
1990 ACM International Conference on Supercomputing,
June 11-15, 1990, Amsterdam, The Netherlands

A Method for Parallel Program Generation with an Application to the Booster
Language†

Edwin M. Paalvast, Arjan J. van Gemund
TNO Institute of Applied Computer Science (ITI-TNO)

P.O. Box 214, NL-2600 AE Delft, The Netherlands

Henk J. Sips
Delft University of Technology

P.O. Box 5046, NL-2600 GA Delft, The Netherlands

Abstract

This paper describes a translation method for the automatic
parallelization of programs based on a separately specified
representation of the data. The method unifies the concept
of data-representation on the algorithm-level as well as
machine-level, based on the so-called view concept. It is
shown that given a decomposition of the data, application
of the translation method to the view-based Booster pro-
gramming language results in efficient SPMD-code for dis-
tributed- as well as shared-memory architectures. It will be
argued that the method is not restricted to Booster, but can
also be applied to other languages.

1. Introduction

In programming either shared- or distributed-memory paral-
lel computers, programmers would like to consider them as
being uni-processors and supply as little extra information
as possible on code parallelization and data partitioning. On
the other hand, maximum speed-up is desired, without loss
of portability. This trade-off is reflected in the existence of
a variety of parallel language paradigms, which, regarding
to the decomposition method, can be divided into two cate-
gories: implicit and explicit. Languages based on implicit
descriptions, like functional [Hudak89, Chen88] and
dataflow languages [Arvind88], leave the detection of paral-
lelism and mapping onto a parallel machine to the com-
piler. Unfortunately, contemporary compilers do not pro-
duce efficient translations for arbitrary algorithm-machine
combinations. In turn, if a programmer would know the
optimal mapping of an algorithm onto a certain architec-
ture most implicit description languages do not provide
facilities to express this mapping explicitly. An exception
to this is described in [Hudak88].

†This research is partially funded by SPIN

Most languages based on explicit descriptions specify
parallelism c.q. communication and synchronization as in-
tegral part of the algorithm. This has the disadvantage that
one has to program multiple threads of control, which are
generally very hard to debug [Karp88]. Hence, experimenta-
tion with different versions of the same parallel algorithm,
for example different decompositions, is in general rather
cumbersome. Comparably small changes may require ma-
jor program restructuring.

In this paper, we describe a different explicit approach,
that pairs the flexibility of the implicit with the expres-
siveness of the explicit. In the approach algorithm descrip-
tion and algorithm decomposition are described separately.
Efficient SPMD (Single Program Multiple Data) [Karp87]
code, in particular communication and synchronization, is
generated automatically by the compiler. Furthermore, the
compiler uses a model base of target architectures in order
to optimize computation and communication efficiency.

The approach of inducing parallelism by explicitly de-
composing the data is not new. In [Callahan88, Gerndt89,
Kennedy89] applications to Fortran are described, in
[Rogers89] to Id Nouveau, in [Koelbel87] to BLAZE, and
in [Quinn89] to C*. In particular application to Fortran is
limited, because of equivalencing, passing of array-subsec-
tions to subroutine calls, and any form of indirect address-
ing cannot be translated efficiently. A second limitation is
that the description of complex decompositions and
especially dynamic decompositions, i.e. a redistribution of
the data at run-time, is not feasible either. An exception is
[Kennedy89] where a method is presented to describe redis-
tribution. However, this method still has the drawback that
redistribution statements are intermingled with the program
code, which limits portability.

A more fundamental problem to these approaches is
that distinctive formalisms are used for the description of
algorithm and decomposition. Hence, a unified formal sys-
tem to reason about optimizing transformations at com-
pile-time is not possible. Furthermore, the approaches do
not address the issue in the general context of data represen-
tation. In our approach the way in which we "view" data on
the algorithm level is essential. The approach is illustrated
in Fig. 1. We specify the program P and the involved set
of data structures D. By adding the data representation D ∅

D', the compiler automatically generates an equivalent pro-
gram P' with the set of data structures D'.

P

D

P'

D'

Fig 1. The approach to program translation.

Especially for sparse data structures the possibility to
'view' them as a compact structure is very convenient from
the programmers point of view.

To illustrate our method, a high-level parallel pro-
gramming language called Booster is introduced in Section
2. Programs written in Booster are translated to imperative
languages, like (parallel) Fortran, C, ADA, or OCCAM.
For Fortran and C, the code-generation is not restricted to
distributed-memory computers, but code can also be gener-
ated for shared-memory- and vector computers. Section 3
describes the translation of Booster to SPMD-programs in
terms of a so-called view calculus. In addition, a number of
optimizations with respect to the translation are discussed.
In Section 4, the generation of a number of alternative
send/receive schemes are elaborated on and an example
translation of a Booster program to both a distributed- and
shared memory architecture is given. Finally, in Section 5
a brief description is given of the architecture of the
Booster translator.

2. The Booster Language

In this section the Booster language is discussed infor-
mally. For a more extensive treatment the reader is referred
to [Paalvast89a,b].

2 . 1 . Basic concepts

In a conventional programming language (such as Fortran)
the array is used as the basic data structure for storing large
amount of related data elements. These elements can be ac-
cessed by the use of indices into the array. An index is a
rigid pointer to a memory location. It is not possible in
these languages to reason about or manipulate indices
themselves. Only the data can be moved around or changed,
and it is precisely this which makes arrays so awkward
whenever sorting or inserting (for example) needs to take
place. The use of indirect addressing (e.g., index files) to
keep a large database sorted on different keywords is an ex-
ample of how useful it can be to regard the indices to an ar-
ray as a separate, manoeuvrable collection of entities. This
is particularly true for parallel programming, where it is
often important to identify sets of index values that refer to
data upon which computations may be executed in parallel.
A comparable approach is followed in a language like
ACTUS [Perrot87].

Data- and index domain
In Booster, these observations have resulted in a strict dis-
tinction between data- and index domain. The data domain
consists of several possible data types, just as in conven-

tional languages. Supported in Booster are integers, reals,
booleans, and records. The index domain consists of non-
negative integer values. On the index domain ordered index
sets can be defined, and operations can be performed on
these sets independent of the data-elements that the index
values in question refer to.

Shapes and views
There are two concepts in Booster to reflect the two do-
mains. The first is the shape, Booster’s equivalent of a tra-
ditional array: a finite set of elements of a certain data-type,
accessed through indices. Unlike arrays, shapes need not
necessarily be rectangular (for convenience we will, for the
moment, assume that they are). The ordered set of all
indices in the shape is called an index set. The second con-
cept is that of the view. A view is a function that takes the
index set of a certain shape as input, and returns a different
index set. Through the indices in this new index set one
can still access the elements of the original shape, but it is
as though we now view the shape’s data-elements through
a different perspective, hence the name. Shapes are defined
in Booster as follows:

SHAPE A (20) OF REAL;
SHAPE B (3#10) OF REAL;

In the first statement, A is declared to be a vector of 20
numbers of the type real. The basic index set for this shape
is the ordered set {0, 1, ..., 19}. Next, B is declared to be a
matrix of 3 by 10 elements. The index set for this shape is
the ordered set {(0,0), (0,1), (0,2), (2,8), (2,9)}.

Content statements
In so-called content statements we can move and modify
the data stored in shapes:

A := 2.5;
A[10] := 5;
B[1,8] := 3.1416;

In the first content statement, all elements of A are initial-
ized to 2.5. In the second statement, the value 5 is stored in
the 10th element of A, and so on.

Arithmetic Operators
Apart from standard scalar operators Booster also supports
their multi-dimensional equivalents. For example, a vector
A times a scalar 2 is written as:

A := A*2;

Application of these multi-dimensional operators is re-
stricted to pairs of scalars and higher dimensional struc-
tures. Other operators can be specified with help of the
function construct, which is discussed shortly.

View Statements
We manipulate index sets in so-called view statements.
The easiest view to define is the identity view:

V <- A;

V is called a view identifier and does not need to be de-
clared. After this view statement the three content state-
ments will have exactly the same effect.

A[0] := A[10];
A[0] := V[10];
V[0] := V[10];

Note that no additional data structure is created. This is typ-
ical of all views. Also note the different assignment sym-
bols for view- and content-statements; ‘<-’ for view state-
ments and ‘:=’ for content statements.

Modules and Functions
A Booster program consists of a set of modules, where
each module has a number of input- and output-arguments.
Within a module it is possible to encapsulate a number of
view- and content statements in functions. Booster func-
tions, like modules, do not have side effects and when a
function has only one output argument and at most two
input arguments it may be used as an infix operator in con-
tent statements. An example of a Booster function is the
following:

FUNCTION
Vector_Mult PRIORITY 7 (V, W) -> (U);

V,W (n) OF REAL;
U (n # n) OF REAL;
BEGIN

U[i,j] := V[i] * W[j];
END;

Here a new language construct is introduced, the free vari-
able i and j. A treatment of the exact syntax and semantics
of this construct is deferred to the next section. This func-
tion assigns the vector-vector product Vi⋅Wj to Ui,j. The
keyword priority assigns a precedence to the function
Vector_Mult which is used to decide evaluation order when
the function is itself used as binary operator. Priority 7 cor-
responds with the priority of the '*' operator. E.g.,
2 + X Vector_Mult Y = 2 + (X Vector_Mult Y)

Control Flow
In addition to the content- and view-statements, Booster
also offers several control-flow constructs similar to those
found in conventional languages. Available are the IF
statement for conditional execution, and WHILE and ITER
statements for iteration purposes (ITER-loops execute a
fixed number of times, WHILE-loops execute as long as a
boolean condition evaluates true).

2 . 2 . View classes

Views basically come in three flavours, each of which will
be illustrated with a simple example.

Selection Views
The first non-trivial type of view we illustrate is the selec-
tion view:

V <- A[5:15];

V[0] := V[5];
A[5] := A[10];

Again, the two content statements are equivalent, given the
view statement that precedes them. The index expression
5:15 selects the subset or range of indices 5 through 15 of
A. After this statement, the identifier V can be used to ac-
cess A through the index set {0, 1, ... 14}. Note that the
element V[0] actually refers to A[5], etc: renumbering of
the index sets after a view statement causes all index sets to
start from zero, like the original index set does. A itself is
never affected by any view statement.

Permutation Views
The second type of view is the permutation view:

V[i] <- A[19-i];

The following content statements are equivalent:

V[0] := V[5];
A[19] := V[5];
A[19] := A[14];

The free variable i is used to access the values of A
through V in reverse order. In fact, permutation views are
an efficient alternative to create high level indirect address-
ing.

Dimension Changing Views
Free variables can be used for even more powerful pur-
poses, as is illustrated by the third type of view: the
dimension changing view:

V(4#5)[i,j] <- A[(4*i)+j];

The following content statements are equivalent:

V[0,0] := V[2,3];
A[0] := A[11];

The construct (4#5) explicitly specifies the index set that
should result from the view, or, put in another way, the
domains for the free variables i and j. In the permutation
view statement given in the previous sections, the domain
of i and hence the resulting index set could be deduced by
the compiler from the declaration of A. Here, the compiler
needs to be told how to partition the 20 elements of A over
the two dimensions of V. The identifier V now becomes for
all application purposes identical to a matrix shape. The
fact that the index set of this matrix refers, via a view func-
tion, to a one-dimensional vector is completely hidden
from the ‘user’ of V.

View Functions
Another example illustrates that selection views need not
always select consecutive ranges. At this time we introduce
the concept of a view function:

VIEW FUNCTION Even (V) -> (E);
V (n);
E (n div 2 + n mod 2);
BEGIN

E[i] <- V[2*i];

END;

The view function is a way of encapsulating related view
statements. Input and output arguments are specified and
their index sets declared. The use of the implicit index
parameter n allows the view function to be applied to vec-
tors of arbitrary length. No content statements may be used
in the body of a view function. Note that renumbering
compacts the selected collections of non-consecutive
indices into rectangular index sets that start from zero.

Below a more complex view function is given, which
uses the previously defined function Even and returns the
even and odd elements of A.

VIEW FUNCTION Unzip (V) -> (E, O);
V (n);
E (n div 2 + n mod 2);
O (n div 2);
BEGIN

E <- V[Even];
O[i] <- V[2*i+1];

END;

(E, O) <- Unzip(A); // Call in main program

Consequently, the three following content statements are
equivalent:

E[5] := O[5];
A[10] := A[11];
A[Even][5] := A[11];

2 . 3 . Example program

We will illustrate some of the concepts of Booster by
means of the well-known Gaussian elimination algorithm
(without pivoting). This example is also used to illustrate
the decomposition technique in Section 2.4. Only those
parts of the algorithm are described which are relevant to
the discussion. The algorithm takes a previously declared
non-singular n x n matrix A as input. The algorithm elimi-
nates in successive steps each column until an upper trian-
gular matrix results. In each step four selections are in-
volved: the pivot element E, the pivot row R, the pivot
column C, and the remainder B (Fig.2). These selections of
the matrix A are defined by the view function pivoting.
The generic $-symbol denotes the upperbound of the index
set the view is applied to. In this case $ equals m-1.

VIEW FUNCTION pivoting (Q) -> (E,R,C,B)
Q (m # m);
BEGIN

E <- Q[0,0];
R <- Q[0,1:$];
C <- Q[1:$,0];
B <- Q[1:$,1:$];

END;

pivot

B

E R

C

Fig.2 Representation of the view function
pivoting

The algorithm is described in terms of these views:

H <- A;
WHILE size(H) > 1 DO

(E, R, C, B) <- pivoting(H);
B := B - C Vector_Mult R / E;
H <- H[1:$,1:$];

END;

In the initial step of the algorithm, the index set of A is
assigned to the view identifier H. The remainder of the
algorithm is coded as a conditional loop with three state-
ments. In the first statement the views E, R, C, and B are
defined by application of the view function pivoting to H.
The content statement describes computation associated
with the current views E, R, C, and B. The last statement
re-defines H in terms of the previous view. This view
recursion is illustrated in Fig. 3. The algorithm terminates
if the size of view H is equal to 1.

E'

C'

R'

B'

E R

C

Fig.3 Representation of the repeated application
of the view function pivoting

2 . 4 . Mapping data and algorithms to (parallel)
machines

Before introducing the mapping description formalism of
Booster, we return to the shape and view concepts that have
been introduced in Section 2. Shapes define the total
amount of data-space needed for representing the values the
algorithm operates upon. Shapes, however, need not neces-
sarily be translated directly to equally dimensionalized data
structures in the target languages. The programmer may
influence the representation of shapes, by relating the ac-
tual representation in a virtual machine and the shape in
question through a view. This principle is illustrated in
Fig.4.

Shape

Views

 Data-
representation

(e.g.
Decomposition)

Algorithm Level

Booster Level

(Virtual) Machine
Level

Fig. 4 Data representation

= view function

As an example, consider a shape A with index set n#m and
two different mappings of this shape on a virtual machine:

A[i,j] <- Lin_Mem[i*n+j];
A[i,j] <- Lin_Mem[j*m+i];

Note that the shape A is regarded as a view on the resource
Lin_Mem of the virtual machine. The two mappings give
a one-dimensional representation of the two-dimensional
shape A; the first a row-wise storage scheme and the second
a column-wise storage scheme.

Data decomposition
To obtain a partitioning of a shape, again the view concept
can be used. If, for example, a two-dimensional shape is to
be decomposed in a row-wise fashion for a parallel machine
with p processors, this is described using the following
view function depicted in Fig. 5.

VIEW FUNCTION row_decompose (M, p) -> (Q);
M (p # (n div p) # n);
Q (n # n);
BEGIN
Q[i,j] <- M[i div (n div p), i mod (n div p), j];

END;

0

1
...
p-1

0 1 .. p-1

Shape
 or
View

Machine
Level
Representation

 Fig. 5 Row-wise decomposition

Returning to the Gaussian elimination example possible
mappings are:

A <- row_decompose(M,p);
or

H <- row_decompose(M,p);

The first view statement assigns parts of shape A to model
M with p processors, effectively resulting in a static decom-
position. The second view statement assigns parts of the
view identifier H to the processor-model M. Note that with
the decomposition on the view identifier we surpass the
shape-level (see Fig 3.). The effect of this dynamic decom-
position on H, on which all the current calculation is per-
formed, is load-balancing. This in contrast to the first
decomposition scheme in which an increasing number pro-
cessors will become idle as the iteration proceeds. We will
return to this in Section 4. The mapping of the algorithm
to a machine-model can be specified on different levels of
abstraction. These range from a global partitioning of
shapes or views (as was shown above) or to a detailed,
machine specific, mapping onto processors and memories.

3. The translation of Booster

3 . 1 . Basic view calculus

Due to the inherent complexity of the operations supported
by the Booster language, a so-called view calculus has been
developed, providing a formal foundation for many types of
compile-time optimizing transformations, necessary to
ensure an efficient execution. Key aspect of this functional
calculus is expression-level view arithmetic, by which the
operational semantics of Booster expressions are defined
through rewrite rules. In Section 3.1 only those subjects
and techniques will be discussed which are necessary for a
full understanding of the principles behind the data decom-
position driven SPMD code generation method and its
application to the Gaussian elimination example of Section
2.3. A more comprehensive treatment including e.g., vec-
torization issues can be found in [Gemund89].

Projection
The unary projection function, denoted [i], 0 ≤ i ≤ n-1, se-
lects the element vi when applied to the 1-dimensional
variable V = (v0, v1, ..., vn-1). In contrast to the conven-
tion used in Booster, [i] is now applied as a function and
consequently we write [i]V = vi, rather than V[i]. In the d-
dimensional case, a projection is defined for each dimen-
sion. Let A = ((a0,0, ..., a0,m-1), ..., (an-1,0, ..., an-1,m-1)) be
a 2-dimensional variable. The two projection functions are
[i,_]A = (ai,0, ..., ai,m-1), and [_,j]A = (a0,j, ..., an-1,j).

Construction
The vector construction function, denoted vec(i,a:b), is a
function which, when applied to [f(i)]V, returns a vector of
instances ([f(a)]V, [f(a+1)]V, ..., [f(b)]V), b ≥ a, where
i,a,b,f(i) ∈ N. Observe, that the usual parentheses to
denote the application of vec(i,a:b) to [f(i)]V are omitted.
This will be done throughout the sequel unless ambiguity
arises. Multi-dimensional variables are constructed by vec-
tor nesting, like in the following 2 ∞ 2 matrix:

vec(i,0:1) vec(j,0:1) [2*i+j]V =
vec(i,0:1) ([2*i]V, [2*i+1]V) =
(([0]V, [1]V), ([2]V, [3]V))

Construction functions can also have predicates. The func-
tion vec(i,a:b | Pi) means that the instances parameterized
by i are only generated if Pi evaluates TRUE. For instance,
vec(i,3:5) | i ≥ 4) [i]V = ([4]V,[5]V).

Functional composition of vector constructors and pro-
jectors allows for the representation of any view- (or shape)
expression. Both constructs form the basic elements in
terms of which any compile-time transformation is defined.

View reduction
Consider the variable V' = (v'0, v'1, v'2), defined by V' =
[3:5]V. Hence, V' = (v3, v4, v5), which is formally repre-
sented by V' = vec(i,0:2) [i+3]V. In effect, this implies the
definition of [3:5]V by the rewrite rule

[3:5]V = vec(i,0:2) [i+3]V

Since v'j = vj+3, j = 0,1,2, the reference to an element [j]V'
corresponds to the reference [j][3:5]V = [j+3]V. The reduc-
tion of the composite view [j][3:5]V = [j+3]V is formally
stated by the following rewrite rule (where f(i)=i+3), i.e.

[j] vec(i,a:b) [f(i)]V= [f(j+a)]V , j = 0, ..., b-a (3.1)

Although (3.1) states the reduction rule for the 1-dimen-
sional case, similar rules for higher dimensions are easily
derived. Consider the following 2-dimensional reduction

[j,_] vec(i,a:b) [f(i),_]A = [f(j+a),_]A (3.2)

The view reduction in compile-time is fundamental to
Booster's view programming concept: views can be
thought of as virtual data structures on which, like shapes,
any of the usual arithmetic operations are defined. The op-
erational semantics of a Booster expression requires any
view reference to be resolved by this technique to an irre-
ducible shape reference.

In the multi-dimensional case, element referencing is
formally expressed by composite projection. For example
[i,j]A = ai,j can be written as [j][i,_]A. Such rewrite rules
are useful in multi-dimensional reductions. For instance,
consider the view [transpose]A = AT, where [transpose] =
vec(i,0:$) vec(j,0:$) [j,i] (as in Booster, $ binds at applica-
tion). Reduction of the 2-composite [transpose]2 =
[transpose][transpose] yields (terms subject to reduction are
bold faced)

vec(i,0:$) vec(j,0:$) [j,i]vec(u,0:$) vec(v,0:$) [v,u] =
vec(i,0:$) vec(j,0:$) [i][j,_]vec(u,0:$) vec(v,0:$) [v,u]

Application of (3.2), followed by application of (3.1),
yields

vec(i,0:$) vec(j,0:$)[i][j,_]vec(u,0:$)vec(v,0:$)[v,u]=
vec(i,0:$) vec(j,0:$) [i] vec(v,0:$) [v,j] =

vec(i,0:$) vec(j,0:$) [i,j] (3.3)

Expression (3.3) equals the identity view, which can be
cancelled altogether. Thus, the general reduction technique
is to shift projections to the right, leading to the cancella-
tion of constructors, as occurred twice in the previous
derivation.

As reduction of 2-composites might be performed as
previously discussed, reduction of k-composites necessi-
tates a more generic approach if k is not known at compile-
time. For instance, the translation of the Gaussian elimina-
tion program given in Section 2.3 involves compile-time
reduction of such a k-composite. In the process of resolv-
ing view recursion, the view statement

H <- H[1:$,1:$];

inside the loop is replaced by the non-recursive
(intermediary language) sequence

H <- [1:$,1:$]kA; k:=k+1;

where k = 0, 1, ... denotes an iteration counter generated in
the process. As [1:$][1:$] = [2:$], it can easily be seen by
induction that the k-composite [1:$,1:$]k reduces to
[k:$,k:$]. Hence, the views B, C , R , and E in the content
statement are eventually reduced to

B = [k+1:$,k+1:$]A, C = [k+1:$,k]A,
R = [k,k+1:$]A, E = [k,k]A (3.4)

Operator reduction
As mentioned in Section 2.1, Booster supports multi-di-
mensional operators. Their semantics are defined in terms
of basic scalar operations through operator reduction rules.
This type of rewrite rules are applied to transform expres-
sions in terms of operators which are directly supported by
the actual target architecture (e.g., scalar or vector opera-
tors). For example, consider the vector expression
[Even] (V + W), where V and W are n element vectors and
[Even] is defined according to Section 2.2, i.e. [Even] =
vec(i,0:∪ n/2 -1) [i]. The following reduction applies

vec(i,0:∪ n/2 -1) [i] (V + W) =
vec(i,0:∪ n/2 -1) ([i]V + [i]W)

which reduces the vector addition to a scalar addition. Apart
from multi-dimensional versions of the usual built-in oper-
ators ('+', '-', '*', '/', etc.), Booster supports the definition
of user-defined operators (e.g., the Vector_Mult operator
in Section 2.1). Note, that operator reduction automatically
implements drag-through, i.e. sub-expressions like (V +
W) in the previous example need not be evaluated prior to
the application of [Even], since, by the same type of
rewrite rule, it holds [Even] (V + W) = [Even]V +
[Even]W, thus eliminating excessive computation and the
need for intermediate storage.

Translation of Booster content statements
Formally, translation of a content statement S is based on
a sequence of transformations applied to its corresponding
post condition expression P(S). As a typical example of

the transformation process, we consider translation of the
content statement S inside the loop of the Gaussian elimi-
nation algorithm (Section 2.3), i.e.

B := B - C Vector_Mult R / E;

The post condition corresponding to this 2-dimensional as-
signment is obtained by adding a 2-dimensional identity
view vec(i,0:n-k-1) vec(j,0:n-k-1) [i,j] (see (3.3)), and re-
placing the assignment by a relational '=' operator
(effectively turning the content statement into a 2-dimen-
sional expression with each element returning true), i.e.

vec(i,0:$) vec(j,0:$)
[i,j] (B = B - C Vector_Mult R / E) (3.5)

Transformation of P(S) into P(S') is achieved by applica-
tion of both view- and operator reductions, based on ex-
pression equivalence. The order of reductions is arbitrary.
After transformation, code is generated for S' in which each
vector constructor maps to an index loop constructor. The
following sequence of operator reductions applies in case of
scalar processing (operators subject to reduction are '=', '-',
and Vector_Mult, respectively)

[i,j] (B = B - C Vector_Mult R / E)
[i,j] B = [i,j] (B - C Vector_Mult R / E)
[i,j] B = [i,j] B - [i,j] (C Vector_Mult R / E)

Operator reduction of Vector_Mult, according to the oper-
ational Booster definition (Section 2.1), is given by

 [i,j] (C Vector_Mult R) = [i]C * [j]R

Hence, (3.5) reduces to

vec(i,0:$) vec(j,0:$)
[i,j] B = [i,j] B - [i]C * [j]R / E (3.6)

Substitution of (3.4) and subsequent view reduction finally
yields the following post condition P(S'), i.e.

vec(i,0:n-k-2) vec(j,0:n-k-2)
{[i+k+1,j+k+1]A = [i+k+1,j+k+1]A -

 [i+k+1,k]A * [k,j+k+1]A / [k,k]A } (3.7)

which is mapped to the following imperative style pseudo
code S':

for i := 0 to n-k-2 do
for j := 0 to n-k-2 do
A[i+k+1,j+k+1] = A[i+k+1,j+k+1] -

A[i+k+1,k] * A[k,j+k+1] / A[k,k];

In general, the course of transformation depends on the
available operations supported by the actual target architec-
ture, and is guided by execution cost minimization. An ex-
ample of such an optimizing transformation is vectoriza-
tion, i.e. rewriting P(S) in terms of vector operators. Data
decomposition, i.e. rewriting P(S) in terms of the actual
memory structure of the target machine, affects the trans-

formation process in a similar way. This is the main sub-
ject of the following sections.

3 . 2 . Data decomposition

In Booster the shape is the basic data structure on which
the algorithmic operations are performed, typically through
the use of views. As discussed in Section 2.4 however, a
general d-dimensional shape, in turn, is nothing but an ab-
straction of its actual memory map, which, in a uniproces-
sor, is 1-dimensional. Thus, a shape itself can be regarded
as a view of its memory map. Consider the 2-dimensional
shape A with index set n # m. Let AM denote its memory
map. Then the storage scheme can be expressed by the
view function [M] according to A = [M]AM. For instance,
a column-wise storage scheme is represented by [M] =
vec(i,0:n-1) vec(j,0:m-1) [j.m+i]. If, for any reason, code
generation is desired in terms of AM , rather than A , the
translation scheme will include substitution of A by
[M]AM and subsequent view reduction, e.g., [u,v]A =
[u,v][M]AM = [v.m+u]AM.

The same kind of substitution and reduction scheme is
used for the generation of SPMD code. Consider a dis-
tributed-memory machine with pmax virtual processors.
Quite similar to the previous discussion, decomposition of
a shape A is essentially a specification of its distributed
map ADM through specification of a decomposition
scheme [D], i.e. A = [D]ADM. For instance, consider the
view function row_decompose (Section 2.4), where

[D] = vec(i,0:n-1) vec(j:0,n-1)
[i div (n/pmax), i mod (n/pmax), j]

Contrary to the uniprocessor case, ADM now represents a
vector of pmax local memory maps, effectively defining the
first index axis as processor axis and the remaining index
space local to each processor. In principle, automatic paral-
lel program generation is essentially based on a similar
translation scheme as previously discussed, i.e. substitu-
tion of A by [D]ADM and subsequent reduction.

3 . 3 . SPMD generation concept

We present the concept behind the automatic SPMD code
generation scheme based on the translation of a simple 1-
dimensional Booster content statement. The scheme is
easily generalized to more complex operations. Consider
translation of the following, irreducible, post condition

vec(q,qmin:qmax) { [f(q)]V = Expr([g(q)]W) } (3.8)

where V and W are 1-dimensional shapes and Expr is some
arithmetic expression of which [g(q)]W is a term. Let V
and W be partitioned according to the data decompositions
(vector lengths |V| and |W|)

V = vec(i,0:|V|-1) [πV(i),λV(i)]VDM

W = vec(i,0:|W|-1) [πW(i),λW(i)]WDM (3.9)

where πV(i), πW(i), and λV(i), λW(i) denote processor
indices and local memory indices, respectively. After sub-
stitution in (3.8), the post condition becomes

vec(q,qmin:qmax)

{ [πV(f(q)),λV(f(q))]VDM =

Expr([πW(g(q)),λW(g(q))]WDM) } (3.10)

The most straightforward translation scheme would be di-
rectly based on (3.10). Optimizations will be discussed in
the next section. The usual convention that each processor
is responsible for the production of its own local data, im-
plies that each processor p traverses the entire index space
qmin ... qmax and only performs the calculation on the
condition πV(f(q)) = p. The corresponding transformation of
(3.10) is realized by addition of a vec(p,0:pmax-1) construc-
tor (which reflects the parallel computation) combined with
a predicate πV(f(q)) = p, i.e.

vec(p,0:pmax-1) vec(q,qmin:qmax | πV(f(q)) = p)

{ [p,λV(f(q))]VDM =

Expr([πW(g(q)),λW(g(q))]WDM) } (3.11)

Note, that, despite the increase in dimension, the semantics
of (3.11) remains the same as exactly the same index refer-
ences are generated.

For a distributed-memory model of computation, the
next step is to express (3.11) in terms of local data. Let
VL

p denote the partition of VDM local to processor p, such

that VDM = vec(p,0:pmax-1)VL
p. Let WL

p be defined simi-
larly. Then

[p,λV(f(q))]VDM = [λV(f(q))]VL
p (3.12)

and (using a common functional notation)

[πW(g(q)),λW(g(q))]WDM =
if (πW(g(q)) = p)

then [λW(g(q))]WL
p

else fetch(πW(g(q)),λW(g(q)))(3.13)

where the fetch function returns the element with local in-
dex λW(g(q)) residing at processor πW(g(q)). Note, that for
the purpose of this introductory discussion a message-pass-
ing scheme is assumed in which communication is initi-
ated by calculating processors issuing the fetch call. A full
discussion on the generation of message-passing primitives
will be deferred until Section 4.

By substitution of (3.12) and (3.13), (3.11) maps to
the following imperative style SPMD pseudo code for all
processors p = 0, ..., pmax-1, where p is assumed to be
provided by the run-time function myself:

p := myself;

for q := qmin to qmax do

if πV(f(q)) = p then

if πW(g(q)) = p then
VL[λV(f(q))] := Expr(WL[λW(g(q))]);

else

VL[λV(f(q))] :=
Expr(fetch(πW(g(q)),λW(g(q))));

Note, that transformation to a shared-memory model of
computation is even more straightforward. Back-substitu-
tion of (3.9) in (3.10) yields the following (worker) code

p := myself;
for q := qmin to qmax do

if πV(f(q)) = p then

V[f(q)] := Expr(W[g(q)]);

The applicability of the SPMD generation method pre-
sented to shared-memory machines, remains throughout the
sequel.

3 . 4 . Optimization

As mentioned in the previous section, code generation
based on (3.11) is straightforward but not very efficient.
All processors traverse the entire index space testing the
condition πV(f(q)) = p, whereas the number of references
per individual processor might be reduced by a factor pmax,
assuming a fair partitioning. Let Qp denote the exact set of
indices to be covered by processor p, i.e.

Qp = { q | πV(f(q)) = p, qmin ≤ q ≤ qmax }

Let the distribution function θp(t) be chosen such, that it
maps a consecutive index domain t = tp,min ... tp,max to
Qp. Then (3.11) can be reduced to

vec(p,0:pmax-1) vec(t,tp,min:tp,max)

{ [p,λV(f(θp(t)))]VDM =

Expr([πW(g(θp(t))),λW(g(θp(t)))]WDM) } (3.14)

Thus, all the run-time evaluation overhead for generating
the proper index set Qp can be avoided if the distribution
parameters θp, tp,min , tp,max are known at compile-time.
For block-decompositions and scatter-decompositions the
following two theorems illustrate the conditions for which
such an optimization is obtained.

Theorem 1:
Let VDM be a block-decomposition of V according to

V = vec(i,0:|V|-1) [πV(i),λV(i)]VDM

where πV(i) = i div c, λV(i) = i mod c, and c denotes the
maximum block size per processor. If f(q) is a monotonic

increasing function in q, then the distribution parameters
are given by

θp(t) = t,

tp,min = MAX{qmin, ∪ f-1(c.p) },

tp,max = MIN{qmax, ∈ f-1(c.p+c-1) } (3.15)

Proof: The condition πV(f(q)) = p implies f(q) div c = p.

Hence, the range for f(q) is given by c.p ≤ f(q) ≤ c.p+c-1,

which yields q = ∪ f-1(c.p) ... ∈ f-1(c.p+c-1) iff f is mono-
tonic. Since this set of indices is consecutive, it simply
follows that θp(t) = t. Hence, tp,min and tp,max directly
follow from qmin ≤ t ≤ qmax.
[]

The theorem is also valid for monotonic decreasing func-
tions f(q), provided that the arguments of f-1 are exchanged
for tp,min and tp,max.

Theorem 2:
Let VDM be a scatter-decomposition of V according to

V = vec(i,0:|V|-1) [πV(i),λV(i)]VDM

where πV(i) = i mod pmax, λV(i) = i div pmax. If f is given

by f(q) = a.q+b, a ≥ 0, the distribution parameters are given
by

θp(t) = ψmin + (pmax/gcd(a,pmax)).t,
tp,min = 0,
tp,max = ∈ (qmax - ψmin)/(pmax/gcd(a,pmax)) (3.16)

where ψmin is the minimal solution in q of the linear

diophantine equation a.q - pmax
.k = p-b, given the con-

straint q ≥ qmin and gcd denotes the greatest common divi-
sor. If no solution to the diophantine equation exists, then
no optimization can be achieved.

Proof: The condition πV(f(q)) = p implies f(q) mod pmax

= p. Since f(q) = a.q+b this yields the linear diophantine
equation a.q - pmax

.k = p - b in the variables q and k. Let
ψmin denote the minimal solution in q given the constraint
q ≥ qmin (to be obtained by some usual iterative tech-
nique). Then the general solution qt = θp(t) is given by

θp(t) = ψmin + (pmax/gcd(a,pmax)).t. The range tp,min ≤ t
≤ tp,max follows from the constraint qmin ≤ θp(t) ≤ qmax.
By definition of ψmin and θp(t) it follows that tp,min = 0.
Finally, with respect to tp,max the constraint θp ≤ qmax
yields tp,max = ∈ (qmax - ψmin)/(pmax/gcd(a,pmax)) .
[]

For cases in which f(q) = q, ψmin has an analytical solu-

tion, i.e. ψmin = ∪ (qmin-p)/pmax . Hence, it holds that

θp(r) = p+pmax
.t as a = 1 and it also holds that tp,min = 0

and tp,max = ∈ (qmax-p)/pmax .
As discussed in Section 3.3, the convention that each

processor is responsible for the production of its own local
data, i.e. the produces [πV(f(q)),λV(f(q))]VDM, implies
testing the produce condition, i.e. πV(f(q)) = p. As illus-
trated by Theorem 1 and 2, under certain conditions this
test could be performed at compile-time. Clearly the same
technique applies to the test whether the uses, i.e.
[πW(g(q)),λW(g(q))]WDM, are stored local or are to be
fetched from another processor. Again, under the same con-
ditions, the use condition, i.e. πW(g(q)) = p, can be evalu-
ated at compile-time, resulting in a simple index set mem-
bership test. This point will be elaborated in Section 4.4.

4. Generation of send/receive statements

For the purpose of the introductory discussion in Section
3.3, the fetch primitive has been introduced in which
communication is solely initiated by the calculating pro-
cessor when the use condition πW(f(q)) = p evaluates false.
In general however, message-passing architectures usually
provide means of communication through a send/receive
scheme. Starting point for the following discussion is
(3.10), i.e.

vec(q,qmin:qmax)

{ [πV(f(q)),λV(f(q))]VDM =

Expr([πW(g(q)),λW(g(q))]WDM) } (4.1)

where for simplicity it is assumed that V and W are decom-
posed in the same number of partitions, i.e. pmax.

4 . 1 . Receive scheme

Similar to a fetch scheme described in Section 3.3, genera-
tion of receive calls is based on testing the use condition,
i.e. πW(g(q)) ≠ p, as a result of the convention that each
processor is responsible for a produce condition, i.e. updat-
ing those elements of VDM for which πV(f(q)) = p. Hence,
the transformation of (4.1) equals the post condition de-
scribed by (3.11), where in (3.13) the fetch call is replaced
by a receive call returning the element with local index
λW(g(q)) residing at processor πW(g(q)), i.e.

[πW(g(q)),λW(g(q))]WDM =
if (πW(g(q)) = p)

then [λW(g(q))]WL
p

else receive(πW(g(q)),λW(g(q))) (4.2)

4 . 2 . Send scheme

Contrary to the above scheme, however, one might have
considered an alternative convention, in which each proces-

sor is responsible for a use condition, i.e. processing those
indices q for which πW(g(q)) = p (those elements of WDM,
which are local to p). In such a complementary scheme,
(4.1) would have become

vec(p,0:pmax-1) vec(q,qmin:qmax | πW(g(q)) = p)

{ [πV(f(q)),λV(f(q))]VDM =

Expr([p,λW(g(q))]WDM) } (4.3)

in which the VDM and WDM references would be ex-
pressed in local terms according to

[πV(f(q)),λV(f(q))]VDM =
if (πV(f(q)) = p)

then [λV(f(q))]VL
p

else send(πV(f(q)),λV(f(q))) (4.4)

[p,λW(g(q))]WDM = [λW(g(q))]WL
p (4.5)

This corresponds with the fact that send calls would have to
be issued when the produce condition πV(f(q)) = p evaluates
false. With respect to the semantics of the send function in
(4.4) it holds, that a post condition

send (πV(f(q)),λV(f(q))) = λW(g(q))

implies λW(g(q)) to be stored at local element λV(f(q))
residing at processor πV(f(q)), (i.e. send may be looked
upon as an inter-processor “access” function).

4 . 3 . Transformation for send/receive scheme

Consequently, a send/receive scheme the indices which are
to be processed according to the original convention
(Section 4.1) must now include the index range derived ac-
cording to the alternative scheme (Section 4.2). Each pro-
cessor must issue a receive call on a false use condition and
a send call on a false produce condition, i.e. when the
complementary processor will issue the corresponding
receive call. As a result, the post condition for a combined
send/receive scheme becomes

vec(p,0:pmax-1)
vec(q,qmin:qmax | πV(f(q)) = p ≈ πW(g(q)) = p)

{ [πV(f(q)),λV(f(q))]VDM =

Expr([πW(g(q)),λW(g(q))]WDM) } (4.6)

in which the VDM and WDM references are to be substi-
tuted according to (4.4) and (4.2), respectively. The com-
munication system is assumed to provide non-blocking
send and blocking receive primitives. Furthermore, we
will assume existence of a procedural version for the send
primitive, i.e. send(πV(f(q)),λV(f(q)),λW(g(q))),
which sends λW(g(q)) to processor πV(f(q)) where it is

received as element λV(f(q)). As a result, (4.6) maps to the
following pseudo code

p := myself;
for q := qmin to qmax do begin

if πV(f(q)) = p then
if πW(g(q)) = p then
VL[λV(f(q))] := Expr(WL[λW(g(q))]);

else

VL[λV(f(q))] :=
Expr(receive(πW(g(q)),λW(g(q))));

else
if πW(g(q)) = p then
send(πV(f(q)),λV(f(q)),WL[λW(g(q))]);

else
/* idle */ ;

end;

4 . 4 . Optimization

Similar to the discussion in Section 3.4, optimizations are
possible in which the index range per individual processor
is minimized, and, as an additional optimization, the use
and produce conditions for receives and sends are reduced at
compile-time to index set membership tests. In a
send/receive scheme however, additional require-ments arise
with respect to the order in which the individual indices are
to be generated if deadlock is to be avoided.

Let Rp = { q | πV(f(q)) = p, qmin ≤ q ≤ qmax } and
Sp = { q | πW(g(q)) = p, qmin ≤ q ≤ qmax } denote the
minimum set of indices q be processed by processor p in a
receive- or send scheme, respectively. Note, that the mem-
bers as well as the size of Rp may differ significantly from
Sp, as the decompositions of V and W and the functions f
and g will generally not be the same. Then for each proces-
sor p, execution is according to the following scheme:

for all indices q ∈ (Rp ≈ Sp)
- issue send call: if q ∈ (Sp \ Rp)
- issue receive call: if q ∈ (Rp \ Sp)
- compute: if q ∈ Rp (4.7)

Let the distribution parameters θR,p, rp,min, rp,max and
θS,p, sp,min, sp,max be given with regard to the genera-
tion of Rp and Sp respectively. In order to avoid deadlock,
an additional requirement with respect to the functions θ is,
that the sequence in which Rp and Sp are generated, must
equal the order by which Rp and Sp are defined (set mem-
bers are added on a use or produce condition as q varies
from qmin to qmax). Note, that the code presented so-far is
free of deadlock, as for each index q for which the produce
and use do not reside at the same processor, there always
exist two complementary processors issuing the corre-
sponding send and receive call. With respect to code genera-
tion, a second requirement to prevent deadlock is that (non-
blocking) send tests be generated before (blocking) receive
tests.

If the above distribution parameters can be derived at
compile-time, code generation is straightforward. For
example, consider code generation for block-decomposition,
where f and g are monotonic increasing functions. From
Theorem 1 it can be easily verified that the distribution
function θ satisfies the requirements to prevent deadlock.
The following code is based on scheme (4.7) where u
implements the union Rp ≈ Sp:

p := myself;
for u := 0 to MAX(rp,max-rp,min,sp,max-sp,min)

do begin
r := u + rp,min;

s := u + sp,min;

if sp,min ≤ s ≤ sp,max and not
rp,min ≤ s ≤ rp,max then

send(πV(f(s)),λV(f(s)),WL[λW(g(s))]);
if rp,min ≤ r ≤ rp,max then
if not sp,min ≤ r ≤ sp,max then

VL[λV(f(r))] :=
Expr(receive(πW(g(r)),λW(g(r))));

else

VL[λV(f(r))] := Expr(WL[λW(g(r))]);
end;

end;

4 . 5 . Alternative communication schema

Although correct, the previous scheme has a serious flaw:
it may lead to pure sequential processing. To see this, one
must notice that given a loop instance, not all required
sends are issued. If, for instance, all uses are allocated to
the same processor, only one send is issued per cycle.
Hence, only a single production can proceed per computa-
tion cycle. Three alternative send/receive schemes will be
briefly discussed. Without loss of generality, we assume
block-decomposition on both V and W and monotonic
increasing functions f and g.

Buffered receive scheme
In such a scheme, all possible sends are issued first. The
receives are issued when actually needed in the computa-
tion. The following demonstrates the principle

for all indices s ∈ (Sp \ Rp)
- issue send call

for all indices r ∈ Rp
- issue receive call when r ∉ Sp
- compute

Since all possible sends are issued before any computation
takes place, this can place a burden on the communication
system, as the sends which are not yet received take up
buffer space. Note, that all receives could also be executed
before any actual computation takes place. This however
still implies the necessity of local buffer space.

Unbuffered receive scheme

In the previous section all possible sends are issued before
any computation takes place. To avoid the necessity of
buffering, transmission of data can be deferred to the time
when it is actually needed for computation. To solve this
we must find out which processor needs a use. Hence, we
must search for other processors at the same relative posi-
tion of r, i.e. r' and test their use conditions. This scheme
is accomplished by solving y = πV(f(r')) from the equation
p = g((ry,min+ r -rp,min) div cv, either symbolically at
compile-time or with a loop at run-time. When y ≠ p the
send must be issued.

Block-send and -receive scheme
Some message-passing systems support block-send and -
receive primitives in order to speed up data transfers. Let
blk_send(x,λV(f(s)),WL[λW(g(s))],s|sx,min:sx,max)
denote block-send, where sx,min:sx,max denotes the local
range of the block, which is to be transmitted to processor
x. For block-receive a similar primitive applies. Let cV,
cW denote the decomposition block sizes for V and W ,
respectively. Similar to the proof of Theorem 1, the index
range s = sx,min ... sx,max for which πV(f(s)) = x, is given

by sx,min= ∪ f-1(cv
.x) , sx,max = ∈ f-1(cv

.x+cv-1) . The
range of processors to which block-sends apply is given by
f(sp,min) div c v ≤ x ≤ f(sp,max) div cv. For the block-
receive a similar derivation holds. Program generation is
then straightforward. However, often block-sends and
block-receives are more easily realized when a variable has
a higher dimension, as will be shown in the Gaussian
elimination example in the next section.

4 . 6 . The Gaussian elimination example

As an example, the SPMD generation method is applied to
the translation of the content statement of the Gaussian
elimination algorithm for a scalar parallel architecture.
First a translation is shown for a distributed-memory model
with the static block-decomposition (Section 2.4)

A <- row_decompose(M,pmax);

Second, a translation is shown for a shared-memory model
with the dynamic block-decomposition

H <- row_decompose(M,pmax);

Distributed-memory with static decomposition
Recall post condition (3.7), i.e.

vec(i,0:n-k-2) vec(j,0:n-k-2)
{[i+k+1,j+k+1]A = [i+k+1,j+k+1]A -

[i+k+1,k]A * [k,j+k+1]A / [k,k]A } (4.8)

Substituting fB(i) = i+k+1, gB(i) = gC(i) = i+k+1, gR(i) =
gE(i) = k, we consider the post condition only in terms of
these functions in the variable i, i.e.

 vec(i,0:n-k-2)

{... fB(i) ... = ... Expr(gB(i), gC(i), gR(i), gE(i)) ... }

Application of row_decompose is expressed as

A = vec(i,0:n-1) [i div c, i mod c,_]M, c = n div pmax

where M = vec(p,0:pmax-1) L (L being a local data parti-
tion). Translation is given for the buffered receive scheme
(Section 4.5). Although Theorem 1 is defined for the one-
dimensional case, extension to the two-dimensional case is
trivial, which is demonstrated by applying the theorem to
the derivation of Rp (note that fB is monotonic), this yields

rp,min = MAX(0, c.p-k-1),

rp,max = MIN(n-k-2,c.p+c-1-k-1)

With regard to the use terms gB, gC, gR, gE, the appropriate
index sets are given by

gB, gC: Sp = Rp (as gB, gC = fB) (4.9)
gR, gE: Sp = 0:n-k-2 (no optimization) (4.10)

(4.9) implies that no sends have to be generated for these
terms (Sp \Rp = ∅). The full index range in (4.10) comes
from the fact that Theorem 1 does not apply to constant
functions. Hence, with respect to the sends, in principle the
full index range is generated, i.e. sp,min = 0, sp,max = n-k-
2, combined with the usual predicate test. As an additional
(further) optimization, block-sends and -receives, are used
to implement the j range (combining the E and R data).
This leads to the following pseudo code (ignoring various
further optimizations):

for s := sp,min to sp,max do // full range

if p = k div c then // --> Sp
if p ≠ s+k+1 div c then // --> Sp \ Rp
blk_send(s div c,

 L[s mod c,j],j|k:n);

for r := rp,min to rp,max do // --> Rp
if p ≠ k div c then // --> Rp \ Sp
begin
Temp := blk_recv(k div c,

 L[k mod c,j],j|k:n);
for j := 0 to n-k-2 do
L[(r+k+1) mod c,j+k+1] :=
L[(r+k+1) mod c,j+k+1] -
L[(r+k+1) mod c,k] *
Temp[r+k+1] / Temp[0];

end
else
for j := 0 to n-k-2 do

 L[(r+k+1)mod c,j+k+1] :=
L[(r+k+1)mod c,j+k+1] -
L[(r+k+1)mod c,k] *
L[k mod c,j+k+1] /
L[k mod c,k];

Shared-memory with dynamic decomposition

As the row-decomposition is now in terms of the
(dynamic) view H, rather than the shape A , we will con-
sider post condition (3.6), which is not yet reduced in terms
of A, i.e.

vec(i,0:$) vec(j,0:$)
[i,j] B = [i,j] B - [i]C * [j]R / E (4.11)

As H is not reduced in terms of A , the recursive view
statement H <- H[1:$,1:$]; inside the loop (see Section
3.1) is directly reduced in terms of M , effectively resulting
in the k-parameterized view definition

Hk = vec(i,0:n-k-1) [i div ck, i mod ck,_]M (4.12)

where k denotes the iteration counter and ck = (n-k)/pmax
denotes the block size, now decreasing with k. Since B =
[1:$,1:$]Hk, C = [1:$,0]Hk, R = [0,1:$]Hk, and E =
[0,0]Hk, (4.11) becomes

vec(i,0:n-k-2) vec(j,0:n-k-2)
{ [i+1,j+1]Hk = [i+1,j+1]Hk - [i+1,0]Hk *

[0,j+1]Hk / [0,0]Hk } (4.13)

Transformation is similar to the one discussed in the previ-
ous section. For a shared-memory model, the post condi-
tion is expressed in terms of Hk rather than M as discussed
in Section 3.3. Optimization by application of Theorem 1
yields the (k-dependent) index set Rp,k, i.e.

rp,k,min = MAX(0, ck
.p-1),

rp,k,max = MIN(n-k-2,ck
.p+ck-1)

and (4.13) transforms to:

vec(p,0:pmax-1)vec(r,rp,k,min:rp,k,max) vec(j,0:n-k-2)
{ [r+1,j+1]Hk = [r+1,j+1]Hk - [r+1,0]Hk *

[0,j+1]Hk / [0,0]Hk } (4.14)

Since Hk = [k:$,k:$]A, the following pseudo code is gener-
ated, where a barrier-call is used to synchronize between the
iterations k:

for r := rp,k,min to rp,k,max do // --> Rp
for j := 0 to n-k-2 do

 A[r+k+1,j] := A[r+k+1,j] - A[r+k+1,k]*
 A[k,j]/A[k,k];

barrier;

5. Implementation of the Translator

We are currently working on a prototype implementation
of the translator for Booster, which is based on the princi-
ples discussed above. As translation of Booster programs is
in fact a target architecture dependend reduction sequence,
AI-techniques are used to implement the translator. A simi-
lar approach is described in [Wang89]. The course of infer-
ence, i.e. reduction, within this rule-based system is di-

rected by a performance measures derived from the target ar-
chitecture. Each architectural model is a virtual machine
description (e.g. Fortran-level) including high level opera-
tors, such as library-calls and high level communication
functions, all with associated performance models. The last
step of the translation process is the generation of a parallel
program in one of the target languages with addition of the
correct language extension appropriate to the specific target
dialect (for examples see [Karp88]).

6. Conclusion

We have presented a general method for automatically
deriving efficient SPMD-code for distributed- as well as
shared-memory processors, given an algorithm and data de-
composition description. The translation method as well as
the algorithm and decomposition description formalisms
are based on the application of the so-called view concept
with its associated calculus. To this purpose, the high-level
view programming language Booster is introduced, illus-
trating its merits by an example of its translation to dis-
tributed- and shared-memory architectures.

Our method can also be applied to other languages as
well. As can be seen from the method, a number of criteria
can be formulated with respect to maximum achievable
speed-up when translating programming languages, based
on data partitioning. If the functions f(q) and g(q) and their
properties, such as linearity and monotonicity, are known,
efficient translations can be generated for block- and scatter-
decompositions. Traditional languages such as Fortran
introduce serious problems regarding general decompo-
sitions. From a given Fortran program the functions f(q),
g(q), etc., including the appropriate ranges for q, have to be
extracted from the source code, which can be quite
complex, if not impossible. Dynamic decompositions
appear even more cumbersome, since all releveant
information on the dynamic decomposition is scattered
throughout the program. In this respect, functional
languages are more promising, provided that a strict
separation between index- and data manipulations can be
made (possibly through annotations). The Booster
language, as described in this paper, meets both approaches
half in between.

Further research will be directed to extending the calcu-
lus to a true intermediate formal framework for the descrip-
tion of optimizations like vectorization and parallelization,
based on machine models described within the same frame-
work. Although in the current approach, data decomposi-
tion is supplied by the user, future research will also focus
on incorporating decompositions as integral part of the ar-
chitecture driven translation process which is described in
Section 5.

References

[Arvind88] Arvind, K. Ekanadham, "Future Scientific
Programming on Parallel Machines," Journal on
Parallel and Distributed Computing, Vol. 5, No. 5,
October 1988.

[Callahan88] D. Callahan, K. Kennedy, "Compiling
Programs for Distributed-Memory Multiprocessors,"
The Journal of Supercomputing, Vol. 2, No. 2,
October 1988, pp. 151-169.

[Chen88] M.C. Chen, Y. Choo, J. Li, "Compiling
Parallel Programs by Optimizing Performance,"
Journal of Parallel and Distributed Computing,
Vol. 5, No. 5, October 1988.

[Gemund89] A.J.C. van Gemund, A View Language
and Calculus, Report no. 89 ITI B 46, TNO
Institute of Applied Computer Science (ITI-TNO),
Delft, The Netherlands, February 1989.

[Gerndt89] M. Gerndt, "Array Distribution in
SUPERB," Proceedings of the Third International
Conference on Supercomputing, Crete, Greece, June
1989, pp. 164-174.

[Hudak88] P. Hudak, "Exploring Parafunctional
Programming: Separating the What from the How,"
IEEE Software, January 1988, pp. 54-61.

[Hudak89] Hudak P. "Conception, Evolution, and
Application of Funtional Programming Languages,"
ACM Computing Surveys, Volume 21, Number 3,
September 1989, pp. 359-411.

[Karp87] A.H. Karp, "Programming for Parallelism,"
IEEE Computer, May 1987, pp. 43-57.

[Karp88] A.H. Karp, R.G. Babb II, "A Comparison of
12 Parallel Fortran Dialects," IEEE Software,
September 1988, pp. 52-67.

[Kennedy89] K. Kennedy, H.P. Zima, "Virtual Shared
Memory for Distributed-Memory Machines,"
Proceedings of the Fourth Hypercube Conference,
Monterey, California, March 1989.

[Koelbel87] C. Koelbel, P. Mehrotra, J. Van
Rosendale, "Semi-automatic domain decomposition
in BLAZE," Proceedings of the 1987 International
Conference on Parallel Processing, August 17-21,
1987, pp. 521-524.

[Paalvast89a] E.M.R.M. Paalvast, The Booster
Language, Technical Report, no. 89 ITI B18, TNO
Institute of Applied Computer Science (ITI-TNO),
July 1989, Delft, The Netherlands.

[Paalvast89b] E.M.R.M. Paalvast, H.J. Sips, "A
High-Level Language for the Description of Parallel
Algorithms," Proceedings of Parallel Computing
'89, August 1989, Leiden, The Netherlands, North-
Holland Publ. Co.

[Perrott87] R.H. Perrott, R.W. Lyttle, P.S. Dhillon,
"The Design and Implementation of a Pascal-Based
Language for Array Processor Architectures,"

Journal of Parallel and Distributed Computing,
1987, pp. 266 - 287.

[Rogers89] A. Rogers, K. Pingali, “Process
Decomposition Through Locality of Reference,”,
ACM SIGPLAN ‘89 Conference on Programming
Language Design and Implementation, June 1989,
Portland, Oregon.

[Quinn89] M.J. Quinn, P.J. Hatcher, Data Parallel
Programming on Multicomputers, Parallel
Computing Laboratory, Department of Computer
Science, University of New Hampshire, report
number PCL-89-18, March 1989, 16 pp.

[Wang89] K-Y. Wang , D. Gannon, "Applying AI
Techniques to Program Optimization for Parallel
Computers," In: Parallel Processing for Super-
computers and Artificial Intelligence, H. Kwang, D.
DeGroot, Eds. McGraw-Hill, 1989, pp. 441-485.

