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Tools and methods for monitoring the health 
of the urban greenery

Akshit Gupta1,2,6, Simone Mora    1,3,6  , Yakir Preisler    4, Fàbio Duarte    1, 
Venkatesha Prasad    2 & Carlo Ratti1,5

Urban greenery supports cities in achieving Sustainable Development 
Goals, but it is increasingly affected by multiple stressors impacting its 
health. Owing to the high costs of greenery inspection and monitoring, local 
governments often lack adequate data to effectively manage their urban 
greenery and prevent damage. In this Review, we present an overview of 
technology-supported methods and tools to measure the health of urban 
greenery and discuss the space–time resolution trade-offs associated with 
the various methods presented. To inform researchers and policymakers in 
global cities, we highlight how high-resolution urban greenery health data 
can support in achieving Sustainable Development Goals at scale.

Urban greenery provides a wide range of ecosystem services such as 
air filtering1, carbon sequestration2, stormwater run-off3 and lower 
local temperatures4–6. Urban greenery also acts as a barrier for traf-
fic noise7, may encourage physical activity8, and provides spaces for 
physical and mental restitution9. It also helps to achieve the Sustainable 
Development Goals (SDGs) outlined by the United Nations Agenda 
2030, including climate action (SDG 13), sustainable cities and com-
munities (SDG 11), life on land (SDG 15), and good health and well-being 
for all at all ages (SDG 3).

Urban greenery encompasses greenery (trees, plants, flowers, 
shrubs, grass) on the ground and on buildings4. In this Review, we 
mainly focus on greenery on the ground, in particular trees10, as they 
are the most widespread form of urban vegetation. Trees are character-
ized by a high heterogeneity across the urban landscape. They can be 
evergreen or deciduous, belong to different species and have different 
sizes. They can be found along streets, in parks, in wetlands, in unused 
land or in sites under construction. They can be tightly nested with 
grey (human-constructed) structures such as fences, light poles and 
façades in a green-to-grey continuum11.

Our definition of greenery is limited compared with the broader 
concept of urban ecological infrastructure (UEI)12, which encompasses 
ecological structures (ecosystem of species, soils, waterways and so 
on) and ecological functions (for example, life cycles and pollination). 
In addition, our definition covers only the green part of UEI and only 
greenery that is, to some extent, managed. It also omits bare soil and 
aquatic vegetation. Yet, we do not exclude that the methods discussed 

in this Review can be applied to forms of greenery other than urban 
managed trees, or provide information that is aggregated to an ecology 
level. We are aware that geographical and domain shifts play a key role 
in evaluating the methods reviewed. For instance, methods designed 
for US cities might not apply to European cities due to different species 
distribution. Similarly, methods designed for monitoring deciduous 
trees might not apply to evergreen trees. The aim of this Review is to 
give an overall picture of all the methods available.

Urban greenery is often affected by an ample amount of abiotic 
stressors, such as the urban heat island (UHI) effect and soil salinity, 
and biotic stressors, such as insects and bacteria attacks. The negative 
effect of these conditions is currently exacerbated owing to climate 
change13,14. As a result, the functionality, productivity and survival of 
urban greenery is of increasing concern. Trees with poor health can-
not provide most of the beneficial ecosystem services15 and thus, they 
are less effective in achieving the SDGs. For instance, trees with low 
transpiration rates do not cool the environment effectively and trees 
with low growth rates have a reduced shading effect.

Although frequent inspections can identify and rectify these stress-
ors, inspection costs can make urban greenery a high-maintenance 
asset. Globally, the total cost of inspection, maintenance and settle-
ment of tree damages is estimated to exceed US$2 trillion16,17. Maintain-
ing large trees is particularly costly, yet large trees can provide up to 
eight times more ecosystem benefits compared with smaller ones18.

The practice of measuring and monitoring urban trees began over 
a century ago19. Currently, a tree’s health can be inspected by arborists 
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contents of organic matter owing to a patchy distribution of natural 
or human-made materials, such as gravel or construction waste. Fur-
thermore, limited soil leads to restricted space for roots to develop, 
preventing proper tree growth and eventually reducing a tree’s lifespan 
substantially15. Owing to the presence of pollutants, urban soils often 
have an increased salinity, which reduces the ability of the roots to 
extract water and nutrients. Many urban environments provide limited 
or irregular sunlight due to the shadows projected by buildings, which 
can prevent the tree reaching its optimum photosynthesis machinery30. 
In addition, the above-average air temperatures and heatwaves, which 
are increasingly occurring in urban environments31, leads to trees los-
ing an excessive amount of water. To counteract water loss, trees close 
their stomata—small pores in the leaves—reducing their beneficial 
ambient cooling effect. Another outcome of the ‘life-saving’ stomatal 
regulation is a reduction in the photosynthesis process; thus resulting 
in reduced growth.

Biotic stressors are often related to the physiological response of 
trees to the attack of agents such as insects, fungi, viruses or bacteria32. 
Such response is usually expressed in a decrease in functionality and 
productivity that can eventually result in the death of the affected 
tree33. A tree’s defence mechanism against biotic agents requires a func-
tional and healthy internal state. If resources are limited, for example, 
owing to a pre-existing abiotic stress, the tree might succumb to the 
attack18. The development and fast-spreading nature of biotic agents, 
as well as species homogeneity of many urban environments, also 
contribute to the worsening of these biotic stressors34.

If the health of a tree is poor, its contribution to the urban ecosys-
tem is impaired. Unlike trees in natural or planted forests, rectification 
measures for urban trees are needed at a faster rate, owing to the rapid 
rate of changes in local conditions (for example, infrastructure, con-
struction work, pruning) and owing to immediate implications such as 
potential physical damages to pedestrians and properties.

Inspection strategies for greenery health
We survey inspection strategies and tools using two lenses.

First, we scope popular sensing principles and technologies. The 
choice of these methods directly affects the type of health information 
that can be sensed, as well as the quality of the assessment. For example, 
hyperspectral and multispectral imaging (HMI) sensors are useful to 
estimate normalized difference vegetation index (NDVI) values, while 
thermal imaging sensors can be used to compute crop water stress 
index (CWSI) values. These strategies lie within three clusters: manual 
techniques, physical and chemical sensors, and imaging-based sensors.

Second, we discuss sensor deployment strategies to collect data. 
Different strategies affect the time and space resolutions that can be 
achieved. For example, although sensors embedded in a tree can provide 
data at a high time resolution (more than once an hour), achieving high 
space resolution leads to high deployment costs (one sensor per tree).  
However, remote-sensing techniques may lead to a higher space cover-
age more cost-effectively, yet with constraints on the time resolution 
(depending on the revisit rate of the sensor) and the influence of envi-
ronmental parameters such as sky conditions.

We also highlight the level of automation required to collect data. 
For example, embedded sensors can work with little (periodic calibra-
tion) to no supervision for years, whereas airborne sensors require 
manual intervention as well as supervision to configure and deploy 
aeroplanes or UAVs over vast areas. A detailed list of the reviewed works 
is provided in Supplementary Information.

Manual techniques
As a first step, arborists measure the health of trees by visual inspection 
and utilizing non-invasive tools for screening, diagnostic or evaluation 
purposes35,36. Water limitations can be quantified by sensing air dryness 
(relative humidity and temperature) and by measuring the tree water 
consumption37–39. Insect-induced physical damage to the leaves and 

with good-quality results, but usually at high costs20. This leads to an 
assessment that has a low spatial and temporal resolution, with cities 
conducting tree assessment rarely (for example, every 3–5 years)21. 
In recent years, technology-assisted screening methods have been 
developed to complement manual methods, with trade-offs involved. 
Satellite-based imaging can provide data over large areas, with the data 
quality susceptible to external parameters such as availability of clear 
skies, depending on the type of sensor22. Yet, high spatial-temporal res-
olution (<10 m) is achievable through only targeted acquisitions, thus 
limiting the size of area covered23. Airborne sensing using unmanned 
aerial vehicles (UAVs) or aeroplanes leads to an increased spatial granu-
larity22, yet it involves high operational costs and may not be suitable 
in urban environments owing to aviation authority regulations. Fur-
thermore, depending on the canopy density, both airborne sensing 
and satellite imagery can capture only the overhead view of the urban 
greenery. As a result, lower vegetation elements such as green walls, 
short trees or shrubs are often missed or misinterpreted in the gathered 
data24. In addition to traditional approaches, a number of research 
projects have investigated the use of low-cost alternatives to survey 
the presence and species of urban greenery. For instance, using Google 
Street View images to detect the presence of trees24 or to calculate 
changes in tree species diversity in cities25. These projects are set within 
the field of opportunistic and low-cost sensing, aimed at developing 
environmental platforms that can be deployed and operated without 
the need for expensive infrastructures.

As the examples above demonstrated, the importance of urban 
greenery has been fostering the use of different methods and tools to 
quantify urban greenery and, more particularly, to assess tree health. 
They range from highly specialized and costly UAVs to engaging resi-
dents in citizen-science approaches. Scientific literature often presents 
detailed descriptions and discussions about one particular approach.

In this paper, we review research methods and tools to map 
the health of urban greenery on the ground. We highlight the 
types of attribute and information that can be mapped, and how 
technology-supported methods can complement traditional, 
labour-intensive approaches. We propose use cases for the methods 
reviewed and we discuss how scholars and policymakers can utilize 
greenery health data to support achieving SDGs at scale. We highlight 
existing research gaps with the aim at informing the development of 
new approaches.

Tree attributes and health
The health, survival and functionality of trees depends on three main 
aspects: (1) the ability of the root system to transport nutrients and dis-
pose of pollutants, (2) functioning water conduits (xylem) transferring 
water and healthy sieve-tube elements (phloem) to all live organs; and 
(3) healthy leaves, the main site for gas exchange with the atmosphere 
through photosynthesis processes.

Early detection of conditions affecting these three components, 
such as cavities and diseases, can guide pre-emptive actions to main-
tain a tree’s optimal functionality26. Unlike external physical damage, 
physiological stress and internal damage are often undetectable to the 
human eye, and severe damage can be reached long before symptoms 
become visible27–29. Furthermore, trees under stress reduce their tran-
spiration rate to prevent excessive water loss, store less carbon diox-
ide and decrease their growth rate. Such trees have a weak defensive 
mechanism and their general health state is damaged, making them 
more vulnerable to the attack of parasites and diseases, thus increasing 
their chances of mortality.

Stressors affecting trees can be categorized as abiotic, that is, 
caused by non-living factors, and biotic, that is, provoked by living 
agents.

Abiotic stressors are often related to soil and sunlight factors. 
Soil health is a primary determinant of a tree health. Urban soils can 
have highly variable attributes such as different densities and different 
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other elements can be detected visually40–42. However, external symp-
toms of decay may be absent even in the presence of internal decay35. 
In turn, this may lead to delayed actions taking place43.

To provide more complete information, visual inspection might 
be supplemented by non-invasive methods such as electronic noise 
to detect fungal decay. However, these simple methods have low reso-
lution and may miss small wooden decays or diseases at very early 
stages. Hence, for improved resolutions, arborists may also use invasive 
methods such as electrical resistivity measurements (attaching elec-
trodes and passing an electric current through the trunk) or destruc-
tive instruments such as increment borers (tools for extraction of a 
wooden core sample from the trunk of the tree). Although effective, 
such invasive methods that require penetration in the living wood may 
create an entry path for pathogens or may alter the structural integrity 
of a tree. Finally, for the highest accuracy, high-cost methods such as 
electromagnetic or multi-path stress wave tomography may be used. 
Overall, arborists usually start with the method that causes the least 
damage, and successively apply more aggressive and costly techniques 
to get more accurate information44.

Various manual inspection techniques exist and they are summa-
rized in Supplementary Table 1 with their working principle, detection 
resolution, cost and invasiveness. The cost for each method has been 
estimated based on the scale in ref. 35. Further details on the in-depth 
principle of manual methods can be found in refs. 35,36,45.

Both invasive and non-invasive manual inspection techniques 
require intensive human labour as deployment medium, leading to 
low automation prospects. Thus, manual techniques usually lead to 
poor scalability, as highlighted in Fig. 1. In contrast, methods discussed 
in the upcoming sections, which are summarized in Supplementary 
Table 2 have different automation prospects and deployment media.

Physical, chemical and electrical sensors
These sensors are usually embedded into the bark (the protective outer 
sheath of the wooden parts of a tree) or in the soil. The physical prop-
erty under scrutiny can vary, from the detection of sudden vibrations 
induced by the presence of parasites to the measurement of water 
uptake and transpiration. The data are generated at high temporal 
resolution with little or no human supervision required.

Accelerometer-based sensors can detect the presence of insects 
and larvae by monitoring sudden minimal vibrations provoked by the 
insects’ activities such as feeding and locomotion46. Accelerometers 
can also be used in tandem with other sensors that measure moisture, 
light, temperature, humidity and air quality.

Electrical impedance spectroscopy is used to assess trees’ physi-
ological status by leveraging electrical impedance, a measure of the 
opposition of a material to the flow of alternating currents. Using a 
pair of electrodes placed in the trunk at diametrically opposite posi-
tions to measure impedance values, it has been demonstrated that it is 
possible to disambiguate between multiple health states and identify 
water stress and diseases43.

Dendrometers are tools employed to measure trunk growth and 
shrinkage happening during long-term seasonal growth patterns, 
daily cycles of water uptake and transient conditions such as swell-
ing after heavy rainfall. They could be either fully analogue tools, 
as simple as a metal strap that is affixed around a tree stem using a 
spring fastener, or fully digital tools based on contact or non-contact 
technologies. Dendrometers have been used for different purposes, 
including community-based monitoring using DIY techniques47, for 
irrigation scheduling48 and to assess the effect of climate change on 
Pinus sylvestris49.

Internet of Things approaches are often adopted to monitor mul-
tiple health-related parameters at a high frequency and to provide 
real-time alerts50. Data from multiple embedded sensors can be used 
as features to train neural network models for health classification and 
early warning generation51,52, and to develop aggregated health indexes 

combining dynamic ambient features (for example, light and wind expo-
sure) with static or predictable features (for example, species, age)16.

Besides being used in research, several sensing approaches 
have recently paved their way into commercial products, includ-
ing non-invasive microneedle-based electrical impedance sensors, 
multi-sensory platforms for stability monitoring application, and sen-
sors embedded in the soil to monitor moisture and acidity. A review of 
additional physical, chemical and electrical sensors is provided in ref. 53.

Similarly to manual techniques, physical, chemical and electrical 
sensors require physical access to trees.

Imaging-based sensors
Measuring infrared radiation emitted from biological materials, a 
technique called infrared thermography (IRT), is one of the emerging 
approaches for tree health monitoring.

The analysis of thermal images (Fig. 2, left) allows for early detec-
tion of various health conditions including cavities, bark necrosis 
and decay54. Thermal cameras are non-invasive and scalable tools, for 
example, when the camera is mounted on a moving vehicle. Differences 
in thermal patterns on the tree surface can indicate deteriorated areas: 
sections with cavities or physical damages show local cooler tempera-
tures44,55; sections affected by infections caused by spores or bacteria 
show local warmer temperatures56,57. However, this approach requires a 
substantial amount of manual work to review the images by experts and 
it is often paired with manual inspections; the technique does not allow 
for the fully quantitative assessment that could enable scalability54. In 
addition, to provide optimal results, the bark should be shielded from 
direct sunlight, dry and free from moss—elements that could interfere 
with temperature readings, hiding potential damages. Although some 
of these factors can be mitigated by comparing temperature patterns 
within different parts of the tree expected to behave similarly44, IRT 
performs well only to assess important external damages58. In addi-
tion, there are no generalized temperature patterns that can be used 
to detect damage across various species36.
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Fig. 1 | Space–time resolution of classes of methods with respect to SDG 
requirements.  Each class has been evaluated for the time and space resolution 
the class methods can achieve. Each class has also been mapped to one or more 
SDGs the class methods can support based on the rationale described in the 
'Relevance for the SDGs' section.
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IRT can also be used to measure water stress22. Rather than bark 
temperature, the focus is on leaf temperature—a physiological trait that 
can be used as a proxy for tree irrigation59,60. For this specific applica-
tion, thermal images are fused with red–green–blue (RGB) images, 
to use image segmentation algorithms to automate the extraction of 
thermal data from leaves only (for example, removing thermal data of 
the sky and the soil). The usefulness of IRT as a plant water stress indi-
cator has been evaluated with different species, including persimmon 
and citrus trees61, apple orchards62 and conifers63.

In HMI, various bands in the electromagnetic spectrum are cap-
tured. These data are used to calculate various vegetation indexes, 
including the NDVI. The NDVI synthesizes the ratio between the visible 
red radiation and the near-infrared radiation reflected by the vegeta-
tion. It leverages the property of chlorophyll in the leaves to absorb 
red light, and the cell structure of leaves to reflect near-infrared light. 
High NDVI values are a proxy for healthy photosynthetic capacity. 
Low NDVI values can be linked to overall poor health, the presence of 
stress or parasites, or the absence of greenery. The calibration of HMI 
sensors is an important aspect that affects the overall quality of results, 
especially for low-cost sensors64,65. Once calibrated, HMI sensors are 
highly reliable, at least when comparing NDVI values within the same 
species, as the ranges of healthy NDVI values can vary between spe-
cies. Low-cost HMI sensor alternatives have been recently presented, 
for example, modifying regular RGB cameras to capture light outside 
the visible spectrum66. HMI sensors are usually deployed on satellites 
and drones67,68, although static sensors also exist. In the latter case, the 
sensors are cheaper, but they need to be located in close proximity to 
the leaves. A sample HMI image is depicted in Fig. 2 (middle).

Like IRT sensors, HMI instruments can be deployed in tandem with 
other sensors, most commonly, with light detection and ranging (LiDAR) 
instruments. LiDAR uses the time of flight of pulsed laser light to deter-
mine the distance between the sensor and an object or a surface. LiDAR 
is used for greenery health applications to measure geometrical param-
eters such as the number of leaves surrounding a branch, the crown 
diameter and the leaf area index (LAI). The LAI is computed by measuring 
the total area of leaves per unit of ground area and it is directly related to 
the amount of light that can be intercepted by a tree. Although neither 
the geometrical properties of a tree nor the LAI is a direct measure of 
greenery health, they can be used to assess the development of a tree 
over time with respect to target growth goals for each species. LiDAR 
combined with HMI sensors have also been useful for species identifica-
tion69. Similarly to other imaging-based methods, LiDAR and HMI sensors 
have been deployed using airborne70 and ground-based approaches71.  
A sample LiDAR point cloud is depicted in Fig. 2 (right).

Street-view images captured for mapping and navigation pur-
poses have been recently used to quantify the extent and the location 
of urban greenery72,73, their species25 and shading effect74. Although 
the extraction of health parameters from street-view images is still to 
be investigated, information about the location and coverage can be 
combined with a city’s inventory of trees to provide an indirect health 
assessment.

Finally, several methods can be combined in multi-sensory 
approaches to provide a higher-fidelity assessment of a single param-
eter; for example, combining LiDAR and hyperspectral cameras75. This 
strategy also serves to map how a single stressor impacts different 
aspects of a tree63.

Imaging-based methods can allow for more flexibility compared 
with manual and chemical, physical and electrical methods. They can 
be used to map greenery in remote areas, when deployed on drones 
or satellites, and in areas where frequent physical access to greenery 
might be precluded due to safety reasons, for example, along highways. 
Furthermore, the output of these sensors, such as the NDVI index, 
can be used to assess the conditions of greenery beyond street trees, 
including plants, grass and shrubs.

Relevance for the SDGs
Large-scale monitoring of urban greenery can deliver hyper-local data 
useful for a broad range of applications, tailored on issues of specific 
geographical areas. Hyper-local data have a fine-granular space–time 
resolution and are meaningful to address (greenery health) issues that 
are relevant to very specific and small geographical areas (for instance, 
at the street level or at the level of individual trees). This section high-
lights use cases and their relevance for the SDGs. Each use case (UC) 
has a numerical identifier (for example, UC1), a title and a mention to 
the SDG(s) it relates to.

SDG 15 proposes “Protect, restore and promote sustainable use 
of terrestrial ecosystems, sustainably manage forests, combat deser-
tification, and halt and reverse land degradation and halt biodiversity 
loss". We identify at least two advantages of having hyper-local data 
on greenery that can help cities to achieve this goal.

UC1 selective watering (SDG 15)
Currently, irrigation of urban trees is irregular and inconsistent or 
absent76,77, resulting in trees being over-irrigated (which may lead to 
anoxia) or under-irrigated (which may lead to soil drought). This issue 
mainly occurs owing to high heterogeneity in water consumption by 
individual trees and soil hydraulic properties. Data at high temporal 
and spatial resolution can help create the feedback loops necessary 

1.6 m

Fig. 2 | Examples of three imaging-based methods used to estimate urban 
greenery health attributes. From left to right: a thermal image captured using 
a longwave-infrared (at 8–14 μ) FLIR Lepton 3.5 camera, a multispectral image 

captured using a MAPIR Survey 3W camera (red at 660 nm, green at 550 nm, near-
infrared at 850 nm); and a LiDAR point cloud captured using an Apple iPhone 12 
Pro and the Polycam 3D Scanner app.
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to implement selective watering strategies, optimizing irrigation as a 
function of each tree’s water use. In turn, data-driven urban irrigation 
(a practice that is becoming common in agriculture78), can save water 
and improve trees’ overall health along with soil fertility. Methods 
and tools capable to capture CWSI information, including electrical 
impedance spectroscopy43 and IRT22, can be applied.

UC2 early detection of diseases (SDG 15)
Diseases and parasites lead to a reduction in tree health and increased 
mortality79. Detecting diseases at an early stage can prevent permanent 
damage and mitigate the risk of mortality. For instance, some early 
signals can be detected using parameters generated by multispec-
tral/hyperspectral images42, as well as continuous measurements via 
embedded sensors27. These methods can also be used to measure the 
efficacy of pest treatments over time, via repetitive measurements. 
Furthermore, data from multiple parameters at high temporal and 
spatial resolutions can serve as training datasets to allow the develop-
ment of machine-learning algorithms for the automatic identification 
of specific parasites.

SDG 11 proposes “Make cities and human settlements inclusive, 
safe, resilient and sustainable".

UC3 continuous monitoring (SDG 11)
Long-term monitoring data are essential to understand changes over 
time, including trends in tree growth, health and mortality. Without 
detailed data collected over time, it is not possible to implement effec-
tive management solutions and measure their success rates, estimate 
urban forest value or inform policy-making80. Yet, the frequency of 
monitoring campaigns is hampered by resource limitation and spe-
cifically the lack of staff time81. Several recent survey methods have 
an elevated degree of automation (as reported in Supplementary 
Table 2), which enables long-term monitoring campaigns. In addition, 
advances in artificial intelligence allow for training machine-learning 
algorithms that can perform tasks such as sensor calibration, calcula-
tion of geometric property of trees and pattern identification based on 
multi-sensory input51,52. Although human judgement is still required at 
certain stages of the process, artificial intelligence has the potential to 
decrease human involvement in repetitive and trivial tasks and reduce 
the number of site visits.

In addition to SDG 11, we highlight how hyper-local, continuous 
monitoring can also benefit SDG 8: “Promote sustained, inclusive and 
sustainable economic growth, full and productive employment and 
decent work for all."

UC4 quantifying cost-gain balances (SDGs 8 and 11)
The global cost for tree maintenance exceeds US$2 trillion world-
wide16,17. Yet a comprehensive quantification of the economic ben-
efits provided by urban greenery is tangled by the multifaced nature 
of the ecosystem benefits as well as the lack of models (and data) for 
several regions around the globe82. Data on urban trees’ location, spe-
cies, health and age can help develop economic models to assess the 
value of urban trees in relation to their environmental risk mitigation, 
public health and energy-saving benefits, as well as their aesthetic and 
cultural relevance.

Another application that can be improved with hyper-local data 
is the mitigation of UHI effects and carbon removal, which we argue is 
connected with SDG 3 ("Ensure healthy lives and promote well-being 
for all at all ages") and SDG 13 ("Take urgent action to combat climate 
change and its impacts").

UC5 mitigation of UHI effect (SDGs 3 and13)
Urban surfaces, such as façades and road pavements, play an important 
role in the UHI effect4. UHI happens when dense urban environments 
show higher local temperatures than suburbs and rural areas83,84—
and this condition is being exacerbated by climate change. Increased 

greenery is associated with a reduction in land-surface temperature 
and reduced risk for pedestrian heat exposure85,86. By quantifying the 
cooling effect for different species as a function of their health statuses, 
such as canopy density, tree height and leaf thickness, guidelines for 
planting and maintenance strategies tailored to specific UHI risk areas 
can be defined.

One of the key applications that can be improved with hyper-local 
data is community engagement, which is present in several SDGs. We 
particularly highlight SDG 4 ("Ensure inclusive and equitable quality 
education and promote lifelong learning opportunities for all"), SDG 
10 ("Reduce inequality within and among countries"), SDG 11 and SDG 
17 ("Strengthen the means of implementation and revitalize the Global 
Partnership for Sustainable Development").

UC6 community engagement (SDGs 4, 10, 11 and 17)
Citizen involvement in the monitoring of urban greenery can comple-
ment traditional approaches conducted by government agencies, com-
panies and research institutes. This action can build on several methods 
and tools in the field of citizen science—the inclusion of non-experts in 
research efforts87–89. In addition to providing data to public administra-
tions, it increases public awareness of the benefit provided by urban 
greenery, fostering a sense of stewardship and appreciation90, and 
steering public debates around equity and environmental justice. Com-
munity engagement also fosters lifelong learning, as the volunteers 
need to be trained to collect data80. This approach has been demon-
strated by several campaigns such as the 2015 TreesCount! inventory 
in New York City and the i-Tree Eco assessment in London, England. 
Novel low-cost and open-source greenery health mapping tools24,47,65,66,91 
can facilitate the work of citizen scientists, enabling them to collect 
quantitative evidence in a cost-efficient way, which is of particular 
relevance for low-income communities.

We believe that collecting hyper-local data, although an absolute 
optimum, could be unnecessary for certain use cases. For example for 
SDGs 4, 10 and 17 addressed in the ‘community engagement’ use case, 
accessibility (for example, open-source code) and cost of implemen-
tation are the main drivers for the selection of a method. For SDGs 8 
and 11, the priority might be the degree of automation of the methods. 
More in detail, we believe that hyper-local data are relevant for UC1 
to understand water consumption at the tree level, UC2 to have a big 
dataset to train machine-learning algorithms for disease detection, UC3 
to allow for evaluation of changes or interventions over time, and UC5 
because UHI is a hyper-local phenomenon itself. However, we believe 
that hyper-local data are less relevant for UC4 whereas widespread 
coverage is a priority, as well as UC6 where cost and open access to 
data and analysis tools could be more relevant.

Outlook
Owing to the high costs involved with manual approaches, cities survey 
their urban greenery once every few years, with several cities that have 
never carried out a census. The development of highly scalable and reli-
able approaches is necessary to acquire a large amount of data about 
the health of urban greenery, which fosters in achieving various SDGs.

Achieving scalability is complex. The health attributes monitored 
are dictated by the type of sensing technology employed, and the 
deployment strategies affect the potential for scalability. For instance, 
physical, chemical and electrical sensors can be embedded into only 
the trunk or in the near proximity of a tree. They generate continuous 
streams of data at high temporal resolutions; however, the spatial reso-
lution might be limited—embedding sensors on every tree in the city 
will result in high costs. On the contrary, imaging-based sensors can be 
used handheld during manual inspections, or deployed on satellites, 
UAVs or even terrestrial vehicles. While satellite and airborne-based 
remote-sensing approaches can cover large areas22, the data are gener-
ated at a low temporal resolution, mainly constrained by the revisit rate 
of the vessel and the availability of clear skies. Airborne sensing using 
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UAVs or aeroplanes leads to an increased spatial granularity22, yet it 
involves high operational costs and may not be suitable in highly urban-
ized environments due to aviation authority regulations. Furthermore, 
these approaches can provide only a bird’s eye view of the greenery, 
ignoring information about the trunk as well as shorter elements such 
as shrubs and green walls that might lie hidden under larger trees. On 
the other side of the spectrum, street-view-based methods73,74,92,93 are 
highly scalable, but they are able to quantify only the presence and spe-
cies of urban greenery rather than its health, and are limited to mapping 
public spaces. Yet, ground-based sensing can look at urban greenery in 
a more holistic manner. The deployment of sensors in a drive-by scheme 
has the potential for high scalability94. In this research strand, only a 
few studies22 have investigated ground-based monitoring approaches 
with HMI and thermal imaging. Although scalability can be increased 
by deploying sensors on vehicles, most research initiatives, except 
very few22,63, still require manual judgement and processing by humans 
on the data collected. Finally, imaging-based methods deployed as 
drive-by platforms or handheld devices may raise privacy or ethical 
concerns95, although several techniques are available to tackle this 
issue; for example, by pedestrians’ thermal fingerprints96.

The high heterogeneity of the urban landscape also affects the 
choice of method used for monitoring. For example, trees may be 
accessible via pedestrian-only routes, public or private roads, or be 
confined in private backyards. Drive-by methods (Fig. 1) can be applied 
to only trees close to private or public roads. Physical access to trees 
for visual inspection, installation and maintenance of embedded sen-
sors could be limited by safety barriers; for example, trees along busy 
roads, informal settlements or in high-crime neighbourhoods. Remote 
sensing is less suitable when green and grey structures11 are tightly 
nested due to occlusion.

Another challenge concerns the validity of the studies available in 
the literature. Most of the reviewed techniques, except for a few16,54,55,97, 
have been evaluated on a few dozen trees, in a controlled environment. 
It is still unclear how factors such as the weather, climate and interfer-
ence from elements of the built environment might affect the validity 
and performance of the techniques. Finally, the transferability of meth-
ods across species has not been achieved. Most methods still require a 
substantial amount of manual work, either for analysing the data, for 
example, in the case of thermal images, or for sensor deployment and 
operations, as in the case of operating UAVs.

Scalable methods and tools for urban forest monitoring are neces-
sary to support SDGs for all. We hope that this Review will spur interest 
and collaboration among different stakeholders, ranging from urban 
planners and policy advisors to environmental engineers and computer 
scientists. For the first group, our work can be used to inform planting 
strategies, measure the outcome of greenery maintenance practices 
and foster community engagement. For the latter group, it can be used 
as a foundation to overcome the trade-offs and challenges related to 
the scalability, robustness and transferability of the methods and tools 
currently available.
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