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Abstract
Currently explanations for the Not-First/Not-Last propagators for the disjunctive constraint have not
been explored thoroughly, and have room for improvement. In this paper, we look into attempting
to give more general explanations by looking through the powerset of tasks and finding a smaller
set which still propagates. We have implemented naive, the state-of-the-art and our subset-finding
explanations and compared them all. Experimentally, around 50% of the results show a lower
amount of conflicts and average literal bound distance, however a majority have a higher runtime.
In addition, the more subsets we consider the bigger the runtime, however it not necessarily decrease
in amount of conflicts and average literal bound distance.
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Keywords and phrases Constraint Programming, Job Scheduling, Disjunctive, Explanations, Not-
First/Not-Last

1 Introduction

Constraint Programming is a method that is used to solve NP-Hard problems by modelling
them. With the use of the variable along with the constraints, it can effectively find solutions
without telling it how to find them. This method is used in many places, for example in
train management for better fuel consumption [6]. Given their relevant use, looking into
ways to optimize the algorithm would lead to faster solutions, which is of great importance.

In constraint programming, problems are modelled via variables and constraints. Given
that a variable represents something in the problem, we can constraint it based off of
the specifications of said problem. There are many constraints that can affect variables,
however the two most important ones in task scheduling are the disjunctive and cumulative
constraints. The disjunctive constraints allows for only one task to be executed at a time
without disruption, while the cumulative constraint allows for multiple tasks at once without
disruption.

Propagators are a part of Constraint Programming solvers which help speed up the solving
process. By looking through the possible values of variables from their given domains, they
can filter the ones that can not satisfy the constraints they are in. For each constraint there
are many propagators that help prune the domains of variables, for example in disjunctive
there is Edge-Finding and Detectable Precedences [16]. In our case, we will primarily focus
on the Not-First/Not-Last propagator.

When filtering the domain or encountering an infeasibility, an explanation is generated in
the form of a SAT problem to justify it [5]. Afterwards they get converted into learnt-clauses,
which help the solver converge to a solution faster. How good an explanation is depends on
primarily two things, the amount of variables it involves and amount of elements it potentially
covers in the domain [12].

There has been tremendous progress since the first implemenetion of the Not-First/Not-
Last propagators and their explanations. The main method is by using Θ trees to efficiently
propagate within O(n log n) [15]. Afterwards, they are used to generate explanations to
justify the propagations [1], either by including the current domains of all tasks (naive), or
further lifting them until there is still a conflict (Petr Vilím’s explanations [1]). However
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the naive and lifted explanations currently use all tasks which may cause a propagation for
the explanation, rather than attempting to use the minimal set of variables required for
propagation. This can lead to less effective learnt clauses being generated [12], decreasing
overall performance.

In this paper, we will explore generating more general conflict windows for tasks by
looking at smaller sets of tasks that affect propagation, with the goal of reducing the amount
of conflicts and average literal bound distance [12]. In order to achieve this, we will look
through all of the subsets of the set of tasks that could affect propagation, and picking the
one that causes the biggest change. However since this is O(2n) in time and space complexity,
we will only be executing this when the set is smaller than a constant number. As such, a
range of constants from two to five will be compared with a naive set of explanations and
Petr Vilím’s method.

Experimentally, the explanations introduced in this paper have shown promising results.
While few instances were faster than the state-of-the-art implementation, we found that 50%
of test instance encountered less conflicts and a smaller literal bound distance [12]. This holds
an optimistic future for research in this field, as there is potential for a faster implementation
that can achieve less conflicts.

The paper is organized as follows. Firstly, we talk about all of the preliminary knowledge
rqeuired in Section 2. We explore all relevant related work in Section 3. The problem is
elaborated further in Section 4, which will be followed by Section 5 for our contributions to
this field. We later talk about the experimentation, including the results, in Section 6. We
end the paper with our conclusions in Section 7.

2 Preliminaries

2.1 Notation

Since our main concern is with tasks, we first define what a task is. For each task i, it has:
esti: Earliest start time of i.
lcti: Latest completion time of i.
pi: Processing time of i.

These can later be extended to define more terms, such as:
lsti = lcti − pi: Latest start time of i.
ecti = esti + pi: Earliest completion time of i.

All of the previously stated variables can also apply for sets of tasks, as we will commonly
be grouping up tasks. For a set of activities T , they would work as follows:

estT = min{estj , j ∈ T}
lctT = min{lctj , j ∈ T}
pT =

∑
j∈T

pj

However, calculating the the true ect and lst of T is an NP-hard problem by itself [16].
As such we will be using a lower bound:

ectT = max{estT ′ + pT ′ , T ′ ⊆ T}
lstT = min{lstT ′ − pT ′ , T ′ ⊆ T}
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2.2 Constraint Satisfaction Problem
The idea of constraint programming can be written as a constraint satisfaction problem
(CSP). A CSP is a tuple (X ,D, C) which hold the set of variables X , the set of domains D
and the set of constraints C. If any of the domains in D are empty or if any of the constraints
are not satisfied, then the solution is infeasible.

Variables in constraint programming are coupled with domains, which dictate the possible
values the variables can hold. Domains can be of different types, such as a boolean (represented
as {0, 1}), integer or real number. For task scheduling problems, we will consider an integer
domain which represent the starting time. In order to link a variable with a domain we use
a function, ϕ : X ↣ D, which converts a variable to its corresponding domain.

Constraints on the other hand is best thought of the way to relate variables with each other.
There are many different kinds of constraints which offer different characteristics, for example
all-different which forces all variables to be different. They can be mathematically written
as a function which takes input the ϕ function and returns a boolean, or c : ϕ ↣ {0, 1}. If
the constraint returns a 0 then the constraint is not satisfied and the solution is invalid and
vice versa.

Propagators are functions that filter the domains from infeasible values, as a result they
can be thought of a function p : Dn ↣ Dn, where n is the number of variables. Since
propagators prune the domain, the resulting Dn should contain subsets of the input domains,
in other words the result (D′

1, . . . ,D′
n) = p(D1, . . . ,Dn) and ∀i ∈ X : D′

i ⊆ Di.
Lazy clause generation is used as a means to do smarter backtracking and better traversal

of the search tree with the use of explanations [5]. Whenever a propagation or conflict occurs,
we generate explanation as to the reason this occurred. An explanation is structured in
a SAT problem [5] which describes the bounds of a variables. An example can be seen in
Equation 1, where we set the lower bound of x1 to be zero, upper bound of x2 to be ten
which propagated x3 to be three.

[x1 ≥ 0] ∧ [x2 ≤ 10]→ [x3 = 5] (1)

Whenever we generate an explanation based off of a conflict, we generate a nogood.
Nogoods have the same structure as an explanation but lead to an infeasibility, denoted as ⊥.
We can turn explanations into nogoods by negating the right-hand side of the explanation,
for example we can change the explanation shown in Equation 1 to:

[x1 ≥ 0] ∧ [x2 ≤ 10] ∧ ¬[x3 = 5]→ ⊥ (2)

2.3 Not-First/Not-Last
We can now describe how the Not-First/Not-Last propagators work given the notation
previously stated. In this case, we will focus primarily on the Not-Last propagator, as they
are symmetrical.

The Not-Last propagtor looks at whether for a set of tasks Ω ⊂ T there can be a task
i ∈ (T \Ω) that can not be executed after Ω. For this to occur, the earliest completiton time
of Ω must be greater than the latest possible start time of i, resulting in i not being able to
start before its deadline:

lsti < ectΩ (3)

As such, at least one task from Ω must run after i. Since we know this is the case, lcti can
be updated to a value less than what it currently is:

lct′
i = min{lcti, max{lstj , j ∈ Ω}} (4)
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We can rewrite this for all possible sets of tasks to complete the full propagator:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) : lsti < ectΩ ⇒ lct′
i = min{lcti, max{lstj , j ∈ Ω}} (5)

Thanks to Torres and Lopez [14], we can prune T to remove any elements which will not
cause propagation, based on the Equation 4. These tasks are the ones that start before i can
be processed, as otherwise max{lstj , j ∈ Ω} in Equation 4 will be greater or equal to lcti,
which leads to no propagation. They defined this set as NLSet(T, i):

NLSet(T, i) = {j, j ∈ T ∧ lcti > lstj ∧ j ̸= i} (6)

2.4 Conflict Windows
In our case, we decided to write explanations as conflict windows, which are introduced by
Petr Vilím[1]. A conflict window for a task i is of the shape ⟨esti, lcti⟩, and it has a relaxed
range of the task, meaning ⟨esti, lcti⟩ ⊆ ⟨esti, lcti⟩. Infeasibility of a task no matter what
arrangement can be shown with ⟨−∞,∞⟩.

As can be seen in Figure 1, there are two tasks that overlap and thus conflict. Conflict
windows are generated which are show when they will still conflict given their current
positions. Note that the conflict windows can be greater or equal to the est and lct of the
tasks.

Figure 1 Two tasks a and b with square brackets indicating their conflict windows accordingly.
In this case the conflict windows extend until there would still be a overlap of the two tasks.

In the case of Not-First/Not-Last, we must ensure that all inequalities still remain valid
when defining the conflict windows. We first look at the Inequality 3 which states that the
earliest completion time for a task is after the set of tasks. We then modify this as follows:

lsti < ectΩ

lcti − pi < estΩ + pΩ

lcti − pi − pΩ < estΩ

∀j ∈ Ω : estj > lcti − pi − pΩ (7)

Likewise, for the assignment of the the latest completion time in Equation 4:

lct′
i = min{lcti, max{lstj , j ∈ Ω}}

lct′
i ≥ max{lstj , j ∈ Ω}

lct′
i ≥ max{lctj − pj , j ∈ Ω}

∀j ∈ Ω : lctj ≤ lct′
i + pj (8)

As such, we can change the conflict windows of all tasks in Ω:

∀j ∈ Ω : ⟨lcti − pi − pΩ + 1, lct′
i + pj⟩ (9)
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As for the conflict window for i : ⟨−∞, lcti⟩, since the task should be completed earlier
than the initial lcti.

After generating the conflict windows, we must convert them to an explanation. We can
consider a conflict window for an arbitrary task xn of ⟨a, b⟩, which states than it must start
after a and end before b. This would be translated as [xn ≥ a] ∧ [xn ≤ b], but if either limits
are infinity then those can be ignored since they are always true. As such this leads to the
following explanation for the Not-Last propagator: ∧

j∈Ω
[j ≥ estj ] ∧ [j ≤ lctj ]

→ [i ≤ lcti] (10)

3 Related Work

Constraint programming has come a long way, and has been proven to be useful for a variety
of NP-Hard problems [8]. Task scheduling in particular has been shown to be NP-Hard
[10], meaning that constraint programming can be applied. Since then, the cumulative
and disjunctive constraints have developed propagators to effectively prune the domains of
variables, with one of them being the Not-First/Not-Last propagators.

The first implementation was created by Baptise [3] while exploring the edge-finding
propagator. This implementation had a time complexity of O(n2) and space complexity of
O(n).

During this time, explanations were introduced in task scheduling for Constraint Pro-
gramming by Gueret [7], which allows for more intelligent searching of the search tree. While
not directly implementing explanations for the Not-First/Not-Last propagators, they were a
step towards incorporating disjunctive propagators with explanations in the solver.

Subsequently, the implementation by Torres and Lopez [14] only looked at the set of tasks
that could affect propagation, which they named NFSet and NLSet accordingly. However
their implementation involved doing a iterating through all tasks, and then checking for each
one if a change can be made. As such, it kept the time and space complexity of O(n2) and
O(n) respectively.

Afterwards, it was further improved using a Θ tree by Petr Vilím[15]. This tree structure
has a time complexity of O(log n) for calculations of the earliest completion time of a set of
tasks. Given the loop for all tasks, this results in a runtime of O(n log n).

In due time, the first explanations for the Not-First/Not-Last propagators were developed
by Petr Vilím[1]. He introduced the concept of conflict windows which indicate is a more
relaxed range of the task’s earliest start time and latest start time that still causes a conflict.

Finally, Lazy Clause Generation (LCG) solvers were discovered by Feydy [5]. LCG solvers
only looked through explanations and generated learnt clauses only when a conflict arose.
By moving the order of execution of the SAT solver to when a conflict occurred, it allows for
different search strategies to be used.

In this paper, we will mix ideas from Petr Vilím’s papers [1, 15] by expanding the conflict
windows while also finding a smaller set. As Petr discussed in his paper “global constraints
in scheduling” [16], there could be a subset of NLSet that can still propagate a task. In this
paper, our goal is to find that set while also relaxing the range as much as possible to give
more general explanations.
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4 Problem Description

The known task scheduling problem [2] involves arranging the order of execution of tasks
based on given information about each task. No matter what the task is, given earliest start
time, latest completion time and processing time, constraint programming can be used to
figure out whether solutions exist.

The disjunctive constraint in particular looks at execution of tasks in a a non-preemptive
manner with one resource, meaning only one task can be executed at a time and not
disrupted. With better observation of the tasks, we can shorten the earliest start times and
latest completion times. In the Not-First/Not-Last case, we can group up tasks and figure
out if a task can be put before or after this group, accordingly. If this is infeasible, then we
can laten the earliest start time, or shorten the latest completion time.

In Lazy Clause Generation solvers, this can later be expanded through the use of
explanations. Explanations can help with giving a reason for a propagation or conflict, and
later generate learnt clauses. The more general of an explanation, meaning the less variables
involved or wider ranges, the better as it has more use for learnt clauses. The final goal is
to see the performance difference if we find a subset of the tasks which propagate the task,
creating a more general explanation.

More formally written, given a set of tasks T = {t1, . . . , tn}, with each task t being
represented by a tuple (estt, lctt, pt), the idea of the disjunctive constraint is to find an
arrangement of tasks such that they do not overlap. We can filter out the domains of tasks
via propagators, which in the case of tasks means increasing estt or decreasing lctt.

The Not-Last propagator work by picking a subset Ω ⊂ T , and checking for a task i ∈
(T \Ω) if ectΩ > lsti. If that is the case, then we can update lcti to be min{lcti, max{lstj , j ∈
Ω}}. We can use the NLSet(T, i) = {j, j ∈ T ∧ lstj < lcti ∧ j ≠ i} to only use tasks
which could affect the propagation of the variable. However since ectNLSet is equal to
max{estΩ′ + pΩ′ , Ω′ ⊆ NLSet(T, i)} we could attempt to find Ω′ in order to have less tasks
to use in the explanations, giving us more general explanations.

An example can be seen in Figure 2 which shows four tasks along with their est and
lct. In this case, the task to be propagated is c, as such we have NLSet(T, c) = {a, b, d},
generating an explanation that involves three different tasks. Our goal would be to find a
subset Ω′ ⊆ {a, b, d} which will still cause propagation, however have a smaller size.

Figure 2 Figure showing four tasks a, b, c and d along with their corresponding est and lct.

5 Main Contributions

We will take steps on exploring the new ideas to finding better explanations. Firstly we will
start by generating naive conflict windows for tasks per propagation. Afterwards, we will
look into the method of calculating conflict windows for tasks by Petr Vilím[1]. Later on, we
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will expand on it by using the conflict windows explained in Equation 9. And finally, we will
look at subsets that lead to potentially better propagation and explanations.

Before we start looking into improvements, we need to look at the baseline explanations,
which are the naive explanations. Naive explanations set conflict windows to be the current
est and lct of all tasks at the moment of propagation. Meaning instead of Equation 9, we
simply return ∀j ∈ T : ⟨ectj , lctj⟩.

Since our goal is to make explanations more general, we can also only look at sets of
tasks that we know might cause propagation. In the case of Not-Last, this set of tasks is
called the NLSet, first discovered by Torres and Lopez [14]. The idea of this set is that in
Equation 4, we care about the smaller value between lcti and max{lstj , j ∈ Ω}. As such, we
should look at the set of task Ω where lstj < lcti, otherwise lstj ≥ lcti, and then lcti would
not get updated.

Naturally, naive conflict windows are not optimal, as such Petr looked into expanding the
conflict window to the point where the tasks still cause a conflict. In the case of Not-Last,
we can look at the Equations 7, 8 and 9. This expands the range of a conflict window
compared to the naive explanations, creating more general explanations compared to the
naive explanations.

In practice, not all of the tasks from the NLSet are required in order to find a propagation
of a task. An example can be seen in Figure 3, where task c does not affect the propagation
as it is really far away. By using the wider conflict windows proposed by Vilìm [1], we would
also have to change the conflict window of c. By going through all of the subsets of NLSet,
we can instead find the smallest set which still causes a propagation. Resulting in more
general conflict windows, which will overall lead to less conflicts [1].

Figure 3 Three tasks are shown, a b and c, with their corresponding est and lct. A vertical
line shows lstb, which will be the propagted value of lcta and also taken into consideration for the
conflict windows.

Given a set of tasks, iterating through all subsets is a O(2n) in time and space complexity,
which can significantly slow down a solver. As such, we implemented Algorithm 1, which
considers going through all subsets of a set only when their size is smaller than a constant k.
This allows for the time and space complexity to change into O(2kn log n) for the propagators,
where the increase is negligible for small numbers of k.
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Algorithm 1 Search for smaller subset that propagates

Input: T : set of tasks, k: max size, i: task to be propagated
Output: T : Smallest subset

1: if len(T ) > k then return T

2: else
3: lst←∞
4: T ← ∅
5: for T ′ in P(T ) do
6: lst′ ← max{lstj , j ∈ T ′}
7: if ectT ′ > lsti and lst′ < lst then
8: T ← T ′

9: lst← lst′

10: end if
11: end for

return T

12: end if

While heuristics could have been used in order to find the smallest set, we believed it
was better to first explore all of the subsets. The main issue with using heuristics is that
it is not trivial as to what the heuristic should be. This is due to the fact that we would
like to find Ω′ in ectΩ = max{estΩ′ + pΩ′ , Ω′ ⊆ Ω}, which does not necessarily mean that a
greedy approach would find this answer. As such, figuring out ectΩ is still NP-Hard, which
consequently means our approach also can not be optimized.

6 Experiments

While the proposed methods are theoretically sound, we would like to see the difference that
this would bring in practice. As such, we compare test instances for an implementation of
the naive from Section 5, state-of-the-art from Section 2.4 and our explanation from Section
5 in order to compare the difference in time, amount of conflicts and average literal bound
distance (LBD). We have found that around 50% of our test instances encounter less conflicts
and a lower LBD, however almost all of them take longer to run. In addition, we have run
our explanations on a maximum of k = 5 and saw how often our strategy ran and what
difference would a higher value contribute in terms of conflicts, time and LBD needed to run.
These resulted to our expected results of more tasks being considered with a higher k, which
in returns takes longer to run, however the number of conflicts and LBD do not necessarily
decrease.

6.1 Datasets
MinZinc1 is a tool which allows us to control the solver, the model and the data. Thanks to
minizinc, all tests will be ran on our solver called “Pumpkin”2. A standard minizinc model
has been written which allows for a number of “machines” and tasks, depending on the
data provided by the test instance, which result to the number of disjunctive constraints.

1 https://www.minizinc.org/
2 Forked version of Pumpkin which NF/NL was developed in: https://github.com/dprin/Pumpkin

https://www.minizinc.org/
https://github.com/dprin/Pumpkin
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Moreover, we used the VSIDS [11] search strategy, which is more likely to select tasks that
have been found during conflict analysis.

We used two standard datasets that are often present in Petr Vilím’s work [1, 16]. The
two datasets we used are from Lawrence [9] and ORB dataset from the OR library [4]. We
decided to run these datasets as not only is it widely used, but also features a wide variety
of problems. They range from small instances with 10 jobs and 5 machines to significantly
challenging with 15 jobs and 15 machines. In the end we used all of the dataset, meaning
from LA01 to LA40 and ORB01 to ORB10, in order to rigorously test our propagators.

Additionally, we generated our own tests with Taillard’s method [13] for more instances.
We decided to create more tests to reflect on test cases that are capable of proving optimality
and not timing out after a significant3 amount of time. In our case, we have 10 instances
with 10 jobs and 10 machines, and 10 instances with 15 jobs and 8 machines. The specific
seeds used are shown in the Appendix B, in order for future researchers to reproduce the
results.

In the end, we have a good dataset to benchmark different types of explanations. All of
them were ran on an Intel i7-12700H at 4.7GHz clock speed in a HP Zbook Power G9. In
order to make sure all types of explanations are treated fairly, we ran them with a timeout
of 10 minutes and compared the shared lowest result. Moreover, datasets are grouped and
averaged per 5 instances, this allows for a fair comparison between harder instances and
easier ones.

6.2 Comparison of our method with naive and Petr Vilím’s method
In order to comprehensively compare the different types of explanations, we must make sure
we have fair metrics. We chose three metrics that will be of use to us, time required, amount
of conflicts and literal block distance [12]. Time required is an important metric, which for
most who want to schedule tasks are interested in the most. Amount of conflicts indicates the
number of times an infeasible arrangement was encountered while finding optimal solution.
Literal block distance [12] is a good indication of the difference between decision levels in
learnt clauses, in our case a smaller number is better because our solver can negate more
clauses at once, leading to less conflicts.

The time metric is shown in a scatter plot in Figure 4 and in the Table 1. There are
instances such as ORB06-10, for k = 3 where the algorithm is faster in Table 1, and that is
also reflected in the scatter plot in ranges 10-100. However the majority of times, the Petr
Vilím’s explanations find the optimal solution faster. Moreover, other than for instances
LA01-15, it is always faster than the naive solution. We believe this is due to the added
complexity in going through all subsets for each propagation while additionally the data
collection for checking how many times we iterate through the powerset.

The amount of conflicts can be seen in the scatter plot in Figure 5 and in the Table 1.
Throughout most cases, we can see that there is a decrease of amount of conflicts compared
to the state-of-the-art. In addition, in all instances it is significantly smaller than the naive
implementation. This was an expected result based on the fact that we have more general
explanations which allow for better backtracking.

Finally, the avereage literal block distance can be seen in Figure 6 and in the Table 1.
Compared to the state-of-the-art, overall there is a mixed result with around less than half

3 We consider a significant amount of time to be the point where it would not provide an optimal result
after 10 minutes as practically we could not prove optimality even after extending the timeout for longer.
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of the instances having a smaller average literal block distance. Furthermore, it is always
significantly less than the naive implementation. These results are due to the fact that the
solver still mixes different learnt clauses from different decision trees, which does not improve
this metric.

Figure 4 Scatter plot of time to required to
find optimal solution for different values of k in
our method compared to state-of-the-art imple-
mentation. Points below the line indicate less
time than the state-of-the-art, while above indic-
ate more.

Figure 5 Scatter plot of the number of conflicts
encountered while finding optimal solution for
different values of k for our explanation compared
to state-of-the-art implementation. Points below
the line indicate less time than the state-of-the-
art, while above indicate more.

Figure 6 Scatter plot of the average literal block
distance for different values of k for our explana-
tion compared to state-of-the-art implementation.
Points below the line indicate less time than the
state-of-the-art, while above indicate more.
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Table 1 Table comparing the naive, standard implementation and our new explanations with a
maximum set size of three. Four metrics are shown, time in seconds, amount of conlficts and literal
block distance [12] and the amount of times we explored the powerset in percent.

naive V ilim′s k = 3
time conflicts lbd %used time conflicts lbd %used time conflicts lbd %used

la01-05 1 1.7K 10 0 1 355 6 0 2 257 6 30
la06-10 6 1.6K 18 0 7 302 7 0 12 295 6 20
la11-15 30 3.7K 22 0 24 492 8 0 40 595 10 15
la16-20 28 23.0K 16 0 5 3.0K 8 0 10 2.5K 7 31
la21-25 404 131.1K 28 0 48 12.7K 17 0 83 5.2K 15 20
la26-30 354 36.5K 45 0 147 7.7K 20 0 208 8.5K 20 15
la31-35 212 226 36 0 228 380 5 0 405 450 6 10
la36-40 530 77.8K 31 0 116 5.2K 15 0 243 7.6K 13 20
orb01-05 181 169.1K 16 0 30 14.7K 12 0 33 22.6K 11 29
orb06-10 112 89.4K 16 0 25 11.9K 10 0 19 15.1K 10 30
ta_j10m10_01-05 19 9.2K 16 0 7 1.0K 6 21 7 901 6 31
ta_j10m10_06-10 13 5.1K 13 0 10 831 5 21 12 1.1K 6 31
ta_j15m8_01-05 171 118.1K 22 0 42 24.5K 12 13 58 16.3K 12 19
ta_j15m8_06-10 180 114.8K 22 0 25 11.0K 13 13 45 11.7K 12 20

6.3 Best performing maximum set limit
Allowing for bigger sets of tasks prove to give better conflict windows but at the cost of an
increase in time complexity. In our case, we could run up to a maximum size of five, and
after that the speed decrease was significant. We used four metrics:

amount of time required
amount of conflicts
average literal block distance
amount of times we iterate through all subsets

As is visible in Table 2, on average we see a better time for a maximum size of four due
to two factors. The first one being that we have to iterate through less subsets compared
to a higher value such as five. In addition, the more general explanations allow for better
traversal of the search tree.

Moreover, we see a smallest number of conflicts when the maximum size is four in Table 2.
It was expected to be a larger number, since we would be giving more general explanations
for more propagations. The cause of this is due to the fact that a different search path by
VSIDS was taken which lead to more conflicts.

Furthermore, the average literal block distance was collected and we received some
surprising results. There is no clear best value for the maximum size of the set, which is
counter-intuitive as we expect a larger number to correlate with better explanations. This is
due to the fact that we are mixing different strategies depending on the size of the sets of
tasks that we encounter.

Finally, we see a trend of iterating through subsets more often the higher the value of k.
This was an expected result, as by increasing the value of k we encounter more sets of tasks
which can be looked further into.
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Table 2 Table containing different maximum size of sets to be considered, from two to five.
Four metrics are shown, time in seconds, amount of conlficts and literal block distance [12] and the
amount of times we explored the subsets in percent.

k = 2 k = 3 k = 4 k = 5
time conflicts lbd %used time conflicts lbd %used time conflicts lbd %used time conflicts lbd %used

la01-05 2 333 6 20 2 257 6 30 2 350 6 40 4 278 5 51
la06-10 11 269 6 13 12 295 6 20 10 254 7 26 14 299 7 33
la11-15 44 523 8 10 40 595 10 15 52 538 8 19 57 540 9 24
la16-20 9 2.9K 7 21 10 2.5K 7 31 12 1.9K 7 42 22 3.4K 7 53
la21-25 89 24.6K 13 13 83 5.2K 15 20 80 9.3K 16 27 98 9.5K 17 34
la26-30 249 10.1K 19 10 208 8.5K 20 15 285 4.9K 15 20 425 7.1K 17 25
la31-35 397 450 5 7 405 450 6 10 329 331 5 13 481 443 6 16
la36-40 201 5.2K 12 14 243 7.6K 13 20 256 6.9K 13 27 352 4.6K 14 34
orb01-05 26 16.2K 11 20 33 22.6K 11 29 26 14.7K 12 40 73 50.4K 11 49
orb06-10 15 9.4K 11 20 19 15.1K 10 30 20 11.9K 10 40 31 13.6K 10 51
ta_j10m10_01-05 7 1.0K 6 21 7 901 6 31 9 1.3K 6 42 16 1.2K 7 53
ta_j10m10_06-10 10 831 5 21 12 1.1K 6 31 15 1.1K 6 42 25 618 6 53
ta_j15m8_01-05 59 24.5K 12 13 58 16.3K 12 19 67 16.2K 10 26 76 16.5K 13 33
ta_j15m8_06-10 37 11.0K 13 13 45 11.7K 12 20 59 18.2K 13 26 76 22.6K 13 33

7 Conclusion

Ultimately, we explored explanations for the Not-First/Not-Last propagator. We did this by
looking through all of the subsets of the set of tasks that affect propagation, and using the
smallest set that still propagated. In addition, we considered using this method only when
the set is less than a specified maximum.

We found that overall it takes more time to find an optimal solution for test instances
using our method compared to Petr Vilím’s explanations [1]. However we discovered that
half of the time we have less conflicts and a lower average of literal block distance.

For future work, it is recommended to look into if there it is possible to use heuristics for
decreasing the size of tasks, rather than looking through all subsets. Moreover, higher values
of k need to be explored to see the change in conflicts and average literal block distance.

A Responsible Research

There are primarily two factors to consider when working on a propagator, reproducibility
and access to test instances. They are important factors to keep in mind when working on
research, as they allow for faster progression in research.

Everything written in the paper is available in a public GitHub repository4. This allows
for future researchers to look into our code and figure out the inner workings in practice,
rather than theoretically.

Finally, most test instances that were ran are widely used and available in this field. They
are publicly available in the well known OR library [4], and we also made sure to cite all

4 https://www.github.com/dprin/pumpkin

https://www.github.com/dprin/pumpkin
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papers from which the datasets originate from. In addition, we generated our own data which
is available on the GitHub repository5, while also including the seeds used in Appendix B.

A.1 AI Usage
During the research of this project LLMs have been used to assist during data processing.
They were primarily used to make the tables in the paper, by converting them from a
Python dictionary to a Pandas table. Additionally, they were used during the creation of the
examples in the paper, in which the code was later manually modified to fit our needs.

B Seeds used for custom TA tests

Custom seeds are used when generating the test instances that can be seen in the Tables 1,
2 and 4.

Filename Time Seed Machine Seed
instance_j10m10_1.dzn 595312809 1226873846
instance_j10m10_2.dzn 1994010092 674268132
instance_j10m10_3.dzn 684069210 17711631
instance_j10m10_4.dzn 433393242 1856683078
instance_j10m10_5.dzn 1737541870 2123655630
instance_j10m10_6.dzn 1053901157 2093288715
instance_j10m10_7.dzn 197486053 2072736806
instance_j10m10_8.dzn 541533994 836141230
instance_j10m10_9.dzn 591728687 1250988364
instance_j10m10_10.dzn 64076732 175007812
instance_j15m8_1.dzn 166140137 21143938
instance_j15m8_2.dzn 472453410 1957606298
instance_j15m8_3.dzn 325953502 1085494782
instance_j15m8_4.dzn 417269198 833500955
instance_j15m8_5.dzn 1001380920 1585883286
instance_j15m8_6.dzn 607390163 1104152727
instance_j15m8_7.dzn 1561051784 2003679251
instance_j15m8_8.dzn 422129019 1697884185
instance_j15m8_9.dzn 1213865971 957331870
instance_j15m8_10.dzn 1039225514 117613006

Table 3 Table containing all seeds used when generating Taillard tests [13]. The first column
represents the file name, second column the time seed and the third the machine seed.

C All experimental data

5 https://www.github.com/dprin/pumpkin

https://www.github.com/dprin/pumpkin
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V ilim′s k = 2 k = 3 k = 4 k = 5
timeconflictslbd%usedtimeconflictslbd%usedtimeconflictslbd%usedtimeconflictslbd%usedtimeconflictslbd%used

la01 1 110 5 0 2 102 5 20 2 78 6 30 3 113 5 40 4 98 5 51
la02 1 348 7 0 1 570 8 20 1 153 6 30 2 249 7 41 3 272 7 51
la03 1 685 7 0 1 461 7 19 2 529 8 29 2 741 6 38 3 457 6 50
la04 2 591 5 0 2 488 5 20 2 480 5 30 4 621 5 40 6 535 5 51
la05 0 42 5 0 0 42 5 20 0 43 4 30 1 25 4 40 1 29 4 51
la06 3 151 6 0 6 237 6 14 7 198 5 20 8 140 5 27 13 243 6 33
la07 3 407 10 0 5 208 8 13 6 336 8 19 8 365 8 26 12 426 11 32
la08 12 463 6 0 18 398 6 13 14 301 6 20 11 248 7 25 16 184 5 31
la09 2 195 9 0 4 155 7 13 5 235 8 20 4 195 7 26 7 336 7 33
la10 13 293 5 0 23 349 6 13 26 407 6 20 20 320 6 26 24 308 6 32
la11 27 565 7 0 69 602 7 10 68 563 7 15 66 515 7 19 126 671 7 24
la12 24 566 7 0 38 608 7 10 50 613 8 15 55 562 7 19 32 411 8 24
la13 19 480 11 0 42 553 8 10 22 336 8 15 53 558 6 20 51 559 9 25
la14 20 277 7 0 21 189 6 10 22 232 8 15 26 241 7 20 37 544 9 24
la15 31 574 8 0 47 665 9 10 40 1.2K 18 15 59 814 12 19 36 516 10 24
la16 4 4.7K 8 0 8 2.7K 7 21 8 1.2K 6 31 11 1.4K 6 42 19 1.6K 6 53
la17 3 291 5 0 7 239 5 21 7 522 6 32 11 180 5 42 25 476 5 53
la18 4 1.3K 6 0 8 1.1K 7 21 7 792 7 31 11 718 6 42 16 838 6 52
la19 7 5.4K 9 0 13 8.4K 11 20 13 7.2K 9 31 14 6.0K 10 42 31 10.5K 10 53
la20 6 3.4K 9 0 9 2.1K 8 21 15 2.7K 7 31 12 1.2K 6 42 21 3.4K 8 52
la21 46 6.4K 21 0 71 22.3K 16 13 114 3.7K 15 20 177 23.1K 15 27 189 14.7K 19 34
la22 37 26.6K 16 0 44 16.2K 15 13 51 2.6K 16 20 32 1.4K 13 27 54 5.1K 16 34
la23 21 522 8 0 37 459 7 14 80 899 9 20 86 1.9K 12 27 102 2.2K 12 34
la24 116 28.3K 23 0 197 36.4K 15 13 116 4.3K 18 20 57 12.0K 20 27 52 10.6K 17 33
la25 18 1.8K 15 0 98 47.4K 13 13 54 14.8K 14 20 48 8.0K 17 27 91 14.8K 20 34
la26 248 3.9K 15 0 201 2.4K 18 10 243 11.0K 30 15 411 2.5K 12 20 352 5.6K 25 25
la27 98 7.6K 23 0 501 26.9K 26 10 342 2.7K 19 15 269 2.4K 15 20 599 2.5K 10 25
la28 68 13.5K 23 0 118 16.0K 20 10 139 23.3K 19 14 143 15.3K 21 20 165 12.9K 19 25
la29 136 11.9K 28 0 156 3.3K 18 10 113 3.8K 18 15 284 1.9K 12 20 592 12.4K 21 25
la30 185 1.4K 10 0 270 2.0K 14 10 203 1.8K 14 15 320 2.3K 15 20 414 2.2K 11 25
la31 253 461 5 0 317 358 5 7 356 319 5 10 302 310 5 13 485 675 6 16
la32 182 275 5 0 593 716 5 7 488 629 5 10 407 360 5 13 502 410 5 17
la33 133 392 6 0 186 356 6 7 298 355 6 10 329 364 6 13 251 258 6 17
la34 268 396 5 0 364 330 5 7 395 502 6 10 492 500 5 13 594 470 5 17
la35 303 377 5 0 526 489 6 7 488 444 6 10 117 123 5 13 575 402 6 16
la36 74 3.2K 14 0 116 10.1K 15 14 159 1.5K 10 20 199 8.7K 12 27 309 3.7K 13 34
la37 138 11.0K 18 0 193 11.3K 17 14 222 4.7K 14 21 259 17.7K 18 27 428 12.3K 15 34
la38 85 686 11 0 245 1.2K 8 14 227 762 6 21 341 1.1K 7 28 401 1.2K 12 35
la39 194 4.3K 12 0 270 1.5K 7 14 366 9.7K 20 20 241 2.5K 12 27 430 2.0K 11 35
la40 87 6.7K 23 0 181 2.3K 12 14 243 21.4K 16 20 239 4.5K 18 27 192 3.8K 18 34
orb01 26 13.9K 14 0 21 8.8K 13 20 50 33.5K 13 28 32 13.9K 14 39 123 95.1K 11 47
orb02 16 6.9K 9 0 16 9.4K 9 20 12 5.6K 9 31 14 6.9K 9 41 18 8.2K 10 52

Continued on next page
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V ilim′s k = 2 k = 3 k = 4 k = 5
timeconflictslbd%usedtimeconflictslbd%usedtimeconflictslbd%usedtimeconflictslbd%usedtimeconflictslbd%used

orb03 42 18.3K 15 0 44 24.5K 17 19 56 31.9K 13 28 33 18.3K 15 39 132 99.2K 12 46
orb04 28 17.5K 9 0 25 22.4K 10 19 24 26.2K 9 29 21 17.5K 9 40 50 31.7K 11 50
orb05 40 16.8K 10 0 25 15.7K 9 20 24 15.5K 11 30 30 16.8K 10 40 43 17.6K 9 50
orb06 44 32.9K 15 0 22 13.6K 19 19 43 45.9K 11 28 37 32.9K 15 40 52 31.6K 13 50
orb07 16 10.7K 8 0 13 10.8K 8 20 12 11.4K 8 30 12 10.7K 8 40 21 15.1K 9 51
orb08 24 2.5K 10 0 15 11.6K 12 18 8 639 8 30 19 2.5K 10 40 28 8.1K 12 50
orb09 16 6.8K 8 0 12 4.1K 7 20 15 11.8K 9 30 13 6.8K 8 41 27 9.0K 8 52
orb10 25 6.5K 11 0 11 6.6K 10 20 16 5.8K 11 30 20 6.5K 11 40 27 4.1K 8 51
ta_j10m10_01 6 593 7 21 5 593 7 21 5 467 7 31 7 272 5 42 11 555 5 53
ta_j10m10_02 5 387 5 21 4 387 5 21 5 966 7 31 7 759 7 42 10 607 8 53
ta_j10m10_03 7 666 6 21 7 666 6 21 5 776 6 31 8 763 5 42 14 932 7 53
ta_j10m10_04 6 306 5 21 6 306 5 21 6 359 6 32 8 242 6 43 13 172 4 53
ta_j10m10_05 13 3.3K 7 21 14 3.3K 7 21 13 1.9K 7 31 17 4.7K 9 42 30 3.9K 9 53
ta_j10m10_06 11 2.5K 8 21 11 2.5K 8 21 16 4.2K 9 31 18 4.2K 10 42 18 1.6K 7 53
ta_j10m10_07 5 174 4 21 6 174 4 21 7 152 5 32 8 145 4 42 23 161 5 53
ta_j10m10_08 7 408 5 21 8 408 5 21 9 318 5 31 16 257 5 41 29 230 5 52
ta_j10m10_09 11 358 5 21 13 358 5 21 17 378 5 32 18 326 5 42 37 358 6 53
ta_j10m10_10 16 676 6 21 13 676 6 21 13 606 6 32 15 633 6 42 17 776 7 53
ta_j15m8_01 30 9.9K 11 13 44 9.9K 11 13 80 20.3K 13 19 86 12.9K 11 26 117 22.8K 12 33
ta_j15m8_02 27 12.5K 17 12 36 12.5K 17 12 25 1.4K 14 20 33 850 11 27 63 10.6K 18 33
ta_j15m8_03 41 1.5K 10 13 58 1.5K 10 13 53 1.3K 9 20 56 366 6 27 25 862 10 34
ta_j15m8_04 91 97.9K 13 11 123 97.9K 13 11 83 57.9K 15 18 101 66.4K 13 24 98 48.1K 17 31
ta_j15m8_05 22 575 9 13 34 575 9 13 50 548 7 20 57 479 6 27 75 361 6 34
ta_j15m8_06 57 30.1K 17 13 86 30.1K 17 13 102 38.6K 15 19 165 69.0K 16 25 209 87.8K 14 31
ta_j15m8_07 20 10.6K 16 13 31 10.6K 16 13 39 14.9K 15 19 23 8.9K 16 26 36 11.7K 14 33
ta_j15m8_08 23 11.5K 12 13 34 11.5K 12 13 43 3.0K 10 20 63 11.6K 16 26 70 12.1K 16 33
ta_j15m8_09 13 1.2K 11 13 19 1.2K 11 13 21 978 8 20 25 896 9 27 28 633 8 33
ta_j15m8_10 10 1.5K 12 13 14 1.5K 12 13 20 1.0K 13 20 18 834 11 26 35 993 13 34
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