
 
 

Delft University of Technology

Large-Scale Learning Analytics
Modeling Learner Behavior & Improving Learning Outcomes in Massive Open Online
Courses
Davis, Daniel

DOI
10.4233/uuid:b8be8302-84a0-4b29-a6fe-761a3f872420
Publication date
2019

Citation (APA)
Davis, D. (2019). Large-Scale Learning Analytics: Modeling Learner Behavior & Improving Learning
Outcomes in Massive Open Online Courses. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:b8be8302-84a0-4b29-a6fe-761a3f872420

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:b8be8302-84a0-4b29-a6fe-761a3f872420
https://doi.org/10.4233/uuid:b8be8302-84a0-4b29-a6fe-761a3f872420


Large-Scale Learning Analytics:
Modeling Learner Behavior &

Improving Learning Outcomes in
Massive Open Online Courses

Daniel John Davis



.



Large-Scale Learning Analytics:
Modeling Learner Behavior &

Improving Learning Outcomes in
Massive Open Online Courses

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der
Hagen,

chair of the Board for Doctorates,
to be defended publicly on

Tuesday 7 May 2019 at 12:30 o’clock

by

Daniel John DAVIS

Master of Arts in Communication, Culture & Technology
Georgetown University, USA
born in Worcester, MA, USA



This dissertation has been approved by the promoters.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof.dr.ir. G.J.P.M. Houben Technische Universiteit Delft, promotor
Dr.ir C. Hauff Technische Universiteit Delft, co-promotor

Independent Members:

Prof.dr. M.M. Specht Technische Universiteit Delft
Prof.dr. W.F. Admiraal Universiteit Leiden
Prof.dr. M. Kalz Heidelberg University of Education, Germany
Prof.dr. K. Verbert KU Leuven, Belgium
Prof.dr. A. van Deursen Technische Universiteit Delft, reserve member

SIKS Dissertation Series No. 2019-14

The research reported in this thesis has been carried out under the auspices
of SIKS, the Dutch Research School for Information and Knowledge Systems.

Published and distributed by: Daniel John Davis
E-mail: dan7davis@gmail.com

ISBN: 978-94-028-1475-0

Keywords: learning analytics, web information systems, learning science,
educational data mining

Copyright c⃝ 2019 by Daniel John Davis
All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without written permission of the author.

Cover design by: Daniel Davis

Printed and bound in The Netherlands by IPSKamp Printing.



Acknowledgments
Mom
Dad

Katie
Allie

Katya
Bentley

John
Nathan

Joe
Nick

Sonny
Brett
Matt
Snax
John
Ron

Barry
Taylor
Freddie
Dragos

Guanliang
René

Daniel
Zach
Ioana
Jorge
Mar

Jonah
Vasileios

Tim
Jacqueline

CEL
Geert-Jan

Henk
Timo

JP
Janine
Yianna
Kelly

Dr. Lang
Dr. Land

Daniel John Davis
April 2019

Atlanta, Georgia, USA

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Improving Learning Outcomes 13

2 Activating Learning at Scale: A Review of Innovations in
Online Learning Strategies 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II Teaching & Learning Paths 45

3 Gauging MOOC Learners’ Adherence to the Designed Learn-
ing Path 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Subjects & Data . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



viii Contents

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Toward Large-Scale Learning Design 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

III Study Planning 91

5 Follow the Successful Crowd: Raising MOOC Completion
Rates through Social Comparison at Scale 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 MOOC Overview . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 SRLx: A Personalized Learner Interface for MOOCs 119
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Study Planning Pilot Study . . . . . . . . . . . . . . . . . . . 123
6.4 SRLx System Overview . . . . . . . . . . . . . . . . . . . . . 128
6.5 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

IV Retrieval Practice 141

7 Knowledge Retention and Retrieval Practice in MOOCs 145



Contents ix

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.3 Retrieval Practice Pilot Study . . . . . . . . . . . . . . . . . . 151
7.4 Adaptive Retrieval Practice System Overview . . . . . . . . . 154
7.5 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8 Conclusion 173
8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 175
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Bibliography 183

List of Figures 211

List of Tables 217

Origins of Chapters 221
8.3 Origin of Chapters . . . . . . . . . . . . . . . . . . . . . . . . 221

Curriculum Vitae 223





Chapter 1

Introduction

1.1 Motivation

Online learning environments have been blossoming in popularity and use
over recent years with the dawn of large-scale learning technologies. In the
past, learning management systems (LMS) were traditionally used simply as
file management systems for instructors to store files for convenient student
access, as was common in the early stages of e-learning [216, 49]. This was an
evolution from the original distance education age where hard copies of course
materials were physically mailed to learners [228]. Today, however, entire
degrees are being delivered exclusively online. This evolution has generated a
demand for a massive reevaluation of teaching methods across various media.
These courses and degree programs have been translated from the traditional,
physical classroom settings to the online context without critical evaluation,
which has led to systematic issues of attrition and passivity in the learning
process [129].

The promise and excitement behind large-scale online education lies in
its scale and reach [233]—Massive Open Online Courses (MOOCs) offered by
TU Delft have more than 2 million enrollments at the time of writing. Learn-
ers from all around the globe can participate in courses from top academic
institutions as long as they have an internet connection. With this scale, how-
ever, come some issues. One of the key issues plaguing the large-scale online
education community thus far is its perceived inferior effectiveness compared
to traditional, classroom-based learning environments and methods of deliv-
ery [114]. Instructors do not have the benefits of face-to-face contact with
learners, and this lack of immediate, real-time visual feedback makes manag-
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2 Chapter 1. Introduction

ing a classroom more difficult, especially when enrollments count in the tens
of thousands for a given course [228].

To tackle this problem of delivering quality online instruction, this the-
sis presents a series of research efforts which investigate measures to improve
online learning by developing technology to incorporate active learning strate-
gies (defined as any process which enables learners to be critically engaged
in thinking about and carrying out their learning process [86]) in the course
design and online learning platform. For example, the early paradigm of
MOOCs in making courseware freely available to anyone in the world was
concerned with the delivery of materials [180]. While there is certainly lots
of value in that, what this paradigm fails to consider is the fact that learning
is a skill, and just because someone has access to such materials does not
ensure that they possess the necessary learning skills to successfully engage
with and learn the content and achieve improved learning outcomes [86]. The
learning skills which we focus on encouraging in the systems we deployed are
those concerned with self-regulated learning (SRL), or a learner’s proactive
engagement with the learning process through various personal management
strategies in order to control & monitor cognitive and behavioral processes
towards a learning outcome [278, 280, 256].

In the series of research efforts presented here, we tackle this problem
by first referencing the research literature to discover what types of inter-
ventions or improvements can be made to large-scale online learning envi-
ronments to address the identified issues; conducting exploratory studies on
the natural behavior of learners (how they engage with course resources) and
strategies of instructors (how they design and build courses); and finally we
design, develop, deploy, and evaluate a series of course augmentations (in
the form of web applications embedded within the edX MOOC platform1)
aimed at improving learning outcomes in MOOCs, which suffer from system-
atic rates of high attrition (only around 5% of learners typically go on to
finish a course [129]) by supporting learners in self-regulating their learning
process—equipping them with the tools necessary to succeed in what is a
foreign learning context for many of them.

The two key SRL skills we aim to support learners in practicing in the
interventions deployed in this thesis are study planning and retrieval practice.
Research on study planning has found that students who spend time thinking
about, explicitly stating, and reflecting on their goals on a daily, weekly, or
even yearly level show increases in both engagement and academic perfor-
mance [196, 221, 259]. Retrieval practice, also known as the testing effect, is

1edx.org

edx.org
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the process of reinforcing prior knowledge by actively and repeatedly recall-
ing relevant information. This strategy is more effective in facilitating robust
learning—the committing of information to long-term memory [142]—than
passively revisiting the same information, for example by going over notes
or book chapters [4, 49, 212, 97, 166, 118, 117]. Both retrieval practice and
study planning are examples of active learning [86].

The work presented in this thesis highlights the importance and value
of the field of learning analytics, which investigates computationally model-
ing learning & teaching behaviors in online education and develops technical
solutions to support and improve this modeling. To offer a holistic contri-
bution to the learning analytics field, the present research is a convergence
of computer science and educational science—both being imperative to the
practical implications of this work. For example, innovations in learning and
instruction in the past have largely been conducted at small scales (e.g., class-
rooms of 40 or fewer students) where personal attention could be paid to each
student or participant, and these types of small scale studies are the basis
upon which the scientific literature about learning is founded [96]. However,
with today’s large-scale online classroom with thousands of learners, this type
of manual, face-to-face attention is implausible for one instructor (or even a
team of teaching assistants) to offer. Accordingly, thanks to new technologies,
we here leverage and build new scalable tools (able to serve MOOC learners
with no manual work required from an instructor) to deliver personalized
learning experiences in large-scale learning environments, thus enabling per-
sonalized feedback or attention from the system rather than an instructor.
Likewise, learning analytics and large-scale online learning environments also
allow for large-scale randomized field experiments for learning interventions
[127, 245]. By carefully combining web technologies with a strong theoretical
underpinning of the science of learning, we are here able to advance the field
of learning analytics.

1.2 Objectives

The primary, overarching research question that this thesis aims to address
is:

RQ How does the design of Massive Open Online Courses affect learner
success and engagement?

We break it down into two sub-questions to better guide each individual
research contribution along the way:
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RQ1 To what extent do teaching and learning strategies that have been
found to be effective in traditional learning environments translate
to MOOCs?

RQ2 How can MOOC environments be improved to advance the possibil-
ities of experimentation?

RQ1 derives from the assumption that has been widely applied in the
early years of large-scale online education (2011–present): what works in the
controlled laboratory or classroom should also work online at scale [210].
While this is a sensible approach to enact when first exploring the new ed-
ucational medium, we see it as imperative that the transference of learning
and teaching strategies from traditional learning environments to large-scale
online learning environments be empirically evaluated and tested. We are
particularly interested in how such strategies are realized at scale—from both
technological and design perspectives. In this body of research we address
this assumption by translating learning and teaching strategies from small
to large-scale learning contexts—and the highly heterogeneous learner pop-
ulation demographics therein—and measure the extent to which they do or
do not hold in their impact on learning outcomes. In large-scale and au-
tomated environments data is available to help us observe and assess these
effects, and therefore raising this questions of this transference is opportune;
the data traces from the learning environment/behavior contains key infor-
mation for us to better answer the driving, underlying questions.

We propose RQ2 to address the technical challenges of delivering high
quality education to the masses. Relating back to RQ1, in the past, many
scientific interventions (treatments to learners to observe a causal effect) have
relied on manual labor (such as feedback or personalized support), but with
class enrollments ranging in the thousands (TU Delft MOOC enrollments
for a single course have reach as high as over 70,000 individual learners),
new approaches to instruction must be conceived that rely on system au-
tomation rather than manual labor. This line of inquiry is an integral part
of the scientific process to both understand and create better solutions for
large-scale online education. The other side to this technical challenge is the
constraint of platforms: edX and Coursera have emerged as the most popular
environments for delivering Massive Open Online Courses—each attracting
more than 10 million learners and each offering over 2,000 courses. Each of
the software systems presented in this thesis have been developed especially
for the edX platform and are deployable on any course on the platform.
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In each of the learner support systems we developed and deployed in the
following chapters, we discovered high rates of noncompliance, as MOOC
learners tend not to engage with materials which are not required in order to
pass a course. In randomized experiments, a participant is considered non-
compliant when they opt not to engage with the intervention, thus removing
the possibility to measure a causal effect of the treatment. From the very
first study described below, we observe high rates of noncompliance and set
out to address it through more engaging interventions that are most likely
to be used by and beneficial to the learner.

1.3 Thesis Outline

This thesis contains four thematic parts. The main body of the thesis details
the overall trajectory of the work presented in this thesis—beginning with a
literature review identifying the key problems of online learner behavior that
past researchers have addressed, followed by quantitative studies further ex-
amining & assessing these problems as they manifest in MOOCs, and ending
with a series of instructional intervention experiments to measure their ef-
fect on learner success and engagement. We then conclude the thesis with a
summary of findings and contributions.

1.3.1 Part I: Improving Learning & Teaching Strategies

Chapter 2: Review of Large-Scale Learning Intervention Studies

This chapter considers the rich history in the learning sciences which has eval-
uated how different teaching strategies can effect positive changes in learner
behavior. We conducted a review of the research literature in this domain
while only considering interventions that are able to be implemented at scale.
Given that the main problem plaguing MOOCs at the time (which persists
to the present time of writing) was that of attrition, we sought out to identify
which active learning strategies would be the most promising to apply and
test in a large-scale learning setting such as MOOCs, in posing the following
research question:

RQ2.1 Which active learning strategies for digital learning environments
have been empirically evaluated, and how effective are they?
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To this end we make the following contributions regarding RQ1: (i) due
to their large scale and heterogeneity of learners and topics, MOOCs were the
most difficult environment to generate significant experimental results from,
and (ii) we identified the three most promising (and previously successful)
types of interventions from the literature2.

1.3.2 Part II: Teaching & Learning Paths

One of the key affordances of the large-scale data logged through MOOCs is
that it is fine-grained (every user action is logged) enough to offer the ability
to capture various patterns throughout the learning and teaching process that
cannot be identified through surveys or questionnaires [245]. For example,
since it is only possible for a learner to meaningfully engage with one task
(such as taking a quiz, watching a video, or posting on the discussion forum)
at a time, we can model a learner’s path through the course showing the
order in which he or she engaged with each learning activity. Likewise, a
key contribution in this work is the consideration of course structure as a
valuable data source for learning analytics insights. Historically, learning
analytics studies often only considered the learners’ log traces and activities
without contextualizing the results or findings within the structure/design of
a given course [233]. We here offer a method to contextualize online learning
behavior within the unique traits of individual courses by computationally
modeling the structure of a course so that any observed trends in learning
behavior can be interpreted in the context of the course’s design/structure.

Chapter 3: Adherence to the designed Learning Path

Given that the massive attrition rates of MOOCs had gained wide recogni-
tion, we wanted to gain a better understanding of where all these learners
were going astray and how this behavior might be rectifiable. To address this
issue of learner pathways and attrition with regard to RQ2, in this study we
posed the following guiding research question:

RQ3.1 To what extent do learners adhere to the designed learning path set
forth by the instructor?

2Chapter 2 is published as “Activating Learning at Scale: A Review of Innovations
in Online Learning Strategies” [67], by D. Davis, G. Chen, C. Hauff, and G.J. Houben in
Computers & Education, 125:327. 344. 2018.
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We explored the extent to which learners deviate from the designed path
and the extent to which this is related to their eventual success in the course.
The key contribution from this work is the finding that high levels of deviance
are related to not passing the course and that high levels of adherence to the
designed learning path are more likely to lead to passing the course3.

Chapter 4: Modeling the Anatomy of a Course

Prior to this study, course structures/designs were rarely taken into consid-
eration in MOOC research [63, 260, 131]. However, with the rapidly growing
literature of learning analytics research coming from a massive variety of
courses, one must question how well insights generated from one context
might transfer to another. In line with RQ2, we addressed this issue by
developing a method to model the design of a course based on its structure,
leading to the research questions:

RQ4.1 To what extent can we model the design of a MOOC by employing
principles from the learning design literature?

RQ4.2 How can we quantitatively compare and contrast the design of MOOCs?

RQ4.3 Are there structural components that differentiate a MOOC’s de-
sign?

In this study, we contribute a method to quantify, model, and clus-
ter the structure of online courses using learning design theory to abstract
course content from its underlying structure. We were also able to identify
some cases of statistically different passing rates between clusters of course
structures—thus indicating that this method could be used to arrive at “best
practices” indicating which course structures are most likely to lead to certain
learning outcomes (or patterns of learner engagement)4.

3Chapter 3 is published as “Gauging MOOC Learners’ Adherence to the Designed
Learning Environment” [63], by D. Davis, G. Chen, C. Hauff, and G.J. Houben in Proceed-
ings of the Ninth International Conference on Educational Data Mining, 2016.

4Chapter 4 is published as “Toward Large-Scale Learning Design: Categorizing Course
Designs in Service of Supporting Learning Outcomes” [69], by D. Davis, D. Seaton, C.
Hauff, and G.J. Houben in Proceedings of the Fifth Annual ACM Conference on Learning
at Scale, 2018.
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1.3.3 Part III: Study Planning

Chapter 5: Social Comparison Learner Dashboard

Due to the high levels of noncompliance in the previously mentioned study,
we set out to design a study planning intervention that would require less
engagement from the learner but is still effective in increasing engagement
and passing rates. Whereas the treatment in the previous study encouraged
learners to type in an open text field, in this follow-up study, we opted for a
dashboard approach to study planning. This way, the learners could simply
view a social comparison (the phenomenon of people establishing their social
and personal worth by comparing themselves to others [200]) visualization
that shows their behavior compared to a previously-successful learner, make
any mental notes they choose, and continue in the course accordingly. To
this end, regarding RQ2, we designed, developed, and deployed the Learning
Tracker, a learner dashboard visualization that shows the current learner’s
behavior compared to previously successful learners taking the same course.
We asked the following guiding research questions:

RQ5.1 Do learners benefit from a tool that allows them to engage in a social
comparison of their behavior in the course?

RQ5.2 Which learners benefit most from the Feedback System?

RQ5.3 Does feedback framed in line with a learner’s cultural context lead
to increased achievement and self-regulatory behavior compared to
a culturally mismatched framing?

To this end we contribute a method to leverage the scale of a MOOC
(aggregating hundreds of successful learners behaviors into a digestible dash-
board visualization) to be highly effective in increasing passing rates. Across
all four of the randomized controlled trials we ran, we observed significant
increases in passing rates between groups who received the learning tracker
and those who did not5.

5Chapter 5 is published as “Follow the Successful Crowd: Raising MOOC Completion
Rates through Social Comparison at Scale” [66], by D. Davis, I. Jivet, R. Kizilcec, G.
Chen, C. Hauff, and G.J. Houben in Proceedings of the of 7th International Conference on
Learning Analytics and Knowledge, 2017.
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Chapter 6: Study Planning Interfaces

We conducted a pilot study focused on study planning which was modeled
after numerous previous works [221, 67, 272] which found that in traditional
classroom settings, prompting learners to state their plans and intentions for
the course led to significant increases in passing rates and drastic reductions
in the achievement gap (race and gender).

In this randomized controlled trial, we did not find any significant dif-
ferences between the treatment and control groups (there were high levels of
noncompliance with the intervention), thus indicating that simply encourag-
ing learners to engage with such interventions is insufficient. We contribute
the following recommendation that more active measures need to be taken to
(i) get learners to meaningfully engage with such interventions and (ii) reap
the cognitive benefits they have on their study success in the long term6.

To further improve study planning mechanisms in MOOCs, built an in-
teractive study planning system which provided real-time learner feedback
called SRLx, intended to give learners more autonomy in defining their own
goals and intentions for the course. To evaluate RQ2, we set out to address
the following research questions:

RQ6.1 To what extent do MOOC learners adopt and take advantage of a
personalized SRL support tool?

RQ6.2 Does SRLx support MOOC learners in promoting effective self-regulated
learning behavior?

We also addressed the technical challenge of building an advanced SRL
tool with real-time learner feedback. We were able to use the data generated
from SRLx to gain insights about learner study planning habits among those
who engaged. From these results we conclude that MOOC learners may not
desire such interactivity in their SRL process—on the contrary, we contribute
the finding that providing learners the right information at the right time,
while requiring no immediate/explicit action on their behalf, is enough to
elicit significant improvements in learning outcomes and engagement.

6Chapter 6 is based on two full conference papers, published as “Retrieval Practice and
Study Planning in MOOCs: Exploring Classroom-Based Self-Regulated Learning Strategies
at Scale” [65], by D. Davis, G. Chen, van der Zee, Tim, C. Hauff, and G.J. Houben
in Proceedings of the 11th European Conference on Technology-Enhanced Learning, 2016.
and “SRLx: A Personalized Learner Interface for MOOCs” [70], by D. Davis, V. Triglianos,
C. Hauff, and G.J. Houben in Proceedings of the 13th European Conference on Technology-
Enhanced Learning, 2018.
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1.3.4 Part IV: Retrieval Practice

Chapter 7: Knowledge Retention and Retrieval Practice

We first conducted a pilot study with an intervention designed based on the
SRL strategy of retrieval practice. Previous research [4] has found retrieval
practice, or the active recall of information from memory, to be among the
most effective strategies for promoting long-term memory.

In this randomized controlled trial we observed high levels of noncompliance—
that is, the vast majority of learners ignored or opted not to engage with the
intervention. This was yet another indication that out-of-the-box approaches
to translating traditional learning strategies to scale would be insufficient.

Whereas the pilot study used simple open text field prompts after lecture
videos, this system would automatically deliver retrieval cues to learners
based on their history within the course. We used this system to explore the
following research questions:

RQ7.1 How does an adaptive retrieval practice intervention affect learners’
academic achievement, course engagement, and self-regulation com-
pared to generic recommendations of effective study strategies?

RQ7.2 How does a push-based retrieval practice intervention (requiring learn-
ers to act) change learners’ retrieval practice behavior?

RQ7.3 To what extent is robust learning facilitated in a MOOC?

In order to produce the system, we also addressed a technical challenge
of building a personalized system that encourages retrieval practice within
the edX platform. The system needed to be push-based to address the issue
of noncompliance—we could not rely on learners to seek out interventions
and study materials—and the system needed to be personalized, as an un-
derstanding/model of the learners current knowledge state is integral to the
retrieval practice strategy. While we observed null results in the causal anal-
ysis of this study, the data generated by the system allowed us to model the
deterioration of learners’ knowledge over time in plotting a forgetting curve,
the first analysis of this kind from a MOOC7.

7Chapter 7 is based on published peer-reviewed work as “Retrieval Practice and Study
Planning in MOOCs: Exploring Classroom-Based Self-Regulated Learning Strategies at
Scale” [65], by D. Davis, G. Chen, van der Zee, Tim, C. Hauff, and G.J. Houben in
Proceedings of the 11th European Conference on Technology-Enhanced Learning, 2016.
and “The Half-Life of MOOC Knowledge: A Randomized Trial Evaluating Knowledge
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Through each of these research efforts detailed in the following chapters, we
gain a deeper understanding of how the design of online learning environ-
ments affects learner success and engagement. After drawing insights from
the literature on what has been found the be the most effective instruc-
tional strategies in traditional learning environments, we describe the extent
to which these translate to MOOCs through a series of randomized experi-
ments.

Retention and Retrieval Practice in MOOCs” [68], by D. Davis, R. Kizilcec, C. Hauff, and
G.J. Houben in Proceedings of 8th International Conference on Learning Analytics and
Knowledge, 2018.
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This part serves RQ1 (To what extent do teaching and learning strate-
gies that have been found to be effective in traditional learning environments
translate to MOOCs?) by focusing on measures taken to improve student be-
havior and learning outcomes in large-scale learning environments. To this
end we go to the literature and seek out past examples of innovations in
teaching and learning strategies that could be applied at scale with the goal
of improving large-scale learning environments.

Chapter 2 asks the question: which active learning strategies for digi-
tal learning environments have been empirically evaluated, and how effective
are they? By surveying the literature in service of this question, we con-
tribute the identification of a number of trends in this space and highlight
recommendations for future research as well. We found that (i) experiments
conducted in large-scale environments (more than 500 participants) were the
least likely to generate significant results and (ii) cooperative learning, sim-
ulations & gaming, and interactive multimedia are the most effective and
promising strategies for driving positive change in learner behavior in large-
scale learning environments.
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Chapter 2

Activating Learning at Scale:
A Review of Innovations in
Online Learning Strategies

Taking advantage of the vast history of theoretical and empirical findings in
the learning literature we have inherited, this research offers a synthesis of
prior findings in the domain of empirically evaluated active learning strategies
in digital learning environments. The primary concern of the present study
is to evaluate these findings with an eye towards scalable learning. Massive
Open Online Courses have emerged as the new way to reach the masses with
educational materials, but so far they have failed to maintain learners’ atten-
tion over the long term. Even though we now understand how effective active
learning principles are for learners, the current landscape of MOOC pedagogy
too often allows for passivity — leading to the unsatisfactory performance
experienced by many MOOC learners today. Through our systematic search
we found 126 papers meeting our criteria and categorized them according to
Hattie’s learning strategies. We found large-scale experiments to be the most
challenging environment for experimentation due to their size, heterogeneity
of participants, and platform restrictions, and we identified the three most
promising strategies for effectively leveraging learning at scale as Cooperative
Learning, Simulations & Gaming, and Interactive Multimedia.

This chapter is published as “Activating Learning at Scale: A Review of Innovations
in Online Learning Strategies” [67], by D. Davis, G. Chen, C. Hauff, and G.J. Houben in
Computers & Education, 125:327. 344. 2018.
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2.1 Introduction

In the dense landscape of scalable learning technologies, consideration for
sound pedagogy can often fall by the wayside as university courses are retroac-
tively translated from a classroom to the Web. Up against the uncertainty
of how to best rethink and conceive of pedagogy at scale, we here synthesize
the previous findings as well as highlight the possibilities going forward with
the greatest potential for boosting learner achievement in large-scale digital
learning environments.

Now that the initial hype of Massive Open Online Courses has passed
and the Web is populated with more than 4,000 of these free or low-cost
educational resources, we take this opportunity to evaluate and assess the
state-of-the art in pedagogy at scale while identifying the best practices that
have been found to significantly increase learner achievement.

This study conducts a review of the literature by specifically seeking
innovations in scalable (not requiring any physical presence or manual grading
or feedback) learning strategies that aim to create a more active learning
experience, defined in Freeman et al. [86] as one that “engages students in the
process of learning through activities and/or discussion in class, as opposed
to passively listening to an expert. It emphasizes higher-order thinking and
often involves group work." By limiting the selection criteria to empirical
research that can be applied at scale, we aim for this survey to serve as a basis
upon which future MOOC design innovations can be conceived, designed, and
tested. We see this as an important perspective to take, as many learning
design studies provide design ideas, but do not contain a robust empirical
evaluation. We certainly do not intend to discount the value of observational
or qualitative studies in this domain; rather, for the following analyses we
are primarily concerned with results backed by tests of statistical significance
because this offers a more objective, quantitative measure of effectiveness.

2.2 Method

The driving question underpinning this literature survey is:

RQ2.1 Which active learning strategies for digital learning environments
have been empirically evaluated, and how effective are they?

To begin the literature search we utilized John Hattie’s Visible Learning:
A Synthesis of Over 800 Meta-Analyses Relating to Achievement [96] as a
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basis. It provides a comprehensive overview of findings in the domain of
empirically tested learning strategies in traditional classroom environments.
As Hattie’s work was published in 2008, we used that as a natural starting
point for our review, working forward to July 2017. It creates a narrow
enough scope (nine years: 2009-2017) and temporally relevant (MOOCs went
mainstream in 2012) time constraints for the review. We manually scanned
all publications released from our selected venues in this time period and
determined for each whether or not they met our criteria: (1) the learning
strategy being analyzed must have been scalable — it must not require
manual coding, feedback, physical presence, etc., (2) the evidence must come
from empirical analyses of randomized controlled experiments with a
combined sample size of at least ten across all conditions, and (3) the
subjects of the studies must be adult learners, i.e. at least 18 years old. We
included the age criterion based on the profile of the typical MOOC learner
— aged 25-35 according to [247], which aligns with our own institution’s data
as well.

From Hattie’s synthesis of meta-analyses we identified the 10 core learn-
ing strategies that best apply to open online education — only selecting
from those which Hattie found to be effective. With these learning strate-
gies fixed, we systematically reviewed all publications in five journals and
eight conferences (listed in Table 2.1) that have displayed a regular interest
in publishing work on testing these categories of innovative online learning
strategies. These venues were identified and selected based on an exploratory
search through the literature—we began with a sample of studies we were
previously familiar with that fit the scope of the present review and perused
the references of each to identify more potential venues worth exploring.
This process was repeated for each identified study thereafter. The lead au-
thor also reached out to experts in the field to assure that this method did
not overlook any potential venues. The thirteen venues used for the final
review are those which showed the most consistent interest in publishing
studies that meet our criteria. We employed this method over a search/-
query term method because our criteria (namely that of being a randomized
controlled trial among adult populations) are not reliably gleanable from
standard search engine indexing.

We acknowledge there are other journals and conference proceedings that
may have been applicable for this survey, but given our search criteria, we
found these thirteen venues to be the most appropriate based on our initial
exploratory search.
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Table 2.1: Overview of included venues. The most recent included issue from each pub-
lication is indicated in parentheses. Unless otherwise indicated with a †, the
full proceedings from 2017 have been included.

Computers & Education (Vol. 114)
Journal of Learning Analytics (Vol. 4, No. 2)
Journal of Educational Data Mining (Vol. 8, No. 2)
The Open Education Journal eLearning Papers (Issue 43)
IEEE Transactions of Learning Technologies (Vol. 10, Issue 1)
ACM Learning @ Scale (L@S)
Learning Analytics & Knowledge (LAK)
European Conference on Technology-Enhanced Learning (EC-TEL) †
International Conference on Educational Data Mining (EDM)
ACM Conference on Computer-Supported Cooperative Work (CSCW)
European MOOCs Stakeholders Summit (EMOOCs)
European Conference on Computer-Supported Collaborative Work (ECSCW)
Human Factors in Computing Systems (CHI)

Table 2.2: Overview of considered learning categories. The selected papers per category
are shown in parentheses. The sum of the numbers is 131 and not 126, as five
papers apply to two categories.

Mastery Learning (1)
Meta-Cognitive Strategies (24)
Questioning (9)
Spaced vs. Massed Practice (1)
Matching Learning Styles (3)
Feedback (21)
Cooperative Learning (17)
Simulations & Gaming (18)
Programmed Instruction (6)
Interactive Multimedia Methods (31)

Of the 7,706 papers included in our search, we found 126 (1.6%) to
meet our criteria. The criterion requiring randomized controlled trials proved
to be a strong filter with many studies not reporting randomization or a
baseline condition to compare against. Overall, these 126 papers report on
experiments with a total of 132,428 study participants. We then classified
each work into one of the ten learning strategy categories (listed in Table 2.2).

Figure 2.1 illustrates the number of studies that met our selection criteria
organized by the year published. It shows the increasing frequency of such
experiments in recent years, with the most notable increase from 2014 to
2015.

We could propose any number of explanations for the decrease in studies
from 2015 to 2016, but it would be purely speculation. However, when ex-
amining the studies themselves, we do notice a prominent trend with some
explanatory power. With the dawn of MOOC research emerging around 2013
and 2014, the experiments carried out in this window can be viewed now,
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in hindsight, as foundational. Such interventions in this era included send-
ing out emails to learners [137] or dividing the course discussion forum and
controlling instructor activity [247]. However, in 2016 and 2017 we begin to
see an elevated level of complexity in interventions such as the adaptive and
personalized quiz question delivery system [215] implemented and evaluated
at scale in a MOOC. It is also worth noting that a number of journal issues
and conference proceedings from 2017 had not yet been released at the time
of this writing (indicated in Table 2.1).
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Figure 2.1: The number of papers by year and learning environment meeting our selection
criteria. Each environment is defined in detail in Section 2.3.1. Best viewed
in color.

Figure 2.2 shows the proportion of results (positive, null, or negative)
with respect to the experimental environment employed by the selected arti-
cles/studies. Noting the difference between MOOCs and native environments
(those designed and implemented specifically for the study), we see native
environments yielding positive results at a much stronger rate than MOOCs
(59% vs. 42% respectively). We see two main factors contributing to this
difference: (i) native environments can be modeled specifically for the exper-
iment/tested concepts, whereas experiments done in MOOCs must adapt to
the existing platforms and (ii) no MOOC studies provide participants any
incentive to participate, whereas this is common to experiments in native
environments.

Figure 2.4 further visualizes this discrepancy in illustrating the proportion
of positive, negative, and null results across three subject pool sizes: small-
scale studies with between 10 and 100 participants, medium-sized studies
with 101– 500 participants and large-scale studies with more than 500 study
participants. We here find a statistically significant difference in the propor-
tion of reported positive findings in large (42% in studies with 500+ partic-
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ipants) and small (60% in studies with 10–100 participants) studies using a
χ2 test (p < 0.05). As the focus of this study is on large-scale learning, we
specifically ran this analysis to evaluate the impact that scale and, in turn,
sample size and heterogeneity can have on an experiment.

We registered this project with the Center for Open Science2, and the reg-
istration which includes all data gathered as well as scripts used for analysis
& visualization are available at https://osf.io/jy9n6/.

2.3 Terminology

We now define the terminology used in the reporting of our results. Not
only is this explicit terminology elucidation important for the clarity of this
review, it can also serve as a reference for future experiments in this area to
ensure consistency in how results are reported and replicated. In discussing
each study, we refer to “learners", “students", or “participants" as the authors
do in the referenced work.

2.3.1 Environment

The first dimension by which we categorize the studies is the environment
wherein the experiment/intervention took place. We distinguish between the
following:

• Intelligent Tutoring System (ITS): Digital learning systems that
monitor and adapt to a learner’s behavior and knowledge state.

• Laboratory Setting (Lab): Controlled, physical setting in which
participants complete the experimental tasks.

• Learning Management System (LMS): Software application used
to host & organize course materials for students to access online at any
time.

• Mobile Phone Application (Mobile): Participants must download
and use an application on their mobile phone to participate in the
experiment.

• MOOC: Online course which offers educational materials free of cost
and with open access to all.

2https://cos.io

https://osf.io/jy9n6/
https://cos.io
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Figure 2.2: Reported results (y-axis) from papers (partitioned by environment) meeting
our selection criteria partitioned by environment, incentive, and size. The red
“-” indicates studies reporting a significant negative effect of the intervention;
the green “+” indicates a significant positive effect of the intervention; and
the blue “o” indicates findings without a statistically significant effect. Best
viewed in color.
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Figure 2.4: Papers partitioned by number of study participants.

• Amazon Mechanical Turk (Mturk): Online marketplace used to
host low-cost micro-payment tasks for crowdsourcing and human com-
putation. Participants are recruited and paid through MTurk and often
redirected to an external application.
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• Native: A piece of software designed and implemented specifically for
the study.

Figure 2.1 shows the breakdown of our studies with respect to the envi-
ronment. Note that despite the widespread availability of MOOC and LMS
environments in 2015, native environments still dominated that year. We
speculate that this may be because researchers find it more efficient to build
their own environment from scratch rather than adapt their study to the
limitations of a pre-existing platform—which is the case with all MOOC ex-
periments included in this study; each intervention had to be designed within
the confines of either the edX or Coursera3 platforms. We also note a sud-
den spike in popularity for studies using Mturk from 2015 to 2016. While
it is more expensive to carry out research with Mturk compared to MOOCs
(which provide no incentive or compensation), Mturk ensures a certain level
of compliance and engagement from the subjects in that they are rewarded
for their time with money.

2.3.2 Incentive

The second dimension we distinguish is the incentive participants in each
study received for their participation:

• Monetary Reward ($): Participants receive either a cash reward or
a gift certificate.

• Required as part of an existing class (Class): An instructor con-
ducts an experiment in her own course where all enrolled students are
participants.

• Class Credit (Credit): By participating in the study, participants
receive course credit which can be applied to their university degree.

• None: Participants were not provided any incentive or compensation.

• n/r: Not reported.

2.3.3 Outcome Variables

As experiments on learning strategies can evaluate a multitude of outcomes,
here we provide an overview of all learning outcomes reported in the included
studies.

3www.coursera.org

www.coursera.org
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• Final Grade: the cumulative score over the span of the entire course
which includes all graded assignments.

• Completion Rate: the proportion of participants who earn the re-
quired final passing grade in the course.

• Learning Gain: the observed difference in knowledge between pre-
treatment and post-treatment exams

• Exam Score: different from the final grade metric in that this only
considers learner performance on one particular assessment (typically
the final exam).

• Long-Term Retention: measured by assessing a learner’s knowledge
of course materials longitudinally, not just during/immediately after
the experiment.

• Learning Transfer: measuring a learner’s ability to apply new knowl-
edge in novel contexts beyond the classroom/study.

• Ontrackness: the extent to which a learner adheres to the designed
learning path as intended by the instructor.

• Engagement: a number of studies measure forms of learner activi-
ty/behavior and fall under this category. Specific forms of engagement
include:

– Forum Participation: measured by the frequency with which
learners post to the course discussion forum (including posts and
responses to others’ posts).

– Video Engagement: the amount of actions (pause, play, seek,
speed change, toggle subtitles) a learner takes on a video compo-
nent.

– Revision: the act of changing a previously-submitted response.
– Persistence/Coverage: the amount of the total course content

accessed. For example, a learner accessing 75 out of the 100 com-
ponents of a course has 75% persistence.

• Self-Efficacy: a learner’s self-perceived ability to accomplish a given
task.

• Efficiency: the rate at which a learner progresses through the course.
This is most commonly operationalized by the amount of material
learned relative to the total time spent.
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2.4 Review

In the following review we synthesize the findings and highlight particularly
interesting aspects of certain experiments. Unless otherwise indicated, all
results presented below come from intention-to-treat (ITT) analyses, mean-
ing all participants enrolled in each experimental condition are considered
without exception. Each category has a corresponding a table detailing the
total sample size (“N"), experimental environment (“Env."), incentive for
participation (“Incentive"), and reported results (“Result"). In the Re-
sult column, statistically significant positive outcome variables as a result
of the experimental treatment are indicated with a +; null findings where
no significant differences were observed are indicated with a ◦; and negative
findings where the treatment resulted in an adverse effect on the outcome
variable are indicated with a -.

2.4.1 Mastery Learning

Teaching for mastery learning places an emphasis on learners gaining a full
understanding of one topic before advancing to the next [20]. Given that stu-
dents’ understanding of new topics often relies upon a solid understanding
of prerequisite topics, teaching for mastery learning only exposes students
to new material once they have mastered all the preceding material, very
much in line with constructivist thinking as outlined by [60]. In the tradi-
tional classroom, teaching for mastery learning presents a major challenge
for teachers in that they must constantly monitor each individual student’s
progress towards mastery over a given topic—a nearly impossible task in a
typical classroom with 30 students, never mind 30,000. However, with the
growing capabilities of education technologies, individualized mastery learn-
ing pedagogy can now be offered to students at scale.

While mastery learning is so frequently found to be an effective teaching
strategy in terms of student achievement, it often comes at the cost of time.
This issue of time could be a reason behind there being only one paper in
this category. [186] implemented a data-driven knowledge tracing system to
measure student knowledge and release content according to their calculated
knowledge state. Students using this system were far more engaged than
those using the default problem set or that with on-demand hints. A strict
implementation of mastery learning — as in [186], where learners in an ITS
are required to demonstrate concept mastery before advancing in the system
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— would be useful to understand its effect on the heterogeneous MOOC
learner population.

Table 2.3: Mastery Learning

Mastery Learning: + : 1
Ref. N Env. Incentive Result

Mostafavi et al. [186] 302 ITS Class +Engagement

2.4.2 Metacognitive Strategies

Metacognitive behavior is defined by [96] as “higher-order thinking which
involves active control over the cognitive processes engaged in learning.”
Metacognition is an invaluable skill in MOOCs, where learners cannot de-
pend on the watchful eye of a teacher to monitor their progress at all times.
Instead, they must be highly self-directed and regulate their own time man-
agement and learning strategies to succeed. The papers in this category
explore novel course designs and interventions that are intended to make
learners more self-aware, reflective, and deliberate in the planning of (and
adherence to) their learning goals.

[65] conducted two experiments: in study “A” they provided learners
with retrieval cue prompts after each week’s lecture, and in study “B” they
provided study planning support to prompt learners to plan and reflect on
their learning habits. Overall, neither intervention had any effect on the
learners in the experimental conditions, likely because the learners could
ignore the prompts without penalty. However, when narrowing down to the
very small sample of learners who engaged with the study planning module,
the authors found desirable significant increases in learner behavior. [172]
also ran an experiment testing support for retrieval practice. They found
that (i) retrieval prompts increase learning gain and (ii) the complexity of
the retrieval prompt had a significant impact on the prompts effect, with
deeper prompts leading to better learning gains. In contrast, the retrieval
prompts used by [65] assessed shallow, surface-level knowledge, which could
be a reason for the lack of a significant effect.

Even though the education psychology literature suggests that boosting
learners’ metacognitive strategies is highly effective for increasing learning
outcomes [96], 23 of the 38 results (61%) in this category report null or
negative findings. Furthermore, with the reporting of a negative impact of
an intervention, [137] found a certain form of participation encouragement
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(collectivist-framed prompting) to actually decrease learners’ participation
in the course discussion forum.

[188] conducted a study evaluating the effect of framing a group learn-
ing activity in different ways. Compared to a “group processing" frame of
mind (where group members are asked to assess the contribution of each
group member), the “positive interdependence" frame of mind (where group
members are reminded that boosting one’s individual performance can have
a great impact on the overall group achievement) group had higher post
assessment scores.

In lieu of an actual learning platform, crowdworker platforms are also
beginning to be used for learning research. One example is the study by [87],
who evaluated the effect of achievement priming in information retrieval mi-
crotasks. While completing a crowdworker task aimed at teaching effective
information retrieval techniques, the participants were also assessed on their
learning through a test at the end of the task. By providing achievement
primers (in the form of inspirational quotes) to these crowdworkers, the au-
thors observed no significant difference in persistence or assessed learning.
Given the ease with which these experiments can be deployed, more work
should go into exploring the reproducibility of findings from a crowdworker
context to an actual learning environment.

In summary, the current body of work in supporting learners’ metacogni-
tive awareness indicates how difficult it is to affect such a complex cognitive
process, as more than half of the reported results from this category led
to non-significant results. While some studies do indeed report positive re-
sults, the overall trend in this category is an indication that we have not yet
mastered the design and implementation of successful metacognitive support
interventions that can effectively operate at scale. Setting this apart from
other categories is the difficulty to measure metacognition; compared to other
approaches such as questioning (where both the prompt and response are
easily measurable), both eliciting and measuring responses to metacognitive
prompts is far more challenging.

2.4.3 Questioning

[96] found questioning to be one of the most effective teaching strategies in
his meta-analysis. Questioning is characterized by the posing of thoughtful
questions that elicit critical thought, introspection, and new ways of think-
ing. The studies in this category explore new methods of prompting learners
to retrieve and activate their prior knowledge in formative assessment con-
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Table 2.4: Metacognitive Strategies

Metacognitive Strategies: + : 15 / ◦ : 20 / - : 3
Ref. N Env. Incentive Result

Kizilcec et al. [132] 653 MOOC None ◦Persistence
◦Final Grade

Lang et al. [153] 950 ITS None ◦Learning Gain
◦Engagement

Lamb et al. [151] 4,777 MOOC None +Forum
Participation

Sonnenberg and Bannert [238] 70 Native $ +Learning Gain
Dodge et al. [77] 882 LMS Class ◦Final Grade
Tabuenca et al. [244] 60 Native $ ◦Exam Score
Kizilcec et al. [137] 11,429 MOOC None ◦Forum

Participation
-Forum
Participation

Margulieux and Catrambone [177] 120 Native Credit +Exam Score
Xiong et al. [267] 2,052 Native None +Learning Gain

+Completion Rate
Noroozi et al. [195] 56 Native n/r +Learning Gain
Davis et al. [65]A 9,836 MOOC None ◦Final Grade

◦Engagement
◦Persistence

Davis et al. [65]B 1,963 MOOC None ◦Final Grade
◦Engagement
◦Persistence

Maass and Pavlik Jr [172] 178 Mturk $ +Learning Gain
Kizilcec et al. [133] 1,973 MOOC None +Final Grade

+Persistence
+Completion Rate

Yeomans and Reich [272]A 293 MOOC None -Completion Rate
Yeomans and Reich [272]B 3,520 MOOC None -Completion Rate

◦Engagement
Gadiraju and Dietze [87] 340 Mturk* $ ◦Final Grade

◦Persistence
Kim et al. [124] 378 Mturk $ +Final Grade
Hwang and Mamykina [105] 225 Native n/r +Learning Gain
De Grez et al. [71] 73 Native Class ◦Learning Gain
Nam and Zellner [188] 144 Native Class ◦Engagement

+Final Grade
Huang et al. [102] 60 Mobile None +Final Grade
Poos et al. [207] 80 Lab None ◦Final Grade

◦Learning Transfer
Gamage et al. [88] 87 MOOC n/r +Learning Gain
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texts. [271] evaluated the effectiveness of a two-tier questioning technique,
described as “...a set of two-level multiple choice questions [in which the] first
tier assesses students’ descriptive or factual knowledge...while the second tier
investigates the reasons for their choices made in the first tier." They found
this questioning technique to be highly effective in their experiment, with
learners in the two-tier condition achieving 0.5 standard deviations better
learning gains than learners receiving standard one-tier questions.

Instructional questioning was explored in the Mturk setting by [263] who
compared the effectiveness of different questioning prompt wordings. They
found prompts that directly ask the learner to provide an explanation of why
an answer is correct leads learners to revise their answers (to the correct one)
more than a prompt asking for a general explanation of the answer.

[72] conducted a study where half of the learners were cued to gener-
ate their own inferences through self-explaining and half were provided pre-
written instructional explanations. Taking place in the context of a course
about the human cardiovascular system, results show that learners prompted
to self-explain performed better on the final test, but did not show any dif-
ference in persistence or learning transfer from the given explanation group.

Given its effectiveness and relative simplicity to implement, two-tier ques-
tioning should be further investigated in the MOOC setting to stimulate
learners critical thought beyond surface-level factual knowledge.

Related to the tactic of questioning is the learning strategy known as
retrieval practice, or the testing effect, which is characterized by the process
of reinforcing prior knowledge by actively and repeatedly recalling relevant
information [4]. Recent work has found retrieval practice to be highly effective
in promoting long-term knowledge retention [4, 49, 212, 97, 166, 118, 117].
Accordingly, we recommend that future research interested in questioning
tactics is designed to stimulate learners to engage in retrieval practice.

2.4.4 Spaced vs. Massed Practice

[96] describes the difference between spaced learning (sometimes referred to
as distributed practice) and massed practice as “the frequency of different op-
portunities rather than merely spending more time on task.” In other words,
distributing one’s study sessions over a long period of time (e.g., 20 min-
utes per day for 2 weeks) is characteristic of high spacing, whereas studying
in intense, concentrated sessions (one four-hour session) is characteristic of
massed practice [266]. Historically, studies have found that the desired effect
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Table 2.5: Questioning

Questioning: + : 7 / ◦ : 7
Ref. N Env. Incentive Result

Yang et al. [271] 43 Native n/r +Learning Gain
Thompson et al. [246] 43 Native Class +Learning Gain
Williams et al. [263] 659 Mturk $ +Revision
Şendağ and Ferhan Odabaşı [225] 40 Native Class ◦Learning Gain

◦Final Grade
Chen [42] 84 Native Class +Learning Gain
de Koning et al. [72] 76 Native Credit +Final Grade

◦Persistence
◦Learning Transfer

Yang et al. [270] 79 Native Class +Final Grade
◦Engagement

Attali [8] 804 Mturk $ +Learning Gain
Attali and van der Kleij [10] 2,445 Native None ◦Persistence

◦Final Grade

of spaced learning (long-term knowledge retention) is found most commonly
in tasks of low difficulty, and the effect decreases as the difficulty increases
[214].

[73] developed a mobile phone “Vocabulary Wallpaper” which aimed to
implicitly teach (through the learners mobile phone background) learners
new vocabulary in a second language in highly spaced microlearning sessions.
Their findings show that, compared to learners receiving the lessons at less
distributed rates, learners with highly-spaced exposure showed a significant
increase of second language vocabulary learned.

As evidenced by the lone study in the category, it is difficult to design
and implement experiments that effectively get learners to commit to high
spacing (ideally enacted as a learned self-regulation skill). Even still, given
its proven effectiveness elsewhere in the learning literature [96], practitioners
and researchers should tackle this design challenge in creating and evaluating
environments that encourage spaced practice.

Table 2.6: Spaced vs. Massed Practice

Spaced vs. Massed Practice: + : 1
Ref. N Env. Incentive Result

Dearman and Truong [73] 15 Mobile $ +Learning Gain
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2.4.5 Matching Learning Styles

[31] conducted an experiment testing the efficacy of “learning style-adapted e-
learning environments." In the study, where students self-proclaimed learning
styles were either matched or unmatched, yielded no significant differences in
terms of learner achievement between conditions. Consistent with the current
popular literature on the topic [126, 125], the authors found that adapting the
courses to students’ learning styles did not result in any significant benefit.

[236] employed a game-based learning environment to evaluate the im-
pact of adapting instruction to learning styles in a computer programming
learning context. The authors report that compared to the groups using a
non-adaptive version of the SQL language tutor software, the adaptive system
yielded no difference in final grades [236].

However, there does still exist some evidence in favor of this learning strat-
egy. [44] created a online learning environment where the teaching strategy
was adapted to each of the learners’ individual thinking styles. With three
teaching strategies (constructive, guiding, or inductive) either matched or
unmatched to three thinking styles (legislative, executive, or judicial, re-
spectively), the authors found that the group who had their thinking style
matched accordingly outperformed those who did not.

Instead of adapting to a single modality that a learner prefers (such as
being a “visual learner"), the literature on learning styles emphasizes that
while one modality may be preferred by the learner (and can lead to positive
experimental results in certain contexts), providing them instruction in a
variety of modalities will provide the greatest benefit overall [126].

Table 2.7: Matching Learning Styles

Matching Learning Styles: + : 2 / ◦ : 2
Ref. N Env. Incentive Result

Brown et al. [31] 221 Native Class ◦Exam Score
Chen et al. [44] 223 Native n/r +Final Grade
Soflano et al. [236] 120 Native None ◦Final Grade

+Efficiency

2.4.6 Feedback

[96] defines feedback as “information provided by an agent (e.g., teacher,
peer, book, parent, or one’s own experience) about aspects of one’s per-
formance or understanding." Strategically providing students with feedback
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offers them the chance to reflect and reassess their approach to a given situ-
ation. Feedback can best be thought of as a mirror for learners; it serves to
encourage them to stop and mindfully evaluate their own behavior or learn-
ing processes — which are otherwise unconscious or unconsidered — and
make them readily visible. However, this act of mindfully evaluating and
altering one’s behavior should not be taken for granted. Self-regulating one’s
own learning processes (especially in response to feedback) is a skill which is
highly correlated with and caused by prior education [265]. Especially in the
MOOC context, where the learners come from many diverse backgrounds, it
is imperative that feedback offered to the learner is adaptive and aligned to
their ability to process, understand, and act upon it.

While [96] finds feedback to be the most effective teaching strategy in
his entire meta-analysis, we find very mixed results in our selected studies in
terms of its effectiveness. Of the 38 results reported within the 21 papers of
this category, only 14 (37%) are positive findings.

Zooming in on two of the MOOC studies in this category, [50] and [247]
evaluated the effectiveness of feedback in the context of the discussion forum.
[50] tested the effectiveness of implementing a reputation system in a MOOC
discussion forum — the more you post to the forum, the more points you
accumulate (this paper also applies to the Simulations & Gaming category
for this reason). The authors found that providing this positive feedback
did indeed lead learners to post more frequently in the forum, but this did
not have any impact on their final course grade. [247] ran an experiment in
which learners were divided into one of two course discussion forums — in
one forum the instructor was active in providing individualized feedback to
learners and engaging in discussion, and in the other no instructor feedback
was provided. The authors report no differences in either completion rate or
course engagement between the two conditions.

To address the challenge of providing in-depth feedback on students’
learning in a coding context, [261] tested the effectiveness of a code style
tutor which offered adaptive, real-time feedback and hints to students learn-
ing to code. Compared to a control group receiving a simplified feedback
system consisting of a single unified score assessing the code, students who
used the adaptive feedback system did not show any difference in the extent
to which they improved their coding style [261].

[18] developed and evaluated an animated pedagogical agent which was
able to provide different types of emotional feedback to participants in a
simulated environment. They found that positive emotional feedback (ex-
pressing happiness and encouragement in response to desirable behavior) led
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to significantly higher test scores than negative feedback (where the agent ex-
pressed anger and impatience to undesirable behavior). Also taking place in
a simulated environment, the experiment carried out by [224] evaluated the
effectiveness of a feedback-enabled simulation learning environment. Com-
pared to students in the intervention group who interacted with the feedback-
enabled simulation environment, those in the control condition, who did not
have access to the simulation, performed more poorly on a final assessment.

While navigational feedback (support for learners in optimizing their
learning path through a course) like that introduced by [23] is common in
ITS to help learners through problems, the challenge now arises to provide
personalized feedback at scale on other factors such as learner behavior pat-
terns. This way, feedback can be used as a mechanism to make learners
more aware of their learning habits/tendencies and, in turn, better at self-
regulating. However, with only 37% of results reported in this category being
positive, this highlights the fact that simply providing feedback is insufficient
in promoting positive learning outcomes—these results are an indication that,
even though we now have developed the technology to enable the delivery of
feedback at scale, attention must now be shifted towards understanding the
nuance of what type of feedback (and with what sort of frequency) will help
the learner in a given context or state.

2.4.7 Cooperative Learning

Interventions targeting cooperative learning explore methods to enable learn-
ers in helping and supporting each other in the understanding of the learning
material. Cooperative learning is one of the major opportunity spaces in
MOOCs for their unprecedented scale and learner diversity, as evidenced by
the prevalence of reported positive findings (71%). The studies in this cate-
gory develop and test solutions which try to find new ways to bring learners
together no matter where they are in the world to complete a common goal.

One successful example of this is the study by [147] where MOOC learners
were divided into small groups (between 2 and 9 learners per group) and
allowed to have discussions using real-time video calls over the internet. Each
group was given prompts encouraging the learners to both discuss course
materials and share general reflections of the course experience. The authors
found that learners in groups with a larger diversity of nationalities performed
significantly better on the course final exam than learners in groups with low
diversity. This result shows promise that the scale and diversity of MOOC
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Table 2.8: Feedback

Feedback: + : 14 / ◦ : 22 / - : 2
Ref. N Env. Incentive Result

Kulkarni et al. [148] 104 Native None +Exam Score
◦Revision

Williams et al. [262] 524 MTurk $ +Exam Score
◦Self-Efficacy

Eagle and Barnes [78] 203 Native Class +Persistence
Kardan and Conati [116] 38 Native n/r +Learning Gain

◦Exam Scores
◦Efficiency

Fossati et al. [84] 120 Native Class +Learning Gain
Borek et al. [23] 87 Native Class ◦Exam Score

◦Learning Transfer
+Learning Gain

Coetzee et al. [50] 1,101 MOOC None ◦Final Grade
◦Persistence
+Forum
Participation

Tomkin and Charlevoix [247] 20,474 MOOC None ◦Completion Rate
◦Engagement

Beheshitha et al. [16] 169 Class None ◦Forum
Participation

Rafferty et al. [209] 200 Mturk $ ◦Learning Gain
Bian et al. [18] 56 Lab None +Self-Efficacy

+Exam Score
Nguyen et al. [193] 205 Mturk $ +Final Grade

- Revision
Wiese et al. [261] 103 Native Class ◦Learning Gain

◦Revision
Davis et al. [66] 33,726 MOOC None +Completion Rate

◦Engagement
Mitrovic et al. [181] 41 Native Class ◦Learning Gain

◦Engagement
◦Final Grade
+Efficiency

Corbalan et al. [54] 34 Native n/r ◦Engagement
◦Final Grade

González et al. [91] 121 Native Class +Final Grade
van der Kleij et al. [252] 152 Native Class ◦Final Grade
Erhel and Jamet [80] 41 Lab n/r ◦Final Grade
Christy and Fox [47] 80 Lab Credit -Final Grade
Sedrakyan et al. [224] 66 Native n/r +Final Grade

learners can actually bring something novel to the table in learners’ apparent
interest in cultural diversity.

On a similar note, [275] developed an algorithm which aimed to divide
MOOC learners into small groups in a more effective fashion compared to
randomization. This model took into consideration the following factors: col-
laboration preferences (local, email, Facebook, Google+ or Skype), gender,
time zone, personality type, learning goal, and language. The authors found
this algorithmic sorting of students into groups to not have any effect on over-
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all engagement, persistence, or final grade. Whereas this algorithm grouped
largely for similarity (for example, grouping learners in the same time zone
together), the study presented by [147] suggests that diversity may be a bet-
ter approach to automated group formation.

There are also possibilities for cooperative learning in which the learners
do not meet face-to-face. In this light, [17] evaluated a cooperative learn-
ing system which crowd-sourced learner explanations. After answering an
assessment question, learners were prompted to give an explanation/justi-
fication. These explanations were then accumulated and shared with their
peers; the authors found that providing learners the explanations of their
peers increased the likelihood of a learner revising their answer to the cor-
rect one. In this scenario, the prompting for explanations not only serves
as a reflective activity for the individual learner, it also leverages the social
aspect by allowing him or her to contribute to the larger course community
and potentially help a peer in need.

[46] investigated the effectiveness of co-explanation (where learners are
instructed to collaboratively explain worked examples) as compared to self-
explanation (where learners work alone) in a Design Principles course context.
The authors found that learners in the co-explanation condition were not as
engaged with the assessment questions (identifying a design’s strengths and
weaknesses) as their counterparts in the self-explanation condition.

In the domain of peer review, [199] compared “free-selection" peer review
(where students could freely choose which of their peers’ work to review)
against an “assigned-pair" design (where the peer review pairings are as-
signed by the instructor) in the context of a computer networking course.
The authors found that students in the free-selection group achieved greater
learning outcomes and provided better reviews than those in the assigned-
pair group [199].

[150] developed a recommender system within a MOOC to provide each
learner with a list of peers in the same course who they would likely work well
with based on profile similarity modeling. Compared to the control group
with no recommendations, the experimental group (receiving the list of peer
recommendations) displayed significantly improved persistence, completion
rate and engagement.

Given the consistency of positive results in this category (71%—the high-
est of any category), the above studies should be used as building blocks or
inspiration for future work in finding new ways to bring learners together
and increase their sense of community and belonging in the digital learning
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environment. Advances made in this vein would work towards harnessing the
true power of large-scale open learning environments where learners not only
learn from the instructor but from each other as well through meaningful
interactions throughout the learning experience [232].

Table 2.9: Cooperative Learning

Cooperative Learning: + : 17 / ◦ : 6 / - : 1
Ref. N Env. Incentive Result

Bhatnagar et al. [17] 144 Native Class +Revision
Lan et al. [152] 54 Native Class +Learning Gain
Tritz et al. [248] 396 Native Class +Final grade
Ngoon et al. [191] 75 Native $ +Learning Gain
Kulkarni et al. [148] 104 Native None +Exam Score

◦Revision
Kulkarni et al. [147] 2,422 MOOC None +Exam Score
Cambre et al. [37] 2,474 MOOC None +Exam Score
Culbertson et al. [58] 42 Native $/Credit +Learning Gain
Coetzee et al. [51] 1,334 MTurk $ +Exam Scores
Zheng et al. [275] 1,730 MOOC None ◦Engagement

◦Persistence
◦Final Grade

Khandaker and Soh [123] 145 Native Class ◦Exam Score
Konert et al. [145] 396 Class None +Engagement

+Persistence
Labarthe et al. [150] 8,673 MOOC None +Persistence

+Completion Rate
+Engagement

AbuSeileek [2] 216 Lab n/r +Final Grade
Papadopoulos et al. [199] 54 Native Class +Final Grade
Chang et al. [40] 27 LMS Class +Final Grade
Cho and Lee [46] 120 Class None -Engagement

◦Learning Gain

2.4.8 Simulations & Gaming

[96] categorizes simulations and games together and defines them as a sim-
plified model of social or physical reality in which learners compete against
either each other or themselves to attain certain outcomes. He also notes the
subtle difference between simulations and gaming in that simulations are not
always competitive. The studies in this category are carried out predomi-
nantly in native environments. While understandable given the games could
have been developed for purposes other than experimentation, this raises po-
tential issues with an eye towards reproducibility. However, considering 19
of the 28 reported results (68%) in the category pertain to desirable benefits
in learner achievement or behavior, this also indicates a very strong trend
towards the generalizable effectiveness of using simulations and gamification
to help learners.
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While each game or simulation is unique in its own right, the under-
pinning theme in all of these studies is as follows: the learner earns and
accumulates rewards by exhibiting desirable behavior as defined by the in-
structor/designer. While creating native educational games or gamifying
existing learning environments (especially MOOCs as in [50]) is a complex,
time-consuming process, based on the predominantly positive findings in the
literature, we conclude that it is an area with high potential for boosting
learning performance.

[62] ran a study evaluating the effect of choosing versus receiving feed-
back in a game-based assignment. Compared to the group which passively
received feedback, the group which was forced to actively retrieve feedback
was more engaged with the environment, but showed no difference in learning
or revision behavior. Note that this study is not in the Feedback category,
as both cohorts received the same feedback; the element being tested in the
experiment was the manner in which it was delivered within the simulated
environment.

[35] employed a serious game design and put students either in a com-
petitive (showing a scoreboard and ranking of peer performance) or non-
competitive environment. The authors found that the competitive environ-
ment led to significantly higher test scores and more time spent answering
questions. On a similar note, [9] evaluated the effect of implementing a
points system within a computer-based mathematics learning environment.
Although participants in the conditions with the points system answered
questions faster, there was no effect on the accuracy of their responses.

[101] created a formative assessment game for a computer programming
learning task. The authors found that participants in a traditional, non-
computer-based environment performed worse on problem solving tasks than
those who received the computer-based formative assessment system. [14]
also compared a game-based learning environment to a non-computer-based
experience. In their experiment, the participants in the game-based learning
condition displayed better scores on a post-test.

With 68% of the reported results being positive findings—the second
highest among all categories—we see great potential for the effectiveness
of learning experiences where learners are afforded the ability to interact
with and explore simulated environments. Due to the substantial cost of
developing such environments, future research is needed to evaluate whether
this trend of positive findings continues so that institutions can be assured
in justifying their investment in these instructional strategies.
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Table 2.10: Simulations & Gaming

Simulations & Gaming: + : 19 / ◦ : 9
Ref. N Env. Incentive Result

Bumbacher et al. [34] 36 Native n/r +Learning Gain
Cox et al. [55] 41 Native $ +Engagement
Culbertson et al. [58] 42 Native $/Credit +Engagement

+Exam Score
Ibanez et al. [106] 22 Native Class +Exam Score
Krause et al. [146] 206 Native n/r +Persistence

+Exam Score
Li et al. [163] 24 Native n/r ◦Efficiency

+Learning Transfer
Schneider et al. [222] 82 Native Class +Learning Gain

+Engagement
Cutumisu and Schwartz [62] 264 Mturk $ ◦Engagement

◦Learning Gain
Coetzee et al. [50] 1,101 MOOC None ◦Final Grade

◦Persistence
+Forum
Participation

Cheng et al. [45] 68 Native n/r ◦Learning Gain
Pozo-Barajas et al. [208] 194 Native n/r +Final Grade
Smith et al. [235] 57 Native Class +Learning Gain
Brom et al. [27] 75 Lab $ or Credit ◦Final Grade

+Engagement
Attali and Arieli-Attali [9] 1,218 Mturk $ ◦Final Grade

◦Efficiency
Cagiltay et al. [35] 142 Native n/r +Final Grade
Hooshyar et al. [101] 52 Native Class +Learning Gain
Nebel et al. [190] 103 Native $ or Credit +Final Grade

+Efficiency
Barr [14] 72 Lab n/r +Final Grade

2.4.9 Programmed Instruction

According to [96], programmed instruction is a method of presenting new
subject matter to students in a graded sequence of controlled steps. Its
main purposes are to (i) manage learning under controlled conditions and
(ii) promote learning at the pace of the individual learner.

Programmed instruction is inherently adaptive–it presents material to
the learner according to that learners unique set of previous actions. As
they stand now, MOOCs are simply online course content resources that re-
main static irrespective of a learners behavior. Unlike the native and lab
environments used in [26] and [115], the current MOOC technology has not
yet accounted for a learners past behavior in delivering personalized con-
tent accordingly. By developing and implementing these types of systems
in a MOOC, MOOCs could then become more adaptable and able to cater
instruction based on the individual learner. To enable this would require
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a real-time tracking system for learners where their behavior could be col-
lected, modeled/analyzed, and then acted upon (e.g., with the delivery of a
personalized recommendation for a next activity or resource) in real time on
a large scale.

Table 2.11: Programmed Instruction

Programmed Instruction: + : 4 / ◦ : 7
Ref. N Env. Incentive Result

Brinton et al. [26] 43 Native None +Engagement
Karakostas and Demetriadis [115] 76 Lab n/r +Learning Gain
Rosen et al. [215] 562 MOOC None +Learning Gain

+Persistence
◦Final Grade

Zhou et al. [276] 153 ITS Class ◦Final Grade
◦Engagement

Arawjo et al. [7] 24 Native n/r ◦Engagement
◦Completion Rate
◦Learning Transfer

van Gog [253] 32 Lab n/r ◦Final Grade

2.4.10 Interactive Multimedia Methods

As lecture videos are currently the backbone of MOOC instructional con-
tent, it is imperative that they effectively impart knowledge to learners in an
engaging, understandable fashion. Also among the most effective strategies
with 64% of reported results being positive, interactive multimedia methods,
though not limited to video, test various methods of content delivery through
multimedia application interfaces.

[136], for example, compared lecture videos which included a small overlay
of the instructor’s face talking versus the same lecture videos without the
overlay. Results show that while learners preferred videos showing face and
perceived it as more educational, there were no significant differences in the
groups’ exam scores.

A more interactive approach to lecture videos was explored by [184] who
integrated several interactive components into lecture videos by integrating
quiz, annotation, and discussion activities within a video player. Compared
to a baseline interface, which separates the videos and assessments, the in-
tegrated interface was favored by learners and enabled them to learn more
content in a shorter period of time.

Looking beyond video delivery methods, [149] compare four delivery meth-
ods of a tutorial on the topic of data visualization. The four conditions are:
(i) a baseline which only included text, (ii) baseline plus static images, (iii)
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video tutorial, and (iv) interactive tutorial where learners worked with a
Web interface to manipulate and create their own data visualizations. The
authors found that learners with the interactive tutorial performed better on
the exam and did so while spending less overall time in the platform — an
indication of increased efficiency.

[5] evaluated the effectiveness of captioned animation with keyword anno-
tation (a note explaining the meaning of a given word) in multimedia listen-
ing activities for language learning. Compared to participants who received
either just animations or animations with captions, the captioned anima-
tions with keyword annotation condition performed significantly better on
recognition and vocabulary tests. However, the participants just receiving
the animations significantly outperformed the other conditions on listening
comprehension and recall over time.

[179] deployed a “here and now" learning strategy (where learners have
24/7 access to learning activities on their mobile phones) to compare its ef-
fectiveness against computer-based instruction. While the “here and now"
conditions expressed more positive attitudes towards the learning experi-
ence after the experiment, the computer-based learning cohort earned higher
scores on a post-test.

[165] tested the impact of modality (text vs. audio+text) on learning
outcomes. They found that the multimodal format (audio+text) led to better
learning outcomes than receiving text alone. [206] ran a study to see the
effect of compressing the time of instruction (decreasing time to train/learn
the materials) on learning. They found that decreasing (accelerating) the
time by 25% leads to similar learning outcomes, whereas decreasing by 50%
causes a decrease in learning.

Pursuing new research in this category is important going forward in
trying to truly leverage the Web for all of its learning affordances. The
possibilities for digital interfaces, sensors, and devices are expanding rapidly,
and more immersive, interactive, and intelligent environments promise to
make a significant impact on online learning environments in the future.
Even before these exciting technologies have become widely explored, we
still observe an encouraging trend in this category in terms of positive results
reported; we therefore recommend future research continue to explore the
new possibilities in highly dynamic, interactive learning environments.
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Table 2.12: Interactive Multimedia Methods

Interactive Multimedia Methods: + : 28 / ◦ : 12 / - : 4
Ref. N Env. Incentive Result

Lee et al. [159] 102 Native n/r +Learning Gain
Monserrat et al. [183] 15 Native None +Efficiency
Monserrat et al. [184] 18 Native None +Learning Gain
Nicholson et al. [194] 40 Native None +Efficiency
Trusty and Truong [249] 21 Native $ ◦Learning Gain

◦Engagement
Dearman and Truong [73] 15 Mobile $ +Learning Gain
Kizilcec et al. [136] 22 Lab Credit ◦Exam Score
Kwon and Lee [149] 120 Mturk $ +Exam Score

+Efficiency
Kizilcec et al. [134] 104 Native Credit ◦Final Grade
Zhu et al. [277] 22 Native n/r +Learning Gain

+Engagement
Pandey et al. [198] 44 Native n/r ◦Engagement

- Final Grade
Culbertson et al. [59] 27 Native $ ◦Larning Gain

+Engagement
Austin [11] 75 Native Credit +Learning Transfer
Yamada [268] 40 Native n/r +Engagement

◦Revision
Wang et al. [258] 123 Lab n/r +Final Grade
Pastore [206] 154 LMS n/r +Efficiency
Chen et al. [43] 81 LMS n/r +Final Grade
Chuang and Tsao [48] 111 Mobile n/r +Learning Gain

◦Long Term Retention
AbuSeileek and Qatawneh [3] 30 Native Class -Engagement
Imhof et al. [107] 71 Native $ or Credit -Final Grade
Urquiza-Fuentes and Velázquez [251] 132 Native Credit ◦Final Grade

◦Long Term Retention
+Completion Rate

Aldera and Mohsen [5] 50 Native Class +Final Grade
+Long Term Retention

Martin and Ertzberger [179] 109 Mobile Class -Final Grade
Chen and Wu [41] 37 Native n/r +Learning Gain
Song et al. [237] 144 Native None +Learning Transfer

+Engagement
van Gog et al. [254] 43 Lab $ or Credit +Final Grade
Limperos et al. [165] 259 Lab None +Final Grade
Türkay [250] 621 Mturk $ ◦Persistence

+Final Grade
Jang et al. [108] 76 Native n/r +Final Grade
Jeno et al. [109] 71 Mobile $ +Final Grade
van Wermeskerken and van Gog [255] 69 Lab $ or Credit ◦Final Grade
Sharma et al. [227] n/r MOOC None +Video

Engagement



2.5. Conclusion 43

2.5 Conclusion

Based on both the quantitative and qualitative analyses from this review,
we identify Cooperative Learning, Simulations & Gaming, and Interactive
Multimedia as the three most promising strategies for most effectively ac-
tivating learning at scale. We draw this conclusion from the proportion of
positive results from each category: 71% for Cooperative Learning, 68% for
Simulations & Gaming, and 64% for Interactive Multimedia—compared to
all other groups with more than one study which have an average of 43%
positive results.

According to Hattie’s meta-analysis including over 50,000 studies, the ten
learning strategies shown in Table 2.2 are among the most effective. And yet,
in so many instances do we here find null results for the studies employing
them. Based on Hattie’s work and sheer volume of studies included, we can-
not yet dismiss the strategies themselves as ineffective; rather, translating
them to the digital age of scalable learning has emerged as the primary chal-
lenge for the future. We identify a key factor in meeting this challenge to be
that of incentive. Compared to an even balance of positive and null findings
in experiments without any incentive for the participant (49% + and 49% ◦),
positive results are twice as likely as null results in experiments which provide
a monetary incentive. Given that the main application area for the present
review is concerned with self-directed, informal online learning environments
such as MOOCs, we see this discrepancy as one that calls for thorough in-
vestigation in future research. This trend suggests that the applicability and
effectiveness of instructional and/or learning strategies could potentially be
context-dependent—that the same intervention might be highly effective in
a context where participants have a monetary incentive and ineffective in
a context where participants are rewarded with course credit or are intrin-
sically motivated, for example. This bears significant implications for the
generalizability of online learning research in that (i) researchers must take
great care in contextualizing findings and (ii) readers must be attentive in
interpreting results and mindful of the study’s full context.

We are in the beginning stages now of constructing this new narrative of
pedagogy at scale, and would be naive to think this could have been perfected
in just three years. Guided by the proven efficacy of Cooperative Learning,
Simulations & Gaming, and Interactive Multimedia learning strategies, the
community should now work through iterative cycles of designing, testing,
and evaluating new solutions in formalizing this emergent body of theory and
literature.
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This part serves RQ2 (How can MOOC environments be improved to
advance the possibilities of experimentation?) by focusing on teaching and
learning paths. The concept of a path is born out of the design of the edX
platform as it has stood since its creation. In the platform, courses can only
be structured in a linear fashion—that is, each activity/component must be
built and ordered sequentially after another. The platform does not allow
for multiple branches of a learning path, for example, that would enable the
learner to choose from a selection of pre-determined (by the instructor or
course designer) pathways.

While this approach to instruction does not encourage a great degree of
exploration from the learner, it is still very much possible for learners to
create their own trajectories through the course. Even though the course
is designed and delivered in a linear fashion, the learners are still free to
deviate from this prescribed learning path and navigate the course at their
discretion. For learners who are highly effective at self-regulating their own
learning processes, this may turn out to be beneficial, as they might benefit
from the flexibility and find the pathway through the course that best serves
their own interests and goals. However, given that MOOCs are intended for
those without access to high-quality education from disadvantaged popula-
tions, one cannot operate under the assumption that such deviations from
the prescribed learning path will always have resulted from a thoughtful,
effective, intentional decision from the learner.

This line of inquiry gave rise to Chapter 3, which explores the extent to
which learners adhere to (or deviate from) the designed learning path, and
the subsequent effect that such deviations have on a learner’s eventual course
outcome. We find that there is indeed a substantial amount of deviation from
the designed learning path that occurs in the four courses considered in the
study. The key finding from this line of inquiry is that there is a strong
relationship between the linearity of a learner’s path through the course and
their likelihood of earning a passing grade—learners with fewer deviations (a
more linear path) are more likely to pass the course. The next key contri-
bution is the identification of behavioral motifs, or common strings/patterns
of behavior carried out by learners across the four courses. We then divided
these motifs by passing and non-passing learners to uncover which motifs
were common to the most successful learners in the course.

This study on learning pathways gave rise to the following study which
offers a deeper dive into the designed learning path of MOOCs. In Chapter
4, based on the insights gained from Chapter 2 that highlight the importance
and value of taking the course context into account when analyzing learner
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behavior, we take a deep dive into understanding trends in the design of
learning trajectories in MOOCs. By applying methodology and theory from
the learning design literature, we encode the course design of 177 MOOCs
from two institutions, computationally identify similarly-designed courses,
and explore the relationship between course designs and learning outcomes.
This work serves as a key step in the movement towards understanding the
causal effect of a designed learning path on eventual learner achievement.

In summary, this part contributes a new understanding of the way MOOCs
are designed and the patterns by which learners engage with them.



Chapter 3

Gauging MOOC Learners’
Adherence to the Designed
Learning Path

Massive Open Online Course platform designs, such as those of edX and
Coursera, afford linear learning sequences by building scaffolded knowledge
from activity to activity and from week to week. We consider those sequences
to be the courses’ designed learning paths. But do learners actually adhere to
these designed paths, or do they forge their own ways through the MOOCs?
What are the implications of either following or not following the designed
paths? Existing research has greatly emphasized, and succeeded in, auto-
matically predicting MOOC learner success and learner dropout based on
behavior patterns derived from MOOC learners’ data traces. However, those
predictions do not directly translate into practicable information for course
designers & instructors aiming to improve engagement and retention — the
two major issues plaguing today’s MOOCs. In this work, we present a three-
pronged approach to exploring MOOC data for novel learning path insights,
thus enabling course instructors & designers to adapt a course’s design based
on empirical evidence.

This chapter is published as “Gauging MOOC Learners’ Adherence to the Designed
Learning Environment” [63], by D. Davis, G. Chen, C. Hauff, and G.J. Houben in Proceed-
ings of the Ninth International Conference on Educational Data Mining, 2016.
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3.1 Introduction

MOOCs can deliver a world-class education on virtually any academic or pro-
fessional development topic to any person with access to the Internet. Mil-
lions of people around the globe have signed up to courses offered on platforms
such as edX, Coursera, FutureLearn and Udacity. At the same time though,
only a very small percentage of these learners actually complete a MOOC suc-
cessfully [144], an issue that continues to plague massive open online learning.
Keeping MOOC learners engaged and improving the dismal retention rates
are major concerns to instructional designers and MOOC instructors alike.
Considerable research efforts have been dedicated to the automatic prediction
of learners’ (imminent) dropout in MOOCs, e.g. [95, 138, 197, 269], under the
assumption that once learners under the threat of attrition are identified, an
automated intervention can be staged to (re)engage those learners with the
course material. While the accuracy of these usually machine-learning-based
predictors is high, their explanatory power is often low. Model features that
have the strongest impact on prediction purely based on statistical grounds
may not provide course designers & instructors with enough information to
adapt the design or content of a MOOC in response.
In this work we aim to provide a more holistic view of learners’ progression
through a MOOC in order to enable more practicable insights to instructors
and designers. Our approach to educational data mining as presented here is
a very literal realization of Graesser’s vision for the field by illustrating and
“look[ing] at unique learning trajectories of individuals” [239]. We make use
of the concept of learning paths (a learner’s route through course activities)
and investigate how the learning paths of successful and unsuccessful MOOC
learners differ.
The design of MOOCs on the edX platform2 implies a linear trajectory
through the learning material. Most courses are broken up into weeks (Week
1, Week 2, etc.) and released one week at a time. Within these weeks, the
standard instructional approach is to first provide a brief introduction to the
week’s material, followed by the weekly video lectures (the main source of
content delivery), then the assessments that evaluate learners’ knowledge of
the preceding video lectures, and, finally, courses may offer bonus material.
This cycle is repeated each course week (and sometimes multiple cycles com-
prise a single week). But do learners actually adhere to this cycle, and thus
the designed learning path? Does it matter if they do not? These are the
central issues that we focus on in this paper. While the concept of executed

2Our empirical work is based on edX MOOCs, but the same principles apply to other
major MOOC platforms.
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learning paths (i.e., the paths students actually take through a course) has
received substantial attention in the e-learning and intelligent tutoring com-
munities [139, 226], in the MOOC setting this concept has so far garnered
little attention. First empirical evidence that learners do not always follow
the designed sequence through a MOOC has been observed in [94], however,
to our knowledge no in-depth investigation of this phenomenon in the MOOC
context exists as of yet. We aim to close this knowledge gap and investigate
the following research question:

RQ3.1 To what extent do learners adhere to the designed learning path set
forth by the instructor?

We develop three approaches to characterize learning paths, thus pro-
viding three different views on a MOOC’s designed learning path (created
by the course instructor or designer) and the executed paths (created by the
learners of the MOOC). We apply our approaches on the log traces of more
than 113, 000 learners who participated in one of four edX-based MOOCs in
the domains of computer science, political debates and business ethics.
We show that (1) our approaches shed light on the deviations between de-
signed and executed learning paths, and, (2) successful and unsuccessful
learners differ considerably in the paths they follow. We believe that our
work can provide instructional designers a valuable analysis tool to improve
the design of both online courses and MOOC platforms in the future as they
provide data-driven insights into the actual behavior of learners and the im-
pact of their behaviors on learning outcomes.

3.2 Related Work

In this section, we elaborate on existing research in learner modeling [76], fo-
cusing on works that investigate learning activity sequences and their impact
on learning outcomes.
The problem solving behavior of learners in the context of e-learning and
intelligent tutoring systems has been explored in [110, 139, 140, 226]. In
contrast to our work, which considers a range of activities learners perform
throughout a course (and compares them to the designed learning path),
these works have explored learners’ exhibited behavior within only one ac-
tivity type — problem solving. Specifically, Köck and Paramythis [140] per-
formed activity sequence clustering (an application of sequential pattern min-
ing [240]) to model the learners’ behavior, while in [139] automated clustering
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and human synthesis of the generated clusters were combined to identify pat-
terns of problem solving. Shanabrook et al. [226] introduced a semi-automatic
approach to identify a student’s state while problem solving (including: gam-
ing the system, guessing out of frustration, abusing hints, being on-task) in a
high school-level intelligent tutoring system employing sequence-based motif
discovery. Jeong and Biswas [110] developed a Hidden Markov Model to de-
scribe how different middle school student behavior trends lead to different
learning processes & outcomes when problem solving.
In the context of MOOCs, sequences of learning activities have been ex-
plored by Wen and Rosé [260], who investigated the most common two-step
activity sequences learners exhibit across two MOOCs. These patterns were
then manually checked and analysed for interesting learning habits. A simi-
lar analysis of two-step chains was performed in Guo and Reinecke [94] who
found that learners generally progress through the course content in a non-
linear, “exploratory” manner [164]. Guo and Reinecke [94]’s observation of
learners frequently performing “backjumps” (moving from a quiz to a lecture
video previously introduced) can be considered as one of the first compar-
isons of executed and designed learning paths in MOOCs. Kizilcec et al.
[131] (replicated in [81]) have also taken steps in this direction, by utilizing
the assessment submission times (either on track, late or never) in MOOCs as
indicators of learner engagement groups (completing, auditing, disengaging
or sampling learners). Our work can be considered a significant expansion to
these approaches, as we explore longer activity sequences (eight-step chains),
thus enabling the discovery of more high-level and complex patterns and
making designed vs. executed paths the focal point of our investigation.
Video interactions in MOOCs were the focus of Sinha et al. [234], who cate-
gorized the most prominent chains of video interactions (pause, play, speed,
and skipping) and analyzed them with respect to learner dropout.MOOC dis-
cussion patterns have been investigated by Brooks et al. [29] who found that
MOOC students exhibit markedly different discussion patterns than were
expected based on blended learning environments. This finding can also be
considered as a motivation for our work; MOOCs may not always be used by
learners the way the instructors or course designers intended.
The concepts of process mining and conformance checking, in particular, are
also employed in areas such as business process execution; [218] explains how
business processes can be monitored (process mining) and then compared to
the intended model (conformance checking) via a measure of fitness.
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3.3 Subjects & Data

Table 3.1: Overview of the MOOCs in our study. The #Chains column contains the num-
ber of events observed throughout the MOOC (cf. Table 3.2). The “Passing
Grade" shows the percentage of quiz questions to answer correctly to receive
a course certificate. “Tries” indicates how many attempts a learner has per
question. “Videos Accessed" shows the average % of course videos watched by
certificate-earning learners. “Missing" is the % of certificate-earning learners
who streamed zero video lectures.

N Pass Chains Wks Vids. Quiz Pass. Tries Vids. Miss.
Rate Pass/Non Q’s Grade Access

FP 37,485 5.3% 1.06M/807k 14 41 288 60% 1 67.5% 4.3%
RI 8,850 4.3% 66k/30k 7 47 75 59% 1-3 49.7% 19.6%
FR 34,017 2.4% 95k/141k 6 55 26 50% 2 51% 3.8%
EX 33,515 6.5% 1.02M/855k 8 59 136 60% 2 76.3%3 3.6%

We explore our research question in the context of four MOOCs: Func-
tional Programming (FP) (teaching the functional programming paradigm),
Data Analysis (EX) (teaching spreadsheet and basic Python skills for data
analysis), Framing (FR) (the art of political debates), and BusinessX (RI)
(a MOOC on the ethics and safety of new technologies). All MOOCs were
offered on the edX platform in 2014/2015 and designed as xMOOCs.

Overview of MOOCs Table 3.1 provides an overview of the four MOOCs
in this study. The learner enrollment varies between ≈9k and ≈37k. While
the four MOOCs are comparable in their video material offerings (between
41 and 59 videos), they differ significantly in the number of summative
assessment questions (between 26 and 288 quiz questions). We also ob-
serve considerable differences in the percentage of video material watched by
certificate-earning learners (replicating [94]) — less than half of the videos
are accessed by successful learners in Data Analysis, while more than two
thirds of the videos are accessed by successful learners in Functional Pro-
gramming. Lastly, we note that the BusinessX MOOC is an outlier with
respect to the percentage of learners that passed the course without stream-
ing any video material,4 with nearly 20% of successful learners falling into
this category; the same applies for only ≈4% of learners in the other three
MOOCs.

Translating Log Traces into a Semantic Event Space The edX plat-
form provides a great deal of timestamped log traces, including clicks, views,

3This number was incorrectly reported in the published version of the paper as 45%.
4Note that the log traces did not capture video downloads and subsequent offline watch-

ing.
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quiz attempts, and forum interactions. We adapted the MOOCdb5 toolkit to
our needs and translated these low-level log traces into a data schema that
is easily query-able.

Table 3.2: Overview of events considered in this work.

Video Quiz Progress Forum

WATCH START VIEW START
SUBMIT SUBMIT
END END

For this work, we focus on four event types as listed in Table 3.2: events
related to videos, quizzes, progress pages, and discussion forums. Videos can
be watched - this event is generated whenever a user clicks the video ‘play’
button. Quizzes are identified through the beginning of the quiz session (the
user enters the quiz page), the submission of one or more answers6, and the
ending of the quiz session (the user leaves the quiz page). Those quizzes
are typically summative in nature. If a user views his or her progress page,
the VIEW event is elicited. Finally, we condense discussion forum events into
three kinds of items: the start of a forum session (the user first enters the
forum), the submission of content (question, comment or reply) and the end
of the forum session (the user leaves the forum page).
All executed learning paths that we extract from the learner log traces consist
of the events listed in Table 3.2. The rationale for choosing these events comes
from the designed learning path by which xMOOCs are typically formed: first
watch one or more lecture videos, and then move on towards the quiz and/or
forum section for assessment and knowledge building & verification respec-
tively. In Figure 3.2 we visualize a week’s designed learning path for each of
the four MOOCs we study (this pattern is repeated in every course week).
Video lectures form a common denominator, starting the path. Functional
Programming and Data Analysis rely on videos and quizzes only (with Data
Analysis exhibiting multiple video-quiz “cycles” within a week), whereas
BusinessX and Framing make use of the forums as well. The learning path
shown for Framing does not include quizzes as they are posed only in the
final week (in the form of an exam).

5http://moocdb.csail.mit.edu/
6Note that on the edX platform answers to individual quiz questions are submitted

(instead of all answers at once).

http://moocdb.csail.mit.edu/
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3.4 Approach

Having introduced the subjects of our work and the events we consider, we
now describe the three distinct approaches to the visualization & exploration
of executed learning paths (that is, learners’ sequential movement over time
through the activities offered in a MOOC) we developed.

3.4.1 Video Interactions

As shown in Figure 3.2, videos are a focal point of xMOOCs. Accordingly,
in a first analysis, we focus exclusively on video interactions and explore to
what extent learners adhere to the designed video watching learning path.
Therefore, in this study we only make use of WATCH events.

We transform the WATCH events generated by a set of learners L across
the duration of a MOOC M into a directed graph GM,L = (VM, EM,L) —
as the subscripts indicate, with M fixed, the set V is independent of the
subset of learners chosen, while E is dependent on the learners in L. All
lecture videos contained in M form the set of vertices VM. The vertices
are labelled chronologically, that is, for any vertex pair (vi, vj) with i < j,
the corresponding lecture video i must appear in the designed learning path
before video j.

The edges are directed and weighted according to the number of WATCH
events by the learners L: an edge between vi−1 (source) and vi (target)
presents the learners’ transition between these videos, i.e. the number of
times learners watching video vi−1 watch vi next, before any other video. We
disregard self-loops (watching the same video again) as we are focusing on
the progression of the learners through the set of lecture videos.

Having generated GM,L, we now turn to its visualization (to aid instruc-
tors and course designers): the vertex layout is sequential and governed by
the designed learning path through the videos (represented as vertices). For
MOOCs with thousands of participants it is likely that every single video
pair combination possible is contained in at least one learning path. To
avoid visual clutter, we filter out the most infrequent edges: we bin the edges
according to the week their source vertex appears in and remove the 10% of
edges that occur most infrequently in this course week.

To discover whether or not there are marked differences in the way dif-
ferent groups of learners behave, we generate the video interaction graph for
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different sets of learners, such as successful (certificate earning) vs. unsuc-
cessful learners.

3.4.2 Behavior Pattern Chains

Having considered the transitions between lecture videos, we now turn to
the exploration of transition patterns among all eight events identified in Ta-
ble 3.2. Previous works [260] have viewed MOOC learner patterns either in
terms of one-step directed pairs of events (such as watch video → begin quiz)
or based on video click chains only [234].
One-step chains can only provide limited insights into more high-level behav-
ioral patterns — we may, for instance, be interested to understand how many
learners are “binge watchers” (watching many videos in a row) or “strate-
gic learners” (looking at quiz questions before watching the corresponding
lecture video). In order to contribute insights to our research question we
need to consider longer chains. We have settled on eight-step chains, as they
provide insights into more high-level concepts but are still numerous enough
in our log traces to make claims about their general usage. We consider all
events of Table 3.2 and create event chains by sliding a window of size eight
over each learner’s chronologically ordered learning path through a MOOC.
An example eight-step chain this procedure yields is shown in Figure 3.1.

QUIZSTART→QUIZEND→WATCH→WATCH

→WATCH→WATCH→WATCH→WATCH

Figure 3.1: An example eight-step chain.

To identify the underlying trends in the chains, we employed the open card
sort approach [83]. After printing out two sets of the thirty most frequently
occurring chains on paper, two authors independently sorted them into (non-
predefined) like-groups by hand and afterwards discuss the differences in each
sort, creating a composite of the two results. The outcome of this method
is a synthesis of similar chain types into groups sharing the same motif, or
recurring theme. Based on the motifs, we created a rule-based system that
assigned a MOOC’s entire set of chains to the identified motifs (chains that
do not fit into any motif are left “unassigned”). This process is repeated for
each of the MOOCs we investigate. The advantage of this approach over the
automatic clustering of the chains is the infusion of our domain knowledge
into the clustering process.
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Figure 3.2: The designed learning path for a standard week (Week 4) of each MOOC. The
circled numbers indicate the step number of each transition in that week’s
sequence. Notice the diversity in course designs that characterize these four
MOOCs.

3.4.3 Event Type Transitions

Lastly, we explore event type transitions, or how likely learners are to move
from one event type to another. Inspired by the methods employed in
[110, 139, 140] we use discrete-time Markov chains (a memory-less state tran-
sitioning process encoding how often learners move from one event type to
another) in order to chart the likelihood that a learner will transition from
one engagement activity to another. Whereas the prior works employ these
methods in the context of problem solving (knowledge assessment), we focus
on the larger process of knowledge building, which transpires over the span
of an entire course. While it may be self-evident that non-passing learners
answer less quiz questions than their certificate-earning peers (and thus the
transition probabilities to SUBMITQUIZ are likely to be lower for non-passers),
the visualization of the Markov chains enables designers to pinpoint the dif-
ferences in transitions between different types of learners (e.g. passers vs.
non-passers) across all events in one coherent plot.
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3.5 Findings

To answer our research question (do learners adhere to the designed learning
path?), we apply the three approaches outlined in Section 3.4 to the datasets
described in Section 3.3.

3.5.1 Video Interactions

We visualize the video interactions across the first three weeks (these are
where the most deviations occur; the later weeks are more in line with the
designed path) of each MOOC in Figures 3.3 to 3.6, distinguishing two sets
of learners: those that eventually earn a certificate (“Passing”) and those
that do not (“Non-Passing”). The designed video interaction learning path
is exhibited by the left-to-right flow of the vertices (one per video). The edges
correspond to the executed learning paths — with edge thickness indicating
the (normalized) number of learners having taken that path (only the 90%
most frequently occurring transitions each week are shown); the set of red
edges represent the executed transitions that follow the designed transitions.
A number of observations can be made based on the visualizations: (i) pass-
ing learners deviate considerably less from the designed learning path than
non-passing learners across all four MOOCs, (ii) passing learners are more
likely to skip video lectures introducing the platform (the first three videos
in the Framing MOOC) than non-passing learners, indicating a higher level
of seniority in MOOC-taking, (iii) towards the end of week three, the devia-
tions among the sets of passing and non-passing learners are negligible (i.e.
the non-passing learners still active exhibit a similar video watching behavior
as the passers), and (iv) skipping videos — jumping ahead — is much more
common than backtracking — jumping backwards — for both passers and
non-passers.
An emerging object in the field of Design (and gaining some attention in the
field of Software Design [57]) is that of desire paths, or paths not intended
by the designer, but those which “arise due to off-[path] use ... for a variety
of purposes such as access to places of interest and shortcutting” [25]. This
research serves as a reminder that desire paths indeed exist in MOOCs (as
evident in the skipping of introductory lecture material) — they just have
not yet been made as visible as those brown stripes of beaten grass and dirt
transecting public parks and trails. They are a reminder that humans can
collectively communicate good design by their actions.
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Figure 3.5: Data Analysis video interactions.
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Figure 3.6: BusinessX video interactions.

3.5.2 Behavior Pattern Chains

Our second approach explores learners’ behavioral patterns. As outlined
in Section 3.4.2, we first manually clustered and labelled the most frequent
eight-step pattern chains in order to determine what type of behaviors (or
motifs) learners exhibit beyond a single-click transition, before automatically
assigning the remaining chains into those motifs. Depending on the MOOC,
this approach yielded between eight and 11 motifs, with some motifs appear-
ing only in a subset of courses. For brevity reasons, in Tables 3.3 to 3.6 for
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each MOOC we list its most frequent motifs (specifically those into which
≥2% of all chains are classified); as a comparison in Table 3.1 we also list
the total number of chains generated by passing/non-passing learners in each
MOOC — depending on the MOOC, the listed motifs capture between 42%–
77% of the total number of chains. Whenever a motif is first introduced, we
briefly describe which event types and event orderings characterize it7.
Examining the results, we observe that (i) Binge Watching is a frequent mo-
tif in all MOOCs with non-passers always exhibiting more binge watching
(i.e. watching videos uninterrupted by other activities) than passers, (ii) the
Lecture→Quiz Complete motif, which captures the “classic” xMOOC idea of
video watching with subsequent question answering is frequent in three of
the four MOOCs8, however no consistent divergent behavior for passers and
non-passers is found, (iii) motifs with forum events occur in three of the four
MOOCs — by course design in Framing and BusinessX (cf. Figure 3.2), but
not in Functional Programming, indicating issues related to material clar-
ity, and (iv) the Quiz Check motif, which is exhibited by learners checking
the quiz questions without answering any of them (which is usually followed
by video watching and subsequent quiz completion), is only found in one
MOOC frequently; in Data Analysis 2% of the chains follow this motif, a
smaller percentage than we expected, indicating that very few learners are
gaming the system by “attempting to succeed in an educational environment
by exploiting properties (quiz questions are posted alongside the video mate-
rial) of the system (edX platform) rather than by learning the material and
trying to use that knowledge to answer correctly," [12].

3.5.3 Event Type Transitions

The Markov models of our four MOOCs are visualized in Figures 3.7 to
3.10. Since we observe the same event types across the four MOOCs, the
set of vertices, their placement in the visualization, and their semantics are
identical. To minimize visual clutter, we only plot the transitions (i.e. the
edges) that exhibit a probability of 0.2 or higher. Once more we make the
distinction between passing and non-passing learners. The resulting visual-
izations show the behavioral differences not only between passing and failing
students within a given course, but these also allow for cross-course analyses
which shed light on what types of behavioral patterns define a course. For

7Note, that we implemented our rules for the automatic assignment of chains to motifs
according to these characterizations.

8It does not appear among the frequent motifs in Framing, which has a final exam
instead of weekly quizzes.
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Table 3.3: Most frequent motifs (≥2% chains) in Functional Programming.

Motif Freq.
Total

Freq.
Passing

Freq.
Non-pass.

1 Quiz Complete 552,363
(29.4%)

328,995
(30.8%)

223,368
(27.7%)

XQUIZ events only with at least one X = SUBMIT

2 Binge Watching 149,784
(8%)

59,498
(5.6%)

90,286
(11.2%)

WATCH events only

3 Lecture→Quiz Complete 100,179
(5.3%)

50,415
(4.7%)

49,764
(6.2%)

WATCH event(s) followed by XQUIZ events; at least one X = SUBMIT

4 Quiz Complete→Forum 99,828
(5.3%)

67,722
(6.3%)

32,106
(4%)

XQUIZ events (at least one X = SUBMIT) followed by XFORUM events

5 Quiz Complete→Progress 38,854
(2.1%)

26,126
(2.4%)

12,728
(1.6%)

XQUIZ events (at least one X = SUBMIT) followed by XProgress events

Table 3.4: Most frequent motifs (≥2% chains) in BusinessX.

Motif Freq.
Total

Freq.
Passing

Freq.
Non-pass.

1 Quiz Complete 18,446
(16.6%)

11,377
(14.7%)

7,069
(21.1%)

2 Binge Watching 12,530
(11.3%)

8,461
(10.9%)

4,069
(12.1%)

3 Lecture→Quiz Complete 5,060
(4.6%)

3,752
(4.8%)

1,308
(3.9%)

4 Lecture→Forum→Lecture 3,910
(3.5%)

2,386
(3.1%)

1,524
(4.5%)

WATCH events followed by XFORUM events followed WATCH events

5 Quiz Complete→Progress 3,741
(3.4%)

2,898
(3.7%)

843
(2.5%)

6 Quiz Complete → Lecture → Quiz Comp. 2,277
(2.1%)

2,019
(2.6%)

258
(0.8%)

example, when comparing Framing (Figure 3.9) and Data Analysis (Fig-
ure 3.7), marked differences in their pedagogical structure are evident; Fram-



62 Chapter 3. Adherence to the Designed Learning Path

Table 3.5: Most frequent motifs (≥2% chains) in Framing.

Motif Freq.
Total

Freq.
Passing

Freq.
Non-pass.

1 Binge Watching 64,822
(27.3%)

18,023
(18.9%)

46,726
(33.1%)

2 Lecture→Forum→Lecture 29,224
(12.3%)

11,651
(12.2%)

17,505
(12.4%)

3 Quiz Complete 12,984
(5.5%)

9,156
(9.6%)

3,781
(2.7%)

4 Forum→Lecture 7,850
(3.3%)

3,035
(3.2%)

4,800
(3.4%)

XFORUM events followed WATCH events

5 Lecture→Forum 7,488
(3.2%)

3,008
(3.2%)

4,462
(3.2%)

6 Quiz Complete→Lecture→Quiz Comp. 5,551
(2.3%)

4,022
(4.2%)

1,501
(1.1%)

ing appears to foster a very social, collaborative environment, whereas Data
Analysis learners mostly focus their attention on lectures and assessments,
with little concern for discussion. The visualizations also reveal at which spe-
cific moments learners seek feedback on their progress (i.e. make a transition
to the Progress vertex), such as after a Quiz or Forum in BusinessX and
Framing. These movements are not included in any of the courses’ designed
paths; course designers can use this insight to proactively insert feedback in
order to encourage more awareness and self-regulated learning. When com-
paring transitions of passing vs. non-passing learners, we observe that (i)
non-passers make the transition to the video event from more diverse event
types than passers (indicating that non-passers’ executed paths follow the
designed path to a lesser degree than passers’ executed paths), (ii) video-
to-video transitions are more prevalent among non-passers (in line with our
findings on the binge watching motif), and (iii) passing learners are more
likely to move from Quiz Start to Quiz Submit, while non-passing learners
are more likely to move from Quiz Start to Quiz End (without answering a
question).
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Table 3.6: Most frequent motifs (≥2% chains) in Data Analysis.

Motif Freq.
Total

Freq.
Passing

Freq.
Non-pass.

1 Quiz Complete 169,786
(9%)

116,878
(11.4%)

52,908
(6.2%)

2 Quiz Complete→Lecture→Quiz Comp. 145,596
(7.7%)

82,247
(8%)

63,349
(7.4%)

3 Binge Watching 87,760
(4.7%)

28,066
(2.7%)

59,694
(7%)

4 Lecture→Quiz Complete 78,790
(4.2%)

41,543
(4.0%)

37,247
(4.4%)

5 Quiz Complete→Lecture 43,612
(2.3%)

21,916
(2.1%)

21,696
(2.5%)

6 Quiz Check 37,406
(2%)

19,444
(1.9%)

17,962
(2.1%)

QUIZSTART followed by QUIZEND events

7 Quiz Complete→Forum 33,085
(1.8%)

22,126
(2.2%)

10,959
(1.3%)

8 Quiz Check→Lecture 29,079
(1.5%)

12,376
(1.2%)

16,703
(2%)

Unassigned Chains 1.1M
(58.3%)

631,251
(61.5%)

466,061
(54.5%)

3.6 Conclusion

Before adaptive learning systems can reach their potential, two important
baselines must be established: (i) the precise learning path the instructor
wants the student to follow and (ii) students’ natural behavior within the
course. Adaptive instruction will be most effective when the differences be-
tween these two baselines are both identified and addressed. The present
research offers novel insights into the identification of those differences.
Specifically, in this work we have introduced three different approaches (the
video interaction graph, behavior pattern chains and event type transitions)
to explore and visualize MOOC log traces with respect to the designed and
executed learning paths.
We have applied our approaches on the log traces of four different edX-based
MOOCs (from different domains and different pedagogical structures) and
have shown to what extent learners (as a whole group as well as partitioned
into passing and non-passing learners) follow the prescribed path.
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In future work, we will expand our analyses to a larger set of MOOCs to
gain a greater understanding of the “classes” of xMOOCs that exist on the
major MOOC platforms today. We also plan to consider more diverse sub-
populations of learners in future analyses, beyond passing or not passing. We
will also investigate semi-automatic approaches to the adaptation of MOOC
learning paths, in order to minimize the gap between designed and executed
paths as well as the impact this work has on engagement, retention, learner
success and more fine-grained learner partitions (such as completing, audit-
ing, and sampling learners [131]).
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Figure 3.7: Markov Model state visualization of non-passing (left) and passing (right)
learners in the Data Analysis MOOC. Edges with weights below 20% are
hidden from view.

Figure 3.8: Markov Model state visualization of non-passing (left) and passing (right)
learners in the Functional Programming MOOC. Edges with weights below
20% are hidden from view.

Figure 3.9: Markov Model state visualization of non-passing (left) and passing (right)
learners in the Framing MOOC. Edges with weights below 20% are hidden
from view.

Figure 3.10: Markov Model state visualization of non-passing (left) and passing (right)
learners in the BusinessX MOOC. Edges with weights below 20% are hidden
from view.
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Chapter 4

Toward Large-Scale Learning
Design

This chapter applies theory and methodology from the learning design liter-
ature to large-scale learning environments through quantitative modeling of
the structure and design of Massive Open Online Courses. For two institu-
tions of higher education, we automate the task of encoding pedagogy and
learning design principles for 177 courses (which accounted for for nearly 4
million enrollments). Course materials from these MOOCs are parsed and
abstracted into sequences of components, such as videos and problems. Our
key contributions are (i) describing the parsing and abstraction of courses
for quantitative analyses, (ii) the automated categorization of similar course
designs, and (iii) the identification of key structural components that show
relationships between categories and learning design principles. We employ
two methods to categorize similar course designs—one aimed at clustering
courses using transition probabilities and another using trajectory mining.
We then proceed with an exploratory analysis of relationships between our
categorization and learning outcomes.

This chapter is published as “Toward Large-Scale Learning Design: Categorizing
Course Designs in Service of Supporting Learning Outcomes” [69], by D. Davis, D. Seaton,
C. Hauff, and G.J. Houben in Proceedings of the Fifth Annual ACM Conference on Learn-
ing at Scale, 2018.

67
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4.1 Introduction

The ubiquity of digital learning platforms is leading to new ways of document-
ing and understanding course design. Even though online learning platforms
often constrain instructors to design choices in the limited context of videos,
text, and various assessment components, there still exists a vast and un-
charted diversity in the way instructors choose to design and structure their
digital learning materials. A recent example in scaled learning is the edX
consortium, where over 1,700 courses2 have been created by 118 institutions3

across the globe. This makes for a truly massive possibility space that spans
discipline, culture, and pedagogy.

MOOC researchers have begun analyzing course design and pedagogy
in order to understand this diversity, but the work has been isolated and
largely a process of human categorization based on broad interpretations
of learning design. Recent applications of pedagogical inventories involving
human classification on a number of scales exemplifies these efforts. The
authors in [243] have compared the pedagogical structure of 17 MOOCs using
an inventory called AMP (Assessing MOOC Pedagogies), and [176] applied
a similar inventory across 78 MOOCs. Both found signs that many MOOCs
are replicating traditional instruction tactics. Such work can potentially help
address best practices in course design, but it has remained a manual task and
not yet found widespread adoption by researchers in the MOOC community.

Furthermore, researchers in more traditional areas of learning design have
only been able to conduct small-scale (usually on a single, course-by-course
basis) mostly-qualitative analyses of course structures and their relationship
with learning outcomes. And although the number of courses considered is
small (typically ranging from 1–20 [75]), learning designers have developed
methods for comparing and classifying courses’ structures. This is achieved
through a process of abstraction, or the separation of a course’s topical con-
tent (such as math, engineering, history, etc.) and its internal structure (the
sequence of activities used to teach the content).

In another area of research, learner behavior modeling has taken off for
MOOCs [63, 89, 134, 260]. However, there has yet to be any large-scale or
automated evaluation of the effectiveness of various learning design patterns
using the tools from the learner-behavior community. So while there is a
quickly emerging corpus of learner modeling research unfolding, there have

2https://www.edx.org/course?course=all
3https://www.edx.org/schools-partners

https://www.edx.org/course?course=all
https://www.edx.org/schools-partners
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not yet been any empirical efforts to connect the findings to the design of the
learning environment.

By understanding the theory and methodology from the learning design
literature and applying it to large-scale learning environments, we are able to
advance the field of learning at scale through a quantitative analysis of the
structure/design of online learning environments. The MOOC community
has primarily focused on learners so far. But the number of courses accessible
to researchers is growing large enough to offer a new paradigm for teaching
research at scale.

In this paper, we attempt to build a framework that can help aid classifi-
cation of course design in an automated and scalable fashion. Our framework
is largely built around the following ideas:

• A methodology to parse and abstract a course to enable quantitative
analyses of its structure.

• Quantitative measurement of the difference between course designs.

• Identification of key structural components that differentiate courses
with clustering and then gaining a deeper understanding through qual-
itative analysis.

Using a dataset made up of 177 MOOCs from two institutions of higher
education, we abstract course design into a sequence of learner activities
and apply two types of pattern mining, namely, (i) transition probability
mining and (ii) trajectory mining. We explore both methods on an institu-
tion by institution basis. In addition, we explore the relationship between
our classification (clusters) with a straightforward learning outcome — ver-
ified learner pass rates. This exploratory addition to the study is to further
support whether our abstraction and automation can lend itself to goals of
improving learning outcomes through better design.

4.2 Related Work

Below we describe the current state of the art in the domains of learning de-
sign and learner behavior. Our review of the literature finds a distinct com-
mon thread connecting learning design and learner behavior studies, namely,
that of abstraction and complexity reduction. In addition, many of the meth-
ods in our work are inspired by research in the area of learner-behavior pat-
tern mining [63, 89, 134, 260]; we find that many methodologies in this field
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have have potential applications to pattern mining of course structure and
pedagogy.

4.2.1 Learning Design Patterns

The learning design literature offers a substantial body of research theorizing
about the design of learning patterns and sequences. Reference [156] offers
an exhaustive review of how Learning Designers have tackled the challenge of
describing and synthesizing patterns for learning, defined by [185] as a semi-
structured description of a strategy for teaching a given topic or skill. The
primary purpose of patterns for learning is to externalize knowledge in a way
that can be generalized and accessed by members of the teaching community.

Traditional classroom teaching environments do not require explicit docu-
mentation of a strategy or pattern for teaching. These are often proprietary
and documentation standards vary across institutions [74, 156]. Reference
[156] calls for a standardization to facilitate sharing of patterns for learning
throughout the teaching community in having teachers “enact design science”
as a normal part of the teaching practice so that, as a community, they can
gain an understanding over which designs lead to which outcomes/achieve-
ments.

One effort to facilitate the comparison and standardization of teaching
design patterns is found in [74] where the authors developed a “Teaching
Method Template” which describes instruction primarily in terms of activity
sequences—found to be the most effective method of depicting patterns for
learning in terms of teacher preference and usefulness.

In this template, reference [74] represents activity sequences both textu-
ally and graphically: the graphical representation uses flow charts and activ-
ity diagrams to visualize patterns in a way users can quickly internalize and
the text-based sequence of activities approach details the temporal sequence
of activities and assessments in a given plan. The authors in reference [156]
identify the “sequence of activities” approach (defined as a collection of teach-
ing design patterns building towards an outcome) as the most interesting and
promising in the age of digital learning and instruction. This includes the
decisions of which activities to introduce at which point, but also the effective
transition between activities so that each activity appropriately informs the
next. Though this topic is not yet prevalent in the area of digital learning
environments, the authors in [156] claim that “The origin or provenance of
a pedagogical pattern is as important as citations are in research. Teachers
considering adopting a new pattern need to know its origin, and should be
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able to track the way it has developed into alternative versions.” There is not
yet a widely accepted standard for patterns as of yet, however, digital learn-
ing environments present a tremendous opportunity to develop, track, and
share pedagogical patterns due to how content is stored in digital-learning
platforms, as was done in [192].

Teaching design patterns that have been identified as topic-specific are
referred to as “signature pedagogies”[229].

An example of signature pedagogies is the contrast between hands-on
(bedside) teaching for medical education and the inquisitive nature of a law
school lecturer (firing off strings of question sequences to their audience mem-
bers). To the best of our knowledge, no work as of yet has been done to
evaluate the detailed patterns of such signature pedagogies in the context of
digital-learning environments.

Reference [157] poses this question about the extent to which disciplines
can be “disentangled” from their signature pedagogies. This leaves the ques-
tion open about whether some strategies are best kept tied to a specific
discipline, or perhaps through the sharing of such pedagogical wisdom, dis-
ciplines can benefit from a new perspective. [156] introduces a method of
documenting instructional sequences in a structured and standardized man-
ner so that patterns from one domain “can be replaced with entirely new
topic content to generate the same pattern in a different subject area.”

The key to this “disentangling” of pedagogies from their disciplines is a
successful abstraction of the pedagogy to a form that is transferable to a
new context. And by removing the content and only focusing on the activity
type and transitions between activities, we arrive at a structured method of
documenting patterns and sequences for learning [155, 158].

4.2.2 Learner Behavior Patterns

We next describe methods from research in learner behavior patterns and
their applications to the above challenges of learning design patterns. There
has recently been a surge in research exploring MOOC learners’ navigational
patterns throughout course activities. The impact of this research stems from
our ability to see learner behavior in highly self-directed environments, i.e.,
without instructor oversight. However, while these methods continue to be
evaluated and developed in the context of learner activity patterns and navi-
gational events, we here propose that similar methods ought to be employed
in evaluating course design patterns in digital learning environments. Doing
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so will allow us to better understand how course design and the sequenc-
ing of activities are related to learner behavior. Below we review work on
learner behavior modelling while pointing out how previous work influences
our methods for course structure pattern mining.

The research presented in [63, 89, 134, 260] characterizes MOOC learners
through their clickstream data tracking their transition between activities.
Reference [260] first identified common 2-gram event transitions; [63] next
extended these to 8-gram event sequences and labeled the sequences as vari-
ous motifs representing a study pattern; and [134] extended this by connect-
ing these event transitions to self-regulated learning strategies using learner
self-reported survey results as well. [89] builds on the Markov modeling tech-
nique in [63] by developing a two-layer Markov model which accounts for
transitions between both micro and macro activity patterns. In the present
research we apply this methodology of analyzing learner transition proba-
bilities to course structure data—exploring the transitions between course
components as defined by the instructor as opposed to the path executed by
the learner.

Reference [24] builds upon the work in [63, 134, 260] by applying clus-
tering techniques to MOOC learner behavior. Clustering in this case enables
the automatic identification of similar trajectories to be identified at scale,
whereas prior work in this area was done manually [176, 243]. We apply
this scalable clustering approach to MOOC course structures in the present
research. Reference [24] employed both pattern- and data-driven approaches
for analyzing and clustering MOOC learner activity data. They correlated
learner engagement patterns with course learning outcomes as well—final
course grades earned and each cluster’s overall passing rate. The authors
first categorize learners into one of four categories (separated by behavior pat-
terns preceding assessment) on a week-by-week basis to account for changes
over time, and then they use hierarchical agglomerative clustering to group
learners with similar week-by-week trajectories.

The authors in [24] also introduce a second method to track latent learner
activity patterns with an unsupervised processing pipeline. The pipeline is
comprised of four phases: (i) activity sequence modeling, where a transition
matrix is generated and used as a learner model, (ii) distance computation,
(iii) clustering, where the dissimilarity matrix is clustered with hierarchical
agglomerative clustering using the Ward’s method, and (iv) cluster matching,
to identify temporal relationships between identified clusters. Based on this
method, the authors enable a direct comparison of various types/patterns
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(clusters) of behavior and academic achievement, very similar to our method
presented here of clustering course structures.

The primary methodology employed in [175, 187] is that of process min-
ing. Such process mining techniques include (i) visualization, where processes
are plotted in a variety of graph types in order to make trends and patterns vi-
sually apparent, (ii) conformance checking, where actual/executed processes
are compared to the normative/intended model, and (iii) process discovery,
where a process model is learned from event log data. Whereas the authors in
[24] were motivated by connecting behavior to learning outcomes, the authors
in [175, 187] are motivated to model learner behavior in order to develop tar-
geted interventions to support learners in developing self-regulated learning
skills.

After reviewing the state of the art and existing knowledge gaps in the
literature of learning design patterns and learner behavior patterns, we arrive
at the following three primary Research Questions:

RQ4.1 To what extent can we model the design of a MOOC by employing
principles from the learning design literature?

RQ4.2 How can we quantitatively compare and contrast the design of MOOCs?

RQ4.3 Are there structural components that differentiate a MOOC’s de-
sign?

In addition, we put forward an exploratory RQ4.4 addressing the re-
lationship between our abstraction of course design and students’ learning
outcomes.

4.3 Methods

Building upon the learning design methodology of abstracting a course’s
structure away from content, the present research methodology employs an
exploratory approach in applying methods from research in learning design
and learner behavior patterns to the topic of learning design patterns in
digital learning environments. We next outline the methodology used with
regard to each guiding research question.
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Figure 4.1: edX platform screenshot with components and containers associated with the
OLX format marked by color: chapter (red), sequential (green), videos (blue),
html (orange), and problems (yellow).

Figure 4.2: Course structure overview for each institution. Tables indicate the total num-
ber of enrolled and verified learners for each institution, along with summary
statistics about the occurrence of course components (mean per course and
standard error of the mean (SEM)). The Markov model transition visualiza-
tion indicates the most common event type transitions across all courses for
each institution; edge/line weights distinguish transition prominence. Com-
ponent frequency bar graphs show how common each component type was
across all courses. The state distribution plot – depicting the left to right
occurrence of course components – is a trajectory mining visualization that
accounts for the likelihood of component occurrence accounting for all courses
in each institution.

4.3.1 Dataset

Our dataset consists of edX MOOCs from Delft University of Technology (or
DelftX, as it is known on the edX platform) and Harvard University (Har-
vardX). Within this study, DelftX accounts for 57 MOOCs with a total of
35,283 course components, and HarvardX accounts for 120 MOOCs with a
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total of 43,514 components. In edX courses content can be broken up into
components and collections. Components are stand-alone assets with which
learners interact: videos, problems, html pages, and custom activities. Col-
lections are containers that provide structure and navigation for learners:
chapters, sequentials, and verticals. For clarity, all components and collec-
tions are illustrated in context in Figure 4.1.

In this study, we remove verticals from consideration to reduce complex-
ity, namely, in our own ability to interpret results, as the institutions studied
tend to have short verticals, leading to numerous verticals that act as delim-
iters between small numbers of resources. While future analyses can include
verticals, we found here that verticals in DelftX courses typically include
between 2 and 3 resources (avg. of 2.75 resources per vertical) and, for Har-
vardX courses, 1 to 3 resources per vertical (avg. 1.7 resources per vertical).
We omit verticals to allow for an analysis of longer, more representative learn-
ing design sequences. We also omit custom components, which have extreme
variation in students’ interactions and in many cases evolve over time (i.e.,
may not have the same use case from course to course). In addition, the
namespaces for these components do not remain consistent, making them
difficult to track in this initial study.

4.3.2 Parsing edX Courses

All content authored for the edX platform is stored in the Open Learning
XML (OLX) format4. OLX is a standard that allows the transfer of content
between instances of the open source edX platform, authorship outside the
platform, and extraction of information related to course design (like in this
work). OLX contains the raw markdown (XML) for all authored content in
a course, namely, all content tags, text associated with content, and relevant
metadata. Courses are generally designed in edX Studio – a GUI for creating
and structuring courses – masking the OLX from most users. OLX data can
be exported through edX Studio and is also provided in regular data exports
to edX consortium members through the edX research pipeline 5. For each
course in the present study, we download the OLX data and pass it through
a parsing algorithm to structure the data in a more desirable format for
analysis (colloquially referred to as the “course axis”). All OLX components
are sorted in sequential order according to their placement in the course.

4http://edx.readthedocs.io/projects/edx-open-learning-xml
5https://github.com/edx/edx-analytics-pipeline

http://edx.readthedocs.io/projects/edx-open-learning-xml
https://github.com/edx/edx-analytics-pipeline
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4.3.3 Abstracting Structure from Content

Research in learning design relies heavily on the process of abstracting a
course structure into a standardized, comparable structure. Abstraction here
is the process of stripping away the course topic materials from the under-
lying structure and components (RQ4.1). For example, in a course about
Statistics, a given sequence of activities might include: a lecture about the
difference between frequentist and Bayesian statistics → discussion about the
benefits and drawbacks of each approach → exam assessing learners’ ability
to apply what they’ve learned. The abstracted version of this sequence would
become: lecture → discussion → assessment. This method for abstraction
is also commonly used when considering learner activity in courses as well
[24, 63, 202, 260]. We view this abstraction as similar to processes like coarse-
graining in physics, where microscopic structure is often approximated in
order to measure macroscopic properties of a system.
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Figure 4.3: The process of calculating similarity using transition probability. (1) Original
sequence of elements, read from left to right. (2) Edge list: showing the
transitions from each source element to its target. (3) Transition matrix
showing the probability of each source element’s (y-axis) transition to each
target element (x-axis). Each row sums to 1.0. (4) Sample transition matrix
(Q) to compare to P . (5) Distance matrix for P and Q.

4.3.4 Computing Similarity

After abstraction of a course, we qualitatively measure the differences be-
tween course structures (RQ4.2) using two approaches: (i) clustering tran-
sition probability, and (ii) trajectory mining. Transition probability treats
the course activity sequence as a Markov chain and considers the prominence
of each of the possible transitions between activity types. The choice for
this approach is based on the learning design principle which highlights the
importance of the consecutive sequencing of learning activities. The trajec-
tory mining approach takes the entire sequence into account by calculating
differences in the order and position of all components, which allows for the
analysis of learning design sequences over the span of entire courses beyond
single transitions.
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We employ both methods for computing dissimilarity between course
structures because both have been used in prior research for learning path
analysis [63, 134, 175], and both methods have their own advantages and
drawbacks. For example, the main advantage transition probability has over
trajectory mining is that the length of the sequence is not considered, whereas
in trajectory mining the difference in sequence length imposes a significant
bias/cost on the results. On the other hand, the main benefit trajectory min-
ing has over transition probability is that it takes the entire course sequence
into consideration and enables more macro-level course design insights.

Transition Probability

A transition matrix is a method of representing a sequence of transitions, or a
Markov chain. Computing a transition matrix has been a prominent method
for modeling learner behavior in online learning environments [63, 134, 175],
but this method has not yet been applied to teaching or instructional behav-
ior. By adopting a method focusing on transitions from one activity to the
next, we are able to connect digital learning environments to the literature
on learning design.

We compute transition matrices by first generating an edge list, as shown
in Figure 4.3.2 which represents all origin→target pairings (sequential connec-
tions from one event type to the next) from the original sequence of elements
from Figure 4.3.1.

This edge list is then used to compute the probability of each event type
transitioning to the next, and these proportions are then used to populate
the final transition matrix.

We generated transition matrices (P and Q) for all 177 courses included
in the study and stored them in a list of matrices.

For each institution, we generate transition matrices for each course. We
then calculate the L1 distance (also referred to as Manhattan distance or
taxicab metric) (d1) between transition matrices (P − Q) on a course by
course basis and sum the absolute values between them:

d1(P,Q) = ||P −Q||1 =
n∑

i=1

|Pi −Qi| (4.1)

where P and Q are transition matrices flattened into one-dimensional vectors.
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Figure 4.4: The process of calculating OM distance. (1) Original three sequences of ele-
ments, read from left to right. (2) Matrix showing the OM distance between
sequences as the cheapest total editing cost.

For example, the distance between P and Q, d1(P,Q), in Figure 4.3
amounts to 1.89. The final distance matrix contains each of these calculated
differences for all matrix pairings and is then is a suitable format to be
clustered—noting that all matrices must contain the same columns and rows
to ensure appropriate calculations.

Trajectory Mining

The trajectory mining method first computes a distance matrix using the
optimal matching (OM) method. This distance matrix is populated by edit
distances (or the minimal editing cost): the minimal cost of all insertions,
substitutions, and deletions to transform one sequence into another [161]. In
accordance with the method introduced in [161], substitutions (CS) have an
editing cost of 2.0 and insertions & deletions (CI) have an editing cost of 1.0.
The editing costs according to [161] are:

CS = 2− p(i|j)− p(j|i) and CI = 1− p(i|j)− p(j|i) (4.2)

where p(i | j) is the transition rate between states i and j.

Figure 4.4 illustrates the process of arriving at the distance matrix be-
tween two sequences with a substitution colored in blue and an insertion
colored in orange for sequences 1 and 2.

4.3.5 Clustering Similar Courses

In service of RQ4.3, we uncover similarities in courses’ structures by employ-
ing Ward’s method of hierarchical agglomerative clustering. This method
starts by considering all courses as n independent clusters. The algorithm
progresses by forming n− 1 clusters and computing the error sum of squares
and r2 value at each step. Clusters are then formed by grouping units which
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yield the lowest sum of squares and highest r2 values. When all n units
are combined into a single large cluster tree (or dendrogram), the algorithm
stops.

Once we have completed Ward’s hierarchical clustering method, we then
determine the optimal number of clusters within that single tree. To do so we
employ the Calinski-Harabasz index method [36]. This method evaluates the
validity of clusters according to the average within-cluster sum of squares
and the average between-cluster sum of squares [168]. The index aims to
maximize both the distance between cluster centers as well as the individual
cluster compactness. We next verified this result by calculating the silhouette
scores of each clustering result, an alternative method for measuring cluster
tightness and separation [217].

These approaches are a common and widely accepted way of uncovering
trends in large datasets [1, 36, 168] and have been successfully applied to
large-scale learning problems in the past [24]. Based on the results of these
analyses, we then address RQ4.3 by drawing semantic meaning through
qualitative analyses of the clusters.

4.3.6 Exploring Course Learning Outcomes

After developing an understanding of common course designs, we next explore
the extent to which similar course designs are related to learning outcomes
(RQ4.4). To evaluate in an exploratory fashion whether there are statis-
tically significant differences in completion rates between clusters, we fit a
one-way ANOVA model considering course completion rates among verified
learners (those who went through a process to verify their identity with edX)
by cluster group.

4.4 Results

4.4.1 Abstracting Structure from Content

In service of RQ4.1, we find that our abstraction of courses sufficiently en-
ables qualitative insights into course design decisions. For example, the au-
thors on this paper from HarvardX can confirm an abundance of video in
Figure 4.2, as reflected in the bar graph. Additionally, HarvardX pivoted
toward smaller, modular courses. In some cases, taking long 16 week courses
and breaking them up into multiple course—reflected in the average course
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Figure 4.5: Hierarchically clustered heatmaps using transition probabilities as input for
DelftX. The color of each cell shows the prominence of a transition (x-axis;
darker colors are higher values). To the left is a dendrogram showing the
agglomerative clustering process, and the leftmost column shows which cluster
each course (y-axis) belongs to. Course titles withheld for blind review. Best
viewed in color.

length. For DelftX, which offers predominantly STEM courses, we confirm a
trend towards longer courses containing more assessment activities.

In the following analyses, we draw the following connections between the
syntactic form of the OLX format and the semantics of learning design: chap-
ter and sequential elements indicate a section break in the course continuity.
Sequentials house subtopics of chapters and are used to break up material
into manageable chunks for learners. Video components are indicative of
video lecture activities and are the primary method for introducing learners
to new content or concepts. Problem elements are used as graded assessment
events where learners are given the opportunity to test their newly gained
knowledge. Lastly, html elements are used to help guide the learner between
video lectures and assessments and provide navigational guidance/context.

From this method, we find evidence that despite the limited number of el-
ements available in an online learning platform like edX, substantial variation
does indeed occur in the learning and structural design of various courses.
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Figure 4.6: Hierarchically clustered heatmaps using transition probabilities as input for
HarvardX.

4.4.2 Clustering Similar Course Structures

The following results address the quantitative comparison of course structures
toward RQ4.2. Figures 4.5 and 4.6 visualize the transition probability
features (color-map, where darker cells are larger values) and the dendrogram
based on our agglomerative clustering approach. Clusters are indicated by
color in the leftmost column of each figure, namely, 4 clusters for DelftX in
Fig. 4.5 and 6 clusters for HarvardX in Fig. 4.6.
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Table 4.1: The percentage of transition types for all courses within clusters for both in-
stitutions. The bottom row indicates the total number of courses included in
each cluster. Only the most prominent transition types /factors are shown.

DelftX HarvardX

Cluster 1 2 3 4 1 2 3 4 5 6

%
A

ll
T

ra
ns

it
io

ns

html→html 10.5 18.9 8.7 8.5 5.8 31.7 8.8 2.9 3.7 10.2
html→problem 0.0 4.8 1.7 2.4 6.0 4.9 4.9 0.2 4.8 5.9
html→video 10.5 15.4 11.2 14.9 5.2 8.1 9.6 17.4 3.7 13.9
problem→html 2.6 9.7 6.9 10.7 5.1 4.4 5.3 0.4 3.8 5.4
problem→problem 1.3 12.8 61.1 34.6 32.8 7.7 12.2 7.0 3.0 4.2
sequential→html 31.6 14.1 2.9 7.6 7.3 7.7 5.4 9.2 15.0 15.5
sequential→problem 7.9 4.0 2.5 4.1 1.5 0.8 0.9 2.6 2.5 2.9
sequential→video 5.3 0.4 0.0 0.2 6.0 4.0 5.0 9.2 10.8 1.3
video→html 10.5 12.8 0.4 12.2 5.1 10.2 9.1 26.1 4.8 9.7
video→video 1.3 0.4 0.0 0.2 2.6 2.4 7.8 1.4 4.5 2.0

# Courses 4 23 6 24 34 21 25 11 9 18

In identifying the ideal cluster number for the transition probability method
we relied on the Calinski-Harabasz index [36] and silhouette [217] method,
along with viewing our dendrograms (y-axis of Figures 4.5 and 4.6) for sen-
sible cutoffs [154].

To determine the optimal number of clusters to use with the trajectory
mining approach, we again computed clustering quality measures using the
Calinski-Harabasz index [36] and silhouette [217] method. We determined
the optimal number of clusters for DelftX to be four and for HarvardX to be
three.

4.4.3 Key Structural Components

With regard to RQ4.3 which is concerned with identifying the key structural
components that define each cluster of similar courses based on quantitative
analyses of their syntactic structure, we highlight the qualitative insights
offered by each method into the semantic trends which define each cluster.
By contextualizing each element into its place in the course relative to other
elements, we identify learning design patterns that distinguish each category.

Transition Probability: DelftX

With regard to DelftX, Figure 4.5 shows two key transition types with promi-
nent transition rates correlated to clusters, namely, problem-problem and
html-html, both indicated by darker color. These are in contrast to the less-
prominent transitions found in the left portion of the graph (such as video-
problem transitions). The cluster map indicates that some transition rates
have larger effects than others.
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The most dominant feature in Cluster 1 (green) is the sequential-html
transition type which accounts for 31.6% of all transitions in the cluster,
indicating frequent use of text/reading activities to introduce new sequences.
Another prominent feature of is the proportion of video-video events, which
account for 1.3% of all transitions. And even though this indicates a low
prominence of consecutive video lectures, it is the highest among clusters
from University A (but lower than any HarvardX cluster; to be discussed).

In Cluster 2 (yellow), the html-html transition type accounts for 18.9%
of all transitions, indicating a substantial amount of consecutive reading ac-
tivities. And with html-video also being a dominant feature in this cluster,
we see that those sequences of consecutive reading activities are often fol-
lowed by a video lecture activity. Also worth noting is the trend that any
transition involving html elements/reading activities is high in this cluster,
indicating that, regardless of context, courses here are comprised mainly of
reading activities.

The problem-problem transition type is the most prominent feature of
Cluster 3 (purple) in accounting for 61.1% of all transitions in the courses.
That is nearly twice as prominent as any other transition frequency from
either institution. We may assume long assessment activities to be the main
function of the courses in this cluster. There are no chains of consecutive
video lectures, and sections never begin with videos.

The problem-problem transition type is also a dominant feature in Clus-
ter 4 (red), but this cluster is distinguished from Cluster 3 with its relatively
high frequency of video-html transitions. While Cluster 3 contained very few
video lecture activities, Cluster 4 strikes a closer balance of being assessment
heavy while still offering more video lecture activities. From this transition
we further note that reading activities typically follow video lectures, likely
providing a summary or preparing learners for the next assessment activity.

Transition Probability: HarvardX

With regard to HarvardX, Figure 4.6 shows more clusters and more variation
among clusters. While containing a largely even distribution of most transi-
tion types, Cluster 1 (green) is dominated by the problem-problem feature,
which accounts for 32.8% of all transitions in this cluster. This indicates that,
similar to Clusters 3 and 4 in DelftX, these courses contain numerous long
assessment activities. Another trait of courses in this cluster is the relatively
high prominence of the html-problem feature. This indicates that courses
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in this cluster most often preface their assessment activities with a reading
activity.

In Cluster 2 (yellow), 31.7% of all transitions among courses are html-
html, meaning that courses in this cluster have frequent, extended strings
of consecutive reading activities. Also prominent at 10.2% of transitions is
the video-html type. From this we infer that those long strings of reading
activities are often preceded by lecture video activities.

The most distinguishing feature of Cluster 3 (purple) is video-video tran-
sition types, accounting for 7.8% of all transitions in this cluster. Across
institutions, this cluster has the highest frequency of consecutive video activ-
ities. Video lectures are the primary method of instruction here, and we also
see these lectures are typically followed by strings of consecutive assessment
activities (accounting for 12.2% of all transitions in the cluster).

Cluster 4 (red) is primarily characterized by prominent video-html tran-
sition types (26.1%), which is more than twice the frequency of any other
cluster for this transition type. This indicates that video lecture activities
for courses in this cluster are most frequently followed by reading activities.
And given that the most common transition from reading activities is to video
lecture activities (html-video 17.4%), we can see that courses in this cluster
often adopt the pattern of alternating video lecture and reading activities.

The most unique trait of Cluster 5 (blue) is a relatively even distribution
of all event transition types. The two most prominent are sequential-html and
sequential-video, at 15.0% and 10.8% respectively. This may indicate that
new sections in these courses are typically introduced with either reading or
video lecture activities, noting the frequency of new sections beginning with
video activities in this course is the highest among clusters from HarvardX.

The sequential-html (15.5%) transition type is also the most prominent
in Cluster 6 (orange), but this cluster is differentiated from Cluster 5 by
its low sequential-video transition type (1.3%), which this is the lowest of
any cluster from this institution. Also prominent in this cluster is the high
frequency of the html-video transition type, which shows a mixing of video
lectures and reading activities.

Trajectory Mining: DelftX

In Figures 4.7 and 4.8 we observe that the clustering results from the tra-
jectory mining approach are primarily influenced by (i) the length of a given
sequence, (ii) the frequency of activity types within a sequence, and (iii) the
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temporal order/placement of activities within the entire course trajectory,
whereas the clustering based on transition probabilities (above) was illustra-
tive of the sequence and order of activity types.

With regard to DelftX (Figure 4.7), in Cluster 1 we observe mostly
reading (representing 42% of all activities) and assessment activities (34%).
One interesting characteristic of this cluster’s learning design is the equal
frequency of section breaks and video lecture activities (each at 11%). This
indicates that each section in the course consists of a single video lecture
activity. Reading activities are most prominent at the beginning of courses
in this cluster.

The most distinguishing trait of Cluster 2 is the prominence of assess-
ment activities (48%) found throughout the sequence, with some notable
large spikes in frequency throughout the courses—indicative of long exams
and problem sets. Reading activities are also prominent at the beginning
of this cluster of courses. With the ratio of video lectures (12%) to section
breaks (6%) strongly favoring the former, we observe that, unlike Cluster 1,
each section is typically made up of two video lecture activities.

Cluster 3 is clearly characterized primarily by its short length, being
on average half the length of others. The cluster is also quite noisy—lacking
any discernable patterns. While the state distribution plot may not be the
most illustrative due to its length, we do observe activity frequencies largely
comprised of reading activities (42%).

The state distribution for Cluster 4 indicates reading activities to be the
prominent activity (54%). There are three times as many reading activities
as there are assessments (18%) and very few video lecture activities (11%).
We also observe high frequency of reading activities at the beginning of these
courses, which indicates design patterns where introductory texts are used
to prime learners.

Trajectory Mining: HarvardX

With regard to HarvardX (Figure 4.8), in Cluster 1 we observe mostly as-
sessment activities (40%) followed by a relatively high frequency of video
lecture activities (20%). The general trajectory of these courses can be un-
derstood as designs of short introductory reading activities at the beginning
of the course followed by long sequences heavy with assessment activities
with the sporadic video lecture mixed in.
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Figure 4.7: State distribution plots from the trajectory mining method per cluster for
DelftX showing, at each point along the x-axis, the proportion of each com-
ponent type.

Figure 4.8: State distribution plots per cluster for HarvardX.

Similar to DelftX’s Cluster 3, Cluster 2 consists of courses with short
length (on average 250 components). In addition, it appears noisy and with-
out clear patterns from the visualization. However we observe that it is
largely comprised of reading activities (39%) with very few video lectures
(22%).

Cluster 3 contains courses with a high frequency of video lectures (23%)
and reading activities (45%). As is the case with Cluster 2 from DelftX, these
are the only clusters with more videos than problems, indicating that courses
in these clusters focus primarily on content delivery.

An interesting trend across all three clusters for HarvardX is that each
cluster’s courses start with a spike in reading activities. This is most likely in-
troductory or motivational material aimed at helping students persist through
the course. A similar trend can be discerned in clusters from DelftX.

While the trajectory mining approach provides insights along three struc-
tural components (length, frequency of activity types, and temporal location
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of activities), the transition probability approach, even though it is limited to
considering a single primary structural component (transitions and the order
of activities), offers concrete insights into the order of a course’s activities,
which makes it directly applicable to principles from the learning design liter-
ature about designing activity sequences. However, the results in Figures 4.7
and 4.8 show that the trajectory mining approach enables insightful temporal
analyses in that they show how evolution of patterns and sequences over the
various stages of the courses and reveal key similarities and differences not
only between clusters but institutions as well.

4.4.4 Learning Outcomes

With service to our exploratory RQ4.4, we examine the extent to which clus-
ters are correlated with different learning outcomes as measured by course
completion rates (the proportion of verified learners earning a passing grade).
To see if any of the observed differences in completion rates between clus-
ters are statistically significant (at the α = 0.05 level), we conducted an
exploratory analysis by fitting a one-way ANOVA model. For DelftX (Fig-
ure 4.9 containing means and standard errors), we find the differences in
neither model (transition probability and trajectory mining) to be statisti-
cally significant (p = 0.74 and p = 0.31 respectively).

For HarvardX (Figure 4.10), a one-way ANOVA shows that for the tran-
sition probability approach, there is a statistically significant relationship be-
tween clusters and completion rates (p = 0.002). We therefore conducted a
Tukey post-hoc test to identify which pairs of clusters were significantly differ-
ent. We observe significant differences between Clusters 1 and 5 (p = 0.002)
and Clusters 5 and 6 (p = 0.004). The ANOVA model for the trajectory
mining approach was not statistically significant (p = 0.39). We present
any differences strictly as correlation (not causal) and a sign that more work
should be done in the future to explore any causality in this relationship.

4.5 Discussion

The selection of the two institutions for the current study was a product of
both of them having offered a large number of MOOCs and a mutual interest
and willingness to collaborate. While these institutions combined offer a large
collection of courses, they represent less than 2% of all institutions (and less
than 10% of courses) on the edX platform. More generalizeable findings are
likely found by including more courses and institutions in future analyses.
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Figure 4.9: The mean and SEM (error bars) of passing rates of each cluster from DelftX
courses.
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Figure 4.10: The mean and SEM (error bars) of passing rates of each cluster from Har-
vardX courses.

Regarding the findings from RQ4.4 from HarvardX, while we are not yet
equipped with enough evidence to present this as a causal relationship, we
note that HarvardX not only has more courses than DelftX, but also more
variation in the learning design and structure of courses. We are encouraged
that our methods show differences in learning outcomes based on our course-
design abstraction, and this further indicates that this research would benefit
greatly from the involvement of more institutions so that we can consider
the full spectrum of learning designs and continue to dig deeper into their
relationship with learning outcomes.

Future work should explore to what extent increasing the number of grams
(sequences longer than two pairs of activities/elements) for the transition
probabilities can impact the (i) insights afforded by the results and visualiza-
tion and (ii) learning outcomes from each cluster. It should also be insightful
if in future research, instead of taking the entire course to encode as input,
one conducted a similar method using only course chapters or weeks.
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Additionally, we explored the predictive power of our course design data
on a course by course basis for HarvardX. In the linear model, predictor
variables included total number of activities and transitions, and the outcome
variables included certification rates and the percentage of chapters visited (a
proxy for learner engagement). Each variable was transformed x → log(1 +
x) prior to regression and normalized to unit variance. For each outcome
variable we performed a step-wise regression to identify the optimal subset
of predictor variables.

We found virtually no predictive power for certification outcomes using
multi-regression (R2 nearly zero), but did find significance for grade and the
percentage of chapters explored (p ≤ 0.05) within our regression coefficients
for 15 of our 25 predictors. For activity frequencies, we found the number
of reading activities and section breaks significant, with a negative effect on
both the grade and on the percentage of chapters explored (the R2 of the
regression was 0.26 for the grade and 0.63 for the percentage of chapters
explored).

We discuss this modeling simply to indicate our abstraction of course
design may have predictive power for aspects of learner behavior, i.e., not just
outcomes such as grades or certification. Our future work plans to address
this more deeply by taking advantage of broader categories of learner metrics.

4.6 Conclusion

In this research we present a successful method of abstracting the design of a
MOOC according to principles from the learning design literature (RQ4.1).
Using this method we then quantitatively compare and contrast the design
of the courses using both transition probability clustering and trajectory
mining (RQ4.2). This then enabled us to draw qualitative insights about
the commonalities among courses in each cluster—revealing latent themes
in learning design patterns by MOOC instructors and designers (RQ4.3).
To explore the validity of these findings, we evaluate the extent to which
these identified trends in the learning design are associated with learning
outcomes in the courses examined (RQ4.4). This new avenue of documenting
and understanding pedagogy at scale enables novel lines of inquiry in online
learning research by directly connecting teaching/ learning design trends to
measurable trends in learner engagement.

We are inspired by our ability to automate the process of categorizing
course designs and propose that future work needs to continue to refine and
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test our abstraction method and how it impacts categorization. We also hope
to expand our outcome metrics in order to further explore the relationships
with course design. Above all, we hope that our work will be a first step in
showing the value of addressing digital learning environments from a course
structure perspective and finding new challenges as digitization takes an even
firmer hold in the learning sciences.
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Study Planning
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This part serves RQ2 (How can MOOC environments be improved to
advance the possibilities of experimentation?) by focusing on the learning
strategy of study planning. Given that myriad research in the past—which
had been carried out in in-person, mostly lab-based contexts—provides ev-
idence for study planning as an effective learning strategy which can cause
improved learning outcomes, we here evaluate the extent to which these find-
ings transfer and apply to large-scale learning environments.

This is in integral line of inquiry due to the the growing popularity and
dependence on online education today. This line of research challenges the
notion that all of the study strategies which have been deemed effective in
traditional learning environments can be directly used and applied with suc-
cess in the online context. With this iterative series of experiments, each
building upon the last, online learning researchers can begin to develop new
principles for learning sciences which are specific to the online context and
highlight areas where online and traditional learners behave differently.

In Chapter 5 we present an evaluation of the effectiveness of a new type
of intervention (again evaluated in a randomized-controlled trial) that was
designed to improve learners’ study planning behavior. We designed this
next intervention to require minimal effort and engagement from the learner
while still providing them with valuable information that can positively affect
their learning experience. To this end, we created the Learning Tracker,
a dashboard-type visualization that shows a learner’s own behavior (across
six behavioral metrics) compared to a previously successful learner in the
same course. We ran this intervention in four MOOCs and found that it
significantly increased passing rates across all four courses.

In Chapter 6 we present a pilot study in the form of a randomized-
controlled trial in a MOOC setting which evaluated the effectiveness of a
simple study planning interface. With this interface, learners were given the
opportunity to explicitly state their study plans for each week (at the be-
ginning), and at the end of each week they were prompted to think back
and reflect on how well they did in achieving their goals and sticking to
their plans. Despite the fact that similar interventions had strong, signifi-
cant effects in traditional learning contexts, we did not observe any significant
change in learner outcomes based on this intervention. This served as an early
indicator that interventions that have been effective in traditional learning
environments cannot be readily applied to MOOC learners. The main study
in Chapter 6 introduces SRLx, a personalized study planning tool which bor-
rows the key components from the Learning Tracker (visualized feedback
of behavior, this time delivered and updated in real-time), along with new
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features which offer the learner more ways to engage. For example, with
this new tool, learners can set their own qualitative (text-based descriptions
of their goals, motivations, and intentions for the course) and quantitative
(number of quizzes, videos, etc. to engage with) goals with regular feedback
moments built-in. So that the most possible learners could benefit, we of-
fered SRLx to an entire MOOC and evaluated the manner with which learners
engaged with it.

In summary, this part begins by testing the applicability of study planning
to the MOOC context, and upon identifying promising results, contributes
a fully interactive, personalized study planning system that can be imple-
mented in any of the more than 2,000 MOOCs on the edX platform.



Chapter 5

Follow the Successful Crowd:
Raising MOOC Completion
Rates through Social
Comparison at Scale

Social comparison theory asserts that we establish our social and personal
worth by comparing ourselves to others. In in-person learning environments,
social comparison offers students critical feedback on how to behave and be
successful. By contrast, online learning environments afford fewer social cues
to facilitate social comparison. Can increased availability of such cues pro-
mote effective self-regulatory behavior and achievement in Massive Open On-
line Courses? We developed a personalized feedback system that facilitates
social comparison with previously successful learners based on an interactive
visualization of multiple behavioral indicators. Across four randomized con-
trolled trials in MOOCs (overall N = 33, 726), we find: (1) the availability
of social comparison cues significantly increases completion rates, (2) this
type of feedback benefits highly educated learners, and (3) learners’ cultural
context plays a significant role in their course engagement and achievement.

This chapter is published as “Follow the Successful Crowd: Raising MOOC Completion
Rates through Social Comparison at Scale” [66], by D. Davis, I. Jivet, R. Kizilcec, G.
Chen, C. Hauff, and G.J. Houben in Proceedings of the of 7th International Conference on
Learning Analytics and Knowledge, 2017.
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5.1 Introduction

A mechanism for increasing access to higher education content, Massive Open
Online Courses have afforded millions of people worldwide the opportunity to
learn for little or no cost. To achieve this unprecedented scale, MOOCs pro-
vide the same material to all learners, no matter what background, motiva-
tion, and skill set they possess. Yet this approach falls short of leveraging the
technical possibilities of contemporary educational resources to offer learners
personalized support, such as giving guidance to learners who are less adept
at regulating their learning process over several weeks to achieve mastery.
Low course completion rates (typically between 5-10%) highlight the need
for additional support in MOOCs. While many learners have no intention to
complete MOOCs and instead use them to fulfill alternative needs (e.g., to
refresh their memory of a specific topic or to meet new people), the majority
of learners who are motivated and committed to complete the course still
fail to achieve their goal [131, 130]. Most learners report that they could
not find the time to keep up with the course, a challenge that is related to
insufficient self-regulatory abilities [274, 129]. Self-regulated learning (SRL;
i.e., the ability to plan, monitor, and actively control one’s learning process)
is associated with a higher likelihood of achieving personal course goals in
MOOCs, including course completion [134, 167]. However, the current design
of MOOCs does not support learners to engage in SRL [176]. In particular,
most MOOC platforms do not provide learners with personalized feedback
beyond grades [64], and thus, learners may not know if their engagement in
the course is conducive to achieving their learning goals.

We propose a technological solution that facilitates social comparison to
help learners regulate their learning behavior to support course completion.
According to social comparison theory [82], people establish their social and
personal worth by comparing themselves to others. Offering learners the
opportunity to compare their behavior with that of their peers promotes
increased student achievement in formal learning environments [19, 104, 200].
Students in in-person classrooms can easily identify role models and regularly
monitor these role models’ behavior and compare it to their own. However,
this affordance of social comparison is missing in most online “classrooms."
Instead, online learners need to be self-directed and regulate their learning
process independently with sparse social and normative signals.

In addition to evaluating the impact of providing learners with person-
alized feedback, we further examined the potential of adjusting the framing
of the feedback to match learners’ cultural context. Framing feedback in a
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way that is consistent with the norms and achievement-based motivation of
learners’ cultural context is expected to support internalization and behavior
change. Prior work has observed differences in the way learners from differ-
ent countries and cultures interact with MOOCs [94, 129, 169]. We define
cultural context based on two established country-level cultural dimensions:
individualism by Hofstede et al. [99] and tightness by Gelfand et al. [90].

We explore the extent to which insights from the social comparison and
cultural psychology literature can be translated to support learners in MOOCs.
We evaluate how to offer feedback based on social comparison in an online
learning environment. To this end, we design, develop, and empirically evalu-
ate a personalized and scalable feedback system that presents MOOC learners
with a visual comparison of their behavior to that of their "successful" peers,
that is, those who completed the course in the past. We deployed the system
in four edX MOOCs offered by the Delft University of Technology with a to-
tal of N = 33, 726 learners. In each deployment we drew on research findings
across multiple domains including learning analytics, educational psychology,
and social & cultural psychology to inform the design on both the feedback
we provide (i.e. the behavioural metrics shown to the learners) and how the
feedback is framed (e.g., individualistic- or collectivist- oriented framing).

Our work extends prior research by testing a theory-informed technolog-
ical solution in a large and diverse population (i.e., MOOC learners) for a
prolonged period of time. These are our main findings:

• Personalized social-comparison feedback increases course completion
rates.

• Only highly educated learners benefit from this kind of feedback.

• Course engagement and achievement varies by cultural context: learn-
ers in countries with a "loose" culture outperform those in countries
with a "tight" culture.

5.2 Background

In this section we provide the theoretical and empirical underpinnings to our
work which facilitates social comparisons with personalized feedback. We
discuss (i) previous studies on incorporating feedback in online learning, (ii)
the theory of social comparison and its application to learning, and (iii) past
research on the impact of learners’ cultural context on learning behavior.
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Feedback Providing feedback is one of the most effective teaching strate-
gies to improve student achievement [96]. Given the scale of MOOCs it
is impossible for a teacher or teaching assistant to personally monitor and
attend to each learner’s unique needs. Therefore, up to this point, the ma-
jority of feedback solutions developed for MOOCs and other online learning
environments have been for the course instructor, typically in the form of a
dashboard representing aggregated learner data [160, 174, 257].

While teacher-facing feedback systems can provide key insights for im-
proving the course experience, they are unlikely to address the issue that
many learners feel lost and isolated in MOOCs [122]. Personalized feedback
promises to promote effective SRL behavior by facilitating self-monitoring of
learning processes [119]. One of the most important lines of research which
aims to provide learners with personalized feedback is that of Open Learner
Models (OLM), an educational interface that gives learners insight into their
current knowledge state and activity patterns, which are typically unavailable
to them [32]. By allowing learners to visualize and reflect on their own learn-
ing and achievements, OLMs have been proven to work as powerful meta-
cognitive feedback tools that impact learners’ use of SRL strategies [33, 93].
We designed the Feedback System informed by prior work on the design of
accessible, understandable, and scrutable [121] learner models [53, 120].

There has been little progress in developing and deploying personalized
feedback for large-scale MOOC environments, and most work focuses on sup-
porting teachers [223]. In the present research, instead of presenting aggre-
gate data for all learners in a course, we addresses the challenge of delivering
individualized, targeted feedback to each learner based on her behavior in
the course relative to her peers’ behavior to facilitate social comparison. The
present research contributes an empirically evaluated scalable and person-
alized feedback intervention to the literature on learning analytics. Recent
studies have begun to run controlled experiments [204], but most feedback
system evaluations thus far explain the design, development, and implemen-
tation considerations without rigorously testing whether the added support
contributes to behavior change or learning gains [257].

Social Comparison The feedback learners receive through the Feedback
System is grounded in social comparison theory, initially proposed by Fes-
tinger [82]. The theory posits that, guided by a drive to continuously improve,
people evaluate their abilities through comparison to others when they are
lacking objective means of comparison. It has received empirical validation
and found application in various domains, including marketing, health psy-
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chology, interpersonal relationships, and also in education [56, 162]. In one
study, social comparison was used to improve the Web search behavior of
novice users [15]. The authors found that showing non-expert searchers vi-
sual indicators of the search behaviors of expert searchers resulted in closer
alignment with effective behavior and, therefore, more successful search task
completion among novices.

Social comparison is an inherent phenomenon in traditional classroom
environments because of both the visibility and accessibility of similar peers
[162]. Multiple studies have demonstrated that comparing oneself to self-
selected peers who perform slightly better has a beneficial effect on middle
school students’ grades [19, 104]. Forced comparisons also have a beneficial
effect on performance when the target of comparison is performing slightly
better than the learner, although no effects were found when there was a big
performance gap between two sides [103].

In the context of a small online learning platform (N = 55), Papanikolaou
[200] investigated students’ attitudes towards viewing the learner model of
others. Her results showed that when learners compare their behavior to
that of a “desired” one, they are then motivated to recognize and adapt their
learning strategies. She suggests that the “desired" state should be generated
based on real data coming from peers who are “worth following." We build
on this insight by considering MOOC graduates of previous editions as the
basis for creating a role model.

Guerra et al. [93] integrated social comparison features in the form of peer
and class progress in the design of an intelligent interface for a learning man-
agement system to provide additional motivation and navigation support.
This approach showed a positive effect on engagement and efficiency in two
studies (N = 89), but no significant effects on learner performance in terms of
final grades or learning gains. On the other hand, Rogers et al. [213] investi-
gated “discouragement by peer excellence" in a MOOC setting and concluded
that learners who are exposed to examples of excellent peer achievements
risked feeling less capable of performing at the level of those peers. The
Feedback System is different in that it shows the behavior patterns of the
average completing learner, so as not to risk discouragement.

The present research adds to the literature on social comparison in the
online learning environments by investigating the effects of forced comparison
of learners’ performance and engagement in a MOOC setting. With the
Feedback System, MOOC learners can visualize their behavior compared to
that of successful learners, offering them a model against which they can
evaluate their own study habits.
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Culture MOOC learners come from all over the world and cover a pro-
foundly wide range of cultural contexts. Prior MOOC research has observed
a learner’s culture as affecting behavior within the course. For example, Liu
et al. [169] explored patterns in MOOC learner behavior in relation to Hof-
stede’s cultural dimensions [99]. The authors clustered countries based on
similarity across four cultural dimensions and found significant variation in
learner behavior between the clusters. Moreover, Kizilcec et al. [128] found in
two randomized experiments in MOOCs that the effect of a self-regulation in-
tervention depended on learners’ cultural context (N = 17, 963): only learn-
ers in individualist countries benefited from the brief writing activity. Thus,
prior work supports the hypothesis that cultural factors shape learner behav-
ior in MOOCs. We examine two country-level cultural dimensions: individ-
ualism [99] and tightness [90].

Hofstede’s dimension of individualism-collectivism characterizes cultural
variation around the world. Cultures high in individualism are those which
emphasize the individual as an independent actor with loose social relations.
Cultures high in collectivism are characterized by tightly-knit social rela-
tions and shared responsibility for the collective well-being [99]. Gelfand
et al. conceived an index that ranks countries by their cultural tightness:
tight cultures are those with “strong norms and a low tolerance of deviant
behavior," and conversely, cultures of low tightness (or loose cultures) are
those with “weak social norms and a high tolerance of deviant behavior" [90].
The present study attempts to adapt feedback to learners’ cultural context so
that it resonates with the learner, facilitates internalization of the feedback,
and promotes positive behavior change.

Prior work suggests that cultural differences shape people’s regulatory
focus, whether they are motivated by pushing for success (promotion) or by
avoiding failure (prevention) [98, 170]. Members of individualist and tight
cultures focus more on promotion, while members of collectivist and loose
cultures focus more on prevention [170, 178]. We apply this insight in the
design of our feedback framing messages to appeal to learners in different
cultural contexts.

5.3 MOOC Overview

For our experiments, we employed our personalized Feedback System to
learners across four MOOCs—all of them re-runs (i.e. not in their first
edition)—provided by the Delft University of Technology on the edX plat-
form:
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WaterX The Drinking Water Treatment MOOC teaches technologies for drink-
ing water treatment. Its second edition ran between 12 January and 29
March 2016. It is a seven-week course with 63 instructional videos and
42 summative quiz questions. A total of 10,943 learners registered for the
course. To complete the course, learners had to gain at least 60% of all
scores (i.e. passing threshold τpass = 60%).

UrbanX The Urban Sewage Treatment MOOC learners are taught how to
design and manage solutions for urban sewage. The second edition of the
seven-week course ran between 12 April and 20 June 2016 with 8,137 learn-
ers. There are 272 summative quiz questions (τpass = 60%) and 71 videos.

BusinessX Responsible Innovation: Ethics, Safety and Technology teaches
learners how to deal with risks and ethical questions arising from new tech-
nologies. 2,352 learners registered to the second edition which ran between
11 April and 14 June 2016. The course has 79 summative quiz questions
(τpass = 59%) and 54 videos.

CalcX Pre-university Calculus is the only MOOC in our list that targets be-
ginning Bachelor students and was designed as a refreshment course before
entering higher education. The third iteration of this course ran from 28
June 2016 through 27 September 2016 with 12,294 learners, 85 videos, and
327 summative quiz questions (τpass = 60%).

We found the WaterX, UrbanX, and BusinessX MOOCs to attract a sim-
ilar population of learners: two thirds of the enrolled learners were male,
the median age was 28, and the majority of learners held a BSc or MSc de-
gree. The learner population in the CalcX course was instead targeted at
high-school students who were about to enter university. While the gender
balance was consistent with other MOOCs (30% female), the median age was
only 25, and the most common education level was a high school diploma
(45%).

For each learner, we collected all available edX log traces such as the
learners’ clicks, views, dwell time on the edX platform, and their provided
answers to the quiz questions.

5.4 Approach

In Section 5.4.1 we first introduce the research questions driving our work
before detailing the design of our Feedback System which was deployed in
different instantiations across the four MOOCs just described.
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5.4.1 Research Questions

The first Research Question and Hypotheses are based primarily on the
social comparison literature in the context of education and learning envi-
ronments:

RQ5.1 Does providing personalized social comparison feedback increase
learner achievement and self-regulatory behavior in MOOCs?

H5.1.1 In line with previous findings [15, 200], we expect that provid-
ing learners a comparison of their own behavior to that of previ-
ously successful peers will increase learner achievement (measured
in terms of completing/passing the course) and engagement (activ-
ity levels within the course environment).

H5.1.2 Learners will change the aspects of their behavior that the Feedback
System makes them aware of.

H5.1.3 Certain feedback metrics (and combinations of metrics) will be more
effective than others in leading to desirable changes in student be-
havior.

Based on prior work which has shown that learners from different cul-
tural contexts learn and behave differently in MOOCs [94, 129, 134, 169], we
explore:

RQ5.2 Which learners benefit most from the Feedback System?

We also examine the differences in learning behavior according to learn-
ers’ cultural context. We expected the effects of the feedback to depend
on learners’ cultural context in terms of individualism and tightness, and
moreover, that matching the framing of feedback to learners’ culture to be
beneficial:

RQ5.3 Does feedback framed in line with a learner’s cultural context lead
to increased achievement and self-regulatory behavior compared to
a culturally mismatched framing?

H5.3.1 Learners from individualist cultures will show more engagement
than those from collectivist cultures with the individual- promo-
tional framing, while learners from collectivist cultures will show
more engagement with the collectivist- prevention framing.
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H5.3.2 Learners from tight cultures will show more engagement than those
from loose cultures with the collectivist-prevention framing, while
learners from loose cultures will show more engagement with the
individual-promotional framing.

5.4.2 Feedback System Design

Recall, that our design rationale of the Feedback System (presented as the
“Learning Tracker" to learners in the courses, cf. Figure 5.1) is to provide
learners feedback about their own behavior that enables them to make well-
informed decisions about their learning strategies going forward [279] as a
result of increased self-awareness. The Feedback System can be thought of
as a mirror with which learners can view and react to their own, previously-
invisible behavior. Since SRL skills are generalizable, the design should be
agnostic to the content of each specific MOOC the feedback system is de-
ployed in. We identified three key criteria for our system design:

• Traceable: we can only provide feedback on behavior we can extract
and derive from edX’s log traces2;

• Scrutable [121]: afford learners the ability to intuitively understand and
explore the information presented;

• Actionable: learners should be able to take action and change their
behavior based on what they learn from the presented feedback.

After surveying the literature on learner model visualizations, we settled
on employing a single spider chart to visualize six metrics of learners’ behavior
in relation to that of their successful peers, as shown in Figure 5.1. The spider
chart’s key benefits include: (i) a single, embodied representation of multiple
metrics, (ii) numerous indicators displayed in a small space, (iii) a simple
representation of metrics—data is shown as single points along radial straight
lines, and (iv) easily comparable—information is represented as differently
colored areas that can be layered [219].

In all four courses, the experimental conditions were not made explicitly
known to the learners; the Feedback System appeared seamlessly integrated
with the rest of the course materials.

We operationalized previously successful students, or “role models", as
learners who earned a passing grade in the previous edition of the MOOC

2edX provides fine-grained log traces of each learner’s clicks & views, provided answers
to assignments, forum interactions, etc.
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(note that this setup requires that subsequent editions of the same MOOC
have few changes). We updated the Feedback System every week (based on
the learners’ activities on the platform in all weeks leading up to the current
one) so that the learners could see an up-to-date representation of their ac-
tivities as compared to that of the role models. The learners’ behaviors in
the courses were tracked by the standard edX tracking log system.

In each MOOC, the Feedback System was placed in the Weekly Intro-
duction unit of each course week so that it would be readily available and
immediately visible to learners upon entering the new course week, enabling
them to reflect on their SRL behavior so far. With the exception of the Feed-
back System, all learners received the same course materials, independent
of the experimental condition.

Feedback metrics Table 5.1 shows an overview of the feedback metrics
given to learners in each MOOC. At the end of each week in the course, the
metrics were computed based on the log traces of all weeks prior. These met-
rics were chosen based on the following criteria: relevance to self-regulated
learning, clarity/intuitiveness to the learner, and availability in the log data.
For each metric, all values of previously successful learners were sorted and
the top 5% and bottom 5% of values were discarded to remove outliers. The
mean of the remaining values was computed, yielding a single value per met-
ric — we consider this mean to be indicative of the tendency of the whole
successful group of learners. We operationalize “sessions" as strings of activ-
ity with less than an hour gap between two events. As shown in Table 5.1,
we used different feedback metrics in different MOOCs to explore the impact
of the choice of metrics (H5.1.2 and H5.1.3).

Feedback System Alterations Apart from the different metrics, we also
explored three refinements of the Feedback System:

1. Planning ahead: in WaterX the learners only received feedback about their
behavior up to now and how it compares to that of successful learners. In
this alteration (in UrbanX and BusinessX), we also provide the learner with
a visualization of the role models’ behavior (labelled as “Average graduate
this week” in Figure 5.1) in the upcoming week, enabling learners to plan
ahead instead of only reflect.

2. Interactive visualization: instead of a static feedback image (as provided
in WaterX), in this alteration, we provide learners with an interactive vi-
sualization they can explore, i.e. mouse over the metrics to reveal exact
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Table 5.1: Overview of feedback metrics and alterations presented to learners in each
MOOC. A • indicates the presence of the metric/alteration.

Wa
te

rX

Ur
ba

nX

Bu
si

ne
ss

X

Ca
lc

X

Feedback metrics
Quiz submission timeliness
(days)

• • • •

Time on the platform (in hours) •
Time watching videos (in hours) •
Number of videos accessed •
Number of quiz questions at-
tempted

• • • •

Proportion of time spent on
videos while on the platform (in
%)

•

Average time on the platform per
week (in hours)

•

Number of revisited video lectures •
Number of forum visits •
Number of forum contributions •
% of time spent on quizzes •
Number of sessions per week • •
Mean session length (in minutes) • •
Mean time between sessions (in
hours)

• •

% of time-on-task - time spent
on video-lecture, quiz or forum
pages

•

Alterations
Interactive visualization • • •
Planning ahead • • •
Feedback framing •

numbers and comparisons (cf. Figure 5.1), and toggle on/off the metrics of
the average successful learner for the upcoming week.

3. Cultural framing: in the first three MOOCs, the Feedback System pro-
vides no written interpretation of the visualization; instead learners are left
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to draw their own conclusions. In CalcX we additionally provide an ex-
planatory text (as shown in Figure 5.1) that offers a clear interpretation of
the learner’s “on-trackness”.

Framing

Feedback Metrics

Planning Ahead

Interactive

Figure 5.1: The Feedback System as shown in the individualistic-promotional condition
in CalcX, annotated for clarity.

5.4.3 Studies

In each MOOC, we deployed a variation of the Feedback System. Table 5.1
summarizes the feedback metrics and variations deployed. For random as-
signment, we used a between-subjects design, where learners were assigned
to either the control or a treatment condition and remained in this condi-
tion throughout the study. Table 5.2 shows a breakdown of the number of
learners assigned to each condition for each MOOC. To gather baseline data
from the first two weeks of each course, we released the Feedback System
in the treatment conditions in the third week in each experiment. As noted
before, the Feedback System is then updated on a weekly basis to reflect the
updated learner activity data.
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In the control condition across all experiments, learners did not receive
the Feedback System. However, the edX platform offers a very basic form of
learner feedback: a learner can visit her “progress” page and view the number
of points scored so far in the course. This progress page is available to all
learners, independent of their condition assignment. In the treatment con-
dition, learners received the Feedback System in addition to edX’s progress
page.

Table 5.2: Overview of the number of learners enrolled and assigned to the control and
treatment groups respectively. The number of active learners (having spent at
least 5 minutes in the course platform) is in the parentheses beneath.

WaterX UrbanX BusinessX CalcX

Enrolled 10,943
(2,519)

8,137
(1,517)

2,352
(324)

12,294
(3,415)

Control Group 5,460
(1,268)

4,038
(771)

1,184
(164)

4,142
(1,150)

Treatment Group 1 5,483
(1,251)

4,099
(746)

1,168
(160)

4,087
(1,147)

Treatment Group 2 – – – 4,065
(1,118)

In all but one study there is only one treatment condition. In CalcX, we
had two treatment conditions, one for each culture-specific framing of the
explanatory feedback text:

• CalcX treatment 1 received text with an individualistic promotion-
focused framing;

• CalcX treatment 2 received text with a collectivist
prevention-focused framing.

We determined each learner’s cultural context based on the IP address
used to access the course relying on Maxmind’s GeoIP lookup database3, as
not all learners self-report their nationality. For learners with more than one
IP address used, we consider the first one they used to access the course as
their country.

We developed a strong manipulation of the culture-specific framing by
drawing on the cultural difference in (1) individualistic vs. collectivist ap-
peals (collectivist cultures see the self embedded in a relational network,
while the self-concept is more independent in individualist cultures), and (2)

3http://www.maxmind.com

http://www.maxmind.com
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prevention- vs. promotion-focus (the prevention of negative outcomes is em-
phasized over the promotion of positive outcomes in collectivist cultures, and
vice versa for individualist cultures) [98, 171, 178]. We designed two texts
for each treatment group: one for learners who are “on track” (character-
ized by exhibiting similar behavior to that of the role model learners) and
one for learners who are “behind” (characterized by exhibiting less course
engagement compared to the role model learners). The texts (four overall)
and how those texts align with a particular framing are shown in Table 5.3.
The learners were evaluated as “on-track" or “behind" based on their on-
trackness score, OT . The on-trackness score quantifies the similarity between
a learner’s behavior and that of the previously successful learners: we nor-
malize each metric to a value in the range [0, 10] (chosen for convenience to
work well in the spider chart setup) and then compute the difference, di, be-
tween the learner’s score on metric mi and the previously successful learners’
average score on mi. If di ≤ −1 ∀mi, i = {1, .., 6} the learner is classified as
behind, otherwise she is on-track — this is a very conservative classification,
the learner has to have a lower engagement level on every single metric before
she is considered as being behind.

Table 5.3: Overview of the supplementary texts the treatment groups received in CalcX,
depending on their performance in the course so far (either on track or be-
hind). The alignment of the words and phrases with the intended framing is
highlighted. Sentences prefixed by ↱ are directly addressed at the individual
(individualistic framing). Best viewed in color.

Treatment Group 1 Treatment Group 2
( individualistic promotional
framing)

( collectivist prevention framing)

On track Looks like you’re right on track
to achieve your goal! ↱Keep

taking advantage of the exciting
new topics each week. Always
push yourself to be successful .

Looks like you’re keeping up with
the course for now ! We’re doing
our best to introduce you to ex-

citing new topics each week. Please
don’t let us down now .

Behind Looks like youre a bit be-
hind in achieving your goal!

↱ Work harder to take advantage
of the exciting new topics each
week. Always push yourself to

be successful .

Looks like you’re a bit behind in
the course right now! We’re doing
our best to introduce you to ex-

citing new topics each week. Please
don’t let us down now .
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The study design and all analyses conducted as part of the CalcX experi-
ment4 were pre-registered through the Open Science Framework, vetted, and
approved to meet the requirements of the Center for Open Science Preregis-
tration Challenge5. All manuscripts, data, and scripts used for analysis are
available at: http://osf.io/ys6au.

5.4.4 Measures & Method of Analysis

The primary outcome variable that we targeted with the design of our Feed-
back System is course completion, which indicates that a learner achieved
the required minimum passing score on all summative quiz questions and thus
earned a certificate. Course completion demonstrates sustained commitment
to the course and mastery over the course material. The Feedback System is
designed to support this type of sustained commitment and learning, even if
individual student intentions may vary. The secondary outcome is to promote
SRL and meta-cognitive awareness. While many SRL processes are meta-
cognitive and remain unobserved, it is possible to infer some of them based
on learner’s logged actions with the course materials [112, 134, 230, 231]; for
example, goal-setting & planning, time management, self-monitoring, and
social comparison.

For non-binary measures, to test if differences between experimental con-
ditions are statistically significant, we used the non-parametric Kruskal-
Wallis test, because these measures were not normally distributed and ex-
hibited unequal variances across conditions. For binary measures, we tested
differences in proportion using a χ2 test. We present the results of each test
by each group’s mean and median along with the χ2 value, degrees of free-
dom, and level of statistical significance. Due to the commonly high levels of
attrition in MOOCs (65%-74% of learners never returned to the course after
enrolling in one of our four MOOCs), the subsequent analyses only consider
data generated by active learners. We define active learners as those having
spent at least five minutes on the course platform. See Table 5.2 for the
breakdown of registered vs. active learners per MOOC.

4We pre-registered this experiment because it was the fourth and final study of the
present research and included an added manipulated variable in the cultural framing.

5https://cos.io/prereg/

http://osf.io/ys6au
https://cos.io/prereg/
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5.5 Results

We present our findings for the Research Questions outlined in Section 5.4.1.
We discuss the impact of the Feedback System on course completion and
engagement in Sections 5.5.1 & 5.5.2, heterogeneous treatment effects of the
Feedback System in Section 5.5.3, and lastly in Section 5.5.4, we compare
the effects for different cultural framings of the feedback.

5.5.1 Course Completion

We hypothesized that the Feedback System will increase learner achievement
in terms of course completion (H5.1.1). Table 5.4 shows the completion
rates in all conditions for the first three experiments. The completion rate is
consistently higher in the treatment condition than in the control condition
in all experiments. Pooling across experiments, we observed an increase in
the completion rate from 15.5% to 18.9% (χ2 = 5.87, p = 0.008). Thus,
regarding hypothesis H5.1.1, we conclude:

The Feedback System significantly increases course completion
rates in MOOCs.

Table 5.4: Course completion rates across the first three studies among the active learners.
Overall, the difference in completion rate between the groups is statistically
significant (p = 0.008).

Condition N # Pass Pass Rate

WaterX
Control 1,268 160 12.6%
Treatment 1,251 188 15.0%

UrbanX
Control 771 136 17.6%
Treatment 746 165 22.1%

BusinessX
Control 164 46 28.0%
Treatment 160 54 33.8%

Overall Control 2,203 342 15.5%
Treatment 2,157 407 18.9%

In the fourth experiment, which tested two treatment conditions with
different cultural framings against the control of not providing the Feedback
System, we also observed higher completion rates in the treatment condi-
tions (Table 5.5). However, this difference was not statistically significant
(ps > 0.25). However, the overall completion rate in the CalcX course was
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Table 5.5: Course completion rates in the CalcX course among active learners. A binomial
test of independent proportions revealed no statistically significant differences
between the three conditions.

Condition N # Pass Pass Rate

Control 1,150 45 3.91%
Indiv.-Promotion 1,147 62 5.41%
Collect.-Prevention 1,118 51 4.56%

extremely low (1.7%). This suggests that the sample is drawn from a popula-
tion of less committed learners and that potential effects could be obfuscated
by high levels of unexplained variance in completion outcomes. Another con-
tributing factor to this rift between CalcX and the other three courses is
the fact that CalcX was self-paced (content released all-at-once), whereas the
others were instructor-paced (content released weekly), thus providing less
structure/support to the learners.

Moreover, we hypothesized that showing certain combinations of feed-
back metrics will better promote positive changes in behavior than others
(H5.1.3). We explored this by changing the (combination of) metrics in
each of the four iterations of the Feedback System (see Table 5.1). Given
that the course completion rates increased across all four iterations each with
a different combination of feedback metrics (with two of the six metrics—quiz
submission timeliness (how far ahead of the deadline responses were submit-
ted) and quiz questions attempted—were present in all four) we conclude:

Each combination of metrics shown to the learners produced in-
creases in completion.

5.5.2 Engagement

In light of the positive effect of the Feedback System on course completion,
we next evaluated specific changes in learner behavior corresponding to the
behavioral metrics that were visualized in the Feedback System (H5.1.1).
These metrics, which varied across experiments, were most likely to be di-
rectly affected through social comparison. Table 5.6 shows the results of
Kruskal-Wallis tests6 comparing the various feedback metrics between the
treatment and control groups in study to test H5.1.2. A common thread
across the three experiments was that of the Feedback System increased the

6While the Kruskal-Wallis test measures the difference between rank orders, the median
values are often zero, so in the table we show the mean for better context.
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number of summative quiz questions that learners submitted, which directly
promotes course completion.

Table 5.6: Results of the Kruskal-Wallis tests for the behavior metrics (feedback met-
rics) provided in the Feedback System for WaterX, UrbanX, and BusinessX.
Statistically significant differences are in bold.

Metric Ctrl Treat. χ2 p
x̄ x̄

Wa
te

rX

quiz questions attempted 4.2 4.7 4.46 0.04
videos accessed 7.0 7.0 0.01 0.94
time on platform (hours) 4.5 4.6 0.17 0.68
time watching videos (hours) 0.8 0.8 0.04 0.85
ratio video/total time (%) 25.0 25.0 0.11 0.75
submission timeliness (days) 27.9 31.3 4.20 0.04

Ur
ba

nX

quiz questions attempted 5.7 6.6 3.16 0.08
sessions per week 3.8 4.0 2.11 0.15
avg. session length (minutes) 8.1 8.2 0.18 0.67
time between sessions (hours) 117.0 120.0 0.29 0.59
forum visits 2.7 3.0 2.88 0.09
submission timeliness (days) 28.3 32.0 3.27 0.07

Bu
si

ne
ss

X

quiz questions attempted 21.4 25.3 3.97 0.05
sessions per week 0.5 0.7 4.89 0.02
avg. session length (minutes) 32.8 46.7 8.42 0.00
time between sessions (hours) 95.9 92.2 1.17 0.28
time-on-task (%) 64.3 67.5 0.32 0.57
submission timeliness (days) 19.9 21.4 1.12 0.29

Looking at each feedback metric individually in Table 5.6, we observe 15
out of 18 times an improvement from control to treatment condition7; three
times no change is observed. The treatment condition does not lead to a
worse effect in any feedback metric. While only a handful of these differences
are statistically significant, this consistency lends itself to some explanatory
power over the statistically significant increases in course completion rates:
while on an individual level, only some metrics show significant increases as
a result of the Feedback System, on a macro level—that which accounts for
a learner’s overall activity in the course—we infer that these small increases
in engagement all effectively coalesce into a boost in desirable behavior that
leads to increased completion rates. We draw the following conclusion:

The Feedback System causes desirable changes in learner engage-
ment.

7A high “time between sessions” score is not better per se, but it indicates a desirable
high-spacing learning routine
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Table 5.7: Results of the Kruskal-Wallis tests for CalcX. Statistically significant differ-
ences indicated in bold. “T” indicates Treatment Groups.

Metric Ctrl T1 p Ctrl T2 p T1 T2 p
x̄ x̄ x̄ x̄ x̄ x̄

mins/week 31.9 33.4 0.24 31.9 33.8 0.74 33.4 33.8 0.14
revisited lectures 3.44 3.62 0.44 3.44 3.42 0.55 3.62 3.42 0.17
forum posts 0.34 0.53 0.86 0.34 0.36 0.05 0.53 0.36 0.06
quiz attempts 31.3 32.4 0.22 31.3 33.5 0.77 32.4 33.5 0.13
% time on quizzes 37.0 34.0 0.02 37.0 36.4 0.70 34.0 36.4 0.07
timeliness (days) 47.48 45.70 0.25 47.48 46.71 0.36 45.70 46.71 0.83

Table 5.7 shows the results of the same analysis on the engagement metrics
across the three conditions in CalcX; the results are less consistent.

In H5.1.2, we hypothesize that learners change aspects of their behavior
that are reflected back to them in the Feedback System. Since there is no
consistency among significant increases in the provided behavior metrics, we
conclude:

Learners do not change specific behaviors based on what metrics
are shown in the Feedback System.

5.5.3 Who benefited from the feedback?

Going beyond average treatment effects of the Feedback System, we now
evaluate heterogeneous treatment effects, that is, how the feedback affects
different groups of learners (RQ5.2). Specifically, we focus on heterogeneity
by prior education level, as this might determine learners’ ability to use the
information provided in the Feedback System. We gather learners prior ed-
ucation levels from their edX user profile; learners who do not report their
education level are omitted from this analysis. We define high prior educa-
tion learners as those with a Bachelors, Masters, or PhD degree, and low
prior education learners as those with any degree below Bachelors. Table 5.8
compares the average final grades in the control and treatment conditions of
the first three courses separately for high vs. low prior education learners.

In WaterX, UrbanX and BusinessX we observed a consistent increase in
final grades for highly educated learners, but not for less educated learners.
However, this pattern did not replicate in the CalcX course, as education
level did moderate the effect on grades (p = 0.82)8. Nevertheless, the results
for CalcX are harder to interpret due to the relatively low completion rate
in this course. Moreover, CalcX stands out in that a majority of low prior

8Once more we report CalcX separately due to the overall difference in completion rate
compared to WaterX, BusinessX and UrbanX as shown in Tables 5.4 & 5.5.
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Table 5.8: Mean final grades (out of a possible 100 points) grouped by prior education
levels. The “Prior Education" column indicates the highest degree the learner
has earned; “N" is the sample size; and “p" shows the result of a Kruskall-Wallis
test. Significant values are in bold.

Course Prior N Ctrl Treat. p
Education x̄ x̄

WaterX
High 2,006 13.2 15.7 0.15
Low 788 11.8 11.5 0.16

UrbanX
High 1,337 17.4 21.3 0.04
Low 438 16.4 14.0 0.66

BusinessX
High 299 23.7 29.1 0.04
Low 92 21.4 22.8 0.78

OVR High 3,642 16.3 19.5 <0.01
Low 1,318 14.4 13.6 0.36

education learners were enrolled in this course, while the WaterX, UrbanX and
BusinessX courses had a majority of high prior education learners. Based
on these analyses, we conclude that:

The Feedback System only helps to improve the achievement (fi-
nal grade) of learners who are already highly educated.

This finding suggests three possibilities: (i) the Feedback System is too
complex for people falling in the low prior education category to understand,
(ii) highly educated learners are better able to synthesize the information
offered by the Feedback System and translate it into positive behavior as
they are already experienced learners (with at least some SRL skills), and/or
(iii) less educated learners are not concerned with obtaining a certificate, but
rather focus on knowledge acquisition.

5.5.4 Framing Feedback to Cultural Contexts

In the CalcX course, we tested H5.3.1 and H5.3.2 about supplementing
the Feedback System with culture-specific feedback. As before, we evalu-
ated each hypothesis both in terms of learner achievement and engagement.
All pre-registered analyses for this experiment are reported in Section 5.5.4.
Additional exploratory analyses are reported in Sections 5.5.4 and 5.5.4.
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Pre-registered: Completion & Engagement

We compared the completion rate and six behavioral measures (the ones
shown in the Feedback System) between the treatment and control condi-
tions separately by learners’ cultural context. To address H5.3.1, we seg-
mented learners into three groups of individualism—high, balanced, and low
individualism—and compared completion rates of learners in high vs. low
individualism cultures in each condition. There was no significant increase in
completion rates for either feedback framing, neither for learners in low indi-
vidualism cultures nor for those in high individualism cultures (all p > 0.12).
Likewise, we tested for treatment effects in contexts defined by cultural tight-
ness (H5.3.2) and also found no significant increase in completion rates (all
p > 0.29). Results for learner engagement were also not significant (cf Ta-
ble 5.7). Finally, we tested the moderating role of education level, as in the
prior experiments (RQ5.2), but found no evidence in support of moderation
(χ2 = 0.40, p = 0.82). We thus conclude that:

Supplementing the Feedback System with feedback framing tai-
lored to cultural tendencies of individualism and tightness does
not increase learners’ course achievement or engagement.

Increased “Active" Threshold

From the exceptionally low completion rate of CalcX, we gathered that a high
proportion of uncommitted learners rendered the data set noisy. Whereas the
WaterX, UrbanX, and BusinessX experiments yielded a consistent main effect
on course completion, this effect was not detectable in the CalcX experiment.
To focus our analysis in CalcX on more committed learners, we imposed a
stricter threshold for “active" learners. Considering only learners who ac-
cessed the course platform for at least an average of 1hr/week, we proceeded
by analyzing data for highly active learners (n = 658). This threshold is rea-
sonable given the amount of course content per week (between 6–8 hours).
Moreover, the overall completion rate in this sample was 15.65%, a similar
rate as in the other experiments.

Among highly active learners, we find that the individualist framing in-
creased completion rates regardless of a learner’s own cultural context from
12.8% in the control condition to 19.9%, a 7.1 percentage point increase
(t = 2.02, p = 0.04). Moreover, we find that the effect of the individualistic
framing was especially large for learners in tight cultures, effectively tripling
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the completion rate from 12.1% in the control condition to 36.3% (t = 2.07,
p = 0.04). We therefore conclude that:

The individualist framing was most effective in increasing course
completion rates overall, and especially for learners in tight cul-
tures.

The effect of the individualist framing is surprising in terms of its large
magnitude and cultural heterogeneity. We expected the individualist fram-
ing to resonate in loose rather than tight cultures. Perhaps the individual-
ist framing is more congruent in an environment where learners tend to be
anonymous and socially isolated. Learners in tight cultures were also more
likely to benefit as there course performance was generally lower, as discussed
next.

Lower Achievement in Tight Cultures

In the preceding analyses, we observed a notable cultural difference along
the tightness dimension. Pooling across experimental conditions in the CalcX
course, we found for every metric (cf. Table 5.1) with the exception of number
of forum posts that learners in tight cultures exhibit significantly higher levels
of achievement and engagement than those in loose cultures (ps ≤0.02). We
repeated the analysis for the other three courses and found the same cultural
differences. We therefore conclude:

Learners from countries with low cultural tightness significantly
outperform their peers from countries of high cultural tightness in
terms of both engagement (all p-values p≤0.1) and achievement
(p≤0.02).

This cultural difference in performance could arise from the nature of the
MOOC learning experience. MOOCs provide significant latitude for differ-
ent levels of commitment and engagement; in fact, learners can come and
go as they please at no cost. This may especially appeal to loose cultures,
where there are few strongly-enforced rules and high tolerance for deviation.
In contrast, traditional classroom environments with strict attendance and
performance policies would align more with the ideals of tight cultures. Al-
ternatively, the current finding may reflect structural differences that are
associated with both tightness and performance, such as infrastructure and
education levels.



5.6. Conclusion 117

5.6 Conclusion

This research tested the effect of providing online learners with personalized
feedback in four large-scale randomized controlled experiments in MOOCs.
The Feedback System was designed to promote learners’ awareness of both
their own SRL behavior and that of their successful peers through social
comparison. It significantly increased course completion rates across differ-
ent courses. The combination of behavior metrics that was shown to learners
in the Feedback System did not determine the significance of the effect on
course completion, highlighting a need for further research on the optimal
set of metrics to show. Moreover, we discovered that the Feedback System
primarily benefited highly educated learners, although the system was envi-
sioned to support those who struggle with self-regulation. This suggests a
new challenge for MOOC researchers and designers to make targeted inter-
ventions that support learners who are less educated and need more support.

As online courses can be culturally diverse learning environments, we
investigated how the Feedback System could be adapted to resonate with
learners from different backgrounds. Our pre-registered analyses yielded no
significant effects of changing the cultural framing of the feedback. In ex-
ploratory analyses, however, we found strong benefits of framing feedback
with an individualistic and promotion focus. This insight warrants further
research to establish its generalizability. Aside from our intervention, we
found that learners from loose cultures consistently outperformed learners
tight cultures in terms of course engagement and final grades. In light of the
two sources of heterogeneity we identified, future MOOC interventions may
be strengthened by personalization based on learners’ prior education level
and cultural context.

In future work, we plan test a different feedback interface design that
presents a set of different personas that learners can identify with, such as
person who works a bit every day and one who works a lot over the weekend.

We will also evaluate new approaches for feedback messages to better
support learners with different cultural and educational backgrounds.
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Chapter 6

SRLx: A Personalized
Learner Interface for MOOCs

Past research in large-scale learning environments has found one of the most
inhibiting factors to learners’ success to be their inability to effectively self-
regulate their learning efforts. In traditional small-scale learning environ-
ments, personalized feedback (on progress, content, behavior, etc.) has been
found to be an effective solution to this issue, but it has not yet widely
been evaluated at scale. In this chapter we present the Adaptive Retrieval
Practice System (ARPS), an interactive widget that we designed and open-
sourced to improve learners’ self-regulated learning behavior in the Massive
Open Online Course platform edX. ARPS enables learners to plan their learn-
ing on a weekly basis and view real-time feedback on the realization of those
plans. We deployed ARPS in a renewable energies MOOC to more than 2,900
active learners and performed an exploratory analysis on our learners’ SRL
behavior.

This chapter is based on two full conference papers, published as “Retrieval Prac-
tice and Study Planning in MOOCs: Exploring Classroom-Based Self-Regulated Learning
Strategies at Scale” [65], by D. Davis, G. Chen, van der Zee, Tim, C. Hauff, and G.J.
Houben in Proceedings of the 11th European Conference on Technology-Enhanced Learn-
ing, 2016. and “SRLx: A Personalized Learner Interface for MOOCs” [70], by D. Davis,
V. Triglianos, C. Hauff, and G.J. Houben in Proceedings of the 13th European Conference
on Technology-Enhanced Learning, 2018.

119
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6.1 Introduction

Large-scale learning environments open up world-class educational resources
to the masses. With this unprecedented scale and reach, however, come
new challenges in enabling learners of diverse backgrounds to excel given the
unfamiliar context of the massive online classroom. Low course completion
rates—dropout rates of 95% are not uncommon [144]—highlight the need for
additional support in MOOCs. Past research in this space, e.g. [129, 131,
130, 274] has explored the problems learners face when trying to succeed
in these self-directed learning environments. Learners are often unable to
find the time to keep up with a course, an issue related to insufficient self-
regulatory abilities [129, 274]. Self-regulated learning (SRL) is the ability to
plan, monitor, and actively control one’s learning process. The discipline to
plan and follow a self-imposed studying regime is a skill that is learned over
time and associated with a higher likelihood of achieving self-set course goals
in MOOCs [134, 167]. Learners who were exposed to such training during
their studies tend to be more successful in MOOCs than learners without a
tertiary education background. The latter though is a target population that
is vital to keep the original vision of MOOCs alive: making higher education
accessible to those that do not enter the traditional tertiary education system.
Learners need tools that enable them to learn how to learn.

Today’s MOOC platforms (such as Coursera and edX) are not designed
in a way that encourages learners to explicitly plan or monitor (with the help
of feedback) their learning activities [92]. In general, learners are exposed to
very few feedback moments to support their SRL processes.

Yeomans and Reich [272] found that a single planning prompt at the start
of a MOOC can positively influence learning outcomes. We have expanded
upon this concept first by conducting a pilot study to replicate their simple
planning prompt and then by designing and developing the Personalized
SRL Support System2 (SRLx), an interactive widget for the edX platform
that allows learners to explicitly express their motivation, plan their learning,
monitor their progress towards their set goals at any point in time, and reflect
on them. SRLx’s design was based on educational theories and findings in the
SRL literature.

We deployed SRLx in a MOOC on renewable energies offered by the Delft
University of Technology in 2017 with more than 2,900 active learners and
empirically evaluate the following research questions:

2Open-sourced at https://github.com/dan7davis/Lambda.

https://github.com/dan7davis/Lambda
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RQ6.1 To what extent do MOOC learners adopt and take advantage of a
personalized SRL support tool?

RQ6.2 Does SRLx support MOOC learners in promoting effective self- reg-
ulated learning behavior?

Along with the contribution of an open-sourced system architecture that
provides SRL support at scale, we present the following key findings from
our analysis of learners’ SRL behaviors:

• As the course progresses, learners are able to plan their time commit-
ment more effectively.

• Learners are more conservative with the way they plan to commit time
to the course compared to video and quiz activity planning.

6.2 Related Work

Zimmerman et al.’s model of self-regulated learning [278] comprises three
cyclical phases: forethought, performance, and self-reflection. Learners first
formulate a plan for their learning activities, they then carry out and act
according to their plan, and finally they look back at their behavior and
examine their strengths and areas for improvement. In this section we first
examine self-regulated learning research in the classroom and then delve into
SRL studies conducted within MOOCs.

Self-regulated learning in the classroom

Goal setting has been shown to be an important factor across all levels of
education. Past research has investigated to what extent aspects such as
who sets the goals, when are they set, what goals are set and why are those
set influence the effectiveness of goal setting. While these studies have been
conducted across a range of education levels, they have all taken place in the
traditional classroom or lab setting.

Schippers et al. [221] showed that engaging and teaching undergraduate
students about goal setting at the beginning of their studies has a positive
impact across a prolonged period of time—after one year, a 98% reduction in
the gender achievement gap and a 38% reduction in the ethnicity achievement
gap was observed compared to the previous year’s cohort of students.
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At the secondary education level, Zimmerman et al. [280] found that
social-studies class students perform better (as measured by their final grade)
when they set their own goals and benchmarks, than when having those im-
posed on them by teachers. Regularly reviewing and reflecting upon one’s
study goals and behaviors was found by Sagotsky et al. [220] to be signifi-
cantly more effective in terms of grades and study behavior than just setting
goals in a user study with primary and middle school students. A similar re-
sult was found by Mahoney et al. [173] among 27 undergraduate students who
were assigned to one of three experimental conditions while preparing for an
exam: (i) continuous self-monitoring, (ii) intermittent self-monitoring, and
(iii) receiving instructor feedback. In line with [220], students who performed
self-monitoring exhibited higher levels of engagement and achievement than
students who did not.

Self-regulated learning in MOOCs

Due to the massive nature of MOOC platforms (supporting millions of learn-
ers), a large part of the platform development effort has to be spent on
continued scalability. This leaves little time and attention for advances in
platforms’ instructional designs. Prior research in the MOOC setting has so
far focused on learner surveys (to elicit their SRL needs), pre-course SRL in-
terventions, MOOC forum interventions, and the notion of learner feedback
[67].

Nawrot and Doucet [189] and Hood et al. [100] surveyed MOOC learn-
ers about their experiences taking MOOCs. Proper time management was
found to be a major hindrance for many MOOC learners [189]. The ability to
self-regulate one’s learning was found to vary depending on learners’ profes-
sional backgrounds: higher-educated learners are better able to regulate their
learning (including time management) than lower-educated learners [100].

Providing learners with visualizations of their progress enables them to
reflect upon their learning, and an emerging body of research has begun to
empirically evaluate the effectiveness of such feedback [21, 22, 66, 111]. Over
time, this reflection should improve learners’ use of SRL strategies [33, 93].

One interesting finding by Kulkarni et al. [148] pertains to the timeliness
of feedback and its impact on MOOC learners’ final grades: feedback (in this
case on in-progress assignments) received within 24 hours after assignment
submission improves learning outcomes; if the feedback is delayed beyond
this point, learners do not benefit from it. According to Davis et al. [66],
enabling learners to reflect weekly on their learning behavior in comparison
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to that of their successful peers (i.e. feedback through social comparison) led
to a significant increase in passing rates among learners with high levels of
prior education (Bachelor degree or higher). A drawback of this work is the
need for a successful cohort to compare against and the fact that learners
cannot establish their own plans and goals.

Goal setting and feedback are important techniques to improve learning
outcomes in the traditional classroom. In the MOOC setting, SRL interven-
tions have so far either been restricted to pre-course interventions or feed-
back. We here investigate the effect of regular planning and goal setting in
the MOOC setting.

6.3 Study Planning Pilot Study

To evaluate the efficacy of interactivity in study planning interfaces, we first
conducted a randomized controlled trial pilot study in one MOOC where, in
each course week’s introduction section, we prompted learners to enter their
plans for the week in a plain text box with the following prompt:

In the space below, please describe, in detail, your study plan and
desired learning objectives for the week regarding your progress:
e.g.

• I plan to watch all of the lecture videos.
• I will write down questions I have about the videos or as-

signments and discuss them in the forum.

The initial prompts were bookended by a reflection prompt at the end of
each week in which learners were instructed to reflect on their planning and
execution:

How closely did you follow your study plan from the beginning of
the week? Did you successfully meet all of your learning objec-
tives? In the space below, explain how you can improve upon your
study habits in the following weeks in order to meet your goals.

The effectiveness of this study planning prompt treatment was evaluated
in Industrial Biotechnology, a 7-week MOOC that introduced learners
to basic biotechnology concepts. Industrial Biotechnology had 11, 042

total enrolled learners and a 4.08% passing rate. In this experiment, 1, 963
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learners active in the course and were randomly assigned to either the control
(received no prompts) or treatment condition (received prompts).

6.3.1 Findings

In this study planning pilot study, we found high levels of noncompliance—
learners engage less with the study planning interface than course content
items. Of the 998 learners exposed to the study planning modules in In-
dustrial Biotechnology, 759 (76.1%) logged at least one video-watching
event. Among these same learners, only 147 (14.7%) clicked on any of the
study planning modules.

Study Planning

We analyzed the differences between the two experimental groups in Indus-
trial Biotechnology—those who were exposed to a study planning mod-
ule intervention (condition) and those who were not (control)—and found
no significant differences in their final grades, course persistence, and many
engagement metrics. However, we do find the following statistically signifi-
cant results when narrowing the sample to compare highly engaged learners
(characterized by having spent more time watching Week 1 videos than the
average learner, ≈ 33 minutes) in the control group and the learners in the
condition group who engaged with a study planning module at least once
(referred to as “Study Planners").

Comparing Engagement Between Groups To determine whether there
is a significant difference in the engagement levels between the highly engaged
learners in the control group (N=329) and the conditioned group (those who
clicked on at least one study planning module, N=146). In Table 6.1 we
employ two Mann-Whitney U tests, as the data is not normally distributed,
showing that the study planners have a higher session count than the highly
engaged learns (U=20,070, p=0.003), as well as a higher total amount of
time spent in the course in hours (U=19,983, p=0.002).

The results suggest that students who engaged with the study planning
intervention are significantly more engaged with other aspects of the course as
well. An alternative interpretation, however, could be that students who are
highly engaged with the course also tend to engage more with the planning
intervention.
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Table 6.1: Results of a Mann-Whitney U test comparing the two conditions (study plan-
ners vs. highly engaged learners in the control group) in terms of two learner
engagement metrics: total amount of logged sessions in the course and total
amount of time spent in the course in hours.

Variable Study Planning Control
Median Median

Session Count 25.0 19.0
Time in course (hours) 18.6 13.1

Comparing Course Persistence Between Groups We operationalize
learners’ persistence as the corresponding week of a learner’s latest quiz sub-
mitted or video watched (slightly different from that used in [132], where per-
sistence measured the overall amount of course materials accessed). Whereas
the analyses in Table 6.1 included activity throughout the entire course, ir-
respective of the course week, one symptom of SRL is a learners’ persistence
through the course, or how many weeks the learner makes it through. We
define a learner’s “Final Week Reached" as the latest week in the course in
which the learner either watched a video or submitted a quiz question. We
ran an ANOVA to compare how far into the course learners in each group
reached.

The ANOVA yielded significant results, F(2,734)=21.66, p<0.001. Post
hoc Games-Howell tests show that the group who engaged with the study
planning module (N=146, M=4.60) persisted deeper into the course than
highly engaged learners in the control group (N=329, M=3.84, p<0.001) and
highly engaged learners who were exposed to, but did not engage with, the
study planning module (N=262, M=3.28, p<0.001).

Figure 6.1 presents a kernel density estimation plot in order to visualize
the differences between groups.

Comparing Final Grades Between Groups We conducted an ANOVA
to determine whether there was a significant difference in final grade between
the three groups of highly engaged learners listed above. The univariate
test was significant, F(2,735)=17.147, p<0.001. The results are presented in
Table 6.2.

The follow-up Games-Howell test revealed that learners who engaged
with the study planning module (M=46.42) earned higher grades than the
highly engaged learners in the control group (M=36.44, p=0.003) and highly
engaged learners who did not engage with the intervention (Non-Planners,
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Figure 6.1: KDE plot showing the course persistence of the three groups of learners. All
lines were fit using a Gaussian kernel function.

Table 6.2: Results of the ANOVA comparing final course grades among learners who
engaged with the study planning module (Mean = 46.42) against those of the
two other groups. A final score of 100 would indicate a perfect score.

Group Mean Mean
Difference

Study Planners 46.42 —

i Control 36.44 9.98
ii Non-Planners 29.10 17.32

M=29.10, p<0.001). These results are visualized in Figure 6.2 and illustrate
how Study Planners’ final grades are higher than the others’.

Study Planners Engagement Correlations Focusing specifically on the
learners who interacted with the study planning module intervention, we an-
alyze the relationship between the extent to which they engaged with the
intervention and their behavior elsewhere in the course. To do so, we com-
puted a Pearson correlation coefficient to assess the relationship between a
learner’s average planning module response length (in text characters) and
engagement-related variables such as: (i) total amount of time spent in the
course, (ii) number of unique sessions logged, (iii) average length (in seconds)
of learners’ sessions, (iv) total amount of time spent watching videos, and (v)
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Figure 6.2: KDE plot showing the distribution of final grades earned between the three
groups of highly engaged learners. All lines were fit using a Gaussian kernel
function.

number of discussion forum sessions. The results are shown in Table 6.3. Two
example correlations (unique sessions logged and time watching videos) are
illustrated in the scatter plots in Figure 6.3 to show the slope and overall fit
of the regression line. Consistent with the Pearson correlation coefficients of
0.268 and 0.346, the plots indicate positive, small-to-moderate correlations.

Table 6.3: Pearson correlation coefficient test results reporting the relationship between
learners’ average planning module response length and five course engagement
metrics. All correlations shown are significant at the α = 0.01 level.

Variable Pearson N
Correlation

Total time in course 0.361 176
Session Count 0.268 176
Avg Session Length 0.346 176
Time Spent Watching Videos 0.346 170
Forum Sessions 0.305 154

The results suggest that increases in the amount of text learners write in
the study planning module are correlated with small-to-moderate increases
in a number of key course engagement metrics.
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Figure 6.3: Scatterplots illustrating two example results of the five Pearson correlation
coefficient tests run in order to characterize the relationship between the
amount of text characters entered in the study planning module and two
key course engagement metrics: session count (left) and time spent watching
video lectures (right).

Overall, we find that mere exposure to study planning and retrieval prac-
tice interventions is not sufficient to significantly increase learner engagement
or final grades. Only when narrowing the samples to learners who actually
engaged with the study planning intervention do we see significant results.
However, the same does not apply for learners who engaged with the retrieval
practice cues, where even learners who engaged with the retrieval cues show
no significant difference in any measure of performance. These findings find-
ings highlight the need for a more interactive and engaging study planning
experience—simple prompts and text boxed are insufficient for improving
learning outcomes and engagement. From the insights gained in this pilot
study, we designed and developed SRLx, a fully interactive study planning
interface with real-time feedback.

6.4 SRLx System Overview

We now first describe the client-side and server-side components of SRLx
which allow for real-time event tracking and then turn to the design rationales
behind the four front-end interfaces we developed (cf. Figure 6.4).
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Client-side

The edX platform—on which we deployed SRLx—allows course designers to
embed and execute custom HTML, CSS, and JavaScript code in edX pages,
thus enabling the creation of customized interfaces and programming logic.
We take advantage of this affordance and embed our client-side code in edX’s
RAW HTML input elements.

We implemented two functionalities on the client-side: (i) the tracking
and persisting of learners’ activities to the back-end such as quiz question
submissions and video watch events (cf. Section 6.5 for an exhaustive list)
via AJAX and (ii) the displaying of our front-ends for goal setting, planning &
feedback and the persisting of learners’ interactions with them. We describe
the activity tracking below and describe the interfaces in more detail at the
end of this section.

Activity tracking As SRLx provides real-time feedback based on learners’
actions on the edX platform, we had to track events such as quiz submissions
and video watching events in real-time. The real-time constraint meant that
we could not make use of edX’s default log data setup which distributes a
MOOC’s daily logs in 24 hour intervals. We therefore had to track these
events ourselves as follows.

edX course components, such as videos or quizzes, are implemented via
XBlocks, a component architecture based on Python, HTML, JavaScript
and CSS. This allows anyone to create standalone hierarchical components
that may include other XBlocks. To capture user interactions, Xblocks emit
and subscribe to events using an event tracking library3. We enable real-time
event tracking by using edX’s Logger object to subscribe to emitted events us-
ing the listen(eventType, element, callback) method: all Xblock frag-
ments make use of the Logger object to emit events which are subsequently
sent to the edX back-end via an XMLHttpRequest. We listen to all events of
interest and forward those to our back-end.

Back-end

To store and retrieve learner data in real-time, we implemented an HTTPS
server in Node.js and persisted the tracked events in a MongoDB database.
The server uses a RESTful API to store and retrieve learner events. It

3https://github.com/edx/event-tracking

https://github.com/edx/event-tracking
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supports the JSON format for both requests and responses. Along with
logging edX’s learner behavior data, the SRLx server also logs all learner
interactions with the SRLx interfaces.

Front-end

Figure 6.4: The four SRLx interfaces as they appear to learners on the edX platform:
motivation expression (top-left), motivation feedback (top-right), plan
formulation (bottom-left), and plan feedback (bottom-right).

The three phases of Zimmerman’s model of self-regulated learning [278]
(forethought, performance, and self-reflection) are integral to the design of
SRLx’s four learner-facing interfaces shown in Figure 6.4: motivation ex-
pression (forethought), motivation feedback (self-reflection), plan formula-
tion (forethought), and plan feedback (performance and self-reflection). We
now discuss them in turn.

Motivation expression This interface allows us to gain an understanding
of learners’ motivations and overall forethought for their attitude towards
the course. Modeled after the study planning system evaluated in [221], it
is shown on the top-left of Figure 6.4 and prompts learners to write about
their motivation and what brought them to the course in the first place.
The key question asked to learners is What drives you? followed by other
prompting questions to help learners express themselves: What brought you
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here? and What do you hope to gain from this course? Once learners have
submitted their motivation it is persisted to our back-end. Learners can view
and change their response any time.

Motivation expression feedback In order to provide feedback and en-
courage a habit of self-reflection, we regularly make learners aware of their
latest motivation response by displaying it back to them (top-right of Fig-
ure 6.4) throughout each course week/unit. The response is shown as a
quotation by the learner underneath the What drives you: text together
with the learner’s edX username (to emphasize once more the source of the
quotation).

Plan formulation This interface (Figure 6.4 bottom-left) promotes fore-
thought in prompting learners to formulate and state their plan for the com-
ing course week in terms of engagement with course resources. Specifically,
learners are prompted to enter the number of videos they intend to watch,
quiz questions they intend to answer, and hours they intend to devote to
the course this week. To aid learners in their planning, we provide the total
number of videos and quizzes of the week (automatically extracted from the
edX course pages) as well as the recommended time to spend in the course
that week (as estimated by the course instructors).

Plan feedback To promote awareness learners’ performance and encour-
age self-reflection, the planning feedback interface (Figure 6.4 bottom-right)
consists of three gauges showing learners how well they have progressed to-
wards the goals they set for themselves, removing all instructor influence.
We designed the plan feedback as a data visualization dashboard that allows
learners to easily draw their own insights about their progress. Previous
research in data visualization for MOOC learners found that more abstract
feedback (such as the “timeliness” of the quiz submissions) only benefited
learners with a higher education background [66]. Since highly educated
learners already have SRL abilities, we aimed to engage those learners that
lack self-regulation skills and designed the interface to be clear and straight-
forward to interpret.
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6.5 Study Setup

Participants

We deployed SRLx in an edX MOOC on renewable energies offered by the
Delft University of Technology. The course consists of 75 individual lecture
videos and 295 graded quiz questions. A total of 8,057 learners enrolled in the
course. The course started on August 29, 2017 and concluded on November
8, 2017. We made SRLx available to all learners but did not provide any
additional incentive for using it.

Before the course, the learners were asked to self-report their basic de-
mographic information. 5,349 learners at least partially complied. Of these
learners, 25.3% are female; the learners’ median age is 26. We also collected
information about their prior education level, as this has shown to have a sig-
nificant impact on learning outcomes and engagement with MOOCs [66]. As
is common in MOOCs, we observe a great variety in this respect with learn-
ers running the gamut from high school to PhD levels of prior education: 1%
had no prior formal education, 20% held at least a high school diploma, 5%
an Associate’s degree, 45% a Bachelor’s degree, 26% a Master’s degree, and
3% a PhD. We consider learners’ prior education level to be high when they
have earned at least a Bachelor’s degree, and low when they have not.

Given that many learners who enroll in a MOOC never enter the platform
and log a session (a common occurrence in MOOCs), we narrow down the
sample for analysis accordingly. Among all learners enrolled, 2,961 entered
the course at least once and are therefore considered as active learners in our
analyses.

Measures

To evaluate the role that SRLx plays in learners’ achievement and course
engagement, we measure a number of in-course learning behaviors that are
commonly used in MOOC studies as well as a number of novel measures
enabled by SRLx:

• Average quiz score ∈ [0, 1] (proportion of attempted quiz questions
answered correctly);

• Course activities:
– Number of video interactions (play, pause, fast-forward, rewind,

scrub);
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– Number of quiz submissions (submissions, correctness);
– Number of discussion forum posts;
– Time spent in the course;

• SRLx interactions:
– Plan formulation (number of videos & quizzes and hours planned

to spend in the course that week);
– Motivation expression (submission text);
– Editing (changing an established motivation or plan).

6.6 Results

In this section we analyze the deployment of SRLx along four lines: (i) course-
level learning behaviors, (ii) study plan formulation tendencies, (iii) plan
achievement rates, and (iv) motivations expressed over time.

6.6.1 Course-level Learning Behaviours

In Table 6.4 we present summary statistics for overall course behavior among
all active learners, characterized by having logged at least one session in the
course. Table 6.5 shows the number of submissions made via SRLx.

Table 6.4: Overview of the average behavior of active learners. In rows 2 & 3 we partition
the set of active learners into Comply (learners who formulated at least one
plan and submitted at least one motivation expression) and Non-Comply (the
remainder) learners.

Subset N
Quiz

Score
Session

Count
SRLx

Interact.
Feedback

Checks
Quiz

Submits
Videos

Watched

Active 2,961 0.41 32.57 152.72 3.63 43.11 8.33

Comply 303 0.72 66.48 348.93 7.31 91.56 16.31
Non-Comply 2,658 0.37 28.71 130.35 3.21 37.58 7.42

Of the 2,961 active learners in the course, 872 (32%) engaged with SRLx at
least one time (answering RQ6.1)—here characterized by having formulated
at least one plan or submitting at least one motivation expression. While this
rate of minimal engagement is substantially higher than past studies, e.g. [65],
the true rate of compliance (submitting both a plan and a motivation) is still
very low, at 10% (303 out of 2,961 active learners).
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While the top row in Table 6.4 represents all active learners in the course,
the bottom two rows show the impact of self-selection in highlighting the
difference in behavior between learners who did and did not engage with
SRLx: on average, learners using SRLx (i.e. our Comply group) log more
than twice as many sessions, answer nearly three times as many quizzes,
answer more questions correctly and watch more than twice as many videos
compared to learners in the Non-Comply group. We cannot claim that this
difference is caused by the use of SRLx; rather it is at least partially a result of
the self-selection of learners who would have been highly engaged and more
successful in the course regardless.

However, this trend could also be partially explained by prior research on
the doer effect, or the “...association between the number of online interac-
tive practice activities students do and their learning outcomes” [143]. This
theory states that engagement with interactive course components (such as
SRLx, discussion fora, or quiz questions) has a stronger learning effect than
passive activities such as reading or watching lecture videos. So while SRLx
is unlikely to be the sole cause of the increase in activity between compliers
and non-compliers, theory states that it likely contributed, at least in part,
to the more positive learning outcomes of those who engaged with it.

When we split the engagement between the different types of interfaces
(Table 6.5), we find that the plan formulation interface was considerably
more engaging, with more than twice as many learners formulating plans (on
average two plan formulations per learner) than writing up their motivation.

Table 6.5: Number of submissions of motivation expressions, plan formulations, and
plan/expression edits. The bottom row shows the number of unique learn-
ers to have completed each action type.

Motivation
Expression

Plan
Formulation Edited

#Submissions 679 1,997 748
#Learners 396 971 338

6.6.2 Study Plan Formulation

In this analysis we focus on the plans the learners made using SRLx and thus
address RQ6.2. We explore the following questions: are the learners overly
ambitious with their plan formulation? Are learners able to consistently
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stick to their plans? Do their planning tendencies/strategies change over
time? Figure 6.5 shows an aggregate view of all 1,997 plans submitted in the
course.
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Figure 6.5: In clockwise order: (i) the proportion of learners’ formulated plans set for the
maximum possible value in the respective course week; (ii) the proportion of
the maximum plan set by learners of each activity type over the span of all
course weeks; (iii) plan achievement rates for each activity type by course
week. Error bars show the standard error.

Figure 6.5 (top left) shows the study planning behavior (in terms of time
commitment, quiz submissions, and videos watched) of all learners who for-
mulated and submitted at least one plan in SRLx. We find that the majority
of plans set were for the maximum given the week’s content, i.e. most learn-
ers who submitted plans aimed at completing all quizzes, watching all videos
and spending the instructor-suggested time on the course platform.



136 Chapter 6. SRLx: A Personalized Learner Interface for MOOCs

At the same time in Figure 6.5 (top left) we observe that the goals set
pertaining to the proportion of time (from the recommended six hours per
week) learners plan to commit to the course is lower than that of quiz sub-
missions and videos. A Wilcoxon rank sum test with continuity correction
(W = 2, 210, 200, p < 0.0001) indicates a significant difference between time
plans (x̄ = 0.838 , σ = 0.34) and video plans (x̄ = 0.88 , σ = 0.29). From
this analysis we conclude that learners are more conservative with the way
they plan their time commitment to the course than the way they plan to
engage with course materials.

To examine planning behavior at a more detailed level, in Figure 6.5 (top
right) we segment planning behavior by course week and illustrate the change
over time. Compared to the rather steady rate of ambition (proportion of
maximum plan set) with quiz plans (overall mean of 84.7% of the maximum),
learners exhibited an overall trend of increasing their ambition each week for
time- and video-related plans—a 9 percentage point increase from Week 1
to Week 6 for time plans (mean of 80% to 89%) and a 5 percentage point
increase for video plans (mean of 85% to 90%). While these two increases
can be attributed to less-ambitious learners dropping out of the course, the
lower rate for quiz-related plans still holds throughout the entire course.

6.6.3 Plan Achievement

Figure 6.5 (bottom) shows the rate at which learners achieve each aspect
of their plans each course week (RQ6.2). Whereas in the previous section
we discussed how learners are conservative with their plan formulations as it
pertains to time, we see in Figure 6.5 (bottom) that learners are strong at
achieving their plans for time commitment and video lecture viewing with
high consistency across course weeks—an important insight given that poor
time management has been identified by prior research [134, 274, 189, 129]
as one of the primary causes of attrition in MOOCs.

It is also worth noting that the consistency and success of learners’ time
planning achievement is not a product of less ambitious goals being set. Refer
back to Figure 6.5 (top right) to see that the opposite is actually true; learners
become more ambitious with their time plans as the course progresses, and
learners are still able to achieve their plans with high consistency.

For the learners’ video watching plan achievement, we observe a slight
increase across the weeks with an overall mean of 63% completion. For learn-
ers’ achievement of their quiz question-related plans, we observe substantially
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lower completion rates than those regarding time—falling from 19% in Week
1 to a mere 9% in Week 6.

We hypothesize that these results on plan achievement are a product of
the difficulty of each activity type. Though not trivial, spending time in
the platform requires little more than a learner’s presence. Slightly more de-
manding is the activity type of watching lecture videos; and most challenging
of all three is answering quiz questions, which is not only dependent on the
previous two activities but also requires the application of newly-acquired
knowledge. In other words, the rate by which learners complete their plans
is commensurate with the exigency of the respective activity type.

As previous research on MOOC learners has identified achievement gaps
among learners [133], we next conducted an exploratory analysis on plan
completion per activity type as a function of a learner’s prior education level
(with high education learners having earned at least a Bachelors degree, ac-
counting for 75% of learners in the course). We observe no significant dif-
ference in plan completion rates in any of the three activity types according
to a Wilcoxon rank sum test with continuity correction, thus indicating that
learners are able to effectively use SRLx across a wide range of ability levels.
This suggests that SRLx is equally usable and effective for learners of all prior
education levels.

6.6.4 Motivation Expression

Finally, we also conducted a preliminary analysis of the motivation texts our
learners submitted. Among the 2,961 learners exposed to the SRLx interface,
396 submitted at least one motivation expression. These motivations range
from learners working towards having better career opportunities to chang-
ing the world—the latter theme became markedly more prominent as the
course progressed. The average word count is 23.9 (median 15, minimum 1,
maximum 329). In Table 6.6 we randomly picked examples of short (at most
ten words), medium length (up to 25 words) and long (26 words or more)
submissions.

Replicating the methods in [272] applied to MOOC learner texts on course
intentions, we evaluated the predictive value of the length of a learner’s text
submission on their (i) current grade, (ii) average quiz question score, and
(iii) total time spent in the course platform and were not able to find a
significant effect in any of the metrics.
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Table 6.6: Random sample of short, medium, and long submissions through the Motiva-
tion Expression interface.

S1 Build up on sustainable energy knowledge
S2 I expect to get to know the future of energy

M1 I hope to learn more about sustainable ways of using and obtaining
energy.

M2 I want a clean planet I want to be responsible for that

L1 As a junior architect I am interested in learning more about the
relationship between energy use and building design and how intel-
ligent design can have positive impacts on building energy use as
well as occupant health and happiness.

The ten most frequent terms occurring among all motivations are (in
descending order): energy, renewable, sustainable, knowledge, learn, future,
course, hope, better and sources. These terms speak to the motivation of
many learners to use the knowledge to improve the world; interestingly, no
job related term appears in this list (the term career occurs at rank 20),
indicating that many of our learners have an intrinsic, rather than an extrinsic
motivation. They are brought to the course and engage with the materials
not out of need for career change or certification (as was commonly observed
among MOOC learners in previous work [130]), but rather out of a desire to
be able to spark positive change in the world. Given the topic of the course
and its relevance to the issues facing society today, this certainly affects
learner motivation in some sense, but this also demonstrates that MOOCs
can be instrumental to shaping the next generation of emerging technologies
in making the subject matter accessible to the masses.

6.7 Discussion

Based on the existing literature and theory on self-regulated learning, we
designed SRLx to encourage and support learners in adopting effective self-
regulated learning habits in MOOCs. SRLx enables learners express their
(changing) motivation and to set their own goals and track their progress
towards them in real-time instead of following instructor-prescribed goals.
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To evaluate the efficacy of SRLx we deployed it in a MOOC with more
than 2,900 active learners to observe to what extent and how learners engage
with it.

Despite the inconsistencies we observed based on previous related work,
learner interactions with SRLx offer novel insights about the role of motivation
expression and plan formulation for MOOC learners. We find (i) that as the
course progresses, learners are able to plan their time commitment more
effectively, (ii) a strong trend of intrinsic motivation shared by learners with
the motivation expression interface, and (iii) learners are most conservative
with the way they plan to commit time to the course compared to video and
quiz activity planning.

Given our findings on the progression of learner’s planning strategies over
time with SRLx, we are able to offer an explanation of the findings by Yeo-
mans and Reich [272] who found that plans that were formulated about time
were less likely to succeed: that intervention took place at the beginning of a
course, where learners formulated time plans over the long-term—requiring
the foresight of many weeks in the future; SRLx, on the other hand, allows
learners to set a new plan at the beginning of each course week (short- to
medium-term). Combined with our evidence that learners become more ef-
fective at plan formulation over the span of the course, we conclude that
time-specific plans are likely only to be ineffective when on a long-term scale;
and when used on a short- to medium-term scale, they can be effective and
attainable.

Future research should implement SRLx as a randomized controlled trial,
or A/B test, in MOOCs to explore questions of causality—does SRLx directly
cause learners to learn and engage more?

Finally, SRLx, as presented here, is completely individualistic—learners
only receive feedback on their own plan formulations and motivation expres-
sions. By making SRLx social, or showing learners the planning behavior and
performance of their peers as well as their own, this could present a promis-
ing way to leverage the scale of MOOCs and improve learner performance
through increased social presence.
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Retrieval Practice
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This part serves RQ2 (How can MOOC environments be improved to
advance the possibilities of experimentation?) by focusing on the learning
strategy known as retrieval practice (also referred to as the testing effect).
Retrieval practice is the learning science principle which states that the active
recall of information is more effective at encoding it into long term memory
than passive revisiting. For example, taking a practice test is a much more
effective learning strategy than re-watching a video lecture, because in the
practice test one is actively challenged/prompted to produce the information,
whereas in the video lecture, the information is delivered to the watcher.
Retrieval practice is touted as one of the most effective learning strategies,
and scores of past research studies have supported its effectiveness in the
traditional learning setting. For that reason, we identify this as a key learning
strategy to evaluate in terms of its transferability to MOOCs.

The first study we ran to evaluate this question is presented in a pilot
study. Here we inserted retrieval cues after each video lecture in a MOOC,
where we A/B tested an intervention which asked the learners to write out
and explain the key concepts (in 3–5 sentences) of the previous video—a
common retrieval practice tactic. We found that this intervention yielded
high levels of non-compliance—again due to the fact that we ask the learners
to produce and type out their response in a text box. Due to the high levels
of non-compliance, we did not observe any significant effects of the retrieval
practice intervention on eventual learner outcomes.

There are a number of ways to engage with retrieval practice, and the
text box approach above is just one. In the main study, we evaluated a new
approach to promoting retrieval practice which did not require learners to
produce their own text/writing, but instead prompted them to reactivate
prior knowledge in the form of a formative assessment question from an ear-
lier week in the course. To accomplish this we developed ARPS, an adaptive
retrieval practice system, which tracked which content a learner had previ-
ously visited and intermittently asked the learner pop-quiz questions from
previous weeks to keep their memory of that knowledge active. Even though
this A/B test did not indicate significant effects of the intervention on learn-
ing outcomes, the data generated from ARPS (due to its frequent assessment
of learners’ knowledge levels of various topics), enabled a novel analysis of
how MOOC learners’ knowledge evolves (or decays) over time.

In summary, this part contributes a deeper understanding of the extent
to which the learning strategy of retrieval practice can be effectively facili-
tated in a MOOC setting. We find inconclusive evidence of this due to the
systematically high levels of non-compliance with interventions designed to
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facilitate this practice and highlight the need for future research to explore
techniques for better engaging MOOC learners in promoting effective study
habits.



Chapter 7

Knowledge Retention and
Retrieval Practice in MOOCs

Massive Open Online Courses are successful in delivering educational re-
sources to the masses, however, the current retention rates — well below
10% — indicate that they fall short in helping their audience become effec-
tive MOOC learners. In this chapter, we first share the results of a pilot study
conducted in order to test the effectiveness of retrieval practice (i.e. strength-
ening course knowledge through actively recalling information), which has
been found to be highly effective in traditional learning environments. In
contrast to the classroom-based results, we do not confirm our hypothesis,
that small changes to the standard MOOC design can teach MOOC learners
valuable self-regulated learning strategies.

Retrieval practice has been established in the learning sciences as one
of the most effective strategies to facilitate robust learning in traditional
classroom contexts. The cognitive theory underpinning the “testing effect”
states that actively recalling information is more effective than passively re-
visiting materials for storing information in long-term memory. In the main
study of this chapter, we document the design, deployment, and evaluation of
an Adaptive Retrieval Practice System (ARPS) in a MOOC. This push-
based system leverages the testing effect to promote learner engagement and
achievement by intelligently delivering quiz questions from prior course units
to learners throughout the course. We conducted an experiment in which
learners were randomized to receive ARPS in a MOOC to track their per-
formance and behavior compared to a control group. In contrast to prior
literature, we find no significant effect of retrieval practice in this MOOC
environment. In the treatment condition, passing learners engaged more
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with ARPS but exhibited similar levels of knowledge retention as non-passing
learners.

This chapter is based on published peer-reviewed work as “Retrieval Practice and
Study Planning in MOOCs: Exploring Classroom-Based Self-Regulated Learning Strategies
at Scale” [65], by D. Davis, G. Chen, van der Zee, Tim, C. Hauff, and G.J. Houben in
Proceedings of the 11th European Conference on Technology-Enhanced Learning, 2016.
and “The Half-Life of MOOC Knowledge: A Randomized Trial Evaluating Knowledge
Retention and Retrieval Practice in MOOCs” [68], by D. Davis, R. Kizilcec, C. Hauff, and
G.J. Houben in Proceedings of 8th International Conference on Learning Analytics and
Knowledge, 2018.
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7.1 Introduction

Retrieval practice is one of the most effective and well-established strategies
to facilitate robust learning. Also known as the testing effect, retrieval prac-
tice is the process of reinforcing prior knowledge by actively and repeatedly
recalling relevant information. This strategy is more effective in facilitating
robust learning (the committing of information to long-term memory [142])
than passively revisiting the same information, for example by going over
notes or book chapters [4, 49, 212, 97, 166, 118, 117].

Given the wealth of scientific evidence on the benefits of retrieval practice
(cf. Section 7.2) and the adaptability of digital learning platforms, in this
paper we explore to what extent the testing effect holds in one of today’s most
popular digital learning settings: Massive Open Online Courses. Research
into both MOOC platforms and MOOC learners’ behavior has found learners
to take a distinctly linear trajectory [63, 260, 89] through course content.
Many learners take the path of least resistance towards earning a passing
grade [273] which does not involve any back-tracking or revisiting of previous
course units—counter to a regularly-spaced retrieval practice routine.

Although MOOC platforms are not designed to encourage retrieval prac-
tice, prior work suggests that MOOC learners with high Self-Regulated Learn-
ing (SRL) skills tend to engage in retrieval practice of their own volition [134].
These learners strategically seek out previous course materials to hone and
maintain their new skills and knowledge. However, these learners are the
exception, not the norm. The vast majority of MOOC learners are not
disciplined, self-directed autodidacts who engage in such effective learning
behavior without additional support. This motivated us to create the Adap-
tive Retrieval Practice System (ARPS), a tool that encourages retrieval
practice by automatically and intelligently delivering quiz questions from pre-
viously studied course units to learners. The system is automatic in that the
questions appear without any required action from the learner and intelligent
in that questions are adaptively selected based on a learner’s current progress
in the course. We deployed ARPS in an edX MOOC (GeoscienceX) in a ran-
domized controlled trial with more than 500 learners assigned to either a
treatment (ARPS) or a control group (no ARPS).

Based on the data we collect in this randomized trial, we investigate
the benefits of retrieval practice in MOOCs guided by the following research
questions:
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RQ7.1 How does an adaptive retrieval practice intervention affect learners’
academic achievement, course engagement, and self-regulation com-
pared to generic recommendations of effective study strategies?

RQ7.2 How does a push-based retrieval practice intervention (requiring learn-
ers to act) change learners’ retrieval practice behavior?

In addition to collecting behavioral and performance data inside of the course,
we invited learners to complete a survey two weeks after the course had ended.
This self-report data enabled us to address the following research question:

RQ7.3 To what extent is robust learning facilitated in a MOOC?

The primary contributions of our study show that (i) retrieval practice,
in contrast to substantial prior work, may not benefit learners in a MOOC
(RQ7.1); (ii) passing and non-passing learners who receive ARPS do not differ
in their knowledge levels (as measured by ARPS) but rather in their course
engagement levels (RQ7.2); and (iii) passing and non-passing learners do
not differ in long-term knowledge retention (RQ7.3).

7.2 Related Work

We now review prior research in the areas of retrieval practice, spaced vs.
massed practice, and long-term knowledge retention to inform the study de-
sign.

7.2.1 Retrieval Practice

Adesope et al. [4] conducted the most recent meta-analysis of retrieval prac-
tice. They evaluated the efficacy of retrieval practice compared to other
learning strategies such as re-reading or re-watching, the impact of differ-
ent problem types in retrieval practice, the role of feedback, context, and
students’ education level.

The effect of retrieval practice is strong enough overall for the authors
to recommend that frequent, low-stakes quizzes be integrated into learning
environments so that learners can assess knowledge gaps and seek improve-
ment [4]. They also found that multiple choice problems not only require
low levels of cognitive effort, they were the most effective type of retrieval
practice problem in terms of learning outcomes compared to short answer



7.2. Related Work 149

questions. And while certainly a boon to learners (the majority of studies
in the review endorse its effectiveness), feedback is actually not required or
integral to effective retrieval practice. From studies that did incorporate
feedback, the authors found that delayed feedback is more effective in lab
studies, whereas immediate feedback is best in classroom settings. Of the
217 experiments (from the 118 articles included in the meta-analysis), 11%
took place in traditional classroom settings as part of the curriculum, with
the vast majority taking place in laboratory settings.

Roediger and Butler [212] also offer a synthesis of published findings on
retrieval practice. From the studies reviewed, the authors offer five key points
on retrieval practice for promoting long-term knowledge: (i) retrieval practice
is superior to reading for long-term retention, (ii) repeated testing is more
effective than a single test, (iii) providing feedback is ideal but not required,
(iv) benefits are greatest when there is lag time between learning and practic-
ing/retrieving, and (v) retrieval practice increases the likelihood of learning
transfer—the application of learned knowledge in a new context [212].

Consistent with the findings from [97, 212, 4], Johnson and Mayer [113]
evaluated the effectiveness of retrieval practice in a digital learning environ-
ment focused on lecture videos. In the study, learners who answered test
questions after lecture videos—pertaining to topics covered in the videos—
outperformed learners who merely re-watched the video lectures in terms of
both long-term knowledge retention and learning transfer [113].

7.2.2 Spaced vs. Massed Practice

The literature on spaced versus massed practice has shown that a higher
quantity of short, regularly-spaced study sessions is more effective than a few
long, massed sessions [49]. There is considerable overlap in the research on
retrieval practice and that on spaced versus massed practice. As outlined
in the studies above, an optimal study strategy is one of a regularly spaced
retrieval practice routine [182, 39, 49].

Spaced versus massed practice has been evaluated in the MOOC setting
by Miyamoto et al. [182], who analyzed learners’ log data and found that
learners who tend to practice effective spacing without guidance or interven-
tion are more likely to pass the course relative to those learners who do not
engage in spacing. We leveraged these insights from the learning sciences in
the design of ARPS.
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7.2.3 Expected Knowledge Retention

Scientific evaluation of the human long-term memory began at the end of
the 19th century, leading to the earliest model of human memory loss/main-
tenance: the Ebbinghaus curve of forgetting [79]. The curve begins at time
0 with 100% knowledge uptake with a steep drop-off in the first 60 minutes
to nine hours, followed by a small drop from nine hours to 31 days.

Custers [61] conducted a review of long-term retention research and found
considerable evidence in support of the Ebbinghaus curve in terms of shape—
large losses in short-term retention (from days to weeks) which level off for
longer intervals (months to years)—but not always in terms of scale. The
result of their meta-analysis shows that university students typically lose one
third of their knowledge after one year, even among the highest-achieving
students.

Considering the effect on retrieval practice on long-term retention, Lind-
sey et al. [166] conducted a similar study to the present research in a tradi-
tional classroom setting and found that their personalized, regularly spaced
retrieval practice routine led to higher scores on a cumulative exam immedi-
ately after the course as well as a cumulative exam administered one month
after the course. In their control condition (massed study practice), learners
scored just over 50% on the exam, whereas those exposed to the retrieval
practice system scored 60% on average. For the control group, this marked
an 18.1% forgetting rate, compared to 15.7% for those with retrieval practice.
They also found that the positive effect of retrieval practice was amplified
with the passing of time.

Duolingo, a popular language learning platform with hundreds of thou-
sands of daily users, has developed their own forgetting curve to model the
“half-life” of knowledge—theirs operates on a much smaller time scale, with a
0% probability of remembering after seven days. Based on the retrieval prac-
tice and spacing effect literature, they also developed a support system to
improve learners’ memory. Findings show that their support system, tuned
to the “half-life regression model” of a learner’s knowledge, significantly im-
proves learners’ memory [242].

It is worth noting, however, that forgetting is viewed as an adaptive be-
havior: forgetting liberates the memory of outdated, unused information to
free up space for new, immediately relevant memories and knowledge [211].
Retrieval works adjacently to this in that by regularly reactivating and re-
visiting knowledge, the brain does not tag it as unused and forgettable, but
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rather recognizes its relevance and, accordingly, stores it in long-term mem-
ory.

7.3 Retrieval Practice Pilot Study

To evaluate the efficacy of interactivity in retrieval practice interfaces, we first
conducted a randomized controlled trial pilot study in one MOOC where we
prompted learners to write 3–5 sentence summaries of each lecture video after
watching it in order to stimulate the active retrieval of their recently learned
knowledge.

We deployed the retrieval practice intervention in the Functional Pro-
gramming course, a 13-week MOOC which introduces basic functional pro-
gramming language constructs. Nearly 28,000 learners enrolled, and 5% even-
tually passed the course. 9, 836 learners were active in the course and were
randomly assigned to one of three experimental conditions.

In the original course design (i.e. no intervention) of Functional Pro-
gramming, each week’s video lecture is broken up into two or three segments.
And although the students must navigate themselves from one segment to
the next, there are no other learning materials or activities between. In order
to activate the learning process, we inserted retrieval practice cues designed
to make learners stop and process the information presented in the video
lecture.

In each course week, we inserted a retrieval cue directly after the final
lecture video, thus prompting the learners to stop and think before moving
on to the weekly quiz. The only exception to this design was one particu-
lar course week2 where we inserted retrieval practice cues after each of the
three segments of the weekly lecture, as in the previous edition of the course
learners had perceived that week’s material as the most challenging.

This experiment had three groups (or conditions): (1) the control group
without an intervention, (2) the “cued” group, and (3) the “given” group
which was provided a 3–5 sentence summary after each lecture. The “cued"
group was shown the following prompt along with a blank text input box:

Please respond in 3-5 sentences to the following question: “In
your opinion, what are the most important points from the previ-
ous video?"

2“Week 7: Functional Parsers and Monads”
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Note that these responses were not seen, graded, or given any feedback
from the instructor — serving strictly as an activity for learners to exercise
and improve memory recall. The “given" group, instead of being asked to
create a summary themselves, was provided with a 3–5 sentence summary
of the video as generated by one of the authors highly familiar with the
functional programming paradigm. We included the “given" group in our
study to determine the effect of actively retrieving information from memory
versus being provided a summarizing text for passive reading.

7.3.1 Findings

Learners engage less with interventions than course content items. Of the
3,262 learners in the “cued" condition in Functional Programming, 2,166
(66.4%) logged at least one video-watching event in the course. Among these
same learners only 719 (22%) clicked on any of the retrieval practice inter-
ventions.

We first tested whether the learners of the cued, given, and control groups
score differently in the weekly quizzes. To this end we performed a MANOVA
test with the highly engaged learners (characterized by having spent more
than the group’s mean time watching videos in Week 1 which is ≈ 22 minutes)
in each of the three conditions as a fixed factor and the grades on the weekly
quizzes as a dependent variable. The MANOVA test followed by the post
hoc Games-Howell (equal variances not assumed) test yielded no significant
differences between each group’s weekly quiz grade.
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Figure 7.1: KDE plot showing the distribution of weekly quiz grades across the groups of
highly engaged learners. All lines were fit using a Gaussian kernel function.
None of the differences between groups are statistically significant at the
α = 0.01 level.

In the previous analysis all highly engaged students from each condition
were included. However, as many students did not engage with the interven-
tion, this can give a distorted view of its effects. Therefore, we next isolated
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those learners who actively engaged (characterized by viewing the interven-
tion for at least 10 seconds) with an intervention prompt at least once.

Using these new group definitions, we still observe no statistically signif-
icant differences between the groups as a result of a MANOVA (to test the
difference between weekly quiz scores), and a one-way ANOVA (to test the
difference between course final scores). Figures 7.1 and 7.2 illustrate these
null findings via Kernel Density Estimation (KDE) plots.
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Figure 7.2: KDE plot showing the distribution of final course grades across the groups
of highly engaged learners. All lines were fit using a cosine kernel function.
None of the the differences between groups are statistically significant at the
α = 0.01 level.

Overall, we find that exposure to static text retrieval practice prompts
is not sufficient to significantly increase learner engagement or final grades.
When addressing the issue of noncompliance, we observe that even learners
who engaged with the retrieval cues show no significant difference in any
measure of performance. To this end, we took the insights gained from this
study and applied them to the design of an automated & adaptive retrieval
practice system, ARPS.
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7.4 Adaptive Retrieval Practice System Overview

The Adaptive Retrieval Practice System (ARPS) is a client-server appli-
cation (written in JavaScript/node.js)3 that provides automated, scalable
and personalized retrieval practice questions to MOOC learners on a contin-
uous basis. We developed ARPS specifically for use within the edX platform
in taking advantage of the RAW HTML input affordance. This allows course
teams/instructors to build custom interfaces within the platform that render
along with the standard edX content (such as videos, quizzes, etc.).

The ARPS back-end keeps track of the content a MOOC learner has already
been exposed to through client-side sensor code that logs a learner’s progress
through the course and transmits it to the back-end. Once the back-end
receives a request from the ARPS front-end (a piece of JavaScript running in
a learner’s edX environment on pages designated to show retrieval practice
questions), it determines which question to deliver to a learner at a given
time based on that learner’s previous behavior in the course by randomly
selecting from a personalized pool of questions only pertaining to content the
learner has already been exposed to. Each question is pushed to the learner
in the form of a qCard, an example of which is shown in Figure 7.5. These
qCards appear to the learner as a pop-up within the browser window. We log
all qCard interactions—whether it was ignored or attempted, the correctness
of the attempt, and the duration of the interaction.

In contrast to previous interventions in MOOCs [65, 66, 128, 135, 272],
we push questions to learners instead of requiring the learner to seek the
questions out. We adopted this push-based design in order to allow learners to
readily engage with the intervention with minimal interruption to the course
experience. This design also addresses the issue of treatment noncompliance
that has arisen in past research [65, 66]. ARPS is seamlessly integrated in the
course, requiring as few additional interactions as possible. In the case of
Multiple Choice (MC) questions (example problem text in Figure 7.3), the
entire interaction requires just a single click: the learner selects their chosen
response and if correct, receives positive feedback (a ✓ mark accompanied
by encouraging text), and the qCard disappears. Incorrect responses invoke
negative feedback (a x symbol alongside text encouraging the learner to make
another attempt) which disappears after 4 seconds and returns the learner
to the original question so they can try the problem again.

3The code is available at https://github.com/dan7davis/Lambda.

https://github.com/dan7davis/Lambda
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We also enabled one other question type4 to appear in qCards: Numeric
Input (NI) problems (an example is shown in Figure 7.4). These problems
require the learner to calculate a solution and enter the answer in a text box.
While requiring more effort than a single click response, we included this
problem type to allow for a comparison between the two.

A body with a low density, surrounded by material with a higher density, will
move upwards due to buoyancy (negative density difference). We analyze the
situation of a basaltic magma generated at a depth of 10 km and surrounded
by gabbroic rocks. Will the magma move downward, remain where it is or
move upward?

Figure 7.3: Example of an easy (less than 5% of incorrect responses) Multiple Choice
question in GeoscienceX.

Suppose an earthquake occurred at a depth of 10 kilometers from the surface
that released enough energy for a P-wave to travel through the center of the
Earth to the other side. This is for the sake of the exercise, because in reality
sound waves tend to travel along the boundaries and not directly through the
Earth as depicted. Assume the indicated pathway and the given thicknesses
and velocities. How many seconds does it take for the seismic P-wave to reach
the observatory on the other side of the Earth?

Figure 7.4: Example of a difficult (5% correct response rate) Numerical Input question
in GeoscienceX.

7.5 Study Design

We now describe the MOOC we deployed ARPS in as well as the design of our
empirical study.

7.5.1 Participants

A total of 2,324 learners enrolled in the course titled Geoscience: the Earth
and its Resources (or GeoscienceX), which was offered on the edX.org plat-
form between May 23, 2017 and July 26, 2017. The course consists of 56 lec-
ture videos and 217 graded quiz questions. Of the 132 total problems from
the 217 in the course question bank deemed suitable for use with qCards

4Additional question types that are supported by the edX platform can easily be added
to ARPS; in this paper we focus exclusively on MC and NI questions as those are the most
common question types in the MOOC we deployed ARPS in.
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Figure 7.5: Example qCard in the GeoscienceX course. The main body of the qCard
contains the question text, and the bar at the bottom contains the MC answer
buttons. The grey "x" at the top right corner closes the window and dismisses
the problem.

Figure 7.6: Page shown to learners in the control condition at the beginning of each course
week describing how to practice an effective memory retrieval routine.
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(multi-step problems were excluded so that each qCard could be answered
independently), 112 were Multiple Choice and 20 were Numerical Input prob-
lems.

Based on self-reported demographic information (available for 1, 962 learn-
ers), 35% of participants were women and the median age was 27. This course
drew learners from a wide range of educational backgrounds: 24% held at
least a high school diploma, 7% an Associate’s degree, 42% a Bachelor’s de-
gree, 24% a Master’s degree, and 3% a PhD. Learners were not provided any
incentive beyond earning a course certificate for participating in the study.

We define the study sample as the 1,047 learners who entered the course
at least once (out of the 2,324 who initially enrolled): 524 assigned to the
control condition and 523 to the treatment condition.

A post-course survey & quiz (cf. Section 7.5.2) was sent to all 102 learners
who engaged with the ARPS system (9 complete survey responses—8.8% re-
sponse rate) and the 150 highest performing learners in the control condition
in terms of final grade (11 complete responses—7.3%).

7.5.2 Procedure

This study was designed as a randomized controlled trial in the GeoscienceX
course. Upon enrolling in the course, learners were randomly assigned to one
of two conditions for the duration of the course:

• Control condition: A lesson on effective study habits was added to
the weekly introduction section. The lesson explained the benefits of
retrieval practice and offered an example of how to apply it (Figure 7.6).

• Treatment condition: ARPS was added to the course to deliver quiz
questions (via a qCard) from past weeks. The same weekly lesson on
study habits as in the control condition was provided to help learners
understand the value of the tool. In addition, information on how the
adaptive retrieval system works and that responses to the qCard do
not count towards learners’ final grade was provided. The qCards were
delivered before each of the 49 course lecture videos (from Weeks 2–6)
across the six course weeks. A button at the bottom of each lecture
video page enabled learners to receive a new qCard on demand after
the initial one to keep practicing.

To assess how well learners retained their knowledge from the course,
we sent a post-course survey to the most active learners in the course (in
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terms of time spent in the platform) two weeks after the course had ended.
The survey contained a random selection of ten assessment questions from
the GeoscienceX course. Learners in the treatment condition additionally
received eight questions about their experience with ARPS. We evaluated the
results of this post-course assessment with respect to differences between the
two cohorts in long-term knowledge retention.

7.5.3 Measures

In order to measure and compare the behavior of learners in both the control
and treatment conditions, we consider the following measures of in-course
events (tracked and logged on the edX platform):

• Final grade (a score between 0 and 100);
• Course completion (binary indicator: pass, no-pass);
• Course activities:

– Video interactions (play, pause, fast-forward, rewind, scrub);
– Quiz submissions (number of submissions, correctness);
– Discussion forum posts;
– Duration of time in course;

• ARPS interactions:

– Duration of total qCard appearance;
– Response submissions (with correctness);
– qCard interactions (respond, close window).

The following data were collected in the post-course survey:

• Course survey data

– Post-Exam Quiz Score (between 0-10);
– Learner intentions (e.g., to complete or just audit);
– Prior education level (highest degree achieved).

We have selected the three bolded variables as our primary outcome vari-
ables for this study for the following reasons: (i) a learner’s final grade is
the best available indicator of their performance in the course in terms of
their short-term mastery of the materials and (ii) the Post-Exam Quiz score
measures how well learners retained the knowledge weeks after finishing the
course.
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Table 7.1: Course outcomes in the control and treatment group.

Condition Subset N
Non-Zero

Grade
Passing

Rate
Grade

Quantiles

Control All 524 31% 8% [0, 0, 2]
Treatment All 523 34% 7% [0, 0, 2]

Treatment Complier 102 76% 34% [2, 19, 74]
Treatment Noncomplier 421 23% 0.2% [0, 0, 0]

7.6 Results

This section presents the findings from each of the five analyses we conducted:
(i) estimating the causal effect of the intervention based on the randomized
controlled experiment (RQ7.1), (ii) examining how learners interacted with
ARPS (RQ7.2), (iii) modeling how learners’ knowledge changed over time
(RQ7.3), (iv) estimating the rate of learners’ long-term knowledge reten-
tion (RQ7.3), and (v) understanding learners’ experience with ARPS from a
qualitative angle using survey responses. Each subsection concludes with a
statement synthesizing its key finding.

Table 7.2: Summary statistics for the mean value of the measures listed in Section 7.5.3
for analyses including all learners in both conditions who logged at least one
session in the platform. The vertical line separates standard course behavior
measures and those collected by ARPS.

Group N=
Final

Grade
Pass
Rate

Vid
Interact

Quiz
Submit

Forum
Posts

Time in
Course

Time w/
qCards

qCards
Seen

Ctrl 524 9 8% 6.52 34.77 0.26 4h47m – –
Treat 523 8 7% 5.83 30.88 0.29 3h40m 23m9s 7.71

7.6.1 Effect of Encouraging Retrieval Practice

The goal of the randomized experiment is to estimate the causal effect of
retrieval practice (RQ7.1). By comparing learners in the control and treat-
ment group, we can estimate the effect of the encouragement to engage in
retrieval practice with ARPS. However, many learners who were encouraged
did not engage in retrieval practice, which is a form of treatment noncom-
pliance. Specifically, of the 523 learners assigned to the treatment, only 102
interacted at least once with a qCard (i.e. complied with the treatment). For
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this reason, in order to estimate the effect of retrieval practice itself, we also
analyze the experiment as an encouragement design.5

The primary outcome measure is the final course grade, which deter-
mines certificate eligibility (the passing threshold is 60%). Table 7.1 con-
tains summary statistics for grade and certification outcomes in the con-
trol group and the treatment group, overall and separately for treatment
compliers and noncompliers. First, we estimate the Intent-to-treat Effect
(ITT), which is the difference in average outcomes between the treatment
and control groups. We find that the ITT is not significant for certifica-
tion (log odds ratio= −0.215, z = −0.920, p = 0.357), getting a non-zero
grade (logOR= 0.143, z = 1.08, p = 0.280), and the continuous grade itself
(Kruskal-Wallis χ2

df=1 = 0.592, p = 0.442).

Next, we use an instrumental variable approach (Two-stage Least Squares)
to estimate the effect of retrieval practice for those who used it (i.e. a Local
Average Treatment Effect, or LATE) [6]. For a binary instrument Z, outcome
Y, and compliance indicator G, we can compute the Wald estimator:

βIV =
E (Y |Z = 1)− E (Y |Z = 0)

E (G|Z = 1)− E (G|Z = 0)
(7.1)

The LATE is not significant either for certification (βIV = −0.078, z =

−0.893, p = 0.371), getting a non-zero grade (βIV = 0.160, z = 1.11, p =

0.267), and the continuous grade itself (βIV = −0.066, z = −0.889, p =

0.374).

Finally, we estimate the per-protocol effect, which is the difference in
average outcomes between treatment compliers and control compliers (i.e.
the entire control group). We find large differences in terms of certifica-
tion (logOR= 1.74, z = 6.66, p < 0.001), getting a non-zero grade (logOR=

2.00, z = 7.94, p < 0.001), and the continuous grade itself (Kruskal-Wallis
χ2
df=1 = 99, p < 0.001). However, the per-protocol estimates do not have

a causal interpretation because different subpopulations are compared: all
learners in the control group versus those highly motivated learners who
comply in the treatment group. For instance, note that treatment com-
pliance is strongly correlated with receiving a higher grade (Spearman’s
r = 0.56, p < 0.001).

5The study was pre-registered at www.osf.io/4py2h. Due to the small sample size and
compliance rate, we adjusted our analytic approach. Specifically, we analyze the experiment
as an encouragement design beyond estimating average treatment effects, and we did not
apply the specified sample exclusion criteria because they could inadvertently bias the
causal inference.

www.osf.io/4py2h
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In addition to estimating effects based on the final course grade, the pre-
registration also specifies a number of process-level analyses (RQ7.2). In
particular, we hypothesized that learners who receive the treatment would
exhibit increased self-regulatory behavior in terms of (i) revisiting previous
course content such as lecture videos, (ii) self-monitoring by checking their
personal progress page, and (iii) generally persisting longer in the course. No
evidence in support of the hypothesized behavior was found, neither in terms
of the ITT (Kruskal-Wallis χ2

df=1s< 0.68, ps> 0.41) nor in terms of the LATE
(|z|s< 0.98, ps> 0.32). Focusing on learners in the treatment group, we also
hypothesized that learners who attempt qCards at a higher rate would learn
more and score higher on regular course assessments, which is supported by
the data (Spearman’s r = 0.42, p < 0.001). In summary (and in contrast to
previous studies on the topic [4, 49, 212, 97, 166, 118, 117]):

The causal analysis yields no evidence that ARPS raised learning,
performance, or self-regulatory outcomes in this course.

This may be due to the low sample size or rate of compliance in this study.
We also observed a selection effect into using ARPS among highly motivated
learners in the treatment group. Among those learners, increased engagement
with qCards was associated with higher grades, though this pattern could
be due to self-selection (e.g., more committed learners both attempt more
qCards and put more effort into assessments). To better understand how
different groups of learners used ARPS and performed on subsequent learning
assessments, we conducted a series of exploratory analyses.

7.6.2 Engaging with Retrieval Cues

Question-by-Question Analysis

Figure 7.7 illustrates learners’ responses for every question delivered by ARPS,
which indicates which questions learners tended to struggle with (or ignore).
The figure reveals that the choice to attempt or ignore a qCard is strongly
associated with a learner’s eventual passing or failing of the course. Moreover,
it shows a steady decrease in learner engagement over time, not only among
non-passing learners, but also among those who earned a certificate. Thus,
attrition in MOOCs is not limited to those who do not pass the course; even
the highest-achieving learners show a tendency of slowing down after the first
week or two (also observed in [273]).

From Figures 7.8 and 7.9, we observe that passing and non-passing learn-
ers do not appear to differ in their rate of giving incorrect responses (which
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Figure 7.7: A question-by-question breakdown of every learner interaction with the
qCards. The top two figures represent the behavior of passing learners—
the upper image shows the number of learners being served that question,
and the lower shows how they interacted with it—and the bottom two show
that of non-passing learners. Questions are shown in order of appearance
in the course (left to right), and the solid vertical line indicates a change in
course week. Best viewed in color.

would indicate misconceptions or a lack of understanding the materials). In-
stead, they differ in their choice to ignore the problems all together. When
removing the instances of ignored qCards and focusing only on attempted
problems (right-hand side of Table 7.3), we observe a significant albeit small
difference (6% difference, χ2 = 9.63, p = 0.002) between the proportion of
correct or incorrect responses between passing and non-passing learners (cf.
Table 7.3). In other words, passing and non-passing learners both perform
about the same on these quiz problems—and yet, with no discernible differ-
ence in their assessed knowledge, only some go on to earn a passing grade
and course certificate.
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Figure 7.8: Each bar corresponds to one passing learner. Only one learner took advantage
of the “infinite quizzing” capability by frequently using the “Generate new
qCard” button. Best viewed in color.
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Figure 7.9: Each bar corresponds to one non-passing learner. Best viewed in color.

First Question Response

To further explore the predictive power of a learner’s choice to either attempt
or ignore the qCards, we next analyzed each learner’s first interaction with
a qCard. Figure 7.10 (left) shows the passing rate of learners segmented
according to their first interaction with a qCard. Learners who attempted
rather than ignored the first qCard had a 47% chance of passing the course.
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Table 7.3: qCard problem response (left) and correctness (right). Significant differences
at the p < 0.001 (between passing and non-passing) are indicated with †.

Attempted† Ignored† Correct Incorrect

Non-passing 0.47 0.53 0.76 0.24
Passing 0.73 0.27 0.82 0.18

In contrast, learners who ignored the first qCard delivered to them only had
a 14% chance of passing. Figure 7.10 (right) additionally illustrates the
relationship between the result of the first qCard attempt and passing the
course. There were notably few learners who responded incorrectly, but their
chance of passing the course was still relatively high at 33% compared to
those who simply ignored the qCard.
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Figure 7.10: The likelihood of course completion based on learners’ response (left) and
result (right) to the first qCard they were shown. “True” indicates both
correct or incorrect responses, and “False” indicates the qCard was ignored.
Best viewed in color.

To evaluate whether the response of a learner’s second qCard problem
adds any predictive value, we replicated the analysis shown in Figure 7.10
for the responses to the first two qCards delivered to each learner. No differ-
ence in predictive value was observed by considering the second consecutive
response—learners who answered their first two consecutive qCards correctly
had a 53% chance of earning a passing grade.

We conclude that initial adoption of ARPS appears to depend partly on
learners’ motivation to complete the course.
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Response Duration

We next explore how much time learners spent interacting with qCards and
how time spent predicts the outcome of the interaction. Figure 7.11 shows
the proportion of correct, incorrect, and ignored responses as a function of
time elapsed with a qCard. We find that the decision to ignore the qCard
happened quickly, with a median duration of 7 seconds (from the time the
qCard appeared to the time the learner clicked the “x” button to close it).
When learners did attempt to answer the question, the amount of time they
spent did not have any association with the correctness of their response; the
median duration for correct and incorrect responses was 18 seconds and 16
seconds, respectively.

Figure 7.11: Kernel Density Estimation plot showing the relationship between time with
the qCard visible and the result of a learner’s response. The median time for
each result is indicated with the dashed vertical line. Best viewed in color.

From the question-by-question, first question response, and response du-
ration analyses, we conclude:

There is no significant difference in assessed knowledge between
passing and non-passing learners; the key difference lies in a
learner’s willingness to engage with the retrieval practice ques-
tions.

7.6.3 Modeling Knowledge Over Time

One of the contributions of ARPS is the data set that it generates: by track-
ing learners’ responses to these periodic, formative, and ungraded questions
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throughout the entire course, we have a longitudinal account of learners’
evolving knowledge state throughout the entire process of instruction. In
this section we explore how learners’ knowledge (as measured by performance
with the qCards) deteriorates over time (RQ7.3).

Figure 7.12 shows the cumulative week-by-week performance of both pass-
ing and non-passing learners. As qCards could only be delivered with ques-
tions coming from prior course weeks, the x-axis begins with Week 2, where
only questions from Week 1 were delivered. This continues up to Week 6
where questions from Weeks 1–5 could be delivered.

The left (Passing) graph in Figure 7.12 illustrates the forgetting curve
of the passing learners in GeoscienceX. We observe a statistically signifi-
cant decrease in performance between Weeks 2 and 6 (correct response rate
dropping from 67% to 49% respectively; χ2 = 32.8, p < 0.001). While the
proportion of ignored responses remains steadily low, the proportion of cor-
rect responses drops by 18% (nearly identical to the forgetting rate found in
[166]). The rate of incorrect responses increased from 4% to 25% (χ2 = 87.8,
p < 0.001).

On the right (Non-Passing) graph in Figure 7.12 we observe that the
choice to ignore qCards was common through the entire course duration, with
a slight increase in the later weeks. We also observe a significant decrease
in correct response rates for non-passing learners (χ2 = 15.7, p < 0.001).
However, unlike passing learners who exhibited a significant increase in in-
correct responses, there is no significant change for non-passing learners. The
change, instead, is in the rate of ignored responses, increases from 47% in
Week 2 to 61% in Week 6.

We identify two main contributing factors to this decline in performance
over time. First, the amount of assessed content increases each week; in Week
6 there are five course weeks worth of content to be assessed, whereas in Week
2 there is only content from Week 1 being assessed. Second, people simply
forget more with the passing of time [211]; each passing week moves the
learner temporally farther away from when the content was initially learned.

We next explore the relationship between testing delay and learners’ mem-
ory and performance on qCards. In Figure 7.13, the x-axis represents the
difference between a learner’s current week and the week from which the
qCard came. For example, if a learner was currently watching a lecture video
in Week 5 and the qCard delivered was a question from Week 2, that would
be a difference of three. While Figure 7.12 shows how the amount of content
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covered/assessed is related to performance, Figure 7.13 illustrates how the
testing delay is related to performance.

We observe very similar trends as above for both passing and non-passing
learners. For passing learners there is a 23% drop in correct response rates
from 1 Week Elapsed to 5 Weeks Elapsed (65% to 42%, χ2 = 23.6, p < 0.001).
Also significant is the 13% increase in incorrect response rate (8% to 21%,
χ2 = 17.5, p < 0.001). The increase in ignored question frequency is not
significant for passing learners, though it is large and significant for non-
passing learners: between 1 Week Elapsed and 5 Weeks Elapsed, ignored
questions increased by 22% from 50% to 72% (χ2 = 4.9, p = 0.025). Overall,
for non-passing learners, we observe increased ignoring, decreased correct
problem attempt rates, and steady incorrect problem attempt rates.

This pattern shows that non-passing learners are able to recognize, at-
tempt, and correctly answer qCard problems that are more proximate to
their current stage in the course. This suggests a high level of self-efficacy
especially among the non-passing learners; they are able to identify questions
that they likely do not know the answer to and choose to ignore them.

Another encouraging finding from this analysis is that of learners’ short-
term knowledge retention. As partially illustrated by Figure 7.13, considering
problems that were attempted with 1 Week Elapsed, passing learners answer
88% of problems correctly. Non-passing learners also show good performance
with 79% correct (note that the required passing grade for the course was
60%).

From the above findings on learner knowledge as a function of both time
and course advancement, we conclude:

Learner quiz performance deteriorates with the introduction of
more course concepts/materials and the passing of time.

7.6.4 Long-Term Knowledge retention

Long-term knowledge retention is the primary learning outcome affected by
highly-spaced retrieval practice, which is typically evaluated in either a final,
cumulative exam in a course, or a post-exam with some lag time between
learners’ exposure to the material and assessment [166, 61]. As the Geo-
scienceX course only featured weekly quizzes, we took a random selection of
ten quiz questions from throughout the six end-of-week quizzes and created
a post-course knowledge assessment. Delivered to learners in a survey format
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Figure 7.12: Week-by-week results of learners’ interaction with the qCards. The x-axis
represents the course week w, and the y-axis represents the proportion (%)
of correct, incorrect, or ignored responses (with qCards showing queries from
course weeks 1 to w − 1). Error bars show standard error. Best viewed in
color.
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Figure 7.13: The x-axis represents the number of elapsed weeks between the course week
where the topic was introduced and the course week in which the qCard was
delivered (testing delay), and the y-axis represents the proportion of each
response. Error bars show standard error. Best viewed in color.

two weeks after the course had ended, we compared the performance between
the two experimental conditions.

A χ2 test revealed no significant difference in long-term knowledge reten-
tion between the control condition and learners in the treatment condition
who interacted with the intervention at least once (RQ7.3). The mean score
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for learners in the control and treatment conditions was 6.2 (SD = 1.9)
and 6.6 (SD = 1.8), respectively, out of a possible 10 points (N = 20,
t (17.6) = −0.45, p = 0.66).

Results from these analyses are consistent with prior literature [166, 61]
on long-term knowledge retention in finding that, regardless of experimental
condition and whether or not a learner passed the course:

Approximately two thirds of course knowledge is retained over the
long-term.

7.6.5 Learner Experience

To evaluate learners’ experience with ARPS, we adapted the System Usability
Survey [28] for the context of the present research. The scale was included
in the post-course survey and learners indicated a cumulative usability score
of 73.9 (SD = 12.2) on the SUS scale. According to [13], this is categorized
as “acceptable usability" corresponding to a “C" grade. This means that the
system’s usability falls into the third quartile of SUS scores overall [13]—
especially positive given that this was deployed not as a production system
but as a research prototype.

To gain deeper insight into learners’ experience and find out which spe-
cific aspects of the system could be improved, we also offered learners the
opportunity to describe their experience with ARPS in two open response
questions. One prompted them to share which aspects of ARPS they found to
be the most enjoyable and another asked about frustrating aspects of ARPS.

One learner explained how the type of problem delivered was a key factor
in their use of ARPS:

“It [would] be better if only conceptual questions [were] asked for
[the] pop quiz, it’s troublesome if calculation is required. If calcu-
lation is required, I would prefer that the options are equations so
that we can choose the right equation without evaluating them.”

Other learners reported similar sentiments and also shared insights that
indicate a heightened level of self-awareness induced by the qCards. Learners
shared their perspectives talking about how the system helped “...remind me
[of] things that I missed in the course" and how it gave them “the chance
to see what I remembered and what I had learned." These anecdotes are en-
couraging as for these learners the system was able to encourage a deliberate
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activation of previously-learned concepts which may have otherwise been for-
gotten.

Upon seeing the learner feedback about how the problem type affected
the learner’s experience, we conducted a follow-up analysis to see if there was
any indication that other learners felt the same way (as expressed through
their interaction with ARPS). Figure 7.14 reveals that, indeed, this learner
was not alone in their sentiment; we find that there was a 69% likelihood
of learners attempting a MC qCard problem type compared to 41% attempt
rate for NI problems. A χ2 test shows this difference to be statistically
significant (p < 0.001). Given that the question type (mostly evaluations of
mathematical equations) is consistent across both problem types (MC and
NI), we can conclude that these differences are indeed an effect of the problem
type. This finding supports our initial design decision for a hyper-efficient
interaction process—learners are far more likely to attempt a problem which
only requires a single click selecting from a list of answers than one that
requires two extra processes: they must first generate an answer from scratch
and then type it out. From the data we are unable to identify which of these
two extra processes contributes more to the problems being ignored, so we
consider them in tandem.

57%
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17%
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Figure 7.14: Breakdown of qCard interaction results across the two problem types. Best
viewed in color.
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7.7 Conclusion

Decades of prior research on the effectiveness of different learning strategies
has found retrieval practice to be effective at supporting long-term knowledge
retention [4, 49, 212, 97, 166, 118, 117, 61, 166]. However, how to effectively
support retrieval practice in digital learning environments has not yet been
thoroughly examined. The vast majority of prior work was conducted in
offline learning environments, including university laboratory settings. Crit-
ically evaluating the efficacy of retrieval practice in digital learning environ-
ments promises to advance theory by developing a deeper understanding of
how retrieval practice can be effective in a digital context as well as in a
highly heterogeneous population that is embodied by MOOC learners.

We evaluated an Adaptive Retrieval Practice System in a MOOC
to address the emerging issue of supporting learning strategies at large scale
and to bridge retrieval practice theory into the digital learning space. We
found noncompliance to be a major limitation in our evaluation of the system
and its effectiveness. Many learners did not engage with the intervention,
which limits our ability to draw causal inferences about the effect of retrieval
practice on learners’ achievement and engagement in the course.

We acknowledge the following limitations of the present study: (i) the
qCards could potentially act as a distraction and make a learner more in-
clined to disengage, and (ii) despite the course being designed by trained
course developers, there is a possibility that the assessment items used may
not effectively measure the psychometric properties of learning, which would
threaten the validity of our claim that retrieval practice does not improve
learning outcomes.

Despite the lack of causal findings, the data collected from ARPS allowed
us to offer multiple insights into the online learning process as it pertains
to the persistence and transience of knowledge gains. By examining learner
behavior and engagement with the intervention, we were able to track their
performance on the same problem or topic and observe how their perfor-
mance is affected by both the passage of time and introduction of new course
materials.

We observed an encouraging trend of learners showing high levels of short-
and medium-term knowledge retention, which is indicative of the early stages
of learning. To what extent this newly gained knowledge is integrated into
long-term memory warrants further research in the context of large online
courses. Despite the null results from our causal analyses (Section 7.6.1),
the wealth of evidence showing that retrieval practice is one of the most
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effective strategies to support knowledge retention makes this approach ripe
for further investigation in online learning settings. The key to developing
this theory further, however, is to design systems and interfaces that foster
high levels of engagement to collect more causal evidence.



Chapter 8

Conclusion

The work presented in this thesis uses and advances learning analytics tech-
niques to computationally model learning & teaching behaviors in online
education. We also here develop technical solutions to support and improve
this modeling. We present a series of research efforts which begins by gaining
an understanding of how both instructors and learners alike behave without
our intervention in edX MOOCs and then the work culminates in a series of
randomized controlled trials evaluating the effectiveness of interventions that
have been adopted from traditional learning environments previously found
to be highly reliable and effective.

These lines of research presented here are centered on the primary re-
search question of this thesis:

RQ How does the design of Massive Open Online Courses affect learner
success and engagement?

We conduct deep inquiry into this question newly afforded by the widespread
use of online learning platforms by taking advantage of both the clickstream
data scale and granularity offered by MOOC platforms like edX. These new
affordances led to a rise of learning analytics research which has offered new
insights into the online learning process. We here address the identified
shortcomings of online learning behavior (namely self-regulation and active
learning) and develop interventions to improve learning behavior with two
sub-RQ’s:

RQ1 To what extent do teaching and learning strategies that have been
found to be effective in traditional learning environments translate to
MOOCs?
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RQ2 How can MOOC environments be improved to advance the possibilities
of experimentation?

In this thesis we have addressed these questions through: (i) modeling the
default or natural behavior of instructors (how they design courses) and learn-
ers (how they engage with courses), (ii) reviewing the literature in seeking
the most promising solutions for approaches to improve large-scale online
active learning behavior, (iii) study planning interventions, and (iv) retrieval
practice interventions. After presenting the summary of contributions from
this thesis, we conclude this chapter with a prospective outlook of recom-
mended avenues of future research to continue the momentum of this body
of research.
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8.1 Summary of Contributions

8.1.1 Improving Learning Behavior & Course Design

In Chapter 2 we have contributed a synthesis of the published literature in
the domain of large-scale learning intervention studies. By limiting the in-
clusion criteria to studies that include adult learners as participants, employ
a randomized controlled trial design, and test the effectiveness of a scalable
instructional intervention, this work offers a state of the in the type of active
learning strategies most likely to transfer to the MOOC context and learner
demographics. In addressing RQ1 (To what extent do teaching and learning
strategies that have been found to be effective in traditional learning envi-
ronments translate to MOOCs?), we find from our review that studies with
more than 500 participants are the least likely to yield significant results
and we also identify the three most promising types of interventions most
likely to be effective in helping MOOC learners improve their engagement
and learning outcomes: simulations & gaming, interactive multimedia, and
cooperative learning.

8.1.2 Teaching & Learning Paths

While previous research in the area of online learning pathways found that
learners often adopt nonlinear trajectories through online courses [260, 63],
Chapters 3 and 4 expands the prior understanding by contextualizing learn-
ers’ learning paths against the designed path set forth by the instructor. In
our research efforts in this domain we developed methodologies to model both
the behavior of learners and the design tendencies of course instructors. This
work has major implications for both researchers and online course design-
ers. Researchers have already begun to build off of this work in exploring at
which moments in a learner’s pathway in a course they change their behav-
ior and deviate from an established path [203], thus offering an even more
actionable insight for the instructor to intervene if this change is deemed
undesirable. With regard to RQ2 (How can MOOC environments be im-
proved to advance the possibilities of experimentation?), we find that course
designers can greatly benefit from this line of research because it begins to
formalize the causal effect between course design and learner achievement
[85, 86]. By regarding the design of a course as a dataset worthy of analysis,
we can continue to work towards a concrete understanding of how certain
structural or course design elements directly effect learners and their course
learning outcomes.
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8.1.3 Study Planning

Due to its established effectiveness in traditional learning settings, we at-
tempted to to adapt study planning interventions to large-scale learning en-
vironments to evaluate their effectiveness in a new context in Chapters 5 and
6.

Social Comparison We next developed an intervention for MOOCs which
provided learners with a dashboard-type visualization tool which they could
use to both measure and track their own learning behavior, but also compare
their behavior to a previously successful learner in the same course (to elicit
social comparison). With regard to RQ2, we ran this intervention in ran-
domized controlled trials in four separate MOOCs and found that the social
comparison intervention significantly increased passing rates in every course
examined (the increases in passing rates ranged from 3%–6%). In these ex-
periments we successfully leveraged the scale of MOOCs (by presenting the
aggregate behavior of all successful learners) in offering a way to objectively
improve learner achievement.

Study Planning in MOOCs We began by exposing learners to a sim-
ple study planning intervention in a MOOC. We created an interface which
prompted learners at the beginning of each week to state their goals and their
plans on how they will achieve those goals for the week. And at the end of
each course week, the system prompted learners to reflect back on their goals
and plans and write down how well they did in achieving those. While this
type of intervention had previously been found to be highly effective in tra-
ditional learning environments, we observed high levels of noncompliance—
learners largely ignored the intervention. This served as an early indication
that more care needs to be paid to translating interventions to the online
context and that they cannot simply be adopted “out of the box.”

We next designed, developed and evaluated an interactive SRL interven-
tion (SRLx) for MOOC learners to plan and monitor their activities in the
course. We analyzed learners’ tendencies to actually use the system (compli-
ance) as well as their actual engagement with the system. In service of RQ2,
we find that learners were significantly more conservative with the way they
planned to allocate time to the course compared to other metrics and we also
observed that, in the particular course in which this was evaluated, learners’
engagement with the system revealed that they were predominantly intrinsi-
cally motivated and not taking the course for direct career advancement.
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8.1.4 Retrieval Practice

Retrieval practice has been touted as one of the most effective learning strate-
gies known for improving long-term knowledge retention [4]. Accordingly, in
Chapter 7 we conducted two experiments which evaluated the effectiveness
of retrieval practice interventions in MOOCs.

Retrieval Practice in MOOCs In this pilot study, we conducted a ran-
domized controlled trial evaluating the effectiveness of providing learners with
retrieval prompts after each lecture video. We developed a system which
prompted the learner to state, in their own words in 3–5 sentences, the key
points from the previous lecture video. The theory behind this type of in-
tervention is that this encourages learners to pause and actively recall the
information they learned about in the video instead of quickly moving on to
the next activity without taking the time to process the information. With
regard to RQ2, we again found noncompliance to be a major issue in this
research. Learners were not required to engage with the retrieval prompts,
and the vast majority indeed chose not to. This finding serves as yet an-
other indication that new considerations and measures need to be taken in
translating interventions from traditional to online learning environments.

Modeling Knowledge Over Time To work toward a reliable way to get
MOOC learners to engage in retrieval practice so that they can reap the
benefits of improved long-term knowledge retention, we developed ARPS, an
adaptive retrieval practice system. This system automatically delivered quiz
questions from previous units in the course (that the learner had previously
been exposed to) at random moments throughout the course. By doing so, the
system encouraged and prompted learners to reactivate the knowledge they
had learned weeks ago but had likely not reactivated since—and a regular
schedule of reactivation is the key to encoding knowledge in long-term mem-
ory. We A/B tested ARPS in a randomized controlled trial and observed high
levels of noncompliance. We observed insignificant results when comparing
the key learning outcomes of the control vs. treatment groups. Even though
the A/B test results were null, the data generated from ARPS (intermittent
assessment events) enabled us to quantify the evolution (and degradation) of
learners’ knowledge over time. With regard to RQ2, we here model a forget-
ting curve of MOOC learners’ knowledge and also find that MOOC learners
rate of forgetting is similar to that of students in traditional learning envi-
ronments, where approximately 2/3 of knowledge is retained over the long
term [79, 61, 166].
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8.2 Future Work

This thesis has made numerous contributions in the domain of large scale
learning analytics from various perspectives—from the theoretical underpin-
ning of self-regulated learning to the technical development of real-time data
capturing (SRLx) and feedback in the edX platform. There is, however, still
lots of work that needs to be done in this space to improve the quality of on-
line education at scale [114] beyond the interventions presented above. The
potential of massive learning environments is so vast, and learning analyt-
ics as a field is still in its infancy (with its first focused conference taking
place in 20111). While the present body of work has made a number ad-
vances to the field, this section outlines the limitations of the current state
of the field and highlights the lines of research we see as having the greatest
potential for widespread impact. Based on our findings from the preceding
chapters, we here look beyond the current state of MOOCs and offer op-
portunities for the field of large scale learning analytics to help shape the
future of higher education in three key domains: (i) Empirically Evaluating
Instructional Strategies, (ii) Modeling Teaching & Learning Paths, and (iii)
Digital Learning Theory.

Empirically Evaluating Instructional Strategies

As discussed in Chapter 2, the scalable nature of online learning platforms
now affords researchers to conduct studies of unprecedented scale and het-
erogeneity in the learning context. The massive scale allows researchers to
zoom in to underrepresented populations [135] in the learning literature with
high statistical power to draw causal conclusions not previously common in
the literature. This topic has recently begun to gain widespread attention
in the learning analytics community, where new workshops [30] and recent
experiments [29, 67] have been increasingly present.

To achieve this goal of ubiquitous experimentation and thorough evalu-
ation of optimal teaching and learning strategies, we believe the online edu-
cation community (practitioners and researchers alike) must adopt a culture
where we are constantly conducting experiments and testing new approaches
to instruction and pedagogy [141]. While some may already engage in this
practice in isolation, the greatest impact can be had by the widespread adop-
tion of this approach, because one experiment’s results alone are not enough.
To truly create a field of robust science, interventions must be replicated and

1https://tekri.athabascau.ca/analytics/

https://tekri.athabascau.ca/analytics/
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validated by multiple studies in a wide variety of contexts to work towards
reproducible scientific findings [241, 52, 205]. For example, in Chapter 5, we
introduce the learning tracker and find that it significantly increased passing
rates of learners in four different MOOCs. While that is indeed promising
preliminary evidence for the effectiveness of this intervention, it needs to be
evaluated and reproduced in a wide range of contexts before it becomes a
standard best practice that can be expected to work in any situation. And
while peer-reviewed publication of such findings would serve as meaning-
ful contributions to the advancement of this science, it is just as important
for instructors and practitioners not interested in publishing to engage in
a habit of iteratively improving their pedagogical practices by testing new
innovations in their teaching strategies to facilitate more effective learning
[141]. Inspiration for these experiments can and should be drawn from the
substantial body of existing research generated from experiments carried out
in traditional learning environments [96] so that we can continue to refine our
understanding of how and which teaching & learning strategies are effective
at scale.

We also encourage future research to enable new types of learning data
to consider when conducting learning analytics research through the inter-
diction of new technologies. Whereas in the early years of MOOC research,
the focus was to process and comprehend the novel, massive data sets gen-
erated by these new courses; now that there are a number of solutions to
handling MOOC data2, implementing new technology within the learning
context to augment the existing collection of data will offer novel insights
into the online learning process. For example, in Chapters 6 and 7, where we
introduce SRLx and ARPS respectively, we created systems as interventions
which track and generate new types of data not previously available through
the edX environment. In SRLx, by enabling learners to create personalized
study plans, we thus were able to draw new insights about how learners plan
and go about achieving their plans. With ARPS, by intermittently deliver-
ing retrieval practice questions to learners and recording their responses, we
were able to quantitatively track the evolution of learners’ knowledge over
time. More systems like SRLx and ARPS should be developed and deployed
in the future to (i) improve learning outcomes and (ii) generate new data
to improve research and understanding of online learning behavior. Future
research should focus on developing such technologies with a strong emphasis
on usability, human–computer interaction, and engagement. The systematic
problem of noncompliance in the research presented in this thesis is high-
lights a pressing area for future work, and the online learning community

2https://github.com/MOOCdb

https://github.com/MOOCdb
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must find new ways to consistently and meaningfully engage online learners
accordingly.

Teaching & Learning Paths

Learning is a long, highly complex process of knowledge building, and the
clickstream data from online learning platforms offers an unprecedented level
of granularity in our ability to gauge and track a learner’s path through
a learning experience. Prior to the widespread adoption of online learning
environments, research in this domain would be limited to an analysis of
the instructor’s syllabus, or resource-intensive manual observing of learners’
trajectories through tasks or activities in order to uncover insights in how
knowledge is formed in the learning context [156]. But now, in the data
researchers have access to every action a learner takes within a platform,
from opening a new page, to changing the playback speed of a video, to
scrolling through their peers’ comments on the course discussion forum.

A formidable extension to this previous work on pathways and navigation
patterns would be to dovetail it with the recent ongoing work in learner feed-
back [201, 38]. For example, research on self-regulated learning is typically
framed in one of a few widely regarded models [175, 132, 264]. As those
models were developed in the context of traditional learning environments
without out the data granularity afforded by large-scale learning environ-
ments, we are now faced with the opportunity to understand self-regulated
learning behavior in far greater detail than was possible before; this could
lead to the formulation of new models and/or a more nuanced understand-
ing of the suitability of existing models as applied in the large-scale online
context.

Chapters 3 and 4 in this thesis emphasized the value in this data particu-
larly in regarding it through a lens of patterns or sequences. By making sense
of these patterns and sequences of learner behavior through sequence-based
modeling techniques, future research can continue to evaluate how a learner’s
path through the course is related to their future behavior and learning out-
comes. Furthermore, and perhaps more importantly, a better understanding
of the causal effect of various traits of learner pathways can inform inter-
ventions which, for instance, could detect a deviation of a learner towards a
potentially undesirable path and delivers a targeted intervention nudging or
directing them back on a path more likely to lead to positive outcomes.
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Digital Learning Theory

One of the most substantial implications of the research presented in this
thesis is that we have highlighted the need for a new area of concentration in
learning science that is concerned with the online learning context—we must
continue to identify deviations where what works in a traditional learning
environment does not effectively work online. For example, the experiments
carried out in Chapters 5–7 of this thesis each used best practices in de-
signing the instructional interventions in our effort to adapt them from the
small-scale, in-person lab setting in which they were originally evaluated and
validated to the novel context of MOOCs. It has become clear from this body
of research that interventions and techniques known to work in the traditional
classroom cannot simply work “out of the box” in the online setting—rather,
they must be adapted accordingly based on the context. This thesis high-
lights the importance and difficulty of this adaptation process; it shows some
examples of successful adaptations along with some unsuccessful adaptations.
Using the research efforts on study planning and retrieval practice in Chap-
ters 5–7 as a basis, future research should continue to empirically evaluate
innovations to instructional strategies at scale in creating a culture of iter-
atively building the understanding of how teaching and learning works at
scale.

The goal of this line of research is to arrive at a set of best practices
where we can declare with certainty that if a course is designed using a
certain set of design principles (both in terms of interventions to improve SRL
and instructional sequencing strategies), then it will give the most learners
the greatest chance of succeeding, with the ultimate goal of personalized
learning—identifying each learner’s individual needs at a given moment and
acting upon that accordingly.
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