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Highlights
Metabolomics has been used alone or
combined with other ‘omics' tools to
contribute to industrial systems biology
and synthetic biology.

Mechanisms governing population
heterogeneity in industrial bioprocessing
need rigorous investigation, and there-
after should be incorporated into more
powerful cellular models.

A predictive scale-down model should
be rationally guided by model fluid stud-
ies in large-scale bioprocesses.
GuanWang,1,* CeesHaringa,2 HenkNoorman,2,3 JuChu,1 andYingping Zhuang1,*

Bioprocess scale-up is a critical step in process development. However, loss of
production performance upon scaling-up, including reduced titer, yield, or pro-
ductivity, has often been observed, hindering the commercialization of biotech
innovations. Recent developments in scale-down studies assisted by computa-
tional fluid dynamics (CFD) and powerful stimulus–response metabolic models
afford better process prediction and evaluation, enabling faster scale-up with
minimal losses. In the future, an ideal bioprocess design would be guided by
an in silico model that integrates cellular physiology (spatiotemporal multiscale
cellular models) and fluid dynamics (CFD models). Nonetheless, there are chal-
lenges associated with both establishing predictive metabolic models and CFD
coupling. By highlighting these and providing possible solutions here, we aim
to advance the development of a computational framework to accelerate
bioprocess scale-up.
Coupling cellular kinetics with fluid dy-
namics accelerates science-based de-
sign of both microbial cell factories and
industrial-scale bioreactors.
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Potential and Challenges of Computer-Aided Bioprocess Design
Worldwide, the number of industrial bioprocesses is steadily growing because of larger market
demand for the bulk production of chemicals, biofuels, materials, nutrition ingredients, and
healthcare products. This demand accompanies the urgent need to transition from a fossil-
based to a bio-based economy [1–3]. The growing markets come with an increasing need for
industrial-scale bioprocesses, together with a demand for large and efficient bioreactors. During
development, one big challenge during the transfer from the lab scale to the industrial scale has
long been the so-called ‘scale-up effect’, which is often accompanied by reduced commercial in-
dicators (by 10–30%), such as biomass and product–substrate yield, as well as productivity [4].
This reduction in performance is mostly associated with mass and heat transfer in addition to
mixing issues in industrial-scale bioreactors, wherein a subpopulation of microbes with reduced
production efficiency and capacity are formed, a phenomenon often referred to as ‘population
heterogeneity’ [5]. In microbial bioprocesses, this omnipresent phenomenon originates from
both intrinsic (the stochastic nature of gene expression) and extrinsic factors (variations in envi-
ronmental conditions) [5,6]. Intrinsic factors dictate that, even under the same environmental con-
ditions, cells may behave differently [7–11]. Extrinsic factors show that the emergence of
(temporary) slower rates (e.g., μ and qP) is mostly ascribed to a lack of substrate or oxygen, or
the onset of overflow metabolism at high substrate availability in large-scale containers
[4,11–13]. Consequently, elucidating these up-scaling related mechanisms (e.g., phenotypic
heterogeneity) for reducing or circumventing performance loss is not only an academic goal,
but also urgently needed in industrial practices [14].

Bioreactor scaling-up from laboratory-scale (milliliter to tens of liters) to large-scale (hundreds to
thousands of cubic meters) requires proof of comparability of process and of product quality,
which traditionally follows a time-consuming, lab-intensive, stepwise scale-up scheme. This
mostly depends on expert empiricism and does not consider possible changes of strain
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Glossary
Compartment model: spatially
resolved description of a reactor that is
generally coarser than a CFD
representation; in a compartment
model, flows are using mapped from
experimental/CFD data rather than
calculated.
Computational fluid dynamics
(CFD): aims to analyze and solve fluid
flow-related problems using numerical
analysis and data structures.
Critical process parameters (CPPs):
key variables monitored in
pharmaceutical manufacturing to show
deviations in standard production
operations as well as in product quality
or changes in critical quality attributes.
Critical quality attributes (CQAs):
key physiochemical or biological
attributes that can be detected to ensure
final product within acceptable quality
limits.
Euler-Lagrange CFD method: CFD
approach where dispersed entities
(particles, droplets, and bubbles) are
represented by virtual particles of which
positions, velocities, and so on, are
tracked, whereas the continuous phase
is represented by a field. This in contrast
to Euler–Euler methods, which keep
track of the concentration of dispersed
entities using a concentration and
velocity fields. In the current context,
biomass is the Lagrangian phase.
Key performance parameters:
specify key biosystem capabilities that
must be achieved tomeet its operational
goals in a biological process.
Macromixing: large-scale mixing,
caused by mechanical stirring and/or
gassing.
Mesomixing: turbulent dispersion of a
feed stream shortly after it enters a
reactor.
Metabolite lumping/pooling:
metabolites inside the cell can be
grouped as a series of simplified
metabolite pools (e.g., amino acid pool
and storage pool) based on both
metabolite properties and metabolite
turnover timescales.
Metabolite turnover time: can be
approximated by dividing intracellular
metabolite level Xi (μmol/gDW) by
metabolic fluxes Vi (μmol/gDW/s).
Micromixing: mixing/transport of
material at the smallest scales, for
example in Kolmogorov eddies, but also
transport of substrate from the liquid to
the biomass.
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physiology in the gas–liquid flow field and substrate, and/or oxygen concentration field of the
industrial reactor. Within the biopharmaceutical industry, to ensure cost-effective, reproducible,
high-quality production, guiding principles, such as process analytical technology (PAT)
(see Glossary) and quality by design (QbD), have been launched and advocated by the US
Food and Drug Administration (FDA) to allow an improved understanding and control of the
process and, thus, quality-guaranteed biomanufacturing [15]. Thanks to the development of in-
line or at-line process biosensors and real-time data visualization, a plethora of studies have
reported the identification of the rate-limiting factor through process data-association analysis
[16–18]. In addition, cross-scale insights can be obtained if process investigation and reasoning
go from macro- to microscale and from extra- to intracellular (Box 1).

However, to allow science-based design of industrial workhorses and bioreactors (i.e., in a more
cost-constrained setting outside the biopharmaceutical space), challenges associated with bio-
reactor scale-up remain. In particular, to fully benefit from a down-scale optimization strategy,
where industrial conditions are mimicked in the lab, lack of data sets from the industrial scale re-
mains a significant hurdle. To bridge the gap from promise to practice, CFD models can be ap-
plied to generate detailed flow field information (e.g., flow pattern, mixing time, and concentration
profiles), which provides suggested advice on process optimization and bioreactor configuration
(Box 2) [19–22]. Furthermore, by tracking single cell lifelines and assessing the production perfor-
mance at a large scale, pioneering work by Lapin and coworkers showed that the Euler–La-
grange CFD method can be applied to evaluate the dynamic behavior of yeast cells [23] and
the effect of glucose gradients on the metabolic response in Escherichia coli with simple glucose
uptake kinetics [24]. To capture more detailed information about the system, kinetic models
should be set up with kinetic regulation information (e.g., a gene-regulation model for product for-
mation) [25]. The principle governing the model establishment should be to keep models simple,
but detailed enough to preserve the critical reaction kinetics [26]. In addition, models should be
sufficiently computationally efficient to allow coupling with CFDmodels and reasonable simulation
time.

In the future, science-based design of industrial processes and bioreactors (involving e.g., strain
characteristics, reactor configuration, and operating parameters) as well as prior global assess-
ment of process performance across the scales can be achieved by coupling cellular kinetics
and fluid dynamics (Figure 1, Key Figure). The coupled full-scale predictive model can then
generate more valuable information to guide decision-making for intelligent biomanufacturing,
which fulfills the ‘Industry 4.0’ idea toward digitalization and automation [27]. Nonetheless,
challenges associated with the set-up of kinetic models with high predictive ability and integration
of those with CFD models still require general and robust solutions.

Metabolic Model Reduction by Metabolite Lumping/Pooling
Different from stoichiometric models (e.g., genome-scale metabolic models), kinetic models can
provide dynamic behavior of cells in response to genetic and/or environmental perturbations. To
allow a more detailed kinetic description of the cell, incorporating more biochemical mechanisms
(e.g., substrate uptake, production formation, futile cycles, carbohydrate storage/mobilization,
and induction of key enzymes) is obvious; nevertheless, there are challenges related with param-
eterization of large kinetic models, which are caused by: (i) the lack of representative metabolic
data reflecting cellular regulation responding to dynamic environments present in large-scale bio-
reactors; (ii) the insensitivity of kinetic parameters within a nonlinear kinetic structure under tested
conditions; (iii) lack of informed design-of-experiments studies that allow parameter identification
and estimation; and (iv) too little use of data reconciliation methods to minimize uncertainty and
maximize consistency of experimental data. As an alternative, kinetic models should be
2 Trends in Biotechnology, Month 2020, Vol. xx, No. xx



Population balance approach:
defines how populations of separate
entities develop in specific properties
over time.
Process analytical technology
(PAT): important process initiative that
allows the design, analysis, and control
of biopharmaceutical manufacturing
processes by measuring CPPs that
affects CQA.
Quality by design (QbD): based on
PAT and quality risk management, QbD
approaches allow biopharmaceutical
development to begin with predefined
objectives and emphasize product and
process understanding as well as
process control.

Box 1. Cross-Scale Insights in Guanosine Fermentation

Guanosine, an essential ingredient of the bisodium ribonucleotide ‘I+G’, is an expensive food additive [16] and is part of the
growth-related fermentation products. As shown in Figure I, in a typical fermentation process, guanosine does not accu-
mulate in the fermentation broth during the growth stage (Phase I, 0–12 h). After ~12 h, the fermentation process enters
the late logarithmic phase, at which time it begins to enter the high-speed guanosine production phase with the large ac-
cumulation of guanosine (Phase II, 12–40 h). During the late stage, a significant decrease in the rate of guanosine produc-
tion is unavoidable, which is also the main reason why the guanosine yield cannot be further improved (Phase III, 40 h–
end). From the parameter profile during guanosine fermentation (Figure I), we can also see that the oxygen uptake rate
(OUR) and the carbon evolution rate (CER) start to decrease at ~40 h, which indicates that the oxidative capacity of the
bacteria is decreasing, while the respiratory quotient (RQ) remains essentially unchanged. However, such an abrupt de-
crease of guanosine productivity is accompanied by an increase in both sugar consumption and ammonia feed rate.
The carbon balance suggests that some unknown organic compounds (e.g., amino acids or organic acids) accumulate
after 40-h fermentation. Thus, it can be hypothesized that the data correlation analysis on the reactor scale reveals a met-
abolic shift on the cellular scale.

To substantiate this cross-scale insight, the first step is to ascertain and identify these unknownmetabolic intermediates in
the fermentation broth. The results of high-performance liquid chromatography (HPLC) further confirmed that alanine and
pyruvate accumulate after 40-h fermentation, where the final alanine concentration can be 12.6 times higher than the initial
concentration. Consistent with this, the activities of alanine dehydrogenase and phosphofructokinase increased while the
activity of glucose-6-phosphate dehydrogenase decreased with the culture age. Furthermore, by setting up a simple
stochiometric model containing the central metabolism and the product biosynthesis, the flux ratio [hexose
monophosphate pathway (HMP)/Embden–Meyerhof–Parnas pathway (EMP)] shows a sharp decrease over the fermenta-
tion process, which also directly points to the overflow metabolism toward the EMP and, thus, alanine production.

TrendsTrends inin BiotechnologyBiotechnology

Figure I. Cross-Scale Insights in Guanosine Fermentation. The process macroscopic data sets suggested that
there is an overflow metabolism towards alanine accumulation after 40 h guanosine fermentation. This hypothesis was
then substantiated by measurements of metabolite, enzyme activities, and metabolic flux. Abbreviations: KLa, oxygen
transfer coefficient; Ala, alanine; AlaDH, alanine dehydrogenase; ANH3, accumulated consumption of ammonia; CER,
carbon evolution rate; CS, citrate synthetase; DO, dissolved oxygen; EMP, Embden–Meyerhof–Parnas pathway; F, air
flow rate; G6PDH, glucose-6-phosphate dehydrogenase; GLU, glucose; GMP, guanosine monophosphate; TEMP/T,
temperature; GN, guanosine; HMP, hexose monophosphate pathway; NH2-N, amino nitrogen; OD, optical density;
OUR, oxygen uptake rate; PFK, phosphofructokinase; PYK, pyruvate kinase; Pyr, pyruvate; RPM, revolutions per
minute; RQ, respiratory quotient.
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Box 2. CFD-Assisted Process Optimization and Reactor Redesign

CFD has been used to evaluate detailed gas–liquid flow field, such as flow pattern, gas hold-up, mixing time, volumetric
power input, and limiting-substrate and oxygen concentration profiles, which is important for prior assessment of mass
transfer (kla), shear stress, and mixing intensity (95% homogeneity) upon bioreactor scale-up. These critical up-scaling
factors, such as mixing [69–71], shear environment [57,72,73], and mass transfer [58,74,75], have been dealt with in dif-
ferent bioreactors with different microorganisms or mammalian cells using CFD simulation approaches.

As an example, in a pilot-scale (12 m3) fermentation of cephalosporin C (CPC) production by an industrial strain
Acremonium chrysogenum, soybean oil was used as the main carbon source for CPC production; however, the process
respiratory quotient (RQ), which is an ideal indicator of oxidation of the substrate, soybean oil, was 0.9–1.0 instead of 0.7.
This indicated that utilization of soybean oil was limited because of its low-density property and nonhomogeneous broth
when a conventional impeller configuration (four-layered Rushton turbines) was used. To address this, the CFD simulation
result suggested that a novel impeller design (two upper axial flow impeller and two lower radial flow impellers) would
greatly stimulate soybean oil utilization for CPC production because of more homogeneous mixing of this carbon source.
In addition, the up-scaling fermentation results showed that, by using the novel impeller configuration, the RQ value was
closer to the theoretical value of 0.7, suggesting a rapid utilization of soybean oil. Also, a 10% increase in CPC production
was successfully achieved while the power consumption was decreased by 25% [76].

Trends in Biotechnology
formulated with reduced structure but yet preserved with enough dynamic features [26]. For ex-
ample, approximative kinetic formats (e.g., linear-logarithmic) have been recommended in meta-
bolic network modeling for this purpose [28]. In addition, to get more information about metabolic
regulation inside the cells, metabolite dynamics in response to extracellular stimuli should be con-
sidered because metabolome data provide dynamic and immediate recordings of the cellular re-
sponse at timescales of seconds to tens of seconds, which is within the order of magnitude of the
global liquid circulation time in large-scale bioreactors [29]. Regarding a specific product, most
relevant are metabolite dynamics through the central metabolic network and metabolites associ-
ated with product biosynthetic pathways. To bypass setting up a kinetic model for each reaction,
metabolites can be lumped into different pools (i.e., metabolite lumping/pooling) depending
on their metabolite turnover time and properties. For instance, based on time hierarchy and
metabolite properties, a recent study reported a nine-pool metabolic structuredmodel describing
both biomass growth and penicillin production [30]. This established model can provide predic-
tions about metabolic pool dynamics across timescales from seconds to days (Figure 2). To
achieve this, metabolic data for model parameterization should be representative of the actual
metabolic response at a large scale. Otherwise, kinetic information or regulatory mechanisms
can be missed.

CFD-Guided Representative Scale-Down Studies
A predictive scale-downmodel should represent the actual conditions experienced by the cells in
the large-scale process. However, most previously published scale-down studies do not take all
industrial-scale flow and reaction conditions into account, but rather only a limited set, and some
are more worst-case scenarios [31]. Despite their limitations, these studies have provided valu-
able insights into cellular metabolic responses and also give suggestions for the improvement
of the large-scale performance.

In industrial-scale bioreactors, single cell trajectories or ‘lifelines’ generated using computation
describe individual metabolic dynamics and productivity (Figure 1). Population heterogeneity,
which frequently arises from different cell lifelines forced by fluid dynamics, has been acknowl-
edged as a key factor affecting overall production performance, but its impact on an industrial
scale is seldom accounted for [32]. Therefore, it is valuable to mimic these cell lifelines closely in
lab-scale scale-down simulators. CFD simulation is now available to provide details about the
flow conditions that are required for representative scale-down designs. In these down-scaling
experiments, the effect of industrial scale-sensitive factors (e.g., concentration gradients of sub-
strate, shear stress, dissolved oxygen, and protons) on the cellular metabolic response can be
4 Trends in Biotechnology, Month 2020, Vol. xx, No. xx



Key Figure

Overview of the Coupled Model Combining both Cellular Kinetics and
Fluid Dynamics
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Figure 1. Cells with different colors represent different metabolic regimes (e.g., substrate excess, limitation, and starva-
tion). These cells are tracked in different positions of the large-scale fermenter and each position features profiles of intra-
cellular (Xi, i= glycolytic intermediates, amino acids, or storage carbohydrates) and extracellular (Cj, j=glucose, dissolved
oxygen, or precursor) (lumped) metabolite pools as well as specific biomass growth rate (μ) and productivity (qP). Abbre-
viation: CFD, computational fluid dynamics.

Trends in Biotechnology
evaluated on a small scale [4]. For instance, the volumetric power inputs representative of both
the impeller region and the bulk zone of a 54-m3 industrial-scale penicillin fermentation were es-
timated by CFD simulations, which were then scaled-down to lab-scale chemostat cultures of a
high-yielding Penicillium chrysogenum strain [33]. The results showed that the reduced penicillin
production performance may be caused by glucosensing-induced metabolic rearrangement; an
extremely low and slowly decreasing glucose concentration at higher power input might trigger
ATP-consuming futile cycling through forming a cycling flux between the pentose phosphate
(PP) pathway and the reversed Embden–Meyerhof–Parnas (EMP) pathway. Consequently, less
ATP can be channeled towards penicillin formation [33]. However, in this lab-scale setting, the
calculated glucose consumption time (τr, s) is smaller than the broth circulation time (tc), which
Trends in Biotechnology, Month 2020, Vol. xx, No. xx 5
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Figure 2. Overview of the Nine-Pool Model for Penicillium chrysogenum. (A) Lumped metabolic pools, such as glycolytic intermediates, storage carbohydrates,
and amino acids, are defined by metabolite properties and turnover timescales. The final model contains five lumped intracellular metabolite pools (glycolytic intermediates,
amino acids, ATP, PAA, and storage carbohydrates), four enzyme (capacity) pools (glucose uptake, PAA export, penicillin conversion, and storage conversion), and ten
extracellular components, connected via ten intracellular reactions. Comparison of model predictions and experimental data: (B) as a function of the specific growth
rate under chemostat conditions; (C) as a function of time during steady state (–50 to 0 h) and ramp phases (0 to 100 h); (D) under a complete feast–famine cycle of
360 s using block-wise feeding (36 s on, 324 s off ). Extracellular Ci (mol/kg), intracellular Xi (mmol/gDW) and specific rates qi (mol/CmolX/h). Experimental data (red
symbols) and simulated result (blue lines) predicted by the nine-pool model. Reproduced, with permission, from [30]. Abbreviation: PAA, phenylacetic acid.
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likely gives rise to the gradients of glucose concentration [33]. Therefore, the well-accepted as-
sumption of ideal mixing in lab-scale bioreactors may not be true in certain cases because of a
high strain-specific affinity for the substrate. In addition, radial flow patterns governed by radially
pumping impellers may aggravate this nonideal mixing phenomenon at the lab scale [34]. In in-
dustrial practice, substrate gradients experienced by cells often lead to productivity drop and
overflow metabolism [35]. Likewise, based on the CFD simulation results of the 54-m3 fermenter
[36], scale-down simulators in the form of both intermittent feeding with different cycle times (30 s,
3 min, and 6 min) imposed on a single bioreactor as well as a two-compartment system with a
mean broth circulation time of 6 min were applied to mimic three representative metabolic re-
gimes (i.e., glucose excess, limitation, and starvation) [12]. Penicillin productivity was reduced
in all scale-down simulators and the results from the larger fermenter could be reproduced
more accurately by using longer cycle times (3 min and 6 min) rather than short cycle times
(30 s) within the same order of magnitude as the global circulation time (20–40 s) [12]. This
suggests that the circulation time distribution and, thus, more extensive population effects have
major roles in the final performance. However, the cells in these scale-down simulators did not
undergo all three representative metabolic regimes identified for the industrial-scale bioreactor
[12]. More elaborate downscaling design can be performed via a multivessel scale-down simula-
tor using the five degrees of freedom proposed by Noorman [31]: (i) number of compartments
(i.e., number of metabolic regimes); (ii) compartment volume distribution (i.e., volume fraction of
each metabolic regime); (iii) recycle rate among the volumes; (iv) flow pattern in each of the
volumes; and (v) smooth or ‘noisy’ feed supply. Furthermore, model-based parallel scaling-
down designs in mini-bioreactors or droplet microfluidics can be implemented to accelerate
phenotyping before bioprocess scale-up [37,38].
6 Trends in Biotechnology, Month 2020, Vol. xx, No. xx
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At the same time, in these extreme down-scaling studies, perturbed metabolome data can be
collected to capture the cell dynamics and provide ‘training’metabolite data for establishing met-
abolicmodels (e.g., the nine-pool metabolic structuredmodel) [30]. After incorporatingmetabolite
dynamics into the model, the kinetic properties and metabolic regulation relevant to actual
industrial-scale conditions can be predicted (Figure 2).

Assessing Metabolic Response in Industrial Bioreactors via CFD Coupling
From experimental scale-down simulations [4,39,40], it has become evident that the heteroge-
neous environment in a large-scale reactor potentially impacts the metabolic response of the
cell, and thereby exerts an impact on process performance. While CFD simulations with unstruc-
tured cellular kinetics [41–45] are valuable to gain insights into environmental gradients and scale-
down strategies, these simulations cannot capture the response of the organism to such condi-
tions, because these inherently assume the instantaneous adaptation of the cell to surrounding
conditions. Structured cellular models can be combined with CFD simulations to asses this im-
pact, with two philosophies being currently used: population balance approaches [46,47],
and the Euler–Lagrange (or agent-based) methodology [23,48]. Table 1 lists applications of
CFD–cellular reaction dynamics (CRD) models in the literature. Both approaches have their merits
and drawbacks [49]. The most advantageous aspect of the population balance approach is scal-
ability to large domains, but as a drawback, heterogeneity in multiple intracellular pools is chal-
lenging to include. Morchain and coworkers showed that the population balance approach can
be used to study growth rate heterogeneity in a large bioreactor [47]. Pigou and coworkers [50]
modeled subsequently introduced structured kinetics, modeling a 22-m3 cultivation of E. coli,
with the kinetic model successfully capturing production of acetate as a by-product. In this
study, heterogeneity was still described by using the growth rate as a single state variable for
the population. To reduce computational demand, a reactor compartment model rather than
full CFD simulation was used. Advances in the use of moment methods should make population
Table 1. Overview of Research Describing Spatially Resolved Bioreactor Assessment from the Cellular Perspective and/or Including Structured Kinetic
Models

Case Aim Approach (software) Reaction model Refs

Saccharomyces cerevisiae, 0.07/0.9 m3,
stirred tank reactor

NAD+/NADH cycle
synchronization

Agent-based (in-house) Structured, full coupling [23]

Escherichia coli, 0.9 m3, stirred tank reactor PEP/PYR uptake inhibition Agent-based (in-house) Structured, full coupling [24]

Generic, 0.07/70 m3, stirred tank reactor Growth rate distribution Population balance (ANSYS FLUENT) Unstructured + growth rate
distribution.

[47]

E. coli, 22 m3 stirred tank reactor Glucose gradient + acetate
production

Population balance (in-house) Structured + growth rate
distribution.

[50]

Carthamus tinctorius L., 5–15 L, stirred
tank reactor

Strain exposure
quantification

Agent based (ANSYS FLUENT) Unstructured death kinetics [57]

S. cerevisiae, 0.24 m3, bubble column Glucose gradient Agent based (ANSYS CFX) Unstructured, uptake only [77]

Penicillium chrysogenum, 54 m3, stirred tank
reactor

Glucose gradient Agent based (ANSYS FLUENT) Unstructured, uptake only [36]

S. cerevisiae, 22 m3, stirred tank reactor Glucose gradient Agent based (ANSYS FLUENT) Unstructured, uptake only [56]

P. chrysogenum, 54 m3, stirred tank
reactor

Glucose gradient + penicillin
production

Agent based (ANSYS FLUENT) Structured, simplified
coupling

[48]

Pseudomonas putida, 54 m3, stirred tank
reactor

Glucose gradient +
replication regime

Agent based (ANSYS FLUENT) Unstructured, Pirt model [55]

Clostridium ljungdahlii DSM 13528, 125
m3, bubble column

CO gradient Agent based (ANSYS FLUENT) Unstructured, uptake +
yield.

[58]
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balances more computationally accessible [51,52], while 2D population balances enabled the
study of population heterogeneity beyond only the growth rate [53].

The agent-based approachmore easily accounts for the use of multiple intracellular pools to capture
multidimensional heterogeneity. This has been done by coupling structured kinetic models, describ-
ing metabolic, transcriptional, and/or enzymatic responses to environmental conditions, to the indi-
vidual agents. Currently, to avoid excessive computational demands, most agent-based bioreactor
studies still apply unstructured kinetics for substrate uptake, evaluating the resulting lifelines for
downscaling purposes as described earlier [36,54–56]. In some cases, the response of the organ-
ism was evaluated post processing. Haringa and colleagues observed using a structured kinetic
model that extracellular glucose gradients led to a substantial reduction in penicillin production
[30]. Liu and colleagues showed that shear-rate lifelines with a simple cell death kinetic model
could describe cell death in cultivations of Carthamus tinctorius L. cells [57]. More recently, Siebler
and colleagues studied the probability of Clostridium ljungdahlii cells undergoing transcriptional
changes based on their residence time under stress conditions in a syngas fermentation [58].
TrendsTrends inin BiotechnologyBiotechnology

Figure 3. Results of a Coupled Computational Fluid Dynamics (CFD)–Cellular Reaction Dynamics (CRD
Simulation for a Penicillin Production Process. (A) Illustration of process response at different timescales. Extracellula
fluctuations in substrate concentration cause fluctuations in substrate uptake rate (i) on second timescale, leading to
metabolic variations on the minute timescale (ii); enzyme levels are constant at this timescale (ii, inset). On an hour timescale
metabolic fluctuations cause enzyme-level adaptation (iii); these in turn can affect metabolic fluctuations (inset; rolling average
in black, fluctuations in gray). Finally, enzyme adaptation changes the penicillin production rate over the full process time (iv)
(B) Performance of CFD–CRD in an industrial fed batch process compared with a black-box, ideal-mixed model (BB-IDMIX)
(C) Due to differences observed early during the process, individual metabolic responses lead to divergence in the population
as a function of time; after 20 h, all organisms have nearly the same production rate, while after 60 h a wider distribution is
observed (sampled from 2500 tracked organisms). Adapted with permission from [48] (B).
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Outstanding Questions
From an industrial perspective, what
are the main influential factors in a
fluid flow field inside an industrial
fermenter?

Through the ‘eyes’ of the organism,
what are the cellular responses
to environmental perturbations
(e.g., alternating substrate feast–
famine conditions) in an industrial
fermenter?

Towards self-regulated homeostasis,
what mechanisms do organisms use
to regulate their metabolic response in
both steady state and under highly dy-
namic conditions?

How can we switch industrial
production processes from complex
to defined media, such that science-
based approaches can be used to re-
duce lot-to-lot variability and ensure
process stability and performance?

How can we generate cell dynamics in
lab-scale experiments that are repre-
sentative of large scales, such that a
prior assessment of process perfor-
mance under mimicked industrial con-
ditions can be achieved?

How can we obtain true snapshots of
both the average metabolome and
the fluctuations around the mean
such that a quantitative single-cell ki-
netic model can be established and
the phenomenon of population hetero-
geneity can be evaluated?
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Haringa and colleagues included the impact of intracellular variations on glucose uptake, although
some simplifications of CFD–CRD coupling were possible because intracellular feedback occurred at
the comparatively slow enzymatic level [48]. The resulting model could predict the decrease in penicillin
productionmuch better than an ideal-mixing unstructuredmodel, which overpredicted production, or a
CFD-coupled unstructuredmodel, which strongly underpredicted it (Figure 3). In addition, spontaneous
emergence of population heterogeneity in the glucose uptake capacitywas observed, although this ob-
servation has not yet been tested experimentally [48]. Lapin and colleagues used an approach including
rapid metabolic feedback. First, they modeled synchronization–desynchronization in intracellular
NAD+/NADH ratios in Saccharomyces cerevisiae in response to extracellular glucose fluctuations
[23]. In follow-up work using E. coli, they captured the inhibitory impact of excreted pyruvate and
phosphoenolpyruvate on glucose uptake; an effect where not only intracellular, but also extracellu-
lar concentration dynamics were determined by the cellular response [24]. The major challenge of
the agent-basedmodel is to simulate sufficient particles to avoid artificial gradients in biomass con-
centration [59], and the required number of particles will increase if local heterogeneity in the uptake
rate needs to be included [49]. These limitations may be alleviated as graphical processing units
(GPU)-driven agent-based models make their way to bioprocess engineeringi.

Concluding Remarks and Future Prospects
Computational frameworks via metabolic–hydrodynamic coupling can provide informative in-
sights into cell lifelines (subpopulation distribution and evolution) and metabolic responses
(metabolite dynamics, growth, and productivity) triggered by environmental fluctuations in an in-
dustrial bioreactor. In addition, this coupled framework can, in principle, serve to comprehend,
predict, and evaluate the effects of adding, removing, or modifying molecular components and/
or pathways (e.g., substrate uptake kinetics, production excretion capacity, futile cycles, carbo-
hydrate storage/mobilization, and induction of key enzymes) of a cell factory for more robust per-
formance, while making suggestions for the design of the bioreactor and fermentation process.

The set-up of highly predictive metabolic models is the first step to allow follow-up coupling to
CFD models. However, there are significant challenges regarding the acquisition of the in vivo
highly dynamic and representative metabolite data sets needed to establish a metabolic struc-
tured kinetic model that can describe the day-scale to second-scale dynamics of cell growth
and product formation (see Outstanding Questions). Although the concept of lumping metabolite
pools based on a time hierarchy and their properties reduces the complexity of model parameter-
ization while preserving basic dynamic behavior, other key metabolic information, such as redox
potential (NADH/NAD+) and energy charge {[ATP+(ADP/2)]/(ATP+ADP+AMP)}, should be incor-
porated in the future. Also, parameters in the kinetic model should be repeatedly estimated by
obtaining more industrial scale-relevant conditions. For example, despite the high predictive abil-
ity of the previously established nine-pool model, metabolic data sets were obtained mainly from
glucose-perturbed conditions, not considering the oscillating oxygen scenario as well as the influ-
ence of combinations thereof. Therefore, there is still room for model extension and upgrading. In
addition, to push bioprocessing towards digitalization and automation, process models should in
the future become self-adapting using real-time data sets andmaking adaptive decisions for pro-
cess control and development [60]. In the meantime, critical process parameters (CPPs),
critical quality attributes (CQAs), and key performance parameters (KPPs) should be
established to improve process quality and reduce lot-to-lot variability and even batch failures.
However, there is difficulty in identifying the most appropriate CPPs, CQAs, and KPPs during
the product lifecycle [61]. Further developments in biotechnology will largely depend on the ex-
tensive use of big data. To address this, big data analytics, artificial intelligence (AI), and machine
learning will be critical to link CPPs to CQAs and identify KPPs in intelligent biomanufacturing [62].
Trends in Biotechnology, Month 2020, Vol. xx, No. xx 9
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In the field of bioreactor modeling, many challenges remain beyond the obvious aspect of com-
putation time. Most CFD models are based on (air-)water experiments, and the impact of rheol-
ogy and the presence of surfactants in fermentation broths are insufficiently accounted for; an
effort is needed both in experimental hydrodynamics and simulation. In addition tomacromixing
because of impeller and gas–liquid interactions, mesomixing (initial feed mixing) and
micromixing (e.g., boundary layer and intrapellet mass transfer) effects could be relevant in
some situations [63,64]. Regarding the computational aspect, many exiting techniques are
under development. Using GPUs may allow for greatly increased particle numbers in Lagrangian
simulations. In addition, there are innovative developments of faster CFD solvers and options for
high-resolution flow reconstruction, such as rCFD [65] and AI-based approaches, such as
ANSYS reduced-order modeling. Combining these developments will help to evaluate complete
bioprocesses rather than snapshots, or to screen wider ranges of possible cell designs and pro-
cess configurations, with a higher level of realism. In the meantime, advances in analysis methods
and microfluidic cultivations may unlock a new generation of scale-down simulations, where both
the population and single-cell response can be studied in higher resolution [38,49,66–68].
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