

Delft University of Technology

On the Energy Footprint of Mobile Testing Frameworks

Cruz, Luis; Abreu, Rui

DOI
10.1109/TSE.2019.2946163
Publication date
2021
Document Version
Final published version
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Cruz, L., & Abreu, R. (2021). On the Energy Footprint of Mobile Testing Frameworks. IEEE Transactions on
Software Engineering, 47(10), 2260-2271. https://doi.org/10.1109/TSE.2019.2946163

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2019.2946163
https://doi.org/10.1109/TSE.2019.2946163

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

On the Energy Footprint of Mobile
Testing Frameworks

Lu�ıs Cruz ,Member, IEEE and Rui Abreu , Senior Member, IEEE

Abstract—High energy consumption is a challenging issue that an ever increasing number of mobile applications face today. However,

energy consumption is being tested in an ad hoc way, despite being an important non-functional requirement of an application. Such

limitation becomes particularly disconcerting during software testing: on the one hand, developers do not really know how to measure

energy; on the other hand, there is no knowledge as to what is the energy overhead imposed by the testing framework. In this paper, as

we evaluate eight popular mobile UI automation frameworks, we have discovered that there are automation frameworks that increase

energy consumption up to roughly 2200 percent. While limited in the interactions one can do, Espresso is the most energy efficient

framework. However, depending on the needs of the tester, Appium,Monkeyrunner, or UIAutomator are good alternatives. In practice,

results show that deciding which is the most suitable framework is vital. We provide a decision tree to help developers make an

educated decision on which framework suits best their testing needs.

Index Terms—Mobile testing, testing frameworks, energy consumption

Ç

1 INTRODUCTION

THE popularity of mobile applications (also known as
apps) has brought a unique, non-functional concern

to the attention of developers–energy efficiency [1].
Mobile apps that (quickly) drain the battery of mobile
devices are perceived as being of poor quality by users.1

As a consequence, users are likely to uninstall an app
even if it provides useful functionality and there is no
better alternative. In fact, mobile network operators rec-
ommend users to uninstall apps that are energy ineffi-
cient.2 It is therefore important to provide developers
with tools and knowledge to ship energy efficient mobile
apps [2], [3], [4], [5].

Automated testing tools help validate not only functional
but also non-functional requirements such as scalability and
usability [6], [7]. When it comes to energy testing, the most
reliable approach to measure the energy consumption of
mobile software is by using user interface (UI) automation
frameworks [8], [9], [10], [11], [12], [13]. These frameworks
are used to mimic user interaction in mobile apps while
using an energy profiling tool. An alternative is to use

manual testing but it creates bias, is error prone, and is both
time and human resource consuming [14].

While using a UI automation framework is the most
suitable option to test apps, there are still energy-related
concerns that need to be addressed. By replicating inter-
actions, frameworks are bypassing or creating overhead
on system behavior. For instance, before executing a
Tap,3 it is necessary to programmatically look up the tar-
get UI component. This creates extra processing that
would not happen during an ordinary execution of the
app. These idiosyncrasies are addressed in the work pro-
posed in this paper, as they may have a negative impact
on energy consumption results.

As a motivational example, consider the following sce-
nario: an app provides a tweet feed that consists of a list of
tweets including their media content (such as, pictures, GIFs,
videos, URLs). The product owner noticed that users rather
value apps with low energy consumption. Hence, the devel-
opment team has to address this non-functional requirement.

One idea is to showplain text and pictureswith low resolu-
tion. Original media content would be rendered upon a user
Tap on the tweet, as depicted in Fig. 1. With this approach,
energy is potentially saved by rendering only media that the
user is interested in. To validate this solution, developers cre-
ated automated scripts to mimic user interaction in both ver-
sions of the app while measuring the energy consumption
using a power meter. The script for the original version con-
sisted in opening the app and scroll the next 20 items, whereas
the new version’s script consisted in opening the app and
scrolling the next 20 items while tapping in 5 of them (a num-
ber they agreed to be the average hit rate of their users). A
problem that arises is that the automation framework spends
more energy to perform the five extra Taps. Imagining that for

� L. Cruz is with the Delft University of Technology, Delft 2628, CD,
Netherlands. E-mail: luiscruz@fe.up.pt.

� R. Abreu is with the University of Lisbon, Lisboa 1649-004, Portugal, and
also with the INESC-ID, Lisboa 1000-029, Portugal.
E-mail: rui@computer.org.

Manuscript received 14 Dec. 2018; revised 16 Sept. 2019; accepted 30 Sept.
2019. Date of publication 8 Oct. 2019; date of current version 15 Oct. 2021.
(Corresponding author: Luis Cruz.)
Recommended for acceptance by W. Visser.
Digital Object Identifier no. 10.1109/TSE.2019.2946163

1. Apigee’s survey on the reasons leading to bad mobile app reviews:
https://goo.gl/ubHdFH (visited on October 10, 2019).

2. High Risk Android Apps: https://goo.gl/3fJmD9 (Accessed on
September 10, 2019).

3. Tap is a gesture in which a user taps the screen with his finger.

2260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1615-355X
https://orcid.org/0000-0002-1615-355X
https://orcid.org/0000-0002-1615-355X
https://orcid.org/0000-0002-1615-355X
https://orcid.org/0000-0002-1615-355X
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-3734-3157
mailto:L. Cruz is with the Delft University of TechnologyDelft2628CD�Netherlands
mailto:R. Abreu is with the University of LisbonLisboa1649-004Portugal, and also with the INESC-IDLisboa1000-029Portugal
https://goo.gl/ubHdFH
https://goo.gl/3fJmD9

each Tap the automation framework consumes 1 joule4 (J),
the new version will have to spend at least 5J less than the
original version to be perceived as more efficient. If not, it
gets rejected even though the new version could be more
efficient.

More efficient frameworks could reduce this threshold to
a more insignificant value. However, since automation
frameworks have not considered energy consumption as an
issue, developers do not have a sense of which framework
is more suitable to perform reliable energy measurements.

The primary goal of this work is to study popular UI auto-
mation frameworks in the context of testing the energy effi-
ciency of mobile apps. We address the following research
questions:

� RQ1: Does the energy consumption overhead cre-
ated by UI automation frameworks affect the results
of the energy efficiency of mobile applications?

� RQ2: What is the most suitable framework to profile
energy consumption?

� RQ3: Are there any best practices when it comes
to creating automated scripts for energy efficiency
tests?

We measure the energy consumption of common user
interactions: Tap, Long Tap, Drag And Drop, Swipe, Pinch &
Spread, Back button, Input text, Find by id, Find by description,
and Find by content.

Results show that Espresso is the framework with best
energy footprint, althoughAppium,Monkeyrunner, andUIAu-
tomator are also good candidates. On the other side of the
spectrum are AndroidViewClient and Calabash, which makes
them not suitable to test the energy efficiency of apps yet. For
a general purpose context, Appium follows as being the best
candidate. We have further discovered that methods that use
content to look up UI components need to be avoided since
they are not energy savvy.

Overheads incurred by UI automation frameworks ought to be
considered whenmeasuring energy consumption of mobile apps.

To sum up, the main contributions of this paper are:

� A comprehensive study on energy consumption of
user interactions mimicked by UI automation
frameworks.

� Comparison of the state-of-the-art UI automation
frameworks and their features in the context of
energy tests.

� Best practices regarding the API usage of the frame-
work for energy tests, including a decision tree to
help choose the framework which suits one needs.

2 RELATED WORK

UI automation frameworks play an important role on the
research of mobile software energy efficiency. They are used
as part of the experimental setup for the validation of
approaches for energy efficiency of mobile apps.Monkeyrun-
ner has been used to assess the energy efficiency of Android’s
API usage patterns [10]. It was found that UI manipulation
tasks (e.g., method findViewById) and database operations
are expensive in terms of energy consumption. These find-
ings suggest that UI automation frameworks might as well
create a considerable overhead on energy consumption.
Monkeyrunner has also been used to assess benefits in energy
efficiency on the usage of Progressive Web Apps technology
in mobile web apps [15], despite the fact that no statistically
significant differences were found. Android View Client has
been used to assess energy efficiency improvements of per-
formance based optimizations for Android applications [16],
[17], being able to improve energy consumption up to 5 per-
cent in real, mature Android applications. Other works have
also used Robotium [18], Calabash [12], [13], and RERAN [19],
[20]. Our work uses a similar approach for assessing and val-
idating energy efficiency, but it has distinct goals as we focus
on the impact of UI automation frameworks on energy effi-
ciency results.

Previous work studied five Android testing frameworks
in terms of fragilities induced by maintainability [21], [22].
Five possible threats that could break tests were identified:
1) identifier change, 2) text change, 3) deletion or relocation
of UI elements, 4) deprecated use of physical buttons, and
5) graphics change (mainly for image recognition testing
techniques). These threats are aligned with efforts from
existing works [23]. Our paper differentiates itself by focus-
ing on the energy efficiency of Android testing tools.

In a study comparingAppium,MonkeyTalk,Ranorex,Robot-
ium, andUIAutomator, Robotium andMonkeyTalk stood out as
being the best frameworks for being easy to learn and pro-
viding amore efficient comparison output between expected
and actual result [24]. A similar approach was taken in other
works [25], [26] but although they provide useful insights
about architecture and feature set, no systematic comparison
was conducted. We compare different frameworks with a
quantitative approach to prevent bias of results.

Linares-V�asquez M. et al. (2017) have studied the current
state-of-the-art in terms of the frameworks, tools, and serv-
ices available to aid developers in mobile testing [4]. It
focused on 1) Automation APIs/Frameworks, 2) Record
and Replay Tools, 3) Automated Test Input Generation
Techniques, 4) Bug and Error Reporting/Monitoring Tools,

Fig. 1. Two versions of the example app.

4. Joule (J) is the energy unit in the International System of Units.

CRUZ AND ABREU: ON THE ENERGY FOOTPRINT OF MOBILE TESTING FRAMEWORKS 2261

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

5) Mobile Testing Services, and 6) Device Streaming Tools. It
envisions that automated testing tools mobile apps should
address development restrictions: 1) restricted time/budget
for testing, 2) needs for diverse types of testing (e.g., energy),
and 3) pressure from users for continuous delivery. In a simi-
lar work, these issues were addressed by surveying 102
developers of Android open source projects [27]. This work
identified a need for automatically generated test cases that
can be easily maintained over time, low-overhead tools that
can be integrated with the development workflow, and
expressive test cases. Our work differs from these studies by
providing an empirical comparison solely on UI automation
frameworks, and addressing energy tests.

Choudhary R., et al. (2015) compared automated input
generation (AIG) techniques using four metrics [28]: ease of
use, ability to work on multiple platforms, code coverage,
and ability to detect faults. It was found that random explo-
ration strategies by Monkey5 or Dynodroid [29] were more
effective than more sophisticated approaches. Although our
work does not scope AIG tools, very often they use UI auto-
mation frameworks (e.g.,UIAutomator and Robotium) under-
neath their systems [30], [31], [32], [33]. Results and insights
about energy consumption in our study may also apply to
tools that build on top of UI automation frameworks.

3 DESIGN OF THE EMPIRICAL STUDY

To answer the research questions outlined in the Introduc-
tion, we designed an experimental setup to automatically
measure energy consumption of Android apps. In particu-
lar, our methodology consists in the following steps:

1) Preparation of an Android device to use with a
power monitor.

2) Creation of a stack of UI interaction scripts for all
frameworks.

3) Automation of the execution of tests for each frame-
work to run in batch mode.

4) Collection and analysis of data.

Our methodology is illustrated in Fig. 2. There are three
main components: a desktop computer that serves as con-
troller; a power monitor; and a mobile device running
Android, i.e., the device under test (DUT). The desktop com-
puter sends interaction instructions to be executed in the
mobile device. The power monitor collects energy consump-
tion data from the mobile device and sends it to the desktop

computer. Finally, the desktop computer analyzes data and
generates reports back to the user.

3.1 Energy Data Collection

We have adopted a hardware-based approach to obtain
energy measurements. We use Monsoon’s Original Power
Monitorwith the sample rate set to 5000Hz, as used in previ-
ous research [10], [11], [28], [34], [35], [36], [37], [38]. Meas-
urements are obtained using the Physalia toolset6–a Python
library to collect energy consumption measurements in
Android devices. It takes care of syncing the beginning and
ending of the UI interaction script with the measurements
collected from the power monitor. The steps described in
Physalia’s tutorial7 were followed to remove the device’s bat-
tery and connect it directly to the Monsoon’s power source
using a constant voltage of 3:8V. This is important to ascer-
tain that we are collecting reliable energy consumption
measurements.

3.2 Platform

The choice of the Android platform lies in the fact that it is
one of the most popular operating systems (OS) and is open
source. This helps to understand the underlying system and
use a wide range of instrumentation tools. However, the
techniques and ideas discussed in this paper apply to other
operating systems as well.

3.3 UI Automation Frameworks

The state-of-the-art UI automation frameworks for Android
used in our study areAppium,UIAutomator,PythonUIAutoma-
tor, AndroidViewClient, Espresso, Robotium,Monkeyrunner, and
Calabash. The frameworks were chosen following a system-
atic criteria/review: freely available to the community, open
source, featuring a realistic set of interactions, expressed
through a human readable and writable format (e.g., pro-
gramming language), and used by the mobile development
industry. To assess this last criterion StackOverflow andGithub
were used as proxy. Some frameworks have been discarded
for not complying with this criteria. As an example, Ranorex8

is not free to the community and RERAN [19] is designed to
be used with a recording mechanism. MonkeyTalk has not
been publicly released after being acquired by Oracle,9 and
Selendroid is not ready to be used with the latest Android
SDK.10 We decided not to include UI recording tools since
they rely on the underlying frameworks (e.g., Espresso Test
Recorder,RobotiumRecorder).

Although most frameworks support usage directly
through screen coordinates, we only study the usage by tar-
geting UI components. Usage through coordinates makes the
tests cumbersome to build and maintain, and is not common
practice.

Fig. 2. Experimentation system to compare UI automation frameworks
for Android.

5. UI/Application Exerciser Monkey also known as Monkey tool:
https://goo.gl/Xbzjcg (visited on October 10, 2019).

6. Physalia’s webpage: https://goo.gl/d8tVHY (visited on October
10, 2019).

7. Tutorial’s webpage: https://goo.gl/3nkWoa (visited on October
10, 2019).

8. Ranorex’s website available at https://goo.gl/GQEH5A (visited
on October 10, 2019).

9. More information about MonkeyTalk’s acquisition: https://goo.
gl/YA1VTU (visited on October 10, 2019).

10. Running Selendroid would require changing its source code:
https://goo.gl/fXuYYT and https://goo.gl/SHfKxc (visited on Octo-
ber 10, 2019).

2262 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/Xbzjcg
https://goo.gl/d8tVHY
https://goo.gl/3nkWoa
https://goo.gl/GQEH5A
https://goo.gl/YA1VTU
https://goo.gl/YA1VTU
https://goo.gl/fXuYYT
https://goo.gl/SHfKxc

An overview of the features of the frameworks is in
Table 1. It also details the frameworks as towhether the app’s
source code is required, whether it is remote script-based,
i.e., simple interaction commands can be sent in real time to
the DUT; WebView support, i.e., whether hybrid apps can
also be automated; compatibility with iOS, and supported
programming languages. The most common languages sup-
ported by these frameworks are Python and Java.

3.4 Test Cases

For each framework, a script was created for every interac-
tion that was supported by the framework, totaling 73
scripts. Scripts were manually and carefully crafted and
peer reviewed to ascertain similar behavior across all frame-
works. Essentially, each script calls a specific method of the
framework that mimics the user interaction that we pretend
to study. To minimize overheads from setup tasks (e.g.,
opening the app, getting app’s UI hierarchy), the method is
repeated multiple times: in the case of Back Button, we
repeat 200 times; in the cases of Swipe, Pinch and Spread, or
lookup methods, we repeat 40 times; in the remaining inter-
actions, we repeat 10 times.

3.5 Setup and Metrics

We compare the overhead in energy consumption using as
baseline the energy usage of interactions when executed by
a human. Baselines for each interaction were measured
by asking two Android users (one female and one male) to
execute the interactions as in the automated scripts. For
instance, in one of the experiments the participants had to
click 200 times in the Back Button. All interactions were mea-
sured except for Find by id, Find by description, and Find by
content, as these are helper methods provided by the UI
automation frameworks and are not applicable to human
interactions.

As mentioned above, energy measurements are prone to
random variations due to the nature of the underlying OS.
Furthermore, one can also expect errors from the data col-
lected from a power monitor [39]. To make sure energy con-
sumption values are reliable and have enough data to
perform significance tests, each experiment was identically
and independently repeated 30 times.

Since user interactions often trigger other tasks in a mobile
device, tests have to run in a controlled environment. In other
words, we are trying to measure the platform overhead and
we don’t want the app activity to interfere with that measure-
ment. Thus, an Android application was developed by the
authors for this particular study. It differs from a real app in
the sense that this app is a strategy to prevent any extra work
from being performed by the foreground activity. The main
goal is preventing any side-effect fromUI interactions, which
in real apps would result in different behaviors, hence
compromising measurements. Hence, the app prevents the
propagation of the system’s event created by the interaction
and no feedback is provided to the user. This way, experi-
ments onlymeasure thework entailed by frameworks.

The main settings used in the device are listed in Table 2.
Android provides system settings that can be useful to con-
trol the system behavior during experiments. Notifications
and alarms were turned off, lock screen security was dis-
abled, and the “Don’t keep Activities” setting was enabled.
This last setting destroys every activity as soon as the user
leaves it, erasing the current state of an app.11

WiFi is kept on as a requirement of our experimental
setup. The reason lies in the fact that Android automation
frameworks resort to the Android Debug Bridge (ADB) to
communicate with the mobile device. ADB allows to

TABLE 1
Overview of the Studied UI Automation Frameworks

(*) Although it supports Input Text, it does not apply a sequential input of key events. This is more energy efficient but it is more artificial, bypassing real behavior
(e.g., auto correct).
(**) Requires to manually enable Internet permission (”android.permission.INTERNET”).

11. More about “Don’t Keep Activities” setting available at: https://
goo.gl/SXkxVy (visited on October 10, 2019).

CRUZ AND ABREU: ON THE ENERGY FOOTPRINT OF MOBILE TESTING FRAMEWORKS 2263

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/SXkxVy
https://goo.gl/SXkxVy

install/uninstall/open apps, send test data, configure set-
tings, lock/unlock the device, among other things. By
default, it works through USB, which interferes with energy
consumption measurements. Although Android provides
settings to disable USB charging, if the USB port remains
connected to the device, the measurements of energy con-
sumption become obsolete. Fortunately, ADB can be config-
ured to be used through a WiFi connection, which was
leveraged in this work.

In addition to the energy consumption sourcesmentioned
before, there is another common one–the cost of having the
device in idle mode. In this context, we consider idle mode
when the device is active with the settings in Table 2 but is
not executing any task. In this mode, the screen is still con-
suming energy. We calculate the idle cost for each experi-
ment to assess the effective energy consumption of executing
a given interaction. We measure the idle cost by collecting
the energy usage of running the app for 120 seconds without
any interaction. In addition to the mean energy consump-
tion, we compare different frameworks using the mean
energy consumption without the corresponding idle cost,
calculated as follows:

�x0 ¼
PN¼30

i¼1 ðEi � IdleCost � DtiÞ
N

; (1)

where N is the number of times experiments are repeated
(30), Ei is the measured energy consumption for execution
i, IdleCost is the energy usage per second (i.e., power) of
having the device in idle mode, expressed in watts (W), and
Dti the duration of execution i.

After removing idle cost, we compute overhead in a simi-
lar fashion as previous work [40]

Overheadð%Þ ¼
�
�x0=�x0

human
� 1

�
� 100: (2)

In other words, overhead is the percentage change of the
energy consumption of a framework when compared to the
real energy consumption induced by human interaction.

We also use �x0 to compute the estimated energy con-
sumption for a single interaction (Sg) as follows:

Sg ¼ �x0=M; (3)

where M is the number of times the interaction was
repeated within the same execution (e.g., in Back Button,
M ¼ 200).

Experiments were executed using an Apple iMac Mid 2011
with a 2.7 GHz Intel Core i5 processor, 8 GBDDR3 RAM, and
running OS X version 10.11.6. Room temperature was con-
trolled for 24�C (75�F). DUT was a Nexus 5X manufactured
by LG, running Android version 6.0.1. All scripts, mobile
app, and data are available in the Github repository of the
project,12 which is releasedwith an open source license.

4 RESULTS

Next, we report the results obtained in the empirical study.

4.1 Idle Cost

In a sample of 30 executions, themean energy consumption of
having the app open for 120 seconds without any interaction
is 22.67J. The distribution of the measurements across the 30
executions is shown in Fig. 3. This translates into a power con-
sumption of 0.19W (in other words, the app consumes 0.19
joules per second in idle mode). This value is used in the
remaining experiments to factor out idle cost from the results.

4.2 Tap

Table 3 presents results for the Tap interaction. Each row in
the table describes a framework as a function of the mean
energy consumption (�x), standard deviation of energy con-
sumption (s), duration of each execution of the script (Dt) in
seconds, the mean energy consumption without idle cost (�x0,
see Eq. (1)), the estimated energy consumption for a single
interaction (Sg, see Eq. (3)), the Cohen’s-d effect size (d), the
percentage overheadwhen compared to the same interaction
when executed by a human (as in Eq. (2)), and the position in
the ranking (#), i.e, the ordinal position when results are
sorted by the average energy consumption, and . With the
exception of the results for Human which are placed in the
first row, the table is sorted in alphabetical order for the sake
of comparisonwith results of other interactions.

From our experiments, we conclude that Espresso is the
most energy efficient framework for Taps, consuming 3:63J

TABLE 2
Android Device’s System Settings

Fig. 3. Violin plot with distribution of the energy consumption of the app
during 120 seconds.

TABLE 3
Descriptive Statistics of Tap Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) d Overhead #

Human 5.56 1.61 12.84 3.14 78.44 — 1
AndroidViewClient 19.71 0.21 42.10 11.75 293.86 8.65 274.6% 7
Appium 54.73 1.14 128.47 30.46 761.49 21.38 870.8% 9
Calabash 29.25 0.72 60.10 17.89 447.28 14.09 470.2% 8
Espresso 6.07 0.16 12.93 3.63 90.70 0.49 15.6% 2
Monkeyrunner 18.08 1.28 49.97 8.63 215.87 4.11 175.2% 5
PythonUiAutomator 9.15 0.54 18.93 5.57 139.32 2.24 77.6% 4
Robotium 14.59 4.00 25.63 9.74 243.57 2.11 210.5% 6
UiAutomator 7.64 0.55 17.77 4.28 107.03 1.13 36.5% 3

12. Project’sGithub repository: https://github.com/luiscruz/physalia-
automators visited onOctober 10, 2019.

2264 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

https://github.com/luiscruz/physalia-automators
https://github.com/luiscruz/physalia-automators

on average after removing idle cost, while a single Tap is
estimated to consume 0:09J. When compared to the human
interaction, Espresso imposes an overhead of 16 percent. The
least efficient frameworks for a Tap are Appium, and Cala-
bash, with overheads of 871 and 470 percent, respectively.
Using these frameworks for taps can dramatically affect
energy consumption results.

A visualization of these results is in Fig. 4. The height of
each white bar shows the mean energy consumption for the
framework. The height of each green or yellow bar repre-
sents the energy consumption without the idle cost. The yel-
low bar and the dashed horizontal line highlight the baseline
energy consumption. In addition, it shows a violin plot with
the probability density of data using rotated kernel density
plots. The violin plots provide a visualization of the distribu-
tion, allowing to compare results regarding shape, location,
and scale. This is useful to assess whether data can be mod-
eled with a normal distribution, and compare the standard
deviations of themeasurements in different frameworks.

4.3 Long Tap

Results for the interaction Long Tap are in Table 4 and Fig. 5.
Monkeyrunner and Espresso are the most efficient frame-
works, with overheads of 77 percent (�x0 ¼ 12:60J) and 81 per-
cent (�x0 ¼ 12:88J), respectively. PythonUIAutomator and
Calabash are themost inefficient (overhead over 300 percent).

A remarkable observation is the efficiency of Appium’s
Long Tap (Sg ¼ 0:40J) when compared to its regular Tap
(Sg ¼ 0:76J). Common sense would let us expect Tap to
spend less energy than Long Tap, but that is not the case.
This happens because Appium’s usage of Long Tap requires
a manual instantiation of a TouchAction object, while Tap
creates it internally. Although creating such object makes
code less readable, the advantage is that it can be reused for

the following interactions, making a more efficient use of
resources.

4.4 Drag and Drop

Results for the interaction Drag and Drop are in Table 5 and
Fig. 6. UIAutomator is the best testing framework with an
overhead of 185 percent (�x0 ¼ 14:48J).Espresso is not included
in the experiments since Drag and Drops are not supported.
The most energy greedy framework is Calabashwith an over-
head of 2193 percent. When compared to UIAutomator, one
Drag and Drop with Calabash is equivalent to more than 11
Drag andDrops. Hence,Calabash should be avoided for energy
measurements that includeDrag andDrops.

4.5 Swipe

Results for the interaction Swipe are presented in Table 6
and Fig. 7. Espresso is the best framework with an overhead
of 29 percent, while Robotium, AndroidViewClient, Monkeyr-
unner, and Calabash are the most energy greedy with similar
overheads, above 400 percent.

4.6 Pinch and Spread

Results for the interaction Pinch and Spread are presented in
Table 7 and Fig. 8. Although this interaction is widely used
in mobile applications for features such as zoom in and out,
only Calabash, PythonUIAutomator, and UIAutomator support
it out of the box. UIAutomator is the most efficient frame-
work, spending less energy than the equivalent interaction
performed by a human (-5 percent). The remaining frame-
works, PythonUiAutomator and Calabashwere not as efficient,
providing overheads of 181 and 374 percent, respectively.

4.7 Back Button

Results for the interaction Back Button are presented
in Table 8 and Fig. 9. In this case, human interaction was

Fig. 4. Violin plot of the results for the energy consumption of Tap.

TABLE 4
Descriptive Statistics of Long Tap Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) d Overhead #

Human 13.33 2.21 32.86 7.12 177.92 — 1
AndroidViewClient 49.18 5.24 119.21 26.66 666.40 4.45 274.6% 7
Appium 25.34 0.86 49.60 15.96 399.08 7.75 124.3% 5
Calabash 46.96 1.81 94.27 29.14 728.57 12.44 309.5% 9
Espresso 19.87 0.54 37.00 12.88 321.94 6.20 80.9% 3
Monkeyrunner 21.68 0.74 48.07 12.60 315.04 5.57 77.1% 2
PythonUiAutomator 48.19 12.63 101.13 29.08 727.02 2.70 308.6% 8
Robotium 39.35 1.82 99.97 20.46 511.40 8.71 187.4% 6
UiAutomator 22.39 0.75 45.40 13.81 345.20 6.90 94.0% 4

Fig. 5. Violin plot of the results for energy consumption of Long Tap.

TABLE 5
Descriptive Statistics of Drag and Drop Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) d Overhead #

Human 7.55 1.91 23.70 3.08 76.90 — 1
AndroidViewClient 21.31 0.76 62.15 9.57 239.24 6.67 211.1% 3
Appium 43.71 1.14 85.00 27.65 691.27 19.69 798.9% 7
Calabash 134.08 3.55 336.33 70.53 1763.27 26.79 2193.0% 8
Monkeyrunner 28.50 1.29 52.97 18.49 462.22 17.96 501.1% 5
PythonUiAutomator 36.30 3.77 93.53 18.62 465.56 5.54 505.4% 6
Robotium 20.63 1.02 52.17 10.77 269.29 7.75 250.2% 4
UiAutomator 14.48 0.63 30.27 8.76 219.02 8.19 184.8% 2

CRUZ AND ABREU: ON THE ENERGY FOOTPRINT OF MOBILE TESTING FRAMEWORKS 2265

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

considerably less efficient than most frameworks, being
ranked fifth on the list. The main reason for this is that
frameworks do not realistically mimic the Back Button
interaction. When the user presses the back button, the
system produces an input event and a vibration or haptic
feedback simultaneously. However, frameworks simply
produce the event. Thus, results are not comparable with
the human interaction. Still, AndroidViewClient provided
an overhead of 440 percent, being the most inefficient
framework.

Another remarkable result was that Robotium, despite
being energy efficient after removing idle cost, it is the slow-
est framework. Thus, it is likely that Robotium is using a con-
servative approach to generate events in the device: it
suspends the execution to wait for the back button event to
take effect in the app.

4.8 Input Text

Results for the interaction Input Text are presented in Table 9
and Fig. 10. Each iteration of Input Text consists in writing a

17-character sentence in a text field and then clearing it all
back to the initial state. Thus, the value for a single interac-
tion (Sg) is the energy spent when this sequence of events is
executed, but can hardly be extrapolated for other input
interactions.

UIAutomator is the framework with the lowest energy
consumption (�x0 ¼ 1:42J). The human interaction spends
more energy than most frameworks. The reason behind this
is that frameworks have a different way to deal with text
input. Most frameworks generate a sequence of events that
will generate the given sequence of characters. On the con-
trary, the human interaction resorts to the system keyboard
to generate this sequence. Thus the system has to process a
sequence of taps and match it to the right character event.
There are even other frameworks, namely UIAutomator,
PythonUIAutomator, and Robotium, that, as showed in the
overview of Table 1, implement Input Text more artificially.
Instead of generating the sequence of events, they directly
change the content of the text field. This is more efficient
but bypasses system and application behavior–e.g., auto-
matic text correction features.

Results showed that the AndroidViewClient is very
inefficient and its overhead (936 percent) is not negligi-
ble when measuring the energy consumption of mobile
apps.

Fig. 6. Violin plot of the results for energy consumption ofDrag and Drop.

TABLE 6
Descriptive Statistics of Swipe Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) d Overhead #

Human 9.11 1.09 24.48 4.48 56.05 — 1
AndroidViewClient 45.29 0.62 115.87 23.39 292.41 27.93 421.7% 7
Appium 17.09 0.46 30.00 11.42 142.80 11.53 154.8% 3
Calabash 43.27 0.81 93.73 25.56 319.46 27.21 469.9% 9
Espresso 10.35 0.26 24.10 5.79 72.43 2.51 29.2% 2
Monkeyrunner 36.63 1.49 68.67 23.65 295.69 25.16 427.5% 8
PythonUiAutomator 26.42 0.91 54.60 16.11 201.32 14.05 259.1% 4
Robotium 41.30 0.67 96.00 23.16 289.46 26.85 416.4% 6
UiAutomator 27.56 0.65 60.13 16.20 202.49 19.93 261.2% 5

Fig. 7. Violin plot of the results for energy consumption of Swipe.

TABLE 7
Descriptive Statistics of Pinch and Spread Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) d Overhead #

Human 9.59 1.37 21.91 5.45 68.10 — 2
Calabash 41.31 8.66 81.93 25.83 322.83 4.82 374.0% 4
PythonUiAutomator 26.39 1.23 58.77 15.29 191.09 9.59 180.6% 3
UiAutomator 9.19 1.66 21.23 5.17 64.67 -0.21 -5.0% 1

Fig. 8. Violin plot of the results for energy consumption of Pinch and
Spread.

TABLE 8
Descriptive Statistics of Back Button Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) d Overhead #

Human 17.90 2.56 43.94 9.60 47.98 — 5
AndroidViewClient 85.75 2.11 179.73 51.79 258.94 17.79 439.7% 9
Appium 2.43 0.17 3.33 1.80 9.01 -8.33 -81.2% 2
Calabash 30.95 0.77 80.57 15.73 78.63 5.99 63.9% 8
Espresso 8.89 0.29 35.17 2.25 11.25 -7.66 -76.6% 4
Monkeyrunner 1.84 0.12 4.07 1.08 5.38 -9.13 -88.8% 1
PythonUiAutomator 53.62 1.78 220.03 12.04 60.20 1.68 25.5% 7
Robotium 60.44 5.18 308.10 2.22 11.10 -1.88 -76.9% 3
UiAutomator 49.87 1.03 208.20 10.53 52.64 0.83 9.7% 6

2266 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

4.9 Find by id

Results for the task Find by id are presented in Table 10 and
Fig. 11. Find by id is a method that looks up for a UI compo-
nent that has the given id. It does not mimic any user inter-
action but it is necessary to create interaction scripts.
Methods Find by description and Find by content are used to
achieve the same objective. For this reason, we do not report
the consumption of a human interaction in these cases.

For the sake of consistency with previous cases, we
report tables and figures in the same fashion. However, we
consider that the overall cost of energy consumption (with-
out removing idle cost) should not be discarded.

Robotium is the most energy efficient, with an energy con-
sumption without idle cost of 0:94J . However, if we con-
sider idle cost, Robotium is amongst the most energy greedy
frameworks (after Calabash and AndroidViewClient). It has
an overall energy consumption of 27:97J . When considering
idle cost, Espresso is the most energy efficient framework.

This difference lies in the mechanism adopted by frame-
works to deal with UI changes. After user interaction, the UI
is expected to change and the status of the UI can become
obsolete. Thus, frameworks need to wait until the changes
the UI are complete. Results show thatRobotium uses amech-
anism based on suspending the execution to make sure the
UI is up to date. On the other hand, Espresso uses a different
heuristic, which despite spending more energy on computa-
tion tasks, it does not require the device to spend energy
while waiting.

4.10 Find by Description

Results for Find by description are presented in Table 11 and
Fig. 12. Find by description and Find by id are very similar
regarding usage and implementation, which is confirmed
by results. Espresso is the best framework regardless of idle
cost (�x ¼ 1:37J and �x0 ¼ 0:97J). Android View Client and Cal-
abash are distinctly inefficient. All other frameworks show
reasonable energy footprints, except for Robotium and Mon-
keyrunner, which were not included since Find by description
is not supported.

4.11 Find by Content

Results for Find by content are presented in Table 12 and
Fig. 13. After removing idle cost, Robotium is the framework
with best results (�x0 ¼ 0:14J). However, in resemblance to

Fig. 9. Violin plot of the results for energy consumption of Back Button.

Fig. 10. Violin plot of the results for energy consumption of Input Text.

TABLE 9
Descriptive Statistics of Input Text Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) d Overhead #

Human 22.11 4.06 54.09 11.89 1189.37 — 6
AndroidViewClient 222.08 4.31 523.37 123.18 12318.21 27.68 935.7% 9
Appium 44.43 1.89 105.27 24.54 2453.84 4.62 106.3% 8
Calabash 27.14 1.03 62.40 15.35 1534.70 1.40 29.0% 7
Espresso 6.83 0.18 14.03 4.18 417.96 -3.45 -64.9% 3
Monkeyrunner 6.18 0.29 8.03 4.67 466.58 -3.21 -60.8% 5
PythonUiAutomator 9.16 4.35 25.37 4.37 436.83 -2.07 -63.3% 4
Robotium 4.64 0.86 12.50 2.27 227.34 -4.26 -80.9% 2
UiAutomator 2.93 1.39 8.00 1.42 142.02 -4.62 -88.1% 1

TABLE 10
Descriptive Statistics of Find by id Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) Rank

AndroidViewClient 37.52 1.64 129.91 12.97 46.34 7
Appium 5.94 0.51 12.73 3.53 12.62 5
Calabash 41.20 2.08 89.63 24.26 86.65 8
Espresso 1.37 0.11 2.03 0.99 3.54 2
Monkeyrunner 2.74 0.70 6.13 1.58 5.66 3
PythonUiAutomator 8.42 4.16 19.63 4.71 16.81 6
Robotium 27.97 0.46 143.03 0.94 3.37 1
UiAutomator 5.26 0.84 14.33 2.55 9.11 4

Fig. 11. Violin plot of the results for energy consumption of Find by id.

TABLE 11
Descriptive Statistics of Find by Description Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) Rank

AndroidViewClient 36.85 0.78 127.45 12.77 45.59 5
Appium 6.41 0.58 13.93 3.77 13.48 4
Calabash 41.41 7.02 88.20 24.75 88.38 6
Espresso 1.37 0.10 2.10 0.97 3.46 1
PythonUiAutomator 6.62 0.49 15.10 3.76 13.44 3
UiAutomator 5.13 0.61 14.47 2.40 8.57 2

CRUZ AND ABREU: ON THE ENERGY FOOTPRINT OF MOBILE TESTING FRAMEWORKS 2267

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

Find by id, Robotium is very inefficient when idle cost is not
factored out (�x ¼ 23:74J). In this case, Appium is the most
efficient framework (�x ¼ 3:07J).

Unlike with Find by id and Find by description, Espresso did
not yield good results in this case (�x ¼ 9:43J and �x0 ¼ 6:19J).
This is explained by the fact that Espresso runs natively on
the DUT. Thus, finding a UI component by content requires
extra processing: the DUT has to search for a pattern in all
components’ text content. Since remote script-based frame-
works, such as Appium, can do such task using the controller
workstation, they can be more energy efficient from the
DUT’s perspective. For the same reason, Find by content
has consistently higher energy usage than the other helper
methods.

4.12 Statistical Significance

As expected from previous work and corroborated with the
violin plots, our measurements follow a normal distribution–
also confirmed with the Shapiro-Wilk test. Thus, we assess
the statistical significance of the mean difference of energy
consumption between frameworks using the parametric
Welch’s t-test as used in previous work [16]. We apply the
Benjamini-Hochberg procedure by correcting p-values with
the number of times a given sample is used in different tests.

All but a few tests (2 out 105) resulted in a small p-value,
below the significance level a ¼ 0:05. For those pairs where
there was no statistical significance, we could not find any
meaningful finding. Given the myriad number of tests per-
formed, results are not presented. Violin plots corroborate
statistical significance by presenting very distinct distribu-
tions among all different frameworks. For further details, all
results and data are publicly available.13

4.13 Threats to Validity

Construct validity: Frameworks rely on different approaches
to collect information about the UI components that are visi-
ble on the screen. The app used in the experiments has a UI
that remains unchanged upon user interactions. In a real sce-
nario, however, the UI typically reacts to user interactions.
Frameworks that have an inefficient way of updating their
UI model of components visible in the screen, may entail a
high overhead on energy consumption. However, as manu-
ally triggering this update is not supported in most frame-
works, it was unfeasible to include it in our study.

In addition, the overheads are calculated based on the
results collected from the human interaction from two partici-
pants. Although results showed a small variance between dif-
ferent participants, the energy consumption may vary with
other humans. Nevertheless, differences are not expected
to be significant, and results still apply.

Moreover, energy consumption for a single interaction is
inferred by the total consumption of a sequence of interac-
tions. Potential tail energy consumptions14 of a single interac-
tion are not being measured. This is mitigated by running
multiple times the same interaction.

Internal validity: The Android OS is continuously run-
ning parallel tasks that affect energy consumption. For that
reason, system settings were customized as described in
Section 3 (e.g., disabled automated brightness and notifica-
tions). Also, each experiment is executed 30 times to ensure
statistical significance as recommended in related work [10].

UI interactions typically trigger internal tasks in the mobile
application running in foreground. The mobile application
used in experimentswas developed to prevent any side-effects
to UI events. To ensure that scripts are interacting with the
device as expected, the application was set to a mode that is
not affected by user interaction. Thus, the behavior is equal
across different UI automation frameworks and experiments
onlymeasure their energy consumption.

Finally, our experiments use a WiFi-configured ADB
instead of aUSB connection. This is a requirement from remote
script-based frameworks. We did not measure the energy con-
sumption entailed from using a USB-configured ADB. Never-
theless, we do not expect results to differ since the WiFi
connection is only used before and after themeasurements.

External validity: Energy consumption results vary upon
different versions of Android OS, different devicemodels, and

Fig. 12. Violin plot of the results for energy consumption of Find by
description.

TABLE 12
Descriptive Statistics of Find by Content Interaction

�x (J) s Dt (s) �x0 (J) Sg (mJ) Rank

AndroidViewClient 36.89 1.65 127.62 12.77 106.43 6
Appium 3.07 0.31 6.07 1.92 16.02 4
Calabash 31.77 4.64 79.63 16.72 139.35 7
Espresso 9.43 0.99 17.13 6.19 51.58 5
PythonUiAutomator 3.10 0.19 6.90 1.79 14.93 3
Robotium 23.74 0.48 124.90 0.14 1.15 1
UiAutomator 3.50 0.62 9.40 1.72 14.37 2

Fig. 13. Violin plot of the results for energy consumption ofFind by content.

13. Project’s Github repository: https://github.com/luiscruz/
physalia-automators visited on October 9, 2019.

14. Tail energy is the energy spent during initialization or closure of a
resource.

2268 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

https://github.com/luiscruz/physalia-automators
https://github.com/luiscruz/physalia-automators

different framework version. However, unless major changes
are released, results are not expected to significantly deviate
from the reported ones. Note that testing different devices
requires disassembling them and making them useless for
other purposes (that is to say that empirical studies as the one
conducted by us are expensive), which can be economically
unfeasible. Regardless, all the source code used in experiments
will be released asOpen Source to foster reproducibility.

5 DISCUSSION

By answering the research questions, in this section we dis-
cuss our findings from the empirical evaluation, as well as
outline their practical implications.

RQ1: Does the energy consumption overhead created by UI
automation frameworks affect the results of the energy effi-
ciency of mobile applications?

Yes, results show that interactions can have a tremen-
dous overhead on energy consumption when an inefficient
UI automation framework is used.

According to previous work, executing a real app during
100s yields an energy consumption of 58J, on average [8]. Con-
sidering our results, executing a single interaction such asDrag
and Drop can increase energy consumption in 1:7J (overhead
of 3 percent in this case). However, given that mobile apps are
very reactive to user input [41], in 100 seconds of execution,
more interactions are expected to affect energy. Although a
fair comparison must control for different devices and OS ver-
sions, this order of magnitude implies that overheads are not
negligible. Thus, choosing an efficient UI automation frame-
work is quintessential for energy tests.

Since all frameworks produce the same effect in the UI,
the overhead of energy consumption is created by imple-
mentation decisions of the framework and not by the inter-
action itself. The main goal of a UI testing framework is to
mimic realistic usage scenarios, but interactions with such
overhead can be considered unrealistic.

One practical implication of the results in this work is to
drive a change in the mindset of tool developers, bringing
awareness of the energy consumption of their frameworks.
Thus, we expect future releases of UI automation frame-
works to become more energy efficient.

AndroidViewClient and Calabash consistently showed poor
energy efficiency among all interactions. Despite providing a
useful and complete toolset for mobile software developers,
they should be used with prudence while testing the energy
consumption of an app that heavily relies on user interactions.
Work of Carette A. et al. (2017) [11] was affected by a poor
choice of framework: the authors used Calabash to mimic
between 136 and 325 user interactions in experiments that, in
total, consume roughly 350J. Considering our results, a single
tap with Calabash is equivalent to 0.45J–it means that at least
60J (17 percent) were spent by the UI framework. The same
interactions with Espresso would have been reduced to 12J (3
percent). The impact increaseswhen considering other interac-
tions. Our work shows that results would be different if the
overhead of the framework had been factored out. On the con-
trary, Calabashwas also used in other work [12] but its impact
can be considered insignificant since experiments did not
require much interaction and the main source of energy con-
sumption came fromWeb page loads. Note, however, that the
measurement setup is different and results from related work
are not directly comparable. We plan to address this analysis
in future work. In any case, we consider that using a more
energy efficient framework could corroborate the evidence or
find new–even contradictory–conclusions.

RQ2: What is the most suitable framework to profile energy
consumption?

Choosing the right framework for a project can be
challenging: there is no one solution fits all. Based on our obser-
vations, Fig. 14 depicts a decision tree to help software devel-
opers making an educated guess about the most suited and
energy efficient framework, given the idiosyncrasies of an app
(that may restrict the usage of a framework). For example, if
the project to be tested requires WebView support, one should
use Appium rather than the other frameworks. Robotium is also
an option if the app requires Taps or Input Text only, and nei-
ther iOS support nor remote scripting is required.

Remote script-based frameworks allow developers to eas-
ily create automation scripts. The script can be iteratively cre-
ated using a console while interactions take effect on the
phone in real time. From our experience while doing this
work, remote script-based frameworks are easier to use and
set up (i.e., gradual learning curve). This is one of the reasons

Fig. 14. Selecting the most suitable framework for energy measurements.

CRUZ AND ABREU: ON THE ENERGY FOOTPRINT OF MOBILE TESTING FRAMEWORKS 2269

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

many frameworks decided to use scripting languages (e.g.,
Python and Ruby) instead of the official languages for
Android, Java or Kotlin. Notwithstanding, remote script-
based frameworks require an active connection with the
phone during measurements, which leads to higher energy
consumption (as is confirmed by results). Each step of the
interaction requires communication with the DUT; hence,
the communication logic unavoidably increases the energy
consumption. On the contrary, other frameworks can trans-
fer the interaction script in advance to the mobile phone and
run it natively on the phone, which is more energy efficient.

There are, however, two scenarios where remote script-
based frameworks exhibit the best results: Back Button with
Monkeyrunner (see Table 8), and Find By ContentwithAppium
(see Table 12). This is an interesting finding as it shows that
remote script-based frameworks can also be developed in an
energy efficient way. As such, this evidence shows that there
is room for energy optimization in the other frameworks.

In addition, USB communication is out of question for
remote script-based frameworks since it affects the reliability of
measurements. Frameworks that do not support remote script-
ing can be used with USB connection if unplugged during
measurements (using tools such asMonsoon PowerMonitor).

Among remote script-based frameworks, Monkeyrunner
is the most energy efficient framework. The only problem is
that it does not support many of the studied interactions.
These results show that if energy consumption turns into a
priority, it is possible to make complex frameworks such as
Appiummore energy efficient.

There are a number of other fine-grained requirements
that developers need to consider when choosing a UI frame-
work. A more thorough decision ought to consider other
factors, such as existing infrastructure, development pro-
cess, and learning curve. Nevertheless, we argue that deci-
sion tree of Fig. 14 provides an approximate insight even
though it does not take all factors into account.

RQ3: Are there any best practices when it comes to creating
automated scripts for energy efficiency tests?

One thing that stands out is the fact that looking up oneUI
component is expensive. This task is exclusively required for
automation and does not reflect any real-world interaction.
Taking the example of Espresso: a single Tap consumes 0:09J,
while using content to look up a component consumes 0:05J.
Since a common Tap interaction requires looking a compo-
nent up, 36 percent of energy spent is on that task.

Looking up UI components is energy greedy because the
framework needs to process the UI hierarchy find a compo-
nent that matches a given id, description, or content. Since the
app we use has a very simple UI hierarchy, the energy con-
sumption is likely to be higher in real apps.Hence, using lookup
methods should be avoided whenever possible. A naive solution
could be using the pixel position of UI components instead of
identifiers. Pixel positions could be collected using a recorder.
However, this is a bad practice since it bringsmajorsmaintain-
ability issues across different releases and device models. For
that reason, state-of-the-art UI recorders used by Android
developers, such as Robotium Recorder, yield scripts based on
UI identifiers. As an alternative, we recommend caching the
results of lookup calls whenever possible.

In addition, lookup methods Find by Id and Find byDescrip-
tion should be preferred to Find by Content. Results consistently
show worse energy efficiency when using Find by Content. In
Espresso, this difference gives an increase in energy consump-
tion from 1:4J to 9:4J (overhead of 600 percent).

6 CONCLUSION

In this paper, we analyze eight popular UI automation frame-
works for mobile appswith respect to their energy footprint. UI
interactions have distinct energy consumptions depending on
the framework. Our results show that the energy consumption
of UI automation frameworks should be factored out to avoid affect-
ing results of energy tests. As an example, we have observed the
overhead of theDrag and Drop interaction to go up to 2200 per-
cent. Thus, practitioners and researchers should opt for energy
efficient frameworks.Alternatively, the energy entailedby auto-
mated interactionsmust be factored out frommeasurements.

Espresso is observed to be the most energy efficient framework.
Nevertheless, it has requirements that may not apply to all
projects: 1) requires access to the source code, 2) does not sup-
port complex interactions such asDrag and Drop and Pinch and
Spread, 3) is not compatible with WebViews, 4) is OS depen-
dent, and 5) is not remote script-based. Hence, there are situa-
tions where UIAutomator, Monkeyrunner, and Appium are also
worth considering. For a more general purpose context, Appium
follows as being the best candidate. Thus, we propose a decision
tree (See Fig. 14) to help in the decision-making process.

Furthermore, we have also noticed the following in our
experiments. Helper methods to find components in the
interface are necessary when building energy tests, but
should be minimized to prevent affecting energy results. In
particular, lookup methods based on the content of the UI compo-
nent need to be avoided. They consistently yield poor energy
efficiency when compared to lookups based on id (e.g., in
Espresso it creates an overhead of 600 percent).

This work paves the way for the inclusion of energy tests
in the development stack of apps. It brings awareness to the
energy footprint of tools used for energy test instrumenta-
tion, affecting both academic and industrial use cases. It
remains to future work to design a catalog of energy-aware
testing patterns.15

ACKNOWLEDGMENTS

Thisworkwas supported inpart by Fundaç~ao para aCiência e a
Tecnologia (FCT)with referenceUID/EEA/50014/2019, in part
by the GreenLab Project (ref. POCI-01-0145-FEDER-016718), in
part by the FaultLocker Project (ref. PTDC/CCI-COM/29300/
2017), and in part by theDelft Data Science (DDS) project.

REFERENCES

[1] D. Ferreira, E. Ferreira, J. Goncalves, V. Kostakos, and A. K. Dey,
“Revisiting human-battery interaction with an interactive battery
interface,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
2013, pp. 563–572.

[2] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE
Softw., vol. 33, no. 3, pp. 83–89, May/Jun. 2016.

15. For instance, augmenting/improve the following list of testing
patterns https://goo.gl/xfBs6i

2270 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/xfBs6i

[3] R. Pereira, T.Carç~ao,M.Couto, J. Cunha, J. P. Fernandes, and J. Saraiva,
“Helping programmers improve the energy efficiency of source code,”
inProc. 39th Int. Conf. Softw. Eng. Companion, 2017, pp. 238–240.

[4] M. Linares-V�asquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated
mobile app testing,” in Proc. 33rd IEEE Int. Conf. Softw. Maintenance
Evolution, 2017, pp. 399–410.

[5] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile
applications,” Empirical Softw. Eng., vol. 24, pp. 2209–2235, 2019.

[6] I. C. Morgado and A. C. Paiva, “The impact tool: Testing UI pat-
terns on mobile applications,” in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng., 2015, pp. 876–881.

[7] R. M. Moreira, A. C. Paiva, and A. Memon, “A pattern-based
approach for GUI modeling and testing,” in Proc. IEEE 24th Int.
Symp. Softw. Rel. Eng., 2013, pp. 288–297.

[8] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of
the energy consumption of android applications,” in Proc. IEEE
Int. Conf. Softw. Maintenance Evolution, 2014, pp. 121–130.

[9] S. Lee,W. Jung, Y. Chon, andH. Cha, “EnTrack: A system facility for
analyzing energy consumption ofAndroid system services,” in Proc.
ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2015, pp. 191–202.

[10] M. Linares-V�asquez, G. Bavota, C. Bernal-C�ardenas, R. Oliveto,
M.Di Penta, andD. Poshyvanyk, “Mining energy-greedyAPI usage
patterns in Android apps: An empirical study,” in Proc. 11th Work.
Conf. Mining Softw. Repositories, 2014, pp. 2–11.

[11] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of Android apps:
Simple, efficient and reliable?” in Proc. IEEE 24th Int. Conf. Softw.
Anal. Evolution Reengineering, 2017, pp. 103–114.

[12] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of Android smells,” in Proc. IEEE
24th Int. Conf. Softw. Anal. Evolution Reengineering, 2017, pp. 115–126.

[13] Y. Cao, J. Nejati, M. Wajahat, A. Balasubramanian, and A. Gandhi,
“Deconstructing the energy consumption of the mobile page load,”
inProc. ACMMeas. Anal. Comput. Syst., 2017, vol. 1, pp. 6:1–6:25.

[14] K. Rasmussen, A. Wilson, and A. Hindle, “Green mining: Energy
consumption of advertisement blocking methods,” in Proc. 3rd
Int. Workshop Green Sustainable Softw., 2014, pp. 38–45.

[15] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirovi�c,
“Assessing the impact of service workers on the energy efficiency of
progressive web apps,” in Proc. 4th Int. Conf. Mobile Softw. Eng. Syst.,
2017, pp. 35–45.

[16] L. Cruz and R. Abreu, “Performance-based guidelines for energy
efficient mobile applications,” in Proc. IEEE/ACM Int. Conf. Mobile
Softw. Eng. Syst., 2017, pp. 46–57.

[17] L. Cruz and R. Abreu, “Using automatic refactoring to improve
energy efficiency of Android apps,” in Proc. XXI Ibero-Amer. Conf.
Softw. Eng., 2018.

[18] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the
performance impacts of android code smells,” in Proc. Int. Work-
shop Mobile Softw. Eng. Syst., 2016, pp. 59–69.

[19] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Tim-
ing-and touch-sensitive record and replay for Android,” in Proc.
35th Int. Conf. Softw. Eng., 2013, pp. 72–81.

[20] C. Sahin, L. Pollock, and J. Clause, “From benchmarks to real
apps: Exploring the energy impacts of performance-directed
changes,” J. Syst. Softw., vol. 117, pp. 307–316, 2016.

[21] R. Coppola, E. Raffero, and M. Torchiano, “Automated mobile UI
test fragility: An exploratory assessment study on Android,” in
Proc. 2nd Int. Workshop User Interface Test Autom., 2016, pp. 11–20.

[22] R. Coppola, “Fragility and evolution of Android test suites,” in
Proc. 39th Int. Conf. Softw. Eng. Companion, 2017, pp. 405–408.

[23] Z. Gao, Z. Chen, Y. Zou, and A.M. Memon, “SITAR: GUI test script
repair,” IEEETrans. Softw. Eng., vol. 42, no. 2, pp. 170–186, Feb. 2016.

[24] S. Gunasekaran and V. Bargavi, “Survey on automation testing tools
for mobile applications,” Int. J. Adv. Eng. Res. Sci., vol. 2, no. 11,
pp. 2349–6495, 2015.

[25] M. K. Kulkarni and A. Soumya, “Deployment of calabash automa-
tion framework to analyze the performance of an Android
application,” J. 4 Res., vol. 2, no. 03, pp. 70–75, 2016.

[26] K.-C. Liu, Y.-Y. Lai, and C.-H. Wu, “A mechanism of reliable and
standalone script generator on Android,” in Proc. IEEE Int. Conf.
Softw. Testing Verification Validation Workshops, 2017, pp. 372–374.

[27] M. Linares-V�asquez, C. Bernal-C�ardenas, K. Moran, and
D. Poshyvanyk, “How do developers test android applications?”
in Proc. 33rd IEEE Int. Conf. Softw. Maintenance Evolution, 2017,
pp. 613–622.

[28] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for Android: Are we there yet? (e),” in Proc. 30th IEEE/
ACM Int. Conf. Autom. Softw. Eng., 2015, pp. 429–440.

[29] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input gen-
eration system for Android apps,” in Proc. 9th Joint Meeting Found.
Softw. Eng., 2013, pp. 224–234.

[30] M. Linares-V�asquez, “Enabling testing of Android apps,” in Proc.
IEEE/ACM37th IEEE Int. Conf. Softw. Eng., 2015, vol. 2, pp. 763–765.

[31] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for large-scale dynamic analysis of
mobile apps,” in Proc. 12th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2014, pp. 204–217.

[32] R.Mahmood,N.Mirzaei, and S.Malek, “EvoDroid: Segmented evo-
lutionary testing of Android apps,” in Proc. 22nd ACMSIGSOFT Int.
Symp. Found. Softw. Eng., 2014, pp. 599–609.

[33] C.-H. Liu, C.-Y. Lu, S.-J. Cheng, K.-Y. Chang, Y.-C. Hsiao, and
W.-M. Chu, “Capture-replay testing for Android applications,” in
Proc. Int. Symp. Comput. Consum. Control, 2014, pp. 1129–1132.

[34] D. Li andW. G. Halfond, “An investigation into energy-saving pro-
gramming practices for Android smartphone app development,” in
Proc. 3rd Int.WorkshopGreen Sustainable Softw., 2014, pp. 46–53.

[35] D. Li, A. H. Tran, and W. G. Halfond, “Making web applications
more energy efficient for OLED smartphones,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 527–538.

[36] A. Hindle, “Green mining: A methodology of relating software
change and configuration to power consumption,” Empirical Softw.
Eng., vol. 20, no. 2, pp. 374–409, 2015.

[37] A. Banerjee and A. Roychoudhury, “Automated re-factoring of
Android apps to enhance energy-efficiency,” in Proc. Int. Workshop
Mobile Softw. Eng. Syst., 2016, pp. 139–150.

[38] A. Banerjee, H.-F. Guo, and A. Roychoudhury, “Debugging
energy-efficiency related field failures in mobile apps,” in Proc.
Int. Workshop Mobile Softw. Eng. Syst., 2016, pp. 127–138.

[39] R. Saborido, V. V. Arnaoudova, G. Beltrame, F. Khomh, and
G. Antoniol, “On the impact of sampling frequency on software
energy measurements,” PeerJ PrePrints, vol. 3, 2015, Art. no. e1219.

[40] S.Abdulsalam,Z.Zong,Q.Gu, andM.Qiu, “Using theGreenup, Pow-
erup, and Speedup metrics to evaluate software energy efficiency,”
inProc. 6th Int. Green Sustainable Comput. Conf., Dec. 2015, pp. 1–8.

[41] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in
mobile app development,” in Proc. ACM/IEEE Int. Symp. Empirical
Softw. Eng. Meas., 2013, pp. 15–24.

Lu�ıs Cruz received the PhD degree in computer
science from the University of Porto, Portugal. He
is currently a postdoc researcher with the Delft Uni-
versity of Technology wheremost of his research is
carried out. His main research fields are mobile
software engineering, green computing, and min-
ing software repositories. His work aims at improv-
ing mobile development processes concerning the
energy consumption of mobile applications. He is a
member of the IEEE.

Rui Abreu received the PhD degree in computer
science - software engineering from the Delft Uni-
versity of Technology, The Netherlands, and the
MSc degree in computer and systems engineer-
ing from the University of Minho, Portugal. His
research revolves around software quality, with
emphasis in automating the testing and debug-
ging phases of the software development life-
cycle as well as self-adaptation. He has extensive
expertise in both static and dynamic analysis
algorithms for improving software quality. He is

the recipient of 6 Best Paper Awards, and his work has attracted consid-
erable attention. Before joined IST, ULisbon as an associate professor
and INESC-ID as a senior researcher, he was a member of the Model-
Based Reasoning group at PARCs System and Sciences Laboratory
and an assistant professor with the University of Porto. He has co-
founded DashDash, in January 2017, a platform to create web apps
using only spreadsheet skills. The company has secured $9M in Series
A funding, in May 2018. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CRUZ AND ABREU: ON THE ENERGY FOOTPRINT OF MOBILE TESTING FRAMEWORKS 2271

Authorized licensed use limited to: TU Delft Library. Downloaded on January 18,2022 at 15:31:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

