One-Shot Learning of
Planning Domains from
Natural Language
Process Manuals

— A .. g S T
Sht 5 9 Ll
-5 - i =
pe:

i

LELERR b

Eaf” ‘ ; ‘ ‘ N'.f-‘."fil

: e s = y H I

1 3 il

T - i /J‘ ”
- %q‘. e :. “' i ’ o i " i

| -5 .
B | e f
) L
y
i,
- L
i
o D
[y iy,
*J y
y‘&
o\
¥ o SN
i ,“‘,
[k il 1iny
Ll I - L

\L to PDDL

One-Shot Learning of Planning Domains from
Natural Language Process Manuals

by

S, Miglan

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday August 27, 2019 at 15:00.

Student number: 4723058

Project duration: November 1, 2018 — August 14, 2019

Thesis committee: Dr. Neil Yorke-Smith, Algorithmics, TU Delft, supervisor
Prof. Catholijn Jonker, Interactive Intelligence, TU Delft
Dr. Casper Poulsen, Programming Languages, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

Abstract

Automated Planning (AP) is a key component of Artificial General Intelligence and has been
successfully employed in applications ranging from scheduling observations of Hubble
Space Telescope to generating dialogue agents. A significant bottleneck for its widespread
adoption is acquiring accurate domain models which formally encode the planning problem’s
environment. Traditionally, these domain models have been hand-coded by human experts
and knowledge engineers. However, manually encoding domain models is an increasingly
difficult task when one moves away from toy domains towards complex real-world problem
scenarios.

To resolve this, the AP community has developed several systems to automatically
acquire domain models from valid sequences of actions called plans. This approach has two
significant issues. First, the generated domain models might be incomplete, error-prone, and
hard to understand and/or modify. Second, most domain learning approaches are based on
data-intensive inductive learning, which needs large quantities of structured data (plans) to
converge. This data is seldom available without an accurate domain model, which leads to a
causality dilemma.

To mitigate these issues, we take advantage of readily available and easy to craft Natural
Language (NL) data. We present a pipeline called NLtoPDDL, which takes as input a
classical domain’s process manual written in a natural language and outputs its Planning
Domain Definition Language (PDDL) model. Specifically, NLtoPDDL does this in two steps:
first, it combines pre-trained contextual embeddings with an approach developed in previous
research [33] that extracted structured plans from NL data using Deep Reinforcement
Learning (DRL), and a consequence, NLtoPDDL beats the Feng et al. [33]'s model which is
the current state-of-the-art on action sequence extraction problem; second, it uses the
trained DRL model from the first step to extract structured plans from a domain process
manual and employs a modified Learning Object Centered Models (LOCM2) algorithm [25]
to one-shot learn a PDDL model. Finally, we showcase the effectiveness of our pipeline on
four planning domains of varying complexities, by evaluating our learned domain models for
soundness, completeness, validity and intuitiveness.

S. Miglani
Delft, August 2019

Preface

Imagine giving instructions to Siri or Google Assistant on your phone, and they suddenly get
the context of your words and can rationally make further decisions for you. This thesis has
been inspired by this teacher-student learning setting and working on it has been a journey
through many fields of Atrtificial Intelligence, from natural language transfer learning and deep
reinforcement learning to automated planning and knowledge engineering. It has in many
ways, enhanced my understanding of Al, introduced me to the very recent happenings in it
and has also sparked my interest in automated planning and its use in space missions. |
started with a relatively simpler problem of learning planning domain models from structured
data, which was hard to get for real-world problems. In a quest to truly apply my research to
real-world scenarios, the horizons were broadened to unstructured data in the form of natural
language and challenges associated with it.

| am deeply grateful to Dr. Neil Yorke-Smith, who has been my supervisor during the last
year. | immensely appreciate the freedom that you gave me to follow my curiosity and interests.
| thank you for your guidance, support, patience and invaluable feedback. | would also like
to thank Wenfeng Feng and Julie Porteous who shared the code for their research, and the
amazing open-source community in Al, for the techniques reused in this thesis.

Suhasni and Raghu have been invaluable during my time at TU Delft, and | thank them for
their continuous encouragement. Last but certainly not the least, | sincerely thank my beloved
father and sister for their unwavering and everlasting support.

S. Miglani
Delft, August 2019

1

Contents

Introduction 3
1.1 Motivation. 4
1.1.1 Manual Domain Model Acquisition. 4
1.1.2 Automated Domain Model Acquisition. 6
1.2 The Problem Statement 7
1.3 Research ObjectivesandScope 8
14 Contributions 9
1.5 ThesisOutline e 9
Background and Problem Description 1"
2.1 Automated Planning Framework 11
2.2 The Domain Learning Problem 13
2.3 Action Sequence Extraction Problem. L. 14
2.4 Deep ReinforcementLearning. o 15
241 Taxonomyof DRLmethods 16
2.5 Contextual Word Embeddings. 16
Literature Review 19
3.1 Taxonomies of Domain Learning Algorithms 19
3.2 Existing Domain Learning Approaches., 21
3.3 ThePlanningLanguages. 23
3.4 Existing Action Sequence ExtractionMethods 23
3.5 Deep Q-Networks and theirvariants 26
3.6 Contextual Embeddings: Natural Language Transfer Learning 26
NLtoPDDL 27
4.1 Training the Deep Q-Network, 28
411 TrainingDataset. 28
4.1.2 Sequence Extraction as Reinforcement Learning Problem. 28
4.1.3 Repeat RepresentationinStates. 29
4.1.4 Deep Q-Network for RL Actionexecution. 30
4.1.5 Reward Model and Trainingthe DQN 30
4.2 cEASDRL: Incorporating Contextual EmbeddingsintoDQN 31
421 ProblemswithWord2Vec 31
4.2.2 Contextual EmbeddingstotheRescue 32
4.3 Learning domain model usingLOCM. 34
4.3.1 Preprocessing Action Sequence to satisfy the assumptions made by
LOCM2 e 34
4.3.2 Implementation of Interactive-LOCM2 along with step-wise illustrations . 36
4.4 SUMMATY e 42

viii

Contents

5 Experimental Evaluation

5.1 Evaluating Trained DQN
511 Experimental Setup.
5.1.2 Baselines and cEASDRL Contenders
5.1.3 Results of Comparison with Baselines.
5.1.4 Qualitative analysis of the Extracted Sequences.

5.2 Learningof DomainModels
521 LearningIPCDomains.
522 ResultsonIPCDomains.
5.2.3 Learning PDDL Model from Real-World Process Manual.
5.2.4 Extensionto Durative Actions.
5.2.5 Summary of Evaluating Domain Models

6 Conclusion and Future Research

6.1 Future Research.

Bibliography
A Reference PDDL Domains from IPC

A.1 Child Snack (Sequential, Optimal) - IPC 2014
A.2 Woodworking Subset IPC 2008, Sequential-Optimal Track.

B Learned IPC Domain Models

B.1 Child Snack (Sequential, Optimal) -IPC 2014
B.1.1 Input and Extracted Sequence
B.1.2 Learned Domain Model
B.1.3 State Dictionary

B.2 Woodworking Subset-1IPC 2008
B.2.1 Input and Extracted Action Sequences
B.2.2 Learned Domain Model
B.2.3 State Dictionary

B.3 Driverlog-IPC2002. e
B.3.1 Learned Domain Model
B.3.2 StateDictionary

C Learned Domain Model from Real-World Fire Safety Process Manual

C.1 Input and Extracted Sequence for One Shot Learning.
C.2 Learned DomainModel.
C.3 StateDictionary

D Original and Learned Tea Domain with Durative Actions

D.1 Original TeaDomai
D.2 Learned TeaDomain e

D.2.1 Input Sequence and Extracted Sequence for One-Shot Learning

D.2.2 NER extractionfromSpaCy.
D.2.3 Learned DomainModel
D.2.4 StateDictionary

E Architecture of CNN used in cEASDRL

Contents

Introduction

Automated Planning (AP) is a branch of Artificial Intelligence (Al) which concerns the
autonomous realisation of a plan: a sequence of actions that transforms the environment
from an initial state to the desired goal state while adhering to specified performance
measures and constraints. AP allows for an autonomous agent to computationally think and
anticipate future events to reach its objectives and thus, forms an important component of
Artificial General Intelligence.

The very first application of AP, a robot named Shakey [94] uses STanford Research
Institute Problem Solver (STRIPS) [34] as a planner to determine plans for moving boxes
in an office environment. Since the days of Shakey, the AP community has made huge
advances in developing fast and robust domain-independent planners such as BFWS [37,
77], FF [60], and FD [56, 57, 110, 111] which work for a wide range of domains. For instance,
domain-independent planning has been successfully employed in space mission operations
[21, 66], urban traffic control [22, 122], and generating dialogues [16]. Furthermore, major
breakthroughs have happened in Al by combining planning with deep learning. For example,
the famous Go' playing computer program AlphaGo [113] used a planning technique called
Monte-Carlo tree search with a neural network acting as a heuristic generator, to select the
next best action.

As we know the rules of Go game, it may be trivial to encode its domain knowledge into
the system for using Monte-Carlo tree search. Yet, as we move away from the toy and
game-like environments to real-world environments like controlling a space-aircraft, it
becomes increasingly difficult and time-consuming to model the dynamics of a domain for
computational use. Thus, despite the accomplishments, the amount and sophistication of
Knowledge Engineering (KE) required limits the widespread adoption of AP systems. In
particular, we need the domain model, which is a formal representation of the system in
which we want to plan, and the problem definition, which comprises of our planning
problem’s initial and goal state, to use a domain-independent planner as shown in Figure
1.1. For this purpose, the AP community has developed Planning Domain Definition
Language (PDDL) [36, 45], which has become the de facto standard to encode domain
knowledge. Once we have the domain model in PDDL, we can use it without changes to
solve several problems, which are specified using a problem definition (a tuple of initial and
the desired goal state).

Figure 1.2 shows the PDDL model for a simple gripper domain, which comprises of two
parts:

"https://en.wikipedia. org/wiki/Go_(game)

https://en.wikipedia.org/wiki/Go_(game)

4 1. Introduction

Domain Model

{ \ @ Plan
in PDDL
\ -IV—. Action 1 :|
Domain-Independent Action 5
-
Planner |: —
ion
Problem / .
Description = .
<h £ Acionl ——{g)

Figure 1.1: Automated Planning System: A domain-independent solver or planner takes two inputs: 1) the domain
model written in a planning language and 2) a problem definition that describes the initial state i and the desired
goal state g using the domain model’s terminology; and produces as output a plan, that is, a sequence of actions
that takes the agent from the initial state to the goal state.

« the predicates that describe the state of an agent, and

+ an action model which defines what are the action choices available for an agent, the
preconditions of when a specific action can be performed, and the effects of performing
that particular action.

This work concentrates on the problem of acquiring such domain models for complex
real-world problems. We present an automated KE tool called NLtoPDDL, which learns a
valid and intuitive PDDL model from a natural language process manual describing an example
sequence of actions taken in the domain. Imagine, describing how you planned your last week
to a virtual assistant like Siri? in a natural language, for the virtual agent to create the domain
model about what you have described and plan the next week for you while fulfilling your
mentioned goals. Apart from this practical application in teacher-student settings, the scientific
motivation of knowledge engineering and modelling the world around us for computational
use is at the heart of our approach. In the next section, we describe our rationale behind and
need for such an approach in terms of the work that has already been done in the automated
planning community.

1.1. Motivation

There are two methods for acquiring domain models: the traditional way of manually writing
it, or an automated way of learning the domain model from some input data. We look at both
paradigms and motivate our approach through their shortcomings.

1.1.1. Manual Domain Model Acquisition

Traditionally for complex real-world problems, domain models are written manually through
the collaboration among human Subject Matter Experts (SMEs) and human Knowledge
Engineers (KEs). The SMEs know the dynamics of the domain in some natural language but
do not necessarily have expertise in representing it in a formal planning language. The KEs
extract this knowledge from the SMEs to formulate a syntactically and semantically valid
PDDL domain model to be used by the off-the-shelf planner. This process is an iterative
process in which multiple verification and validation (V&V) loops are incorporated via

’https://www.apple.com/siri/

https://www.apple.com/siri/

1.1. Motivation 5

(define (domain gripper-strips)
[(:predicates (room 7r) (ball ?b) (gripper ?7g) (at-robby ?7r)

Predi 4
redicates (at ?b 7r) (free 7g) (carry 7o 7g))

-

~ (:action move

:parameters (7from 7to)

:precondition (and (room 7from) (room 7to) (at-robby ?from))

:effect (and (at-robby 7to) (mot (at-robby 7from))))

(raction pick

:parameters (7obj 7room ?7gripper)

:precondition (and (ball 7obj) (room 7room) (gripper 7gripper)
o (at 7obj 7room) (at-robby 7room) (free 7gripper))
Model | :effect (and (carry 7obj 7gripper) (mot (at 7obj 7room))

(not (free 7gripper))))
(:action drop
:parameters (7obj 7room 7gripper)
:precondition (and (ball 7obj) (room ?room) (gripper ?7gripper)
(carry 7obj 7gripper) (at-robby ?room))
:effect (and (at 7obj ?room) (free 7gripper)
(not (carry 7obj 7gripper)))))

Figure 1.2: Gripper domain PDDL model: A robot moves balls from one room to another using actions move, pick
and drop.

simulations and debugging, which makes it time-consuming. Figure 1.3 summarises the
manual domain model acquisition.

Verification and Validation (V&V)

¥ Extract ¥ Manually

knowledge encode
Subject Matter Experts .

. Knowledge Engineers , Domain Model
(SMEs) (KEs) (in PDDL)

Figure 1.3: Manual Domain Model Acquisition: the paradigm works in real-world scenarios but is time-consuming
and non-scalable.

Many knowledge engineering tools have been developed to help SMEs and KEs. These
range from Integrated Development Environments (IDE) like myPDDL [116] to Graphical User
Interface (GUI) tools such as itSIMPLE [124]. Despite these tools, the traditional way to acquire
domain models is time-consuming, error-prone, labour-intensive and difficult to scale for bigger
planning problems because of the enlisted challenges:

* The inherent complexity of real-world problems: Automated Planning is usually
required in complex tasks for which humans can’t plan effectively. This might be due to
problem’s large-scale such as planning logistics delivery of orders placed on an
e-commerce site for a city, or due to constraints like the degree of autonomy required,
like in space missions owing to limited data transfer link capacity. The scale of such
problems make it very time-consuming or even infeasible to create an action model

6 1. Introduction

with all its preconditions and effects.

* Human beings are prone to errors and omissions: The decision problem of whether a
plan exists for a problem definition is a PSPACE hard problem [18, 31, 46] for most cases.
Thus, the quality of plans generated from a domain-independent planner is dependent
on the quality of domain models. Effective communication between the KEs and SMEs
is required to build an accurate domain model. It is possible that the intricacies of the
domain cannot be described in words. Omissions could lead to additional iterations of
validation and coding, making it an increasingly time-consuming task. Thus, the quality
of the domain model varies with ‘expertness’ of the SMEs and KEs.

» Limitations related to manual KE tools: Although IDEs like myPDDL [116], help with
syntax highlighting, syntax-checking and easy collaboration through a version control
system (VCS), they still are inadequate due to the scale of real-world problems, and
sophistication of knowledge engineering required. itSimple [124], an award-winning GUI
method takes it a step further by improving the quality of domain models produced by
automating certain domain modelling aspects through dynamic analysis but still, requires
encoding of the domain in Unified Modelling Language (UML) standard [103] and is much
less flexible [112]. Also, there are many other drawbacks such as bugs, no updates, and
limited expressivity in terms of PDDL features. This necessitates the V&V cycles, and
thus, there is no significant reduction in time taken for modelling.

Thus, to alleviate the bottleneck of time-consuming manual domain model acquisition,
a growing body of work has emerged in the AP community which provides us with several
domain acquisition algorithms that learn the domain model from some input data.

1.1.2. Automated Domain Model Acquisition

For the past decade, the AP community has been researching on automatically /learning
domain models from input data such as previously generated plans or logs of planning
missions. This paradigm, shown in Figure 1.4, is motivated to mitigate the challenges
associated with manually writing domain models. A variety of domain learning algorithms
with varying complexity and capabilities have been devised. Section 3.2 presents a
taxonomy and survey of such domain learning methods.

Knowledge Engineers Subject Matter Experts
PR
Madify!&ﬁcndF (KEs) (SMEs)

T T

] Domain Learni Domain Model
';2;': ’—‘ rf;:;ﬁﬁ::mg —* OE::DDHE — Verification and Validation (V&V)

Plans aor Plan
Traces

Figure 1.4: Automated Domain Model Acquisition: the paradigm produces an initial domain model which SMEs

and KEs can modify or refine, or it can be used in model-lite planning [138, 143] which works with shallow and
incomplete models.

However, these automated methods suffer from four major issues:

1. Quality of the domain model: The generated domain models are incomplete,
inconsistent and error-prone. This drawback makes automated domain learning an

1.2. The Problem Statement 7

assistive technology, in which human SMEs and KEs take the initially created domain
model and verify, validate, and modify it, to perfect the domain model. Nonetheless, it
saves time and effort to have an initial domain model if other issues are resolved. A
new paradigm called model-lite planning [138, 143] which works with such initial and
incomplete models has also emerged on the scene and is an active field of research.

2. Explainability of the domain model: Explainability is an important aspect of
Automated Planning. Why a particular action was chosen or to whom the responsibility
is to be assigned for safety-critical autonomous systems, say a medical expert system,
are important questions that must be answered. This process of explainability starts
from intuitive domain models. If the learned domain model is not intuitive and uses
variables like c1,c2 for say, a car object, it is hard to understand, modify, and even
validate it, as it is difficult to formulate initial and goal states in terms of such variables.

3. Lack of structured input datasets: As most of the domain learning approaches are
forms of data-intensive inductive learning, huge dumps of structured data in the form of
plans (sequence of actions) is required to learn any meaningful models. This data is
seldom available without an accurate domain model, which leads to a causality
dilemma and defeats the purpose of learning domain models. Some of them even
require the (partial) state information which is not always accessible for real-world
domains, especially if we do not have the domain model. Transfer Learning in learning
domains has been researched upon [135, 136, 142] but is still immature and has not
been proven to work outside the simpler domains of International Planning
Competitions (IPC)3.

4. Limited Reproducibility: A significant drawback is that the bulk of the domain-learning
algorithms are not open-sourced or well-maintained. Thus, their lack of community
support makes them either obsolete or hard to reproduce.

Considering the prevalent issues in the automatic domain acquisition paradigm, we
motivate and formulate our problem statement in the next section.

1.2. The Problem Statement
Natural Language (NL) provides the most innate way to deal with issues pertaining to lack of
structured input data and explainability. Figure 1.5 describes the paradigm of learning domain
models through natural language data.

In this research, we explicitly want to handle the challenges mentioned above by combining
research from various disciplines to formulate an automated KE tool. Specifically, we want to
leverage natural language as a solution to above-mentioned problems of explainability and
lack of structured input data.

A simpler version of this learning paradigm was presented in recent research by Lindsay
et al. [76] which showcased a pipeline called Framer, which generates PDDL domain models
from restrictive natural language templates using Stanford CoreNLP’s dependency parsing
[80]and LOCM [26] domain learning algorithm. However, Framer is too restrictive to be applied
in the real-world scenarios as the input is limited to certain templates of natural language.

On the other hand, extracting action sequences from natural language instructions is not
a new problem. Recently, Feng et al. [33] presented an approach called EASDRL, which
uses Deep Reinforcement Learning to achieve state-of-the-art results in extracting structured
action sequences from free natural language instructional data like WikiHow cooking recipes®.

Shttp://www.icaps-conference.org/index.php/Main/Competitions
41'1ttps ://www.wikihow.com/Category:Recipes

http://www.icaps-conference.org/index.php/Main/Competitions
https://www.wikihow.com/Category:Recipes

8 1. Introduction

MNatural Language Action Descriptions

Extract
Knowledge Engineers krowledge | Subject Matter Experts

| Knowledge |
Modify/Exte ndli (KEs) (SMEs)

P — | |
Dm:?:;::::mg —* E?::DDEJE — Verification and Validation (V&V)

Natural Language
Instruction
Documents

Readily available Process Easy to understand, modify
Manuals, Standard Operating and extend.

Procedures, Natural Language
Reports and Logs

Figure 1.5: Automated Domain Model Learning from Natural Language instructional data: the paradigm takes in
natural language instructions and presents an initial domain model to be used by SMEs or KEs, or as an input in
model-lite planning [138, 143].

This kind of natural language instructional data is also readily available in the form of process
manuals and interaction between SMEs and KEs, and is much easier to generate than the
structured set of plans.

Taking inspiration from the above studies, we restrict our problem setting of learning
domain models from natural language data by visualising it as two separate problems: the
action sequence extraction problem and the domain learning problem. The action
sequence extraction problem is the problem of extracting correct structured action
sequences from natural language instructional data as defined in [33]. The domain learning
problem concerns itself with automatically learning domain models from valid action
sequences, as explained earlier in Subsection 1.1.2. In Chapter 2, we revisit our problem
statement to formalise and illustrate it in depth using examples.

1.3. Research Objectives and Scope
The main hypothesis of the thesis is:

Can we stufficiently solve the Action Sequence Extraction Problem to extract structured
data from freely written natural language process manuals of real-world problems, and then
use it to solve the Domain Acquisition Problem to induce syntactically valid and meaningful
PDDL models?

Overall, we lay out the following sub-research questions that will be addressed by the
NLtoPDDL pipeline proposed in this thesis:

1. Can we integrate dynamic contextual word embeddings generated from pretrained
language models learned from recent NLP transfer learning techniques, like BERT
[29], ELMo [99], and Flair [4], into Feng et al. [33]'s EASDRL to push the
state-of-the-art in Action Sequence Extraction? If yes, which contextual embeddings
work the best and why?

2. Will the dynamic contextual embeddings mitigate the problems of out-of-vocabulary
(OOV) words (represented by UNK), polysemy, shared representation, and infinite word
senses caused by Word2Vec model [85] that was used in EASDRL [33]?

3. Would we be able to generalise our action sequence extraction approach on real-world
data better than the current state-of-the-art, EASDRL [33]?

1.4. Contributions 9

4. Can we use the extracted action sequences as valid structured input for domain model
learning technique LOCM2 [25] and induce PDDL models?

5. Can we use NLtoPDDL as a one-shot algorithm, i.e., can it also work with only a single
natural language plan to produce a best-possible valid output?

6. What is the quality of domain models learned in terms of their completeness, soundness,
validity, and consistency? Are the learned domain models intuitive (meaningful) enough
that they can be used as initial domain models by the SMEs and KEs?

7. Can we extend the scope of NLtoPDDL to more expressive features of PDDL, like
durative actions?

Using unstructured natural language data to learn domain models makes it an even harder
task than the already tough task of learning domain models from structured data. Thus, we
limit our research to domains which have deterministic effects with no state observability.
No state observability is a strong assumption and is rarely followed by existing domain learning
algorithms. LOCM family of algorithms [25, 26] do not assume any state information and thus,
we opted to use modified LOCM2 [25] in the pipeline. In terms of the expressiveness of the
planning language, we support strips and typing features of PDDL2.1 [36].

Except “full state observability” assumption of what is known as classical planning, we
follow its restrictive assumptions such as deterministic, sequentially taken, and durationless
actions. We describe the full set of restrictions in Section 2.1.

Regarding input data, we used instructional documents which contain instructions about
“How to do something?”. Specifically, these contain a sequence of action descriptions written
in a natural language. We refer to these documents as process manuals.

Considering our scope of research, the goal is to contribute an open-source pipeline which
combines best performing techniques from the fields of NLP and AP, to learn valid and intuitive
PDDL domain models from natural language instructional texts. We learn the domain models
in PDDL, to allow for their direct use in off-the-shelf domain-independent planners.

1.4. Contributions
The contributions of this thesis are enlisted below:

» we present a novel pipeline NLtoPDDL that pushes and combines state-of-the-art from
various disciplines to learn PDDL domain models from free natural language instructional
texts (Chapter 4),

» we present a way to employ transfer-learning in NLP with deep reinforcement learning
to learn generalisable models, which in turn help in transfer-learning in domain model
acquisitions (Chapter 4, Chapter 5),

+ and we reimplement the LOCM2 algorithm in Python and enhance it by integrating some
user interaction. We open-source all our code for reproducibility®.

1.5. Thesis Outline

In Chapter 2, we introduce the formal framework of automated planning in order to describe
our domain learning problem. We then explain the action sequence extraction problem
through an example. Subsequently, we review basic concepts of the deep reinforcement

Shttps://github. com/Shivam-Miglani/contextual drl

https://github.com/Shivam-Miglani/contextual_drl

10 1. Introduction

learning and natural language word embeddings, which are used in NLtoPDDL.

In Chapter 3, we present an extensive literature study on the existing domain learning
approaches covering their strengths and weaknesses. Later, we broadly overview
model-free Reinforcement Learning and delve more into Deep Q-Network research. We then
review the transfer learning in natural language, specifically, the research related to the
character-based and contextual embeddings.

Chapter 4 describes our two-phased NLtoPDDL pipeline’s architecture and implementation.
It motivates our decisions behind choosing specific components and illustrates the working
of the pipeline through numerous examples.

In Chapter 5, we experimentally evaluate both phases of our pipeline. We formulate various
hypotheses and try to test them through empirical experiments. We also perform
experiments to see if NLtoPDDL is flexible enough to be extended to real-world NL data and
durative actions.

Chapter 6, finally concludes our work by answering our main and sub-research questions. It
also discusses potential enhancements to our approach and presents an outlook of the future.

Background and Problem Description

In this chapter, we build the necessary terminology and background to set the stage for
subsequent chapters. Section 2.1 reviews the automated planning framework that enables us
to formally describe the domain learning problem in Section 2.2. In Section 2.3, we introduce
the reader to a particular type of action sequence extraction problem that we opt to tackle
in our research. We subsequently delve into the basics of deep reinforcement learning and
natural language embeddings, which form key components of the NLtoPDDL pipeline.

2.1. Automated Planning Framework
To understand the domain learning problem, we first review the conceptual model of planning
presented by Nau [92]. As shown in Figure 2.1, it consists of three important components:

1. a state-transition system X, which is a formal model of a real-world system which we want
to create plans. Nau [92] define state transition system to be a four-tuple £ = (S,4,E,T),
where

o S ={sy, 51,52} is a set of states;

+ A ={a,,a,,a5..} is a set of actions, that is, the state transitions that an agent can
take,

* E = {e;,e5,e3...} is a set of events, that is, the state transitions which happen
because of events happening in the environment,

« T:S5x (AUE) = 2% is a function that defines these state-transitions.

2. aplanner, which produces the plans and policies to be executed by the controller in order
to behave intelligently; and

3. a controller which executes the actions resulting in a change of system’s state.

Also, Figure 2.1 illustrates the difference between offline and online planning. In offline
planning, planning and execution of actions happen in a disconnected fashion, i.e., the
planner receives no feedback or observations about the current state of the system. It relies
on the formal domain model and the provided initial state to anticipate which state the
system might occupy to generate a plan, but it does not care about the actual state of the
system. When the environment is dynamic or the encoded domain model is significantly
different from the environment, online planning comes into the picture. In online planning,
the planning and acting (execution) activities are interleaved and planner needs to monitor

11

12 2. Background and Problem Description

Descriptions of Z, Descriptions of Z,
sy » and objectives 5o, and objectives
| Planner Planner
A
Plans Plans Execution

v status

Controller Controller |
A A
Actions Actions

Observations Observations

Y
[System X System Z

Events Events

Figure 2.1: Conceptual Model for an (a) Offline and (b) Online Automated-Planning system, taken from [92]. s,
represents the initial state and objectives refer to our goal state.

the state of the system to actively revise, refine and regenerate the plans [92]. Our work
concentrates on the offline planning paradigm because it is more popular and our problem
statement of learning domain models fits well into it.

The reason for the popularity of offline planning is the fundamental assumption made
by AP community that there should be a logical dissociation between the planner and the
domain model. Due to the existence of this assumption, the field of automated planning
has been dominated by research on domain-independent planning, which aims at building
domain-independent planners that would work for all planning domains. The complexity of
building such a planner that works for all problems has restricted the majority of the research to
classical planning domains [92]. Classical planning is the simplest possible planning problem
which makes the following restrictive assumptions [92]:

1. The state-transition system Z, i.e., the domain has a finite set of states and is fully
observable. There is a unique known initial state.

2. The actions are deterministic in nature.

3. The state-transition system X does not change, i.e., no external events are happening.
This makes state system a triple £ = (5,4, T) or a 4-tuple £ = (5,4, T, cost), where cost
represents a cost function which could mean monetary cost or time or anything else
which one wants to minimise [47].

4. The plans are sequential, i.e., no concurrent actions could occur.
5. The actions are durationless, i.e., they happen instantly.

6. Planning occurs in an offline fashion.

Classical planning imposes very restrictive assumptions due to which not many real-world
problems fall under this category. For example, a mars rover does not has full state
observability and has both, concurrent actions and actions with duration. Thus, we do not
follow the full state observability assumption of classical planning. We assume no state
observability in NLtoPDDL, which makes it closer to real-world problems. We also try to
extend it to durative actions in Section 5.2.4.

2.2. The Domain Learning Problem 13

2.2. The Domain Learning Problem

If one has enough memory to form a look-up table of all the transitions in a domain, then the
classical planning problem can be envisioned as a trivial problem of finding a path in a
state-transition graph. However, Ghallab et al. [46] demonstrate that even for such easy
classical problems, the number of states and actions could explode and the transition-graph
cannot be represented in the memory. Thus, we need to encode state information into
predicates and define an action model, like in PDDL, to formulate a compact representation
of a problem. The problem of learning this domain model from some input data like
previously executed plans is called the domain learning problem. We formally define some
terminology next, which is taken from [109].

Terminology for Domain Learning
The domain model representing the state-transition system X can be represented as a
conjunction of fluents. A fluent p(arg,,arg,,.. arg,) represents a logic predicate p acting
on arg; objects of the world [109]. Each fluent has an associated value: boolean for literal
fluents and numeric for numeric fluents [109]. We restrict our problem to boolean fluents, i.e.,
each predicate representing the state can either be true or false. The objects are often
clustered by their types (typing requirement in PDDL2.1). Types are analogous to “data
types” in functional programming.

We directly take the definitions of Planning Domain, and PDDL planning action from [109]:

“A Planning Domain can be defined as a two-tuple (Ontology, Actions), where Ontology
describes the predicates and objects of the world, and Actions is a collection of PDDL actions”
[109]. Here, by PDDL actions, we mean the uninstantiated PDDL actions, i.e., the action
models.

“A PDDL planning action is a four-tuple

(Name, Parameters, Preconditions, Ef fects),

where Name is the action’s name or identifier, Parameters are the parameters of the action,
Preconditions are the necessary conditions that must be met to allow for execution of the
action, and Effects are the changes in the state of the world after the action has been
executed” [109].

Atemplate of PDDL planning action is called an action model, i.e., it is the non-instantiated
version of PDDL action. Following the above definitions, A plan is a sequence of instantiated
PDDL planning actions that gives a path from an initial state s, to a goal state g. Finally, a
plan trace PT = (s, ag, S1, a1, -Sn, An, g) IS @ sequence of state-action interleavings, i.e., it is
a plan with state information interleaved into it. The state information present in a plan trace
might be partial state information.

Ideal Domain Learning Algorithm
Based on our motivation in Chapter 1, we now describe the characteristics of our ideal domain
learning algorithm:

1. Input and Output: ldeally, the domain modelling algorithm should work with the least
amount of input data and generate the most expressive form of PDDL models. It should
not demand large amounts of structured data, as it is difficult to gather. Also, the outputs
should be meaningful and intuitive enough for further modifications and extensions.

2. One-shot algorithm: The domain learner should work even with a single instance of data
(a plan or plan trace) and should reflect the best possible outcome that is representative
of that data.

14 2. Background and Problem Description

3. Scope not limited to IPC problems: ldeally, any real-world problem should be modelled
by the domain learner. The approach should be easily scalable to non-IPC domains.

4. Efficiency: The time-consuming processes like training a neural network classifier should
be done offline once. The algorithm itself should display the first results of domain to the
user without much delay.

Taking into account our ideal model’s characteristics, we reformulate our domain learning
problem to be: Given an input in terms of a few plans (or a single plan) and no interleaved
state information, the domain learning algorithm should quickly output a valid and
intuitive PDDL model, which should be easy to understand, extend or modify by the
end-user.

2.3. Action Sequence Extraction Problem

The problem of extracting a correct sequence of actions that occur in a natural language
process manual document is described as Action Sequence Extraction Problem. It comprises
of three aspects:

1. extract the words that represent the actions,

2. extract the words that represent the objects on which action is performed, i.e, the
arguments corresponding to the extracted actions, and

3. while extracting actions and their arguments, maintain the sequence of actions that occur
in a process manual. This aspect of maintaining the correct sequence separates action
sequence extraction problem from the Information Extraction or Dependency Parsing
problem present in the field of Natural Language Processing (NLP) and makes it an
even harder problem than its counterparts [33]. Nonetheless, it formulates the basis of
learning domain models from natural language.

Input Training Text Extracting Action Names and Action Arguments Some Possible Outputs

Cook the rice the day before, or use leftover
rice in the refrigerator. The important thing
to remember is not to heat up the rice, but
keep it cold. In a bowl, add 1 tablespoon of
ail to rice. Use a spoon er your hands to
work the oil into the rice, evenly coating the
rice. Transfer the rice to a colander and
drain. Combine eggs and salt in a small bowl
and gently whisk until blended. Heat 1
tablespoon oil in a wok. Add whisked eggs
and cumin seeds to wok. Stir frequently,
working the eggs to a scramble. Heat the
remaining oil in the wok. If desired, you can
recycle some of the oil that drained from the
rice. Add the garlic and onion to the wok.
Stir-fry together over high heat for about 5
minutes or until the onion looks transparent,
but is not soft, Add the rice, eggs, soy sauce,
chili sauce, vinegar, and celery. Mix
together, continuing to stir-fry over high
heat for 1-2 minutes while stirring
freguently, Spoon onto a plate and serve.

* Cook (rice) = Keep (rice, cold) = Add
(oil) = Use [spoon) = Work (oil, rice)
= ... = Work (eggs) = Heat (oil) = ...
= Serve ()

= Use (leftover rice) = Keep (rice, cold)
= Add [oil) 2 Use [spoon) = Work
(oil, rice) < .. = Work (eggs) = Heat
(oil) = ... = Serve ()

Use (leftover rice) = Keep (rice, cold)
— Add [oil) = Use (hands) = Work
(oil, rice) = ... > Work (eggs) = Heat
(oil) = ... = Serve ()

s Use (leftover rice) = Keep (rice, cold)
- Add [oil) 2 Use (hands) = Work
(oil, rice) = ... = Work (eggs) =
Recycle (0il) =* Heat (oil) = ... =
Serve ()

ES: essential

EX: exclusive

OF: optional

Make Egg Fried Rice Mission
End

Figure 2.2: An example of Action Sequence Extraction problem, taken from [33]

Formally, we use the version of action sequence extraction problem described in [33]. To
extract the correct sequence of actions, the authors explicitly consider exclusive (EX) and

2.4. Deep Reinforcement Learning 15

optional (OP) actions in addition to the essential (ES) actions. For example, in an action
description document taken from the same paper [33] represented by Figure 2.2, the first
sentence “Cook the rice the day before, or use leftover rice in the refrigerator” represents an
exclusive action. We either extract “cook” or “use” as actions but not both. The essential
actions are represented by the words “keep”, “work”, and “heat” etc. The sentence ‘if
desired, you can recycle some of the oil that drained from the rice” gives an example of an
optional action “recycle”. As a consequence of considering exclusive and optional actions,
there are multiple possible action sequences from a single process manual as shown on the
right-hand side of Figure 2.2. Ideally, we should be able to extract all correct and
meaningful sequences, and use them to learn a domain model.

2.4. Deep Reinforcement Learning

This section serves a background material for understanding Deep Q-Networks (DQNSs)
which used in the NLtoPDDL pipeline. Deep Reinforcement Learning as the name suggests,
is a combination of Reinforcement Learning (RL) with Deep Learning (DL). Reinforcement
Learning deals with the problem of an agent acting in an environment for the purpose of
maximising a scalar reward. It is different from supervised learning as we do not provide
direct supervision to the agent but instead, reward or punish the agent for its good or bad
behaviour, respectively to make the agent learn good behaviours for reaching its goals.
Figure 2.3 showcases that at each discrete time step t, the environment provides the agent
with an observation s; and a reward r; for its performed RL action a;. Note, that we
differentiate between RL actions and actions of the planning domain model by always
prefixing RL in front of reinforcement learning action.

This environment is mathematically described with a Markov Decision Process (MDP),
which is a five-tuple (S, A, T, R,y), where § is a finite set of states, A is a finite set of actions,
T(s,a,s") = P(s'|s, a) is the transition function which gives a conditional probability of landing
in state s” attime t + 1, if we took an action a in state s at time t, R(s;, a;) is the reward function
which gives an expected return as a function of current state and action, y € [0, 1] is a discount
factor [1, 58]. An episode 7 = (sy, ay, S1,a4,..) is defined to be a sequence of RL states and
RL actions. In deep RL, MDPs are episodic with a constant y except on the terminal states
[39, 58].

/v Agent
f \“.
State, Reward | | RL Action

Ser Iy || | e

\ Environment /

Figure 2.3: Reinforcement Learning: Agent Environment Interaction, adapted from [1]

An agent decides what action to take in a state based on a policy n. It could be
deterministic or stochastic. In stochastic case, policy outputs a probability distribution over
actions instead of an action value. In DRL, we have parameterized policies, whose output
is a function of a neural network’s parameters (weights and biases). These parameters can
be adjusted via normal deep learning optimization techniques like adaptive moment
estimation (Adam) [71], and thus learn a good policy [1]. Deep learning’s ability to

16 2. Background and Problem Description

approximate functions well [74] makes it possible to learn parameterized policies.
The infinite horizon discounted return is defined in [1, 118] as

0

R@ =) yin

t=0

It sums the discounted rewards obtained by the agent in an episode. The RL agent’s goal is
to maximise the expected discounted return.

2.4.1. Taxonomy of DRL methods

A taxonomy of DRL methods taken from [1] is presented in Figure 2.4 which differentiates
between model-free and model-based RL methods. Deep RL algorithms can be divided into
two model-free vs model-based methods based on their access to the environment, i.e., a
function which predicts state-transitions and rewards. Further, the algorithms can be divided
by the entities they learn: policy, Q-functions, value functions or environment models [1].

RL Algorithms

= 1

T 1

Model-Free RL Model-Based RL
| I
.-—) I'“—-\.
. i . '
] T f 3
Policy Optimization Q-Learning Learn the Model Given the Madel
Policy Gradient <— — DON —* World Models L’ AlphaZero
— DDPG a—
A2C f A3C = C51 — 124
> TD3 -
PPO -« > QR-DQN * MEMF
* SAC .
TRPO — — HER — MBVE

Figure 2.4: Non-exhaustive taxonomy of DRL methods, taken from [1].

Citations: Policy Gradient [119], A2C/A3C [88], PPO [107], TRPO [106], DDPG [75], TD3 [41], SAC [54], DQN
[87], CS51 [13], QR-DQN [27], HER [7], Word Models [53], I2A [127], MBMF [91], MBVE [32], AlphaZero [113].
These citations are taken from [1].

As our goal was not to implement a DRL method from scratch, but only to reuse and
improve an existing method EASDRL [33], we followed the taxonomy presented in [1], to
non-exhaustively review the types and enhancements used in DQNs, and these are presented
in Section 3.5.

2.5. Contextual Word Embeddings

Our NLtoPDDL pipeline integrates contextual word embeddings into EASDRL [33] to tackle
limitations of Word2Vec [85] and to achieve better performance and generalisability. In this
section, we review the key differences in the usage of contextual word embeddings like BERT
[29] and a non-contextual word embeddings like Word2Vec [85].

2.5. Contextual Word Embeddings 17

Word embeddings, or neural word embeddings, refer to a short and dense
representation of words in a low-dimensional vector space. By short, we mean that a vector
is 50-500 dimensions long, which is relatively small compared to the size of the vocabulary.
By dense, we imply that most of the values in the vector are non-zero (unlike one-hot
encoded approaches) [67]. The usefulness of word embeddings come from their clustering
of similar words in a vector space. “king — man + woman = queen” is a quintessential
example that is overused to represent such semantic properties of word embeddings.

Famous Word2Vec [85, 86] models are shallow two-layer neural networks that process
text and convert it into such word embeddings. As explained above, it groups similar words in
the vector space based on their past appearances in the corpus. Figure 2.5 describes the two
ways from which Word2Vec achieves this. The continuous bag of words (CBOW) method uses
the context of nearby words to predict the target word [85]. On the other hand, the skip-gram
method uses the word to predict a target context [85]. This task of understanding language
by training to predict the target word or predicting the context is called Language Modeling.

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

wit-2)

wi(t-1)

wit-1)
Piniie

wit+2)

cBow Skip-gram
Figure 2.5: CBOW and skip-gram methods to learn Word2Vec embeddings, taken from [85]

The Word2Vec model averages all the contexts of the word that it saw, into a single dense
vector. As a result, Word2Vec doesn’t address the problem of polysemy, which means that
a word has different meanings in different contexts and the meanings can co-exist. Another
problem with Word2Vec is out-of-vocabulary (OOV) words. Vectors of each word in vocabulary
are stored into a dictionary data structure, and thus, Word2Vec embeddings are static in
nature and only work for the words present in vocabulary.

Contextual word embeddings solve for the issue of polysemy by including information
about the context (preceding and succeeding words) into the vector representation of a
particular instance of the word. These embeddings are computed dynamically at the
run-time by passing as input the sentence in which the instance of the word occurs. Although
it is computationally expensive than just looking into a dictionary, the results obtained on
various NLP tasks are much better [4, 29, 99]. The OOV words issue is solved by learning
character-level or sub-word level embeddings. This helps in computing vectors for misspelt,
rare or internet slang words. A simple way to learn character-level embeddings is to
decompose a word into character n-grams and then use the skip-gram model from a large
corpus of data [15]. A sophisticated way would be to represent character n-grams by a

18 2. Background and Problem Description

convolutional neural network (CNN) and a highway network and then pass it to LSTM to
learn a language model [70], which is used in ELMo [99].

BERT [29] gains its language understanding and nuances on a sub-word level from
semi-supervised pre-trained language model. Just applying this language model to a
downstream task by using a task-specific architecture is called feature-based strategy. The
fine-tuning of parameters of pre-trained language model without introducing task-specific
parameters is called fine-tuning [29]. Figure 2.6 [6] illustrated the process of language
modelling and fine-tuning in BERT.

1-5i Ipervised training on large amounts 2 - training on a specific task with a

of text (books, wikipedia..etc). labeled dataset.

he model is trained on a cerlain task that enables il to grasp Supervised Learning Step

s we later neec i train in a suf . 75% | Spam
Classifier
Semi-supervised Learning Step 25% | Not Sparr
—

Model:
0_ BERT BERT
Dataset: -
Buy these pills Spam
Dataset:)
Spam
Objective: word Dear Mr. Atreides, please lind attached. Not Spam

Figure 2.6: A semi-supervised training is performed on large amounts of text (wikipedia, news dataset etc.) to
build a language model. The language model is fine-tuned for a particular task such as classification of spam and
non-spam emails, taken from [6]

Technically, using the same universal language model and fine-tuning it to task is referred
to as transfer learning in NLP. However, we use feature-based strategy as we already
had the task specific architecture of EASDRL [33] to extract action sequences. This
inherently does some transfer learning as we have learned a lot of information from pretrained
language models and we are applying that information in our downstream task (not related to
the pretrained models). Section 3.6 reviews the literature of contextual embeddings in NLP.

Literature Review

In this chapter, we review the relevant literature associated with our action sequence
extraction and domain learning problems. We first present various ways to categorise
domain learning algorithms, then in Section 3.2 present an extensive review of existing
domain learning approaches. In Section 3.3, we discuss the existing planning languages and
the versions of PDDL.

In Section 3.4, we review various action sequence extraction approaches and also, the
type of problems in NLP to which action sequence extraction belongs. Thereafter, we switch
our focus on model-free Deep reinforcement Learning and specifically to Deep Q-Networks.
In the end, we review the research related to transfer learning in NLP, which is deemed as the
“ImageNet” moment (inflection point) in NLP research.

3.1. Taxonomies of Domain Learning Algorithms

The domain learning approaches can be divided based upon many factors such as the kind
of input provided, the learning technique they employ, and the kind of problem they tackle.
Arora et al. [8] present a guide to choose a domain learning algorithm based on such factors,
which is illustrated in Figure 3.1. We explain each of the factors in the following subsections.

Based on the Environment. The characteristics of the environment in which a planning agent
acts has led to various groups of domain learning systems. Jiménez et al. [65] categorised
them into four groups:

1. Deterministic effects, Full state observability (D, FO): These are the classical
planning problems that we discussed in Chapter 2, which are too restrictive in their
assumptions to represent any interesting real-world problems. We can use plan traces
(state-action interleavings) in this scenario, to learn the domains. The learning
complexity is theoretically bounded [65].

2. Deterministic effects, Partial state observability (D, PO): These learning methods
consider partial or no state observability. LOCM [25, 26, 52] is a family of methods that
assume no state observability.

3. Probabilistic effects, Full state observability (P, FO): This scenario of full observability
but stochastic action effects corresponds to probabilistic planning task. Probabilistic
PDDL [132] is the representational language for such tasks.

19

20 3. Literature Review

Reinforcement
Learning

No Model
(Learnt
Sarateh)
Learning Learning Partial Model
(Enriched during
learning)

D,FO_J(CD,PO_J((PFO | PPO |

Action
State-Action
Nois || Ideal ‘Sequences\ Interleavings
Q"'a ity Klnd of
Traces
Traces

Quantity of
Knowledge
in
Beginning

State Tochniques
Observability g

and Action
Effects

Learning Action
Models

Figure 3.1: A taxonomy of learning planning domains models, taken from [10]. D=Deterministic, P=Probabilistic,
FO=Fully Obersvable, PO=Partially Observable.

4. Probabilistic effects, Partial state observability (P, PO): In case of partial/incorrect state
observability and stochastic effects, not many studies have been done for the modelling
task. However, an important area of work called model-lite planning [131, 138, 143]
has emerged which tries to search for not only the perfect plans but also most plausible
solution plans[65].

We consider only D,PO environment with no noise in our implemented methods.

Based on the Input and Output. The domain learning algorithms can be categorised on the
basis of input they take, and the output they produce. The inputs can be plans (sequence of
actions), plan traces (state-action interleavings) and partial domain models. The
state-information in plan traces varies from partial state information to no state information.
The input plans or plan traces may be noisy or incorrect as well. Learning methods can also
be categorised based on the output they generate. The output could be partial models,
STRIPS [34] model, or a subset of PDDL [36, 45]. Our work concentrates on plans as an
input, which means, that there is no state observability, and output as PDDL2.1 models
supporting strips, typingand durative-actions requirements. We assume that the
input is valid and there is no noise.

Based on the Learning Technique. Finally, the domain learning algorithms can be
categorised based on the learning technique they employ. For example, inductive learning,
and maximum satisfiability are some of the popular techniques employed in domain learning

3.2. Existing Domain Learning Approaches 21

approaches. We discuss these along with their implementations in the next section.

3.2. Existing Domain Learning Approaches

Chapter 2 described a specific type of domain learning problem. However, the area of
domain learning is much broader and thus, we define generalised domain learning problem
as:

Given an input in the form plans, plan traces or a partial domain model, learn a domain
model containing an action model, which describes the applicable actions, their conditions
for applicability and their effects, which best describes the input data.

We categorise domain learning methods into the following types of learning and discuss
their strengths and weaknesses alongside their implementations. Most of these types are
taken from a survey of Arora et al. [8], but we update it with the most recent methods as well.

1. Inductive Learning: This the most popular form of learning domain models. The task
is to find the best hypothesis that satisfies a given set of traces [8]. Most inductive
approaches are data-intensive and require huge dumps of structured data to learn
planning domain models. This can further be divided into various types:

* LOCM family of algorithms: Learning Object-Centric Models or LOCM uses
object-centric notation and assumes that objects in a domain belong to certain
classes and their behaviour can be modelled by finite state machines[26]. On the
basis of valid input plans, it inductively learns the state machines and
parameterises them with object associations. LOCM2 generalises LOCM by
allowing for an object to have multiple behaviours through multiple finite state
machines (FSMs) per class [26]. LOP system induces the static conditions which
were not captured by LOCM and LOCM2 [50]. NLOCM [51] extends the scope of
LOCM methods from classical planning to numeric planning. It uses the finite
state automata generated from LOCM to learn action costs of object transitions
and state parameters [51]. LC_M [52] is a variant of LOCM which deals with
missing and noisy information by segregating plans into valid and invalid parts and
applying LOCM[26] to them. Finally, Framer [76] and StoryFramer [55] are two
approaches that use LOCM to learn domain models from natural language action
descriptions. We use LOCM1 and LOCM2 in our thesis.

* Regression trees: Planning, Execution and Learning Architecture or PELA [64],
which does all three tasks described in its name, updates STRIPS [34] action model
with probabilities learned from plan execution. The probabilities are learned by
inducing first-order decision trees [65]. Thus, PELA works with probabilistic effects
using regression trees.

* Mixed-Initiative: Opmaker2, based on Opmaker [114] take in a partial domain
model and a few hand-crafted training examples to learn the domain models [82].
Recently, Li and Zhuo [73] presented an integrated development environment
which asks the user to create a graphical model, does consistency detection using
MAX-SAT and weighted MAX-SAT over a knowledge base and applies domain
learning algorithm called AMAN [137] to learn the domain models. If the modelling
is incorrect, the end-user corrects the generated plans and then KAVI learns the
domain model again.

22

3. Literature Review

. Analytical Learning: In analytical learning, extra background knowledge is available

to draw inferences from. Zimmerman and Kambhampati [145] present a survey of
analytical approaches which shows how techniques such as memoization,
explanation-based learning, and statistical analysis can help in domain model
acquisition.

. Genetic and Evolutionary algorithm-based approaches: Genetic algorithms have

been applied in model-learning approaches. Colledanchise et al. [24] learn behaviour
trees instead of restrictive FSMs to learn behaviours of an autonomous using genetic
algorithms. In an a priori unknown dynamic environment, using rewards and binary
observations, the agent uses genetic programming to learn a switching structure in
the form of behaviour tree [24]. Another approach called LOUGA (Learning planning
operators using genetic algorithms) used ‘a genetic algorithm to learn action effects and
an ad-hoc environment to learn action preconditions [72].

. Uncertainty-based approaches: Uncertainty-bases approaches use Markov Logic

Network (MLN) [102], which is a combination of first order logic (which handles
uncertainty) and probabilistic graphical model (which models a markov network) [8].
Learning Actions from Plan Traces (LAMP) [140] is a domain learning method that
uses MLNs to model complex action models with logical implications and quantifiers.

. Noisy plan trace dealing approaches: Action-Model Acquisition from Noisy Plan

Traces (AMAN) makes a graphical model to capture relations between actions and
states [137]. PlanMiner O2 [109] is another algorithm that handles noise and learns
numerical action models. It uses a classification algorithm called “NSLV genetic
algorithm” to learn the pre and post-states of actions. On the basis of results
mentioned, the models of IPC problems that learned are robust to noise LC_M [52] is a
variant of LOCM, which deals with missing and noisy information by segregating plans
into valid and invalid parts and applying LOCM[26] on them. Probabilistic planning
operators are learned from noisy traces in [89]. The input to the learning mechanism
uses a vector representation that encodes a description of the action being performed
and the state at which the action is applied. Then a transition function is learned
between states in the form of a set of classifiers. Using classifier's parameters a
STRIPS model is learned [89].

. Transfer Learning: An example of transfer learning-based domain learning approach

is TRAMP (Action-model acquisition for planning via transfer learning) [139]. It
assumes that action models in source domains are already created by SMEs and can
be transferred to the target domain. TRAMP uses Markov Logic Networks (MLN) for
selecting most likely subsets of candidate formulas, an idea previously researched in
LAMP [140]. t-LAMP [142] is a similar approach which uses web search to bridge the
knowledge gap between the source and target domain.

. MAX-SAT based approaches: Classical Planning is reduced into a (weighted)

MAX-SAT problem and MAX-SAT solvers are used to solve it. ARMS (Action-Relation
Modeling System) [129] learns action models from state-action interleavings with
partial state information. It forms information and action constraints that are followed by
the predicates and pattern mines frequent action pairs to learn action models [129][8].
A transfer learning approach LAWS [136] builds a weighted MAX-SAT to find similarity
between source models and target models using web search. Learning Models for
multi-agent environments (LAMMAS) extends ARMS to multia-agent setting [141][8].

3.3. The Planning Languages 23

8. Deep Learning-based approaches: Deep Learning has recently being employed as
domain learning approaches. Classical planning is done in deep latent space in [11],
a state auto-encoder which uses unlabelled training image pairs representing correct
states to encode correct behaviour, and then at the testing time takes in a pair of initial
and final state images to find a plan using variational autoencoder using Gumbel-Softmax
activation.

9. Model-Lite approaches: [68, 131] apply probabilistic logic to infer incomplete and
dynamic domain models. They represent planning problem as the most plausible
explanation (MPE) problem and reduce it to MAX-SAT to use MAX-SAT solvers. A
library of plan cases is used augment the extracted plans from an incomplete model in
[143]. A case-based (Model-Lite Case Based Planning) and a model-based (Refining
Incomplete Models [144]) approach are presented and compared in [138].

10. Classical Planning approaches: Recently, [2] used classical planning with conditional
effects to build up generative models representing STRIPS action models from less
amount of plan traces. In Aineto et al. [2], the authors stress test their approach to
do the learning in one-shot, i.e., from one plan trace.

A summary of important existing domain learning approaches is shown in Table 3.1

3.3. The Planning Languages

In this section, we review the existing planning languages and subsequently, delve into the
versions of PDDL which has become de facto standard for modelling domains through various
International Planning Competitions. A planning language is a representation language to
encode domain models. An overview of representation languages in Automated Planning is
shown in Table 3.2. PDDL is the standard language to be used in the domain-independent
planners. Each iteration of PDDL made it more expressive and useful. There have been
many adaptions of PDDL to make it more suitable for the task at hand. For example, New
Domain Definition Language (NDDL) was developed by NASA to use it in EUROPAZ2 planning
system [14]. NDDL replaces states and actions with timelines and constraints between those
timelines, which makes it much more practical for search control [14]. Another example is
HTN-PDDL [49], which uses a task element to introduce hierarchical tasks. The most recent
version of PDDL is PDDL 3.1 [42], which has introduced functions and object fluents. We only
support strips, typing and durative-actions subset of PDDL2.1 [36] version in our thesis.

3.4. Existing Action Sequence Extraction Methods
Extracting procedural knowledge or a sequence from a natural language in
machine-interpretable format has been a popular problem in the field of Natural Language
Processing (NLP). It is similar to translating a natural language to structured machine
language, and just like successful machine translation methods, it comes under the category
of sequence-to-sequence (seq2seq) problems [117]. The sequence-to-sequence models are
based on encoder-decoder architecture, possibly with an inclusion of attention. The encoder
is a neural network architecture that understands the input sequence, and creates a compact
representation, i.e., encodes the input in less dimensions. Afterwards, the encoder passes
on this representation to the decoder which is a separate network that generates a sequence
representing the output.

Regarding action sequence extraction problem, most of the work in this direction has
been performed in mapping navigational route instructions to a predefined set of actions, to
allow autonomous agents and robots to follow the natural language instructions. Earlier

24

3. Literature Review

Existing Domain Learning Algorithms

. . . Noise
Algorithms Input Output Technique ‘ Environment robustness
Inductive learning-based approaches
PlanMiner 02 [109] | State-Action Interleavings PDDL (Action Model) Classification based D,PO Y
on genetic algorithm
. . Inductive Learning on
LOCM [26] Action sequences (no state info) PDDL Finite State Machines D,PO N
. . Inductive Learning on
LOCM2 [25] Action sequences (no state info) PDDL Finite State Machines D,PO N
NLOCM [51] Action sequences (no state info) PDDL ::r’\ductlve L.OQIC D,FO N
rogramming
N . Inductive Learning on
LC_M[52] Action sequences (no state info) PDDL Finite State Machines Y
OpMaker [114] Partial model + action sequences Operators/OCL Operat.or. |.nd.uct|on by D,PO Y
mixed-initiative
Computes intermediate states
Partial model + Operator/OCL. using heuristics,
OpMaker2 [62] action sequences (OCL) Domain model and heuristics inference from PDM, D.PO Y
training tasks and solutions
PELA [64] Initial and goal State + PDM Enriched action models/PDDL | |0P-down induction of PPO N
+ Action Sequences decision trees
Genetic Algorithm-based approaches
Newton et al. [93][8] Domain and example problems Macros/PDDL Genetic algorithm D,FO N
Colledanchise et al, [24] | Actions, reward and Behavior Trees Genetic algorithm learning | 1y 1y
boolean sensing Behavior trees
LOUGA [72] Valid Action Sequence STRIPS Genetic algorithm D, FO N
Uncertainty-based approaches
AMAN [137] Action sequence Operators/STRIPS PGM, reinforcement learning | D,PO Y
LAMP [140] State-action interleavings Action models/PDDL Markov logic network D,FO N
Pasula et al. [96][8] State-action interleavings Probabilistic STRIPS like Parameter estimation. PFO N
Transfer learning-based approaches
L . N Markov logic network
t+-LAMP [142] State-action interleavings Action models/PDDL +Web Search D, FO N
Action schemas, predicate set,
few plan traces from target domain. | Action model in target domain. .
TRAMP [139] Set of action models from (STRIPS) Transfer Learning D,FO N
source domain.
MAX-SAT based approaches
ARMS [129] Action sequence) Operators/STRIPS MAX-SAT problem D,FO N
(partial/no state information)
Action schemas, predicate set,
few plan traces from target domain. | Action models in target domain | Transfer Learning
LAWS [136] Set of action models from (STRIPS) + KL divergence D.FO N
source domain.
Lammas [141][8] Action sequences Operators/MA-STRIPS MAX-SAT solver D,FO N
Supervised learning-based approaches
. Kernel Perceptrons
LSO-NIO [89] PDM, Noisy Plans Operators/PPDDL + sequential covering ‘ P,FO ‘ Y
Deep learning-based approaches
State Auto-Encoder +
Unlabelled training image pairs Variational Autoencoder
LatPlan [11] for allowed actions. PDDL + Gumbel-Softmax activation D.FO N
Pair of intial and goal state images.
Exhaustive model generation
PDeeplearn [9] State-Action interleavings PDDL + Pattern mining D,FO N
and LSTM.
Cl P ing-based approaches
Bandres et al. [12] Visible screen pixel features Atari Game models Classical Planning D,FO N
Synthesis of generative
Plan Sequences models using Classical
Aineto et al. [2] and/or initial and goal state STRIPS Planning 9 D,FO N
and/or partial domain model with conditional effects
Aineto et al. [3] and/or initial and goal state STRIPS . ng - D,FO N
By . Planning with conditional
and/or partial domain model effects

Table 3.1: Existing Domain Learning Approaches, adapted and updated from [8]

3.4. Existing Action Sequence Extraction Methods 25

Languages Features
PDDL [83] Standardized syntax for STRIPS (types, constants, predicates, and actions.)
PDDL+ [35] Models continuous time-dependent effects.
PDDL2.1 [30, 36] | Extension of PDDL to numeric fluents and temporal planning
PDDL3.0 [43, 44] | Introduced hard and soft constraints for preference-based planning.
PDDL3.1 [42] Introduced functions and object fluents.
PPDDL [132] Extension of PDDL2.1 for probabilistic planners. Supports probabilistic effects.
HTN-PDDL [49] | Extension of PDDL for hierarchical task networks, uses “task” for compound tasks
STRIPS [34] Sublanguage of PDDL. Unknown literals are false (closed-world)
OCL [81, 82] Object-Centered representation, inspired by Object Oriented Programming
ANML [115] Used by NASA in space missions. Combines best aspects of PDDL and NDDL.
RDDL [104] STRIPS + functional terms, leading to higher expressiveness.
ADL [8] An extension of STRIPS to include quantifiers and negative conditions.
NDDL [14] Intervals and constraints between those intervals as states and actions.

Table 3.2: Planning representation languages: PDDL is the de facto standard for classical planning and has been
used in many International Planning Competitions (IPCs). ANML = Action Notation Modeling Language, PDDL
= Planning Domain Definition Language. PPDDL = Probabilistic PDDL. RDDL = Relational Dynamic Influence
Diagram. ADL = Action Description Language. NDDL = New Domain Definition Language. HTN-PDDL =
Hierarchical Task Network-PDDL

approaches [20, 79] used semantic parsers, context-grammars, and statistics of corpus to
extract actions from natural language data and map them to instruction-set [84]. In a famous
paper of "listen, attend and walk”, Mei et al. [84] used an encoder-decoder architecture to
map “free” natural language instructions to an executable action sequence. Both encoder
and decoder structures were long short-term memory (LSTM) [59] RNNs. Although it
performs well for single sentences, the weakness of this approach is that it cannot handle
multi-sentence texts well. Despite the success of these approaches, they all require a finite
set of actions as input, as they essentially solve the mapping or a sequence labelling problem
instead of extraction problem [33]. Feng et al. [33] defined a version of action sequence
extraction problem in which they exclusive tackle exclusive “or” instructions. Either one of the
instructions is extracted and not both which maintains the sequence of actions. Keeping the
action sequence intact is important for domain learning approaches. Feng et al. [33] do this
action sequence extraction by using a Deep Q-Network to learn action sequences from free
natural language data, without the need of any mapping action set. In an unrelated research,
it is demonstrated that using DRL instead of encoder-decoder architectures reduces the
exposure bias and input-output mismatch problems, which are prevalent in NLP [69]. We
use Feng et al. [33]’s version of problem definition and DRL model in our research and take it
a step further by incorporating state-of-the-art contextual embeddings like ELMo [99], BERT
[29] and Flair [4] into it. As we will see later in Chapter 5, this pushes the state-of-the-art
further, and even helps in resolving problems of using static embedding like Word2Vec [85].

There also has been some research on learning planning domain models directly from
natural language data. Goldwasser and Roth [48] use natural language instructions to learn
partial game dynamics and map it onto the structural actions [48]. Framer [76] extracts verbs
(action names) and objects (action arguments) in a sentence using Stanford CoreNLP [80]
library and clusters them into action templates. The type of input data used is in the form
of restricted templates. They later build domain models using LOCM [26]. StoryFramer [55]
uses natural language stories to generate domain models in a mixed-initiative fashion. The
user selects the correct actions templates for LOCM in StoryFramer. In this research, we
extended the Framer’s [76] architecture to work with “free” language data.

26 3. Literature Review

3.5. Deep Q-Networks and their variants

Deep Q-Networks (DQNs) combine Q-learning [126] with deep neural networks. Mnih et al.
[87] presented for the first a reinforcement learning approach combined with convolutional
neural network with a variant of Q learning to get control policies from pixel level input [87].
This was important because large state spaces made it intractable to learn Q value estimates in
original Q-learning from a lookup table. DQN changed this by representing values q(s, a) with
deep neural networks [58]. However, there were similar limitations in DQN which are tackled
by its extensions. Double Q-learning [123] showed that the original DQN overestimated action
values under certain conditions, and used two value functions one of which determined how to
select actions and the other to determine its value. Prioritised experience-replay was shown
select important transitions and replays them more frequently in the network [105]. In EASDRL
[33], which we use in our research uses both double Q-learning by building two Q-networks
(base and target), and prioritised experience-replay by selecting positive experiences more
[33].

3.6. Contextual Embeddings: Natural Language Transfer Learning
The rise of contextual embeddings and universal language models has marked a new era in
NLP. These embeddings are trained in an unsupervised or semi-supervised fashion on a huge
corpus of data such as books corpus?, and then used on downstream task on a feature-based
or fine-tuning based approach [29]. Embeddings from Language Model (ELM0)[99] learns a
bidirectional Language Model (biLM) by training on huge corpora in an unsupervised fashion.
ELMo can be used as a feature-based approach. Flair embeddings [4] are similar to ELMo
embeddings which train the biLM a character-level with no notion about words. Cross-View
training (CVT) [23] combines two separate training stages that ELMo needs for pre-training
and task-specific training into a unified semi-supervised procedure. The biLSTM encoder
improves its encoding using both labeled and unlabelled data [128]. ULMFiIT [62], which
stands for Universal Language Modelling and Fine Tuning was the first paper which looked into
using a pretrained language model with task-specfic fine-tuning. The techniques introduced in
ULMFIT which made task-specfic fine-tuning possible were discriminative fine-tuning (tuning
different layers of LM) and Slanted triangular learning rates (the learning rate increases for
short time, then decreases) [62, 128]. OpenAl-GPT [100], which is short for Generative
Pre-training transformer used a transformer (an attention based encoder-decoder neural net
[125]) decoder to train on a giant collection of data. On the other hand, BERT uses a stack of
transformer encoders [29]. BERT beats OpenAIl-GPT by a novel idea of masked input which
encouraged bi-directional prediction and sentence-level understanding [128]. XLNet [130] and
OpenAl-GPT2 [101] are other notable transformer based methods. We used ELMo, Flair and
BERT embeddings in our research.

"https://googlebooks.byu.edu/

https://googlebooks.byu.edu/

NLtoPDDL

The formal architecture of NLtoPDDL pipeline is shown in Figure 4.1. Itis divided into two
phases which are based on the type of data they use:

1. Training the DRL model with annotated training data: In Phase 1, a Deep Q-Network
(DQN) based on the architecture presented in [33] trains on annotated datasets. The
DQN learns to extract words that represent action names, action arguments, and the
sequence of actions in the natural language process manual. An important thing to note
here is that instead of using static word2vec embeddings [85], we incorporate dynamic
contextual embeddings like BERT [29], ELMo [99] and Flair [4] into the Feng et al. [33]’s
model.

2. Learning the domain model with unseen test data: In Phase 2, we learn the domain
model of the domain represented by unseen process manuals. First, we extract the
action sequences by feeding our unseen test data to our trained Deep Q-Network of
Phase 1. Second, we preprocess the extracted action sequences to make them
suitable for assumptions made by domain learning algorithm LOCM2 [26]. Lastly, the
preprocessed extracted action sequences are then used by LOCM2 to learn the PDDL
domain model.

Phase 1: Training a DQN to extract Action Sequences.

Contextual Word
Embeddings — Deep Q-Network
(BERT, ELMo, Flair)

Trained DQN Model
(learned weights)

NL Instructions
(Annotated Dataset)

Phase 2: Extracting Action Sequences using Trained DQN and Domain Model Acquisition via LOCM2

Trained DQN Model
Unseen Test data —* predicts Action
Sequences

Preprocessing of Action LOCM2 generates
Sequences PDDL Domain Model

Figure 4.1: Formal pipeline architecture to learn PDDL domain models from natural language instructions. It is
formed by combining from [76], [4] and [33]

In this chapter, we look at both the phases of NLtoPDDL in detail and also highlight the
decision-making process behind the selection of specific components and their modifications.

27

28 4. NLtoPDDL

4.1. Training the Deep Q-Network

Feng et al. [33] presented a method named Extracting Action Sequences from texts using
Deep Reinforcement Learning (EASDRL), which uses Deep Q-networks to extract action
sequences out of natural language instructional data. The reason for using this architecture
is four-fold:

1. EASDRL produces state-of-the-art results for extracting correct sequence order from
free natural language text. This means that the user doesn’'t need to adhere to any
restrictions while expressing the actions in a natural language [33].

2. EASDRL doesn’t require a prior action set to be specified [33]. This makes it suitable for
learning domain models from scratch as we do not know a priori the set of actions.

3. DQNs, along with their improvements like prioritized-replay and double g-learning work
well with discrete action spaces, and have proven to be sample efficient and achieve
state-of-the-art performance on Atari 2600 benchmarks among other domain-free DRL
algorithms [38, 58]

4.1.1. Training Dataset
Feng et al. [33] define the training data as a sequence (words, annotations) pairs, where
words = (wy, Wy, .., Wy) is the sequence of words in a process manual, and annotations =
(y1, ¥, .Yy) is the corresponding sequence of annotations. If w; is not an action name, the
corresponding y; is ¢. If a word w; is an action name, the corresponding y; can be defined by
Feng et al. [33] as a triple:

(ActType,{ExActld}, {{(Argld, ExArgld)})

Here, ActType tells the type of action the word is: essential (ES), optional(OP) or
exclusive(EX), as defined previously in Section 2.3. {ExActld} is a list of word indexes that
represent a list of exclusive actions that are alternatives to the action in consideration.
{(Argld, ExArgld)} represents the list of sequences of arguments and their alternatives for
the action in consideration. Figure 4.2 illustrates an example of such a (words, annotations)
pair. In the example, “Hang” and “opt” are the exclusive actions, “engraving” and “lithograph”
are exclusive arguments for the action “hang”. Since “frame” has no exclusive argument, it is
written as a tuple (9,) with no second value. The annotations y; for non-action words is ¢.

4.1.2. Sequence Extraction as Reinforcement Learning Problem

Feng et al. [33] represent the action sequence extraction problem as a reinforcement learning
problem. This is done because of arbitrary long length of complex annotations, which makes
it hard to formulate a supervised learning setting. The allowed RL actions in EASDRL Feng
et al. [33] are “select” and “reject’. The RL states are a concatenation of word embedding and
the RL action performed. This was done to distinguish between two states as the RL agent
can either select or reject a word to indicate whether the word is an action name (or an action
argument) or not. An example of the RL state and RL action is shown in Figure 4.3. The RL
action NULL in the figure is a default action used to represent an unparsed sequence. Note
that we distinguish between RL action and the action of the domain model by always prefixing
RL to the reinforcement learning action.

Feng et al. [33] solve the action sequence extraction problem by using two DQNs. The
first DQN learns to extract the sequence of action names actions = (a4, a,, ..., ay). Its model
can be represented by:

Fl(actions|words; 0,)

4.1. Training the Deep Q-Network 29

exclusive actions

X: an engraving or lithograph in a black frame or for an unframed canvas
Index: 1 2 3 4 5 6 7 8 9 1011 1213 14 15
exclusive arguments essential argument essential argument
Y: <(exclusive, {11}, {<3, 5>,<9, >}), O, (exclusive, {1}, {<15. >]).0....>
‘____.--"""‘ "‘--._‘____) ¥y = T ¥ L Vg i
Hang(engraving, frame) Hang(lithograph, frame) opt{canvas)

Figure 4.2: An illustration of (words, annotations) pair of the training datasets, taken from [33]

. word vector operation : word vector oparation
Coak ML Coalk Sl
the WL 3, = Salect the METL
rles 11 — riee N1
the w11 the N1
day LY day T s

before ML before ML
¥l : N1

Figure 4.3: A schematic example of RL states and RL actions (denoted as operation here), taken from [33]

Then the action names are used to train the second DQN which has the same framework as
one to extract the arguments of actions.

F?(actions|words; 0,)

Here, 6, and 6, are the parameters that the DQN learns for predicting action names and
arguments [33]. Just like in [33], F? is trained using ground-truth action labels, and while
testing the extracted action names from F? are used.

4.1.3. Repeat Representation in States
Feng et al. [33] use a repeat representation while representing states. For action DQN, the RL
state is represented by the word vector of d dimensions and the RL action is one of {0, 1, 2},
which corresponds to {NULL, Select, Reject}, but is repeated d times. Similarly, in argument
DQN, the state is represented by a triple (word_vector, distance, RL action), where the
distance is the distance between the word in consideration (w;) and the

Schematic representation of states in an argument DQN is shown in Figure 4.4. We can
infer that repeat representation is not scalable. For Word2Vec embeddings of 100
dimensions, the state representation is 300 dimensional long, but for BERT embeddings of
3072 dimensions, one state is represented by 9216 dimensions. This causes memory issues
in training even with smaller batch sizes. We explain what we tried to resolve this in the next

30 4. NLtoPDDL

section.

Repeated Repeated
Word2Vec distance RL Action

100 100 100
BERT Repeated distance Repeated RL Action
3072 3072 3072

Figure 4.4: A schematic illustration of repeat representation for 100-dimensional Word2Vec embedding and
3072-dimensional BERT embedding.

4.1.4. Deep Q-Network for RL Action execution

The two Q-networks construct an action sequence by repeatedly accepting or rejecting the
words on current states to achieve new states. The Q-function is iteratively updated using the
following two Bellman equations, taken from [33]:

Qira(5,a;01) = E{r +ymaxQy(s’,a’; 6,)ls, a}
Qis1(3,;6,) = E{r +y max Qi(s', a’; 6,13, a}

where, Q;;1(s,a;6;) and Q;+1(8,a; 8,) correspond to the action DQN and argument DQN
respectively. § denotes that the information about extracted actions is incorporated into it
through the repeat representation of “distance” described in the last subsection.

Feng et al. [33] used MGNC-CNN [133] to reduce the dimensionality of the
state-information encoded by the repeat representation. Four types of kernels that were
used in the CNN were bigram, trigram, fourgram and five-gram, following the results of [33].
We used the same architecture mainly due to the following two reasons:

1. We attempted first to couple MGNC-CNN with LSTM layers by encoding it into a
time-distributed (keras.layers.TimeDistributed(layer)) layer. This didn’t
work due to memory constraints caused by repeat representation. Repeat
representation is not scalable and also caused problems in training with contextual
embeddings as discussed above. Thus, applying sequence-to-sequence architectures
from Keneshloo et al. [69] was out of the question for large dimensional embeddings.

2. We tried to get rid of repeat-representation by trying out various combinations of
convolving the word vectors and other information (distances, RL actions) separately.
But the concatenation or average of decoupled convolutions didn’t converge the DQNSs.

4.1.5. Reward Model and Training the DQN

We did not change the reward model and the training procedure from [33]. Reward r is
comprised of two parts: a basic reward at time-step t and an additional reward. The values
basic reward at time-step t are defined to be : +50 when the RL action of select or reject is
correct and -50 for incorrect action, +100 when the word is an essential (ES) item, and -100
for missing ES item, +100 for getting optional (OP) item and 0 for not extracting OP item, +150
for correctly extracting exclusive items and -150 when the action is incorrect. An additional
reward is determined based on the real-time extraction rate of actions or arguments. The

4.2. cEASDRL: Incorporating Contextual Embeddings into DQN 31

real-time extraction rate is compared to the ground-truth and if it was less than ground-truth
rate, an additional reward is given. Otherwise, a negative reward is assigned to control the
precision [33].

For training the EASDRL, we used the same mini-batched sampling which [33] applied.
Specifically, the transitions (s, a,r,s’) and (3,a,r,5') were stored in two replay memories Q
and (). Authors used positive experience-based replay instead of random sampling for faster
convergence. Thus, we stuck to the parameters used in Feng et al. [33]'s CNN model and used
the repeat representation as well. Although Feng et al. [33] achieved state-of-the-art-results,
EASDRL exhibits a variety of problems caused by the used input representation of Word2Vec
[85], which hinders its applicability to real-world tasks. We demonstrate these problems in the
next section.

4.2. cEASDRL: Incorporating Contextual Embeddings into DQN
First, we illustrate the problems caused by using Word2Vec model, and then discuss
state-of-the-art contextual embedding frameworks used in our report:

4.2.1. Problems with Word2Vec

The DRL model in [33] uses Word2Vec [85] embeddings. Word2Vec model is a shallow
two-layer neural network that takes in as input a text corpus and outputs a dense vector per
word. The word’s meaning is distributed across the whole vector. As discussed in Chapter 2,
the intuition behind the training of this neural net is that similar words would occur in a similar
context in the corpus. Despite the capturing of semantics, Word2Vec showcased the following
problems:

1. Inability to handle out of vocabulary (OOV) words: The never-seen-before words are
not handled by the word2vec neural network as it has no idea about how to represent
such OOV words. Especially, in planning domains, there is domain-specific knowledge
and new technical words are introduced according to the task that has to be performed.
For example,

Sentence: Use spoon to work the oil into the rice evenly coating
the rice

EASDRL Sequence output: <1> Use (UNK) <2> work (oil) <3> coating
(rice)

Here, UNK represents the OOV word “spoon”. We might initialize a random vector for
it, which is far from ideal.

2. Ignores Context/Polysemy: Word2Vec is a static embedding average out the
meaning of two polysemous words. For example, if “Apple” (the company and apple
(the fruit) both occur in the corpus, the word “apple” would be represented by a single
vector which averages out the meaning of two words. This makes Word2Vec
representation too general and this might lead to the extraction of wrong
actions/arguments.

3. No shared representation at the sub-word level: For Word2Vec, each of the words
“eat”, “eating” and “ate” are different, although they have the same word-stem and are
used in the similar context. Word2Vec is too specific in this case. This would lead to

duplicate actions or arguments.

4. A number of word senses is not finite and thus, Word2Vec is biased: There is large
number of contexts in which a word can be used and doesn’t always fit the dictionary
representations.

32 4. NLtoPDDL

4.2.2. Contextual Embeddings to the Rescue

Contextual word vectors include both the semantics of the word as well as some neural
network parameters that describe their context. As we already have a task-specific
architecture, we use the feature-based approach described in Section 2.5 to take advantage
of pre-trained language models. To solve above-mentioned issues, we used the following
contextual embeddings:

1. POS/NER Embeddings: Inspired from Sense2Vec[121], these embeddings stem the
word (reduce it to its base form) and append parts of speech(POS) and named-entity
recognition(NER) information to the words and then a model like Word2Vec is trained on
it. For example, “going” becomes “going.verb” with lemma “go”. This embedding is not a
true contextual embedding as it only captures some sense of the word and itis dependent
on the accuracy of the dependency tree extracted from probabilistic POS/NER tagger.
This is used as a baseline in Section 5.1.2. It is fast as at its core it’s still a dictionary
lookup, but OOV words are still a problem.

2. ELMo Embeddings: ELMo[99] which stands for “Embeddings from Language Models”
generates contextual word vectors that come from internal states of a
bidirectional-LSTM [108] that is trained in an unsupervised fashion on large scale text
corpus in order to learn a language model [99]. As the training is done in both forward
and backward direction, a bidirectional Language Model (biLM) is learned. These are
defined in [99] as,

N
pwa,wo,) = | [POl ws,)
k=1
, Which is the forward language model predicting the next word based on previous history,
and
N

p(Wy, Wy, . W) = 1_[P (Wi Wi 1, Wit 2, - Wn)
k=1

which is the backward language model predicting the target word using future context.

These models are combined by jointly maximising the log-likelihood of the forward and
backward models [99] and parameters for embedding layer 6, and softmax layer 8 are
shared between them. A schematic view of biLM is shown in Figure 4.5. ELMo uses
a character-based model which are based on character convolutions [15, 99]. These
essentially remove the problems of OOV words and polysemy.

3. Flair Embeddings: Flair Embeddings[4] are very similar to ELMo in the sense that
they train a biLM using LSTMs but they are trained without an explicit notion of what
a word is. Figure 4.6 represents a schematic overview of Flair embeddings. They report
comparable results to ELMo, that's why we incorporated them. Also, the Flair API [5] is
very easy to use and incorporates APls for ELMo and BERT as well.

4. BERT Embeddings: BERT [29] or Bidirectional Encoder Representations from
Transformers, is another method to train language models, which takes ideas from
semi-supervised sequence learning [28], ELMo [128] and ULMFit [62]. As previously
seen, ELMo and Flair train two representations of each word (left-to-right and
right-to-left) and concatenate them together to have a single representation. Instead,
BERT combines the left and right context by masking out 15% of the input words and

4.2. cEASDRL: Incorporating Contextual Embeddings into DQN 33

Embedding

BE 5

Figure 4.5: The biLSTM in ELMo trains on a joint objective of learning a bidirectional Language Model. The image
is taken from [128], which is recreated from [95]

]

E-PER o] | ? |
¢‘ Sequence Labeling Model

\rf
r
(_reorge Washington hom

AAAAAAAAAAAAAA
W Character Language Model W

Y Y Y YT YTTYIYYTT

TTTTTTTTTTTTTTTTTTTT

IGI lo_rlg|e| Wials/n[iln[g[t/o[n] Iwlals| [plor]n]

l

Figure 4.6: “Flair embeddings: Input as a character sequence of a sentence into a pre-trained biLM (like ELMo).
The contextual word embeddings from biLM are passed into the sequence labelling model to perform named-entity
representation [4].

34 4. NLtoPDDL

then running entire sequence through multilayer bidirectional Transformer '[125]
encoder, then predict only the masked words. According to ablation study in [29], not
having

5. Stacked Embeddings: Most papers recommend to combine the forward and backward
contextual embeddings with traditional word embeddings (like GloVe, Word2Vec). An
example of StackedEmbedding object from Flair API library [5] is shown below:

StackedEmbedding = [Glove,
flair-X-forward,
flair-X-backward]

Here, X represents the dataset used for pretraining.

4.3. Learning domain model using LOCM

Learning Object Centred Models (LOCM) is a family of algorithms [25, 26, 50-52] developed
to learn planning domain models using only the plans, i.e., a sequence of actions
(ag,a4,0a,,..,a,). They do not require any intermediate state information in the plans in
order to perform learning but rather depend on certain assumptions that hold true for most of
the domains. The assumptions made by LOCM mentioned in [25] are:

1. Each instantiated action changes the state of objects which are its arguments, and that
each time an action is executed, the preconditions and effects on an object are the same.

2. The behaviour of an object can be described by a single Finite State Machine (FSM)

3. Objects belong to classes and all objects in a class behave in a similar way. In other
words, each class of objects has a defined set of states that their objects can occupy.
An object’s state may change (state transition) as a result of action instance execution
[81].

4. The position of each argument in an instantiated action always takes object of the same
class, i.e., the action model/template never changes.

5. Each transition only appears once in the FSM. This assumption was made to avoid the
use of conditional effects.

LOCM2 [25] is a more generalised version of LOCM [26] and allows for multiple
(parameterised) FSMs per class of objects. By doing this, it relaxes assumption 2 and
accommodates multiple behaviours per objects, which is usually the case in real-world. As a
consequence, an object occupies one state in each state machine.

4.3.1. Preprocessing Action Sequence to satisfy the assumptions made by
LOCM2

The assumptions of LOCM2 make it necessary that there should be no noise in the input. In

other words, LOCM2 requires an action to be described with a fixed template. The action

name should be unique and the action parameters should always be instantiated in the same

order and types. This is analogous to a fixed functional prototype with no variable arguments

'an encoder-decoder attention based model with positional encodings, described in a famous paper called
"Attention is all you need” [125]

4.3. Learning domain model using LOCM 35

in languages like C++ or Java. The extracted action sequences might have actions with the
same action name but a different number of parameters. We need to cluster these actions
into one or differentiate between them in order to satisfy the assumptions of LOCM2. First,
we describe an approach of achieving fixed templates that did not work but was very intuitive
and has scope for further research. We thought of preprocessing extracted action sequences
in two steps:

1. cluster similar sentences to identify different ways in which an action prototype has been
extracted, and

2. choose the best action prototype by doing a frequency analysis.

Lindsay et al. [76] used a similarity metric based on various thesaurus resources to
compare words in order to cluster similar actions. One can say that this approach has the
same problems as Word2Vec as it averages out the various thesaurus senses. Therefore,
we attempted to make use of our contextual embeddings to find similarity between input
sentences. Specifically, we created sentence embeddings by averaging out the contextual
word embeddings of words of the sentence, normalized them, and compared them using
pairwise cosine similarity method from scikit-learn library [97]. Figure 4.7 shows
a heatmap to showcase the similarity of sentences for an example of four sentences:

0. Make a gluten—free sandwich.

1. Make a sandwich which contains no gluten
2. Make a sandwich.

3. Make a sandwich which contains gluten.

oB

08

04

02

0o

a 1 2 3

Figure 4.7: The heatmap shows the similarity matrix of sentences for an example extracted sequence

According to contextual similarity, the most similar sentences are 1 and 3, which is
completely wrong. They are similar in terms of words and context but a “no” makes them
opposite in meaning. Also, BERT Devlin et al. [29] embeddings are not trained for sentence
similarity task and thus, doesn’t show good results. Thus, we learned that simply aggregating
(contextual) word embeddings is a bad idea and the sentences lose their meaning.

In the end, we employed a simple heuristic which says if two actions have the same
names but a different number of arguments, we differentiate between them by
appending the first argument’s name that differs. For example, if the extracted action

36 4. NLtoPDDL

prototypes were: add(water,cup) and add (milk), then we would convert them to
add-water (water, cup) and add-milk (milk). This is not ideal but by doing this, we do
not omit any actions or useful information represented by data and finally, the end-user (KE
or SME) would have a choice to select between them.

4.3.2. Implementation of Interactive-LOCM2 along with step-wise illustrations
We reimplemented LOCM [26] and its extension LOCM2 [25] in an interactive Jupyter?
Notebook environment in Python as the original source-code was not available. We call this
interactive-LOCM2 because we need minor user-input from the user at three points in the
procedure, and the interactive style of Jupyter notebooks makes it easier for the user to enter
it. The inputs are optional but do increase the quality and intuitiveness of learned domains.
We have already seen in Chapter 1 that automated KE tools are an assistive technology to
the KEs and SMEs and thus, by providing such interaction we aim to reduce the effort and
time required in modelling real-world domains.
The re-implemented LOCM1+2 [25, 26] combined algorithm is stated in Algorithm 1.

Algorithm 1: LOCM1+2
Input: action training sequence
Output: PDDL domain model

1 Determine classes of objects, and make state machines with transitions as states.

2 Get transition sets from select transition_ sets routine of LOCM2 algorithm

Use transition sets from select transition sets and create multiple Finite
State Machines

Create and test hypothesis for state parameters

Create and merge state parameters

Remove parameter flaws

Get static preconditions from user (optional)

Form Action Schemas and PDDL model

end

w

© 00 N oo 0 b

Step 2 of this algorithm allows for multiple behaviours (parameterised FSMs) per object.
The step 2 is described in Figure 4.8. We illustrate the algorithm step-by-step with the example
driverlog domain from IPC 20023.

Step 1.1: Determine classes of objects

Input is extracted plans (action sequences) from the trained cEASDRL. LOCM2 assumes that
each object in the argument list of an action undergoes a transition and objects of the same
class behave in a similar way. We follow what transitions an object undergoes in a sequence.
An example sequence for object driverl of class driver in driverlog domain is shown
below:

walk (driver1, ewi, 3me),

walk (driver1, 3me, aula),

board—truck (driver1, truck3, aula),

load—truck (package5, truck3, aula),

drive —truck (truck3, aula, sports—center, driver1),
unload—truck (package5, truck3, sports—center),
disembark—truck (driver1, truck3, sports—center),
walk (driver1, sports—center, ewi)

’https://jupyter.org/
3http ://ipc02.icaps-conference.org/

https://jupyter.org/
http://ipc02.icaps-conference.org/

4.3. Learning domain model using LOCM 37

Procedure select_transition_sets

Input:
T, —set of observed transitions for sort
H - set of holes - each hole is a set of
one or two transitions.
P — set of pairs (t1,t2), meaning #; and ¢z
occur as consecutive transitions.
E - set of example sequences of actions
Output:
S — set of transition sets.
begin
1. S0
/* Ensure each hole is included */
2. foreachh € H
3. If there is no set s” € S such that h C &'
then
4. By breadth-first search, form s, the smallest set
such that
hCsCTu
and
5. s is valid with respect to P, F by Definition 2
6. S+ Suis}
end If
end for

/* Remove redundant sets */
7. If, for any two sets s; and s2 in S
81 C 82
then S « S\ {s1}
end If

/* Include all-transitions machine,
even though it might not be well-formed #/
8. S SU{T.u}
return S
end

Figure 4.8: Procedure for selecting transition sets, taken from [25]

Here, we label walk. 0 as the transition undergone by the object of class driverasdriverl
is the first argument of walk action. From the assumption of fixed action templates, we can
say that always an object of class driver would appear as the first argument. From the
action sequence, we can directly observe the action names, the action arguments, and the
transitions that are happening in our system. For our example,

Actions: {’load-truck’, ’walk’, ’disembark—truck’,
"board—truck ’, ’drive—truck’, ’unload-truck’}
Objects/Arguments: {’ sports—center’, ’truck3’, ’'3me’,
"package5’, ’'ewi’, ’aula’, ’'driver1’}

Transitions for walk action are walk.0, walk.1 and walk.2.
Similarly , each object of all actions undergoes a different transition.

Next, we look at the actions that have the same name. Using the assumption that all actions
have fixed templates, we can cluster the set of objects that occur at a specific location into a
class. In this way, we determine all the classes of objects present in the domain. The extracted
classes and their names from the sequence are:

Classes:

Sorts/Classes
[{ driver1’}, {’truck3’}, {’package5’}, {’sports—center’, ’'3me’, ’'ewi’, ’aula’}]

Extracted class names
['driver’, ’truck’, ’package’, ’sports—center’]

38 4. NLtoPDDL

Here, we need input from the user (user-input no. 1) to rename some of the classes, so
that they can make sense later. Using “sports-center” instead of “location” would confuse the
end-user. The interactive style of LOCM has this advantage that the end-user can improve the
quality of the learned model by monitoring the procedure by executing it step-by-step. Here,
a user can rename the fourth class to “location” and the resulting output would be:

Renamed class names
['driver’, ’truck’, ’package’, ’location’]

Step 1.2: Make transition state machines.

We first define two concepts: consecutive actions and consecutive transitions. Subsequently,
we formulate the transition state-machines in which transitions formulate the states.
Definition: Consecutive Actions: Cresswell et al. [26] define two actions a; and a; to be
consecutive if they operate on the same object and no other action in-between operates on
the same object. For example, walk (driverl, ewi, 3me) and walk (driverl, 3me,
aula) are consecutive with respect to objects driverl and 3me, whereas walk (driverl,
ewi, 3me) and boardtruck (driverl , truck3 , aula) are not consecutive with
respect to any objects because driverl was operated by another action in-between.
Definition: Consecutive Transition: Following the definition of consecutive actions and the
assumption that classical plans are sequential we can deduce that for a pair of consecutive
actions (a;, a;) with respect to object O (belonging to class G) occurring at positions k and
[in their arguments respectively, end-state of transition a;.k will be same as the start
state of a;.l. These type of transitions are called consecutive transitions [26]. Consecutive
transitions in our example sequence lead to following equivalence of states:

end(walk.0) = start(walk.0)
end(walk.2) = start(walk.1)
end(walk.2) = start(board_truck.2) ... and so on.

The next step is to make transition state machine of the sequences. Assuming transitions
as “states” and if they are consecutive transitions or not as an indication of a “transition/edge”
in FSM, we build a transition-graph. An example of such transition-graph learned from 5 plans
of driverlog domain for the driver class is shown in Figure 4.9.

board-truck.0

\J 6 2 Ay
walk.0 drive-truck.3
3 12
Y »

disembark-truck.0

Figure 4.9: Transition state machine for driver class in driverlog domain. The weights represent how many
times the consecutive transitions were observed.

Unlike LOCMZ2 [25], we retain the weights which represent how many times the consecutive
transitions with respect to the object of class G were observed in the dataset. If we have data
in abundance, we can do some noise-reduction techniques like discretisation to make LOCM

4.3. Learning domain model using LOCM 39

work with noisy data. However, as we are aiming one-shot learning, we do not use these
weights in this work.

Instead, we use user interaction (optional user-input #2) to observe the transition FSMs
and correct them using an interface we made from an open-source web graphing software
called Cytoscape.js* [40]. The end-user can add/remove the missing/noisy transition-edges
and start the rest of the pipeline with corrected transition FSMs. Cytoscape provides many
other network analysis utilities like looking for connected components, self-loops, edge
betweenness. These could be helpful in noise-reduction if the input data is noisy. Right now,
the process of opening and saving graph files is manual but we intend to make an automated
user-interface in future.

An equivalent representation of transition FSM is a transition matrix. Figure 4.10 shows
transition FSM for the class truck. The equivalent Transition matrix for the class truck shown
below:

board-truck.1 load-truck.1 drive-truck.0 unload-truck.1 disembark-truck.1

board-truck.1 hole 6 7 1 1
load-truck.1 1 hole 9 1 1
drive-truck.0 hole 5 10 8 9
unload-truck.1 1 1 6 hole 4
disembark-truck.1 5 1 hole 1 hole

The numbers show the weights and valid transitions. The keyword hole indicates a
behaviour that might get overfit by LOCM1. For a pair consecutive transitions (T1,T2),
LOCM1 would unify the states that should not be unified. LOCM’s assumption that each
transition appears only once in the state-based representation is violated if two rows
in the transition matrix have overlapping values but are non-identical. These are
referred to as holes. For example, the driver cannot disembark a truck after disembarking it
already. The reason for this stated in [25] is that transition FSM is more expressive notation
than STRIPS [34] and we need to eliminate such holes by allowing for multiple behaviours
per class of objects object.

disembark-truck. 1

T 1 .
board-truck.1 5 44
= 6
> \ = load-truck.1
g 1 v
5 1
7
1 @ 1 /
10
i 1
\ I
drive-truck.0 -~ w
4
~- ®inload-truck.]

&

Figure 4.10: Transition state machine for truck class in driverlog domain. The weights represent how many
times the consecutive transitions were observed.

“http://js.cytoscape.org/

http://js.cytoscape.org/

40 4. NLtoPDDL

Step 2: Get Transitions Sets per class from LOCM2

The step aims to get valid transition sets that define multiple behaviours per class and avoid
over-fitting (over-generalization) of LOCM1 that is caused by its unification of states.
As discussed, we need valid transition sets because we want to find equivalent
state-representations which have more restrictive expression power than transition FSM.
Figure 4.8 shows the original procedure select transition sets taken from [25]. It
tries to partition the transition matrix into different parts so that there are no ‘holes’
(representing potential wrong state unification) are left. It does so by forming sets via
Breadth-First Search starting from smallest to find the largest subset which doesn’t have
holes.

For the truck class, final transition set that we got was:

{{’disembark—truck.1’, ’drive—truck.0’, ’board-truck.1’},
{’unload—truck.1’, ’disembark—truck.1’, ’drive—truck.0’, ’board—truck.1’, ’load—truck.1’}}

Thus, by inducing a separate state machine for disembark-truck.l,
drive-truck.0 and board-truck.1l, the hole in the transition matrix at
(disembark — truck.l,disembark.truck.1) stays empty, as this smaller transition FSM
doesn’t allow it.

Step 3: Algorithm for induction of state machines

Algorithm 2 takes in the transition set and for each transition defines states start(T1) and
end(T1). Then for each pair of consecutive transitions T1,T2 in TS, it unifies states end(T1)
and start(T2)

Algorithm 2: Step 1
Input: action training sequence of length N
Output: transition set TS, set of object states OS

Initialize state set OS and transition set TS to empty

Iterate through A4;,i € 1,..,N and j € 1,.., m[i] as follows:
Add state identifiers start(4;,j) and end(4;,j) to OS
Add 4;.jto TS

For each pair of consecutive transitions T;, T, in TS
Unify states end(T;) and start(T,) in set OS.

end

N OO g WON -

Induced State FSM1 for the class truck is shown in Figure 4.11. Here state0 can be
considered as being “driver outside the truck”, and state 1 can be considered as being
“driver inside the truck”. This state-machine imposes a restriction that either the driver is
inside or outside the truck, and thus combined with other state-machine representing class
truck correctly models the class behaviour.

Before the next discussed step, LOCM uses another step called “zero analysis” [26] to
learn an implicit background object. We do not use this as this is a part of static preconditions
in a domain which a user can easily specify. These could also be learned from systems like
[50] but they will require more data than just one action sequence.

4.3. Learning domain model using LOCM 41

46 25

\ \

stateO statel

Figure 4.11: State machine for truck class in driverlog domain. StateO is {’ start (board-truck.1)’,
’"end (disembark-truck.1l)}, and state 1 is {’end(board-truck.1l)’, "end (drive-truck.0)’,
’start (disembark-truck.1l)’, ’'start(drive-truck.0)’}

Step 4: Induction of parameterised FSM
LOCM parameterises the state machines to record a pairwise dynamic association between
objects [26]. Algorithm 3 taken from [26], describes this step:

Algorithm 3: Induction of Parameterised FSM (Step 4)

Input: Action Sequence Seq, Transition Set T'S, Object set Obs
Output: HS retained hypothesis for state parameters

Form Hypotheses from state machines
For each pair B.k and C.lin TS
such that end(B.k) = S = start(C.l)
For each pair B.k' and C.l' sharing sort G’
andk = k', 1 =1l
Store in hypothesis set HS the hypothesis H =< S,B,k, k',C,1,l',G,G' >
end
Test hypotheses against example sequences
For each object O occurring in 0,
For each pair of transitions 4,.m and A,.n consecutive for O in Seq
For each hypothesis H=< S,B,k,k',C,1,l',G,G' >
matching A, = B,m =k, Ag=C,n=1
If Op,k’ = Oq'll
then flag H as having a positive instance
else remove H from hypothesis set HS
endif
end
end
end
Remove any hypothesis H from HS without a positive instance.

© 00 N O g A~ ON -

N = @A @ ad @A @ @ = o =
© © 00 N O g b W DN =~ O

Here, B.k and C.l are two consecutive transitions with respect to object 0 from class G in
our transition set, and we check whether the same object 0’ from class G’ always appears in
them. If it does, there is a strong chance that G and G’ are related classes. After checking the
whole dataset, the LOCM retains such a hypothesis.

Step 6: Creation and merging of state parameters

Since many hypotheses are redundant, this step tries to reduce the number of hypotheses
found. The redundancy comes from the fact that there are multiple transitions that go through
a state and each one doesn’t need their own parameter. They set and read the same
parameters of the state, much like mutex locks in Operating Systems. We create parameters

42 4. NLtoPDDL

bindings related to all hypotheses and then merge them if two hypotheses operate on the
same state [26].

Step 7: Removing parameter flaws

There might still be parameters that enter into the transition but set the value of a parameter
of that state. Such bindings are called parameter flaws and are removed from the parameter
bindings set. For example, fault removed parameter bindings were found between some
location states and object of type driver.

Step 6: Extraction of static preconditions

This is the last input required by the user (user input #3). These are relatively easy to write in
the final PDDL model itself. Automated methods such as [50, 63] have been devised to detect
static preconditions, but require more data to converge.

Step 7: Formulation of PDDL action schema

This step creates one predicate each for an object state. Action schema is induced by using
the action prototype from plans. Preconditions and Effects are determined in “and” form from
various induced finite state machines. The full learned model of driverlog domain is presented
in Section B.3.

In the end, to use the extracted domain model we have to specify the states in terms of
start(T1), end(T2), ..etc., where T1 and T2 are transitions. This is very tedious to do and this
representation of state knowledge in terms of transitions is not human-readable. Since we do
one-shot learning from a single process manual, this is still manageable for the purposes of
our thesis but we do need a better approach to show the user state knowledge.

4.4. Summary

We once again refer to our formal modal in Figure 4.1 in order to solidify the discussions
about individual components. Our main contributions in this chapter are to combine all three
components: contextual embeddings [4, 29, 99], EASDRL [33] and LOCM [25, 26] into one
seamless module called NLtoPDDL, which takes as input a natural language process manual
and generates as output a PDDL model. In terms of implementation, we reimplemented
LOCM1+2 in an interactive fashion to incorporate user input. The reasoning behind this is that
LOCM?2 is heuristic in nature [25]. Although LOCM2 requires no background information, it
usually requires many plan traces for synthesising meaningful domain models. The output
represents to its best efforts what is given in the example sequences. If the sequences
are always goal-oriented, the LOCM2 might miss certain aspects of the domain. For best
results, both exploratory and goal-oriented actions should be incorporated. As we want to
one-shot learn the domains from natural language process manuals, we use user-interaction
alongside our reimplementation of LOCM to mitigate this limitation. However, while evaluating
the learned domain models in Chapter 5, we do not use this optional user input, except for
changing detected class names.

Experimental Evaluation

Since the NLtoPDDL pipeline described in Chapter 4 happens in two stages, we did an
experimental analysis for each phase separately. We first evaluated the performance of our
trained contextual-DQN approaches in order to select the best approach for action sequence
extraction task.

Later, in Section 5.2, we employed this trained-DQN to extract action sequences from
unseen process manuals and learn the domain models using LOCM2 [25]. We evaluated the
learned domain models on their accuracy, robustness, completeness and intuitiveness.

5.1. Evaluating Trained DQN

Our evaluation of the trained DQN model aimed to confirm the following hypothesis:

» Hypothesis 1. Transfer Learning in NLP, which uses unsupervised pretraining of
language models on huge corpora to generate dynamic contextual embeddings will
seamlessly integrate into DQN architecture of EASDRL [33] and will push the
state-of-the-art by improving upon the F1-scores for extraction of action names and
action arguments.

* Hypothesis 2. Use of dynamic contextual embeddings will resolve the issues caused
by the use of non-contextual embeddings, namely, out-of-vocabulary (OOV) words,
polysemy, shared representation, and infinite word senses.

* Hypothesis 3. By having a 20% unseen test set, we can detect overfitting and thus, have
an unbiased estimate about the generalisation of our approaches to real-world user data.

» Hypothesis 4. Employing Transfer Learning through contextual embeddings would make
the DQN converge faster with the same amount of data, i.e., the training would converge
in less number of epochs.

5.1.1. Experimental Setup

The training of models was done on TU Delft's insy-cluster’ to utilise the available GPUs
that were needed for training the DQNs. Following are the details of our experimental setup
related to action sequence extraction problem:

Annotated Datasets. For the training of the DRL models, the annotated datasets are taken
from Feng et al. [33]'s open-source repository? for three real-world domains:

"http://insy.ewi.tudelft.nl/content/hpc-cluster
’https://github.com/Fence/EASDRL

43

http://insy.ewi.tudelft.nl/content/hpc-cluster
https://github.com/Fence/EASDRL

44 5. Experimental Evaluation

1. “Microsoft Windows Help and Support” (WinHelp) documents [17]
2. “CookingTutorial” (Cooking)?
3. “WikiHow Home and Garden” (WikiHG)*

The datasets are of increasing complexity in the context of the task of finding action names
and arguments as described in Table 5.1. “Labelled texts” row shows the total number of
documents that represent different process manuals or recipes. “Input-Output pairs” row
depicts the number of (word, annotation) type training pairs which were detailed in Section
4.1. Action name and action argument rates represent the frequency of occurrence of actions
and arguments in respective datasets.

WinHelp | Cooking | WikiHG
Labelled texts 154 116 150
Input-Output pairs 1.5K 134K 34M
Action name rate (%) 19.47 10.37 7.61
Action argument rate (%) | 15.45 7.44 6.30

Table 5.1: Annotated Datasets used to train the Deep RL models. Values taken from [33]

Introduction of the Test Set. Although Feng et al. [33] used cross-validation to average out
scores on different validation folds, they did not use a test dataset to get an unbiased
estimate of the performance of EASDRL. We held-out 20% of our data as unseen test data
to test Hypothesis 3. We then used 80% of the remaining data as training data and 20% of
the remaining data as validation data. Thus, the final ratio of training-validation-test data split
was 64-16-20. We did not use cross-validation folds to avoid out-of-memory issues caused
by large embeddings on limited resources of the insy-cluster, as well as to save
computational time.

Number of Epochs. The number of epochs we trained the contextual-DQNs was set to 1.
The primary reason was limited memory resource quota on insy-cluster. However, this
led us to test the faster convergence rate of contextual-embeddings (Hypothesis 4).

Hyperparameters and Reproducibility. We used the same hyperparameters for the
ConvNet (Q-estimator of the DQNs) as mentioned in the [33] except for changes in number
of epochs and embedding dimensions. The authors of EASDRL took these parameters from
MGNC-CNN [133]. An instance of the architecture of the CNN used is shown in
Appendix E. We varied the input dimension according to the embedding used, for
example, ELMo embeddings used (500 x 868 x 2) for action names and (100 x 868
x 3) for action arguments. For reproducibility, the source code is available on
https://github.com/Shivam-Miglani/contextual drl.

Evaluation Metrics. For the evaluation of approaches, the validation set's F1-scores were
computed to compare with the results in [33]. In addition, we computed the F1-scores on test
dataset to gauge the generalisability of approaches (Hypothesis 3). F1-scores were computed
the same way as in [33]. Specifically,

#TotalRight
#TotalTagged’

precision =

Shttp://cookingtutorials.com/
41'1ttps ://www.wikihow.com/Category:Home-and-Garden

https://github.com/Shivam-Miglani/contextual_drl
http://cookingtutorials.com/
https://www.wikihow.com/Category:Home-and-Garden

5.1. Evaluating Trained DQN 45

Il = #TotalRight
reCat = YTotalTruth’

2 X precision X recall
and F1 =

precision + recall

where, #TotalRight is the number of correctly extracted action names or action
arguments; #TotalTagged is the number of extracted action names or action arguments;
and #TotalTruth is the number of ground truth action names or action arguments from the
annotations.

5.1.2. Baselines and cEASDRL Contenders
To compare with our contextual-EASDRL (cEASDRL) approaches, we used variants of
non-contextual approaches like Framer [76] and EASDRL [33] as baselines:

1. StanfordCoreNLP: Stanford CoreNLP [80], a NLP library was used to parse the texts
and tag parts-of-speech (POS) to the words. Using these tags the sequences of
actions was extracted by selecting a verb as an action name, and the objects as action
arguments in [76]. This was not implemented in our research and results shown are
reported from [33]

2. EASDRL and rEASDRL: EASDRL from [33], which uses word2vec embeddings [85]
was used as a baseline because it produced state-of-the-art results for action sequence
extraction problem. As the paper reported only cross-validation results, we compared
it with the results of contenders on our validation set. However, the results of EASDRL
are not directly comparable as they are averaged out on 10 folds of the cross-validation
but still give some indication of relative performance on F1 score.

For direct comparisons on both validation and test datasets, Reproduced-EASDRL
(rEASDRL) was used. rEASDRL is same as EASDRL[33] except that it employed our
experimental setup of 64-16-20 train-val-test split without cross-validation, instead of
EASDRL’s 10 fold-cross validation without a hold-out test set. In essence, rEASDRL
trained on less data, i.e., 64% instead of 80% and so did our contender approaches.

We trained both EASDRL and rEASDRL methods for 20 epochs each for action name
DQN and action argument DQN. The value 20 epochs was the original setting used in
the EASDRL paper.

3. GloVe + rEASDRL: In GloVe + rEASDRL baseline, the 50-dimensional word2vec
embeddings [85] were replaced by the 100-dimensional GloVe embeddings [98].

4. POS-GloVe + rEASDRL: In POS-GloVe + rEASDRL baseline, we added some context to
the words by appending parts-of-speech (POS) information extracted from the Stanford
CoreNLP library [80] and then retrained the GloVe embeddings. For example, if the
word was “cheese” is replaced by “cheese|NN”, where NN stands for “Noun, singular or
mass”.

This approach is inspired by and is a simplified version of researches presented in
Sense2Vec [121] and syntax-tree embeddings [78]. The simplified version was used
because both approaches use their own tokenizers, which compound multiple words
into a single joined word. This messes up the word index order of the training dataset
and consequently, the annotations are no longer applicable.

Our Approach. We now specify the variants of our contextual-EASDRL (cEASDRL) approach
which are distinguished by the choice of contextual embedding they use. Since the papers

46 5. Experimental Evaluation

of contextual embeddings suggest appending non-contextual embeddings like word2vec or
GloVe to them, we append 100-dimensional GloVe vectors to each of the embeddings to
generate stacked embeddings. The following were our choice of stacked-embeddings based
on empirical evidence of their performance in their respective research papers [4, 29, 99].

1. GloVe + ELMo + cEASDRL: This cEASDRL’s variant uses 100 dimensional GloVe
embeddings [98] and 768 dimensional ELMo embeddings [99]. The pre-trained dataset
used by these embeddings is 1B Word Benchmark [19][99].

2. GloVe + BERT + CcEASDRL: In this variant of cEASDRL, we use the
bert-base-uncased version of BERT embeddings [29] which are 3072-dimensional
long vectors stacked with 100 dimensions of glove making it a 3172-dimensional
stacked embedding. The datasets used in pretraining the bert-base-uncased are e
BooksCorpus (800M words) [134] and English Wikipedia (2,500M words)®[29].

3. GloVe + Flair-f<-b + cEASDRL: In this variant of cEASDRL, we use stacked
mix-forward and mix-backward Flair character embeddings [4], each of which is
2048 dimensions. Stacked with GloVe, this makes a 4196-dimensional word
embedding. The mix-forward and mix-backward versions are pre-trained on the
mixed corpus (Web, Wikipedia, Subtitles) [5]. Due to high memory requirements,
we also limit the character limit per word to 128 characters by setting the
chars per chunk in the optional arguments of the Flair-Stacked embedding.

All the contextual embeddings are implemented using Flair NLP library® [5] using its
StackedEmbedding class.

5.1.3. Results of Comparison with Baselines
F1-scores of all three datasets for action names and action arguments are reported for the
validation dataset and test dataset.

Validation dataset results. Validation dataset allowed us to iterate over it repeatedly and
get the best possible model weights and parameters. In Table 5.2, we can see from the
validation results of the contextual-approaches are better than that of baselines justin 1 epoch.
Specifically, there is an improvement of 4-7% in the F1-score from the best baseline for action
names in all three datasets but barely any significant improvements in F1-score for action
arguments.

On the other hand, the baseline POS-GloVe+rEASDRL had terrible results as the average
loss of DQN generally increased, and the RL agent became too conservative to act. It neither
selected or rejected a word to avoid negative rewards. The blame may be given to appended
parts-of-speech tags which distinguish the context in which word is used. This creates different
entries in the lookup-table of GloVe or Word2Vec and struggles to generalise when the same
word is used in a new context. The results of this baseline also indicate that the results are
highly dependent on the accuracy of dependency parsing.

The validation results give us an idea of the performance of cEASDRL variants compared
to non-cEASDRL variants but is a biased estimate as it underestimates the true test error
substantially. Thus, we look at the performance of all approaches on 20% of held-out test
dataset to get an unbiased estimate that is closer to the real-world usage.

Shttps://dumps.wikimedia.org/
Shttps://github.com/zalandoresearch/flair

https://dumps.wikimedia.org/
https://github.com/zalandoresearch/flair

5.1. Evaluating Trained DQN 47

Action names Action Arguments
Method Epochs | Cross-val | WinHelp Cooking WikiHG | WinHelp Cooking WikiHG
StanfordCoreNLP* 1 No 62.66 67.39 62.75 38.79 43.31 42.75
EASDRL 20 10-fold 93.46 84.18 75.40 95.07 74.80 75.02
word2vec+rEASDRL 20 No 92.03 81.99 74.02 94.90 74.05 73.70
GloVe+rEASDRL 20 No 94.08 80.41 64.58 94.35 74.21 73.69
POS-GloVe+rEASDRL 20 No 32.33 0.0 0.0 73.24 38.82 42.66
GloVe+ELMo+cEASDRL 1 No 92.75 87.29 79.22 92.06 75.81 76.99
GloVe+BERT+cEASDRL 1 No 96.22 89.18 82.59 92.78 73.23 76.19
GloVe+Flair-f-b+cEASDRL | 1 No 97.32 88.86 79.16 83.43 62.41 72.40

Table 5.2: F1-scores on 16% of validation dataset in 64-16-20 training-validation-test split. * indicates the result
taken from [33]. Note that, extraction of action arguments uses ground-truth action names.

Action names Action Arguments
Method Epochs | Cross-val | WinHelp Cooking WikiHG | WinHelp Cooking WikiHG
word2vec+rEASDRL 20 No 91.98 80.17 73.77 85.15 69.65 68.27
GloVe+rEASDRL 20 No 93.96 78.44 57.87 94.02 71.79 47.87
POS-GloVe+rEASDRL 20 No 32.68 0.0 0.0 74.55 38.63 51.27
GloVe+ELMo+cEASDRL 1 No 92.75 85.18 78.43 92.47 76.50 77.12
GloVe+BERT+cEASDRL 1 No 96.15 88.42 82.95 90.56 72.98 74.75
GloVe+Flair-f-b+cEASDRL | 1 No 97.46 86.19 80.09 83.64 64.40 72.82

Table 5.3: F1-scores on 20% of test dataset in 64-16-20 training-validation-test split. Note that, extraction of action
arguments uses ground-truth action names.

Test dataset results. In Table 5.3, we can clearly notice the advantage of using contextual
embeddings. For the action names, we see an improvement over the best baseline by 5-8%
in all datasets.

For the action arguments, the biased estimate of the baselines on validation tests is
revealed, i.e., they were underestimating the true test error. Hence, the performance of
baselines drops significantly, especially in complex datasets (Cooking and WikiHG). On the
other hand, the performance of cEASDRL approaches is even better on the test sets than
validation results, making them more generalisation to real-world settings. In particular,
GloVe+ELMo+cEASDRL beat the best baselines by 5-9% in Cooking and WikiHG datasets.

Thus, we can confirm that contextual embeddings did integrate well into the DQN
architecture, and beat the current state-of-the-art results presented in EASDRL [33] for the
action sequence extraction problem. This confirms our Hypothesis 1,3 and 4.

Chosen model. Based on test results, we choose GloVe+BERT+cEASDRL as our final
model for extracting action names. It is chosen because it performs better than
GloVe+Flair-f-b+cEASDRL on harder datasets of Cooking and WikiHG. Similarly,
GloVe+ELMo+cEASDRL was chosen as our final model for extracting the related action
arguments.

5.1.4. Qualitative analysis of the Extracted Sequences

F1-score is a qualitative measure of improvement in the quality of sequences, but what does
a 5% increase in F1-score actually mean. Intuitively, it should much more significant than 5%
improvement in accuracy, because it gives equal weights to precision and recall.

To determine this qualitatively assessed the extracted action sequences from unseen
data. Figure 5.1 shows an example of action descriptions taken from Florida Atlantic
University’s website’ to emulate the user-input. The extracted action sequences of
Word2Vec + rEASDRL and our chosen cEASDRL model are compared and shown in Figure

"http://www.fau.edu/ehs/info/fire-safety-manaul.pdf

http://www.fau.edu/ehs/info/fire-safety-manaul.pdf

48 5. Experimental Evaluation

51.

We can see that cEASDRL produces coherent and correct action sequences, unlike
Word2Vec + rEASDRL. In sentence no. 2, Word2Vec model initialises unseen words as zero
vectors and thus, is unable to extract essential actions. On the other hand, cEASDRL does
extract correct action from unseen data and even recognises an exclusive-or between
“hazardous experiments” and “procedures”.

We see a safety-critical scenario in sentence no. 5, Word2Vec + rEASDRL, incorrectly
extracts an action “go()” and misses the ES argument “heat”, whereas the chosen cEASDRL
model correctly extracts the actions described in the statement. Some arguments are missed
by both approaches, for example, “nature of emergency” in sentence no. 8. The reason
behind might be that the models are trained to extract single word arguments. Also, cEASDRL
correctly skips sentence no. 1 and 10 as they do not represent any ES action names.

Thus, we can conclude that even 5-7% improvement in F1-score corresponds to huge
improvements in the overall sequence quality. We can also easily deduce that the contextual
embeddings do solve for problems of out-of-vocabulary (OOV), polysemy, and shared
representation. This is due to the fact that language models are pretrained on character level
(e.9., ELMo) or sub-word level (e.g., BERT), and these algorithms take in the
whole sentence as input to consider the context of the word and then generate a
dynamic word-embedding rather than a fixed vector. As the language models for
contextual-embeddings are trained on huge corpora, they also solve for a large extent the
problem of infinite word senses. This section qualitatively confirms our hypotheses 2 and 3.

In the next section, we evaluate the domain models which were learned using the chosen
model’s extracted action sequences using LOCM2.

5.2. Learning of Domain Models
To learn a domain, we apply NLtoPDDL’s second phase to its natural language process
manual containing action descriptions describing a valid plan. We test our domain learning
approach on IPC problems related to our datasets and couple of process manuals taken from
the real-world settings.

We aim to confirm the following hypothesis in this section:

* Hypothesis 5. We can one-shot induce a valid PDDL domain model from an extracted
action sequence belonging to a natural language process manual.

* Hypothesis 6. The learned domain model’s robustness (precision) and completeness
(recall) would correspond to the F1-scores of the chosen sequence extracting approach.

* Hypothesis 7. The learned domain models would be intuitive which makes them easy to
extend and modify for the user.

* Hypothesis 8. We can extend NLtoPDDL to durative actions by learning durative
domains, a type of non-classical domain.

5.2.1. Learning IPC Domains
Reference Models. We did not have the liberty to pick popular domains from the IPC

competitions because they do not relate to our training datasets. Nevertheless, we selected
the following classical domains which seem to be related to our training datasets:

5.2. Learning of Domain Models 49

1. child_snack8 : We used sequential, optimal version of the child snack domain
which was used in IPC 2014. We chose this domain because it is about cooking and we
can use weights learned from the cooking dataset to extract action sequences.

The authors Raquel Fuentetaja and Tomas de la Rosa Turbides describe the domain as:

“This domain is to plan how to make and serve sandwiches for a
group of children in which some are allergic to gluten.

Problems in this domain define the ingredients to make sandwiches
at the initial state. Goals consist of having all kids served
with a sandwich to which they are not allergic.”

2. woodworking: A subset of woodworking domain is taken from the sequential optimal
track of IPC 2008. We chose this domain because it might be related to the home and
gardening dataset’s distribution. It is described in IPC 2008° as:

“Simulates the works in woodworking workshop where there is some
quantity of wood that has to be polished, coloured etc. using
different tools with different cost.”

Although the domain is quite large with six kinds of machines with action costs, we
attempted to learn only a small subset ignoring the action-costs.

The reference PDDL models of the domains can be found in Appendix A.

Unseen Datasets. We crafted the action descriptions for the domain by thinking of an
instance of a valid sequence of actions. We also used PLANNING.DOMAINS website [90],
which includes a cloud planner to solve the original domains to get example plans in order to
think of our action descriptions in English. The input action descriptions, the extracted action
sequences, and the learned domain model are presented in Appendix B.

Evaluation Metrics. We checked for learned models completeness and soundness
(robustness) compared to the reference model. To evaluate the soundness and
completeness of the learned domain model, we calculate precision and recall in the same
manner as used in [2]. Intuitively, precision gives a notion of soundness or robustness by
telling us how many selected domain items were relevant. On the other hand, recall gives a
notion of the completeness of learned domain models by telling us how many relevant items
were selected. Formally,

tp
to + fp’
where tp is the number of true positives, i.e., the predicates that correctly appear in the action
model, and fp is the number of false positives, i.e., predicates that appeared in the learned
action model but should not appear. Recall is formally defined as

tp
tp+ fn’
where fn is the number of false negatives, i.e., predicates that should appear in the learned
action model but are missing.

We also employed precision and recall on the detected action names and each action’s
arguments, which will always be high if we are learning from structured data but not necessarily
high when learning from natural language data.

Precision =

Recall =

8https://github.com/potassco/pddl-instances/tree/master/ipc-2014/domains/
child-snack-sequential-optimal
Shttp://icaps-conference.org/ipc2008/deterministic/Domains.html

https://github.com/potassco/pddl-instances/tree/master/ipc-2014/domains/child-snack-sequential-optimal
https://github.com/potassco/pddl-instances/tree/master/ipc-2014/domains/child-snack-sequential-optimal
http://icaps-conference.org/ipc2008/deterministic/Domains.html

50 5. Experimental Evaluation

. Action Action Pre-
Domain o Effects
names Parameters | conditions
P R P R P R P R
child_snack 0.80 | 066 | 060 | 0.38 | 0.66 | 0.43 | 0.77 | 0.50

woodworking | 0.40 | 0.10 | 0.5 | 0.53 | - - - -

Table 5.4: Precision (P) and Recall (R) averaged over all learned actions, representing soundness and
completeness of the learned PDDL models, respectively. The precision and recall of preconditions and effects
are based on the preconditions and effects of the arguments that were extracted. Otherwise, they would be zero
as we were not able to extract the full set of arguments in the first phase of NLtoPDDL. These results are only
indicative of performance for one instance of process manuals, and can’t be generalised. -* means that learned
actions were too different to compare.

5.2.2. Results on IPC Domains

Soundness and Completeness. Compared to the reference model, the precision and recall
for action names, action arguments, action preconditions and action effects are stated in Table
5.4. The precision and recall scores were calculated manually and were averaged over all
actions. The precision and recall over action names are similar to the F1-scores learned by
cEASDRL model. However, the precision and recall over action parameters are way less than
F1-scores of cEASDRL. This is because the instructions provided are not representative of
the annotated dataset.

As we were not able to learn all the arguments, the preconditions and effects would never
exactly match their counterparts in the reference model. Therefore, while calculating precision
and recall for preconditions and effects, we ignored the unlearned arguments by assuming they
are always present and then evaluated the rest of the behaviour. In other words, the results
related to preconditions and effects are representative of the predicates that the learned model
gotrightin terms of arguments that are presentinit. Moreover, these results are only indicative
of the performance for the type of natural language instructions that we crafted. These cannot
be compared with PDDL models learned from structured data or previous research because of
the “free” form of natural language that is used as input. As the same instructions could be said
in a hundred different ways, we played around a little bit with the style of crafted instructions
by changing it using an online paraphrasing tool, called QuillBot'® to see changes in the
learned PDDL model. The paraphrased process manuals generated a different domain model
each time, and qualitatively evaluating it by manually calculating precision and recall was not
feasible. Thus, we opted for a different approach of measuring the validity and intuitiveness of
the learned PDDL model. These are the aspects that are important for the end-user (KEs or
SMEs), especially, when they want to understand, modify or extend the learned PDDL models.

Level of
Domain Syntax Intended meaning Easy to fix?
/Semantics captured?
child_snack v intermediate v
woordworking v low X

Table 5.5: Validity and intuitiveness of domains.

Validity and Intuitiveness. We imported the learned domain model in mypdd1-1DE [116]

10quillbot.com

quillbot.com

5.2. Learning of Domain Models 51

plugin of Sublime Text''. The context-aware syntax highlighting feature of mypddl [116]
distinctly represents missing brackets, missing expressions and misspelled keywords. As
expected, we didn’t find any syntactical mistakes because our PDDL code is automatically
generated through simple rules based on LOCM output, which avoids such mistakes.

We discuss the learned behaviours and compare it with intended semantics to measure
the intuitiveness.

» child_snack: The input action descriptions, the extracted action sequences and the
learned domain model are presented in Section B.1. The learned domain model
combined the make sandwich no gluten and make sandwich actions of original
domain into single action make of making a sandwich with an extra argument for
sandwich-type. The learned make action is shown below:

(:action make
:parameters (?gluten—free — sandwich—type ?sandwich — sandwich)
:precondition (and
(sandwich—type_fsmO_state0)
(sandwich—type_fsm0_state1 ?v0 — sandwich ?v1 — sandwich)
(sandwich—type_fsmO_state2)
(sandwich_fsmO_state0)
(sandwich_fsmO_state1)
(sandwich_fsm1_state0)
)
:effect (and
sandwich—type_fsmO_state0)
sandwich—type_fsmO_state1 ?v0 — sandwich ?v1 — sandwich)
sandwich—type_fsmO0_state2)
sandwich_fsm0_state0)
sandwich_fsmO0_state1)
sandwich_fsm1_state0)

Py

))

Here, the precondition and effect with state sandwich-type fsm0O statel has
parameters vO and v1 of the sandwich class, which represents that sandwich-type
is always dependent on a sandwich. There are two parameters, one for
gluten-sandwich and other for gluten-free sandwich. Learned domain model
has an extra action take, which takes the ingredients of a sandwich before making it.
This showcases that LOCM only considers atomic actions and cannot combine
multiple actions into a macro-action. In the context of natural language data, this leads
to multiple versions of learned domain models based on slight tweaks in natural
language data. The learned domain model completely misses out the behaviours of
classes child and place, which are present in the reference model. This happened
because the cEASDRL failed to extract arguments related to child and place.

The FSM states are simple and intuitive to infer in case of the small input we used. For
example, looking at the state dictionary for sandwich fsm0 statel, we obtain the
state {end (make.1l), start (put.l)}, which represents two equivalent states: a
state which marks the end of making a sandwich and equivalently, a state which marks
the starting point of putting a sandwich into the tray. Thus, this corresponds to the
state “sandwich is prepared”. However, inferring this information manually for each state
predicate is tedious and not a scalable approach.

» woodworking: The input action descriptions, the extracted action sequences and the
learned domain model is presented in Section B.2. Similar behaviour was observed in

"https://github.com/Pold87/myPDDL

https://github.com/Pold87/myPDDL

52 5. Experimental Evaluation

woodworking. Although, a valid PDDL model representing some meaningful constructs
of the domain, it again missed some aspects such as types of machines available (planer
and glazer), the colour information. The reason behind is two-fold: some of these are
static conditions which never appear in the example sequence and requires approaches
like [50] (with more data) to learn these, and others are simply due to missed arguments
by the DQN. The learned model did incorporate the cost of actions in a separate function
called increase, but this is not desirable as action-costs must be specified with the
actions themselves. To mitigate this, we see an extension of NL2PDDL to a temporal
domain (Section 5.2.4) in which time works like an action-cost. An interesting thing that
we observed in both IPC domains was that the learned model segregates composite
actions which can’t be described in a single phrase into two and links them up with state
parameters. This might be a desirable property in some applications where only atomic
actions are allowed.

From our perspective, the words used to represent classes of objects, objects,
action names and arguments are mostly correct and understandable, as they are
derived from the natural language process manual, which makes the domain model
somewhat intuitive. The problematic aspect is state names which are of the form
“class-name fsm-no. state-no.”, and one needs to look at the state dictionary and
FSMs to see. The results are summarised in Table 5.5. For a smaller domain like
child_snack, it was easier to identify problems and fix the intended meaning.

SMEs which do not have experience in planning languages might find it hard to extend such
PDDL models. A future user study, comprising of KEs and SMEs, is required to substantiate
these claim as intuitiveness of PDDL models is a subjective property.

Despite the inconclusiveness, the main advantage of NLtoPDDL is its generalisability to
real-world data. In the next subsection, we evaluate NLtoPDDL to learn an initial PDDL domain
model from free instructional texts from a fire safety process manual.

5.2.3. Learning PDDL Model from Real-World Process Manual

We take a real-world process manual of our fire safety domain, for which we extracted an
action sequence in Figure 5.1. We discuss the learned models strengths and weaknesses
below:

* The domain model extracts: provide, call, take, turn-off, secure,
using, proceed, inform, check, and close as the actions.From manually
annotating the input and comparing our extraction to it, we calculated 0.91 and 1.0 to
be precision and recall, respectively, on action extraction. Similarly, the precision and
recall for extracted action parameters was 0.84 and 0.65, respectively. We can see
that the action extraction rate is better than the domains from IPC. This is because the
real-world instructional data is similar to the training datasets used. For the IPC
domains, we manually made the dataset with simple instructions. This shows that our
method is generalisable to variety of writing styles but is susceptible to perform better
for data distribution that is similar to the training set.

* The preconditions and effects of learned actions mostly reflect the previous action’s state
(which was unified with other states) and reflective of what one could do best from the
observed data of one sequence. This is intuitive because there is only sequence of
actions happening in the fire safety manual, and the exclusive actions were filtered out
while extraction. However, the way of representing preconditions and effects in terms of
states of various FSMs requires a graphical user interface (GUI) for user to make sense
out of it. Manually determining the current state of an object in all its class’s FSMs is

5.2. Learning of Domain Models 53

tedious and a non-scalable approach. In future, we do intend to incorporate a GUI for
observing state information.

5.2.4. Extension to Durative Actions
To further check the flexibility of our approach, we tried to incorporate durative actions in our
learned PDDL models. For this experiment, we used a durative tea domain taken from [120].
One advantage of using natural language data is that we can take advantage of existing tools
available in NLP in our pipeline. Thus, we can use Named Entity Recognition (NER) to
extract time phrases. This can also be incorporated into another DQN architecture but it would
be an overkill and too specific for this task. We used spaCy [61] library’s statistical NER to
detect time phrases. Figure 5.2 shows the time phrases detected for the tea domain [120]:
The time phrases are detected with high precision, however, we still need to assign these
time phrases as action arguments for some action. We follow a heuristic that the action name’s
index which is closest to the starting index of time phrase and is in the same sentence as
time phrase will exhibit the durative behaviour. This surprisingly worked very well for tea
domain as all actions except visit got the correct duration. Action visit’s duration was
assigned to action wait. The action wait in the original Tea domain [120] is a subcomponent
of visit. Thus, we can say that all time durations were extracted and modelled correctly in
the domain model. The input and extracted action sequences, and the learned domain model
are presented in Appendix D. The learned domain model closely resembles the reference
model and models the behaviour correctly, except for the preconditions and effects related to
missing argument mug and implicit static hand object in all actions.

5.2.5. Summary of Evaluating Domain Models

Through these demonstrations, we can confirm our Hypothesis 5 which states that we can
one-shotinduce valid PDDL domain models from an extracted action sequence. As the models
miss out on static conditions (optional user-input 3) and suffer from some arguments that were
not extracted, these can be termed as shallow models and can be used in approaches like
model-lite planning [138, 143], which learn from incomplete models or as an initial model
by the SMEs and the KEs to learn some interesting models from NL data.

The soundness and completeness of the learned domain model in terms of extracted action
names and action parameters is on par with the testing F1 scores of DQN. However, the
soundness and completeness of learned domain model in terms of preconditions and effects
is not great due to missing arguments and not learning static conditions, and thus, we rejected
Hypothesis 6.

The learned domain models are intuitive in terms of action names, action arguments, and
the predicates. However, in terms of preconditions and effects, they are hard to read and
extend as user has to track multiple finite state machines without any GUI (rejecting Hypothesis
7). Through user-interaction, we can deal with such issues but first, a user study is required to
gauge the effectiveness of learned models in reducing time-consumption for PDDL modelling.
Perhaps, no state observability is too strong an assumption to learn from unstructured data.
Relaxing this observation would allow us to use more robust domain learning algorithms than
heuristic learning of LOCM2 [25] but would require learning of the state information from natural
language data. Nonetheless, the foundations of NLtoPDDL are laid in a very actively research
field of NLP, which makes it possible to do much more than what is demonstrated. One such
example that confirms Hypothesis 8 (durative actions) is demonstrated above.

54

5. Experimental Evaluation

Word2Vec + rEASDRL

BERT + ELMo cEASDRL

NOT: Fire(1) Alarm(2) Instructions(3)

NO2Z Turn-off(1) all{2) hazardous(3) experiments(4)
or{5) procedures(6) before(7) evacuating.(8)

NO3: If(1) possible(2) take(3) or(4) secure(5) all(6)
valuables(7) wallets(8) purses(9) keys(10) etc(1)
as(12) quickly(13} as(14) possible.(15)

NO<4: Close(l) all(2) doors(3) behind(4) you(S) as(6)
you(7) exit.(8)
<1= Close (doors)

NO5: Check(1) all(2) doors|3) for|4) heat(5) before(6)
you(7) open|8) or(9) go(10) through(11) them(12)
to(13) avoid(14) walking(15) into(16) a(17) fire.[18)
=2> Check (doors) =3= go(] <4> avoid
(walking)

NO6&: Evacuate(l) the(2) building(3) using(4) the(5)
nearest(6) exit(7) or(8) stairway(3)

NOT: Do(l) not{2) use(3) the(4) elevators.(5)

NO8: Call(1) 911(2) from(3) a|4) safe(5) area(6) and(7)
provide(8) name(9) location(10) and(1) nature(12)
of{13) emergency.(14)

=5> Call (91) <=6> provide [name, location)

NOS: Proceed(l) to(2) a(3) pre-determined(4)
assembly(5) area(6) of{7) building(8) and(9)
remain(10) there(1) until(12) you(13) are(14) told(15)
to(16) re-enter(17) by(18) the(19) emergency(20)
personnel(21) in(22) charge.[23)

NO10: Do(l) not(2) impede(3) access|4) of(3)
emergency(6) personnel(7) to[8) the(3) area.[10)

NOM: Informi(1) Building(2) Safety(3) Personnel(4)
or({5) Emergency(6) Personnel(7) of(8) the(3)
event(10) conditions(11) and(12) location(13) of{14)
individuals(15) who(16) require(17) assistance(18)
and(19) have(20) not(21) been(22) evacuated|23)
<7> Inform (Building, Safety, Personnel)

MOT: Fire(1) Alarm(2) Instructions(3)

NO2Z: Turn-off(1) all{2) hazardous(3) experiments(4)
or(5) procedures|6) before(7) evacuating.(8)
<1= Turn-off (experiments)

MO3: If{1) possible(2) take(3) or(4) secure(s) all(6)
valuables(7) wallets|8) purses(3) keys(10) etc(1)
as(12) quickly(13} as(14) possible.[15)

<2> take (valuables) <=3> secure [valuables,
wallets)

NO<%: Close(1) all{2) doors(3) behind (4] you(S) as(6)
you(7) exit.(8)
<4> Close [doors)

NO5: Check(l) all(2) doors(3) for(4) heat|s) before(s)
you(7] open(8) or(9) go(10) through(11) them(12)
to(13) avoid(14) walking(15) into(16) a(17) fire.(18)

=5> Check (doors, heat) <6> avoid (walking)

MO6: Evacuate(l) the(2) building(3) using(4) the(s)
nearest(6) exit(7) or(8) stairway(9)
<7> Evacuate [building) =8> using (nearest, exit)

MO7: Do(1) not(2) use(3) the(4) elevators.(5)

MO8: Call(1) 31(2) from(3) a(4) safe(S) areal(6) and(7)
provide(8) name(9) location(10) and(N) nature(12)
of{13) emergency.(14)

=9> Call (9M) <10> provide (name, location)

MO9: Proceed(l) to(2) a(3) pre-determined|4)
assembly(5s) area(6) of(7) building(8) and(9)
remain(10) there(11) until{12) you(13) are(14) told(15)
to(16) re-enter(17) by(18) the(19) emergency(20)
personnel(21) in{22) charge.[23)

<11= Proceed pre-determined, assembly, area)
<12= remain [there)

NO10: Do(l) not(2) impede(3) access(4) of|3)
emergency(6) personnel(7) to(8) the(9) area.(10)

MO Informi(1) Building(2) Safety(3) Personnel(4)
or(5) Emergency|(6) Personnel(7) of(8) the(9)
event(10) conditions(T) and(12) location(13) of{14)
individuals(15) who(16) require(17) assistance(18)
and(19) have(20} not(21) been(22) evacuated(23)
<13= Inform (Safety, Personnel)

Figure 5.1: Extraction results of Word2Vec + rEASDRL and chosen BERT+ ELMo cEASDRL using the weights
of WikiHG dataset. Since many words are not seen by Word2Vec + rEASDRL model, it initialises them to zero
vectors and thus, it misses to extract many essential (ES) action names in sentence no. 2, 3, 6 and 9. It also fails
to detect some ES action arguments. On the other hand, cEASDRL correctly skips Sentence no. 1 and 10 as
they do not represent any ES action names. Thus, even the 5-7% improvement in F1-score corresponds to huge
improvements in the overall sequence quality.

5.2. Learning of Domain Models 55

Tea domain Start from home and reach cafe for your tea in m . Buy tea and wait

. Clean your hands, if they are dirty in m . Add water to mug which takes

. Pour milk to mug which also takes . Dip teabag into mug which also takes
. Mix the teabag, water and milk in your mug for m - Your delicious tea is

ready.

Figure 5.2: Time phrases extracted from NER module of SpaCy library, displayed using Displacy®NT component
[61].

Conclusion and Future Research

In this chapter, we answer the research questions presented in Section 1.3. Subsequently,
the directions for future research are discussed. The main research question of our thesis
was:

Can we sufficiently solve the Action Sequence Extraction Problem to extract structured
data from freely written natural language process manuals of real-world problems, and
then use it to solve the Domain Acquisition Problem to induce syntactically valid and
meaningful PDDL models?

We were able to solve for both action sequence extraction and domain acquisition
problem by combining promising and state-of-the-art research from natural language
processing, deep reinforcement learning and automated planning to induce syntactically
valid but partially meaningful PDDL models. We achieved the state-of-the-art (SoTA) results
in the Action Sequence Extraction Problem by incorporating contextual embeddings into
deep reinforcement learning method called EASDRL [33]. In Section 5.1.3, we empirically
observed the excellent generalisability of cEASDRL to real-world data. Despite the SoTA
results, we were not able to preprocess them into unambiguous structured data. This was
the prerequisite to learn domain models from action sequences with no state observability.
Nevertheless, we learned meaningful shallow models in one-shot from a natural language
process manual which can be used in model-lite planning [138, 143] or as an initial PDDL
model by SMEs and KEs to interactively analyse and build the gold-standard PDDL models.

Based on the results, we now answer the sub-research questions:

1. Can we integrate dynamic contextual word embeddings generated from
pretrained language models learned from recent NLP transfer learning
techniques, like BERT [29], ELMo [99], and Flair [4], into Feng et al. [33]'s
EASDRL to push the state-of-the-art in Action Sequence Extraction? If yes,
which contextual embeddings work the best and why?

We were able to seamlessly integrate all three dynamic embeddings into Feng et al.
[33]'s EASDRL using Flair NLP library [5]. This did push the SoTA F1-scores for
extracting action names by 5-7%, and extracting action arguments by 7-9% (Section
5.1.3). Although all contextual embeddings beat the baselines of Word2Vec, GloVe,
and POS-GloVe, different embeddings shined for different tasks and datasets.
GloVe+BERT was the best stacked embedding for extracting action names and
Glove+ELMo was the best stacked embedding for extracting action arguments in

57

58

6. Conclusion and Future Research

Cooking and WinHG datasets. A possible explanation is that BERT overfits for
extracting action arguments due to the large size of RL state-vector, which was caused
by the repeat representation explained in Section 4.1.3

. Will the dynamic contextual embeddings mitigate the problems of

out-of-vocabulary (OOV) words (represented by UNK), polysemy, shared
representation, and infinite word senses caused by Word2Vec model [85] that
was used in EASDRL [33]?

The dynamic contextual embeddings did solve the problem of OOV words as they were
inherently based on either character convolutions (ELMo and Flair) or sub-word
language models (BERT). As contextual embeddings both the context (sentence) of
the target word and the language representation learned from unsupervised pretraining
on huge corpora, they did solve the problems of polysemy, shared representation and
infinite word senses. The only drawback we found was that these could not be saved in
a lookup table like Word2Vec.

. Would we be able to generalise our action sequence extraction approach on

real-world data better than the current state-of-the-art, EASDRL [33]?

As shown quantitatively and qualitatively in Sections 5.1.3 and 5.1.4, respectively, we
were able to much better generalise our action sequence extraction approach on
real-world data than the current state-of-the-art, EASDRL [33]. In other words,
contextual embeddings successfully used the knowledge of large scale NL corpus into
our downstream task of extracting sequences through DQN, even without task-specific
fine-tuning.

. Can we use the extracted action sequences as valid structured input for domain

model learning technique LOCM2 [25] and induce PDDL models?

Yes, we were able to create a valid structured input but it was not representative of the
full data that was available in the natural language process manual. Also, “no state
observability” assumption of LOCMZ2[25] closely resembles many real-world scenarios.
This also meant that static conditions which can’t be modelled through inductive process
could not be learned. As a result, shallow/initial models were induced in one-shot which
can be used in model-lite planning [138, 143] or by SMEs and KEs to interactively analyse
and build the gold-standard PDDL model from natural language data.

. Can we use NLtoPDDL as a one-shot algorithm, i.e., can it also work with only

a single natural language plan to produce a best-possible valid output? What is
the quality of domain models learned in terms of their completeness, soundness,
validity, and consistency? Are the learned domain models intuitive enough that
they can be used as initial domain models by the SMEs and KEs?

We only performed experiments for one-shot learning. From previous research in AP,
we realised that it is too difficult a task to learn domain models in one-shot from natural
language data. Hence, we developed an interactive reimplementation of LOCM2, in
which the user can follow along the domain learning process and provide simple inputs
to improve the quality of the domain. However, in Section 5.2, we did not use these
inputs and demonstrated the vanilla NLtoPDDL's performance for learning
domain models. Even without the user input, we were able to induce valid and
partially-meaningful shallow PDDL models. The learned PDDL models did not make
the best out of the available input. Qualitatively, The precision and recall of the learned
action names and action parameters are representative of the F1-scores. The learned

6.1. Future Research 59

preconditions and effects modelled the behaviour of learned states correctly. Yet, due
to missed arguments in extraction and presence of static conditions, many
preconditions and effects were not learned.

In Section 5.2.3 and 5.2.4, we moved away from restrictive IPC domains towards
real-world domains which were more representative of the data we trained on. We can
conclude from the results that our approach can induce one-shot valid PDDL models
with reasonable soundness and completeness for real-world instructional data. Despite
that, determining the learned state information from state dictionary was found to be a
tedious and non-scalable feature, which will be amended in the future by the use of
graphical interface that visualises the state of an object in a state machine.

Sometimes, the comparison between the learned domain model and the reference model
was not feasible because the domain learner modelled a very different model from
the reference model. A further user-study of SMEs and KEs is required to objectively
understand if the learned domain model was better.

6. Can we extend the scope of NLtoPDDL to more expressive features of PDDL, like
durative actions?

The foundations of NLtoPDDL lie in NLP, which is a very active research field. This
makes it possible to do much more than what is demonstrated. One such example was
demonstrated in Section 5.2.4, where we learned a temporal domain which contained
durative actions. The results were positive for this scenario.

6.1. Future Research
As NLtoPDDL is a flexible pipeline with decoupled components, we have some ideas about
enhancing the individual components:

* Experiments with more data: The NLtoPDDL approach can work with any amount
of natural language data. We only evaluated our pipeline with the least amount of
data possible (one-shot learning) and learned simple PDDL models. But, as cEASDRL
can extract action sequences from free natural language data, it will be interesting to
learn domain models form a huge corpus of natural language data and see what they
represent or how comprehensible they are. We can validate the quality of generated
large domain models by analysing the plans generated from model-lite planners [138,
143]. Advantage of having more data is that, we can employ methods like [50] that would
also learn the static conditions of the domain.

» Better DRL method: Although DQNs are sample efficient they do not provide
convergence guarantees. For example, in Table 5.3, we saw that DQN failed to
converge for POS-GloVe+rEASDRL. Also, memory requirements of DQN were
observed to be quite high. Asynchronous architectures like A2C/A3C [88] and
architectures that provide strong theoretical guarantees like Trust Region Policy
Optimization (TRPO) [106] and Proximal Policy Optimization (PPO) [107] might be
better and scalable alternatives.

One small detail about our model that lowered the domain learning performance was that
it was trained on extracting single words and thus, words with adjectives such as “cold
milk” or compound nouns such as “training personnel”, were extracted separately which
hurt the performance of domain learning algorithm. Thus, by doing some preprocessing
and training the model to select multiple words as an action name or argument might
facilitate the learning of better domain models.

60

6. Conclusion and Future Research

» Contextual Embeddings: The cEASDRL approach that uses EASDRL [33] is fairly

generalisable to unseen data, despite the type of contextual embedding applied. Thus,
we can customise the contextual embedding to even newer transformer based
embeddings which achieve the state-of-the-art results. For example, XLNet [130]
which achieves SoTA results in 18 NLP tasks might be a good choice.

User-interaction and user-study: As domain learning algorithms are not mature
enough to learn real-world non-classical domains, mixed-initiative knowledge
engineering is the way to go forward. We took initial steps by incorporating a
reimplemented interactive LOCM, but there was not enough time to evaluate it
objectively with user input. Our future research would include building a user interface
that visualises current state of an object in all the finite state machines that are learned,
and then do an extensive user study, with KEs and SMEs as users, to evaluate the
different kinds of learned PDDL models which they would build from their interpretation
of “free” NL instructions.

Bibliography

[1] Josh Achiam. OpenAl Spinning Up in Deep RL! https://spinningup.openai.
com/, 2018. Last accessed: 2019-09-14.

[2] Diego Aineto, Sergio Jiménez, and Eva Onaindia. Learning strips action models with
classical planning. In Twenty-Eighth International Conference on Automated Planning
and Scheduling, 2018.

[3] Diego Aineto, Sergio Jiménez Celorrio, and Eva Onaindia. Learning action models with
minimal observability. Artificial Intelligence, 275:104-137, 2019.

[4] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings
for sequence labeling. In Proceedings of the 27th International Conference on
Computational Linguistics, pages 1638—1649, 2018.

[5] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and
Roland Vollgraf. FLAIR: An easy-to-use framework for state-of-the-art NLP. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics (Demonstrations), pages 54—59, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-4010.

[6] Jay Alammar. The lllustrated BERT, ELMo, and co. (How NLP Cracked Transfer
Learning). http://jalammar.github.io/illustrated-bert/, 2018. Last
accessed: 2019-09-14.

[7] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. CoRR, abs/1707.01495, 2017.

[8] Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Métivier, and Sylvie Pesty. A review
of learning planning action models. The Knowledge Engineering Review, 33, 2018.

[9] Ankuj Arora, Humbert Fiorino, Damien Pellier, and Sylvie Pesty. Action model
acquisition using Istm. arXiv preprint arXiv:1810.01992, 2018.

[10] Ankuj Arora, Humbert Fiorino, Damien Pellier, and Sylvie Pesty. A review on learning
planning action models for socio-communicative hri. arXiv preprint arXiv:1810.09245,
2018.

[11] Masataro Asai and Alex Fukunaga. Classical planning in deep latent space: Bridging
the subsymbolic-symbolic boundary. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[12] Wilmer Bandres, Blai Bonet, and Hector Geffner. Planning with pixels in (almost) real
time. In Thirty-Second AAAI Conference on Atrtificial Intelligence, 2018.

[13] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on
reinforcement learning. CoRR, abs/1707.06887, 2017.

61

https://spinningup.openai.com/
https://spinningup.openai.com/
http://jalammar.github.io/illustrated-bert/

62 Bibliography

[14] Sara Bernardini and David E Smith. Developing domain-independent search control
for europa2. In Proceedings of the Workshop on Heuristics for Domain-independent
Planning at ICAPS, volume 7, 2007.

[15] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational
Linguistics, 5:135-146, 2017. doi: 10.1162/tacl_a_00051.

[16] Adi Botea, Christian Muise, Shubham Agarwal, Oznur Alkan, Ondrej Bajgar, Elizabeth
Daly, Akihiro Kishimoto, Luis Lastras, Radu Marinescu, Josef Ondrej, et al. Generating
dialogue agents via automated planning. arXiv preprint arXiv:1902.00771, 2019.

[17] Satchuthananthavale RK Branavan, Harr Chen, Luke S Zettlemoyer, and Regina
Barzilay. Reinforcement learning for mapping instructions to actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP: Volume 1-Volume 1,
pages 82-90. Association for Computational Linguistics, 2009.

[18] Tom Bylander. Complexity results for planning. In IJCAI, volume 10, pages 274-279,
1991.

[19] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp
Koehn. One billion word benchmark for measuring progress in statistical language
modeling. CoRR, abs/1312.3005, 2013.

[20] David L Chen and Raymond J Mooney. Learning to interpret natural language
navigation instructions from observations. In Twenty-Fifth AAAI Conference on Atrtificial
Intelligence, 2011.

[21] Steve Chien, Ari Jonsson, and Russell Knight. Automated planning & scheduling for
space mission operations. 2005.

[22] Luka$ Chrpa, Daniele Magazzeni, Keith McCabe, Thomas L McCluskey, and Mauro
Vallati. Automated planning for urban traffic control: Strategic vehicle routing to respect
air quality limitations. Intelligenza Artificiale, 10(2):113—-128, 2016.

[23] Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and Quoc V. Le.
Semi-supervised sequence modeling with cross-view training. CoRR, abs/1809.08370,
2018. URL http://arxiv.org/abs/1809.08370.

[24] Michele Colledanchise, Ramviyas Nattanmai Parasuraman, and Petter Ogren. Learning
of behavior trees for autonomous agents. IEEE Transactions on Games, 2018.

[25] Stephen Cresswell and Peter Gregory. Generalised domain model acquisition from
action traces. In Twenty-First International Conference on Automated Planning and
Scheduling, 2011.

[26] Stephen N Cresswell, Thomas L McCluskey, and Margaret M West. Acquiring planning
domain models using locm. The Knowledge Engineering Review, 28(2):195-213, 2013.

[27] Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional
reinforcement learning with quantile regression. CoRR, abs/1710.10044, 2017.

[28] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Advances in
neural information processing systems, pages 3079-3087, 2015.

http://arxiv.org/abs/1809.08370

Bibliography 63

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding, 2018.

[30] Stefan Edelkamp and Jérg Hoffmann. PddI2. 2: The language for the classical part
of the 4th international planning competition. 4th International Planning Competition
(IPC?04), at ICAPS?04, 2004.

[31] Kutluhan Erol, Dana S Nau, and Venkatramana S Subrahmanian. = Complexity,
decidability and undecidability results for domain-independent planning. Artificial
intelligence, 76(1-2):75-88, 1995.

[32] Viadimir Feinberg, Alvin Wan, lon Stoica, Michael I. Jordan, Joseph E. Gonzalez, and
Sergey Levine. Model-based value estimation for efficient model-free reinforcement
learning. CoRR, abs/1803.00101, 2018.

[33] Wenfeng Feng, Hankz Hankui Zhuo, and Subbarao Kambhampati. Extracting
action sequences from texts based on deep reinforcement learning. arXiv preprint
arXiv:1803.02632, 2018.

[34] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-4):189-208, 1971.

[35] Maria Fox and Derek Long. Pddl+: Modeling continuous time dependent effects. In
Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for
Space, volume 4, page 34, 2002.

[36] Maria Fox and Derek Long. PddI2. 1: An extension to pddl for expressing temporal
planning domains. Journal of artificial intelligence research, 20:61-124, 2003.

[37] Guillem Frances, Hector Geffner, Nir Lipovetzky, and M Ramirez. Best-first width search
in the ipc 2018: Complete, simulated, and polynomial variants. [IPC2018-Classical
Tracks, pages 22-26, 2018.

[38] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle
Pineau, et al. An introduction to deep reinforcement learning. volume 11, chapter 4,
pages 242-253. Now Publishers, Inc., 2018.

[39] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle
Pineau, et al. Anintroduction to deep reinforcement learning. Foundations and Trends®
in Machine Learning, 11:219-354, 2018.

[40] Max Franz, Christian T Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and Gary D
Bader. Cytoscape. js: a graph theory library for visualisation and analysis.
Bioinformatics, 32(2):309-311, 2015.

[41] Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function approximation
error in actor-critic methods. CoRR, abs/1802.09477, 2018.

[42] Héctor Geffner. Functional strips: a more flexible language for planning and problem
solving. In Logic-based artificial intelligence, pages 187—209. Springer, 2000.

[43] Alfonso Gerevini and Derek Long. Plan constraints and preferences in pddI3. Technical
report, Technical Report 2005-08-07, Department of Electronics for Automation ?, 2005.

64 Bibliography

[44] Alfonso Gerevini and Derek Long. Preferences and soft constraints in pddi3. In ICAPS
workshop on planning with preferences and soft constraints, pages 46-53, 2006.

[45] Alfonso E Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis
Dimopoulos. Deterministic planning in the fifth international planning competition: PddI3
and experimental evaluation of the planners. Artificial Intelligence, 173(5-6):619-668,
2009.

[46] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

[47] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and acting.
Cambridge University Press, 2016.

[48] Dan Goldwasser and Dan Roth. Learning from natural instructions. Machine Learning,
94(2):205-232, Feb 2014. ISSN 1573-0565. doi: 10.1007/s10994-013-5407-y.

[49] Arturo Gonzalez-Ferrer, Juan Fernandez-Olivares, Luis Castillo, et al. Jabbah: a java
application framework for the translation between business process models and htn.
2009.

[50] Peter Gregory and Stephen Cresswell. Domain model acquisition in the presence of
static relations in the lop system. In Twenty-Fifth International Conference on Automated
Planning and Scheduling, 2015.

[51] Peter Gregory and Alan Lindsay. Domain model acquisition in domains with action costs.
In Twenty-Sixth International Conference on Automated Planning and Scheduling, 2016.

[52] PJ Gregory, Alan Lindsay, and Julie Porteous. Domain model acquisition with missing
information and noisy data. 2017.

[53] David Ha and Jirgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018.

[54] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018.

[55] Thomas Hayton, Julie Porteous, Joao Ferreira, Alan Lindsay, and Jonathon Read.
Storyframer: From input stories to output planning models. In Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS). The 27th International Conference
on Automated Planning and Scheduling (ICAPS), 2017.

[56] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence
Research, 26:191-246, 2006.

[57] Malte Helmert, Gabricle Rdger, and Erez Karpas. Fast downward stone soup: A
baseline for building planner portfolios. In ICAPS 2011 Workshop on Planning and
Learning, pages 28-35, 2011.

[58] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Thirty-Second AAAI
Conference on Attificial Intelligence, 2018.

Bibliography 65

[59] Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

[60] Jorg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253-302, 2001.

[61] Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. To appear,
2017.

[62] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification, 2018.

[63] Rabia Jilani, Andrew Crampton, Diane Kitchin, and Mauro Vallati. Ascol: A tool for
improving automatic planning domain model acquisition. In Congress of the lItalian
Association for Artificial Intelligence, pages 438—451. Springer, 2015.

[64] Sergio Jiménez, Fernando Fernandez, and Daniel Borrajo. The pela architecture:
integrating planning and learning to improve execution. In National Conference on
Artificial Intelligence (AAAI?2008), 2008.

[65] Sergio Jiménez, Tomas De la Rosa, Susana Fernandez, Fernando Fernandez, and
Daniel Borrajo. A review of machine learning for automated planning. The Knowledge
Engineering Review, 27(4):433-467, 2012.

[66] Ari K Jonsson, Paul H Morris, Nicola Muscettola, Kanna Rajan, and Benjamin D Smith.
Planning in interplanetary space: Theory and practice. 2000.

[67] Daniel Jurafsky and James H Martin. Speech and language processing: 3rd edition,
draft. https://web.stanford.edu/~jurafsky/slp3/, 2019. Last accessed:
2019-09-14.

[68] Subbarao Kambhampati. Model-lite planning for the web age masses: The challenges
of planning with incomplete and evolving domain models. In Proceedings of the
National Conference on Atrtificial Intelligence, volume 22, page 1601. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[69] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K. Reddy. Deep
reinforcement learning for sequence to sequence models, 2018.

[70] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware
neural language models. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[71] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[72] Jifi Ku€era and Roman Bartak. Louga: learning planning operators using genetic
algorithms. In Pacific Rim Knowledge Acquisition Workshop, pages 124—138. Springer,
2018.

[73] Yuncong Li and Hankz Hankui Zhuo. Human-in-the-loop domain-model acquisition.

[74] Shiyu Liang and R. Srikant. Why deep neural networks? CoRR, abs/1610.04161, 2016.

https://web.stanford.edu/~jurafsky/slp3/

66 Bibliography

[75] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning, 2015.

[76] Alan Lindsay, Jonathon Read, Joao F Ferreira, Thomas Hayton, Julie Porteous, and
Peter Gregory. Framer: Planning models from natural language action descriptions.
In Twenty-Seventh International Conference on Automated Planning and Scheduling,
2017.

[77] Nir Lipovetzky and Hector Geffner. Best-first width search: Exploration and exploitation
in classical planning. In Thirty-First AAAI Conference on Artificial Intelligence, 2017 .

[78] RuiLiu, Junjie Hu, Wei Wei, Zi Yang, and Eric Nyberg. Structural embedding of syntactic
trees for machine comprehension. CoRR, abs/1703.00572, 2017.

[79] Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Connecting
language, knowledge, and action in route instructions. Def, 2(6):4, 2006.

[80] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. The stanford corenlp natural language processing toolkit. In
Proceedings of 52nd annual meeting of the association for computational linguistics:
system demonstrations, pages 55—60, 2014.

[81] Thomas Leo McCluskey, N Elisabeth Richardson, and Ron M Simpson. An interactive
method for inducing operator descriptions. In AIPS, pages 121-130, 2002.

[82] Thomas Leo McCluskey, SN Cresswell, N Elisabeth Richardson, and Margaret Mary
West. Action knowledge acquisition with opmaker2. In International Conference on
Agents and Atrtificial Intelligence, pages 137—150. Springer, 2009.

[83] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PddI-the planning domain definition language,
1998.

[84] Hongyuan Mei, Mohit Bansal, and Matthew R Walter. Listen, attend, and walk: Neural
mapping of navigational instructions to action sequences. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

[85] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[86] Tomas Mikolov, llya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119, 2013.

[87] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[88] Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. CoRR, abs/1602.01783, 2016.

Bibliography 67

[89] Kira Mourao, Luke S Zettlemoyer, Ronald Petrick, and Mark Steedman. Learning strips
operators from noisy and incomplete observations. arXiv preprint arXiv:1210.4889,
2012.

[90] Christian Muise. Planning. domains. ICAPS system demonstration, 2016.

[91] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free
fine-tuning. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 7559-7566. IEEE, 2018.

[92] Dana S Nau. Current trends in automated planning. Al magazine, 28(4):43—-43, 2007.

[93] Muhammad Abdul Hakim Newton, John Levine, Maria Fox, and Derek Long. Learning
macro-actions for arbitrary planners and domains. In ICAPS, volume 2007, pages
256-263, 2007.

[94] Nils J Nilsson. Shakey the robot. Technical report, SRI INTERNATIONAL MENLO PARK
CA, 1984.

[95] Christopher Olah. Neural Networks, Types, and Functional Programming. http:
//colah.github.io/posts/2015-09-NN-Types-FP/, 2018. Last accessed:
2019-09-14.

[96] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic
models of stochastic domains. Journal of Artificial Intelligence Research, 29:309-352,
2007.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

[98] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532—-1543, 2014.

[99] Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proc.
of NAACL, 2018.

[100] Alec Radford, Karthik Narasimhan, Tim Salimans, and llya Sutskever. Improving
language understanding by generative pre-training. URL https.//s3-us-west-2.
amazonaws. com/openai-assets/researchcovers/languageunsupervised/language
understanding paper. pdf, 2018.

[101] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and llya Sutskever.
Language models are unsupervised multitask learners. OpenAl Blog, 1(8), 2019.

[102] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning,
62(1-2):107-136, 2006.

[103] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling language
reference manual, the. Pearson Higher Education, 2004.

http://colah.github.io/posts/2015-09-NN-Types-FP/
http://colah.github.io/posts/2015-09-NN-Types-FP/

68 Bibliography

[104] Scott Sanner. Relational dynamic influence diagram language (rddl): Language
description. Unpublished ms. Australian National University, 32, 2010.

[105] Tom Schaul, John Quan, loannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[106] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization. CoRR, abs/1502.05477, 2015.

[107] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[108] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673-2681, 1997.

[109] José A Segura-Muros, Raul Pérez, and Juan Fernandez-Olivares. Learning numerical
action models from noisy and partially observable states by means of inductive rule
learning techniques. KEPS 2018, page 46, 2018.

[110] Jendrik Seipp. Fast downward remix. Ninth International Planning Competition (IPC
2018), pages 6769, 2018.

[111] Jendrik Seipp and Gabriele Roger. Fast downward stone soup 2018. IPC2018-Classical
Tracks, pages 72—-74, 2018.

[112] M Shah, Lukas Chrpa, Falilat Jimoh, D Kitchin, T McCluskey, Simon Parkinson, and
Mauro Vallati. Knowledge engineering tools in planning: State-of-the-art and future
challenges. Knowledge engineering for planning and scheduling, 53:53, 2013.

[113] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[114] Ron M Simpson, Diane E Kitchin, and Thomas Leo McCluskey. Planning domain
definition using gipo. The Knowledge Engineering Review, 22(2):117-134, 2007.

[115] David E Smith, Jeremy Frank, and William Cushing. The anml language. In The
ICAPS-08 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS),
2008.

[116] Volker Strobel and Alexandra Kirsch. Planning in the wild: Modeling tools for pddl.
In Carsten Lutz and Michael Thielscher, editors, KI 2014: Advances in Arftificial
Intelligence, pages 273-284, Cham, 2014. Springer International Publishing. ISBN
978-3-319-11206-0.

[117] llya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems, pages
3104-3112, 2014.

[118] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[119] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in neural information processing systems, pages 1057—-1063, 2000.

Bibliography 69

[120] Atif Talukdar. Inference in Temporal Planning to Enhance Planning Performance for
Problems with Required Concurrency. Phd thesis, 2019.

[121] Andrew Trask, Phil Michalak, and John Liu. sense2vec-a fast and accurate
method for word sense disambiguation in neural word embeddings. arXiv preprint
arXiv:1511.06388, 2015.

[122] Mauro Vallati, Daniele Magazzeni, Bart De Schutter, Lukas Chrpa, and Thomas Leo
McCluskey. Efficient macroscopic urban traffic models for reducing congestion: a pddi+
planning approach. In Thirtieth AAAI Conference on Attificial Intelligence, 2016.

[123] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double g-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[124] Tiago S Vaquero, José R Silva, Flavio Tonidandel, and J Christopher Beck. itsimple:
towards an integrated design system for real planning applications. The Knowledge
Engineering Review, 28(2):215-230, 2013.

[125] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, tukasz Kaiser, and lllia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998—-6008, 2017.

[126] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):
279-292, 1992.

[127] Theophane Weber, Sébastien Racaniére, David P. Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adria Puigdoménech Badia, Oriol Vinyals, Nicolas
Heess, Yujia Li, Razvan Pascanu, Peter W. Battaglia, David Silver, and Daan
Wierstra. Imagination-augmented agents for deep reinforcement learning. CoRR,
abs/1707.06203, 2017.

[128] Lilian Weng. Generalized language models. https://lilianweng.github.
io/1i1-109/2019/01/31/generalized-language-models.html, 2018. Last
accessed: 2019-09-14.

[129] Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan
examples using weighted max-sat. Artificial Intelligence, 171(2-3):107-143, 2007.

[130] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding,
2019.

[131] Sungwook Yoon and Subbarao Kambhampati. Towards model-lite planning: A proposal
for learning & planning with incomplete domain models. In ICAPS2007 Workshop on
Atrtificial Intelligence Planning and Learning, 2007.

[132] Hakan LS Younes and Michael L Littman. PpddI1. 0: The language for the probabilistic
part of ipc-4. In Proc. International Planning Competition, 2004.

[133] Ye Zhang, Stephen Roller, and Byron C Wallace. Mgnc-cnn: A simple approach to
exploiting multiple word embeddings for sentence classification. In Proceedings of
NAACL-HLT, pages 1522-1527, 2016.

https://lilianweng.github.io/lil-log/2019/01/31/generalized-language-models.html
https://lilianweng.github.io/lil-log/2019/01/31/generalized-language-models.html

70 Bibliography

[134] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books. In Proceedings of the IEEE
international conference on computer vision, pages 19-27, 2015.

[135] Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Transferring knowledge from
another domain for learning action models. In Pacific Rim International Conference on
Artificial Intelligence, pages 1110-1115. Springer, 2008.

[136] Hankui Zhuo, Qiang Yang, and Lei Li. Transfer learning action models by measuring
the similarity of different domains. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 697—704. Springer, 2009.

[137] Hankz Hankui Zhuo and Subbarao Kambhampati. Action-model acquisition from noisy
plan traces. In Twenty-Third International Joint Conference on Artificial Intelligence,
2013.

[138] Hankz Hankui Zhuo and Subbarao Kambhampati. Model-lite planning: Case-based vs.
model-based approaches. Atrtificial Intelligence, 246:1-21, 2017.

[139] Hankz Hankui Zhuo and Qiang Yang. Action-model acquisition for planning via transfer
learning. Artificial intelligence, 212:80-103, 2014.

[140] Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning complex
action models with quantifiers and logical implications. Artificial Intelligence, 174(18):
1540-1569, 2010.

[141] Hankz Hankui Zhuo, Hector Mufioz-Avila, and Qiang Yang. Learning action models
for multi-agent planning. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 217-224. International Foundation
for Autonomous Agents and Multiagent Systems, 2011.

[142] Hankz Hankui Zhuo, Qiang Yang, Rong Pan, and Lei Li. Cross-domain action-model
acquisition for planning via web search. In Twenty-First International Conference on
Automated Planning and Scheduling, 2011.

[143] Hankz Hankui Zhuo, Tuan Nguyen, and Subbarao Kambhampati. Model-lite case-based
planning. In Twenty-Seventh AAAI Conference on Atrtificial Intelligence, 2013.

[144] Hankz Hankui Zhuo, Tuan Nguyen, and Subbarao Kambhampati. Refining incomplete
planning domain models through plan traces. In Twenty-Third International Joint
Conference on Artificial Intelligence, 2013.

[145] Terry Zimmerman and Subbarao Kambhampati. Learning-assisted automated planning:
looking back, taking stock, going forward. Al Magazine, 24(2):73-73, 2003.

Reference PDDL Domains from IPC

A.1. Child Snack (Sequential, Optimal) - IPC 2014

;; Author: Raquel Fuentetaja and Tomas de la Rosa

(define (domain child—-snack)

(:requirements :typing :equality)

(:types child bread—portion content—portion sandwich tray place)
(: constants kitchen — place)

(: predicates (at_kitchen_bread ?b — bread-portion)
(at_kitchen_content ?c — content—portion)
(at_kitchen_sandwich ?s — sandwich)
(no_gluten_bread ?b — bread—portion)
(no_gluten_content ?c — content—portion)
(ontray ?s — sandwich ?t — tray)
(no_gluten_sandwich ?s — sandwich)
(allergic_gluten ?c — child)
(not_allergic_gluten ?c — child)

(served ?c — child)

(waiting ?c — child ?p — place)

(at ?t — tray ?p — place)

(notexist ?s — sandwich)

)

(:action make_sandwich_no_gluten
:parameters (?s — sandwich ?b — bread—portion ?c — content—portion)
:precondition (and (at_kitchen_bread ?b)

at_kitchen_content ?c)

no_gluten_bread ?b)

no_gluten_content 7?c)

notexist ?s))

—_~ e~~~

:effect (and
(not (at_kitchen_bread ?b))
(not (at_kitchen_content ?c))
(at_kitchen_sandwich ?s)
(no_gluten_sandwich ?s)
(not (notexist ?s))

))

(:action make_sandwich
:parameters (?s — sandwich ?b — bread—portion ?c — content—portion)

71

72 A. Reference PDDL Domains from IPC

:precondition (and (at_kitchen_bread ?b)
at_kitchen_content ?c)

(
(
(notexist ?s)
)

:effect (and
(not (at_kitchen_bread 7?b))
(not (at_kitchen_content ?c))
(at_kitchen_sandwich ?s)
(not (notexist ?s))

))

(:action put_on_tray
:parameters (?s — sandwich ?t — tray)
:precondition (and (at_kitchen_sandwich ?s)
(at ?t kitchen))
:effect (and
(not (at_kitchen_sandwich ?s))
(ontray ?s ?t)))

(:action serve_sandwich_no_gluten

:parameters (?s — sandwich ?c — child ?t - tray ?p — place)

:precondition (and
(allergic_gluten 7?c)
(ontray ?s ?t)
(waiting ?c ?p)
(no_gluten_sandwich ?s)
(at ?t ?p)

)
:effect (and (not (ontray ?s 7?7t))
(served ?c)))

(:action serve_sandwich

:parameters (?s — sandwich ?c — child ?t - tray ?p — place)
:precondition (and (not_allergic_gluten ?c)

(waiting ?c ?p)

(ontray ?s ?t)

(at ?2t ?p))
:effect (and (not (ontray ?s 7?7t))

(served ?c)))

(:action move_tray
:parameters (?t — tray ?p1 ?p2 — place)
:precondition (and (at ?t ?p1))
:effect (and (not (at ?t ?p1))
(at ?t ?p2)))

A.2. Woodworking Subset IPC 2008, Sequential-Optimal Track

A.2. Woodworking Subset IPC 2008, Sequential-Optimal Track

;7 Woodworking subset

(define (domain woodworking)

(:requirements :typing :action—costs)

(:types
acolour awood woodobj machine
surface treatmentstatus
aboardsize apartsize — object
highspeed—saw glazer grinder immersion—varnisher
planer saw spray—-varnisher — machine
board part — woodobj)

(: constants
verysmooth smooth rough — surface
varnished glazed untreated colourfragments — treatmentstatus
natural — acolour
small medium large — apartsize)

(: predicates
(unused ?obj — part)
(available ?obj — woodobj)

(surface—condition ?obj — woodobj ?surface — surface)
(treatment ?obj — part ?treatment — treatmentstatus)
(colour ?obj — part ?colour — acolour)

(wood ?o0bj — woodobj ?wood — awood)

(is—smooth ?surface — surface))
; we only learn a subset

(:action do-plane
:parameters (?x — part ?m — planer ?oldsurface — surface
?oldcolour — acolour ?oldtreatment — treatmentstatus)
:precondition (and
(available ?x)
(surface—condition ?x ?oldsurface)
(treatment ?x ?oldtreatment)
(colour ?x ?oldcolour))
:effect (and
;5355 we ignore costs (increase (total—-cost) (plane—cost ?x))
(not (surface—condition ?x ?oldsurface))
(surface—condition ?x smooth)
(not (treatment ?x ?oldtreatment))
(treatment ?x untreated)
(not (colour ?x ?oldcolour))
(colour ?x natural)))

(:action do—glaze
:parameters (?x — part ?m — glazer
?newcolour — acolour)
:precondition (and
(available ?x)
(has—colour ?m ?newcolour)
(treatment ?x untreated))
:effect (and

74

A. Reference PDDL Domains from IPC

;35 (increase (total-cost) (glaze—cost ?7x))
(not (treatment ?x untreated))

(treatment ?x glazed)

(not (colour ?x natural))

(colour ?x ?newcolour)))

Learned IPC Domain Models

This appendix contains the input (one process manual per domain) and extracted sequence, the learned PDDL
model and their state dictionary for our evaluation domains. State dictionary represents the meaning of states in
terms of start and end of transitions.

B.1. Child Snack (Sequential, Optimal) - IPC 2014
B.1.1. Input and Extracted Sequence

Jeff (1) Barbara(2) and(3) Nirmal(4) are(5) allergic(6) children(7)
NO2: Shivam(1) and(2) Kanav(3) are(4) non—allergic(5) children.(6)

NO1:

NO3: Take(1) gluten—free (2)

ingredients (3) and(4) gluten—free(5) bread(6)

and(7) make(8) a(9) gluten—free(10) sandwich.(11)
<2> make (gluten—free, sandwich.)

<1>

Take (gluten—free,

ingredients)

NO4: Put(1) gluten—free(2) sandwich(3) on(4) a(5) tray.(6)

<3>

NO5: Move(1) the(2) tray(3)
kitchen (8) to(9) the(10) table —5.(11)

<4>

NOG6:

<5>

NO7:

<6>

NO8:

Put (gluten—free,

Move (tray)

sandwich)

containing (4) sandwich(5) from(6) the(7)

Serve (1) the(2) gluten—free(3) sandwich(4) to(5) Jeff.(6)

Serve (gluten—free, sandwich)

Move(1) the(2) tray(3) back(4) from(5) the(6) table(7) to(8) the(9)

Move (tray)

Take(1) gluten(2)

ingredients (3) and(4) gluten(5) bread(6)

and(7) make(8) a(9) gluten(10) sandwich.(11)

<7>

Take (gluten, ingredients)

<8> make (gluten, sandwich.)

NO9: Put(1) gluten(2) sandwich(3) on(4) a(5) tray.(6)
Put (gluten, sandwich)

<9>

NO10:

<10>

NO11:

<11>

NO12:

<12>

Move(1) the(2) tray(3) from(4)

Move (tray)

kitchen (5) to(6) the(7) table —11(8)

Serve(1) the(2) gluten(3) sandwich(4) to(5) Shivam.(6)

Serve (gluten,

sandwich)

kitchen .(10)

Move(1) the(2) tray(3) back(4) from(5) table -11(6) to(7) the(8) kitchen(9)

Move (tray)

75

76

B. Learned IPC Domain Models

NO13:

Take(1) gluten—free(2) ingredients(3) and(4) gluten—free(5)

bread (6) and(7) make(8) a(9) gluten—free(10) sandwich.(11)

<13>

NO14:

<15>

NO15:

Take (gluten—free, ingredients) <14> make (gluten—free, sandwich.)

Put(1) gluten—free(2) sandwich(3) on(4) a(5) tray.(6)
Put (gluten—free, sandwich)

Move(1) the(2) tray(3) containing(4) sandwich(5) from(6)

the (7) kitchen(8) to(9) the(10) table7.(11)

<16>

NO16:

<17>

NO17:

<18>

NO18:

Move (tray)

Serve (1) the(2) gluten—free(3) sandwich(4) to(5) Barbara.(6)
Serve (gluten—free, sandwich)

Move(1) the(2) tray(3) back(4) from(5) the(6) table(7) to(8) the(9) kitchen.(10)
Move (tray)

Take(1) gluten—free(2) ingredients(3) and(4) gluten—free(5)

bread (6) and(7) make(8) a(9) gluten—free(10) sandwich(11)

<19>

NO19:

<21>

NO20:

Take (gluten—free, ingredients) <20> make (gluten—free, sandwich)

Put(1) gluten—free(2) sandwich(3) on(4) a(5) tray.(6)
Put (gluten—free, sandwich)

Move(1) the(2) tray(3) containing(4) sandwich(5) from(6)

the (7) kitchen(8) to(9) the(10) table —5.(11)

<22>

NO21:

<23>

NO22:

<24>

NO23:

Move (tray)

Serve (1) the(2) gluten—free(3) sandwich(4) to(5) Nirmal.(6)
Serve (gluten—free, sandwich)

Move(1) the(2) tray(3) back(4) from(5) table —5(6) to(7) the(8) kitchen.(9)
Move (tray)

Take(1) gluten(2) ingredients(3) and(4) gluten(5)

bread(6) and(7) make(8) a(9) gluten(10) sandwich.(11)

<25>

NO24:

<27>

NO25:

<28>

NO26:

<29>

NO27 :

<30>

Take (gluten, ingredients) <26> make (gluten, sandwich.)

Put(1) gluten(2) sandwich(3) on(4) a(5) tray.(6)
Put (gluten, sandwich)

Move(1) the(2) tray(3) from(4) kitchen(5) to(6) the(7) table —11(8)
Move (tray)

Serve (1) the(2) gluten(3) sandwich(4) to(5) Kanav.(6)
Serve (gluten, sandwich)

Move(1) the(2) tray(3) back(4) from(5) table —11(6) to(7) the(8) kitchen(9)
Move (tray)

B.1. Child Snack (Sequential, Optimal) - IPC 2014 77

B.1.2. Learned Domain Model

(define (domain childsnack4)

(:requirements :typing)

(:types sandwich—type ingredients tray kitchen sandwich)

(:predicates
(sandwich—type_fsmO0_state0)
(sandwich—type_fsmO0_state1 ?v0 — sandwich ?v1 — sandwich)
(sandwich—type_fsmO0_state2)
(ingredients_fsmO0_state0)
(tray_fsmO_state0)
(kitchen_fsmO0_state0)
(kitchen_fsmO_state1)
(sandwich_fsmO_state0)
(sandwich_fsm0_state1)
(sandwich_fsm1_state0)

)

(:action move

:parameters (?tray — tray)

:precondition (and

(tray_fsmO0O_state0)
)
:effect (and
(tray_fsmO_stateO)
))

(:action take
:parameters (?gluten—free — sandwich—type ?ingredients — ingredients)
:precondition (and
(sandwich—type_fsmO_state0)
(sandwich—type_fsmOQ_state1 ?v0 — sandwich ?v1 — sandwich)
(sandwich—type_fsmO0_state2)
(ingredients_fsmO_state0)
)
:effect (and
(sandwich—type_fsmO0_state0)
(sandwich—type_fsmOQ_state1 ?v0 — sandwich ?v1 — sandwich)
(sandwich—type_fsmO0_state2)
(ingredients_fsmO_state0)

)

(:action serve
:parameters (?gluten—free — sandwich—type ?sandwich — sandwich)
:precondition (and
(sandwich—type_fsmO_state0)
(sandwich—type_fsmOQ_state1 ?v0 — sandwich ?v1 — sandwich)
(sandwich—type_fsmO0_state2)
(sandwich_fsmO_state0)
(sandwich_fsmO_state1)
(sandwich_fsm1_state0)
)
:effect (and
(sandwich—type_fsmO0_state0)
(sandwich—type_fsmOQ_state1 ?v0 — sandwich ?v1 — sandwich)
(sandwich—type_fsmO_state2)
(sandwich_fsmO_state0)
(sandwich_fsmO_state1)
(sandwich_fsm1_state0)

(:action make

78

B. Learned IPC Domain Models

:parameters
:precondition

)

:effect (and

)

(:action
:parameters
:precondition

)

:effect (and

B.1.3. State Dictionary

(?gluten—free — sandwich—type ?sandwich — sandwich)

(and

sandwich—type_fsmO0_state0)

sandwich—type_fsmO_state1 ?v0 — sandwich ?v1 — sandwich)
sandwich—type_fsmO_state2)

sandwich_fsm0_state0)

sandwich_fsm0_state1)

sandwich_fsm1_state0)

Py

(sandwich—type_fsmO_state0)

(sandwich—type_fsmOQO_state1 ?v0 — sandwich ?v1 — sandwich)
(sandwich—type_fsmO0_state2)

(sandwich_fsmO_state0)

(sandwich_fsmO0_state1)

(sandwich_fsm1_state0)

put

(?gluten—free — sandwich—type ?sandwich — sandwich)

(and

sandwich—type_fsmO_state0)

sandwich—type_fsmO_state1 ?v0 — sandwich ?v1 — sandwich)
sandwich—type_fsmO_state2)

sandwich_fsm0_state0)

sandwich_fsmO0_state1)

sandwich_fsm1_state0)

o~~~ o~~~

sandwich—type_fsmO_state0)

sandwich—type_fsmOQ_state1 ?v0 — sandwich ?v1 — sandwich)
sandwich—type_fsmO_state2)

sandwich_fsm0_state0)

sandwich_fsm0_state1)

sandwich_fsm1_state0)

(
(
(
(
(
(

sandwich—type_fsmO_state0:{ start(put.0)’, ’'end(make.0)’}

sandwich—type_fsmO_state1:{ end(serve.0)’, ’'start(take.0)’, ’end(put.0)’, ’'start(serve.0)’}

sandwich—type_fsmO_state2:{ end(take.0)’, ’start(make.0)’}

ingredients_fsm0_state0:{ start(take.1)’, ’end(take.1)’}

tray_fsmO_state0:{’end(move.0)’, ’'start(move.0)’}

kitchen_fsmO_state0 :{ end(move.1)’}

kitchen_fsmO_state1:{’ start(move.1)’}

sandwich_fsmO0_state0:{’ start(make.1)’, ’end(put.1)’}

sandwich_fsmO0_state1:{ end(make.1)’, ’start(put.1)’}

sandwich_fsm1_state0:{’end(serve.1)’, ’end(put.1)’, ’start(serve.1)’,
‘end(make.1)’, ’start(make.1)’, ’start(put.1)’}

B.2. Woodworking Subset - IPC 2008 79

B.2. Woodworking Subset - IPC 2008
B.2.1. Input and Extracted Action Sequences
NO1: Take(1) very(2) smooth(3) piece(4) of(5) wood.(6)
NO2: Do(1) planing(2) on(3) that(4) wood(5

) and(
fragment(9) treatment(10) with(11) colour(12) of
<1> Do (planing) <2> use (colour)

6) use(7) colour(8)
(13) blue.(14)

NO3: Increase (1) the(2) cost(3) by(4) plane(5) cost.(6)
<3> Increase (cost, plane)

NO4: Glaze(1) the(2) piece(3) of(4) wood(5) with(6) natural—-colored(7)
glaze (8) and(9) treatment(10) of(11) glaze.(12)
<4> Glaze (piece, wood)

NO5: Increase (1) the(2) cost(3) by(4) glaze(5) cost.(6)
<5> Increase (cost, glaze)

NO6: Take(1) very(2) smooth(3) piece(4) of(5) wood.(6)
<6> Take (piece)

NO7: Do(1) planing(2) on(3) that(4) wood(5) and(6) use(7)
colour(8) fragment(9) treatment(10) with(11) colour(12) of(13) mauve.(14)
<7> Do (planing) <8> use (colour)

NO8: Increase (1) the(2) cost(3) by(4) plane(5) cost.(6)
<9> Increase (cost, plane)

NO9: Glaze(1) the(2) piece(3) of(4) wood(5) with(6) natural—colored(7)
glaze (8) and(9) treatment(10) of(11) glaze.(12)
<10> Glaze (piece, wood)

NO10: Increase (1) the(2) cost(3) by(4) glaze(5) cost(6)
<11> Increase (cost, glaze)

B.2.2. Learned Domain Model

;; woodworking subset
(define (domain woodworking)
(:requirements :typing)
(:types planing colour cost plane piece wood)
(:predicates
(planing_fsmO0_state0)
(colour_fsmO_state0)
(cost_fsmO_state0)
(plane_fsmO0_state0 ?v0 — cost)
(piece_fsm0_state0)
(piece_fsmO0_state1)
(wood_fsmO0_state0 ?v0 — piece)

(:action take
:parameters (?piece — piece)
:precondition (and
(piece_fsm0_state0)
(piece_fsmOQ_state1)
)
:effect (and
(piece_fsmO_state0)
(piece_fsmO0_state1)

80

B. Learned IPC Domain Models

B.2.3. State Dictionary

(:action
:parameters
:precondition

)

:effect (and

)

(:action
:parameters
:precondition

)

:effect (and

)

(:action
:parameters
:precondition

)

:effect (and

)

(:action
:parameters
:precondition

)

;effect (and

)

glaze

(?piece — piece ?wood — wood)

(and
(piece_fsmOQ_state0)
(piece_fsmOQ_state1)
(wood_fsmO_state0 ?v0 — piece)
(piece_fsm0_state0)
(piece_fsmQ_state1)
(wood_fsmOQ_state0 ?v0 — piece)

do

(?planing — planing)

(and
(planing_fsmO0_state0)
(planing_fsmO0_state0)

increase

(?cost — cost ?plane — plane)

(and
(cost_fsmO_state0)
(plane_fsmO0_state0 ?v0 — cost)
(cost_fsmO_state0)
(plane_fsmO0O_state0 ?v0 — cost)

use

(?colour — colour)

(and

(colour_fsmO0_state0)

(colour_fsmO0_state0)

planing_fsmO_state0O:{’start(do.0)’, ’end(do.0)’}

colour_fsmO_state0:{ end(use.0)’, ’'start(use.0)’}
cost_fsmO_state0:{’start(increase.0)’, ’end(increase.0)’}
plane_fsmO0_state0:{’ start(increase.1)’, ’end(increase.1)’}

piece_fsmO_state0:{’end(glaze.0)’, ’'start(take.0)’}
piece_fsmO0_state1:{ ' start(glaze.0)’, ’end(take.0)’}
wood_fsmO_state0:{ start(glaze.1)’, ’end(glaze.1)’}

B.3. Driverlog - IPC2002 81

B.3. Driverlog - IPC2002

This model was induced from structured plans and not natural language data. This was learned to explain the
NLtoPDDL in Chapter 4. However, we can see that this model is much less intuitive and understandable than the
ones learned from natural language data.

B.3.1. Learned Domain Model

(define (domain driverlog2)
(:requirements :typing)
(:types driver truck package location)
(:predicates
(driver_fsm0O_state0)
(driver_fsmO_state1)
(truck_fsmO_state0)
(truck_fsmO_state1)
(truck_fsm1_stateO)
(package_fsmO_stateO)
(package_fsmO_state1)
(location_fsmO0_state0)
(location_fsmO0_state1)
(location_fsmO0_state2)
(location_fsm1_state0)
(location_fsm1_state1)
(location_fsm2_state0)
(location_fsm2_state1)
(location_fsm2_state2 ?v0 — driver)
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
location_fsm4_state1)
location_fsm4_state2)
location_fsm5_state0)
location_fsm5_state1)
location_fsm6_state0)
location_fsm6_state1)
(location_fsm7_state0)
(location_fsm7_state1)
(location_fsm7_state2)
(location_fsm8_state0)
(location_fsm8_state1 ?v0 — driver)
(location_fsm8_state2
(location_fsm8_state3
(location_fsm8_state4
(location_fsm9_stateO
(location_fsm9_state1
(location_fsm9_state2
(location_fsm9_state3)
(location_fsm10_state0 ?v0 — driver ?v1 — driver)

(
(
(
(
(
(

)
)
)
)
)
)

(:action load—truck

:parameters (?package5 — package ?truck3 — truck ?aula — location)

:precondition (and
(package_fsmO0_state0)
(package_fsmO_state1)
(truck_fsmO_state0)
(truck_fsmO0_state1)
(truck_fsm1_state0)
(location_fsmO_state0)
(location_fsmO0_state1)
(location_fsm1_state0)
(location_fsm1_state1)

82

B. Learned IPC Domain Models

)

:effect (and

)

(:action
:parameters
:precondition

(location_fsm2_state0)
(location_fsm2_state2 ?v0 — driver)
(location_fsm3_state0)

(location_fsm3_state1)

(location_fsm4_state0)

(location_fsm4_state1)

(location_fsm5_state0)

(location_fsm5_state1)

(location_fsm6_state0)

(location_fsm6_state1)

(location_fsm7_state1)

(location_fsm8_state1 ?v0 — driver)
(location_fsm9_state1)

(location_fsm9_state2)

(location_fsm10_state0 ?v0 — driver ?v1 — driver)

(package_fsmO_state0)
(package_fsmO_state1)
(truck_fsmO_stateO)
(truck_fsmO_state1)
(truck_fsm1_stateO)
(location_fsmO0_state0)
(location_fsmO0_state1)
(location_fsm1_state0)
(location_fsm1_state1)
(location_fsm2_state0)
(location_fsm2_state2 ?v0 — driver)
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
(location_fsm4_state1)
(location_fsm5_state0)
(location_fsm5_state1)
(location_fsm6_state0)
(location_fsm6_state1)
(location_fsm7_state1)
(location_fsm8_state1 ?v0 — driver)
(location_fsm9_state1)
(location_fsm9_state2)
(location_fsm10_state0 ?v0 — driver ?v1 — driver)

walk

(?driver1 — driver ?ewi — location ?3me — location)

(and
(driver_fsmO_state0)
(driver_fsmO_state1)
(location_fsmO_state0)
(location_fsmO_state1)
(location_fsm1_state0)
(location_fsm1_state1)
(location_fsm2_state0)
(location_fsm2_state2 ?v0 — driver)
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
(location_fsm4_state1)
(location_fsm5_state0)
(location_fsm5_state1)
(location_fsm6_state0)

B.3. Driverlog - IPC2002

83

)

:effect (and

)

(:action
:parameters
:precondition

)

:effect (and

location_fsm6_state1)
location_fsm7_state1)

location_fsm9_state1)
location_fsm9_state2)

(
(
(
(
(
(

driver_fsmOQ_state0)

driver_fsmO_state1)

location_fsmO_state0)
location_fsmO_state1)
location_fsm1_state0)
location_fsm1_state1)
location_fsm2_state0)

location_fsm2_state2 ?v0 — driver)

(

(

(

(

(

(

(

(
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
(location_fsm4_state1)
(location_fsm5_state0)
(location_fsm5_state1)
(location_fsm6_state0)
(location_fsm6_state1)
(location_fsm7_state1)
(
(
(
(

location_fsm8_state1 ?v0 — driver)

location_fsm9_state1)
location_fsm9_state2)

location_fsm10_state0 ?v0 — driver ?v1 — driver)

disembark—truck

(?driver1 — driver ?truck3 — truck ?sports—center — location

(and

driver_fsmO0_state0)
driver_fsmO0_state1)
truck_fsmO_state0)
truck_fsmO_state1)
truck_fsm1_state0)
location_fsmO_state0)
location_fsmO_state1)
location_fsm1_state0)
location_fsm1_state1)
location_fsm2_state0)

location_fsm2_state2 ?v0 — driver)

(

(

(

(

(

(

(

(

(

(

(
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
(location_fsm4_state1)
(location_fsm5_state0)
(location_fsm5_state1)
(location_fsm6_state0)
(location_fsm6_state1)
(location_fsm7_state1)
(
(
(
(

location_fsm8_state1 ?v0 — driver)

location_fsm9_state1)
location_fsm9_state2)

location_fsm10_state0 ?v0 — driver ?v1 — driver)

(driver_fsmO_stateO)

location_fsm8_state1 ?v0 — driver)

location_fsm10_state0 ?v0 — driver ?v1 — driver)

)

84

B. Learned IPC Domain Models

)

(:action
:parameters
:precondition

)

:effect (and

driver_fsmO0_state1)
truck_fsmO_state0)
truck_fsmO_state1)
truck_fsm1_state0)
location_fsmO_state0)
location_fsmO_state1)
location_fsm1_state0)
location_fsm1_state1)
location_fsm2_state0)

location_fsm2_state2 ?v0 — driver)

location_fsm3_ stateO

)
)
location_fsm4_state0)
location_fsm4_state1)
location_fsm5_state0)
location_fsmb5_state1)
location_fsm6_state0)
location_fsm6_state1)
location_fsm7_state1)

location_fsm8_state1 ?v0 — driver)

location_fsm9_state1)
location_fsm9_state2)
location_fsm10_stateO

(
(
(
(
(
(
(
(
(
(
(
(location_fsm3_state1
(
(
(
(
(
(
(
(
(
(
(

board—truck
(?driver1 — driver ?truck3 — truck ?aula - location)

(and

driver_fsmO0_state0)
driver_fsmO0_state1)
truck_fsmO0O_state0)
truck_fsmO_state1)
truck_fsm1_state0)
location_fsmO_state0)
location_fsmO_state1)
location_fsm1_state0)
location_fsm1_state1)
location_fsm2_state0)

?v0 — driver ?v1 — driver)

location_fsm2_state2 ?v0 — driver)

location_fsm3_stateO

location_fsm4_stateO

location_fsm4_state1)
location_fsm5_state0)
location_fsm5_state1)
location_fsm6_state0)
location_fsm6_state1)
location_fsm7_state1)

location_fsm8_state1 ?v0 — driver)

(

(

(

(

(

(

(

(

(

(

(

()
(location_fsm3_state1)
()
(

(

(

(

(

(

(
(location_fsm9_state1)
(location_fsm9_state2)
(location_fsm10_stateO
(driver_fsmO_state0)
(driver_fsmO_state1)
(truck_fsmO_state0)
(truck_fsmO_state1)
(truck_fsm1_state0)
(location_fsmO0_state0)
(location_fsmO_state1)

?v0 — driver ?v1 — driver)

B.3. Driverlog - IPC2002 85

(location_fsm1_state0)
(location_fsm1_state1)
(location_fsm2_state0)
(location_fsm2_state2 ?v0 — driver)
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
(location_fsm4_state1)
(location_fsm5_state0)
(location_fsm5_state1)
(location_fsm6_state0)
(location_fsm6_state1)
(location_fsm7_state1)
(location_fsm8_state1 ?v0 — driver)
(location_fsm9_state1)
(location_fsm9_state2)
(location_fsm10_state0 ?v0 — driver ?v1 — driver)

)

(:action drive —truck
:parameters (?truck3 — truck ?aula — location ?sports—center — location ?driver1 — drive
:precondition (and
(truck_fsmO_stateO)
(truck_fsmO_state1)
(truck_fsm1_stateO)
(location_fsmO0_state0)
(location_fsmO_state1)
(location_fsm1_state0)
(location_fsm1_state1)
(location_fsm2_state0)
(location_fsm2_state2 ?v0 — driver)
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
(location_fsm4_state1)
(location_fsm5_state0)
(location_fsm5_state1)
(location_fsm6_state0)
(location_fsm6_state1)
(location_fsm7_state1)
(location_fsm8_state1 ?v0 — driver)
(location_fsm9_state1)
(location_fsm9_state2)
(location_fsm10_state0 ?v0 — driver ?v1 — driver)
(driver_fsmO_stateO)
(driver_fsmO_state1)
)
:effect (and
(truck_fsmO_stateO)
(truck_fsmO_state1)
(truck_fsm1_state0)
(location_fsmO_state0)
(location_fsmO0_state1)
(location_fsm1_state0)
(location_fsm1_state1)
(location_fsm2_state0)
(location_fsm2_state2 ?v0 — driver)
(location_fsm3_state0)
(location_fsm3_state1)
(location_fsm4_state0)
(location_fsm4_state1)

86

B. Learned IPC Domain Models

)

(:action

:parameters

:precondition

)

ceffect

(and

location_fsm5_state0)
location_fsm5_state1)
location_fsm6_state0)
location_fsm6_state1)
location_fsm7_state1)

location_fsm9_state1)
location_fsm9_state2)

location_fsm10_state0 ?v0 — driver ?v1 — driver)

driver_fsmO0_state0)
driver_fsmO_state1)

unload—truck

(?package5 — package ?truck3 — truck ?sports—center — location

(and

package_fsmO_state0)
package_fsmO_state1)
truck_fsmO_state0)
truck_fsmO_state1)
truck_fsm1_state0)
location_fsmO_state0)
location_fsmO_state1)
location_fsm1_state0)
location_fsm1_state1)
location_fsm2_state0)

location_fsm3_state0)
location_fsm3_state1)
location_fsm4_state0)
location_fsm4_state1)
location_fsm5_state0)
location_fsm5_state1)
location_fsm6_state0)
location_fsm6_state1)
location_fsm7_state1)

location_fsm9_state1)
location_fsm9_state2)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(package_fsmO0_state0)
(package_fsmO0_state1)
(truck_fsmO_state0)
(truck_fsmO_state1)
(truck_fsm1_state0)
(location_fsmOQ_state0)
(location_fsmO0_state1)
(location_fsm1_state0)
(location_fsm1_state1)
(location_fsm2_state0)
(
(
(
(
(
(
(
(
(

location_fsm2_state2 ?v0 — driver)

location_fsm3_stateO
location_fsm3_state1
location_fsm4_stateO
location_fsm4_state1
location_fsmb5_stateO
location_fsm5_state1
location_fsm6_stateO
location_fsm6_state1

)
)
)
)
)
)
)
)

(
(
(
E
(location_fsm8_state1 ?v0 — driver)
(
(
(
(
(

location_fsm2_state2 ?v0 — driver)

location_fsm8_state1 ?v0 — driver)

location_fsm10_state0 ?v0 — driver ?v1 — driver)

)

B.3. Driverlog - IPC2002

87

)

location_fsm7_state1)

location_fsm8_state1 ?v0 — driver)
location_fsm9_state1)

location_fsm9_state2)

location_fsm10_state0 ?v0 — driver ?v1 — driver)

(
(
(
(
(

B.3.2. State Dictionary

driver_fsmO0_state0 :{
driver_fsmO0_state1 :{
truck_fsmO_state0:{’
truck_fsmO_state1 :{’
truck_fsm1_stateO:{’

"start (board—truck.

"start(drive—truck.
package_fsmO0_stateO:
package_fsmO_state1:
location_fsmO0_state0
location_fsmO0_state1
location_fsmO0_state2
location_fsm1_state0
location_fsm1_state1
location_fsm2_state0
location_fsm2_state1
location_fsm2_state2
location_fsm3_state0
location_fsm3_state1
location_fsm4_state0
location_fsm4_state1
location_fsm4_state2
location_fsm5_state0
location_fsm5_state1
location_fsm6_state0
location_fsm6_state1
location_fsm7_state0
location_fsm7_state1
location_fsm7_state2
location_fsm8_state0
location_fsm8_state1
location_fsm8_state2
location_fsm8_state3
location_fsm8_state4
location_fsm9_state0
location_fsm9_state1
location_fsm9_state2
location_fsm9_state3

location_fsm10_state0:{ end(walk.1)",

"start (board—truck .2

’end (disembark—truck.2)’,
"start (disembark—truck.2)’,

"end(drive—truck.3)’, ’start(disembark—truck.0)’,
"start(walk.0)’, ’'start(board—truck.0)’, ’end(disembark—truck.0)’,
start (board—truck.1)’, ’'end(disembark—truck.1)’}
end(board—truck.1)’, ’end(drive—truck.0)’, ’'start(disembark—truck.1)’, ’'start(drive—truck.0)’}
end(disembark—truck.1)’, ’start(disembark—truck.1)’, ’start(load—truck.1)’,’end(load—truck.1)’,
1)’, ’end(unload—truck.1)’, ’end(drive—truck.0)’, ’end(board—truck.1)’, ’start(unload—truck.1)’,
0)}

{’start(unload—truck.0)’, ’end(load—truck.0)
{’start(load—truck.0)’, ’end(unload—truck.0)
:{’end(walk.1)’, ’start(drive—truck.2)’}

:{ start(load—truck.2)’, ’end(drive—truck.2)’,
{’ start(walk.1)’}

:{ start(board—truck.2)’, ’end(drive—truck.1)’,
:{ end(board-truck.2)’, ’start(drive—truck.1)’,
{’end(walk.2)’, ’start(walk.1)’}

{ start(drive—truck.1)’}

{’end(walk.1)’, ’start(walk.2)’, ’end(drive—truck.1)’}
:{’end(drive—truck.1)’, ’'start(drive—truck.2)’}
:{’end(drive—truck.2)’, ’'end(unload—truck.2)’,
{’end(walk.1)’, ’start(drive—truck.2)’}
:{’end(drive—truck.2)’, ’end(unload—truck.2)’,
{’ start(walk.1)’}
:{’end(drive—truck.1)’
:{’ start(load—truck.2)
:{’ start(board—truck.2
:{ end(board—truck.2)’
{’ start(walk.2)’}

:{ start(load—truck.2)’,
:{’end(walk.2)’}
{’end(walk.2)’}

{ start(walk.2)’, ’end(drive—truck.1)’}
{ start(drive—truck.1)’}

:{ end(disembark—truck.2)’}

:{ start(disembark—truck.2)’}
{’end(walk.1)’}
:{’end(board—truck.2)’,
:{’ start(board—truck.2)’,
{’ start(walk.1)’}

"start(drive—truck.3)’, ’end(board—truck.0)’}
"end(walk.0) '}

'}
'}
"end(load—truck.2)’}

"start(drive—truck.2)’}
’end(drive—truck .2)’}

"start(drive—truck.1)’, ’start(unload—truck.2)’}

"start (unload—truck.2)’}

, 'start(drive—truck.2)’}

’, ’end(drive—truck.2)’, ’'start(drive—truck.1)’,
)’, ’end(disembark—truck.2)’,

, 'start(disembark—truck.2)’,

’end(load—truck .2)’}
’end(drive—truck.1)’}
"start(drive—truck.1)’}
"start(unload—truck.2)’,

"end(unload—truck.2)’, ’end(load—truck.2)’}

"start(drive—truck.1)’}
‘end(drive—truck.1)’}

’end (board—truck.2)’, ’'start(walk.1)’, ’start(walk.2)’, ’start(load—truck.2)’,
'end(walk.2)’, ’end(load—truck.2)’, ’start(unload—truck.2)’, ’'start(drive—truck.1)’,
"start(drive—truck.2)’, ’end(drive—truck.2)’, ’end(unload—truck.2)’,
’end(drive—truck.1)’}

)

Learned Domain Model from Real-World

CA1.

NO1:

NO2:

Fire Safety Process Manual

Input and Extracted Sequence for One Shot Learning

Fire (1) Alarm(2) Instructions (3)

Turn—off (1) all(2) hazardous(3) experiments(4) or(5) procedures(6) before(7)

evacuating .(8)

<1>

NO3:

Turn—off (experiments)

If (1) possible(2) take(3) or(4) secure(5) all(6) valuables(7) wallets(8)

purses(9) keys(10) etc(11) as(12) quickly(13) as(14) possible.(15)

<2>

NO4:
<4>

NO5:

take (valuables) <3> secure (valuables, wallets)

Close (1) all(2) doors(3) behind(4) you(5) as(6) you(7) exit.(8)
Close (doors)

Check(1) all(2) doors(3) for(4) heat(5) before(6) you(7) open(8) or(9) go(10)

through (11) them(12) to(13) avoid(14) walking(15) into(16) a(17) fire .(18)

<5>

NOG6:

<7>

NO7:
NO8:
and (1

<O>

NO9:

Check (doors, heat) <6> avoid (walking)

Evacuate (1) the(2) building(3) using(4) the(5) nearest(6) exit(7) or(8) stairway(9)
Evacuate (building) <8> using (nearest, exit)

Do(1) not(2) use(3) the(4) elevators.(5)
Call (1) 911(2) from(3) a(4) safe(5) area(6) and(7) provide(8) name(9) location(10)
1) nature(12) of(13) emergency.(14)

Call (911) <10> provide (name, location)

Proceed(1) to(2) a(3) pre—determined(4) assembly(5) area(6) of(7) building(8)

and(9) remain(10) there(11) until(12) you(13) are(14) told(15) to(16)
re—enter(17) by(18) the(19) emergency(20) personnel(21) in(22) charge.(23)

<11>

NO10:

Proceed (pre—determined, assembly, area) <12> remain (there)

Do(1) not(2) impede(3) access(4) of(5) emergency(6) personnel(7)

to(8) the(9) area.(10)

NO11:

Inform (1) Building (2) Safety(3) Personnel(4) or(5) Emergency(6)

Personnel(7) of(8) the(9) event(10) conditions(11) and(12)
location(13) of(14) individuals(15) who(16) require(17) assistance(18)

and (1
<13>

9) have(20) not(21) been(22) evacuated(23)
Inform (Safety, Personnel)

89

90 C. Learned Domain Model from Real-World Fire Safety Process Manual

C.2. Learned Domain Model.

define (domain fire_alarm)
(:requirements :typing)
(:types experiments valuables wallets doors heat walking building nearest exit 911 nam
(:predicates
(experiments_fsmO_state0)
(experiments_fsmO_state1)
(valuables_fsmO0_state0)
(valuables_fsmO0_state1)
(valuables_fsmO0_state2)
(wallets_fsmO_state0)
(wallets_fsmO_state1)
(doors_fsmO0O_state0)
(doors_fsmO_state1)
(doors_fsmO0_state2)
(heat_fsmO_state0)
(heat_fsmO_state1)
(walking_fsmO0O_state0)
(walking_fsmO_state1)
(building_fsmO0_state0)
(building_fsmO0_state1)
(nearest_fsmO0_state0)
(nearest_fsmO0_state1)
(exit_fsmO_stateO)
(exit_fsmO_state1)
(911 _fsmO_state0)
(911 _fsmO0_state1)
(name_fsmO0_state0)
name_fsmO0_state1)
location_fsmO_state0)
location_fsmOQ_state1)
pre—determined_fsmO0_state0)
pre—determined_fsmO0_state1)
assembly_fsmO_state0)
(assembly_fsmO0_state1)
(area_fsmO0_state0)
(area_fsmO0_state1)
(there_fsmO0_state0)
(there_fsmO_state1)
(safety_fsmO0_state0)
(safety_fsmO_state1)
(personnel_fsmO_state0)
(personnel_fsmO_state1)

(
(
(
(
(
(

)

(:action provide

:parameters (?name — name ?location — location)
:precondition (and

)

:effect (and

)

(:action call
:parameters (7911 — 911)
:precondition (and

)

:effect (and

)

(:action take
:parameters (?valuables — valuables)

C.2. Learned Domain Model. 91

:precondition (and

)

:effect (and

)

(:action turn—off

:parameters (?experiments — experiments)
:precondition (and

)

:effect (and

))

(valuables_fsmOQ_state2)

(valuables_fsmOQ_state2)

(:action secure
:parameters (?valuables — valuables ?wallets — wallets)
:precondition (and
(valuables_fsmO0_state2)
)
:effect (and
(valuables_fsmO0_state2)

)

(:action using

:parameters (?nearest — nearest ?exit — exit)
:precondition (and

)

:effect (and

)

(:action proceed

:parameters (?pre—determined — pre—determined ?assembly — assembly ?area — area)
:precondition (and

)

:effect (and

)

(:action inform

:parameters (?safety — safety ?personnel — personnel)
:precondition (and

)

;effect (and

))

(:action check
:parameters (?doors — doors ?heat — heat)
:precondition (and
(doors_fsmO0_state0)
)
:effect (and
(doors_fsmO_state0)

)

(:action close
:parameters (?doors — doors)
:precondition (and

(doors_fsmO0_state0)
)
:effect (and

(doors_fsmO_state0)

)

92 C. Learned Domain Model from Real-World Fire Safety Process Manual

(:action avoid

:parameters (?walking — walking)
:precondition (and

)

:effect (and

))

(:action remain
:parameters (?there — there)
:precondition (and

)

:effect (and

)

(:action evacuate
:parameters (?building — building)
:precondition (and

)

:effect (and

)
)

C.3. State Dictionary

experiments_fsmO0_state0:["end(turn—off.0)’]
experiments_fsmO_state1:[' start(turn—off.0)’]
valuables_fsmO_state0:[’start(take.0)’]
valuables_fsmQ_state1 :['end(secure.0)’]
valuables_fsmO_state2 :[' start(secure.0)’, ’end(take.0)’]
wallets_fsmO_state0O:[’ start(secure.1)’]
wallets_fsm0_state1:[’end(secure.1)’]
doors_fsmO_state0:[' start(check.0)’, ’'end(close.0)’]
doors_fsmO_state1:["end(check.0)’]
doors_fsmQ_state2 :[' start(close.0)’]
heat_fsmO_state0:[’end(check.1)’]
heat_fsmO_state1:[' start(check.1)’]
walking_fsmQ_stateO:[' start(avoid.0)’]
walking_fsmOQ_state1:[’end(avoid.0)’]
building_fsmO0_state0 :['end(evacuate.0)’]
building_fsmO0_state1 :[' start(evacuate.0)]
nearest_fsmO_state0O:["end(using.0)’]
nearest_fsmO_state1:[start(using.0)’]
exit_fsmO_stateO :["end(using.1)’]
exit_fsmO_state1:[’ start(using.1)’]
911_fsmO_state0:[' start(call.0)’]
911_fsmO_state1:['end(call.0)’]
name_fsmO0_state0:[end(provide .0)’]
name_fsmO_state1:[’ start(provide.0)]
location_fsmO_state0 :['end(provide .1)’]
location_fsmO_state1 :[' start(provide.1)’]
pre—determined_fsmO0_stateO:[' start(proceed.0)’]
pre—determined_fsmO_state1:['end(proceed.0)’]
assembly_fsmO_stateO:['end(proceed.1)’]
assembly_fsmO_state1:[’ start(proceed.1)’]
area_fsmO_stateO:['end(proceed.2)’]
area_fsmO_state1:[’ start(proceed.2)’]
there_fsmO_state0:[' start(remain.0)’]
there_fsmO_state1:['end(remain.0)’]
safety_fsmO_stateO:[’end(inform.0)’]

C.3. State Dictionary

93

safety_fsmO_state1:[’start(inform.0)’]
personnel_fsmO0_stateO:[’ start(inform.1)’]
personnel_fsmO0_state1:["end(inform.1)’]

Original and Learned Tea Domain with

Durative Actions

D.1. Original Tea Domai

The Tea domain has been taken from [120].

(define

(domain temporalTea)
(:requirements :strips :typing :equality :durative—actions)

(:types mug tea teaBag milk water)

(: predicates
(addedTo ?m — milk ?mu — mug)
(atBottomOf ?t — teaBag ?m — mug)
(containedIn ?w — water ?m — mug)
(drinkMade ?t — tea)
(haveDrink ?t — tea)
(handempty)
(athome)
(atcafe)
(handdirty)
(atfrontdoorhome)
(nothanddirty))

(:durative —action visitcafe
:parameters (?t — tea)
:duration (= ?duration 25)
:condition (and (at start (athome)) (at end (haveDrink ?t)))
:effect (and (at start (not (athome))) (at start (atcafe))
(at end(athome)) (at end(drinkMade ?t))))

(: durative—action buytea
:parameters (?t — tea)
:duration (= ?duration 15)
:condition (and (at start (atcafe)))
:effect (and (at end (haveDrink ?t))))

(: durative—action getMilk
:parameters(?m — milk ?mu — mug)
:duration (= ?duration 2)
:condition (and (at start (handempty)) (over all (athome)))
:effect(and (at start (addedTo ?m ?mu)) (at start (not (handempty)))
(at end (handdirty)) (at end (not (nothanddirty)))))

95

96

D. Original and Learned Tea Domain with Durative Actions

(:durative —action addWater
:parameters (?w — water ?m — mug)
:duration (= ?duration 2)
:condition (and (at start (handempty)) (over all(athome)))
:effect(and (at start (containedln ?w ?m)) (at start (not (handempty)))
(at end (handdirty))))

(: durative—action addTeaBag
:parameters (?t — teaBag “m — mug)
:duration (= ?duration 2)
:condition (and (at start (handempty)) (over all(athome)))
:effect(and (at start(atBottomOf ?t ?m)) (at start (not (handempty)))
(at end (handdirty)) (at end (not (nothanddirty)))))

(: durative—action clean
:parameters ()
:duration (= ?duration 1)
:condition (and (at start (handdirty)) (over all(athome)))
:effect (and (at start (nothanddirty)) (at start (not (handdirty)))
(at end (handempty))))

(:durative—action mix
:parameters (?t — teaBag ?w — water ?m — milk ?mu — mug ?te —tea)
:duration (= ?duration 3)
:condition (and (at start (handempty))(at start(addedTo ?m ?mu))
(at start(atBottomOf ?t ?mu)) (at start(containedIin ?w ?mu))
(over all (athome)))
:effect (and (at end(drinkMade ?te)) (at start (not (handempty)))
(at end (handempty))))

D.2. Learned Tea Domain 97

D.2. Learned Tea Domain

D.2.1. Input Sequence and Extracted Sequence for One-Shot Learning

NO1: Tea(1) domain(2)
NO2: Start(1) from(2) home(3) and(4) reach(5) cafe(6) for(7) your(8) tea(9) in(10)

25(11) minutes.(12)
<1> Start (home) <2> reach (cafe)

NO3: Buy(1) tea(2) and(3) wait(4) 15(5) minutes.(6)
<3> Buy (tea) <4> wait (minutes.)

NO4: Clean(1) your(2) hands(3) if(4) they(5) are(6) dirty(7) in(8) 1(9) minute.(10)
<56> Clean (hands)

NO5: Add(1) water(2) to(3) mug(4) which(5) takes(6) 2(7) minutes.(8)
<6> Add (water)

NO6: Pour(1) milk(2) to(3) mug(4) which(5) also(6) takes(7) 2(8) minutes.(9)
<7> Pour (milk)

NO7: Dip(1) teabag(2) into(3) mug(4) which(5) also(6) takes(7) 2(8) minutes.(9)
<8> Dip (teabag)

NO8: Mix (1) the(2) teabag(3) water(4) and(5) milk(6) in(7) your(8) mug(9) for(10)
3(11) minutes.(12)
<9> Mix (teabag, water, milk)

NO9: Your(1) delicious(2) tea(3) is(4) ready.(5)

D.2.2. NER extraction from SpaCy

The extracted time sequences were appended to most recent action. The following figure shows extracted time
elements using SpaCy [61]:

Tea domain Start from home and reach cafe for your tea in m . Buy tea and wait
. Clean your hands, if they are dirty in m . Add water to mug which takes
. Pour milk to mug which also takes , Dip teabag into mug which also takes

. Mix the teabag, water and milk in your mug for m . Your delicious tea is

98 D. Original and Learned Tea Domain with Durative Actions

D.2.3. Learned Domain Model

(define (domain tea_new)
requirements :typing :durative-—actions)
types home cafe tea 15_minutes hands water milk teabag)
(: predicates
(home_fsmO_state0)
(home_fsm0_state1)
(cafe_fsmO_state0)
(cafe_fsmO_state1)
(tea_fsmO0_state0)
(tea_fsmO_state1)
(15_minutes_fsmO0_state0)
(15_minutes_fsm0_state1)
(hands_fsmO0_state0)
(hands_fsmO_state1)
(water_fsmO0_state0Q)
)
)

(
(
(

(water_fsmOQ_state1
(water_fsmO0_state2
(milk_fsmO_state0)
(milk_fsmO0_state1)
(milk_fsmO0_state2)
(teabag_fsmO_state0)
(teabag_fsmO0_state1)
(teabag_fsmO_state2)
)
(:action dip
:parameters (?teabag — teabag)
:duration (= ?duration 2)
:precondition (and
(teabag_fsmO_state1)
)
:effect (and
(teabag_fsmO_state1)

)

(:action mix

:parameters (?teabag — teabag ?water — water ?milk — milk)

:duration (= ?duration 3)

:precondition (and
(teabag_fsmO_state1)
(water_fsmO_state1)
(milk_fsmO_state1)

)

:effect (and
(teabag_fsmO_state1)
(water_fsmO_state1)
(milk_fsmOQ_state1)

)

(:action add
:parameters (?water — water)
:duration (= ?duration 2)
:precondition (and
(water_fsmO_state1)
)
:effect (and
(water_fsmO_state1)

)

D.2. Learned Tea Domain

99

(:action start
:parameters (?home — home)
:precondition (and

)

:effect (and

)

(:action wait

:parameters (?15_minutes — 15_minutes)
:duration (= ?duration 15)

:precondition (and

)

:effect (and

)

(:action reach
:parameters (?cafe — cafe)
:duration (= ?duration 25)
:precondition (and

)

:effect (and

)

(:action clean

:parameters (?hands — hands)
:duration (= ?duration 1)
:precondition (and

)

:effect (and

)

(:action pour
:parameters (?milk — milk)
:duration (= ?duration 1)
:precondition (and
(milk_fsmO_state1)
)
:effect (and
(milk_fsmO_state1)

)

(:action buy
:parameters (?tea — tea)
:precondition (and

)

:effect (and

)

)
D.2.4. State Dictionary

home_fsmO_state0:["end(start.0) ']
home_fsmO0_state1:[’ start(start.0)
cafe_fsmO0O_stateO:["end(reach.0)’]
cafe_fsmO_state1:[' start(reach.0)
tea_fsmO_stateO:['end(buy.0)’]
tea_fsmO_state1:[' start(buy.0)’]
15_minutes_fsmO0_state0 :[' start(wait.0)]
15_minutes_fsmO0_state1:["end(wait.0) ’]
hands_fsmO_stateO:[' start(clean.0)’]

']
']

100 D. Original and Learned Tea Domain with Durative Actions

hands_fsmO_state1:['end(clean.0)’]
water_fsmO_stateO:["end(mix.1)’]
water_fsmO_state1:['end(add.0)’, ’start(mix.1)’]
water_fsmQ_state2:[' start(add.0)’]
milk_fsmO_state0:[’ start(pour.0)’]
milk_fsmO_state1:['start(mix.2)’, ’'end(pour.0)’]
milk_fsmO_state2 :["end(mix.2)’]
teabag_fsmO_state0O:['end(mix.0)]
teabag_fsmO_state1:[' start(mix.0)’, ’'end(dip.0)’]
teabag_fsmO_state2:[' start(dip.0)’]

Architecture of CNN used in ceASDRL

The architecture used CNN (the Q-value estimator of the DQN) in [33] was based on MGNC-CNN [133]. One such
instance is for GloVe vectors with 100 dimensions for argument DQN is shown below. It considered 100 words in
the first layer, each of which are represented by 300 dimensions due to repeat representation. Then convolutional
filters of bigram, trigram, four-gram and five-gram are applied and the output is concatenated. We flatten the layer
to 128 dimensions (Feng et al. [33]’s implementation took two convolutions per layer and had 256 dimensions
at this layer), and penultimate dense layer of 256 dimensions. Finally, a 2-dimensional final layer expresses RL

actions “accept” or “reject”.

Layer (type) Output Shape Param # Connected to
input_2 (InputLayer) (None, 100, 300, 1) O
conv2d_5 (Conv2D) (None, 99, 1, 32) 19232 input_2[0][0]
conv2d_6 (Conv2D) (None, 98, 1, 32) 28832 input_2[0][0]
conv2d_7 (Conv2D) (None, 97, 1, 32) 38432 input_2[0][0]
conv2d_8 (Conv2D) (None, 96, 1, 32) 48032 input_2[0][0]
activation_5 (Activation) (None, 99, 1, 32) 0 conv2d_5[0][0]
activation_6 (Activation) (None, 98, 1, 32) 0 conv2d_6[0][0]
activation_7 (Activation) (None, 97, 1, 32) 0 conv2d_7[0][0]
activation_8 (Activation) (None, 96, 1, 32) 0 conv2d_8[0][0]
max_pooling2d_5 (MaxPooling2D) (None, 1, 1, 32) 0 activation_5[0][0]
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 32) 0 activation_6[0][0]
max_pooling2d_7 (MaxPooling2D) (None, 1, 1, 32) 0 activation_7[0][0]
max_pooling2d_8 (MaxPooling2D) (None, 1, 1, 32) 0 activation_8[0][0]
concatenate_2 (Concatenate) (None, 1, 4, 32) 0 max_pooling2d_5[0][0]
max_pooling2d_6[0][0]
max_pooling2d_7[0][0]
max_pooling2d_8[0][0]
flatten_2 (Flatten) (None, 128) 0 concatenate_2[0][0]
dense_3 (Dense) (None, 256) 33024 flatten_2[0][0]
dense_4 (Dense) (None, 2) 514 dense_3[0][0]

Total params: 168,066
Trainable params: 168,066
Non—-trainable params: 0

101

	Introduction
	Motivation
	Manual Domain Model Acquisition
	Automated Domain Model Acquisition

	The Problem Statement
	Research Objectives and Scope
	Contributions
	Thesis Outline

	Background and Problem Description
	Automated Planning Framework
	The Domain Learning Problem
	Action Sequence Extraction Problem
	Deep Reinforcement Learning
	Taxonomy of DRL methods

	Contextual Word Embeddings

	Literature Review
	Taxonomies of Domain Learning Algorithms
	Existing Domain Learning Approaches
	The Planning Languages
	Existing Action Sequence Extraction Methods
	Deep Q-Networks and their variants
	Contextual Embeddings: Natural Language Transfer Learning

	NLtoPDDL
	Training the Deep Q-Network
	Training Dataset
	Sequence Extraction as Reinforcement Learning Problem
	Repeat Representation in States
	Deep Q-Network for RL Action execution
	Reward Model and Training the DQN

	cEASDRL: Incorporating Contextual Embeddings into DQN
	Problems with Word2Vec
	Contextual Embeddings to the Rescue

	Learning domain model using LOCM
	Preprocessing Action Sequence to satisfy the assumptions made by LOCM2
	Implementation of Interactive-LOCM2 along with step-wise illustrations

	Summary

	Experimental Evaluation
	Evaluating Trained DQN
	Experimental Setup
	Baselines and cEASDRL Contenders
	Results of Comparison with Baselines
	Qualitative analysis of the Extracted Sequences

	 Learning of Domain Models
	Learning IPC Domains
	Results on IPC Domains
	Learning PDDL Model from Real-World Process Manual
	Extension to Durative Actions
	Summary of Evaluating Domain Models

	Conclusion and Future Research
	Future Research

	Bibliography
	Reference PDDL Domains from IPC
	Child Snack (Sequential, Optimal) - IPC 2014
	Woodworking Subset IPC 2008, Sequential-Optimal Track

	Learned IPC Domain Models
	Child Snack (Sequential, Optimal) - IPC 2014
	Input and Extracted Sequence
	Learned Domain Model
	State Dictionary

	Woodworking Subset - IPC 2008
	Input and Extracted Action Sequences
	Learned Domain Model
	State Dictionary

	Driverlog - IPC2002
	Learned Domain Model
	State Dictionary

	Learned Domain Model from Real-World Fire Safety Process Manual
	Input and Extracted Sequence for One Shot Learning
	Learned Domain Model.
	State Dictionary

	Original and Learned Tea Domain with Durative Actions
	Original Tea Domai
	Learned Tea Domain
	Input Sequence and Extracted Sequence for One-Shot Learning
	NER extraction from SpaCy
	Learned Domain Model
	State Dictionary

	Architecture of CNN used in cEASDRL

