

Delft University of Technology

Hardware-based aging mitigation scheme for memory address decoder

Kraak, Daniel; Agbo, Innocent; Taouil, Mottaqiallah; Hamdioui, Said; Weckx, Pieter; Cosemans, Stefan;
Catthoor, Francky
DOI
10.1109/ETS.2019.8791536
Publication date
2019
Document Version
Final published version
Published in
2019 IEEE European Test Symposium (ETS)

Citation (APA)
Kraak, D., Agbo, I., Taouil, M., Hamdioui, S., Weckx, P., Cosemans, S., & Catthoor, F. (2019). Hardware-
based aging mitigation scheme for memory address decoder. In 2019 IEEE European Test Symposium
(ETS) (pp. 1-6). IEEE. https://doi.org/10.1109/ETS.2019.8791536

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ETS.2019.8791536
https://doi.org/10.1109/ETS.2019.8791536

Hardware-Based Aging Mitigation Scheme
for Memory Address Decoder

Daniël Kraak Innocent Agbo Mottaqiallah Taouil
Said Hamdioui

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

{D.H.P.Kraak, I.O.Agbo, M.Taouil, S.Hamdioui}@tudelft.nl

Pieter Weckx1 Stefan Cosemans1 Francky Catthoor1,2

1imec vzw., Kapeldreef 75, B-3001, Leuven, Belgium
2Katholieke Universiteit Leuven, ESAT, Belgium
{Pieter.Weckx, Francky.Catthoor}@imec.be

Abstract—Designers typically add design margins to memories
to compensate for their aging. As the aging impact increases with
technology scaling, bigger margins become necessary. However,
this negatively impacts area, yield, performance, and power
consumption. Alternatively, mitigation schemes can be used to
reduce the impact of aging. This paper proposes a hardware-
based mitigation scheme for the memory’s address decoder logic.
The scheme is based on adapting the decoder’s workload during
idle cycles by stressing the short paths and putting long paths
into relaxation. Thanks to the adapted workload, the impact
of aging on the address decoder is reduced, resulting in a
more reliable memory. To validate the benefit of the mitigation
scheme, the decoder’s degradation of the L1 data and instruction
caches for an ARM v8-a processor is analyzed. The experimental
results show that the proposed mitigation scheme reduces the
degradation of the decoder’s timing margin with up to 4.1x at
negligible area and no more than 3% power overhead.

Index Terms—memory, address decoder, aging, mitigation

I. INTRODUCTION

The aggressive downscaling of CMOS technology has been
the main driver of the improved performance and functionality
of Integrated Circuits (ICs) over the past decades. However,
due to several challenges, the rate of downscaling and its
benefits have started to decrease [1]. One of the drawbacks
of downscaling is that it worsens the reliability of ICs due
to increased time-dependent variability [2]; this consists of
variations that occur during the operational lifetime of the IC.
It includes environmental variations, such as supply voltage
and temperature fluctuations, and aging variations due to, for
example, Bias Temperature Instability (BTI) [3]. Traditionally,
designers use guard-banding to tolerate this variability, mean-
ing extra design margins are added to guarantee a reliable op-
eration of the circuit. However, these extra margins negatively
impact the area, performance, and power consumption of the
design. Alternatively, designers can embed mitigation schemes
into the design that reduce the impact of time-dependent
variability. In this work, we investigate an aging mitigation
scheme for the address decoder logic of memories. Several
works report that delay faults in the decoder logic are a major
contributor to the total amount of customer returns [4, 5].
These delay faults (e.g., due to aging) may cause read or
write failures. Hence, understanding the impact of aging on
the address decoder logic and providing appropriate mitigation
schemes is an important part of designing reliable memories.

This work was supported through the projects TRACE (CATRENE, Grant
16ES0488K-16ES0502, 16ES0737) and PRYSTINE (ECSEL, Grant 783190).

Previous works have mainly focused on estimating and
mitigating the impact of aging on the memory cell array [6–
10]. Most of these works aim at balancing the probability
of writing zeroes and ones to the memory cells, as this
minimizes their degradation. In contrast to the memory cells,
the peripheral circuitry has received significantly less attention.
Most of the works have focused on estimating the impact of
aging; examples are the sense amplifier [11] or the address
decoder [12]. To our best knowledge, only one work exists
on mitigation schemes for the peripheral circuitry [13]; it
proposes a scheme for the sense amplifier that is based on
periodically switching its inputs to create a balanced workload.
Mitigation schemes for the other peripheral circuitry have not
yet been researched. With respect to the address decoder,
several hardware solutions have been proposed for detecting
delay faults (e.g., due to aging) during run-time, such as [14,
15]. A shortcoming of these solutions is that they only detect
faults, but do not mitigate them.

In this work, we propose a hardware-based mitigation
scheme to reduce the impact of aging on the memory’s address
decoder; as already mentioned the address decoder is one of
the critical components of the memory [4, 5]. The scheme
is based on adapting the decoder’s workload during idle
cycles by stressing its short paths and putting long paths into
relaxation. As a result, the impact of aging on the address
decoder is reduced, resulting in a prolonged lifetime and
improved reliability of the memory. In short, the contributions
of this work are as follows:

1) It proposes a hardware-based aging mitigation scheme for
the memory’s address decoder that is based on adapting
the workload during idle cycles.

2) It validates the superiority of the proposed scheme by
investigating, as a case study, the aging impact of real
applications on the L1 data and instruction caches of an
ARM v8-a processor with and without mitigation.

3) It uses an industrial-strength 14 nm FinFET address
decoder design and a calibrated aging model for the
circuit simulations; hence, it provides accurate results.

The rest of this paper is organized as follows. Section II
provides the background. Section III discusses the impact of
aging on the address decoder. Section IV presents the proposed
mitigation scheme. Section V presents a case-study to validate
the mitigation scheme. Section VI provides a brief discussion.
Finally, Section VII concludes this work.

2019 24th IEEE European Test Symposium (ETS)

978-1-7281-1173-5/19/$31.00 ©2019 IEEE

!

WL127

decoder_enable
(from timing)

Pre-decoders

.

2:4

A3 2:4
A4

A0

A2

WL0

Post-decoders

A5

A6

A1 3:8

(a)

decoder_enable

pre-decoder_outs

timing budget

timing margin

setup timeslack

(b)

Fig. 1: (a) Schematic and (b) Slack metric of the decoder.

II. BACKGROUND

We first discuss the memory’s address decoder and its
reliability metric and, subsequently, the Bias Temperature
Instability aging mechanism (BTI); it is considered to be the
most important aging mechanism in deeply scaled CMOS
technologies [3] and, therefore, it is the focus of this work.

A. Address Decoder

Memories typically contain logic to access certain rows in
the memory cell array, referred to as the wordline decoder,
and logic to select certain columns, referred to as the column
decoder. In general, the wordline decoder is more critical, as
memories typically have more rows than (selectable) columns.
Therefore, we limit our analysis to the wordline decoder for
this study.

In this work, we consider a 7-to-128 wordline decoder
design at industrial strength. Fig. 1a shows its simplified
diagram. It is implemented using a hierarchical architecture
that consists of a pre-decoder stage and a post-decoder stage.
The pre-decoder stage is implemented using one 3-to-8 de-
coder and two 2-to-4 decoders. They have the address bits as
their inputs. Fig. 2 shows the design of the 2-to-4 decoder.
It is implemented using two inverters and four AND-gates.
The inverters create inverted signals of the input address bits.
Unique combinations of the original and inverted address
bits are fed to the inputs of the AND-gates. This way, each
input combination to the decoder results in one of its outputs
becoming high. It is worth noting that the 3-to-8 decoder is
implemented in a similar way. It uses, however, three inverters
and eight AND-gates.

The post-decoder stage consists of 128 post-decoders that
are implemented using AND-gates. Each post-decoder has as
inputs a unique combination of the outputs from the pre-
decoders and activates one of the wordlines of the memory
cell array. An additional enable decoder signal is connected

A0 A1

2-to-4 decoder
Out0

Out1

Out2

Out3

A1A0

Fig. 2: Schematic of a 2-to-4 decoder.

to the input of these AND-gates to control the activation of
the wordlines. In general, it is driven by the timing circuitry
of the memory.

An important reliability metric of the wordline decoder is
its slack; it is illustrated in Fig. 1b for our wordline decoder
design. It is defined as the time between the outputs of the pre-
decoders being stable and the setup time of the post-decoder’s
AND-gates. In case the delay of the pre-decoders is too high
and the post-decoders’ setup time is violated (i.e., a negative
slack), a correct functionality of the post-decoders cannot be
guaranteed; this may result in a delayed activation of the
wordline, the selection of a wrong wordline, or the selection
of multiple wordlines, potentially causing a read failure or
a write failure. Hence, a higher slack corresponds to a more
reliable operation of the memory.

B. Bias Temperature Instability

The BTI failure mechanism takes place inside the MOS
transistors and causes an increment in their absolute threshold
voltage (Vth). This happens under negative gate stress for
PMOS transistors, referred to as Negative BTI (NBTI). For
NMOS transistors this happens under positive gate stress,
which is referred to as Positive BTI (PBTI).

BTI is a threat for the reliability of digital circuits, such as
sequential logic or (memory) address decoders. This is due to
the fact that the increase of the transistor’s threshold voltage
results in increased delays of their logic gates. This causes
in turn increased path delays. In case BTI is not taken into
account during design or not mitigated during operation, logic
paths may exceed their timing budget (e.g., determined by
the clock period for sequential logic or an enable signal in
memories). This results in timing violations, which may cause
field failures.

This paper uses the atomistic model presented in [16]
to model BTI. It is based on the capture and emission of
traps during stress and relaxation periods, respectively. Each
occupied trap contributes to the total threshold voltage shift
∆Vth. The probabilities of the capture PC and emission PE
of traps are defined by [17] as follows:

PC(tSTRESS) = τe
τc+τe

{
1− exp

[
−(1

τe
+ 1

τc
)tSTRESS

]}
(1)

PE(tRELAX) = τc
τc+τe

{
1− exp

[
−(1

τe
+ 1

τc
)tRELAX

]}
(2)

!

!

time-zero delay BTI-induced delay

InOut

Out0

Out1

Out2

Out3

timing budget

A0

A1

A0

A1

A0

A1

A0

A1

(a)

InOut

Out0

Out1

Out2

Out3

timing budget

A0

A1

A0

A1

A0

A1

A0

A1

(b)

InOut

Out0

Out1

Out2

Out3

A0

A1

A0

A1

A0

A1

timing budget

A0

A1

(c)

Fig. 3: (a) Activation path delays of 2-to-4 decoder. (b) Impact of aging. (c) Projected degradation with mitigation.

Here, τc is the mean capture time constant, τe the mean emis-
sion time constant, tSTRESS the stress period, and tRELAX
the relaxation period. The model also incorporates the impact
of voltage and temperature [16].

III. AGING IN ADDRESS DECODERS

As discussed in the previous section, an important reliability
metric of the memory address decoder is its slack. It is the
time between the outputs of the pre-decoders being stable and
the setup time of the post-decoder’s AND-gates. Hence, the
delay of the pre-decoders is crucial for this metric. One of the
main challenges for the pre-decoders is that they need to drive
long wires due to the fact that the post-decoders are divided
across the whole memory array. Hence, they need to drive
a high parasitic capacitance due to this wiring. Driving this
capacitance takes a considerate portion of the total path delays
of the pre-decoders. For our design, the delays to activate the
pre-decoder outputs (i.e., drive them high) are the highest.
This is due to the fact that PMOS transistors are weaker than
NMOS transistors. Moreover, the PMOS transistors are more
sensitive to BTI than the NMOS transistors [3]. Therefore, the
paths that activate the pre-decoder outputs (in contrast to the
deactivation paths) are the most likely to cause delay faults
due to aging.

To illustrate potential problems due to the activation delay
of the pre-decoders’ outputs, we take the 2-to-4 decoder from
Fig. 2 as an example. The activation path delays at time-
zero are illustrated for each output in Fig 3a. Note that
these are based on SPICE simulations. Each output can be
activated through a path that starts either at input bit A0 or
A1. Depending on the responsible input, this may result in a
different delay. The figure reveals that outputs Out0, Out1,
and Out2 each have at least one path with a high delay and,
thus, a low slack. Hence, workloads that favor the activation of
one of these outputs are the most likely to cause aging-induced
delay faults, as these will stress paths with the low slack the
most. An example of such a case is depicted in Fig. 3b; here,
the BTI-induced delays are illustrated for the case in which a
workload favors the activation of output Out0. As can be seen,
the paths to activate this output have the biggest BTI-induced
delays, which causes timing violations (i.e., a negative slack).

Outputs Out0, Out1, and Out2 each have a high maximum
path delay due to the fact that at least one of the inputs

propagates through an inverter. For example, this is the case
for output Out1, when it is activated through input A1. On
the contrary, the last output Out3 has lower delays for both
inputs. This is due to the fact that none of the inputs need to
propagate through an inverter to activate this output.

It is worth noting that this observed trend also applies for
pre-decoders with different sizes. For example, the first seven
outputs of a 3-to-8 decoder have a high maximum activation
path delay, as at least one of the inputs needs to propagate
through an inverter. The last output, however, has a low delay,
as none of its inputs need to propagate through an inverter.

IV. PROPOSED MITIGATION SCHEME

Typically, in case a memory is idle, the input address of the
address decoder is kept unchanged compared to the applied
address during the last operation. Hence, in case an appli-
cation frequently keeps pre-decoder outputs with long paths
activated during idle cycles, this may significantly contribute
to the decoder’s degradation. Note that although the address
decoder’s enable signal is not activated during idle cycles, the
pre-decoders are, nevertheless, still active and stressed. Hence,
to mitigate this aging, we propose to utilize these idle cycles
by applying addresses that activate pre-decoder outputs with
short paths. This ensures that short paths are stressed during
idle cycles and, hence, the long paths are put into relaxation.
As we observed previously, the last output of a pre-decoder has
the lowest path delays and, therefore, this is a good candidate
for mitigation. This observation applies to all the pre-decoders
(e.g., also the 3-to-8 decoder). The effect of this mitigation
scheme for the 2-to-4 decoder is illustrated in Fig. 3c; here, the
paths that activate Out3 have the highest BTI-induced delays,
as they are stressed the most. However, due to the fact that
its time-zero delays are the lowest, the BTI-induced delays
are masked. As a result, the aging has a lower impact on the
decoder’s slack.

The proposed mitigation scheme can be implemented, for
example, with an additional multiplexer that is placed before
the address flip-flops. This multiplexer is used to select be-
tween the original address coming from the host (e.g., a CPU)
and a mitigation address that stresses the short paths (and,
hence, puts the long paths into relaxation). All bits of this
mitigation address are high (hardwired), as this ensures that
the last outputs of all pre-decoders are activated. The select

!

!

WL127

decoder_enable

WL0

addr_cpu

addr_mitigation

Pre-decoders

.

2:4

2:4

Post-decoders

3:8

A6

A5

A4

A3

A2
A1
A0

mem_enable

F
li

p
F

lo
ps

c_
ad

dr

timingclk

Fig. 4: Address decoder mitigation scheme.

signal of the multiplexer is connected to the memory’s enable
signal, so the mitigation address is applied to the address
decoder during idle cycles. Note that in this implementation,
the address decoder itself is not modified and only surrounding
logic is added.

V. VALIDATION VIA A CASE STUDY

In this section, we perform a case-study to validate the
mitigation scheme.

A. Experimental Setup

We implemented the mitigation scheme for the decoder
design from Fig. 1a. Its structure is depicted in Fig. 4. A mul-
tiplexer has been placed in front of the address flip-flops. This
multiplexer is controlled by mem enable (the memory’s enable
signal). When mem enable is low, the mitigation address is
stored into the flip-flops and when it is high, the address from
the CPU is stored. Hence, the mitigation address is applied to
the decoder during idle cycles. For a fair analysis, the part of
the memory’s timing circuit that generates the enable signal
for the decoder is also included. The reason for this is that
aging of the timing circuit delays this enable signal and, thus,
it partially compensates for the decoder’s aging [18].

To investigate the impact of aging on the decoder, we use
the methodology presented in [19]. It is able to accurately
and efficiently analyze the impact of aging on the memory’s
digital logic (e.g., address decoder and timing circuit) for real
applications. Its flow is depicted in Fig. 5. As the figure shows,
it consists of a high level and a low level simulation part.
In the high level simulation part, the workload of the input
application is characterized. In the first step, a CPU archi-
tecture is simulated using gem5 simulator [20]. During this
simulation, traces of the caches (e.g., L1 data and instruction
caches) are created that contain all memory operations for
each cycle. Next, post analysis is performed on these traces
to generate a workload characterization [19]. This workload
characterization contains the duty factors of the gate signals for
each transistor in the memory logic. In the low level simulation
part, this workload characterization is used to evaluate the
impact of aging on the circuit under analysis. In the first step,
variation-aware netlists are generated by performing Monte
Carlo simulations in which BTI (using the model discussed in
Section II) and process variation (using Pelgrom’s model [21])

Variation-Aware Netlists

Path Delays

Nanotime & SPICE sims

Post Analysis

Low Level Simulation

1Simulate BTI and PV

2

3

Application

High Level Simulation

1 Gem5 Simulation

2

Cache Traces

Post Analysis

Workload Characterization

Fig. 5: Used Simulation Flow [19].

TABLE I: Gem5 configuration.

Processor ARM v8-a, single-core, out-of-order @ 1.8GHz
L1 Data & Instruction Cache 32 kB, 4-way set associative, 32B linesize
L2 Cache 1MB, 8-way set associative, 32B linesize

are simulated. Subsequently, the paths of these variation-aware
netlists are extracted into SPICE netlists using Nanotime [22],
which are then simulated in SPICE to measure their delays.
Finally, post analysis is performed on the measured path
delays. In our analysis, the worst-case path delay of the pre-
decoders (i.e., the critical path delay) is determined for each
Monte Carlo instance.

Using the flow from Fig. 5, we investigate the impact of
aging on the decoder for the L1 data and instruction caches
with and without mitigation. In the high level simulation part,
we simulate six different applications from the SPEC2006
Benchmark suite [23] on an ARM v-8a processor in gem5.
Details of the gem5 configuration can be found in Table I.
In order to make the simulations feasible, we simulate a
sample of one billion instructions per application. In the gem5
simulations, we assume that the data and tag sections of each
cache set are implemented using separate memories. Hence,
two memory traces are generated per cache set (one for the
data section and one for the tag section). Due to similar
accesses to the data and tag sections within a set and also
to the different sets within the cache, we limit our analysis
to the first set’s data section. In the low level simulations, we
assume that the wordline decoder and timing circuit of this
data section are implemented using the circuit from Fig. 4.
Note that for the analysis without mitigation, the multiplexer
is omitted and, hence, the last requested memory address stays
applied to the decoder during idle cycles.

B. Performed Experiments and Used Metrics

Using the experimental setup described above, the following
experiments are performed to investigate the impact of aging
on the decoder with and without the mitigation scheme:
1) Application dependency: we investigate the impact of

aging on the decoder of the L1 data cache for different
applications.

2) Cache dependency: we investigate the impact of aging
on the decoder of the L1 instruction cache for different
applications as well and compare it with the degradation
of the L1 data cache.

!

!

zeusmp omnetpp bzip2 sjeng gobmk calculix
0

20

40

60

80

100

120

140

D
e
g
ra

d
a
ti

o
n
 o

f
3

 s
ig

m
a
 c

o
rn

e
r

(%
)

Without Mitigation
With Mitigation

0

10

20

30

40

50

60

70

A
cc

e
ss

 p
e
rc

e
n
ta

g
e
/p

re
-d

e
co

d
e
r

u
n
b
a
la

n
ce

 (
%

)

Access percentage
Pre-decoder unbalance

Data Cache 3 years aging @ 85°C, nom. VDD

Fig. 6: Degradation of the data cache’s timing margin.

For each application, the following metrics are measured:
• Timing Margin: it is the sum of the slack and setup time

of the worldine decoder, as illustrated in Fig. 1. Note that
the setup time is typically significantly lower than the slack.
Hence, the timing margin is a representation of the slack.

• Access Percentage: it is the average percentage of per-
formed memory operations (read and write) for the whole
application.

• Pre-decoder unbalance: it is the percentage of time that
a critical path of the 3-to-8 decoder (i.e., a path activated
through an inverter) is stressed by the application; here, we
consider the most stressed path. The 3-to-8 decoder is used,
as it has longer paths than the 2-to-4 decoders and, thus, it
is the dominating circuit for the decoder’s degradation.
For each experiment, 1,000 Monte Carlo simulations are

performed per application/workload. We assume that the de-
coder is aged for three years at 85°C (junction temperature)
with a nominal supply voltage of 0.8 V. For each set of Monte
Carlo simulations, the 3σ corner of the timing margin is
calculated based on the average and spread of the measured
timing margins. These are then compared with the 3σ corner
at time-zero (which is only affected by process variation).

C. Experimental Results

Application Dependency
Fig. 6 shows the degradation of the 3σ corner of the timing

margin for the L1 data cache for different applications. The
degradation is shown without and with mitigation. In addition,
the access percentage and pre-decoder unbalance metrics are
shown. The scale of these two metrics is shown on the right
axis. The following observations can be made from the figure:
• The decoder’s degradation is strongly application-dependent

(without mitigation). The lowest degradation of the timing
margin is ∼72% (for ‘calculix’), while the highest degrada-
tion is ∼115% (for ‘omnetpp’).

• The strong application-dependency of the decoder’s degra-
dation (without mitigation) is mainly caused by the dif-
ferent amount of accesses between applications. Gener-
ally, a higher access percentage corresponds to a lower
degradation. For example, ‘zeusmp’ (access percentage of
∼6%) has a degradation of ∼84%, while ‘calculix’ (access
percentage of ∼11%) has a degradation of ∼72%. A higher

zeusmp omnetpp bzip2 sjeng gobmk calculix
0

20

40

60

80

100

120

140

D
e
g
ra

d
a
ti

o
n
 o

f
3

 s
ig

m
a
 c

o
rn

e
r

(%
)

Without Mitigation
With Mitigation

0

10

20

30

40

50

60

70

A
cc

e
ss

 p
e
rc

e
n
ta

g
e
/p

re
-d

e
co

d
e
r

u
n
b
a
la

n
ce

 (
%

)

Access percentage
Pre-decoder unbalance

Instruction Cache 3 years aging @ 85°C, nom. VDD

Fig. 7: Degradation of the instruction cache’s timing margin.

access percentage results in a lower degradation, because
the timing circuit is activated more frequently and, thus,
stressed more. As a result, the decoder enable signal from
the timing circuit is delayed, which compensates for the
decoder’s degradation.
In addition, applications with a higher pre-decoder unbal-
ance have a higher degradation. For example, ‘omnetpp’ has
the highest degradation (∼115%), while it does not have the
lowest amount of accesses. A higher pre-decoder unbalance
means that at least one of the 3-to-8 pre-decoder’s critical
activation paths is stressed more and, thus, the timing
margin has a higher degradation.

• The mitigation scheme significantly reduces the decoder’s
degradation (up to 4.5x). The highest observed degradation
is only ∼26% with mitigation, while this is ∼115% without
mitigation. This shows the superiority of the mitigation
scheme.

• The decoder degradation mainly depends on the pre-decoder
unbalance instead of the access percentage when mitigation
is applied. For instance, ‘omnetpp’ (pre-decoder unbalance
of ∼35%) has a degradation of ∼26%, while ‘sjeng’
(pre-decoder unbalance of ∼13.41%) has a degradation
of ∼21%. The access percentage does not have a high
impact anymore due to the fact that the critical paths of the
pre-decoders are only stressed during memory operations,
similarly to the timing circuit, with the mitigation scheme.
Hence, a higher access percentage no longer compensates
the aging of the decoder as much as without mitigation.

Cache Dependency
Fig. 7 shows the degradation of the 3σ corner of the timing

margin for the L1 instruction cache for the six applications.
Comparing the degradation of the instruction cache with that
of the data cache (i.e., Fig. 6) reveals the following:
• The data cache, typically, has a higher degradation than

the instruction cache (without mitigation). The degradation
is between ∼72% and ∼115% for the data cache, while
it is between ∼38% and ∼92% for the instruction cache.
The data cache has a higher degradation, because it has a
lower access percentage (between∼6% and∼11%) than the
instruction cache (between ∼15% and ∼37%). Therefore,
the timing circuit receives a lower stress and, hence, the
decoder’s degradation is compensated less.

!

!

• Similarly to the data cache, the mitigation scheme also
significantly reduces the degradation of the instruction cache
(up to 4x). After applying the mitigation scheme, the
instruction cache, however, has a slightly higher degradation
than the data cache. The highest degradation is ∼28% for
the instruction cache, while it is ∼26% for the data cache.
This is because most applications have a higher pre-decoder
unbalance for the instruction cache. Therefore, critical paths
of the instruction cache’s pre-decoders are stressed more.

VI. DISCUSSION

This work proposes a hardware-based aging mitigation
scheme for the memory’s address decoder logic. Based on
our case-study, we conclude the following:

Improved reliability: our case study reveals that the miti-
gation scheme is able to significantly reduce the degradation
of the decoder’s timing margin. The degradation is up to 115%
without mitigation, while it is up to 28% with mitigation; a
reduction of ∼4.1x. Thus, the mitigation scheme achieves a
more reliable address decoder and, hence, it leads to a memory
with a higher reliability and prolonged lifetime.

Applicability of the scheme: since the proposed scheme is
applied during idle memory cycles, it is mainly useful for ap-
plications with a relatively low amount of memory operations,
such as CPU caches. Our simulation results show, however,
that the decoder has a lower degradation for applications with
a high number of memory operations due to the fact that
the increased aging of the timing circuit compensates the
decoder’s aging. Hence, these applications also have a lower
need for the proposed mitigation scheme.

Costs of the scheme: the cost of our scheme in terms of
area, performance (i.e., delay), and power should be consid-
ered. First, the area overhead is negligible; the scheme uses
only one additional multiplexer, which has a negligible area
overhead compared to the cell array. Second, the performance
overhead is also negligible; it does not affect the memory’s
speed, as the multiplexer is placed outside the memory. It
does add a marginal delay to the logic that interfaces with
the memory. However, this delay can most likely be masked
by retiming the pipeline stages. Finally, the scheme causes
an increased power consumption, because it induces extra
switching in the decoder logic: when the memory starts an idle
cycle, the decoder switches, and when it starts a new operation,
it may switch again depending on the applied address. To
evaluate the power overhead, we implemented the scheme for
a memory with the same size as the cache set considered
in the case-study. Subsequently, we measured the energy of
the worst-case switching of the decoder (all address bits need
to flip when the idle cycle starts and they flip again when
the next operation starts) and compared it to the energy of
a read and write operation. Our results show that this worst-
case decoder switching energy is only ∼3% and ∼2.5% of the
energy required for the read and write operations, respectively.
It is low due to the fact that the wordline is not activated and
only the pre-decoders switch. Hence, the power overhead of
our scheme is acceptable.

Hence, overall, the proposed scheme comes at very marginal
overheads.

VII. CONCLUSION

This work presented a mitigation scheme to reduce the
impact of aging on memory address decoders. The scheme is
based on adapting the decoder’s workload during idle cycles.
Hence, it may be possible to apply the same concept to other
electronic components with idle cycles as well in order to
mitigate their aging.

REFERENCES

[1] S. Borkar, “Design challenges of technology scaling,” IEEE Micro,
vol. 19, no. 4, pp. 23–29, July 1999.

[2] J. Srinivasan, S.V. Adve et al., “The impact of technology scaling on
lifetime reliability,” in International Conference on Dependable Systems
and Networks, 2004, June 2004, pp. 177–186.

[3] S. Bhardwaj, W. Wang et al., “Predictive modeling of the nbti effect for
reliable design,” in CICC, Sept 2006, pp. 189–192.

[4] W. Needham, C. Prunty, and E.H. Yeoh, “High volume microprocessor
test escapes, an analysis of defects our tests are missing,” in Proceedings
International Test Conference 1998, Oct 1998, pp. 25–34.

[5] A.J. van de Goor, S. Hamdioui, and R. Wadsworth, “Detecting faults
in the peripheral circuits and an evaluation of sram tests,” in 2004
International Conference on Test, Oct 2004, pp. 114–123.

[6] S.V. Kumar, K.H. Kim, and S.S. Sapatnekar, “Impact of nbti on sram
read stability and design for reliability,” in 7th International Symposium
on Quality Electronic Design (ISQED’06), March 2006, pp. 6 pp.–218.

[7] A. Carlson, “Mechanism of increase in sram vmin due to negative-bias
temperature instability,” IEEE Transactions on Device and Materials
Reliability, vol. 7, no. 3, pp. 473–478, Sept 2007.

[8] S. Khan, I. Agbo et al., “Bias temperature instability analysis of finfet
based sram cells,” in DATE, March 2014, pp. 1–6.

[9] A. Gebregiorgis, M. Ebrahimi et al., “Aging mitigation in memory arrays
using self-controlled bit-flipping technique,” in The 20th Asia and South
Pacific Design Automation Conference, Jan 2015, pp. 231–236.

[10] A. Valero, N. Miralaei et al., “On microarchitectural mechanisms for
cache wearout reduction,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 3, pp. 857–871, March 2017.

[11] I. Agbo, M. Taouil et al., “Integral impact of bti, pvt variation, and
workload on sram sense amplifier,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1444–1454, April
2017.

[12] S. Khan, M. Taouil et al., “Impact of partial resistive defects and bias
temperature instability on sram decoder reliablity,” in 2013 8th IEEE
Design and Test Symposium, Dec 2013, pp. 1–6.

[13] D. Kraak, I. Agbo et al., “Mitigation of sense amplifier degradation
using input switching,” in DATE, March 2017, pp. 858–863.

[14] P.S. Hughes, “Detection of address decoder faults,” U.S. Patent
US20 090 037 782A1, Feb. 05, 2009.

[15] R. Ramaraju and A.B. Hoefler, “Word line fault detection,” U.S. Patent
US8 379 468B2, Feb. 19, 2013.

[16] B. Kaczer, T. Grasser et al., “Origin of nbti variability in deeply scaled
pfets,” in IRPS, May 2010, pp. 26–32.

[17] M. Toledano-Luque, B. Kaczer et al., “Response of a single trap to ac
negative bias temperature stress,” in IRPS, April 2011, pp. 4A.2.1–8.

[18] D. Kraak, I. Agbo et al., “Degradation analysis of high performance
14nm finfet sram,” in DATE, March 2018, pp. 201–206.

[19] ——, “Methodology for application-dependent degradation analysis of
memory timing,” in DATE, March 2019, In press.

[20] N. Binkert, B. Beckmann et al., “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, pp. 1–7, 08 2011.

[21] M.J.M. Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers, “Matching
properties of mos transistors,” IEEE Journal of Solid-State Circuits,
vol. 24, no. 5, pp. 1433–1439, Oct 1989.

[22] Synopsys, “Nanotime - transistor-level static timing analysis solution
for custom designs,” https://www.synopsys.com/content/dam/synopsys/
implementation&signoff/datasheets/nanotime-ds.pdf.

[23] J.L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Com-
put. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

!

!

