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Abstract. An explicit mesh motion algorithm based on inverse distance weighting
interpolation is presented. The explicit formulation leads to a fast mesh motion algorithm
and an easy implementation. In addition, the proposed point-by-point method is robust
and flexible in case of large deformations, hanging nodes, and parallelization. Mesh
quality results and CPU time comparisons are presented for triangular and hexahedral
unstructured meshes in an airfoil flutter fluid-structure interaction problem.

1 INTRODUCTION

In fluid-structure interaction simulations the dynamics of the structure and the flow
are coupled by forces and displacements on their interface. Flow forces result through de-
formations of the structure in moving boundaries for the flow domain. There is, therefore,
a need for accurate and efficient mesh motion algorithms to propagate these boundary
displacements to the mesh in the interior of the flow domain. For structured meshes the
efficient Transfinite Interpolation method is available. Methods for the deformation of
unstructured meshes often use the connectivity of the flow mesh in algorithms based on
spring analogy, body elasticity, or Laplacian and Biharmonic operators. These methods
can be computationally intensive, since they result in solving a system of equations of the
size of the number of flow points.

Point-by-point methods do not rely on connectivity information as they determine the
displacement of each point in the flow mesh based on its relative position with respect to
the domain boundary. Recently, a point-by-point mesh deformation method was devel-
oped based on radial basis function (RBF) interpolation [1]. The resulting flexible and
robust mesh motion algorithm can deal with large deformations, hanging nodes, and is
easily implemented in parallel. However, radial basis function mesh motion requires the
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solution of a system of equations of the size of the number of boundary nodes. Solving
this system can still be expensive as it accounts for a significant part of the computational
time in large-scale three-dimensional simulations.

In this paper, we present an explicit mesh motion algorithm based on inverse distance
weighting (IDW) interpolation [2], which does not lead to solving a system of equations.
The proposed point-by-point method maintains the robustness and flexibility for dealing
with large deformations, hanging nodes, and parallelization of the previous method. In
addition, the explicit formulation results in a faster mesh motion algorithm and an easier
implementation. The mesh deformation method is applied to unstructured triangular
and hexahedral meshes in a NACA0012 airfoil fluid-structure interaction. Results show
a similar accuracy at a reduction of computational costs up to a factor 10 compared to
radial basis function mesh deformation.

2 INVERSE DISTANCE WEIGHTING INTERPOLATION

Inverse distance weighting interpolation [2] is an explicit method for multivariate inter-
polation of scattered data points. The interpolation surface w(x) through n data samples
v = {v1, .., vn} of the exact function u(x) with vi ≡ u(xi) is given in inverse distance
weighting by

w(x) =

∑n

i=1 viφ(ri)∑n

i=1 φ(ri)
, (1)

with weighting function
φ(r) = r−p, (2)

where ri = ‖x − xi‖ ≥ 0 is the Euclidian distance between x and data point xi, and p is
a power parameter.

3 TRIANGULAR GRID AROUND A NACA0012 AIRFOIL

First the mesh deformation of an unstructured triangular mesh around a NACA0012
airfoil in a square domain of size 10c×10c is considered with c the airfoil chord, as shown
in Figure 1. The mesh consists of 1524 cells with 112 nodes on the airfoil, 24 nodes on
the outer boundary, and 694 internal nodes. The mesh is subject to a given displacement
of the airfoil consisting of a translation in both directions of ∆x = ∆y = −2.5c and a
rotation over ∆α = −60deg in one step from the equilibrium position of the initial mesh.

The mesh quality of the resulting mesh is shown in Figure 2. A combination of a size
and skew measure between 0 and 1 is used as measure of the mesh quality. The proposed
explicit mesh deformation method results in a mesh of good quality without degenerate
cells even for this extreme displacement of the airfoil. Especially near the airfoil the grid
is practically undistorted with a mesh quality close to 1, see Figure 2b. This is important
for a robust deformation of the boundary layer cells and an accurate resolution of the
aerodynamic forces on the airfoil. The overall quality of the mesh is in this case 0.483.
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(a) Initial mesh (b) Initial mesh (zoom)

Figure 1: Unstructured triangular mesh around a NACA0012 airfoil with 1524 cells.

(a) Mesh quality (b) Mesh quality (zoom)

Figure 2: Mesh quality of the unstructured triangular mesh around a NACA0012 airfoil for a deflection
of ∆x = ∆y = −2.5c and ∆α = −60deg.

3.1 TWO-DIMENSIONAL AIRFOIL FLUTTER

The second numerical example is the unsteady post-flutter simulation of an elastically
mounted airfoil with an unstructured hexahedral mesh. The Euler equations of inviscid
fluid mechanics are solved on a mesh with 1.2 · 104 volumes in spatial domain D with
dimensions 30c × 20c. An Arbitrary Lagrangian-Eulerian formulation is employed to
couple the fluid mesh with the movement of the structure. The good quality of the
deformed mesh is shown for a deflection of the airfoil by ∆α = 20deg in Figure 3.

The CPU time required for the mesh deformation routine in every time step for RBF
and IDW mesh deformation is given in Table 1. Implicit RBF mesh motion results
in solving a system of equations for obtaining the displacements of the internal mesh
nodes. This results in an average computational time of per time step of 0.82s. The
proposed explicit IDW method reduces the CPU time by more than 50% to 0.34s. The
computational time further decreases to 0.05s when the displacements of the internal
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(a) Deformed mesh (b) Deformed mesh (zoom)

Figure 3: The deformed unstructured hexahedral mesh around a NACA0012 airfoil at an angle of attack
of 20deg.

nodes are written explicitly as function of the 3 structural degrees of freedom instead of
the displacements of the boundary nodes, see Table 1.

4 CONCLUSIONS

The presented inverse distance weighting mesh motion algorithm results in a high mesh
quality at a reduction of computational costs up to a factor 10 for unstructured triangular
and hexahedral meshes in a NACA0012 fluid-structure interaction. The explicit point-
by-point mesh deformation method leads to an easy parallel implementation and a robust
treatment of large deformations and hanging nodes. The method is also easily applicable
to structured and three-dimensional meshes.
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Table 1: Average CPU time per time step for the RBF and IDW mesh motion routines for the two-
dimensional airfoil flutter problem.

method time [s]
RBF 0.82
IDW 0.34

eigenmode IDW 0.05
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