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Higher Order Convergent Fast Nonlinear Fourier
Transform

Vishal Vaibhav

Abstract—It is demonstrated in this letter that linear mul-
tistep methods for integrating ordinary differential equations
can be used to develop a family of fast forward scattering
algorithms with higher orders of convergence. Excluding the
cost of computing the discrete eigenvalues, the nonlinear Fourier
transform (NFT) algorithm thus obtained has a complexity of
O(K N + CpN log2 N ) such that the error vanishes as O(N−p )
where p ∈ {1,2,3,4} and K is the number of eigenvalues. Such an
algorithm can be potentially useful for the recently proposed NFT
based modulation methodology for optical fiber communication.
The exposition considers the particular case of the backward
differentiation formula (Cp = p3) and the implicit Adams method
(Cp = (p − 1)3, p > 1) of which the latter proves to be the most
accurate family of methods for fast NFT.

Index Terms—Nonlinear Fourier Transform, Zakharov-Shabat
scattering problem

I. INTRODUCTION

This letter deals with the algorithmic aspects of the nonlin-
ear Fourier transform (NFT) based modulation techniques that
aim at exploiting the nonlinear Fourier (NF) spectrum for op-
tical fiber communication [1]. These novel techniques [2] can
be viewed as an extension of the original ideas of Hasegawa
and Nyu who proposed what they coined as eigenvalue com-
munication in the early 1990s [3]. One of the key ingredients
in various NFT-based modulation schemes is the fast forward
NFT which can be used to decode information encoded in
the discrete and/or the continuous part of the NF spectrum. A
thorough description of the discrete framework (based on one-
step methods) for various fast forward/inverse NFT algorithms
was presented in [4] where it was shown that one can achieve
a complexity of O(N log2 N ) in computing the scattering
coefficients in the discrete form (such a result for certain other
discrete systems was first reported by Wahls and Poor [5] for
forward NFT). If the eigenvalues are known beforehand, then
the NFT has an overall complexity of O(K N +N log2 N ) such
that the error vanishes as O(N−2) where N is the number of
samples of the signal and K is the number of eigenvalues.
Interestingly enough, the complexity of the fast inverse NFT
proposed in [6], [7] also turns out to be O(K N + N log2 N )
with error vanishing as O(N−2).

In this letter, we present new fast forward scattering al-
gorithms where the complexity of computing the discrete
scattering coefficients is O(CpN log2 N ). If the eigenvalues
are known beforehand, the NFT of a given signal can be
computed with a complexity of O(K N + CpN log2 N ) such
that the error vanishes as O(N−p ) where (p ∈ {1,2,3,4}) and
K is the number of eigenvalues. In particular, we demonstrate
in this work that using m-step (m ∈ {1,2,3,4}) backward
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differentiation formula (BDF) and m-step (m ∈ {1,2,3})
implicit Adams (IA) method [8] one can obtain fast forward
NFT algorithms with order of convergence given by p = m
and p = m+ 1, respectively. As far as higher-order convergent
fast inverse NFT algorithms are concerned, let us mention that
the problem of finding a compatible fast layer-peeling scheme
for each of these discrete systems remains to be investigated.

The starting point of our discussion is the Zakharov-Shabat
(ZS) [9] scattering problem which can be stated as: For ζ ∈ R
and v = (v1,v2)ᵀ,

vt = −iζσ3v +U (t, x)v, (1)

where σ3 = diag(1,−1) and the potential U (t, x) is defined by
U11 = U22 = 0, U12 = q(t, x) and U21 = r (t, x) with r = κq∗
(κ ∈ {+1,−1}). Here, ζ ∈ R is known as the spectral parameter
and q(t, x) is the complex-valued function associated with
the slow varying envelope of the optical field which evolves
along the fiber according to the nonlinear Schrödinger equation
(NSE), stated in its normalized form,

iqx = qt t − 2κ |q |2q. (2)

The NSE provides a satisfactory description of pulse propa-
gation in an optical fiber in the path-averaged formulation [2]
under low-noise conditions where t is the retarded time and x
is the distance along the fiber. In the following, the dependence
on x is suppressed for the sake of brevity. Here, q(t) is
identified as the scattering potential. The solution of the ZS
problem (1) consists in finding the so called scattering coef-
ficients, a and b, which are defined through special solutions
of (1) known as the Jost solution. The Jost solution of the
first kind, denoted by ψ(t; ζ ), has the asymptotic behavior
ψ(t; ζ )e−iζt → (0,1)ᵀ as t → ∞. The Jost solution of the
second kind, denoted by φ(t, ζ ), has the asymptotic behavior
φ(t; ζ )eiζt → (1,0)ᵀ as t → −∞.

For the focusing NSE (i.e., κ = −1 in (2)), the NF
spectrum for the potential q(t) comprises a discrete and a
continuous part. The discrete NF spectrum consists of the
so-called eigenvalues ζk ∈ C+, such that a(ζk ) = 0, and,
the norming constants bk such that φ(t; ζk ) = bkψ(t; ζk ).
Note that (ζk , bk ) describes a bound state or a solitonic state
associated with the potential. For the defocussing NSE (i.e.,
κ = +1 in (2)), the discrete spectrum is empty. The continuous
NF spectrum, also referred to as the reflection coefficient, is
defined by ρ(ξ) = b(ξ)/a(ξ) for ξ ∈ R.

The letter first discusses the numerical discretization based
on linear multistep methods, BDF and IA, along with the al-
gorithmic aspects. This is followed by numerical experiments
that verify the expected behavior of the algorithms proposed.
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II. THE NUMERICAL SCHEME

In order to develop the numerical scheme, we begin with
the transformation ṽ = eiσ3ζtv so that (1) becomes

ṽt = Ũṽ, Ũ = eiσ3ζtUe−iσ3ζt , (3)

with Ũ11 = Ũ22 = 0, Ũ12 = q(t)e2iζt and Ũ21 = r (t)e−2iζt .
This step removes the “stiff” part of (1) so that one can
employ any of the linear multistep methods (LMMs) suitable
for the numerical integration of non-stiff ordinary differential
equations to integrate (3). The resulting scheme is described
as exponential LMM on account of the exponential integrating
factor used to transform (1).

In order to discuss the discretization scheme, we take an
equispaced grid defined by tn = T1 + nh, n = 0,1, . . . ,N, with
tN = T2 where h is the grid spacing. Define `−, `+ ∈ R such
that h`− = −T1, h`+ = T2. Further, let us define z = eiζh . For
the potential functions sampled on the grid, we set qn = q(tn ),
rn = r (tn ), Un = U (tn ) and Ũn = Ũ (tn ). Discretization using
the m-step BDF (m ∈ {1,2,3,4}) can be stated as

m∑
s=0

αs ṽn+s = hβŨn+m ṽn+m , (4)

where α = (α0,α1, . . . ,αm ) and β are given in Table I.
Discretization using the m-step IA method (m ∈ {1,2,3}) can
be stated as

ṽn+m − ṽn+m−1 = h
m∑
s=0

βsŨn+s ṽn+s , (5)

where β = (β0, β1, . . . , βm ) is given in Table I.
Both of these methods lead to a transfer matrix (TM)

Mn+m (z2) ∈ C2m×2m of the form

Mn+m (z2) =

*........
,

γm−1 M (1)
n+m γm−2 M (2)

n+m . . . γ1 M (m−1)
n+m γ0 M (m)

n+m

σ0 0 . . . 0 0
0 σ0 . . . 0 0
...

...
. . .

...
...

0 0 . . . σ0 0

+////////
-

,

(6)

where σ0 = diag(1,1) and M (s)
n+m = M (s)

n+m (z2) ∈ C2×2 so that

WWWn+m =Mn+m (z2)WWWn+m−1 (7)

where wn = znvn and WWWn = (wn ,wn−1, . . . ,wn−m+1)ᵀ ∈
C2m . For BDF schemes, we may set αm ≡ 1. Further, setting
Qn = (hβ)qn , Rn = (hβ)rn and Θn = 1 − QnRn , we have
γs = −αs together with

M (s)
n+m (z2) =

1
Θn+m

(
1 z2sQn+m

Rn+m z2s

)
. (8)

For the IA methods, we have

M (1)
n+m (z2) = Θ−1

n+m×(
1 + z2 β̄m−1Rn+m−1Qn+m z2Qn+m + β̄m−1Qn+m−1
Rn+m + z2 β̄m−1Rn+m−1 z2 + β̄m−1Rn+mQn+m−1

)
, (9)

TABLE I
COEFFICIENTS USED IN BDF AND IA METHODS [8, CHAP. III.1]

Method α β Method β

BDF1 (−1, 1) 1 IA1
(

1
2 ,

1
2

)
BDF2

(
1
3 , − 4

3 , 1
)

2
3 IA2

(
− 1

12 ,
8
12 ,

5
12

)
BDF3

(
− 2

11 ,
9
11 , − 18

11 , 1
)

6
11 IA3

(
1
24 , − 5

24 ,
19
24 ,

9
24

)
BDF4

(
3
25 , − 16

25 ,
36
25 , − 48

25 , 1
)

12
25
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MN/4←1

.

.

.

M1M2

.

.

.
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.

.
.
.
.

MN←1+N/2

M3N/4←1+N/2

.

.

.
.
.
.
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.
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.
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.
.

MN−1MN
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Fig. 1. The figure shows the schematic of the fast forward scattering algorithm
where transfer matrices are multiplied pair-wise culminating in the full transfer
matrix. All polynomial multiplications involved are carried out using the FFT
algorithm (see Henrici [10]).

where Qn = (hβm )qn , Rn = (hβm )rn , Θn = 1−QnRn . Also,

M (m−s)
n+m (z2) =

1
Θn+m

(
z2(m−s) Rn+sQn+m Qn+s

z2(m−s) Rn+s Rn+mQn+s

)
,

(10)
with γm−1 = 1 and γs = βs for s = 0,1, . . . ,m − 2 where
β = β/βm .

Let us consider the Jost solution φ(t; ζ ). We assume that
qn = 0 for n = −m+1,−m+2, . . . ,0 so that φn = z`− z−n (1,0)ᵀ

for n = −m + 1,−m + 2, . . . ,0. In order to express the discrete
approximation to the Jost solutions, let us define the vector-
valued polynomial

Pn (z2) =
(
P(n)

1 (z2)
P(n)

2 (z2)

)
=

n∑
j=0

P(n)
j z2 j =

n∑
j=0

*
,

P(n)
1, j

P(n)
2, j

+
-

ᵀ

z2 j , (11)

such that φn = z`− z−nPn (z2). The initial condition works out
to be

WWW0 = z`−
*.....
,

φ0
zφ−1
...

z−m+1φ−m+1

+/////
-

= z`−
*.....
,

P0(z2)
P−1(z2)

...
P−m+1(z2)

+/////
-

∈ C2m , (12)

yielding the recurrence relation

PPPn+m (z2) =Mn+m (z2)PPPn+m−1(z2), (13)

where PPPn (z2) = (Pn (z2),Pn−1(z2), . . . ,Pn−m+1(z2))ᵀ ∈ C2m .
The discrete approximation to the scattering coefficients is
obtained from the scattered field: φN = (aN z−`+ ,bN z`+ )ᵀ

yields aN (z2) = P(N )
1 (z2) and bN (z2) = (z2)−`+P(N )

2 (z2). The
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Fig. 2. The figure shows a comparison of convergence behavior and run-time of NFT algorithms based on the discretization schemes, namely, BDFm

(m ∈ {1, 2, 3, 4}), IAm (m ∈ {1, 2, 3}), SM and MG1. The method IA1 is identical to the trapezoidal rule (TR). The scattering potential is the secant-
hyperbolic profile with A = 4.4 so that ‖q ‖22 = 2A2 ≈ 39 which represents the energy of the pulse (see Sec. III-A).
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Fig. 3. The figure shows a comparison of convergence behavior of NFT algorithms for computing the norming constant (see Sec. III-B). Here, we also test the
performance of the algorithm with increasing number of eigenvalues, which is equivalent to increasing the pulse energy (‖q ‖22 = [K (K + 4)/8]

∑4
j=1 sin θ j ≡

EK ). For K ∈ {4, 8, 12, . . . , 32}, we have EK ∈ {15, 44, 89, 148, 222, 311, 415, 533} (approx.). The legends are described in Fig. 2.

quantities aN and bN are referred to as the discrete scattering
coefficients uniquely defined for Re ζ ∈ [−π/2h, π/2h]. For ζ
varying over a compact domain, the error in the computation
of the scattering coefficients can be shown to be O(N−p ) pro-
vided that q(t) is at least p-times differentiable [8, Chap. III].

A. Fast Forward Scattering Algorithm

It is evident from the preceding paragraph that the for-
ward scattering step requires forming the cumulative prod-
uct: MN (z2) × MN−1(z2) × . . . × M2(z2) × M1(z2). Let

m̄ denote the nearest base-2 number greater than or equal
to (m + 1), then pairwise multiplication (see Fig. 1) using
FFT [10] yields the recurrence relation for the complexity
$(n) of computing the scattering coefficients with n samples:
$(n) = 8m3ν(m̄n/2) + 2$(n/2), n = 2, 4, . . . , N, where
ν(n) = O(n log n) is the cost of multiplying two polynomials
of degree n − 1 (ignoring the cost of additions). Solving the
recurrence relation yields $(N ) = O(m3N log2 N ).

1) Computation of the continuous spectrum: The compu-
tation of the continuous spectrum requires evaluation of the
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Fig. 4. The figure depicts S32 defined by (17), where the eigenvalues and
the norming constants are shown in (a) and (b), respectively.

polynomial bN (z2) and aN (z2) on the unit circle |z | = 1,
say, at N points. This can be done efficiently using the FFT
algorithm with complexity O(N log N ). Therefore, the overall
complexity of computation of the continuous spectrum easily
works out to be O(m3N log2 N ).

2) Computation of the norming constants: Given that the
best polynomial root-finding algorithms still require O(N2)
operations, we would at this stage favor a system design
which avoids having to compute eigenvalues. Assuming that
the discrete eigenvalues are known by design, a method of
computing the norming constants is presented in [4] which has
an additional complexity of O(K N ) where K is the number
of eigenvalues. This method can be employed here as well
because it uses no information regarding how the discrete
scattering coefficients were computed. Note that if the error in
the eigenvalues is of the same order as the underlying LMM,
then the rate of convergence for the norming constants is also
of the same order.

III. TEST FOR CONVERGENCE AND COMPLEXITY

A. Secant-hyperbolic potential

A test for verifying the order of convergence and com-
plexity can be readily designed using the well-known secant-
hyperbolic potential given by q(t) = A sech t, (κ = −1) for
which the scattering coefficients are given in [1], [4]. We
set A = 4.4. Let Ωh = [−π/2h, π/2h]; then, the error in
computing b(ξ) is quantified by

erel. = ‖b(ξ) − bN (ξ)‖L2 (Ωh )/‖b(ξ)‖L2 (Ωh ) , (14)

where the integrals are computed using the trapezoidal rule.
Similar consideration applies to ρ(ξ). For the purpose of
benchmarking, we use the Split-Magnus (SM) and Mag-
nus method with one-point Gauss quadrature (MG1) dis-
cussed in [4, Sec. IV]). Note that the complexity of SM is
O(N log2 N ) in computing the scattering coefficients while
that of MG1 is O(N2). The order of convergence for SM and
MG1 both is O(N−2). The numerical results are plotted in
Fig. 2 where it is evident that m-step BDF (labeled BDFm) as
well as the m-step IA (labeled IAm where IA1 is identical to
trapezoidal rule (TR)) schemes have better convergence rates
with increasing m. The improved accuracy, however, comes
at a price of increased complexity which is evidently not so
prohibitive even though our implementation is only moderately
optimized. The IA methods are clearly superior to that of BDF
in terms of accuracy while keeping the complexity same.

B. Multisolitons

For the second test, we choose arbitrary multisoliton so-
lutions which can be computed using the classical Darboux
transformation (CDT) [4]. This allows us to test our algorithms
for computing the norming constants for varying number
of eigenvalues. To this end, we define an arbitrary discrete
spectrum and compute the corresponding multisoliton solution
which serves as an input to the NFT algorithms. Let b(num.)

k
be the numerically computed approximation to bk which cor-
responds to the eigenvalue ζk which we assume to be known.
The error in the norming constants can then be quantified by

erel =

√√√
*
,

K∑
k=1

|b(num.)
k

− bk |2+
-

/ K∑
k=1

|bk |2. (15)

For the discrete spectrum, the example chosen here is taken
from [4] which can be described as follows: Define a sequence
of angles for J ∈ Z+ by choosing ∆θ = (π−2θ0)/(J−1), θ0 >
0, and θ j = θ0 + ( j − 1)∆θ, j = 1,2, . . . , J so that θ j ∈ [θ0, π −
θ0]. Then the eigenvalues are chosen as

ζ j+J (l−1) = leiθ j , l = 1,2, . . . ,8, j = 1,2, . . . , J. (16)

Further, the norming constants are chosen as bj =

exp [iπ( j − 1)/(8J − 1)] for j = 1,2, . . . ,8J. For this test, we
set θ0 = π/3 and J = 4. Then we consider a sequence of
discrete spectra defined as

SK = {(ζk ,bk ), k = 1,2, . . . ,K }, (17)

where K = 4,8, . . . ,32 (see Fig. 4). For fixed K , the eigenval-
ues are scaled by the scaling parameter κ = 2(

∑K
k=1 Im ζk )1/2.

Let ηmin = min{ζk } Im ζ , then the computational domain for
this example is chosen as [−T, T] where T = 22κ/ηmin. The
numerical results are plotted in Fig. 3 where it is evident that
BDFm as well as IAm schemes have better convergence rates
with increasing m. The IA methods are clearly superior to that
of BDF in terms of accuracy.
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