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Utilizing Model Predictive Control to Haptically
Assist Users in Piloting a Quadcopter

Isabelle van Osnabrugge, MSc Student, University of Technology Delft
Departments of Systems and Control, Biomechanical Design, and Cognitive Robotics

Abstract—Haptic technology focuses on the recreation of haptic
information, i.e., a type of sensory input that uses tactile
cues, forces, vibrations, or pressure to provide users with the
sensation of touch, enabling users to interact physically with
virtual or remote environments. One promising application of
this technology lies in haptic training, where the possibility of
using haptic feedback to facilitate or promote motor learning is
studied. The focus of this paper lies on performance-enhancing
haptic training methods, with a focus on designing a dynamic
motor task. The objective of this paper is, therefore, to establish
a preliminary framework that can be used to provide minimal
haptic feedback while flying a quadcopter through a set of gates.
We focused on creating a preliminary framework that provides
haptic feedback on the altitudinal axis of the quadcopter to
the pilot using the control method Model Predictive Control
(MPC). The haptic feedback is provided on the z-axis of a haptic
Sigma.7 robot, which is also used as a remote controller to fly
the quadcopter. The MPC implements the dynamical models of
the quadcopter, and a haptic Sigma.7 robot, to determine the
minimal force required to steer the Sigma.7 robot towards motor
task completion. The system should provide minimal haptic force
feedback within the proposed design requirements to prevent
reliance on the assistance. We evaluated the effectiveness of our
framework by evaluating its ability to control the quadcopter to
the desired altitude setpoint under autonomous conditions using
a haptic Sigma robot. Additionally, the design and performance
of each of the individual building blocks of this framework, i.e.
the quadcopter model, the haptic interface, and the MPC, were
evaluated separately. The quadcopter, with the implementation of
the onboard PID controllers, eliminating the steady-state errors
and meeting the required settling times. The Sigma.7 model was
sufficient within the established time horizon and range of op-
eration, although shows limitations due to unmodelled frictional
forces. The completed framework is capable of providing the
Sigma.7 with the necessary input command to autonomously
guide the quadcopter to its desired references in real-time,
therefore completing its primary objective. Future work should
explore improving the model components and integrating human
elements into the predictive model.

Index Terms—Haptic Technology, Kinesthetic Haptic Feedback,
Motor Learning, Model Predictive Control, MPC, Dynamic
Motor Tasks, Haptic Training, Quadcopter, Sigma.7, Unity.

I. INTRODUCTION

HAPTIC technology focuses on recreating haptic
information—a type of sensory input that uses tactile

cues, forces, vibrations, or pressures to provide users with
the sensation of touch [1]. It paves the way for people to
physically interact with remote or virtual environments. A
robotic arm may, for example, enable a person to feel the
impact of a tennis racket in a virtual environment as depicted
in Figure 1. The combination of haptic technology with virtual

Fig. 1. Haptic technology enables the sensation of playing a virtual tennis
game, where the player, depicted on the left, can feel the impact of the tennis
ball using a haptic interface, e.g. the robotic arm.

environments provides the possibility of facilitating person-
alized, replicable, and diverse virtual training environments,
which may otherwise be too complex, intense, risky, or even
expensive to implement in the real world. This has some
interesting implications for motor learning, as it raises the
question whether the addition of haptic technology is capable
of facilitating or even enhancing the process, leading to the
development of haptic training.

Haptic training is an instructional method that leverages the
provision of haptic information using haptic technology to
facilitate motor learning. Within haptic training methods, one
category is performance-enhancing methods, wherein a learner
may be guided toward an optimal trajectory teaching the
necessary features of the motor task in the process [2, 3].
Numerous motor learning studies have examined the efficacy
of performance-enhancing haptic training methods. However,
these studies have yielded widely varying results, making for
very little consistent evidence that such guidance is beneficial
for human motor learning [3, 4, 5]. It is even theorized
that this may be due to the very nature of such guidance.
In the field of motor learning, one prevalent concept is the
Guidance Hypothesis [6]. The Guidance Hypothesis is a theory
in motor learning that proposes over-reliance and excessive
physical or cognitive assistance during skill acquisition can
hamper the motor learning process [7]. Another theory in
the world of motor learning known as the Challenge Point
framework conceptualizes the idea that there is an optimal
level of functional task difficulty or challenge that can facilitate
skill acquisition and retention in a learner. It suggests that the
level of task difficulty should be tailored to the current skill
level of the learner, and that learning may be obstructed in
the presence of either excessive or insufficient information.
Studies have shown tentative results that haptic guidance as



2

Fig. 2. (a) In this example, one may observe a quadcopter being flown to a desired altitude zref from an initial altitude z0. (b) To reach the desired altitude,
we may compare the ideal behaviour with that of a learning pilot. In this figure, the quadcopter altitude z, the altitude rate ż, and the altitude rate error
e = ż − żideal are depicted in the form of graphs over time. In the first two graphs, the black line in the image represents the ideal path, whereas a learning
pilot may fly the trajectory depicted in orange. We may then observe that in the altitude rate graph, the learning pilot has slightly increased the drone’s velocity
beyond what would be the ideal case. This excessive behaviour is represented as an error in the third plot. Whenever the learning pilot deviates from the
ideal scenario the error will increase, it is this error that is used to determine the desired force-feedback F . The haptic interface provides the pilot with this
force-feedback towards the correct action in an attempt to guide them towards the better action. The magnitude of the force feedback is, in turn, determined
by a Model Predictive Controller.

a training method is significantly more effective when the
individual is initially less skilled at the task than when they
are already somewhat familiar with it [2, 8]. Together, these
theorems imply that haptic feedback is ideally only provided
when necessary, such that the motor task remains at adequate
complexity during execution and preventing overreliance on
the haptic assistance.

While the field of motor learning has investigated the effec-
tiveness of robot-mediated haptic training methods in learning
simple motor tasks, there is still a lack of systematic research
on their effectiveness in learning dynamic motor tasks, i.e.,
tasks with dynamic complexity [3, 4]. These tasks play a
crucial role in our daily lives, from routine tasks such as com-
muting by bicycle or car, to sports such as tennis or golf. These
tasks require a person to manipulate objects with complex
dynamics, necessitating experience, and understanding of how
to handle these objects to apply them in context effectively.
There is no guarantee that the findings regarding simple motor
tasks may be generalized to dynamic tasks. Research even
suggests that methods known to enhance learning for simple
tasks should be reevaluated for more complex and dynamic
tasks [3, 4].

One objective of this paper is to establish a framework
for training motor tasks with dynamic complexity that may
potentially be used to evaluate motor learning. The first

requirement is to choose a relevant motor task of dynamic
complexity, such as piloting a quadcopter [9, 10]. Quadcopters
are increasingly used in professional occupations such as cin-
ematography, logistics, surveillance, and agriculture, as well
as for recreational purposes such as First-Person-View (FPV)
racing and photography [11]. The main objective of the task
takes inspiration from FPV racing, namely to effectively fly a
quadcopter through a set of rings [10]. The remote controller
conventionally used to fly the quadcopter is replaced with a
sigma.7 haptic robot, where haptic feedback is provided to the
user solely on the z-axis, to achieve a desired altitude during
the motor task.

But how do we define the optimal force feedback in this
scenario? The ideal situation is to provide feedback only when
necessary—in other words, minimal force feedback should
be provided to the pilot when the quadcopter is moving in
the right direction. Therefore, force feedback is determined
based on the error in velocity while aiming to reach a desired
position, as illustrated in Figure 2. To evaluate whether the
quadcopter’s current behaviour is optimal, an ideal velocity
trajectory must be determined, one that results in it reaching
the objective position. To further explore the idea of provid-
ing minimal haptic feedback whilst achieving this objective
position, the control method Model Predictive Control (MPC)
was chosen. MPC has recently gained attention in the field of
haptic training for its potential to achieve situational-dependent
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minimal force feedback [3, 12, 13, 14]. MPC is an optimal
control method that can determine the optimal trajectory in
real-time, allowing for minimized force feedback based on the
current behaviour of an individual and a known model of the
system [15, 16]. The MPC can determine, within the system’s
constraints in its current state, the ideal velocity trajectory the
quadcopter should follow to approach the desired altitude over
a given time horizon while also minimizing the provided force
feedback.

This paper strives to use the implementation of the MPC
to create a preliminary framework to provide minimal force
feedback during task execution, with the overall objective of
motor task completion. To this end, the framework is tested
on its ability to complete the motor task under autonomous
circumstances. The MPC provides the Sigma.7 haptic robot
with relevant force commands such that the quadcopter may
be flown towards a reference altitude. In this manner, the
system viability may be verified and its performance in task
completion evaluated.

In this paper, we first present a general overview of the
framework in subsection II-A, defining the necessary building
blocks of the project, including their desired functionalities
and the available devices. Then a more detailed explanation
of the individual building blocks is provided in subsection II-B
and subsection II-C, elaborating on their design processes and
implementation. Lastly, we evaluate and discuss the framework
in section III and section IV, noting any shortcomings and
potential improvements for future work.

II. METHODS

A. System Overview

To create a framework that implements MPC to promote motor
learning of a Quadcopter Pilot, four main building blocks are
required:

• A dynamical model or physical system of an Unmanned
Aerial Vehicle (UAV) quadcopter. This paper discusses a
simplified theoretical model of a quadcopter in subsec-
tion II-B.

• The haptic interface serves both as the remote control
input for the quadcopter, providing user commands to
the drone, and as a means of providing haptic feedback
to the user. The available device is the Force Dimension
Sigma.7 end-effector.

• The motor task, and visualization thereof. This is accom-
plished in Unity.

• An MPC that will determine the magnitude of the force-
feedback provided back to the user, which will be dis-
cussed in more detail in subsection II-C.

In Figure 3 the interconnections between each building block
are depicted and how haptic feedback is provided during motor
task execution.

Each of the system components operates across different
software platforms: Unity for task visualization, MATLAB

and Simulink for simulating the system dynamics and control,
and Microsoft Visual Studio to compile the software required
for communication with the Sigma.7 haptic interface. The
intercommunication across various platforms is accomplished
using User Datagram Protocols (UDP).

Quadcopter
Unmanned Aerial Vehicles (UAV), also commonly referred to
collectively as drones, are aerial vehicles capable of flying
either autonomously using onboard equipment, or through var-
ious remote controllers such as joysticks, smartphone applica-
tions, and occasionally voice, or gesture-driven communicative
methods.

The quadcopter is a specific type of multirotor drone, lend-
ing its name to the often symmetrical, four rotors used for
propulsion (an example is depicted in Figure 4). It is the
most common drone flown and commercially available, likely
lending its success to its relatively mechanical simplicity [9,
17]. Due to its commercial success, mechanical simplicity,
and general availability to the public, it is a viable choice
to implement in this work [9].

Fig. 4. An example of a quadcopter UAV, the E58 mini drone.

In the world of First-Person View (FPV) racing and hobbyist
drone flying, there are several ways in which an UAV may be
flown manually. The most popular mode is that of acrobatic
mode. This mode uses the inputs from the Radio Controller
(RC) sticks to control the angular velocities of the UAV frame
on each axis. It is considered to be the most intuitive manner
by which to fly, however, it is also one of the most difficult
[9] [10]. Manually flying the drone in this mode implies
no stabilization around any axis during flight, the pilot is
continuously prompted to correct the drone’s altitude, roll,
pitch, and yaw angles. Due to this difficulty, there is another
mode considered to be more beginner-friendly and generally
easier to learn. This mode is known as stabilized mode, also
sometimes referred to as angle mode. This mode is the same as
acrobatic mode but controls the pitch and roll angles instead of
their rates. This results in a self-levelling effect at zero input,
making self-correction much easier in practice. To increase
the feasibility of dynamic motor task completion, this is the
flight mode implemented in this study. The model itself is
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implemented in MATLAB/Simulink, the process of which will
be discussed in more detail in subsection II-B.

Haptic Interface
To provide haptic feedback to the quadcopter pilot, a Force
Dimension Sigma.7 haptic device is used (see Figure 5). The
Sigma.7 is an end-effector haptic device with 7 degrees of
freedom capable of providing feedback for both forces and
torques as depicted in Table I. It has three translational axes,
three rotational axes (axis 0-2), and a gripping mechanism
(axis 3) at the end effector.

Fig. 5. The Force Dimension Sigma.7. Image courtesy and property of the
Human-Robot Interaction Group (HRI) of Delft University of Technology.

TABLE I
THE TECHNICAL SPECIFICATIONS OF SIGMA.7 DEVICE [18]

Axis Value
Workspace Translation � 190× 130 mm

Rotation 235× 140× 200 deg
Gripper 25 mm

Forces Translation 20.0 N
Rotation 400 mNm
Gripper 8.0 N

For the current setup, the Sigma.7 device communicates
via USB with a Windows computer, reading and processing
information using the executable C/C++ code compiled in
Microsoft Visual Studios 2022 IDE. The code implements the
provided Force Dimension SDK tools to facilitate the commu-
nication with the Sigma.7. The bandwidth of the kinaesthetic

sensing system of the human body has been estimated at 20
to 30 or even 50 Hz [19, 20]. This is considered the absolute
lower bound to the sampling frequency to keep the experience
smooth for the human operator. As such, data are read at
a sampling period of 0.01 s [20] keeping in mind potential
delayed packages due to the UDP communication.

To operate the quadcopter, four of the device axes are used
as references to the internal drone controllers, the z-axis, and
the three rotational axes. These axes directly correspond to
their associated quadcopter behaviour for flight in stabilized
mode; the z-axis to the desired altitude rate (żref), axis 0 to
the desired roll angle (ϕref), axis 1 to the desired pitch angle
(θref), and axis 2 to the desired yaw rate (ψ̇ref).

To provide further support to the pilot, additional constraints
are applied. The x-y plane of the haptic device is constrained
to zero such that the pilot only needs to focus on the
prior mentioned four axes. The constraints are implemented
using Proportional-Derivative (PD) controllers, depicted in
Equation 1 and Equation 2, to provide a spring-damper-like
behaviour encouraging the pilot to remain centred during task
completion.

Fx,s = −Kxs −Bẋs (1)
Fy,s = −Kys −Bẏs, (2)

where K = 300 N/m and B = 6N/(m/s) denote the gains
of the PD controller in the form of spring and damper coeffi-
cients. xs and ys represent the Cartesian X, and Y coordinates
of the Sigma.7 device. The gains were determined through
trial and error, with the objective of reasonable pushback, the
response should not be entirely rigid to allow for comfortable
interaction by the pilot yet provide some pushback towards
the zero reference. Additionally, it was required that the end-
effector returns to the zero reference with a reasonably small
error when it is let go of by the pilot.

Similarly, on the z-axis, we included two PD controllers at
both ends of the workspace. These measures are mainly to pre-

Fig. 3. A general overview of the framework: A real-world end-effector device (Sigma.7) is used to provide haptic feedback to the user and to measure the
end-effector’s position and rotational information as input references to the virtual quadcopter model. In Simulink/MATLAB, the quadcopter model dynamics
are simulated, and the updated states are visualized in Unity. Using the measured inputs, and the quadcopter output measurements, a Model Predictive
Controller (MPC) determines the minimal haptic feedback required and sends this information back to the Sigma.7 as the user executes their motor task.
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vent mechanical damage to the device due to the end-effector
colliding with the physical boundaries of its workspace.

Fz,s,ub = −Ksafety(zs − 0.1 m)−Bsafetyżs (3)
Fz,s,lb = −Ksafety(zs + 0.08 m)−Bsafetyżs, (4)

where Ksafety = 600N/m and Bsafety = 6N/(m/s). Similarly to
before, zs represent the Cartesian Z coordinate of the Sigma.7
device

Motor Task and Visualization
In the FPV racing circuit, one very common manner to practice
flying and controlling the drone in 3D space is to use race
gates. Gates are a target through which to fly the drone. They
are often in the shape of ringlike structures made from flexible
material. The gates may be positioned near the ground or
higher up in the air, forming a parkour course within which to
practice. Taking inspiration from this, we designed a similar
motor task that requires flying through a set of rings positioned
at varying heights.

The quadcopter and motor task were created and implemented
in a virtual environment using Unity (2021.3.17f1), in
the form of a simple game environment, represented
in Figure 6. The goal of the operator is to fly the
quadcopter through the successive gates. The quadcopter
is visualized using a quadcopter Unity asset acquired
from the Unity Asset store with a Standard Unity Asset
Store EULA license agreement. Redistribution is not
permitted, for access please refer to original source at
https://assetstore.unity.com/packages/3d/vehicles/air/realistic-
drone-66698.

A variety of torus rings are then used to represent the gates.
The center y-coordinate of the gates represent the reference
altitudes (zref ) depicted in Figure 2 and provided to the MPC.
A standard Unity box-collider is then applied to check whether
the quadcopter is successfully flown through the torus ring
during task execution. The red cube in Figure 6 designates
the starting location.

Fig. 6. The quadcopter model in Unity at its starting position. In the
background, the gates are visible.

Model Predictive Controller
Model Predictive Control is known as an optimal control
policy capable of dealing with multivariate problems and

incorporating constraints. It uses a model of the system to
make predictions as to the future states of the system and uses
these predictions to, in turn, solve a constrained optimization
problem. This optimization can be applied online, allowing
for a flexible use of trajectories and force feedback in the
context of haptic feedback. In this framework, the MPC is
implemented in MATLAB/Simulink, the design of which will
be discussed in more detail in subsection II-C.

Network Protocol
The communication between different software environments
is done using the User Datagram Protocol (UDP). It is a
suitable transmission protocol for real-time systems, where
waiting for packages and retransmission are a larger burden
on the system than dropping packages during runtime. The
UDP is used to provide communication lines between different
software environment on the same computer. One IP-adress
is used with several ports to create two UDP lines, sharing
information back and forth:

1) UDP Link 1

The first UDP provides a communication line between the
executable code compiled in the Microsoft Visual Studio
(C++) environment, where the Force Dimension Sigma.7
haptic interface data is being read and processed, and the
MATLAB Simulink environment. The main purpose of
this link is to transmit the desired inputs to the quadcopter
model, and the required force feedback to the Sigma.7
device.

2) UDP Link 2

The second UDP communication line between Unity
(C#) and MATLAB/Simulink [21]. It is primarily used to
communicate the information necessary to visualize and
interact with the virtual environment of the motor task.
The states of the quadcopter are transmitted to Unity, and
in turn, the completion flags and altitude references (zref )
of the motor task are sent back to MATLAB/Simulink.

Both UDP Links communicate at a sampling period of 0.01
seconds. An overview of the complete framework may be seen
in Figure 7.

B. Quadcopter UAV Model

The quadcopter is a Multi-Input Multi-Output (MIMO) sys-
tem with six degrees of freedom—three rotational and three
positional—, actuated by four independent rotors. The dynam-
ics of a quadcopter are inherently nonlinear, underactuated,
and influenced by numerous aerodynamic uncertainties. Due
to this complexity, various assumptions are typically made to
simplify the mathematical models required to work with these
systems. The most common assumptions in literature often
include the following and are considered reasonable for the
current model as well [22]:

• The quadcopter frame is considered to be rigid, and
of a symmetrical structure, resulting in a corresponding
diagonal inertia matrix.
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Fig. 7. This figure represents a more in-depth view of the general framework.
The Sigma.7 haptic interface communicates via USB with a (Windows)
computer. The positional and rotational information of the end-effector is read,
processed, and stored using the Force Dimension SDK in the Microsoft Visual
Studio 2022 executable. Additionally, the mechanical safety PD controllers
are also run here. In MATLAB, the quadcopter dynamics and its onboard
controllers are implemented. Lastly, the visualization of the task is done in
Unity. Two UDP links are used to communicate between the different software
environments on the computer.

• The Center of Gravity (CoG) is positioned at the centre
of the quadcopter frame.

• The system is considered to be time-invariant.

• Specific aerodynamical effects, such as blade-flapping
due to rotor design, are not considered. Similarly, the
ground effect, which describes the interaction effect of
the quadcopter with the ground when it is close, is also
neglected [23]. This effect generally results in an increase
in lift and a decrease in aerodynamic drag.

• All the motors positioned on the quadcopter are consid-
ered identical.

• The thrust and drag constants are proportional to the
square of the motor speed.

• The thrust generated by each of the motors is proportional
to the square of the motor speed.

Nonlinear Dynamics
The quadcopter drone model dynamics are derived from
the papers by Musa [22], and Zulu and Samuel [24], with
additional simplified aerodynamic friction. More detail on
the derivations may be found in the Appendix in section I.
Together with the assumptions, the nonlinear equations of
motion (EqoM) of the quadcopter are formulated as

ẍ = −U1

m
(cϕsθcψ + sϕsψ)−

Kt

m
ẋ (5)

ÿ = −U1

m
(cϕsθsψ − sϕcψ)−

Kt

m
ẏ (6)

z̈ = −g + U1

m
cϕcθ −

Kt

m
ż (7)

ϕ̈ =

(
Iyy − Izz
Ixx

)
θ̇ψ̇ − Kr

Ixx
ϕ̇+

l

Ixx
U2 (8)

θ̈ =

(
Izz − Ixx
Iyy

)
ϕ̇ψ̇ − Kr

Iyy
θ̇ +

l

Iyy
U3 (9)

ψ̈ =

(
Ixx − Iyy

Izz

)
ϕ̇θ̇ − Kr

Izz
ψ̇ +

l

Izz
U4 (10)

where u = [U1, U2, U3, U4]
T represent the inputs to

the system, elaborated upon in Table II. Similarly, the
states of the quadcopter are represented by the vector q =
[x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇]T and are also elaborated
upon in Table II. I = diag(Ixx, Iyy, Izz) is the diagonal inertia
matrix, and Kt and Kr are the translational and rotational
friction associated with aerodynamics. Lastly, m depicts the
mass of the quadcopter and l the length of the quadcopter arm,
i.e. the distance from the rotational axis of the motors to the
centre of the quadcopter frame.

The definition of the control inputs for a quadcopter can
vary depending on how its dynamics are represented; they
might represent thrust, angular velocities, or even voltages.
In the context of this paper, these control inputs, depicted by
vector u, represent the thrust and torques applied by the rotor
combinations such that the relevant movements, vertical lift,
roll, pitch, and/or yaw, are generated. The general convention
regarding the definition of these control inputs and the relevant
movement will be adhered to as shown in Table II.

TABLE II
DEFINITION OF THE QUADCOPTER CONTROL INPUTS AND STATES

Control Description Units
Input
U1 The total motor thrust, also related to the altitude rate. N
U2 The motor thrust related to the roll movement. N
U3 The motor thrust related to the pitch movement. N
U4 The motor thrust related to the yaw movement. N
State Description Units
x X Position in Inertial Frame I m
y Y Position in Inertial Frame I m
z Z Position in Inertial Frame I m
ϕ Roll Attitude in Inertial Frame I rad
θ Pitch Attitude in Inertial Frame I rad
ψ Yaw Attitude in Inertial Frame I rad

Linearized System Dynamics
To use linear MPC, the nonlinear dynamics of the Quad-
copter are linearized around hovering conditions. Linearizing
the system around hovering conditions results in a linear
time-invariant system around the operating point (qe,ue) =
(05, ψ,09,mg) results in the following system.

q̇ =
∂f(q,u)

∂q

∣∣∣q=qe
u=ue

(q− qe) +
∂f(q,u)

∂u

∣∣∣q=qe
u=ue

(u− ue)

= Ac∆q+Bc∆u (11)
y = Cc∆q (12)

Here Ac and Bc are given by

Ac =




0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 −U1

m sψ −U1
m cψ 0 −Kt

m 0 0 0 0 0

0 0 0
U1
m cψ −U1

m sψ 0 0 −Kt
m 0 0 0 0

0 0 0 0 0 0 0 0 −Kt
m 0 0 0

0 0 0 0 0 0 0 0 0 − Kr
Ixx

0 0

0 0 0 0 0 0 0 0 0 0 − Kr
Iyy

0

0 0 0 0 0 0 0 0 0 0 0 − Kr
Izz




(13)
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Bc =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
m 0 0 0

0 l
Ixx

0 0

0 0 l
Iyy

0

0 0 0 l
Izz




(14)

where cψ and sψ refer to the functions cosine and sine with
their respective operators in shorthand notation. The output of
the system is y = [ż, ϕ, θ, ψ̇]T and state-space matrix Cc
reflects this.

One of the states, yaw (ψ) is left as a variable to update every
simulation time step, resulting in a varying state-space system.
This is necessary as the operator’s perspective is that of a First
Person View (FPV) through a camera mounted underneath the
quadcopter. As a result, it is desirable to ensure that the direc-
tion of flight has the pitch aligning with forward movement
and the roll aligning with lateral movement. To adjust the
operator’s perspective so that it aligns with the quadcopter’s
body frame, the linearized system must be regularly updated
around the yaw-axis.

The system should represent a simplified but realistic drone, to
this end the parameters of the dynamics are inspired by [25].

TABLE III
QUADCOPTER PARAMETERS

Parameters Value
Mass, m 0.468 [kg]
Length rotor arm (from COM), l 0.225 [m]
Inertia, Ixx = Iyy 4.856e-3 [kgm2]
Inertia, Izz 8.801e-3 [kgm2]
Linear Drag Coefficient, Kt 0.5
Angular Drag Coefficient, Kr 0.2340

Quadcopter Control
The quadcopter will be flown in Stabilized Mode, as mentioned
in subsection II-A. To realize this, an additional control
structure is required, depicted in Figure 8.

Fig. 8. The Quadrotor Control Block Diagram of the flight mode Stabilized
Mode. The measured outputs from the z, 0, 1, and 2 axes of the Sigma.7 are
used as reference inputs to the control infrastructure. The attitude, heading,
and altitude controllers then determine the relevant inputs required to allow
the flight of the quadcopter in Stabilized Mode.

The control infrastructure consists of four PID controllers
regulating the roll and pitch angles, and the yaw and altitude

rates. These control structures can be categorized into three
different types, described below.

1) Altitude Control

The altitude control structure regulates the altitude rate of
the quadcopter. It maintains the desired vertical velocity
using a PI control structure.

U1(t) = K1,P e1(t) +K1,I

∫ t

e1(t)dt (15)

e1(t) = żref(t)− ż(t) (16)

2) Attitude Control

The attitude control structure consists of two identical
PD controllers responsible for maintaining the desired
orientation of the quadcopter. It regulates the roll and
pitch angles.

U2,3(t) = K2,P e2,3(t) +K2,D
d

dt
e2,3(t) (17)

e2(t) = ϕref(t)− ϕ(t) (18)
e3(t) = θref(t)− θ(t) (19)

3) Heading Control

The heading control structure manages the heading, or
the yaw rate, of the quadcopter. It maintains the yaw rate
of the quadcopter using a PI control structure.

U4(t) = K4,P e4(t) +K4,I

∫ t

e4(t)dt (20)

e4(t) = ψ̇ref(t)− ψ̇(t) (21)

The main objectives of these control structures are to remove
any steady state errors and allow the quadcopter to reach a
reference input with reasonable settling and rise times. For the
pitch and roll angles, reasonable settling times are assumed
within the range of 0.5 ≤ ts,ϕ,θ ≤ 1.5 s [26]. Reasonable
values for the vertical acceleration of a drone seem to lie in
the range of 0.5 ≤ z̈ ≤ 5 m/s2 [27] [28], thus an educated
guess is made 0.2 ≤ ts,ż ≤ 2 s. Lastly, the heading rate is
designed with the objective to eliminate the steady state error,
its uncontrolled response is already quite fast. The control
parameters, depicted in Table IV, were then tuned using
these objectives as guidelines to acquire reasonable quadcopter
behaviour.

TABLE IV
THE QUADCOPTER PID CONTROL GAINS.

Control Value Units Description
Gains
K1,P 6 kg/s Altitude Control Proportional Gain.
K2,P 3 kgm/s2 Attitude Control Proportional Gain.
K4,P 2 kgm/s Heading Control Proportional Gain.
K1,I 2 kg/s2 Altitude Control Integral Gain.
K4,I 5 kgm/s2 Heading Control Integral Gain.
K2,D 1 kgm/s Attitude Control Derivative Gain.
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C. Model Predictive Control design

In subsection II-B, the quadcopter design is discussed. With
the availability of a quadcopter model, a virtual environment,
and a motor task, we have effectively created a virtual Quad-
copter simulator. In subsection II-C the force feedback design,
and consequently the implementation of a Model Predictive
Controller will be discussed, with further details on the design
available in section IV.

As mentioned in the introduction, the ideal situation is to
provide feedback only when necessary—in other words, min-
imal force feedback should be provided when the quadcopter
is moving in the right direction. However, the velocity error
and the provided force feedback by the Sigma.7 are variables
naturally in opposition to one another. To decrease the velocity
error, the force feedback must be increased to incite move-
ment, but excessive increase of force feedback is undesirable.
As a result, minimizing both requires a compromise or, in this
case, an optimization process. Which is where the MPC comes
into play. The main objective of the MPC is to drive the states
of the system to their desired set points as the control input is
minimized. It does this by solving consecutive optimizations
over a time horizon using a modelled linear approximation of
the real system.

In the current circumstances, the complete system consists
of several subsystems contributing to the complexity of the
motor task execution; The quadcopter, the haptic interface,
and the human operator. Together, each of these subsystems
combine to form the control infrastructure implemented to
provide the learner with force feedback during task execution.
An overview of the complete system may be seen Figure 9.

Fig. 9. Overview of the complete System structure. The MPC has an internal
model of the Sigma.7, quadcopter and the human arm dynamics

Ks functions as a gain that bridges the workspace differences
between the Sigma.7 and the quadcopter. Its value determines
the maximum żref that can be provided to the quadcopter and
as such limits its attainable velocity.

The Quadcopter Model
In subsection II-B the full quadcopter dynamics are estab-
lished. Force feedback will only be provided on one axis,
namely the z-axis, related to the altitude rate of the drone.
The linearization and separate control structures of the plant
depicted in Equation 11 decouples the axes from one another.

As a result, the controlled plant dynamics of the z-axis may be
separated from the rest as an approximation. The quadcopter
dynamics are represented by Equation 22, further details may
be found in section III.



ż
z̈
ċ


 =



0 1 0

0 −Kt+K1,P

m
K1,I

m
0 −1 0





z
ż
c


+




0
K1,P

m
1


 żref (22)

y =



1 0 0
0 1 0
0 0 1





z
ż
c


 (23)

where c =
∫
e1dt denotes the controller state or the altitude

controller. Further information on its derivation may be found
in section III.

The Sigma.7 Model
The second subsystem is the Force Dimension haptic inter-
face, the Sigma.7. The dynamic model of this device is not
publicly available, necessitating a system identification process
to identify a workable model of the device. In comparison to
the quadcopter dynamics, the responsiveness of the Sigma.7
device is relatively slow, resulting in a delay between the
forces provided to the user and the forces perceived at the
end-effector. This discrepancy between the quadcopter and the
Sigma.7 forms a significant bottleneck in the responsiveness of
the complete system, and is relevant information to the MPC
design process. This is especially true for low-force inputs,
where aspects such as friction play a considerable role.

As an initial assumption, the Sigma.7 device is modelled as a
mass-spring-damper system.

Mz̈s + Cżs +Kzs = u (24)

where

M : End-effector mass (kg). (25)
C : Viscous damping coefficient (Ns/m). (26)
K : Linear spring coefficient (N/m). (27)
u : Forces applied on the system by the motors (N).
zs : The z-coordinate of the sigma.7 device (m) (28)

The system may be rewritten to a state-space representation,
as depicted in Equation 29.

[
żs
z̈s

]
=

[
0 1

−K
M −C

m

] [
zs
żs

]
+

[
0
1
M

]
u (29)

y =

[
1 0
0 1

] [
z
ż

]
(30)

For design, safety, and comfort purposes, the operation range
for this project consists of approximately −2.5 N ≤ F ≤
2.5 N. Within this region of interest, friction forms one of
the biggest issues in acquiring a theoretical model of the
Sigma.7. Even as the system already implements internal
gravity and friction compensation, in the approximate zone
of −0.3 N ≤ F ≤ 0.7 N the system is not incited to
move at all and just beyond there is a region with viscous



9

friction, where some movement is incited but not enough to be
consistent. Within the regions F ≤ −0.5 N and F ≥ 1.1 N is
consistent in behaviour which may be observed in section III
in Figure 12. As such, there is a considerable range where
friction is significant enough to impact the expected behaviour
of the device. As the MPC attempts to minimize the force
exerted by the Sigma.7 this is a problematic component to
neglect for long-term implementation. The Sigma.7 is likely
to be a nonlinear system or one that requires a multitude of
linear models to identify an accurate model over all ranges
of operation. However, to effectively implement a model with
the MPC, it only needs to be accurate enough within the time
horizon of operation. As such, to prevent the project scope
from growing out of bounds, the linear approach is considered
a valid if not suboptimal choice, allowing for linear MPC to
be implemented.

The linear second-order model was identified using a dataset
obtained from the Sigma.7 wherein a pseudorandom binary
signal was used as a force input to the z-axis and the position
and velocity data were measured on the same axis. As the xy
plane is constrained using PD controllers, the identification
process is focused on attaining a representative model of the
vertical behaviour of the system under these specific condi-
tions. The data were sampled at a sampling rate of 0.001 s.
Using the MATLAB system identification toolbox, the idgrey
function was used to determine the best-fitting model using
Equation 29. The workspace of the system is limited and there
is a set of PD controllers at the edges, as such it is desirable to
remove any of the data associated with this to prevent the PD
control dynamics from influencing the system dynamics. The
data was pre-processed to remove these unreliable data points
and trends. More information about the system identification
process is provided in section III. Three parameters were
identified using this process, depicted in Table V, providing
a complete picture of the Sigma.7 subsystem together with
Equation 24.

TABLE V
THE THREE IDENTIFIED PARAMETERS FOR THE SIGMA.7 SUBSYSTEM

Parameter Value Unit
M 2.2227 kg
C 19.4007 Ns/m
K 7.6397 N/m

The Human Operator
The last subsystem is the human operator. This subsystem is
often modelled by looking at a simplified model of the human
arm. It has been observed in experiments regarding haptic
feedback that the human arm often tends to act as a passive
element, not dissimilar to a low-pass filter. As a result, it is
often modelled as a mass-spring-damper system [29, 30, 31].
However, due to the lack of a force sensor within the current
setup, it is extremely difficult to determine the composition of
forces caused by the human operator on the haptic interface.
Without an accurate model of either system, and no force
sensor, it is extremely difficult to validate both subsystems. As
such, the performance of the preliminary framework evaluated

is based on its ability to stabilize itself and the influence of
the human operator on the system is thus neglected for now.

The Complete System Dynamics
The final representation of the system dynamics combining the
quadcopter and Sigma.7 subsystems may be denoted by Equa-
tion 31-35. The full derivation may be found in section III.

x(k + 1) = Ax(k) + Bu(k) (31)
y = Cx(k) (32)

where,

A =




0 1 0 0 0

0 −Kp+Kt
m

KI
m

KpKs
m 0

0 −1 0 Ks 0
0 0 0 0 1
0 0 0 −K

M − C
M




(33)

B =




0
0
0
0
1
M




(34)

C =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




(35)

Here, the state vector x(k) =
[
z ż c zs żs

]T
is a

concatenation of quadcopter and Sigma.7 systems as defined
earlier, and input u(k) represents the force input provided to
the sigma.7.

The Model Predictive Controller
The objective of the MPC is to drive the states to their
desirable set points as the control input is minimized. The
linear time-invariant system denoted by Equation 31-35 is
discretized using Ts = 0.05 s and the zero-order hold method
in MATLAB using the c2d command. This results in the
discrete LTI system described in the following form

x(k + 1) = Adx(k) + Bdu(k) (36)
y(k) = Cdx(k), (37)

where Ad ∈ Rn×n, Bd ∈ Rn, and Cd ∈ Rp×n for which n
is defined to be the number of states, and p the number of
outputs. Similarly, x ∈ Rn, u ∈ R, and y ∈ Rp.

The system comprises a cascade of several systems, the Force
Dimension Sigma.7 haptic interface, the quadcopter dynamics
with its internal controller, and a gain to compensate for the
differences in workspaces. As a result, the system is subject to
several constraints due to mechanical limitations and desired
constraints. These constraint sets are given as follows

U := {∆u(k) ∈ R, |∆u(k)| ≤ 2} (38)

X :=

{
x(k) ∈ Rn,

[
−0.115
−2

]
≤

[
zs(k + 1)
xu(k + 1)

]
≤

[
0.132
2

]}
.

(39)
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To incorporate the slew constraint— the constraints on the rate
of change of the input(s), the basic state-space representation
is augmented with an additional state xu(k) = u(k − 1) and
rewritten using ∆u(k) = u(k) − u(k − 1) to the following
form.[

x(k + 1)
xu(k + 1)

]
=

[
Ad Bd
0 1

] [
x(k)
xu(k)

]
+

[
Bd
0

]
∆u(k) (40)

= Aaxa(k) + Ba∆u(k)

y(k) =
[
Cd 0

] [ x(k)
xu(k)

]
(41)

= Caxa(k)

where Aa, Ba, and Ca represent the augmented state-space
matrices, xa the augmented state vector, and the subscript a
references the augmented system.

The objective function to be minimized in the MPC optimiza-
tion is a quadratic function as follows:

J(x(0)) =

N−1∑

j=0

{ℓ(x(j),∆u(k)(j))}+ Vf (x(N)) (42)

with

ℓ(x(k),∆u(k)) = ||x(k)||2Q + ||∆u(k)||2R (43)

Vf (x(k)) = ||x(k)||2Qf (44)

where ℓ(·) depicts the stage cost and Vf (·) the terminal
cost of the cost function. The MPC time horizon N =
10, corresponding to a future window of 0.5 s. Weight ma-
trices Q =

[
10 0.1 0.1 0.1 0.1 0.1

]
and Qf =[

100 0.1 0.1 0.1 0.1 0.1
]

correspond to the states
x(k), where subscript f refers to the terminal cost. Similarly,
R = 0.01 is the weight corresponding to the control input
∆u(k).

The MPC problem is then formulated as in Equation 45
optimal control problem.

PN (xa(0)) :





min
∆u0,...,∆uN−1

J(xa(0),∆ua,N )

s.t xa(k + 1) = Aaxa(k) + Ba∆u(k)
xa(0) ∈ X
xa(k + 1) ∈ X, k = 0, . . . , N

∆u(k) ∈ U, k = 0, . . . , N − 1
(45)

The optimal control problem formulated in Equation 45 effec-
tively minimizes the cost function, by minimizing the states
of the system. As a result, it assumes the desired references
to be zero. The objective of the system is to guide the
user towards a desired altitude (zref) to complete the task.
To incorporate reference tracking into the optimal problem
defined in Equation 45, the problem is reformulated slightly.

The new objective function JR(·) is adjusted slightly in com-
parison to J(·) for the reference tracking problem. The stage
cost ℓ(·) and the terminal cost Vf (·) of the objective function
are now defined relative to the reference.

ℓ(x(k),∆u(k)) =||x(k)− xref (k)||2Q + . . . (46)

||∆u(k)−∆uref (k)||2R
Vf (x(k)) = ||x(k)− xref (k)||2Qf (47)

The reference is usually defined using outputs measurements
y(k) − yref(k) in the objective function. Assuming that the
output matrix C is identity, and we have full information
state feedback, yref(k) = xref(k) the translation between both
notations is one-to-one. Under the current circumstances, the
altitude reference is the only potentially non-zero state of
interest, the other state references default to zero. The altitude
reference is considered constant throughout the horizon length
and is modelled as a series of step responses with considerable
time between jumps with respect to the MPC time horizon.
Additionally, due to the objective of minimizing the force-
feedback to the individual, the desirable ∆uref(k) = 0 is also
known a-priori.

The optimal control problem is then reformulated to Equa-
tion 48.

PN (xa(0)) :




min
∆u0,...,∆uN−1

JR(xa(0),∆ua,N )

s.t xa(k + 1) = Aaxa(k) + Ba∆u(k)
xa(0) = xa(0) ∈ X− xr,

xa(k + 1) ∈ X− xr,

k = 0, . . . , N

∆u(k) ∈ U− ur,

k = 0, . . . , N − 1

(48)

D. Pilot Experiment

The completed framework will be evaluated experimentally
on whether it is capable of achieving its main objectives
autonomously. The physical system, as described in Figure 9,
is provided with an altitude reference consisting of a sequence
of step responses and the MPC should provide the Sigma.7
with the correct inputs such that it is capable of steering the
quadcopter to its desired reference. Ideally, the human operator
would have been included into the design, but as mentioned in
subsection II-C, it has not. However, we are still interested in
the impact of a human participant on the system as whole. As
such, an additional pilot experiment is conducted to observe
the effects of having the human-in-the-loop. The experiment
is conducted by having a human participant hold onto the
Sigma.7 end-effector as we repeat the experiment. They will
do so twice, but in slightly different circumstances:

T1 In the first trial, the participant is asked to feel the forces
provided by the Sigma.7 and to move along with them. In
this trial they will not be provided with visual information
on what the altitude reference signal looks like, as such
they are blindly following the forces they are provided
with. They will be participating passively to the best of
their ability.

T2 In the second trial, the participant is provided visual
information on the altitude reference. For this trial, they
are asked to actively follow the reference as accurately



11

as they can manage. They may actively ignore or move
along with the forces provided to them by the Sigma.7
in their attempt at completing this task.

III. RESULTS

With the framework design completed, it is time to evaluate
and validate each subsystem within it, focusing on the per-
formance evaluation of individual components and the overall
system.

A. The Quadcopter Model

The uncontrolled quadcopter dynamics are first evaluated with
a step response of 1 N for each of the four motor input
configurations. In this manner, we may first observe the
characteristics of the system, such as the settling times, rise
times, overshoot, and steady-state errors. This information
may then be used for the evaluation and validation of the
quadcopter design in Stabilized Mode by, similarly, applying
a step response as depicted in Figure 10.

Fig. 10. The Step Response of the Quadrotor Dynamics.

TABLE VI
TRANSFER FUNCTION STEP RESPONSE

Step Response Alt. Rate Roll Pitch Yaw Rate Units
Settling Time 2.8040 NA NA 0.1127 s
Rise Time 2.0566 NA NA 0.0826 s
Overshoot 0 NA NA 0 %
Settling Max 2.0000 (m/s)

NA NA (rad)
0.9615 (rad/s)

The step response of the uncontrolled quadcopter dynamics
allows us to determine the system characteristics, depicted
in Table VI. The quadcopter behaves are expected, a step
input provided to the linearized system is the equivalent of the
motors exerting an external force on the quadcopter frame. As
a result, the altitude and heading rates increase velocity until
they reach terminal velocity, reaching an equilibrium between
the forces exerted by the motor and drag. Both responses show
steady-state errors with respect to the design requirements.
The roll and pitch angles also increase as a constant input is
provided to the system, resulting in a tumbling motion of the
quadcopter about the roll and pitch axes.

To have the quadcopter behave according to the desired flight
mode—Stabilized mode—, four control structures are applied
to the dynamics. With the control structures implemented,
depicted in Figure 11, the steady-state errors on each of the
axes were removed. Each of the axes is able to reach the
desired set point of 1 within the time durations established in
the design requirements in subsection II-B. The settling times
were obtained with a 5% threshold.

Fig. 11. The step response of the quadcopter system and the controllers
implemented, for the final control parameters.

TABLE VII
CONTROLLED SYSTEM STEP RESPONSE

Step Response Alt. Rate Roll Pitch Yaw Rate Units
Settling Time 0.3748 0.9810 0.9810 1.1314 s
Rise Time 0.2041 0.7048 0.7048 0.7169 s
Overshoot 0 0 0 0 %
Settling Max 0.9933 m/s

0.9999 0.9999 rad
1.0000 rad/s

Overall, the system characteristics of the controlled system,
as depicted in Table VII, are within the design objectives
established in subsection II-B. For the altitude rate, reasonable
settling times were assumed within the range of 0.2 ≤ ts,ż ≤
2 s, which has been achieved. Similarly, for the attitude of the
quadcopter settling times were assumed within the range of
0.5 ≤ ts,ϕ,θ ≤ 1.5 s, was also achieved.

B. The Sigma.7 Model

The Sigma.7 device implements internal gravity and friction
compensation during operation. However, within some regions
of force commands, the system is still unable to overcome
friction. By applying a set of step force commands to the
Sigma.7, its response can be observed, by which we may
determine the regions within which friction is of the most
influence. As seen in Figure 12, in the approximate zone of
−0.3 N ≤ F ≤ 0.7 N the system experiences considerable
Coulomb friction and is not incited to move at all. In the range
just beyond, there is a region with viscous friction, where
some movement is incited but not enough to be consistent.
Within the regions F ≤ −0.5 N and F ≥ 1.1 N, the system
is consistent and repeatable in behaviour.
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The identified Sigma.7 subsystem model in subsection II-C
does not adequately describe the dynamics of the system over
its entire range of operation; however, as mentioned before,
the model should perform adequately over the chosen horizon
time of the MPC. As such, the performance is experimentally
evaluated with respect to a horizon time of 0.5 s. For this
experiment, both the identified model and the Sigma.7 haptic
interface receive the same input data; however, every 0.5 s,
the identified linear model receives updated initial conditions
using the measurements of the Sigma.7. As a result, the
identified model does not perform perfectly but is capable of
staying within an adequate range of the actual measurements,
as seen in Figure 13. For a window of 0.5 s the Normalized
Root Mean Square Error (NRMSE) for the positional data is
68.9 %, and for the velocity data it is 40.9 %.

Fig. 12. Step responses of the Sigma7 in position for a range of force inputs.
Please note that the overshoot fluctuations that may be observed at the edge
of the device workspace coincide with the safety PD controller implemented
to protect the system from damage and do not originate from the system
dynamics.

At very specific input sequences, however, such as the more
extreme swings observed between 2 and 7 seconds, the errors
briefly increase to relatively high proportions, as depicted in
Figure 14. These larger error spikes generally correspond to
the system dynamics at the end of the time horizon. The
current model cannot capture the dynamics governing the
behaviour at very small inputs and large sudden changes in
input. Additionally, when large sudden changes in input occur,
it is also more likely for communication delays to occur
between MATLAB and the C++ executable. In such moments,
the Sigma.7 measurements remain constant for a brief period
of time. These errors are less prominent, nor quite as large, in
comparison but add to the overall error.

C. The Final Framework

The final framework is capable of controlling the system such
that the main objectives are achieved. The quadcopter altitude

Fig. 13. The experimental results of the Sigma.7 measurements and the
identified linear model. The first plot includes the input data provided to
both systems. The second plot shows the position output measurement and
simulation results. The third plot provides the velocity output measurements
as provided by the Sigma.7, and the simulation results. Every 0.5 seconds,
the initial conditions for the linear model are reapplied based on the measured
position and velocity data of the Sigma.7. Additionally, the NMRSE errors,
based on the mean of the measured data, have been noted in the figure legend.

Fig. 14. This figure provides the error curve for both the position output (the
top window), defined as ez = zs − zs,model, and the velocity output (the
bottom window), defined as eż = żs − żs,model. These results correspond
with Figure 13.

is driven to its desired altitude reference, while each of the
other states are driven to zero, as depicted in Figure 15.
The quadcopter altitude, however, consistently suffers from a
steady state error at about 0.02 m. As a result of the steady state
error in the quadcopter altitude, the control input, depicted in
Figure 16, remains non-zero in an attempt to compensate. The
force command provided to compensate the steady-state error
is, at −0.23 N, not quite enough to overcome the internal
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friction of the Sigma.7 as discussed in section II. Which may
be indicative of additional unmodeled sources of friction.

Fig. 15. A single step reference provided as an altitude reference to the
MPC (depicted by the black line). The blue line and red lines present the
experimental and simulation results, respectively, for comparison.

Fig. 16. A companion figure to Figure 15 depicting the control input
determined by the MPC. This input is provided to the physical (blue) or
simulated (red) system.

The simulated system behaves quite different to that of the
experimental data, however, it does show the same overall
trend in behaviour. The system characteristics, depicted in
Table VIII, are similar for the step response. However, as a
whole, the simulated system responds in a fashion much less
oscillatory than the experimental results. This discrepancy in
behaviour is likely indicative of a suboptimal model of the
system dynamics, causing a mismatch between the theoretical
model and the physical system. This aggressive behaviour of
the physical system is also apparent in the MPC control input,
depicted in Figure 16, which attempts to correct the error much
more aggressively than the simulated system, resulting in a
faster but also more oscillatory response.

The final test is to apply the complete system to the game
designed in Unity, requiring a range of viable successive step
responses of varying magnitudes over the duration of the
game, shown in Figure 17-18. Similar to Figure 16 the steady

TABLE VIII
FRAMEWORK STEP RESPONSE - ALTITUDE

Step Response Experimental Simulated Units
Settling Time 2.2146* 1.9124* s
Rise Time 0.9464 1.1423 s
Overshoot 3.3038 6.2508 %
Settling Min 1.6909 1.8090 m
Settling Max 2.0661 2.1250 m

TABLE IX
*WITH A SETTLING TIME THRESHOLD OF 5%

state error remains. Although the steady state errors, even at
larger references, as may be observed in Figure 17, it remains
relatively small. The largest observed steady state error was
between 30-40 s at -0.15 m. Overall, the system exhibits quite
a bit of oscillatory behaviour as compared to its theoretical
counterpart, however, it manages to complete the set tasks
reaching the state objectives.

Fig. 17. A varying range of viable step references provided as an altitude
reference to the MPC (depicted by the black line). The blue line and red lines
present the experimental and simulation results, respectively, for comparison.
Additionally, a pilot experiment was conducted, depicted by the green and
yellow lines. These results showcase the changes when a human participant
is added into the loop. Passive participation is depicted by the green line,
whereas active participation is depicted by yellow.

A pilot experiment was also conducted in which a human
participant held the Sigma.7 end-effector during both passive
(T1) and active (T2) participation. In T1, the participant
accurately followed the reference despite the lack of visual
feedback. The addition of human dynamics into the loops
seems to stabilize the oscillations exhibited by the autonomous
system, particularly of the drone altitude rate, and of the
Sigma.7 z-axis position and rate measurements. In T2, active
participation also showcases some considerable overshoot.
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Fig. 18. A companion figure to Figure 17 depicting the control input
determined by the MPC. This input is provided to the physical (blue) or
simulated (red) system.

D. Friction

Despite the incorporation of viscous friction into the model,
the impact of additional unconsidered friction sources can be
observed during the experiment. When the machine moves
along the negative z-axis, corresponding to the direction of
gravity, there is a considerable steady state error that is not
compensated. This behaviour is quite consistent throughout
each of the measurements and is most prominent when the
system must compensate for movement along the negative z-
axis, as may be observed in Figure 19. As the error grows,
the control inputs provided to the Sigma.7, as depicted in
Figure 20, also grows to compensate. After some time, the
two balance one another and the device is no longer incited to
move. As mentioned in section II, one type of friction that may
explain this behaviour is Coulomb friction, otherwise known
as stick friction. Which may be preventing the device from
moving at very small force inputs.

Fig. 19. A set of repeated step references provided as an altitude reference to
the MPC (depicted by the black line) to create an overview of the effects of
friction on the system. The blue line and red lines present the experimental
and simulation results, respectively, for comparison.

Fig. 20. A companion figure to Figure 19 depicting the control input
determined by the MPC. This input is provided to the physical (blue) or
simulated (red) system.

IV. DISCUSSION

In the previous section the results were presented, highlighting
the performance of the quadcopter and Sigma.7 as individual
subsystems before transitioning into the performance of the
completed system. The quadcopter demonstrated successful
stabilization after the incorporation of the control infrastruc-
tures, eliminating the steady-state errors and meeting the
required settling times. The Sigma.7 model was effective
within the established time horizon and range of operation,
although shows limitations due to unmodelled frictional forces.
The complete system has demonstrated discrepancies between
the theoretical simulated model and the physical system;
however, it still successfully achieves its main objectives.
The physical system is able to provide the Sigma.7 with the
necessary inputs to autonomously guide the quadcopter to
its desired references. However, despite successfully reaching
the quadcopter’s altitude reference, persistent small steady-
state errors were observed, with a maximum deviation of -
0.15 m during the experiments. These errors are likely due to
unmodeled friction or other unaccounted-for disturbances that
affect system performance.

In this discussion, we will analyse these results, addressing
their implications with respect to current literature, and discuss
the limitations of the current model. Particularly the potential
improvements to the different subsystems, and their implemen-
tation as a whole. Lastly, we will also explore the implications
of these findings for future work and its applications.

A. Model Accuracy and Computational Performance

The current Sigma.7 model implementation exhibits significant
limitations in accuracy, as shown in subsection III-B. The
linear approximation of the system is not capable of fully
capturing all the relevant dynamics of the Sigma.7 that en-
compass its behaviour. In subsection III-C, it is shown that
the MPC input never returns to a steady zero input. One
potential explanation for this is the presence of unmodeled
friction in the Sigma.7 model, such as Coulomb friction
at low force inputs. Additionally, there may also be other
additional dynamics that are not considered in the current
model. However, incorporating friction is likely to introduce
nonlinearities into the model, which may necessitate a non-
linear MPC approach, requiring careful design so as not to
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potentially compromise the real-time capabilities of the system
[32]. Notably, this study demonstrates that even with shorter
horizons, effective control can be achieved. With the current
model, the MPC is capable of controlling the quadcopter to the
desired altitude reference whilst minimizing the other states
and the input, effectively allowing for the completion of the
design objectives.

B. The Influence of Human-in-the-Loop

The addition of human dynamics into the loop, as depicted
in Figure 17, seems to stabilize the oscillations exhibited by
the autonomous system, particularly of the drone altitude rate,
and of the Sigma.7 z-axis position and rate measurements. This
was observed both during passive, and active participation, and
is likely due to the additional damping effects provided by
the human arm at the end-effector [30]. In T1, the participant
was able to successfully complete the motor task by only
responding to the forces provided by the Sigma.7. They
were able to do so without visual feedback, and without
active participation. A lack of active participation during task
execution is something strongly thought to inhibit the motor
learning process [33] [34]. Additionally, the Challenge Point
Framework, states that motor learning can be optimized by
matching the difficulty of the to-be-learned task to the learner’s
skill level. The ease by which the task was completed blindly
suggests that the force feedback provided by the current design
is still stronger than desired. As this was a single-participant
experiment, the results glimpsed cannot be generalized, but it
may be beneficial to revise the current design and implement
human dynamics into the MPC design. Additionally, during
T1, we observed that sometimes the participant was unable
to respond to the forces because they were not always aware
of them. This is clearly observable in Figure 17 between 10-
20 s where the correction of the passive response towards the
reference happens quite late within that time window. Despite
the fact that the Sigma.7 provided a full 2N in force to the
participant, as depicted in Figure 18, it went unnoticed for
more than 5 seconds. The participant shared that it was only
once they moved the slightest bit, causing a force differential,
that they became aware of the force exerted by the end-
effector.

The active participation in T2 showcases some considerable
overshoot, reaching almost 119% at 12.7 s. This suggests the
participant may have underestimated the feedback strength and
struggled to correct the additional error.

C. Limitations

The current use of multiple simulation environments intro-
duces unnecessary redundancy. For efficiency, the Simulink
environment may be integrated into the Visual Studio envi-
ronment for a more efficient and compact implementation.
However, maintaining a separate visualization framework is
recommended so as not to impact the computational power
needed for the quadcopter model and the MPC. By keeping
the visualization framework separate, it may also be run on a
different computer altogether.

V. CONCLUSION

During this thesis, a framework was established that utilizes a
Model Predictive Controller to haptically assist a quadcopter
pilot during motor task completion. With that objective in
mind, this framework integrates a quadcopter simulator, a
dynamic motor task visualized in Unity, a model of the
Sigma.7 haptic interface, and an MPC capable of generating
real-time control commands, providing haptic feedback during
task execution.

The system was able to complete its main design objectives.
The quadcopter demonstrated successful stabilization in its
desired flight mode — Stabilizing Mode — after the incor-
poration of the onboard PID controllers. The Sigma.7 model
performed sufficient within the established time horizon and
range of operation, although shows limitations due to unmod-
elled friction. The MPC framework is capable of providing the
Sigma.7 with the necessary input command to autonomously
guide the quadcopter to its desired references in real-time,
therefore completing its primary objective. Nevertheless, the
system is not without its limitations. The system still shows
steady state errors, likely resulting from unmodelled fric-
tion, which the current MPC design cannot compensate for.
Additionally, a pilot test revealed that the force feedback
provided to the participant might have been too large, as active
participation was not necessary for task completion.

The field of motor learning, particularly in the context of robot-
mediated haptic feedback for dynamic motor tasks, remains an
area with many unanswered questions. In this study, we create
a framework that is capable of utilizing MPC to haptically
assist quadcopter pilots during task execution. The system
is capable of providing haptic assistance to the quadcopter
pilot with respect to the altitude. We hope that with further
improvements, this framework may be used to study the effects
of using MPC and haptic feedback on the motor learning of
a quadcopter pilot.

A. Future Work

The long-term objective of this project is that we may evaluate
whether the application of haptic feedback for a dynamic task
can facilitate or promote motor learning. The framework was
designed with this future objective in mind, of studying the
impact of utilizing MPC for providing haptic feedback on the
motor learning of a quadcopter pilot. Based on this premise,
and the content of this paper future works may focus on
improving the models of the individual subsystems presented
in this paper, or on the inclusion of the human operator into
the predictive model of the MPC, with the hopes of expanding
this framework.

Real-World Validation of Virtual Dynamics
The virtual drone dynamics currently incorporates several
simplifications and assumptions. Practical validation is nec-
essary to ensure that the virtual model mirrors its real-world
counterpart sufficiently for viable transfer learning. This may
require the addition of some common real-world problems—
such as wind, atmospheric pressures, and interactive obstacles.
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In a similar trend, the Sigma.7 model should also be improved
upon. It is recommended that a more thorough analysis of
the device behaviour should allow for a better representation
of the device dynamics. Specifically, whether the unmodeled
friction is really the main limiting factor or if there are other
unconsidered relevant factors.

Human Interaction & Motor Learning Goals
To demonstrate that the stabilization of the system is possible,
this paper shows the autonomous response of the Sigma.7,
stabilizing itself and the quadcopter at the desired reference
height. However, the current system design does not take into
account the role of the human learner will have in this process.
With the addition of the human dynamics into the MPC
design, the force feedback provided to the individual may also
take into account the damping effects of the human arm, its
delay, and depending on the model even the average response
time of the human participant. Adjusting this model to the
individual beforehand may provide even more personalized
force feedback. To this end, it is also suggested to add a force
sensor to the sigma.7 setup. In this way, the interaction forces
between the human operator and the haptic interface may also
be quantified.
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I. APPENDIX I - QUADCOPTER DYNAMICS

A. Coordinate System

To determine the nonlinear dynamics of the quadcopter using the Newton-Euler
method, it is common to define two coordinate systems within which the states of
the quadcopter are defined [35] [36]. The first coordinate system is the earth-fixed

Fig. 21. The defined coordinate systems and directions.

inertial frame (I = (xI , yI , zI)), also known as the world Frame. The second
coordinate system is the body frame (B = (xB, yB, zB)), fixed to the Center of
Mass (CoM) of the quadcopter. Each of the motors rotates with an angular velocity
of ωi producing a force Fi along the rotor axis (assumed to be zB). The motor also
generates a moment Mi around its rotor axis, opposite to its direction of rotation.

To translate movement from one coordinate system to the other, a rotational matrix
R(ϕ, θ, ψ) is defined. This is where the roll (ϕ), pitch (θ), and yaw (ψ) angles are
introduced. They generally refer to the canned rotations required to move from the
inertial frame to the body frame, and back.

qI = Rx(ψ)Ry(θ)Rz(ϕ)qB = R(ϕ, θ, ψ)qB

R(ϕ, θ, ψ) =




cψcθ sϕcψsθ − cϕsψ cψsθcϕ + sϕsψ
cθsψ sψsϕsθ + cϕcψ sψsθcϕ − cψsϕ
−sθ cθsϕ cϕcθ


 (49)

The representation of R may vary depending on the definitions of the rotations and
coordinate systems. It is an orthogonal matrix, as such R−1 = RT .
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B. Equations of Motion

Due to the complexity of working in multiple frames of reference, 12 states are
required to express the nonlinear dynamics of a quadcopter, as shown in Table X.

TABLE X
DEFINITION OF THE NONLINEAR QUADCOPTER STATES

State Description Units
x X Position in Inertial Frame I m
y Y Position in Inertial Frame I m
z Z Position in Inertial Frame I m
ϕ Roll Attitude in Inertial Frame I rad
θ Pitch Attitude in Inertial Frame I rad
ψ Yaw Attitude in Inertial Frame I rad
u X Translational Velocity in Body Frame B m/s
v Y Translational Velocity in Body Frame B m/s
w Z Translational Velocity in Body Frame B m/s
p Roll Rotational Velocity in Body Frame B rad/s
q Pitch Rotational Velocity in Body Frame B rad/s
r Yaw Rotational Velocity in Body Frame B rad/s

Deriving the equations of motion of the quadcopter is somewhat easier in the body
frame. According to [23] the dynamics of a rigid body under external forces that
are applied to the center of mass, and are expressed in the body fixed frame can be
expressed in Newton-Euler formalism as

[
mI3×3 0

0 I

] [
V̇
ω̇

]
+

[
ω ×mV
ω × Iω

]
=

[
F
τ

]
(50)

where I3×3 is an identity matrix, and I = diag(Ixx, Iyy, Izz) the diagonal inertia
matrix of the quadcopter frame. The following vectors are then defined in the body
frame; the linear velocity V = [u, v, w]T , the angular velocity ω = [p, q, r]T , the
external forces F = [fx, fy, fz]

T , and the external moments τ = [τϕ, τθ, τψ]
T .

Resulting in:


u̇
v̇
ẇ


 =



rv − qw
pw − ru
qu− pv


+

1

m



fx
fy
fz


 , (51)



ṗ
q̇
ṙ


 = I−1



qr(Iyy − Izz)
pr(Izz − Ixx)
pq(Ixx − Iyy)


+ I−1



τϕ
τθ
τψ


 (52)

The external forces and moments acting on the quadrotor are then modeled as a
summation of various physical phenomena affecting its flight.

F = RT



0
0

−mg


+




0
0

F1 + F2 + F3 + F4


+ ff (53)
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The first term incorporates the effect of gravity on the quadcopter frame, the second
the total thrust generated by the motors, and the last term depicts the friction.

τ =




l(F2 − F4)
l(F3 − F1)

l(F1 − F2 + F3 − F4)


+ τ f − ga (54)

For the moments acting on the quadcopter the first term incorporates the effects of
the generated torques by the motors, the second the friction, and the last term depicts
the gyroscopic effects of the propeller.

ga =



−JrΩθ̇
−JrΩϕ̇

0


 (55)

where Jr is the inertia of the rotors and Ω = ω1 + ω2 − ω3 − ω4. ga is very often
neglected due to the small values of Jr as mentioned in [35], [36], which will also
be done for this model for control purposes.

To rewrite these equations of motion in the Inertial frame, we can use the Rotational
Matrix R(ϕ, θ, ψ) for the linear transformations and Rotational Matrix T(ϕ, θ, ψ) for
the angular transformation [36].



ẋ
ẏ
ż


 = RT



u
v
w


 , (56)



ϕ̇

θ̇

ψ̇


 =



1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ





p
q
r


 = T



p
q
r


 (57)

Now by applying Newton’s law the equations of motion may be rewritten to a form
that is quite useful for its application in control as in [35], [36].

m



ẍ
ÿ
z̈


 = R



fx
fy
fz


 (58)

=



−Ft(cϕsθcψ + sϕsψ)
−Ft(cϕsθsψ − sϕcψ)

−mg + Ftcϕcθ


+Rff

=



−Ft(cϕsθcψ + sϕsψ)
−Ft(cϕsθsψ − sϕcψ)

−mg + Ftcϕcθ


−A



ẋ
ẏ
ż


 (59)

where Ft = F1 + F2 + F3 + F4 depicts the thrust exerted on the quadcopter by all
four rotors in the body frame. Diagonal matrix A = diag(Ax, Ay, Az) refers to an
approximation of aerodynamic friction in the inertial frame, enabling the quadcopter
to reach a terminal velocity or decelerate in the xy-plane without input.
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For small angle approximations of the roll and pitch angles, [p q r]T ≈ [ϕ̇ θ̇ ψ̇]T ,
and T(ϕ, θ, ψ) approaching identity, resulting in Equation 60.

I



ϕ̈

θ̈

ψ̈


 ≈



(Iyy − Izz)θ̇ψ̇

(Izz − Ixx)ϕ̇ψ̇

(Ixx− Iyy)ϕ̇θ̇


+ τ (60)

C. Quadcopter Inputs

Choosing the quadcopter system inputs to follow the following convention:

U1 = Ft = F1 + F2 + F3 + F4 (61)
U2 = F2 − F4 (62)
U2 = F3 − F1 (63)
U2 = F1 − F2 + F3 − F4 (64)

Allows for Equation 59 and Equation 60 to be rewritten to Equation 5-10.

As mentioned in the quadcopter assumptions, the motors are considered to abide by
the following assumptions.

• The thrust and drag constants are proportional to the square of the motor speed.

• The thrust generated by each of the motors is proportional to the square of the
motor speed.

As a result, the vertical forces and moments produced by the rotors can be, if so
desired, described by Equation 65

Fi = kFω
2
i (65)

Mi = kMω
2
i (66)

where kF and kM are motor constants relating the forces and moments to the motor
rotational velocity.
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II. APPENDIX II - QUADCOPTER CONTROL

A. Linearized System

The linearized system is considered around hovering conditions, resulting in a
linear time-invariant system around the equilibrium operating point (qe,ue) =
(05, ψ,09,mg).

q̇ =
∂f(q,u)

∂q

∣∣∣q=qe
u=ue

(q− qe) +
∂f(q,u)

∂u

∣∣∣q=qe
u=ue

(u− ue)

= Ac∆q+Bc∆u (67)
y = Cc∆q (68)

where Ac, Bc and Cc are the continuous-time state-space matrices given by

Ac =




0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 −U1

m sψ −U1
m cψ 0 −Kt

m 0 0 0 0 0

0 0 0
U1
m cψ −U1

m sψ 0 0 −Kt
m 0 0 0 0

0 0 0 0 0 0 0 0 −Kt
m 0 0 0

0 0 0 0 0 0 0 0 0 − Kr
Ixx

0 0

0 0 0 0 0 0 0 0 0 0 − Kr
Iyy

0

0 0 0 0 0 0 0 0 0 0 0 − Kr
Izz




(69)

Bc =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
m 0 0 0

0 l
Ixx

0 0

0 0 l
Iyy

0

0 0 0 l
Izz




(70)

Cc =

[
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

]
(71)

where I = diag(Ixx, Iyy, Izz) represents the diagonal inertia matrix of the quadcopter
frame. Kt and Kr are the translational and rotational friction associated with
aerodynamics. Lastly, m depicts the mass of the quadcopter and l the length of
the quadcopter arm, i.e. the distance from the rotational axis of the motors to the
center of the quadcopter frame. The output of the system is y = [ż, ϕ, θ, ψ̇]T and
state-space matrix Cc reflects this.

B. Transfer Functions

To identify the optimal PID control structures, the state-space representation is
converted into a transfer function representation. This transformation allows for an
easier analysis of the closed-loop dynamics and the subsequent impact of the control
methods on the overall stability and performance of the system. The transformation
of the state space to a transfer function is accomplished using the Laplace domain.

G(s) =
Y(s)

R(s)
= Cc(sI−Ac)

−1Bc (72)
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which results in the four decoupled transfer functions depicted in Equation 73, each
row corresponding to their respective output in y.

G(s) =




1
ms+Kt

0 0 0

0 l
Ixxs2+Krs

0 0

0 0 l
Iyys2+Krs

0

0 0 0 l
Izzs+Kr


 (73)

Under these circumstances, the system axes are decoupled, simplifying the required
control design.

Fig. 22. The Step Response of the Quadrotor Dynamics.

TABLE XI
TRANSFER FUNCTION STEP RESPONSE

Step Response Alt. Rate Roll Pitch Yaw Rate Units
G1(k) G2(k) G3(k) G4(k)

Settling Time 2.8040 NA NA 0.1127 s
Rise Time 2.0566 NA NA 0.0826 s
Overshoot 0 NA NA 0 %
Settling Max 2.0000 [m/s]

NA NA [rad]
0.9615 [rad/s]

Now the step response of the system is observed, the altitude rate response is quite
slow and shows a steady state error. Similarly, the heading rate response also shows a
steady state error, although its response is quite fast. The roll and pitch angles simply
increase as an input is provided to the system.
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To change this behaviour four general PID controllers are implemented. These four
general PID controllers are stacked diagonally in a matrix, each one responsible for
one of the four axes of the quadcopter. As seen in Equation 74.

H(s) =

[
H1(s) 0 0 0

0 H2(s) 0 0
0 0 H3(s) 0
0 0 0 H4(s)

]
(74)

where Hk(s) may be seen in Equation 75 depicting the general formulation of the
PID controller in the Laplace domain.

Hk(s) =
Kk,ds

2 +Kk,ps+Kk,i

s
(75)

where k = {1, 2, 3, 4} each corresponding to the relevant subsystem in Equation 73.

Fig. 23. Quadrotor Control Diagram

C. Control Requirements

To determine the appropriate type of PID control for this system, a few preliminary
checks are required.

First, we will determine if the system suffers from steady-state errors in response
to a step input. This is achieved by computing the transfer function(s) of the entire
system and applying the Final Value Theorem to evaluate the steady-state error.

e(∞) = lim
s→0

sE(s) = lim
s→0

sR(s)

1 +G(s)H(s)
(76)

where the transfer function from the Error signal to the Reference signal may be
represented by:

E(s)
R(s)

= (I +G(s)H(s))−1 (77)

= diag(f1(s), f2(s), f3(s), f4(s)) (78)



d

f(s) =




s(ms+Kt)

(m+K1,d)s2 + (Kt +K1,p)s+K1,i

s2(Ixxs+Kr)

Ixxs3 + s2(Kr + lK2,d) + lK2,ps+ lK2,i

s2(Iyys+Kr)

Iyys3 + s2(Kr + lK3,d) + lK3,ps+ lK3,i

s(Izzs+Kr)

(Izz + lK4,d)s2 + (Kr + lK4,p)s+ lK4,i




(79)

The diagonal entries fk(s), where k = 1, 2, 3, 4, correspond to the elements of the
vector f(s). Applying a step response ( 1s ) to these subsystems then results in the
following steady-state errors. As the off-diagonals are zero, the error signals are only
influenced directly by their corresponding reference. Thus, it is only the diagonal
entries that are of interest.

e(∞) = lim
s→0

sR(s)(I +G(s)H(s))−1

= lim
s→0

(I +G(s)H(s))−1

= lim
s→0




ms2 +Kts

(m+K1,d)s2 + (Kt +K1,p)s+K1,i

Ixxs
3 +Krs

2

Ixxs3 + s2(Kr + lK2,d) + lK2,ps+ lK2,i

Iyys
3 +Krs

2

Iyys3 + s2(Kr + lK3,d) + lK3,ps+ lK3,i

Izzs
2 +Krs

(Izz + lK4,d)s2 + (Kr + lK4,p)s+ lK4,i




= lim
s→0




ms+Kt

(m+K1,d)s+ (Kt +K1,p) +
K1,i

s
Ixxs+Kr

Ixxs+ (Kr + lK2,d) + l
K2,p

s + l
K2,i

s2

Iyys+Kr

Iyys+ (Kr + lK3,d) + l
K3,p

s + l
K3,i

s2

Izzs+Kr

(Izz + lK4,d)s+ (Kr + lK4,p) + l
K4,i

s




(80)

Based on Equation 80 the four appropriate control structures may be reduced to the
following choices.

1) Altitude Controller

Assuming a simple P-controller results in a steady-state error
Kt

Kt+K1,P
. To

ensure that the steady-state error approaches zero over time an integral action,
Ki,1 ̸= 0, is necessary. As such, the control structure is chosen to be a PI
controller.
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2) Attitude Controllers

To ensure that the steady-state error approaches zero over time, the proportional
action is enough. As such, the control structure is chosen to be a PD controller.
Whilst the D-action is not necessary, it can increase the response time of the
system. The next subsection will show why this is desirable for the attitude
controller.

3) Heading Controller

Assuming a simple P-controller results in a steady-state error
Kr

Kr + lK4,P
. To

ensure that the steady-state error approaches zero over time, an integral action,
Ki,1 ̸= 0, is necessary. As such, the control structure is chosen to be a PI
controller.
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D. Control Design - Tuning

Given the control structures and subsystems provided in subsection II-B-II-C the
desired control gains may now be tuned such that the drone behaves as desired.

The closed loop transfer function of each subsystem may be represented by Equa-
tion 81.

Hcl,k(s) =
Gk(s)Hk(s)

1 +Gk(s)Hk(s)
(81)

where k = {1, 2, 3, 4} each corresponding to the relevant subsystem in Equation 73.

To start the tuning process, all of the Kp gains to 1, with the other control gains at
0, this already provides some insight into whether the chosen control structures were
correct.

Fig. 24. The step response of the quadcopter system and the controllers implemented, for Kp = 1

The subsystem for the altitude rate and the heading rate clearly still show a steady
state error, which will be resolved by adding an integrative action. However, the
heading rate steady state error is quite large, even as its response is fast, which
implies a relatively large integral action. The roll and pitch angles now settle nicely
at a step reference of 1, however, they are somewhat slow which will be solved by
adding a derivative action.
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Fig. 25. The step response of the quadcopter system and the controllers implemented, for the final control
parameters.

TABLE XII
CONTROLLED SYSTEM STEP RESPONSE

Step Response Alt. Rate Roll Pitch Yaw Rate Units
G1(k) G2(k) G3(k) G4(k)

Settling Time 0.3748 0.9810 0.9810 1.1314 s
Rise Time 0.2041 0.7048 0.7048 0.7169 s
Overshoot 0 0 0 0 %
Settling Max 0.9933 m/s

0.9999 0.9999 rad
1.0000 rad/s

These values were tuned based on design requirements found in some of the
available literature [26] [27] [28]. For the pitch and roll angles, reasonable settling
times are often in the range of 0.5 ≤ ϕ, θ ≤ 1.5 rad. Information regarding
the altitude and heading rate control, however, is more sparse. As the current
flight mode is the equivalent of manual flight, and not autonomous flying, it is
difficult to obtain information about reasonable rise times and settling times for
a specific model of quadcopter. An estimate is made on a number of papers that
have quadcopter parameters in the range of this paper, that provide information on
the vertical acceleration of the drone. Reasonable values seem to lie in the range
of 0.5 ≤ ż ≤ 5 m/s2, thus an educated guess is made. Lastly, the heading rate is
simply designed with the objective to eliminate the steady state error, its uncontrolled
response is already quite fast. The resulting control gains are depicted in Table IV.
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III. APPENDIX III - HAPTIC FEEDBACK SUBSYSTEMS

To determine the performance-enhancing force feedback provided to the learner a
model predictive controller (MPC) is designed. For the current framework, haptic
feedback is only provided for one axis, namely the z-axis related to the altitude
rate of the drone. As a result, the complete system known by the model predictive
controller may be simplified such that only a subsystem of the quadcopter dynamics
and the dynamics of the haptic interface are incorporated. section III provides more
details regarding the derivation and/or identification of these subsystems.

A. Quadcopter Subsystem

Fig. 26. The control diagram of the quadcopter altitude dynamics and a PI controller.

The altitude dynamics may be described by Equation 82.

[
ż
z̈

]
=

[
0 1

0 −Kt

m

] [
z
ż

]
+

[
0
1

m

]
U1 = A1

[
z
ż

]
+ B1U1 (82)

y =

[
1 0
0 1

] [
z
ż

]
= C1

[
z
ż

]
(83)

The PI controller is of the following equations given the error definition e1 = żref− ż.

U1 = K1,P e1 +K1,I

∫
e1dt (84)

We denote the following variable c =
∫
e1dt for ease of notation and combine these

equations.
[
ż
z̈

]
= A1

[
z
ż

]
+ B1U1

= A1

[
z
ż

]
+ B1(K1,I c+K1,P e1)

= A1

[
z
ż

]
+

[
0

K1,I

m

]
c+

[
0

K1,P

m

]
e1

= A1

[
z
ż

]
+ Acc+ Bc(żref − SC1

[
z
ż

]
) (85)
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where the selector S =
[
0 1

]
. With this formulation, the original system of the drone

can be augmented with the PI controller, resulting in a state space representation of
the complete quadcopter.



ż
z̈
ċ


 =

[
A1 − BcSC1 Ac

−SC1 0

]

z
ż
c


+

[
Bc
1

]
żref (86)

=



ż
z̈
ċ






1 0 0
0 1 0
0 0 1





z
ż
c


 (87)

B. Sigma.7 subsystem

As an initial assumption the sigma.7 device is modeled as a mass-spring-damper
system.

Mz̈s + Cżs +Kzs = u+ d (88)

where the variables are defined as:

M : End-effector mass [kg].
C : Viscous damping coefficient [Ns/m].
K : Linear spring coefficient [N/m].
u : Forces applied on the system by the motors [N].
d : Other Forces applied on the system, e.g. human inputs,

(constant) disturbances, etc. [N]
zs : The cartesian z-coordinate of the sigma.7 device [m]

Assuming that d = 0, the system may also be represented as state-space representa-
tion, as depicted in Equation 89.

[
żs
z̈s

]
=

[
0 1

−K
M −C

m

] [
zs
żs

]
+

[
0
1
M

]
u = As

[
zs
żs

]
+ Bsu (89)

ys =

[
1 0
0 1

] [
zs
żs

]
= Cs

[
zs
żs

]
(90)

The linear second-order model was identified using a dataset obtained from the
sigma.7 wherein a pseudorandom binary signal was used as a force input to the
z-axis as seen in Figure 27, and the position and velocity data were measured on the
same axis.

As the x-y plane is constrained using PD controllers, the identification process is
focused on attaining a representative model of the vertical behaviour of the system
under these specific conditions. The data were sampled at a sampling rate of 0.001s.
Using the MATLAB system identification toolbox, the idgrey function was used to
determine the best-fitting parameters using the model defined in Equation 29. The
workspace of the system is limited and there is a set of PD controllers at the edges, as
such it is desirable to remove any of the data associated with this to prevent the PD
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Fig. 27. This figure shows the dataset used for the system identification process of the sigma.7 model.
The first dataset is the Psuedo-Random Binary Signal Input. The second plot is the measured z-position
of the sigma.7, and the third is the measured velocity.

control dynamics from influencing the system dynamics. The data was pre-processed
to remove these unreliable data points. This is done by splitting the dataset into
multiple datasets, which are then collected into an iddata structure in Matlab suitable
for the identification process. The dataset is split into two, the first half is used for
the estimation of the model, the second half is used to validate the model.

As may be observed in Figure 28 the linear identified model performs quite poorly
and does not adequately describe the dynamics of the system over its entire range of
operation. The normalized root mean square (NRMSE) measure is used to provide
a goodness of fit between the output measurement data and that of the simulated
model output.
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Fig. 28. The identified model output (blue) superimposed over the measured position and velocity data
(grey) from the sigma.7. This plot shows the estimation data used to identify the model. The NRMSE
values have been included in the figure.

Fig. 29. The identified model output (blue) superimposed over the measured position and velocity data
(grey) from the sigma.7. This plot shows the validation data used to validate the model. The NRMSE
values have been included in the figure.
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However, as mentioned before, the model should perform sufficiently over the chosen
horizon time of the MPC. As such, the performance is reevaluated with a small
experiment for a horizon time of 0.5 s. Both the identified model and the sigma.7
haptic interface will be provided with the same input data, however, every 0.5 s the
identified model is provided with new initial conditions using the measurements of
the sigma.7.

Fig. 30. The identified model compared to a measured data set, for a horizon time of 0.5 seconds. The
identified model output (red) is superimposed over the measured position and velocity data (blue) from
the sigma.7. The NRMSE values have once more been included in the figure.

As the horizon time is increased, the identified model also performs increasingly
worse, as may be observed in Figure 31. This limits the design choices regarding the
horizon time for the MPC using this model.
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Fig. 31. The identified model compared to a measured data set, for a horizon time of 1.0 seconds. The
identified model output (red) is superimposed over the measured position and velocity data (blue) from
the sigma.7. The NRMSE values have once more been included in the figure.
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Fig. 32. The identified model compared to a measured data set, for a horizon time of 2.0 seconds. The
identified model output (red) is superimposed over the measured position and velocity data (blue) from
the sigma.7. The NRMSE values have once more been included in the figure.

C. Complete System

The complete system that should be known to the Model Predictive Controller may
then be visualized in Figure 33. The gain Ks bridges the workspace differences
between the sigma.7 and the quadcopter. Its value determines the maximum żref that
can be provided to the quadcopter and as such limits its attainable velocity.

Each of the subsystems as defined in subsection III-A and subsection III-B may
then be combined into the final representation of the system dynamics following the
schematic provided in Figure 33. The derivation of which can be found below.



ż
z̈
ċ


 =

[
A1 − BcSC1 Ac

−SC1 0

]

z
ż
c


+

[
Bc
1

]
żref (91)
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Fig. 33. Overview of System structure

żref = Kszs (92)[
żs
z̈s

]
= As

[
zs
żs

]
+ Bsu (93)

ys = Cs
[
zs
żs

]
(94)

Given these subsystems there are two linear system connected sequentially by a
gain Ks, they may be augmented into one representation given żref = Kszs =
Ks

[
1 0

]
ys.



ż
z̈
ċ


 =

[
A1 − BcSC1 Ac

−SC1 0

]

z
ż
c


+

[
BcKs 0
Ks 0

] [
zs
żs

]
(95)

[
żs
z̈s

]
= As

[
zs
żs

]
+ Bsu (96)

The states may then be combined by augmenting the state vector to x(k) =[
z ż c zs żs

]T
resulting in the final representation of the system.




ż
z̈
ċ
żs
z̈s



=




A1 − BcSC1 Ac BcKs 0
−SC1 0 Ks 0

0 0 As







z
ż
c
zs
żs



+




0
0

Bs


u (97)
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By filling out the matrices as defined in the earlier sections, the parameters
reminiscent of the quadcopter and the sigma.7 return in a state-space representation
of the final LTI system.

x(k + 1) =




0 1 0 0 0

0 −Kp+Kt
m

KI
m

KpKs
m 0

0 −1 0 Ks 0
0 0 0 0 1
0 0 0 −K

M − C
M




x(k) (98)

+




0
0
0
0
1
M



uMPC(k) (99)

y(k) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x(k) (100)

D. A Nonlinear System

Additional to a linear model of the sigma.7, an attempt at identifying a nonlinear
model was also made using nlgrey. The same dataset was used for the identification
process of the nonlinear model, but the dynamical equation chosen to represent the
system was augmented with an additional friction term, depicted in Equation 101.

Mz̈s + fv żs +Kzs + fcsign(ż) + d = u (101)

Where the variables are defined as:

M : End-effector mass [kg].
fv : Viscous damping effects [Ns/m].
fc : Coulomb damping effects [N].
K : Linear spring coefficient [N/m].
u : Forces applied on the system by the motors [N].
d : Other Forces applied on the system, e.g. human inputs,

(constant) disturbances, etc. [N]
zs : The cartesian z-coordinate of the sigma.7 device [m]

Which may also be written in a nonlinear representation as,

f(u, z, ż) =

[
ż

1
M u− G

M − fv
M ż − fc

M sign(ż)− d
M

]
(102)

h(z, ż) =

[
z
ż

]
(103)
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where f(u, z, ż) represents the state function, and h(z, ż) the output. By choosing
the state vector as x(k) =

[
z ż c zs żs d

]
, where d ̸= 0 and constant. The

final system may then be represented, in turn, as

f(x, u) =




ẋ1(k)
ẋ2(k)
ẋ3(k)
ẋ4(k)
ẋ5(k)
ẋ6(k)



=




x2
−Kp+Kt

m x2 +
KI
m x3 +

KpKs
m x4

−x2 +Ksx4
x5

1
M u− G

M − fv
M ż − fc

M sign(ż)− d
M

0




(104)

The identified nonlinear system performs quite a bit better than its linear counterpart
over its entire range of operation, which may be observed in Figure 34 and Figure 35.
The corresponding identified parameters are also shown in Table XIII.

TABLE XIII
THE IDENTIFIED PARAMETERS FOR THE SIGMA.7 SUBSYSTEM

Parameter Value Unit
M 1.4402 kg
fv 1.6496 Ns/m
fc 0.7074 N
K 5.0636 N/m
d -0.1838 [N]

Fig. 34. The identified model output (blue) superimposed over the measured position and velocity data
(grey) from the sigma.7. This plot shows the estimation data used to identify the model. The NRMSE
values have been included in the figure.
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Fig. 35. The identified model output (blue) superimposed over the measured position and velocity data
(grey) from the sigma.7. This plot shows the validation data used to validate the model. The NRMSE
values have been included in the figure.

The performance of this model over the chosen time horizon of 0.5 s, as depicted in
Figure 36, also performs quite a bit better than that of the linear model. However, the
most interesting part is that this representation is essentially a piecewise linear system
that switches between two states due to the incorporation of the sign function. This
behaviour changes with the velocity direction of the sigma.7, which may correspond
to the sigma.7 experiencing less friction when moving down into the direction of
gravity and more during an upward movement.
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Fig. 36. In this figure, the model output of a nonlinear model and the linear model described in this
section have been plotted. Every 0.5 seconds, the initial conditions of the model are reapplied based on
the measured position and velocity data of the sigma.7. Additionally, the NMRSE errors, based on the
mean of the measured data, have been noted.

Whilst this model does perform significantly better than the linear model, its nonlinear
nature made obtaining and implementing this model quite difficult. Due to limitations
in time and complexity, the project itself was continued with the linear model.
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IV. APPENDIX IV - MODEL PREDICTIVE CONTROLLER DESIGN

Given a discrete LTI system described by the following form.

x(k + 1) = Adx(k) + Bdu(k) (105)
y(k) = Cdx(k) (106)

where Ad ∈ Rn×n, Bd ∈ Rn, and Cd ∈ Rp×n for which n is defined to be the number
of states, and p the number of outputs. Similarly, x ∈ Rn, u ∈ R, and y ∈ Rp.

A. Slew constraints

To incorporate slew constraints within the MPC the basic state-space representation is
augmented with an additional state xu(k) = u(k−1) using ∆u(k) = u(k)−u(k−1)
to the following form.

[
x(k + 1)
xu(k + 1)

]
=

[
Ad Bd
0 1

] [
x(k)
xu(k)

]
+

[
Bd
0

]
∆u(k) (107)

= Aa
[

x(k)
xu(k)

]
+ Ba∆u(k)

y(k) =
[
Cd 0

] [ x(k)
xu(k)

]
(108)

= Ca
[

x(k)
xu(k)

]

where Aa, Ba, and Ca represent the augmented state-space matrices, the subscript a
referencing to the augmented system.

B. State Solution

By expressing the states in terms of the inputs and the initial condition, the number
of variables involved in the optimization may be reduced. This is done by recursively
substituting the augmented state vector xa(k) into the dynamics of xa(k+1), resulting
in the following formula.

xa(k) = Akaxa(0) +
k−1∑

j=0

Ak−1−j
a Ba∆u(j) (109)

By placing xa(1) until xa(N) in a vector xa,N ∈ RnN , the state solution over the
entirety of the MPC horizon N can be obtained. The same may be done for the
inputs indicated by ∆ua,N ∈ RmN .

xa,N = Sxa(0) + T∆ua,N (110)

where S ∈ R(n+1)N×(n+1), T ∈ R(n+1)N×N , and initial condition xa(0) ∈ Rn+1

These matrices only depend on Aa and Ba, allowing them to be computed once.
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C. Constraints

The plant consists of a cascade of several systems, the force dimension sigma.7
haptic interface, the quadcopter dynamics with its internal controller, and a gain to
compensate for the differences in workspaces. As a result, the system is subject
to both constraints related to mechanical limitations and desired constraints. The
constraint sets are given as follows.

U := {∆u(k) ∈ R, |∆u(k)| ≤ 2} (111)

X :=

{
xa(k) ∈ Rn+1,

[
−0.115
−2

]
≤

[
zs(k + 1)
xu(k + 1)

]
≤

[
0.132
2

]}
. (112)

Similar to subsection IV-B the state constraints may also be rewritten in terms of
the initial condition and the input. This is done by combining the state solution in
Equation 110, with the augmented system. As a result, they are depicted as inequality
constraints in a way that is accepted by most optimization solvers.

[
−T
T

]
∆ua,N ≤

[
−(xmin − Sxa(0))

xmax − Sxa(0)

]
(113)

Due to the dependency on the initial state at the start of each time step, this constraint
must be implemented online and recomputed at every time step.

D. Optimal Control Problem

The MPC problem with no reference tracking is slightly different.

PN (xa(0)) :





min
∆u0,...,∆uN−1

J(xa(0),∆ua,N )

s.t xa(k + 1) = Aaxa(k) + Ba∆u(k)
xa(0) ∈ X
xa(k + 1) ∈ X, k = 0, . . . , N

∆u(k) ∈ U, k = 0, . . . , N − 1

(114)

The objective function J(·) to be minimized in the MPC optimization is a quadratic
function as follows:

J(xa(0),∆ua,N ) =

N−1∑

j=0

{ℓ(x(j),∆u(j))}+ Vf (x(N))) (115)

where ℓ(·) depicting the stage cost and Vf (·) the terminal cost of the objective
function.

ℓ(x(k),∆u(k)) = ||x(k)||2Q + ||∆u(k)||2R (116)

Vf (x(k)) = ||x(k)||2Qf (117)

In practice, the cost function may also be expressed in terms of the inputs and the
initial condition.

J(xa(0),∆ua,N ) =



x(0)

...
x(N)




T 


Q 0 0

0
. . . 0

0 0 Qf






x(0)

...
x(N)


 (118)
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+




∆u(0)
...

∆u(N − 1)




T 

R 0 0

0
. . . 0

0 0 R







∆u(0)
...

∆u(N − 1)




= xTa,N Q̃xa,N +∆uTa,N R̃∆ua,N
= (Sxa(0) + T∆ua,N )T Q̃ (119)
(Sxa(0) + T∆ua,N ) (120)

+∆uTa,N R̃∆ua,N
= xa(0)TST Q̃Sxa(0) (121)

+ 2xa(0)TST Q̃T∆ua,N
+∆uTa,N (TT Q̃T + R̃)∆ua,N (122)

≈ 1

2
∆uTa,NH∆ua,N + fT∆ua,N (123)

In MATLAB, this formulation is useful for solving quadratic programming problems,
which are often represented as follows:

JM =
1

2
xTHx + fT x (124)

where x represents the optimization variable ∆ua,N , H = 2(TT Q̃T + R̃), and fT =
2xa(0)TST Q̃T Since f depends on xa(0) it must be updated at the beginning of each
optimization.

E. Optimal Control Problem - Reference Tracking

The MPC problem, with reference tracking, is then reformulated as the following
optimal control problem.

PN (xa(0)) :





min
∆u0,...,∆uN−1

JR(xa(0),∆ua,N )

s.t xa(k + 1) = Aaxa(k) + Ba∆u(k)
xa(0) = xa(0) ∈ X− xr,

xa(k + 1) ∈ X− xr,

k = 0, . . . , N

∆u(k) ∈ U− ur,

k = 0, . . . , N − 1

(125)

The objective function JR(·) is adjusted slightly in comparison to J(·) for the
reference tracking problem. The stage cost ℓ(·) and the terminal cost Vf (·) of the
objective function are now defined relative to the reference.

ℓ(x(k),∆u(k)) =||x(k)− xref (k)||2Q + . . . (126)

||∆u(k)−∆uref (k)||2R
Vf (x(k)) = ||x(k)− xref (k)||2Qf (127)
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Rewriting this cost function is a similar process as done for Equation 123. In practice,
the cost function may also be expressed in terms of the inputs and the initial condition.

JR(xa(0),∆ua,N ) = (xa,N − xref,N )T Q̃(xa,N − xref,N )

+ (∆ua,N −∆uref,N )T R̃(∆ua,N −∆uref,N )

≈ ∆uTa,N (TT Q̃T + R̃)∆ua,N
+ 2(xa(0)TST Q̃T (128)

− xTref,N Q̃T −∆uTref,N R̃)∆ua,N (129)

≈ ∆uTa,NH∆ua,N + 2fT∆ua,N (130)

where H remains the same, but fT = 2(xa(0)TST Q̃T−xTref,N Q̃T−∆uTref,N R̃) which
depends on xa(0), xref,N , and ∆uref,N . Where xref,N ∈ RnN , and ∆uref,N ∈ RmN
are the reference vectors stacked.
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V. APPENDIX VI - ADDITIONAL RESULTS

The main results of the complete framework are presented in section III. The
following section presents some additional results and measurements that tie into
subsection III-C, specifically related to Figure 15, providing more details and context.

A. Pilot Experiment

The main results of the complete framework are presented in section III. The
following section presents some additional results and measurements that tie into the
pilot experiment. During the pilot experiment, the human participant was provided
with two different references, which are both depicted below. For additional clarity,
the figures have also been separated into passive participation and active participation.
Reference 1 is the same as depicted in section III. However, reference 2 is an
additional set of data taken.

B. Reference 1 - Passive Participation

Fig. 37. A set of repeated step references provided as an altitude reference to the MPC (depicted by
the black line) to create an overview of the effects of friction on the system. The blue line and red lines
present the experimental and simulation results, respectively, for comparison. The yellow line indicated
results by the human participant.
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Fig. 38. A companion figure to Figure 37 depicting the control input determined by the MPC.
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C. Reference 1 - Active Participation

Fig. 39. A set of repeated step references provided as an altitude reference to the MPC (depicted by
the black line) to create an overview of the effects of friction on the system. The blue line and red lines
present the experimental and simulation results, respectively, for comparison. The yellow line indicated
results by the human participant.

Fig. 40. A companion figure to Figure 39 depicting the control input determined by the MPC.
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D. Reference 2 - Passive Participation

During the pilot experiment, the response of the participant to reference 2 was quite
interesting. Between 10–20 seconds, they only noticed the forces exerted by the
Sigma.7 when they started moving the end-effector up slightly. It was only by feeling
a force differential that they were able to determine that there was indeed a force
pushing in another direction. As may be observed in Figure 41, the forces command
provided by the MPC in that time frame was the maximum of 2 N.

Fig. 41. A set of repeated step references provided as an altitude reference to the MPC (depicted by
the black line) to create an overview of the effects of friction on the system. The blue line and red lines
present the experimental and simulation results, respectively, for comparison. The yellow line indicated
results by the human participant.
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Fig. 42. A companion figure to Figure 41 depicting the control input determined by the MPC.



f

E. Reference 2 - Active Participation

Fig. 43. A set of repeated step references provided as an altitude reference to the MPC (depicted by
the black line) to create an overview of the effects of friction on the system. The blue line and red lines
present the experimental and simulation results, respectively, for comparison. The yellow line indicated
results by the human participant.

Fig. 44. A companion figure to Figure 43 depicting the control input determined by the MPC.
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VI. APPENDIX VII - HAPTIC RENDERING

Haptic rendering is the process that allows for the sense of touch to be reproduced
when interacting with virtual objects. In 1995, Salisbury et al. defined haptic rendering
as “the process of computing and generating forces in response to user interactions
with virtual objects” [37]. There are a few studies that propose the addition of haptic
rendering supports the user during motor task execution, and are cautiously hopeful
that the additional haptic information itself may be beneficial to the motor learning
process [38, 39, 40]. As a result, the topic was an additional point of interest during
this study. However, due to the very nature of quadcopter dynamics being rather fast,
the focus of the project quickly came to lie with the MPC. We made the choice to
include the work and observations made on the addition of Haptic Rendering in the
appendix.

In this section, we briefly explore the use of haptic rendering in combination
with quadcopter dynamics to provide real-time feedback on the drone’s states. The
concept was to project the forces exerted on the quadcopter frame during flight,
onto the haptic interface, such that the human operator may feel the influence of
their action during task execution. The haptic feedback is delivered through the
Force Dimension Sigma.7, a seven-degree-of-freedom haptic interface. This device
is capable of rendering haptic information across all six degrees of freedom of a
quadcopter, making it a suitable choice.

As mentioned in subsection II-B, the quadcopter flight mode is in Stabilized Mode
which require a set of PID controllers governing the roll, pitch, yaw rate, and altitude
rate axes, influencing the systems’ dynamics (see Figure 8). As a result of the
control infrastructure onboard the drone, the responsiveness of the quadcopter to
human control input is increased. These controllers govern the forces exerted by the
quadcopter motors such that the desired rotations and velocities are reached. As a
result, it is actually the onboard PID controllers that become the governing source
for haptic rendering.

The forces exerted on the quadcopter frame are, effectively, governed by Newton’s
law F = ma. Accelerations are often very noisy signals, both as measurements or
modelled variables, and require additional filtering. As is, these accelerations cannot
be provided as a signal to the haptic interface. However, other than this fundamental
issue, there is also the very nature of the quadcopter system dynamics to consider
— it is fast. By design, quadcopter respond and move rather fast in 3D space.

Consider the following input sequence, depicted in Figure 45, that we provided to the
Sigma.7 end-effector. This is an input to the z-axis, axis 0, axis 1, and axis 2 in an
attempt to simply fly the quadcopter through the virtual environment. The resulting
accelerations, depicted in Figure 46, are very noisy signals. The linear vertical of the
quadcopter offers a relatively slow signal overall. Provided the signal can be filtered
properly without introducing significant delays, it could prove to be a useful axis for
haptic rendering.

However, rotational accelerations produce a more erratic and short-lived signal, rarely
lasting more than a fraction of a second. Many are in the order of 0.1 s long. which
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makes it challenging for users to interpret useful feedback regarding the quadcopter’s
orientation. In fact, it is so brief that the aforementioned problem of the signal
containing high-frequency content becomes the problem. The Sigma.7 is extremely
sensitive in its rotational axis, and directly providing the unfiltered accelerations to
the end-effector causes it to respond to its own force commands.

Fig. 45. This figure shows the measurements taken by the Sigma.7 as the author flew the quadcopter
through the virtual environment. From top to bottom they correspond to references for the quadcopter as
the desired altitude rate, roll angle, pitch angle, and yaw rate.

Fig. 46. This figure shows the resulting acceleration of the quadcopter from the input provided in Figure 45.

As a result, while the linear accelerations offer a potentially reliable basis useful
for haptic rendering, the rotational accelerations pose challenges for consistent and
actionable feedback.

As a last brief experiment, the linear accelerations of the z-axis were provided as
force feedback, using the aforementioned F = ma as a preliminary test. The results
of which are depicted in Figure 47. In this figure, we can see that the influence of
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my arm had minimal effect in stabilizing the noisy nature of the signal. It might be
that the high-frequency content of the accelerations cannot be counteracted by the
natural stiffness of my arm. But by providing this noisy signal as force-feedback, the
Sigma.7 responds to its own force commands, exacerbating the effect. This makes
for very uncomfortable force feedback.

Fig. 47. This figure depicts the impact of the human arm on the haptic rendering should the z-acceleration
be used unfiltered.

Further research into the topic was halted, however, some suggestions can be made.
The linear accelerations may still be an interesting source for haptic rendering,
however, additional filtering is required. As this method must be applicable real-time,
as well as with minimal time delays involved, a potential suitable method could be
the application of a Kalman Filter.
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