, Perfor-
mance Testing and Security Testing)[19], [20] has lists of papers
related to the six types of tests. The most suitable test for this task
is compatibility testing (of browser engines and GUI). Alégroth et al.
[21] talks about a Visual Graphical Testing (VGT) test suite with
a Continuous Integration and Continuous Deployment (CI/CD) in
an industrial setting. They write that "test scripts operate on the
same level of abstraction as the human user, they are intuitive and
therefore easy to develop" which suggests that to test the listeners
attached on DOM elements, a user should be simulated interacting
with the said DOM elements. For example, clicking on URL and
hovering on images. Their work is quite advanced and specific to
their use case but it shows the general direction to work towards.
To exploit browser inconsistencies further, [22] lists different test
items that should be tested like image, forms, cookies, hyperlinks,
databases and so on.

2

Examining Cross Browser Inconsistencies with Web Based Event Loggers
CSE3000, TU Delft,

User interaction data is gathered by simply simulating users on a
web page (section 4) and inconsistencies are detected by compar-
ing log files of different browsers. To do this, listeners need to be
evaluated. This approach is automated, easy to scale and maintain.

3.3 Testing Web Applications
Marchetta and Tonella [23] test aweb application that uses AJAX[24]
with many different techniques such as White Box, Black Box and
State-Based Testing. LogUI is also asynchronous which means the
sequence in which two events occur may not be preserved in the log
files. This can change the outcome of the test and/or conclusions
hence formed. Debroy et al. [25] examines testing a web application
in an industrial setting with Selenium Webdriver5 and NUnit[26]
using Test Driver Development6. They explain that Web Automa-
tion and Web Tests are different things, Web Tests code does not
know anything about user simulation or browsers while Web Au-
tomation code does not have any knowledge of the frameworks
and tools used to create the web application. It simply simulates
the user as instructed.

4 FRAMEWORKS AND TOOLS
4.1 Browser Support
To select a tool to simulate a user, an important criteria is the
number of browsers supported by that tool. Table 2 has various
candidates on the first column and supported browsers along the
row.

Pupeteer[27] is very popular among developers for browser automa-
tion but it primarily supports Chrome and Chromium browsers.
Guzmán Castillo et al. [28] uses Pupeteer to perform similar tasks
to those that we would like to perform and this gives confidence
that Pupeteer is a capable candidate but for limited browsers. It was
later learnt that NightwatchJS [29] solves the problems of Pupeteer.

CasperJS7 is another testing framework that works on PhantomJS
(webkit) and SlimerJS (Gecko) headless browsers only. This is not
ideal as wewould like to test on as many browsers as possible. Other
potential candidates include Pupeteer8, Selenium Grid9, Selenium
RC10 and Selenium Webdriver[30].

Selenium IDE11 performs record and replays. A user’s actions are
recorded and then replayed at will to perform a test. The process
of recording is not desirable because manual user interactions are
not always consistent, simulating mouse events with code gives
greater confidence that the mouse event has been performed the
same way every time. "Selenium Grid allows us to run tests in
parallel on multiple machines, and to manage different browser
versions and browser configurations centrally"12. These features

5https://www.selenium.dev/documentation/en/webdriver/
6https://developer.ibm.com/devpractices/software-development/articles/5-steps-of-
test-driven-development/
7https://casperjs.org/
8https://developers.google.com/web/tools/puppeteer/
9https://www.selenium.dev/documentation/en/grid/
10https://www.selenium.dev/documentation/en/legacy_docs/selenium_rc/
11https://www.selenium.dev/selenium-ide/
12https://www.selenium.dev/documentation/en/grid/

are not required.

Webdriver meets the number of browsers supported requirement
and it needs to be determined if it makes sense to choose for example
Pupeteer with limited browsers if Pupeteer has more functionality
than Webdriver offers. We will start with examining the usability,
Webdriver works on all platforms, Linux, MacOS and Windows
across Ruby, Java, Perl, Python, C# and JavaScript [31]. There is
no major disadvantage of anyone language over the other [31] so
Python is used. It is important to clarify that Webdriver was the
same as Selenium RC. Selenium 1.0 + Selenium Webdriver = Sele-
nium 2.0 and is today commonly called Webdriver. We will follow
the same convention as it widely accepted and used. García et al.
[32] examine the Selenium ecosystem and benchmark Selenium
Webdriver on several parameters among other things and find that
it is a capable framework (for our requirements).

4.2 Functionality
In terms of functionalities, we require mouse events[33] and key-
board13 events because these are the two interfaces used by a user
to interact with a GUI (browser).

LogUI allows attaching listeners of all kinds that are supported
by the browser. Selenium Webdriver does not support as many
mouse events14 as those in Mozilla docs but they do support the im-
portant ones like click, double click, right-click and hover. A nuance
is that scrolling on Selenium is inconvenient[34]. For keyboard, all
keys and combinations are supported15. Since Webdriver[35] has
almost all the required functionality on many different browsers,
it does not make sense to compare with other candidates because
it has already been shown that others do not support a sufficient
number of browsers.

5 A TESTING SUITE FOR LOGUI
A test suite is a series of tests performed automated in an orderly
fashion by a testing framework (Pytest). Each test has two parts,
setup (perform test actions which is simulating a user) and then
verifying these actions (analyzing log files). This addresses Fea-
ture F1 and F2 because the tests are automated and they are also
guaranteed to be repeatable - assuming that external infrastructure
(LogUI) does not change.

Every test in the current test suite is parameterized with the param-
eters being different browsers ensuring that the same test is run
for all browsers (Feature F3). Pytest23 allows creating fixtures like
"beforeEach" and "before" methods to setup this infrastructure. The
"beforeEach" ensures that every individual parameter of a test will
get its own flight. Since LogUI is run locally on one port, tests can
not be parallelized, at most one flight can be active at a time so that
other flights don’t eavesdrop and log data that they should not be.

To write a test, create a parameterized fixture with Pytest[36] and

13https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent
14https://www.selenium.dev/documentation/en/support_packages/mouse_and_keyboard_actions_in_detail/
15https://www.selenium.dev/documentation/en/webdriver/keyboard/
23https://pytest.org/

3

CSE3000, TU Delft,

Rahul Kochar
Dr. David Maxwell (Supervisor)
Dr. Claudia Hauff (Supervisor)

Chrome Firefox Edge Opera Safari
Selenium IDE16 ✓ ✓ ✓ ✓ ✓

Pupeteer17 ✓ ✓* 18 ✗ ✗ ✗

Selenium Grid19 ✓ ✓ ✓ ✓ ✓
Selenium Web-
driver20

✓ ✓ ✓ ✓ ✓

CasperJS21 ✗ ✓** ✗ ✗ ✓**
NightwatchJS22 ✓ ✓ ✓ ✓ ✓

Table 2: Browser support of use simulation tools
(*) - Experimental support

(**) - Headless only

pass the browsers to be evaluated in a list as a parameter. Open a
browser and an HTML page using WebDriver and simulate a user.
Once WebDriver has finished, a log file can be downloaded from
LogUI.

Log files log actions performed when a listener attached to an
event is triggered. The listeners are specified in the configuration
object (section 6.2 instructions[37]) which instructs LogUI to attach
listeners to various events. These events are tested to see if they
are triggered (they should show up in the log file). Log files are
then parsed and verified to answer research questions. The next
paragraph explains how LogUI is used and integrated into the test
suite.

LogUI is arranged in applications, flights and sessions[38]. An appli-
cation houses multiple flights and a flight houses multiple sessions.
In the test suite (collection of tests), each flight will have one session
to keep things simple. Every time the test suite is run, LogUI makes
an application for that run. Each test in every configuration needs
to have its own flight so that log files of different tests are kept
apart. Flights must have a unique name, whichever application they
may be in because of how LogUI is built.

6 METHODOLOGY
This section will help the reader reproduce the work described
in this report. Required frameworks, tools and their versions are
in section 6.1, section 6.3 is about the test HTML page used and
configuration object of LogUI. The following sections describe the
individual tests conducted, an example search session and lastly,
an evaluation of the test results.

6.1 Browsers and Other Version Details
LogUI client (version 0.5.3d 24) and server (version 0.5.325) are used.
Firefox 26 (version 0.29.0) and AppleWebKit version (537.36) will be
tested. Since all browsers on MacOS use AppleWebKit, all browsers
on MacOS are tested indirectly, their counterparts in Windows
and Linux however are not tested because of operating system,
programming language and version inconsistencies. From here
Safari will be used to refer to AppleWebKit (and other browsers

24https://github.com/logui-framework/client/releases/tag/0.5.3d
25https://github.com/logui-framework/server/releases/tag/v0.5.3-update
26https://github.com/mozilla/geckodriver

onMacOS) and Firefox will refer to Gecko (onWindows and Linux).

Other important version details are Python (version 3.8.5), Pytest
(version 5.4.1)27 and Selenium Webdriver (version 3.141.0)[30].

6.2 Configuration Object and Listeners
LogUI attaches listeners to DOMelements which are triggeredwhen
a user interacts in a specific way with that element. The interaction
that triggers a listener and some other things are specified in the
configuration object which looks like figure 1.

The configuration object[39] is a JSON[40] object divided into
three parts that are highlighted in the picture The first "logUICon-
figuration" setups and connect to LogUI with endpoints and au-
thorization tokens. It has a subsection "browserEvents" where lis-
teners like pageFocus, trackCursor and URLChanges can be given
true and false values. These listeners show up as "browserEvent"
in log files. The second section "applicationSpecificData" relates
to LogUI application and is meant user details (userID). The last
and most interesting section "trackingConfiguration" allows set-
ting listeners on elements of DOM. The figure 1 has two listeners
"querybox-focus" and "querybox-losefocus" which are triggered on
the events "focus" and "blur" having names "QUERYBOX_FOCUS"
and "QUERYBOX_BLUR". These events will show up in the log file
under "interactionEvent". The line corresponding to "focus" will
look as shown in figure 2. The first line shows interactionEvent
and the second line has listener type "focus" and it’s name "QUERY-
BOX_FOCUS". The names allow distinguishing two listeners of the
same type (focus). Mozilla has a list of eventsWeb [41] that can be
attached as listeners.

6.3 Test Page and Listeners
Sample Search28 is a test HTML page (figure: 3) that has a query
box at the top that returns the predefined query results. Query
results are placed in an id called "left-rail", query result summary in
"query-text" has id "result stats" and the image on the right "right-
rail" with id "ENTITY_CARD". Click listeners are attached to the
query bar, left rail and result stats, double click and right-click result
stats and left rail respectively. Hover is attached to entity card and
left rail. The query box has id "querybox" and has keyup, submit,
focus and blur listeners. The web page has a focus (is cursor on that

27https://docs.pytest.org/en/6.2.x/
28https://github.com/logui-framework/example-apps/tree/main/sample-search

4

Examining Cross Browser Inconsistencies with Web Based Event Loggers
CSE3000, TU Delft,

Figure 1: LogUI configuration object

web page), contextMenu, cursorUpdateFrequency and trackCursor
listeners. A page resize listener is available by default.

6.4 Tests
6.4.1 Details. This automated test suite uses Selenium WebDriver
whose behaviour is not completely understood. It may interfere and
for this reason, all tests have been checked manually to verify the
results using the same setup as automated tests. This is discussed
further in section 6.5, for now, it will be assumed that Selenium
WebDriver has one glitch - its cursor.

In a browser opened in WebDriver, the cursor is not constant in the
sense that it does not always exist. In fact, the cursor does not exist
until it is asked to exist and disappears immediately after. When a
click event (left, right or double) is performed by WebDriver, the
respective click listener is triggered but a listener that tracks the
cursor is not. This listener is triggered during hover events only
suggesting that the WebDriver cursor exists only for the duration
of the hover. Another quirk of WebDriver is that certain actions
which are impossible on a normal browser are possible. For instance,
right-clicking locks many browser interactions like hover and left
clicks. The menu bar that is opened needs to be closed to resume

interacting with the web page. WebDriver allows interacting with
the web page, even after right-clicking.

It was noticed that a real cursor (of the machine) sometimes inter-
fered with a test involving hover, to prevent this all browsers are
used in headless mode. Testing starts with browser and interaction
events in standalone mode - each of them is tested once and then
three times (with a time delay if applicable). Lastly, a few tests with
a combination of events are conducted to capture parts of common
sequences of events performed by users - for example, hover on a
URL before clicking. Lastly, a very complex test case has been made
which combines all browser and interaction events and is discussed
section 6.5. Tests that are not discussed in the following paragraphs
are passing tests and can be understood using the description col-
umn in table 3.

6.4.2 Page Focus and Viewport. In F1 Safari logs browser events
very quickly (before the web page has finished loading) and logs an
out of focus browser. This is seen at the start only, opening a new
tab to switch focus and revert is logged correctly. For V1 Safari logs
viewport resizes but not the original dimensions (it started with).
Firefox logs original dimensions but failed to log new dimensions.
This is probably because this event is triggered once when LogUI
configuration object is loaded and is not triggered again.

6.4.3 Query Box Interaction. Some Safari tests (Q1, Q2, Q3 and C1),
log files could not be downloaded29 and were repeated manually.
All the tests passed and have hence been marked with a ✓*. Blur
listener is triggered (becomes active but does not log anything)
when a focus listener is triggered and it traditionally tracks the
cursor. Given WebDriver’s disappearing cursor, after some time
(about 2-3 seconds), blur listener realizes that the query box is no
longer in focus and logs a blur event later than it should be logged.

6.4.4 Clicks - Left, Right and Double Left. Three left clicks were
logged by Safari but the test fails because query box did not log a
blur event. The listener being tested responded correctly but not in
the expected sequence and therefore is a failing test.

Right-click browser events are flaky on Safari, single interaction
events are logged consistently but triple right clicks with a time
interval of 5 seconds in between is logged for once in total (instead
of thrice). A theory is that right-click listeners are disabled after
being triggered once, this phenomenon was noticed in viewport
resizes where browser events are not triggered consistently.

A double click is defined as two left clicks performed very quickly
one after the other, WebDriver performs these clicks with the same
timestamp according to log files. The expected logs are two left
clicks (with the same timestamp) followed by a double click event.
Safari logs one left-click when performing a single double click
29https://github.com/logui-framework/server/issues/3

5

CSE3000, TU Delft,

Rahul Kochar
Dr. David Maxwell (Supervisor)
Dr. Claudia Hauff (Supervisor)

Figure 2: Interaction event - query box_focus

Test Safari Firefox Description
F1: test_page_focus ✗ ✓ Page is in focus
V1: test_viewport_resize ✗ ✗ Resize viewport
Q1: test_querybox_focus ✓ ✓ Focus on query box
Q2: test_querybox_keyup ✓* ✓ Send keyboard input to query

box
Q3: test_querybox_submit ✓* ✓ Submit query
Q4: test_querybox_blur ✓ ✓ Blur query box on exit
T1: test_timestamp ✓ ✓ Verify timestamp delay of two

events
C1: test_click_once ✓* ✓ Click event is logged
C2: test_click_thrice ✓ ✓ Click events are logged
RC1: test_right_click_once_browser ✗ ✓ Right click once (browser event)
RC2: test_right_click_thrice_browser ✗ ✓ Right click thrice (browser

event)
RC3: test_right_click_once ✓ ✓ Right click once
RC4: test_right_click_thrice ✗ ✓ Right click thrice
D1: test_doubleclick_once ✗ ✓ Double click
D2: test_doubleclick_thrice ✗ ✗ Double click thrice
H1: test_hover_once ✓* ✓ Hover over element once
H2: test_hover_thrice ✗ ✓ Hover over element thrice
H3: test_hover_different ✓ ✓ Hover on different elements
D1: test_drag_drop ✗ ✗ Drag and drop element
CT1: test_hover_hover_click_hover ✗ ✗ Hover twice, click and hover
CT2: test_very_complex ✗ ✗ Refer section 6.5

Table 3: Test Results.
(*) - failing tests when automated but pass in manual test.

but strangely logs none when performing three double clicks one
after the other with a time delay in between them. Firefox counts
one double click when three are performed with a time delay of 5
seconds. When a hover event is used instead of a time delay, logs
show the expected behaviour of hovers followed by double clicks.

6.4.5 Hover. Each hover action performed by WebDriver should
result in two entries in log files - mouseenter and mouseexit with
a time difference of about 38 milliseconds. For H1 and H2, Safari
did not log either hover events, manual testing of individual hover
events on Safari however show satisfactory results. Drag and drop
events do not trigger any listeners with Webdriver, in headless
and GUI mode but they work when tested manually. A plausible
explanation could not be found. It is possible that Webdriver flawed

because the listeners are triggered when testing manually. H3 hov-
ers over two different elements, first a query result in left rail and
then the image in right rail. Mouseenter is logged for both hovers
but a mouseexit is not logged for right rail because the listener is
not triggered.

6.4.6 Complex Tests. Timestamp tests work fine, sometimes a
browser fails to log something correctly leading to timestamp tests
failing but timestamps are not the reason for failing tests. Extensive
testing of timestamps has confirmed that they are very accurate
and have been observed to be off by a fraction of a second.

In CT1 two hover events are followed by a click with a 3 second gap
between all of them but a click event is logged between mouseenter

6

Examining Cross Browser Inconsistencies with Web Based Event Loggers
CSE3000, TU Delft,

and mouseexit of the second hover on Safari and Firefox, despite
the time delay. It is strange behaviour. CT2 is a longer sequence of
events discussed in section 6.5.

6.5 Search Session Simulation
A small sequence of events that are representative of normal human
actions on a web page is simulated and tested manually on different
browsers. The sequence is opening a browser, querying a string in
the query box, clicking submit, hovering while reading on a query
result (left rail) and an image (entity card) returned by the query
and finally clicking on a query result (left rail). To test more actions,
a double click is performed on result stat after clicking submit and
a right-click on left rail at the end of the sequence.

Figure 4 shows the expected sequence of events on the first row,
and the events observed in log files on respective browsers be-
low. Each letter represents an event which is shown in table 4.
Figures 5, 6 shows a comparison between testing on Safari, Fire-
fox with WebDriver against manually on the respective browsers.
Grey boxes represent statusEvents, yellow boxes browserEvents
and green boxes interactionEvents. Inconsistencies in events are
shown by outlining the box in red. Arrows can also be in red and
double-sided to indicate the two events should be swapped. Some
boxes have multiple letters, x2 shows the event happening twice
and a plus sign is used to show that two events have occurred in the
same box. The listener cursorUpdate is repetitive and is expected
at every mouse event but WebDriver simulates clicks without a
mouse and therefore this inconsistency is not shown. Empty boxes
are for missing events.

In figure 4 going left to right on the top row, the first inconsis-
tency is at the beginning, Safari switches browser and status events
around meaning the second entry in the log file is "Started". Gecko
skips browser event entirely. Manual testing shows that event D
(keyup of querybox) M occurs twice, always and the same trend
is seen on AppleWebKit but not on Gecko which shows D once. It
is not known why a hover event (G) is logged before double click
(F) but it is seen on both engines. The mismatch with cursor up-
dates (event M) is probably because WebDriver cursor is active in
between the hover events (G and H) resulting in log files showing
cursor movement for event F. This behaviour of events switching
around is seen again with the second hover on the right rail with
events J (right rail mouseexit) and K (right-click left rail) being
swapped, cursorUpdate is added to K even though it should not be.
The timestamps show nothing out of the ordinary, looking at the
log files (timestamps), it is logical to conclude that a double click
event (F) happened in between the hover events (G and H).

Figure 5 compares the same sequence of events as above on Safari
against a manual test on Safari. Manual test shows a statusEvent
followed by browserEvent but the automated test switches this
around. A delay of 5 seconds was given between double click (F)
and hover (G) but the log files have reversed this. This was also
observed in the automated test and is quite interesting. To attempt
to understand this, a longer (10 to 15 second) time was used before
the second hover event (J and K) and this time the events were

logged in the correct order. The mouseexit event was followed by
a right-click and did not get swapped. This proves that waiting
for a long time forces logging of hover events correctly - however,
waiting for 10 seconds in the automated test did not change the
results. The events were still swapped suggesting that the source
of this problem is more complicated and perhaps a bug is in both
LogUI and WebDriver.

Figure 6 compares the same sequence of events as above on Gecko
against a manual test of Firefox (Gecko). In the automated test,
Gecko did not log a browser event at the start but the manual test
logged both status and browser events in the right order. The same
time for hover was used here as in the previous manual test and
the same observations were made i.e. waiting for a longer period
forced a log entry of hover events in the correct order. This con-
firms the conclusions made in the above paragraph. It is easy to
see how often a cursorUpdate event (+ M) occurs in manual tests
but is absent in automated tests. This was done to highlight the
non-existent cursor problem of Selenium WebDriver.

6.6 Evaluation
WebDriver simulates a certain sequence of event(s) and the same
events (as per listeners attached) are expected in the log files. There
should be a 1 : 1 correlation such that the sequence of events per-
formed by WebDriver can be simply read off the log files. Incon-
sistencies exist when logs log extra events, log fewer events or
when they log events different from those performed. These se-
quences can be easily checked by iterating over log files while
making assertions to guarantee that events have occurred in the
correct order and the correct number of times. It is not required
to check timestamps because log files are already ordered by time.
However, WebDriver automates user interactions meaning it can
perform a sequence in half a second which would ideally take a
human 5 seconds. In such tests, timestamps are vital.

Different types of listeners were tested on different browsers and
figure 3 shows clearly which listeners work well and which don’t
on various browsers. Safari has lots of file not found errors which
are considered passing tests because those listeners worked when
testing manually.

Safari has 10/21 passing tests of which 4 could not be tested (file not
found error) while Firefox has 16/21 passing tests. Tests involving
timestamps worked well on all browsers tested, mouse events like
hovering, drag drops and clicks are patchy - most likely because of
how the mouse in WebDriver switches between existing and not
existing. Keyboard events like sending keys have responded well.

7 FUTUREWORK
This is a list of things that can be done next and also includes some
suggestions for improvements.

(1) Browsers:
Test Chrome, Opera and Edge with their own engines (other
than AppleWebKit).

(2) Selenium IDE:
7

CSE3000, TU Delft,

Rahul Kochar
Dr. David Maxwell (Supervisor)
Dr. Claudia Hauff (Supervisor)

• Realistic:
Selenium IDE can perform record and replay attacks. This
was previously dismissed because it involvedmanual work
and we wanted to build an automated test suite. Given
the problem with the non-existence of a mouse and the
possibility to perform events that are not possible in a
normal browser, Selenium IDE makes tests more realistic.

• Amount of Testable Listeners
SeleniumWebdriver[42] can perform few actions but there
are many more listeners[41] which can be attached to ele-
ments in DOM. Selenium IDE can test most of these listen-
ers which are not possible for Webdriver at the moment.

(3) Scalability:
• Pytest is used to make fixtures[43] which set up the test
infrastructure and help incorporate LogUI into the test
suite. A massive drawback is that for tests to be run on
multiple browsers, the browsers are provided as param-
eters to parameterized tests. Pytest starts the test suite
by collecting all tests which means it open all of these
browsers, even if one test is to be run, Pytest collects all
of them.

• It was noticed that each browser takes roughly 0.7GB
with GUI enabled and 0.45GB in headless mode. This is
very expensive for RAM. A possible solution is to not use
parameterized tests and run each test with a for loop on the
list of browsers. This will make collecting and analyzing
tests harder, code difficult to maintain and is bad practice
in general. Selecting another framework like unittest[44]
in Python or maybe something in another language which
does first collect all tests is the best idea. It can also be
solved by using lazy evaluation so that the browsers that
are collected are not constructed until used by the test,
Python does not support lazy evaluation.

(4) Configuration Object:
The configuration object is hard coded into driver.js file.
It would be very convenient to be able to read the object
from a JSON file so that tests can personalize the configura-
tion object. Unfortunately, my knowledge of Nginx and web
technology in general was insufficient to figure out how to
disable a CORS[45] error caused by reading a local JSON file.

(5) LogUI API:
LogUI infrastructure is setup by simulating an user with Se-
lenium. It would be convenient to create applications, flights,
enable and disable flights, download log files and return
authorization tokens without simulating users on browsers.

8 CONCLUSION
This paper has discussed the need for checking browser engine
compatibility and evaluating it with a novel idea - compatibility
tests in combination with web-based logging (LogUI) which ex-
ploits modern web technology to attach listeners to elements of
DOM allowing LogUI to log data discretely and precisely without
making any compromises of any kind. An extensive evaluation of
user automation tools is done (section 4) and Selenium WebDriver
was chosen for its vast selection of browsers. Unfortunately, many

of these browsers were not able to work resulting in a smaller than
hoped for study but we did manage to cover TODO.

Different types of listeners were evaluated, sometimes in complex
sequences to see how they react. The listeners are attached to
elements of DOM and can therefore be considered part of that ele-
ment. This gives an inside view of how the browser engine treats
that particular element and action making it ideal for examining
cross-browser inconsistencies. Both Research Questions 1 and 2
are addressed in table 3 which has an overview of listeners tested
and their outcomes. Mouse (except hover) and keyboard events
do not show any problems and drag and drop events could not be
evaluated because they did not respond to Selenium.

One variable in this test suite is Selenium WebDriver, to address
this the last test CT2 (section 6.5) performs a sequence of events
that bring out multiple inconsistencies, some of which have been
discussed individually earlier. Most importantly, it presents the find-
ings with an easy to see and understand diagram with a realistic
test. From these experiments, it can be concluded that while there
are some browser inconsistencies such as loading of pages (events
A and B in section 6.5), for all other use cases and purposes, they
behave in the same way.

This is shown with a sequence diagram comparing expected be-
haviour of browsers to automated tests (figure 4) and manual tests
against automated tests (figures 5 and 6). When listeners are tested
individually, Safari has shown many failing tests which is remark-
able. This is cleared up when the same tests are repeated manually
suggesting that the problem is with Selenium WebDriver or with
the AppleWebKit drivers used. Key Cross Browser Inconsistencies
(XBI) identified are that browsers load differently and reorder some
interactions such as hovers.

I would like to conclude this report by appreciating my super-
visor, Dr. David Maxwell for his energy, leadership and wonderfully
detailed advice all the time, including at weekends and other odd
hours, Dr. Claudia Hauff for her thought provoking questions and
guidance, my colleagues who worked along with me, Paul vanWijk,
Sam van Berkel and Marc Visser. Lastly, my family and friends for
always standing with me and believing in me.

8

Examining Cross Browser Inconsistencies with Web Based Event Loggers
CSE3000, TU Delft,

Figure 3: Sample search web page

Expected

Safari

Firefox

A

B

A

B

A

C

C

C

D x2

D x2

D

E

E

E

F

G

G

G + M

F + M

F + M

H + M

H + M

H + M

I + M

I + M

I + M

J + M

K + M

K + M

K

J + M

J + M

L

L

L

N

N

N

O

O

O

Figure 4: Case Study: Expected vs Chrome log files vs Firefox log files

REFERENCES
[1] Martine Dowden and Michael Dowden. Compatibility and Defaults, pages 127–

143. Apress, Berkeley, CA, 2020. ISBN 978-1-4842-5750-0. doi: 10.1007/978-1-
4842-5750-0_5. URL https://doi.org/10.1007/978-1-4842-5750-0_5. last accessed
on 26 June 2021.

[2] Joel Martin and David Levine. Property-based testing of browser rendering
engines with a consensus oracle. In 2018 IEEE 42nd Annual Computer Software

and Applications Conference (COMPSAC), volume 02, pages 424–429, 2018. doi:
10.1109/COMPSAC.2018.10270.

[3] Html5. URL https://developer.mozilla.org/en-US/docs/Glossary/HTML5. last
accessed on 26 June 2021.

[4]
[5] w3c. URL https://www.w3.org/. last accessed on 26 June 2021.
[6] Ietf. URL https://www.ietf.org/. last accessed on 26 June 2021.

9

https://doi.org/10.1007/978-1-4842-5750-0_5
https://developer.mozilla.org/en-US/docs/Glossary/HTML5
https://www.w3.org/
https://www.ietf.org/

CSE3000, TU Delft,

Rahul Kochar
Dr. David Maxwell (Supervisor)
Dr. Claudia Hauff (Supervisor)

Symbol Meaning Symbol Meaning
A Started I Right rail mouseenter
B Page has focus J Right rail mouseexit
C Querybox Focus K Right click left rail
D Keyup (querybox change) L Left click left rail
E Click submit and query submit M Cursor position updated
F Double click stats N Page does not have focus
G Left rail mouseenter O Stopped
H Left rail mouseexit

Table 4: Meaning of letters.

Manual

Safari

A

B

B

A

C + M

C

D x2

D x2

E + M

E

G + M

G

F + M

F + M

H + M

H + M

I + M

I + M

J + M

K + M

K + M

J + M

L + M

L

N

N

O

O

Figure 5: Case Study: Manual Chrome vs Chrome log files

Manual

Firefox

B

A

A C + M

C

D x2 + M

D

E + M

E

G + M

G

F + M

F + M

H + M

H + M

I + M

I + M

J + M

K + M

K + M

J + M

L + M

L

N

N

O

O

Figure 6: Case Study: Manual Firefox vs Firefox log files

[7] M. Watanabe1, W, F. Christian, and D. Silva. Towards cross-browser
incompatibilities detection: asystemic literature review. volume 10. In-
ternational Journal of Software Engineering & Applications (IJSEA), 2019.
URL https://scholar.google.com/scholar?as_sdt=0%2C5&btnG=&hl=en&inst=
6173373803492361994&q=Towards%20cross-browser%20incompatibilities%
20detection%3A%20asystemic%20literature%20review. last accessed on 26 June
2021.

[8] Firefox user agent string reference. URL https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/User-Agent/Firefox. last accessed on 26 June 2021.

[9] Achim D. Brucker and Michael Herzberg. Formalizing (web) standards. In
Catherine Dubois and Burkhart Wolff, editors, Tests and Proofs, pages 159–166,
Cham, 2018. Springer International Publishing. ISBN 978-3-319-92994-1. last
accessed on 26 June 2021.

[10] Feetu Nyrhinen and Tommi Mikkonen. Web browser as a uniform application
platform: How far are we? In 2009 35th Euromicro Conference on Software Engineer-
ing and Advanced Applications, pages 578–584, 2009. doi: 10.1109/SEAA.2009.37.

last accessed on 26 June 2021.
[11] Antero Taivalsaari, Tommi Mikkonen, Dan Ingalls, and Krzysztof Palacz. Web

browser as an application platform. In 2008 34th Euromicro Conference Software
Engineering and Advanced Applications, pages 293–302, 2008. doi: 10.1109/SEAA.
2008.17. last accessed on 26 June 2021.

[12] Fagner Christian Paes and Willian Massami Watanabe. Layout cross-browser
incompatibility detection using machine learning and dom segmentation. SAC
’18, page 2159–2166, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450351911. doi: 10.1145/3167132.3167364. URL https://doi-
org.tudelft.idm.oclc.org/10.1145/3167132.3167364. last accessed on 26 June 2021.

[13] Zhenyue Long, GuoquanWu, Yifei Zhang, Wei Chen, and JunWei. Poster: Repair
cross browser layout issues by combining learning and search-based technique.
In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST),
pages 470–473, 2021. doi: 10.1109/ICST49551.2021.00062.

[14] Zhen Xu and James Miller. Cross-browser differences detection based on an
empirical metric for web page visual similarity. 18(3), April 2018. ISSN 1533-5399.

10

https://scholar.google.com/scholar?as_sdt=0%2C5&btnG=&hl=en&inst=6173373803492361994&q=Towards%20cross-browser%20incompatibilities%20detection%3A%20asystemic%20literature%20review
https://scholar.google.com/scholar?as_sdt=0%2C5&btnG=&hl=en&inst=6173373803492361994&q=Towards%20cross-browser%20incompatibilities%20detection%3A%20asystemic%20literature%20review
https://scholar.google.com/scholar?as_sdt=0%2C5&btnG=&hl=en&inst=6173373803492361994&q=Towards%20cross-browser%20incompatibilities%20detection%3A%20asystemic%20literature%20review
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent/Firefox
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent/Firefox
https://doi-org.tudelft.idm.oclc.org/10.1145/3167132.3167364
https://doi-org.tudelft.idm.oclc.org/10.1145/3167132.3167364

Examining Cross Browser Inconsistencies with Web Based Event Loggers
CSE3000, TU Delft,

doi: 10.1145/3140544. URL https://doi-org.tudelft.idm.oclc.org/10.1145/3140544.
last accessed on 26 June 2021.

[15] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. X-pert: A
web application testing tool for cross-browser inconsistency detection. ISSTA
2014, pages 417–420, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450326452. doi: 10.1145/2610384.2628057. URL https://doi-
org.tudelft.idm.oclc.org/10.1145/2610384.2628057. last accessed on 26 June 2021.

[16] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond.
Automated repair of layout cross browser issues using search-based techniques.
ISSTA 2017, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450350761. doi: 10.1145/3092703.3092726. URL https://doi-org.tudelft.
idm.oclc.org/10.1145/3092703.3092726. last accessed on 26 June 2021.

[17] Dom. URL https://developer.mozilla.org/en-US/docs/Web/API/Document_
Object_Model/Introduction. last accessed on 26 June 2021.

[18] David Maxwell and Claudia Hauff. LogUI: Contemporary Logging Infrastructure
for Web-Based Experiments. In Advances in Information Retrieval (Proc. ECIR),
pages 525–530, 2021. last accessed on 26 June 2021.

[19] S Kundu. Web testing: Tools, challenges and methods. volume 9, 2012.
URL https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.1459&rep=
rep1&type=pdf. last accessed on 26 June 2021.

[20] B. Al-Ahmed and K. Debei. Survey of testing methods for web applica-
tions. volume 9, 2020. URL https://www.researchgate.net/profile/Bilal_Al-
Ahmad/publication/348000478_Survey_of_Testing_Methods_for_Web_
Applications/links/5fec692a92851c13fed40a1c/Survey-of-Testing-Methods-for-
Web-Applications.pdf. last accessed on 26 June 2021.

[21] Emil Alégroth, Arvid Karlsson, and Alexander Radway. Continuous integration
and visual gui testing: Benefits and drawbacks in industrial practice. In 2018
IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST), pages 172–181, 2018. doi: 10.1109/ICST.2018.00026. last accessed on 26
June 2021.

[22] Jiujiu Yu. Exploration on web testing of website. Journal of Physics: Conference
Series, 1176:022042, mar 2019. doi: 10.1088/1742-6596/1176/2/022042. URL https:
//doi.org/10.1088/1742-6596/1176/2/022042. last accessed on 26 June 2021.

[23] Ricca. F Marchetta, A and P Tonella. A case study based comparison of web
testing techniques applied to ajax web applications. 2008. doi: 10-1007/s10009-
008-0086-x. URL https://link-springer-com.tudelft.idm.oclc.org/content/pdf/10.
1007/s10009-008-0086-x.pdf. last accessed on 26 June 2021.

[24] Ajax. URL https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX. last
accessed on 26 June 2021.

[25] Vidroha Debroy, Lance Brimble, Matthew Yost, and Archana Erry. Automating
web application testing from the ground up: Experiences and lessons learned
in an industrial setting. In 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), pages 354–362, 2018. doi: 10.1109/ICST.
2018.00042. last accessed on 26 June 2021.

[26]
[27] Pupeteer. URL https://developers.google.com/web/tools/puppeteer/. last accessed

on 26 June 2021.
[28] Paola Guzmán Castillo, Pau Arce Vila, and Juan Carlos Guerri Cebollada. Auto-

matic qoe evaluation of dash streaming using itu-t standard p.1203 and google
puppeteer. In Proceedings of the 16th ACM International Symposium on Per-
formance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks,
PE-WASUN ’19, page 79–86, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450369084. doi: 10.1145/3345860.3361519. URL
https://doi-org.tudelft.idm.oclc.org/10.1145/3345860.3361519. last accessed on 26
June 2021.

[29] Nightwatchjs. URL https://nightwatchjs.org/. last accessed on 26 June 2021.
[30] Webdriver. URL https://www.selenium.dev/documentation/en/webdriver/. last

accessed on 26 June 2021.
[31] Downloads, . URL https://www.selenium.dev/downloads/. last accessed on 26

June 2021.
[32] Boni García, Micael Gallego, Francisco Gortázar, and Mario Munoz-Organero. A

survey of the selenium ecosystem. Electronics, 9(7), 2020. ISSN 2079-9292. doi:
10.3390/electronics9071067. URL https://www.mdpi.com/2079-9292/9/7/1067.
last accessed on 26 June 2021.

[33] Mouseevent. URL https://developer.mozilla.org/en-US/docs/Web/API/
MouseEvent. last accessed on 26 June 2021.

[34] .
[35] Paruchuri Ramya, Vemuri Sindhura, and P. Vidya Sagar. Testing using selenium

web driver. In 2017 Second International Conference on Electrical, Computer and
Communication Technologies (ICECCT), pages 1–7, 2017. doi: 10.1109/ICECCT.
2017.8117878.

[36]
[37] .
[38] Basic concepts, . URL https://github.com/logui-framework/server/wiki/Basic-

Concepts#applications-flights-and-sessions. last accessed on 26 June 2021.
[39] Configuration object. URL https://github.com/logui-framework/client/wiki/

Configuration-Object. last accessed on 26 June 2021.

[40] Java script object notation. URL https://www.json.org/. last accessed on 26 June
2021.

[41] Event reference. URL https://developer.mozilla.org/en-US/docs/Web/Events. last
accessed on 26 June 2021.

[42] Selenium mouse actions in detail, . URL https://www.selenium.dev/
documentation/en/support_packages/mouse_and_keyboard_actions_in_
detail/. last accessed on 26 June 2021.

[43] Pytest fixtures. URL https://docs.pytest.org/en/latest/how-to/fixtures.html. last
accessed on 26 June 2021.

[44]
[45] Cors. URL https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS. last

accessed on 26 June 2021.

11

https://doi-org.tudelft.idm.oclc.org/10.1145/3140544
https://doi-org.tudelft.idm.oclc.org/10.1145/2610384.2628057
https://doi-org.tudelft.idm.oclc.org/10.1145/2610384.2628057
https://doi-org.tudelft.idm.oclc.org/10.1145/3092703.3092726
https://doi-org.tudelft.idm.oclc.org/10.1145/3092703.3092726
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.1459&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.1459&rep=rep1&type=pdf
https://www.researchgate.net/profile/Bilal_Al-Ahmad/publication/348000478_Survey_of_Testing_Methods_for_Web_Applications/links/5fec692a92851c13fed40a1c/Survey-of-Testing-Methods-for-Web-Applications.pdf
https://www.researchgate.net/profile/Bilal_Al-Ahmad/publication/348000478_Survey_of_Testing_Methods_for_Web_Applications/links/5fec692a92851c13fed40a1c/Survey-of-Testing-Methods-for-Web-Applications.pdf
https://www.researchgate.net/profile/Bilal_Al-Ahmad/publication/348000478_Survey_of_Testing_Methods_for_Web_Applications/links/5fec692a92851c13fed40a1c/Survey-of-Testing-Methods-for-Web-Applications.pdf
https://www.researchgate.net/profile/Bilal_Al-Ahmad/publication/348000478_Survey_of_Testing_Methods_for_Web_Applications/links/5fec692a92851c13fed40a1c/Survey-of-Testing-Methods-for-Web-Applications.pdf
https://doi.org/10.1088/1742-6596/1176/2/022042
https://doi.org/10.1088/1742-6596/1176/2/022042
https://link-springer-com.tudelft.idm.oclc.org/content/pdf/10.1007/s10009-008-0086-x.pdf
https://link-springer-com.tudelft.idm.oclc.org/content/pdf/10.1007/s10009-008-0086-x.pdf
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developers.google.com/web/tools/puppeteer/
https://doi-org.tudelft.idm.oclc.org/10.1145/3345860.3361519
https://nightwatchjs.org/
https://www.selenium.dev/documentation/en/webdriver/
https://www.selenium.dev/downloads/
https://www.mdpi.com/2079-9292/9/7/1067
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://github.com/logui-framework/server/wiki/Basic-Concepts#applications-flights-and-sessions
https://github.com/logui-framework/server/wiki/Basic-Concepts#applications-flights-and-sessions
https://github.com/logui-framework/client/wiki/Configuration-Object
https://github.com/logui-framework/client/wiki/Configuration-Object
https://www.json.org/
https://developer.mozilla.org/en-US/docs/Web/Events
https://www.selenium.dev/documentation/en/support_packages/mouse_and_keyboard_actions_in_detail/
https://www.selenium.dev/documentation/en/support_packages/mouse_and_keyboard_actions_in_detail/
https://www.selenium.dev/documentation/en/support_packages/mouse_and_keyboard_actions_in_detail/
https://docs.pytest.org/en/latest/how-to/fixtures.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

	Abstract
	1 Introduction
	2 Background
	2.1 Finding Browser Inconsistencies

	3 Leveraging Modern Web Technology
	3.1 The Web Page
	3.2 LogUI
	3.3 Testing Web Applications

	4 Frameworks and Tools
	4.1 Browser Support
	4.2 Functionality

	5 A Testing Suite for LogUI
	6 Methodology
	6.1 Browsers and Other Version Details
	6.2 Configuration Object and Listeners
	6.3 Test Page and Listeners
	6.4 Tests
	6.5 Search Session Simulation
	6.6 Evaluation

	7 Future Work
	8 Conclusion
	References

