
Onboard Visual Control of a
Quadcopter MAV Performing a
Landing Task on an Unknown
Platform
J. Blom
19 February 2019

De
lft

Un
ive

rs
ity

of
Te

ch
no

lo
gy





Onboard Visual Control of a Quadcopter
MAV Performing a Landing Task on an

Unknown Platform
by

J. Blom
to obtain the degree of Master of Science
at the Faculty of Aerospace Engineering,

Department of Control & Simulation,
Delft University of Technology.

Student number: 4306473
Project duration: March 12, 2018 – March 6, 2019
Thesis committee: Dr. ir. G. C. H. E. de Croon TU Delft, supervisor

ir. K. Y. W. Scheper TU Delft, supervisor
Dr. ir. M. Snellen TU Delft
ir. C. de Wagter TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface

This thesis is written as final part of a study to obtain a degree of Master of Science in Aerospace Engineering
at Delft University of Technology.

I would like to take this space to thank Guido and Kirk for their guidance and the entirety of Sim 0.08 for
their help throughout the process. Especially Matthijs for helping me with making proper drawings for my
paper.

For any questions regarding the theory behind the control system or its implementation, feel free to reach
out to me, I will be happy to answer any questions I can.

iii



Contents

Introduction 1

I Scientific Paper 3

II Preliminary Thesis 19

III Conclusions and Recommendations 75

IV Appendices 79
.1 Flight test height over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
.2 Flight test horizontal error over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

iv



Introduction

This thesis is written as final part of a study to obtain a degree of Master of Science in Aerospace Engineering
at Delft University of Technology.

In this thesis the problem of autonomously landing a Micro Air Vehicle (MAV) on a platform of a priori
unknown dimensions at an unknown location is tackled. For this task the MAV will be without a position
fix from for example GPS and depend largely on visual information.

This will be done using an adaptation of an optical flow divergence based landing algorithm, to allow for
landing on a platform vertically displaced from the background, by replacing the noisy global divergence
with the size increase of the platform in the virtual camera frame. Also the combination of the algorithm with
visual servoing logic, allows the platform to be displaced w.r.t. the center of the image plane, as long as it is in
view.

This report consists of two main parts: a scientific paper describing the algorithm, experiments and results
(Part I), followed by a preliminary report describing the literature and initial investigations used to come
to the mentioned approach (Part II). This last part goes into some depth on Event-Based Vision Sensors,
which would be a good fit as a sensor in replacing the standard frame based camera. These and other
recommendations are given in the last part of this report: Part III.
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Onboard Visual Control of a Quadrotor MAV
Performing a Landing Task on an Unknown Platform

Student: J. Blom
Supervisors: K.Y.W. Scheper, G.C.H.E. de Croon

Delft University of Technology, Kluyverweg 1, Netherlands

ABSTRACT

Vision based control allows Micro Air Vehicles (MAV) to
move autonomously in GPS-denied environments, for ex-
ample in indoor applications. An open issue in this field
is landing on an unknown platform. The difficulty in vi-
sual control with respect to such an unknown platform, is
a lack of scale. Without knowledge of the scale of offsets
and object sizes (without height knowledge from GPS) it
is difficult to determine an appropriate response from the
controller. A control algorithm is designed to fit these re-
quirements using an adaptation of a constant optical flow
divergence based landing scheme, combined with an Im-
age Based Visual Servoing approach applied to features
in the Virtual Camera. The approach leads to satisfac-
tory behavior in Gazebo simulations; it results in a robust
controller for a range of starting heights and divergence
settings.

1 INTRODUCTION

Vision based control allows Micro Air Vehicles (MAV)
to move autonomously in GPS-denied environments, for ex-
ample in indoor applications. An open issue in this field is
landing on an unknown platform.

The difficulty in visual control w.r.t. such an unknown
platform, is a lack of scale. Without knowledge of the scale
of offsets and object sizes (without height knowledge from
GPS) it is difficult to determine an appropriate response from
the controller.

This distinction constitutes the division of Visual Servo-
ing into Position Based Visual Servoing (PBVS) and Image
Based Visual Servoing (IBVS), where it is the latter that lacks
scale, meaning control is solely based on features in the image
plane (Chaumette and Santos (1993)). In MAV applications
however a part of the state ([θ, φ]) is usually known, allowing
for an intermediate solution: Hybrid Visual Servoing (HVS)
(Malis et al. (1999)). In HVS the image can be rotated to align
a flat object with a horizontal ”virtual camera” (Zheng et al.
(2017)) & (Fink et al. (2015)), increasing the performance of
IBVS algorithms applied to the problem.

For the vertical part of this problem: landing without scale
or height knowledge, approaches have been developed. One
is to keep the optical flow divergence D = vz

Z constant. This
D can be measured from just a set of frames; it does not re-
quire any additional knowledge. When D is held constant,
vz reduces logarithmically over time, resulting in a smooth

landing (De Croon et al. (2013)). There is however a known
problem with this approach: a controller with error signal:
ed = Dm −D will be unstable near the singularity at Z = 0.
This problem was solved, using variable gains however by
de Croon (2016) and applied to a drone performing a suc-
cessful smooth landing by Ho et al. (2016).

Combining this vertical control with the previously dis-
cussed horizontal control, leaves only the problem of track-
ing the platform over time in the image plane. This can be
done by tracking features belonging to the object over time
and taking their average position and distance to each other
as a reference for the center of the object and its size. Cor-
ners will be used as features in this approach, since these are
strong features with contrast in two directions, they will be
extracted from the image using a FAST corner detection ap-
proach as first introduced by Trajković and Hedley (1998).
This tracking approach however does reduce the applicabil-
ity of the solution to textured objects; a landing on a smooth
surface can not be performed with this approach.

The main contribution of this research is an adaptation
of the optical flow divergence based landing algorithm from
(Ho et al., 2016), to allow for landing on a platform vertically
displaced from the background, by replacing the noisy global
divergence with the size increase of the platform in the virtual
camera frame. Also the combination of the algorithm with vi-
sual servoing logic, allows the platform to be displaced w.r.t.
the center of the image plane, as long as it is in view.

Section 2 provides a more elaborate explanation of the
theories and paradigms mentioned above, while section 3 de-
scribes how this theory is translated into algorithms. Section
4 describes the simulation experiments performed to test the
algorithms. The results of these experiments can be found in
section 5. These results are discussed in section 6 and finally
conclusions and recommendations are posed in section 7.

2 THEORY

A functional solution to the problem posed in section 1
consists of three partial solutions: tracking the landing plat-
form, servoing towards it without altitude knowledge and to
perform a smooth landing on it with the same constraint.
These partial solutions define the layout of this section, where
section 2.1 handles the tracking, 2.2 visual servoing and 2.3
the controlled landing strategy.

1



2.1 Tracking
In a computer vision context, tracking can be defined as:

”Following an object over time in the camera view”. An ob-
ject can be described as a set of features. One way to extract
features from an image, is using its gradients in grey-scale
intensity. Optical flow can be estimated from these features,
enabling the prediction of the next location of these same fea-
tures, with an accuracy that depends on the quality of the cho-
sen features. Corners are strong features, because of their in-
tensity gradient in two directions in the image plane. Hence
the tracking algorithm developed in this research uses FAST
corner detection (Trajković and Hedley (1998)) to provide
features from which optical flow is calculated to predict the
next position of these same corners, around which to redetect,
as schematically depicted in Figure 1.

Figure 1: Tracking philosophy

Keeping track of the change in width of the landing plat-
form is used in the control algorithm for landing explained
in section 2.3. The relative change in width can be estimated
using the relative change in average distance of the tracked
features to their center of gravity, of which a proof is written
out below.

Theorem 1. The relative size increase of a planar object in
the virtual camera frame is linearly related to the average
distance of tracked features, belonging to that object, to their
combined center of gravity, as long as the object is sufficiently
far away

Proof. Equation 1 describes one of the basic laws of optics
(Halliday et al. (2013)), where g and b are the object and im-
age distances respectively and f is the focal length, as shown
in Fig. 2.

1

g
+

1

b
=

1

f
(1)

Clearly then, b ≈ f when g >> f . Figure 2 also shows that
the sizes of the object and its image (sg & sb) are related by:

sb =
b

g
sg ≈

f

g
sg

If we then describe points in two virtual camera frames v1 &
v2 (explained in section 2.2) for MAV’s located at the points

v1 & v2, observing the planar points X1 & X2 and their cen-
ter of gravity Xcg for an object or Region of Interest (ROI)
described by its center of gravity at Xroicg and its edges at
Xroi1 & Xroi2 as shown in Fig. 3. The distances of these
points in the two reference frames can then be described by
the following relations, where capital letters indicate coordi-
nates in the world frame, while superscripts indicate the vir-
tual camera frame points belong to:

||x1 − xcg||v1 =
f

hv1
||X1 −Xcg||

||X1 −Xcg||v2 =
f

hv2
||X1 −Xcg||

||xroi1 − xroicg||v1 =
f

hv1
||Xroi1 −Xroicg||

||xroi1 − xroicg||v2 =
f

hv2
||Xroi1 −Xroicg||

Hence when an MAV has moved from point v1 to point v2 the
size of the ROI will have changed as following:

||x1 − xcg||v1

||x1 − xcg||v2
=
||xroi1 − xroicg||v1

||xroi1 − xroicg||v2

The proof of the 2D problem above can be used to show
the approach works for 3D cases too, given the center of the
object is located at the Focus of Expansion (FOE). This as-
sumption can be made for this research, since the goal is for
the observer to land on the tracked object. Figure 4 shows
such a 3D problem, where the black dots indicate a static fea-
ture as viewed in the two virtual camera frames v1 and v2.
Now when xcg = xFOE , as mentioned above, points located
on the edge of the ROI (depicted as red dots in the figure)
move along the same line as the feature between two frames,
thereby reducing the 3D problem to the 2D problem proven
above. Other than this Fig. 4 also shows the two image plane
directions can be considered separately, since:

dv2

dv1
=
sv2

sv1

and
dxv1 = dv1 cos θ

dxv2 = dv2 cos θ

Hence
dxv2

dxv1
=
sv2

sv1

and assuming a constant shape

wv2

wv1
=
hv2

hv1
=
sv2

sv1
=
dxv2

dxv1
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The same holds for the y-direction. The proof uses the loca-
tion of only one point, but the same holds when the spread of
a group of Nc corners is used, as in eq. 2 leading to a more
stable way to relate the old and new widths of the object in
the virtual camera frame wv1 and wv2.

wv2

wv1
=

1

Nc

Nc∑

i=0

||xi − xcg||v2

||xi − xcg||v1
(2)

Figure 2: Standard convex lens optics (Commons (2006))

Figure 3: Points 1 and 2 and their center of gravity belonging
to object (ROI) and the observation location virtual camera
frames v1 & v2

Figure 4: A static feature (black dot) and rectangular object
as viewed in two virtual camera frames (v1 & v2), for an ob-
server at two different heights

This way of estimating the growth or shrinking of the ob-
ject in the virtual camera frame requires tracking the same
features over time. However, features will inevitably be lost
for a number of reasons, one of which is that they might move
out of view when the MAV moves closer to the platform.
Such problems are solved in section 3.1.

2.2 Visual Servoing

For this research an In-Hand Hybrid Visual Servoing
scheme will be used based on the Virtual Camera approach,
where In-Hand means the camera moves when the robot
moves i.e. the camera is attached to the robot (Chaumette
et al. (2016)). This approach uses the known Euler angles
from the MAV’s state, to correct for misrepresentations of a
flat object in a rotated camera view, as shown in Fig. 5. When
the object is represented in this horizontal Virtual Camera
frame, traditional Image Based Visual Servoing algorithms
can be applied, provided the object is flat and aligned with
the local world horizontal plane (Popova (2015)). These al-
gorithms are of the form as described in eq. 3, where s is a
vector of features, which can be chosen to match the control
tasks. Such features might include for example: orientation,
object size and object center of gravity (Tahri and Chaumette
(2005)). The interaction matrix L describes the transforma-
tion of velocities in the body frame to changes of object fea-
tures in the 2D camera frame.
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Figure 5: Virtual Camera Plane from Zheng et al. (2017)

s = Lv (3)

The system can then be controlled based on the inverse of
this equation. Tuning of the gains for such a control algorithm
and the selection of the features in s are explained in section
3.

2.3 Landing
Optical flow divergence can be used to perform vision

based landings. Optical flow can be mathematically described
using eq. 4, for movement above a flat surface after correcting
for rotational rate effects (Waxman and Wohn (1985)). Pos-
itive optical flow divergence is defined as going away from
the center, towards the edges of the camera frame, as caused
by a downward relative velocity. From this equation it can
be deduced that keeping optical flow divergence constant will
cause the downward velocity to reduce logarithmically, thus
leading to a smooth landing as pointed out by De Croon et al.
(2013).

ϑx =
vx
Z

ϑy =
vy
Z

D =
vz
Z

(4)

There is however a known problem with this approach: it
results in an unstable system at low altitudes, because the
control signal goes to infinity when approaching Z = 0 as
pointed out by de Croon (2016). A solution to this problem
is to perform an initial gain tuning, starting from a known to
be stable gain as done by Ho et al. (2016). Use the oscilla-
tions to tune the gain, when oscillations are noticed, slightly

reduce the gain and use that as starting gain for the landing.
Then exponentially reduce the gain over time depending on
the divergence setting, according to eq. 5.

K(t) = Kmin + (Kstart −Kmin)e−Dt (5)

As mentioned in section 2.1, corners are reliable features,
especially when their local detection is based on the predicted
next position from optical flow estimations. It thus makes
sense to use these features for an estimation of the divergence,
rather than the estimated local optical flow, which is used only
as a prediction for their next position. Using the tracked cor-
ners for estimating the local optical flow divergence at the
object location, would thus be more reliable. The relative in-
crease in size of the object ( dw

wdt ) seems a natural candidate as
a replacement for the divergence, which basically describes
the number of pixels a feature moves outward divided by its
distance from the center of the image in pixels. In the rest of
this thesis dw

wdt will be referenced as Db.
A filtered Db is expected to be more accurate in approx-

imating D than a filtered DLK from a Lukas-Kanade di-
vergence approximation. Another reason to prefer Db over
global optical flow divergence, is that (as the name suggests)
the latter is an average of the flow away from the center of
the entire image, including background, while Db represents
the same type of information for the object only. This would
allow the platform to be at a different height than the rest of
the objects in view, or even move w.r.t. them.

3 METHODOLOGY

TU Delft uses Paparazzi to create and test control algo-
rithms for UAVs. In this framework, modules can be created
and called from an airframe file. In this research work was
mainly performed on the ”opticflow” module and a new mod-
ule called ”ibvs sim”. This latter module handles the servoing
part as will be explained in section 3.2 and the first handles
the tracking of the desired landing location as explained in
section 3.1.

3.1 Tracking
The object to be tracked for a run, will be chosen by the

user at initialisation. The user defines a location in the cam-
era view and the size of the window (ROI) around that point,
which includes the object and preferably nothing else. This
ROI will then be propagated over subsequent frames and can
be represented in the virtual camera frame by two variables:
the center (xROIcg, yROIcg)v and the size (wROI , hROI)v .
These values are estimated using the center of gravity of the
tracked features (xccg, yccg) and their average distance to it
(d̄x, d̄y) and by keeping track of their offsets to the vari-
able they reflect (xcorr, ycorr) and (w

d ,
h
d ) respectively, where

xcorr = xROIcg − xccg and w
d = wROI

d̄x
. These offsets are

first calculated at the initialisation of the features in their win-
dow and updated when corners are lost over time and when
new corners are added to replace them. While descending,
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the part of the screen taken up by the ROI increases. Once it
takes up more than 75 % of the height or width of the screen,
it is reinitialized to take up 50 %.

3.2 Servoing
The feature vector s chosen for this research includes the

object size and center of gravity. Control is directly based
on these features, using a proportional controller around the
nominal thrust for vertical control and zero velocity for the
two horizontal directions. The gains used to calculate the con-
trol signal, are logarithmically reduced over time to counter
the instability problem mentioned in section 2.3. A success-
ful landing consists of the 4 phases shown in Fig. 6, where it
should be noted that the logic in phase 0 is also part of phase
1. In this approach control gains are initially set to a low
value, known to cause stable hovering behavior in all consid-
ered situations. In this research, the horizontal gains for the
x & y-directions are always the same and linearly related to
the vertical gain for control in the z-direction. The stability
of both horizontal and vertical control depends on the height
w.r.t. the object, as shown by 4, it thus makes sense to make
one depend on the other.

Figure 6: Flowchart depicting the different flight phases

Figure 6 shows how a Divergence (Db) array is filled in
phase 1, which is used in phase 2 to calculate the covariance
of Db with Thrust (T). When this covariance is positive for
2 seconds, the MAV is oscillating and the gain has been in-
creased above its optimum value. The control gain is then re-

duced to 80% of its last value, after which the actual landing
is started in phase 3, according to the constant optical flow
divergence paradigm. When eventually the number of cor-
ners detected is lower than half of the desired number of cor-
ners for two consecutive timestamps, the MAV is assumed to
be close enough to the object to start the final landing phase,
phase 4, where the thrust is held constant at a value just below
the thrust setting for hover. If the tracking algorithm should
malfunction due to unexpected circumstances, the MAV will
go into this mode as well, leading to a safe landing, even
though the system could not perform its imagined tasks.

Before using it in a constant optical flow landing, Db is
filtered using the low-pass filter described in eq. 6, where
lpf is the low-pass factor, or the weight of the new mea-
surement Dbi w.r.t. the old estimate Dbi−1. As long as
Dbi − Dbi−1 < (∆D)max, because large changes are not
likely to occur between two timestamps.

Db = Dbi−1(1− lpf ) + lpfDbi (6)

4 EXPERIMENTAL SETUP

To test the algorithm, the MAV is to autonomously servo
to a location specified in the camera frame and land there.
This is done in simulation, using the Gazebo plugin for pa-
parazzi. The results of these experiments can be found in sec-
tion 5. Through the simulation experiments the performance
of Db as a linear approximation of D is tested first (section
4.1) and after that the system as a whole is tested (section
4.2).

A simulation using the Gazebo plugin from paparazzi has
realistic 3D motion and physics. To get an idea of what it is,
Fig. 7 shows a simulation of a Bebop drone flying around
in the TU Delft Cyberzoo. Essential for our research is the
fact that camera footage is also simulated; images from the
bottom-”camera” come in at the specified frame rate. An ex-
ample of such a frame is shown in Fig. 8.

Figure 7: Gazebo simulation of Bebop drone in Cyberzoo
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Figure 8: Footage from the simulated bottom camera, where
white crosses indicate corners of the ROI and green crosses
indicate tracked features

Both for testing the performance of Db as a replacement
variable, and that of the system as a whole, the MAV’s po-
sition and velocity should be known over the course of the
experiment. In simulation these values can be determined for
any point in time, because they are the result of a mathemat-
ical model of the system. In real life this is can be handled
by the Cyberzoo’s Opti-track system, which triangulates the
MAV’s position based on the position of markers belonging
to the MAV as perceived by a grid of cameras hanging from
the ceiling.

4.1 Db experiment
To test how well D can be approximated using Db, the

MAV descends with a constant vz , thus creating a dataset with
a spread in ground truth values for D = vz

Z . This value and
the calculated Db are logged and used to create a linear rela-
tionship between the two and create error curves for D̂ −D.
The starting altitude for these experiments is h0 = 6m, while
vz is varied to be vz = [0.5, 0.8, 1.0, 1.2, 1.5]ms−1.

4.2 System test
To test the performance of the system, Z, vz and the hor-

izontal error ε are tracked and plotted over time. The de-
sired landing location (from which to calculate the offset ε)
is calculated from the angle it makes with the center of the
camera and the height of the MAV. This way a dataset is cre-
ated with all possible combinations of the settings: Db =
[0.02, 0.04, 0.08, 0.16, 0.24] and h0 = [2, 3, 4, 5, 6].

5 SIMULATION RESULTS

The results for theDb test plots are presented first (section
5.1) after which, results are presented for tests of the system
in its entirety (section 5.2).

5.1 Db test results
The results of the experiments described in section 4.1

are presented in this section. First a linear mapping is created
from Db to the ground truth D = vz

Z , of which the results are
shown in Figs. 9 & 10.

Figure 9: D vs Db with linear relation

Figure 10: Approximation error D − D̂, using Db to deter-
mine D̂

The performance of Db as a linear indicator of D is also
plotted along the axes: h, D & t, to see if any of these pa-
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rameters is of significant influence on the accuracy of the ap-
proximation. These plots can be found in Figs. 11, 12 & 13.
Where Fig. 11 shows the approximation using Db is worse
for high and low altitudes, Fig. 12 shows a similar effect for
high and low values of D. Because of the experiment setup
and the way data is gathered (using a constant downward ve-
locity) these two parameters can not be completely separated
and might well be measuring the same effect.

Figure 11: D − D̂ vs height, using Db to determine D̂

Figure 12: D − D̂ vs D, using Db to determine D̂

Figure 13: D − D̂ vs t, using Db to determine D̂, with reini-
tialization timestamps as vertical lines for one run

Figures 9 & 12 show Db can be used to approximate D
quite well in the range 0 < D < 0.5. Figure 9 however,
seems to suggest a linear relationship can be found for every
run separately. More specifically good fits can be created for
every phase between two window reinitialisations as shown
by Fig. 14. Figure 15 shows the error distribution when D is
approximated using the D = f(Db) relation for that window
reinitialization (the process of window (re)initialization is de-
scribed in section 3.1). This would explain the satisfactory
performance of the algorithm in achieving a smooth landing
as shown in section 5.2.

Figure 14: D vs Db with linear relation between every two
window reinits
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Figure 15: D vs D̂ as approximated from Db and the linear
relation specifically for every window reinitialization

The overall approximation D̂ based on Db is compared
to DLK as retrieved by a Lukas-Kanade approach as applied
by Ho et al. (2016). To achieve this, Figs. 16 & 17 show the
approximation D̂ based onDLK and its error with the ground
truth D respectively, like Figs. 9 & 10 show for Db.

Figure 16: D vs DLK with linear relation

Figure 17: D − D̂, using DLK to determine D̂

Lastly Fig. 18 shows the number of timestamps between
two consecutive divergence approximations from a Lukas-
Kanade scheme as used by Ho et al. (2016). When no good
fit can be created from the available flow vectors, for example
due to a lack of features or a single concentration of features
on a small part of the image plane, the algorithm does not
generate a result. Especially the latter is frequently the case
for the application considered in this paper, since an object,
displaced from the center of the image plane is tracked. The
average number of frames between approximations from this
Lukas-Kanade algorithm is only ¯∆tLK ≈ 2Tframe, however
Fig. 18 shows that it is not unlikely to be without an estima-
tion for 4 frames over the course of a landing.
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Figure 18: Number of frames (nframes) between two con-
secutive D approximations from Lukas-Kanade algorithm as
used by Ho et al. (2016)

5.2 System test results

Successful landings were achieved for a range of starting
heights 2 < h0 < 5 and Divergence settings 0.02 < D <
0.24. For all these settings, plots similar to those in this sec-
tion were created.

Height plots for a successful landing look like those in
Fig. 19, with the shaded areas representing the flight phases
described in Fig. 6. They clearly show the expected behavior,
starting with oscillations increasing in amplitude in phase 2.
Then the oscillations get weaker, which is where the gain is
reduced to 80 % of its last value. After that the landing is
started, with a downward velocity reducing in size, as is also
shown by Fig. 20. In the last phase a constant final thrust
setting is kept leading to the straight line for both velocity
and altitude in the last phase.

Figure 19: Height plot with shading per flight phase as in Fig.
6

Figure 20: Vertical velocity plot with shading per flight phase
as in Fig. 6

The part that is of interest to this research, is the logarith-
mic part of the z-plot in Fig. 19. It shows small deviations
from the expected slope, which can be explained when we
plot the window reinitialization timestamps with it, as in Fig.
21. As explained in section 2.3, the philosophy is to keep
Db = dw

wdt constant. When the window is reinitialized, mean-
ing w is discretely changed from 75% to 50% of the image
width, this leads to a stepwise change in the reference sig-
nal which leads to an instantaneous change in the controller
output.

9



Figure 21: Height plot with vertical lines at window reinitial-
ization

When landings for different divergence settings are com-
pared as in Fig. 22, it can be seen that the higher settings lead
to smoother behavior. It is apparently more difficult to keep a
low relative size increase, for which small control inputs are
required, which are more sensitive to discrepancies.

Figure 22: Height plot for a range of divergence settings start-
ing from a height of 5m, from start of landing phase 2

The horizontal error over time for the same run as those
in Figs. 19,20 & 21 is shown in Fig. 23.

Figure 23: Horizontal error plot with shading per flight phase
as in Fig. 6

6 DISCUSSION

The effectiveness ofDb for approximatingD is discussed
first in section 6.1, after which the performance of the entire
system, based partly on this approximation is discussed in
section 6.2.

6.1 Db to approximate D
As mentioned in section 2.3 a positive aspect of using Db

over D is that an object (a platform) can be selected with a
vertical offset to the background i.e. the algorithm is insensi-
tive to background motion and only reacts to offsets belong-
ing to the object.

Another benefit of Db over DLK is pointed out in Fig.
18, showing the number of frames skipped between two con-
secutive calculations of DLK . Clearly over the course of a
landing it is not unlikely to be without an estimation of D for
more than 4 frames, while an approximation of Db is made
for every frame.

When Figs. 10 & 17 are compared, one can see that using
Db to approximate D indeed leads to a more accurate repre-
sentation for these experiments. It should be noted however
that the DLK approximator developed by Ho and de Croon
(2016) was designed for situations where features are evenly
distributed over the image, which is not the case when one
is focusing on one object, as in the experiments performed
in this research. However for such situations where features
are confined to only a part of the image, the Db approach is
significantly more accurate than the DLK approach.

The effect of modelling the camera as a convex lens, as
described in 2.1, can be spotted in Fig. 14, where the effect
of a certain ground truth D on Db, i.e. the slope of the linear
approximation, depends on the distribution of the features for
that window initialization. Features close to the edge of the
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image plane move more than would be expected using the
linear relation mentioned in the same section:

||x1 − xcg||v1 =
f

hv1
||X1 −Xcg||

This leads to an overestimation of D, i.e. a more flat linear
relation, for window initialisations where features are more
concentrated at the edge of the image plane.

Figure 11 shows the approximation using Db is worse for
high and low altitudes, Fig. 12 shows a similar effect for
high and low values of D. Because of the experiment setup
and the way data is gathered (using a constant downward ve-
locity) these two parameters can not be completely separated
and might well be measuring the same effect as mentioned
in section 5. Where one possible explanation is that a linear
approximation of D from Db is simply fitted best around the
average D of all the runs.

A stronger explanation however, is that at a large height a
feature is more easily mistaken for a neighbouring feature that
was tracked in the previous image, because the two features
are only a few pixels away for highly textured objects. While
at small heights, the effect of the large distance assumption
of Theorem 1 becomes measurable. Non-linearities can oc-
cur when this assumption is violated. This hypothesis can be
tested by performing experiments where the amount of tex-
ture on the object to be tracked is varied. This would likely
affect the performance at large heights, but not for the small
ones.

The expected negative effect on accuracy of the window
reinitializations as explained in section 3.1 is not observable
from the data; Fig. 13 shows no sudden increase in the ap-
proximation error after window reinitialization.

6.2 Controller performance
From the plots for different starting heights and Db =

dw
wdt settings it can be seen that Db is a fitting replacement
for the noisy optical flow divergence in a constant divergence
landing approach. The even spacing of the window reinitial-
izations as seen in plots such as the one in Fig. 21 is a second
indication that the algorithm performs well, since it means the
window size increases linearly over time, as it is supposed to.

It should be noted that the offset D − D̂ using Db, which
varies per reinit as shown by Fig. 14, means the MAV is not
actually landing with an exactly constant divergence, but be-
cause it is constant between every 2 window reinitializations,
the strategy does lead to a logarithmically reducing vertical
velocity, as shown in Fig. 22. The effect of this change in
relation in D = f(Db) is a constant divergence landing with
a slightly different D for every window reinitialization, as is
visible from the change in slope after window reinitializations
in Fig. 21.

The Virtual Camera IBVS approach further leads to satis-
factory results when combined with the proposed algorithm,
as can be seen from the plot for the horizontal error in Fig.

23. The error approaches zero for every run, being slightly
more stable for higher starting altitudes.

When trying to validate these results in real life how-
ever a new problem was encountered, where the number of
tracked corners would suddenly drop drastically between two
subsequent frames. Which requires a reinitialization in the
last properly tracked window, meaning a clean detection and
calculation of the offsets (xcorr,ycorr,wd ,hd ) w.r.t. the last ac-
curate approximation of the center of gravity and size of the
object. While the loss of half the corners twice in a row trig-
gers the controller to go into the last flight phase as mentioned
in section 3.2. This in combination with a weak battery made
it impossible to validate the entire control scheme in a real
world experiment.

7 CONCLUSIONS AND RECOMMENDATIONS

In this research, successful landings were performed us-
ing IBVS logic applied to features in the virtual camera
frame, combined with an adaptation of the optical flow di-
vergence based landing rationale from Ho et al. (2016). The
algorithm was applied to a range of starting heights and di-
vergence settings in Gazebo simulations in Paparazzi.

These landings were performed solely on textured ob-
jects, because the algorithm requires the tracking of at least
2 corners and preferably more, because more corners lead to
a more stable approximation of the size increase and transla-
tion of the object in the camera view. If not enough texture
can be found in the region specified in the camera view, the
MAV directly goes into the final landing phase, which means
it will descend with a constant thrust setting, slightly lower
than what would be required for hover.

From the experiments it is clear thatDb can be used to re-
place DLK which is the result of global optical flow estima-
tions. Thanks to the small errors on the linear approximation
and the overall availability, in contrast to the outcome of the
Lukas-Kanade scheme, a well functioning system, robustly
servoing and landing on a specified location in the screen,
can be created based on Db.

The results of theDb experiments would probably be even
better when vz,i+vz,i−1

2 is used as ground truth D, since that
is the value Db = dw

wdt = wi−wi−1

widt
actually approximates;

the approximation is shifted by 1
2Tframe. Another way to

improve the approximation power of Db as D̂ would be ap-
plying a filter to them based on data from the accelerome-
ter. The effect of assuming the camera to be a perfect convex
lens, mentioned in section 6.1 can further be countered by
initializing the window more gradually, by for example only
reinitializing features from an outer sub-window in an inner
sub-window. When a feature for example moves to a location
at 70 % of the image width it can be reinitialized between
0 and 50 %, avoiding a difference in accuracy for different
window initializations.

From the plots it is evident that the controller becomes
less stable for lower starting altitudes. This is probably due

11



to the fact that the controller gains are already too high at
the start of the tuning process, which seems to agree with the
fact that landing phases 1 & 2 are quite short at these low
altitudes, meaning oscillations are found after only a slight
increase of the controller gains. Reducing the starting gain
and the step-wise increase, are therefore likely to increase the
performance.

Improving the horizontal performance could also be
achieved by putting effort into finding a better fit for the ratio
of the horizontal and vertical gain, as the horizontal control
seems to be more aggressive than the vertical control. For
now the horizontal gain is tuned based on the vertical gain,
for reasons mentioned in section 3.2. Probably the controller
performance would be better when a similar type of gain tun-
ing is applied to the horizontal gain as is done for the vertical
gain, in a separate second oscillation detection phase. This
phase could for example have as a goal to keep the object
centered in the virtual camera frame. Similar to the vertical
gain tuning, the control gain for this task would then be in-
creased until the MAV is clearly oscillating over the object.

As mentioned in section 6, a real world experiment was
attempted to validate the results acquired from Gazebo sim-
ulation. It was however unsuccessful, due to the occasional
complete loss of tracked corners between two frames, twice
in a row, triggering flight phase 4 e.g. a constant thrust de-
scend.

An increase in performance can also be achieved by a
change in hardware: using an event-based camera instead of
a regular frame based camera. The Dynamic Vision Sensor
(DVS) developed by IniLabs is such an event-based camera,
sending the pixel location and timestamp of a pixel changing
by more than a threshold in greyscale intensity. A tracking
algorithm, similar to the one used throughout this research,
was created for event data from such a camera and could be
used to replace the current object tracking module. Upsides
of using the DVS as a vision sensor are its exceptionally high
update rate and its natural edge indication, since edges cause
brightness changes in a dynamic environment. This natural
edge indication enables corner detection at low processing
cost, while the high update rate enables fast corrections for
instantaneous changes.

Next steps for application of this new control logic would
be to apply it to landing on a moving platform, or a platform
with a vertical offset from the background. Because the in-
formation taken from the images is restricted to the tracked
object, the algorithm should also work for those situations in
which the visual queues from the object differ from those be-
longing to the background.

The DVS seems to simply be a better fit for a computer vi-
sion task such as the one described in this paper. If a step was
made to apply the strategy to landing on a moving platform,
the benefits become even more evident, especially since the
DVS does not suffer from motion blur and is less sensitive to
changes in lighting conditions.
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Chapter 1

Introduction

Autonomous Micro Aerial Vehicle (MAV) control is a growing research area, with applica-
tions ranging from engineering, such as bridge inspection [24] to leisure, for example DJI’s
Phantom 4 with ”follow me” capability. Landing such an autonomous quadcopter MAV,
where all sensing and processing takes place on board, on an unknown platform at an
unknown location is still an open issue.

Consider the situation where a remote operator selects a landing site. The easiest
way to create the situational awareness required for the operator is by using a vision sensor.
Now in order to be applicable to indoor situations, the navigation should be independent of
GPS. Preferably no additional sensor is used at all, except to determine the Euler angles and
rotational rates, which have to be known at a high rate in order to assure stability in any
operating mode. When the platform is selected by a remote user, without any knowledge
of that platform or the height, it is impossible to determine the scale of the environment,
severely increasing the difficulty of any control task.

Currently such a solution does not exist. However in [29] a vision based autonomous
landing on a moving platform of known dimensions is achieved. A vision based autonomous
landing on the ground was achieved in [25] using a variable gain approach, compensating
for the unknown height, as will be described in the literature review. The Simultaneous
Localisation And Mapping (SLAM) approach used in [30] is one solution to the servoing
problem, but this requires extra processing power and memory, rendering it an unfit approach
for the smaller MAV’s which are the scope of this research.

One of the major issues in this field of research is the low update rate of the onboard
cameras (typically 5-20 Hz), the delay thus induced makes it difficult to ensure stability,
especially in a dynamic environment. Another major issue is the processing power that is
required to distil useful information out of the data produced by a frame-based camera. These
frames contain a lot of data which is not useful in any way, but has to be processed either way.

Recently research has been performed to overcome these issues using event-based cameras,
such as a Dynamic Vision Sensor (DVS), which is able to achieve an update rate of 10kHz
[1], which is even higher than a typical update rate of an IMU. Another distinctive advantage
of using an Event-based sensor is that it naturally indicates edges, saving computational
power in object recognition and optical flow estimation. The high update rate of the DVS
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2 Introduction

opens up possibilities for high precision tasks and aggressive manoeuvres in a dynamic
environment. In part also because it does not suffer from motion blur and has a high
dynamic range. Another reason to use event cameras is because tracking solutions based
on events are less sensitive to lighting conditions than those based on frame based cameras [32].

Based on the preceding, the following research objective is formulated:

Research Objective
To design a controller for a quadcopter MAV, based solely on angular information from an
IMU and visual data from a Dynamic Vision Sensor, enabling autonomous landing on a
flat platform of unknown dimensions at an unknown location without any knowledge of the
environment.

Where possible, proven methods for frame based cameras will be adapted for usage with a
DVS and combined into a controller able to reach the research objective. These methods will
be investigated in a literature research, focusing on the three fields that together constitute
the problem space:

• Visual Servoing

• Tracking

• Controlled Landing Strategies

This literature research is documented in the first part of this preliminary thesis in Chapter
2. The discussion in Chapter 3 builds up to choosing an algorithm from the ones presented
in Chapter 2, of which some are tested in Chapter 4. Finally a research plan, including the
proposed algorithms, experiments, required facilities and a planning can be found in Chapter
5.
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Chapter 2

Literature Review

As mentioned in Chapter 1, three research fields are of interest for this thesis: Visual Servoing,
Tracking and Controlled Landing Strategies. In this chapter an overview of frame based
research in these fields is given as well as contemporary contributions to these fields with
event-based cameras.

2-1 Visual Servoing

Visual Servoing with a camera onboard a UAV belongs to the category of eye-in-hand Visual
Servoing, meaning a motion of the vehicle will cause motion of the camera [12]. This category
can be split up into new categories as shown in Fig. 2-1. The layered layout of this figure
defines the structure of the larger part of this section and the division of the studied literature
in Table 2-1. After reporting on literature from these categories, two seperate subjects will
be discussed in short: research on an MAV following a moving platform and Visual Homing.

2-1-1 Layer 1

Position based (3D): Image data is used to find the pose of the robot w.r.t. a known object.
Computing the pose (relative rotation and translation) w.r.t. some reference coordinate
requires knowledge of the camera intrinsic parameters and a 3D model of an observed object.
The research in [29] uses known object sizes to estimate depth, to autonomously land an
MAV on a static platform, with approximately the same approach as in [9].

Image based (2D) : Only image data is used to control a robot in 3D space. Using
a pure 2D approach is unusual in UAV visual servoing, because high frequency angular
readings are usually already given to assure hover stability, rendering it logical to use this
information as input to the controller. Still some research has been performed in this
direction even on UAV’s such as by [26], where an adaptive controller is created. This
controller uses image moments µij , which is a frequently used approach as section subsection
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4 Literature Review

Table 2-1: Distribution of Visual Servoing literature over the categories defined in Fig. 2-1,
where H = Homography, I = Interaction matrix, SS = State Space PE = Pose Estimation and
VC = Virtual Camera

Work VS Type Layer 2 Layer 3 Application Implemented Environment Camera

[12] All - - - Theory - -
[44] All - - UAV Simulation Dynamic Frame
[29] Position - - UAV Real World Static Frame
[22] Image - - - Theory - -
[8] Image H - UAV Real World Dynamic Frame
[5] Image H - Simulation - Static Frame
[17] Image H - UAV Simulation Static Frame
[23] Image I - Robotic Arm Real World Dynamic Event
[45] Hybrid All - UAV Theory Static Frame
[36] Hybrid RL Depth Robot Car Real World Static Frame
[2] Hybrid RL SS UAV Real World Dynamic Frame
[3] Hybrid RL PE Robotic Arm Real World Dynamic Frame
[28] Hybrid RL PE UAV Simulation Dynamic Frame
[34] Hybrid H - - Theory - -
[38] Hybrid H - UAV Theory Static Frame
[26] Hybrid I VC UAV Simulation Static Frame
[20] Hybrid I VC UAV Real World Static Frame
[53] Hybrid I VC UAV Real World Dynamic Frame
[21] Hybrid I VC Robotic Arm Real World Static Event
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2-1 Visual Servoing 5

Figure 2-1: Visual Servoing for MAV’s split up into categories

2-1-3 will show. Most IBVS research however is performed on robotic arms, for which we
know the velocity and rotational rates, in MAV control however only the rotational rates are
usually known at a high rate with little noise. The fact that these velocities and rotations are
required for IBVS, makes that full image based visual servoing is an uncommon approach for
UAV control. An exception to this is [40] , which runs into problems when the UAV is close
to a large object or above a slanted surface. Mainly because of the attitude control based on
visual inputs, which also causes problems in calculating optical flow divergence.

Hybrid (2D 1/2) Some knowledge on the observed scene, such as the MAV’s Euler
angles and rates, is used in combination with the image data to provide a positional error
signal to a robot. For reasons already explained in this section, this is a common approach
to Visual Servoing for MAV’s, making use of fast angular rate measurements to compensate
for the lack of knowledge on the Cartesian velocities. Different ways to use this type of
knowledge are described in section 2-1-2.

2-1-2 Layer 2

As described in subsection 2-1-1, the most used type of VS for MAV’s is Hybrid Visual
Servoing (HVS). Other than IBVS it does not require high update rates for stabilization
and other than PBVS it requires no knowledge of the observed scene, which is required by
the definition of the Research Objective. The three most common HVS approaches are:
Reinforcement Learning (RL), Homography and Interaction matrix based solutions. Their
specifics are described in this subsection.
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6 Literature Review

Reinforcement Learning

In reinforcement learning the goal is to find the optimal state-action value function Q?w(x,a).
Where Qw(x,a) is of the form as defined in eq. 2-1, where r(x) are unit activities and the
weights w are updated using eq. 2-2, with δt as defined by eq. 2-3. et is the eligibility trace
vector, which depends on whether exploring (with probability ε) or exploiting behavior (1-ε)
is adopted for this step.

Qw(x,a) =
n∑

i=1

wai · ri(x) (2-1)

∆wa = α · δt · et (2-2)

δt = Rt+1 + γ ·maxaQt(xt+1,a)−Qt(xt,at) (2-3)

In this approach a could be the vector q and x could be the image coordinates and velocities
of multiple points on the landing platform, combined with IMU data. For example in [28]
the state used in the Q-function is a tuple of the current observation and the goal observation.

The downside of this approach is that it requires extensive training, which is a te-
dious exercise for MAVs, because recovering from a crash takes time and human effort. Also
this type of control is not as much a proven concept as the other two branches in this layer.

Homography matrix

A homography matrix relates object coordinates in the current camera frame to the goal state.
Research in this category is done by [34] respectively [38], also describing the process of gain
tuning for noise rejection. [8] presents a homography based approach to pose estimation.
Relating the projection of the ith image to the world frame using H i

w = H i
0H

0
w, requires the

initial homography H0
w, which can be obtained by using 4 or more points in the image with

the same Z, so for example a square on the ground. The homography H0
w is then found using

eq. 2-4, where hij is the value in row i and column j of H. Where all hij can be solved for
using a pseudo-inverse method, note that no knowledge of Z is required to determine H0

w.




x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 1 x1 y1 1 −x1x
′
1 −y1y

′
1

...
...

...
...

...
...

...
...

xn yn 1 0 0 0 −xnx′n −ynx′n
0 0 1 xn yn 1 −xnx′n −yny′n







h11

h12

h13

h21

h22

h23

h31

h32




=




x′1
y′1
...
x′n
y′n




(2-4)

To ensure stability and non-singularity of this matrix, the camera coordinates [x, y] are
normalised such that 0 < x, y < 1. This process provides a unique solution, scaled to give
H = I when the MAV is in the goal pose. Another way to solve for the Homography, without
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2-1 Visual Servoing 7

knowledge of the scene is presented in [5] where 3 points are used in combination with IMU
data to determine a unique solution for the homography matrix and the scaling factor αi. If
nothing is known about any point in view, meaning the platform is not necessarily flat, at
least eight points are required to solve for the homography.

Using H the position of any point on the current image can be related to that ob-
ject’s position in the goal reference frame. The task function e = [ev, eω]T is then defined by
eq. 2-5 as is done in [5]. m? can be found using the camera intrinsic parameter matrix Kc as
shown in eqs. 2-6 & 2-7, where p? is the position of the point to be tracked in the reference
image. [

ev
eω

]
=

[
(H − I)m?

H −HT

]
(2-5)

p? = Kcm
? (2-6)

Kc =



f fs u0

0 fr v0

0 0 1


 (2-7)

According to [17] a gain matrix K exists such that this system is exponentially stable, which
is only tested in simulation. Usually however, the control gains in such a Homography based
controller are scaled with an approximation of the distance to the object in the reference pose
d∗. It is important to realize that this approach requires camera calibration parameters Kc.
A Homography based on a calibrated camera is called a Euclidean Homography, which is
different from the projective Homography that has been discussed in this section. For such a
homography eq. 2-6 is not required, since its values are already scaled.

Interaction Matrix

In IBVS and HVS research an interaction matrix L can be used to relate translations in the
camera frame to velocities in the world frame, as shown in eq. 2-8.

ẋ = Lxv
b
c (2-8)

In HVS, the interaction matrix can be split into two separate matrices Lv & Lω describing
the influence of the camera’s Cartesian and rotational velocities respectively. These matrices
can be defined in different ways: as a [3× 3] or a [2× 3] matrix.

The [3× 3] approach is used in [34] & [12] and is defined by eqs. 2-10 & 2-11. These matrices
can be used in a control law of the form in eq. 2-9 but require an approximation of zb. Note
that all values without a superscript are defined in the camera frame in the equations in this
section.

vc = −L+
v (λet + Lωωc) (2-9)

Lv =
1

zb



−1 0 x
0 −1 y
0 0 −1


 (2-10)
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Lω =




xy −(1 + x2) y
1 + y2 −xy −x
−y x 0


 (2-11)

Approximating zb can be done in a number of ways:

1. perform a pose or depth estimation.

2. use zb = z?b.

3. finding ρ = zb

z?b

[12] and [34] describe a way to determine the interaction matrices using this last approach.
An extended state vector st = (x, log(zb)) is defined of which the error is then et = (x −
x?, log(ρz)). ρz in this equation can be found using 2-12, where r = det(H), thus requiring an
approximation of the Homography matrix and n, which is the normal vector of the platform,
to be determined using eq. 2-13.

ρ =
r

nT [x, y, 1]T
(2-12)

n = Rn? (2-13)

The [2 × 3] approach is used in [20] in combination with the virtual camera approach
described in subsection 2-1-3, in an MAV application, using image moments. This approach
does not require an approximation of zb, only the calibration parameters of the camera, the
performance is however dependent on the size of the platform and the height above it.

A common way of updating the interaction matrix is by using Broyden’s method,
shown in eq. 2-14, however this algorithm assumes all velocities and rates to be known.
Other than with for example a robotic arm visual servoing task, this kind of knowledge is
not naturally present in UAV control, requiring extra sensors, such as GPS or requiring
integration of the accelerometer data.

Ln = Ln−1 +
(xn − xn−1 − Ln−1vn)vn

vTn vn
(2-14)

2-1-3 Layer 3

The final subdivision of the literature is described in this section, divided over the two branches
to be split up: Reinforcement Learning and Interaction Matrix approaches.

Deep Learning Pose Estimation

The relative pose to an object can be found using a deep neural network trained on image data
such as in [3] and [28]. Both use a pre-trained neural network for object recognition as the
first layer of their network. The networks converge well and generate accurate estimations,
even for noisy images, occlusion and variable lighting conditions. Worth mentioning is the
fact that the controller in [3] is trained on one image, which is rotated and displaced into a
range of configurations, creating a set of relative poses to be determined from it. However as
the research objective describes, this thesis focusses on visual servoing towards an unknown
target, meaning no such training will be possible for the task.
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2-1 Visual Servoing 9

Deep Learning State Space Estimation

In [2] the outcome of a State Space estimation from Hebbian learning is fed into the RL
controller. Based on known self-motion of the robot and visual signals, a space coding (binary
representation) of the environment is created. The approach is biologically inspired; the
algorithm presents the environment in a similar fashion as the hippocampal place cells in rats.
The network grows incrementally with every interaction of the robot with the environment.
The robot takes 4 views rotated 90o w.r.t. the last, at a set of locations, thus creating a
panoramic view from those points, whose locations are estimated from integrating the velocity
measurements of the robot. The robot has an exploration policy, varying the exploratory
behaviour depending on the familiarity of the robot with the current position.

Deep Learning Monocular Depth Estimation

In [36] the output of a supervised learner for depth estimation is fed into a reinforcement
learning controller on a remote control car, using only one camera. The image is divided into
windows, for which texture energies and gradients are calculated, to then be combined with
the windows they form a vertical stripe with. The texture gradient of every stripe then gives
an indication of the proximity of objects in that section of the field of view.

Virtual Camera approach

In [20] a PID controller is used to make a drone servo to two markers on the ground, using the
”virtual camera approach”. The virtual camera approach assumes small Euler angles and a
flat surface and projects the images on an image plane parallel to the surface using knowledge
of [θ, φ] as shown in Fig. 2-2. This approach is also applied in [53] to create a backstepping
controller for a hover task above a plane at different heights, while the objects in view move
slightly. It should be noted that in most of these researches the UAV only has to hover above
the markers, without a change in Z, rendering the task slightly simpler. Using a servoed
camera always pointing parallel to the inertial z-axis, it is possible to hover above a moving
platform with this approach as is done in [44].
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Figure 2-2: Virtual Camera Plane from [53]

Where in [53], θ & φ are assumed to be negligible, [20] represents a more robust control
algorithm, where the image is corrected for its rotation around both these angles first. This
research uses image moments as mentioned in subsection 2-1-1. Image moments originally
come from the field of object recognition, because they can be used to define the shape of an
object independent of shape or rotation around the camera’s optical axis. [11] introduces the
use of image moments in visual servoing, for exactly those reasons. From K points in this
coordinate system, all centered image moments µij are found using eqs. 2-15 & 2-16, where
this last one can also be applied to yv to get ȳv. These µij ’s can either be used to construct L
as proposed in [47] & [11] or to use as the to be controlled features s using eqs. 2-17, 2-18 &
2-19, where the λ’s are the focal lengths in pixels. On this s, the control inputs can be based
as shown in eqs. 2-20, 2-21 & 2-22 as is done by [20], or the higher order control described by
eqs. 2-23, 2-24, 2-25 & 2-26 as proposed by [47] & [11], which is only to be used on symmetric
objects. An advantage of this last approach is that it does not require an approximation of
the MAV’s velocity in the virtual camera frame or PD controller on s.

µij =

K∑

k=1

(xvk − x̄v)i(yvk − ȳv)j (2-15)

x̄v =
1

K

∑

K

xvk (2-16)

s1 = s3x̄
v s2 = s3ȳ

v (2-17)

s3 =

√
µ?20 + µ?02

µ20 + µ02
(2-18)

s4 =
1

2
tan−1(

2µ11

λ2
λ1
µ20 − λ1

λ2
µ02

) (2-19)
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uT = −kh2(vv3/kh1 − s3 + 1) (2-20)

uθ = −kl2(vvx/kl1 − s1) uφ = −kl2(vvy/kl1 − s2) (2-21)

upsi = kpsi/(J3s4) (2-22)

Where J3 is the inertia around z and the gains k are positive constant gains, with requirements
for stability as described in [20]. A positive point about this approach is that it does not
require the platform to be flat, as long as its tilt angle is known.

sx = (c2c3 + s2s3)/K sy = (s2c3 + c2s3)/K (2-23)

c3 = c2
1 − s2

1 s3 = 2s1c1 K =
I1I

3
2
3√
S

(2-24)

c1 = µ20 − µ02 c2 = µ03 − 3µ21 s1 = 2µ11 s2 = µ30 − 3µ12 (2-25)

I1 = c2
1 + s2

1 I2 = c2
2 + s2

2 I3 = µ20 + µ02 (2-26)

Where S is an approximation of the surface occupied by the object in the camera view.

[11] describes how pure IBVS can be performed using high order features based on image
moments. These high order terms are added because low order features s = [xg, yg, a, α]T

(center of gravity, object area and object orientation; s4 from eq. 2-19), induce a coupling of
ωx and vy, as well as ωy and vx. With ωx and ωy known however, these high order features
might not be necessary, reducing noise and computation time. In fact, ω?x and ω?y can be
taken out of the equation (eq. 2-9) entirely, since a velocity command will be sent to the
velocity controller in paparazzi and the desired angular rate will be deduced from this desired
cartesian velocity, which is of course different for other types of robots which do not have
a coupling between rotations and translations in the body frame. Image moments are only
meaningful when they are applied to planar objects oriented parallel to the camera frame,
hence it can not be considered seperate from the virtual camera approach for MAVs.

Reference Interaction matrix

In order to use the interaction matrix approach, as described in subsection 2-1-2, an ap-
proximation of d is required, which can be circumvented by finding vz

z from optical flow
measurements as done by [40], or by simply taking d = Z = d?. This approach is of course
only stable for a small range of d around d?.

2-1-4 Event Based VS

Recently, event based cameras have been used for visual servoing tasks in robotic arm ap-
plications [21] & [23]. Usually the AER event representation system, also used by [43], is
employed as a bridge between the sensor and the controller. The same software is used by
[14] to balance a pencil on its tip with feedback from two DVS sensors in a range of light
conditions. The cameras are used to create a 3D model of the pencil in the environment,
based on which a PD controller outputs its control signals.
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2-1-5 Following a moving platform

In [35] an MAV uses an IBVS approach to follow a moving platform. It uses visual features
si, belonging to an object to be tracked, to define a visual error signal δ1. Now by tuning the
control gains, a specific task can be performed in an accurate and stable manner. A platform
on the ground with 4 distinguishable points are used in this research, where one of those
points is displaced vertically to test the applicability of this control scheme to a non-planar
target. The gains are however tuned for a platform of a certain size, the controller works
for a range of platform sizes around this calibration size, but the solutions is far from scale
independent.

2-1-6 Visual Homing

An interesting area of research related to Visual Servoing is that of Visual Homing; an insect
inspired approach to vision based navigation. The navigation solutions presented in this re-
search area are based on the concept of snapshot matching, where the position of features in
the current image are compared to those in the reference image, with the help of a compass.
The compass can be used to prevent the robot from accepting an almost identical image in
the opposite configuration to the reference configuration [49]. If for example a robot car is
supposed to drive along a road into a certain configuration as in [37], the image created by
the robot rotated 180o around its z-axis is more similar to the reference image than it is for
the larger part of the rotations around this axis. The compass then prevents the navigation
algorithm from accepting this local optimum, which is a typical problem encountered espe-
cially in Root Mean Square (RMS) methods for the gradient of the image difference as for
example implemented in [52].

2-2 Tracking

The research objective states the MAV is to land on an a priori unknown platform, which rules
out the possibility of using active LED markers as for example used in [10]. More generalizable
approaches, making use of the fact that contours are readily available from the DVS output,
will be investigated in this section. Starting with approaches used on conventional frame based
cameras in subsection 2-2-1, followed by current methods used with event based cameras in
subsection 2-2-2.

2-2-1 Frame Based Contour Tracking

In frame based tracking, color is usually an important discriminator. Since color data is
not available when one is using a DVS, these color based algorithms are excluded from the
literature review. Instead contour tracking algorithms are investigated, for which the DVS,
with its natural edge detection, would be a good fit as a sensor.

The Hidden Markov model used in [13] uses a simple Bayesian network to recognize
the patterns it has been trained on. As a Markov process, it uses knowledge of the last state
to find the probability of the next observed state. Using a profile model, the Active Shape
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Model in [4] alters the suggested shape to match strong edges. In [42] a feature matching
approach combined with a trajectory coherence check is used to track the movement of
objects. This requires modelling the target’s movement and filtering the measured motion
based on that model.

In [46] an MAV is flown through a gap in a wall. Through the gap the background
shows, with a lower camera frame velocity than the wall, making it possible to track the gap
based on a difference in camera reference frame velocity.

2-2-2 Event Based Tracking

The tracking algorithms used in the Visual Servoing research mentioned in subsection 2-1-4
perform event clustering based on:

• Spatial location

• Time stamp

This means a 3D map has to be saved to compare the time stamps of events, though such an
approach does not necessarily require a lot of memory, as shown by [32]. A similar clustering
approach to object detection is presented in [50], where the velocities of the corners, found
using the algorithm presented in [51], are compared to see which corner belongs to an
independently moving object. This way corners are associated to an object, however this
requires the object to always be moving w.r.t. the environment, the same goes for the
clustering algorithm presented in [19]. The software used and described by [51] can be found
on github and run on a simulated dataset as described in [39], where two corner detection
algorithms for event cameras are described and their performance is compared in a range of
environments: FAST and Harris corner detection.

For the event based Harris corner detector a binary surface Σb is defined, where Σb(p) = 1
if from the last N events an event occurred at p and Σb(p) = 0 otherwise. Then using the
gradient of this surface in a window W around the current event, one is able to find those p’s
for which a contrast exists in both the x and y direction using eq. 2-28, where M is defined
in eq. 2-27.

M(ei) =
∑

e∈W
g(e)




Σb(e)
dx

2 Σb(e)
dx

Σb(e)
dy

Σb(e)
dy

Σb(e)
dx

Σb(e)
dy

2


 (2-27)

R(ei) = det(M)− k · trace2(M) = λ1λ2 − k(λ1 + λ2)2 (2-28)

Where λ1 & λ2 are the eigenvalues of M. Other than with traditional Harris corner detection
however, Σb is only defined around recently detected corners, which saves storage and
processing of unnecessary data, but also requires the corners to stay in view.

The adaptation of the FAST corner detector uses the Surface of Active Events (SAE)
whose value is the timestamp of the most recent event at each pixel as described by eq. 2-29.
Two rings of pixels are defined around the current event as shown in Fig. 2-3a & 2-3b, one
with radius r = 3 (red) and one with r = 4 (blue). On each ring the algorithm searches
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(a) Pixel grid with the two rings in red and blue

(b) Visualisation of SAE for a corner in the upper
right corner

Figure 2-3: Event-based FAST Corner detection from [39]

for a continuous segment (arc) where the SAE(p) is significantly higher, meaning an event
occurred more recently, than on the rest of the ring. For the inner ring, this arc must have
a length between 3 and 6 pixels, for the outer ring it must be between 4 and 8. When this
condition holds for both rings, the event is classified as a corner.

SAE(x, y) = ti (2-29)

An advantage of the FAST method over the Harris corner detector is that it does
not require the calculation of a derivative, which is both computationally expensive
and noisy. This is the main reason why it processes events around 15 times faster than
the Harris method, which on the other hand performs better in highly textured environments.

The Iterative Closest Point algorithm presented in [41] links pixels to an object based
on the distance between a point on a surface of active pixels and that of the average position
of the model representing the object to be tracked. Such an approach however, requires
the size of an object to stay approximately the same. A more adaptive approach w.r.t.
scale is the multi-Kernel approach described in [27], where using one Kernel would be
more appropriate for real-time application onboard an MAV, considering processing power
limitations. Creating a Kernel after an approximation of the shape of the object, might cause
a single Kernel tracker to perform as well as a multi-Kernel tracker, which is able to track any
kind of geometry. The principle is the same: the mean of an object is moved over the camera
coordinate system and the approximated size of the object is updated based on the last ap-
proximation of the mean, the locations of new events and the expected geometry of the object.

In [54] an iterative approach is used, finding optical flow and image plane position es-
timates of object features from corners detected from the events. Worth noting is the
variable window size, based on the optical flow measurements of the object to be tracked.

[7] presents a simple particle tracking approach, where the probability of an event be-
longing to a certain object tracker, is modelled as a bivariate normal distribution as in eq.
2-30. When the probability P is above a certain threshold the tracker position µ is updated
based on the update law in eq. 2-31. To see if a tracker is still useful or if it can be discarded,
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an activity function Ai(t) is created for every tracker.

Pi(p) =
1

2π
‖βi‖−

1
2 e−

1
2

(p−µi)
T β−1(p−µi) (2-30)

µ = αµ+ (1− α)p (2-31)

The tracker in [31] moves around the screen based on a calculation of the center of mass
of a detected object. Similar to the variable window size in [54], both the cluster size and
the event number threshold Nev are changed during runtime for this algorithm, based on
event detections in the extension of the cluster and the number of events detected within the
cluster per period of time respectively. This requires background events to be excluded first,
using the spatial and temporal correlation of the events.

A cluster based object tracking approach to traffic tracking is presented in [33], the
position of the cluster is moved around based on incoming events, identified as belonging to
that cluster. This approach is shown to work well when a set of objects move w.r.t. a static
camera. Which is also the application type of the similar tracking algorithm presented in [18].

Another option is to combine the high speed tracking ability of the DVS with conven-
tional object recognition methods on the frames from the accompanying frame based camera,
as is done by [48].

2-3 Controlled Landing Strategies

Performing a controlled landing can be achieved by reducing the (downward) vertical velocity
with height. A smooth landing is when height decreases logarithmically, which can be
achieved by keeping vz

Z constant. PBVS and other servoing approaches for which depth is
known, typically use different strategies, because direct height control is possible.

For other approaches however this relation can be approximated by finding the opti-
cal flow divergence. A downward facing camera is usually chosen, when the target is located
below the MAV. With a downward facing camera the relations in eq. 2-32 regarding optical
flow are used to describe an MAV’s movement above a flat surface, after correcting for
rotational rate effects [15].

ϑx =
vx
Z0

ϑy =
vy
Z0

ϑz =
vz
Z0

(2-32)

A controller based on this philosophy is created in [25], where the problem of instabilities
caused by a delay and noise in the calculation of the divergence D is pointed out. To counter
this effect, the control gain k is a logarithmic function of time, as h is supposed to be.

In [30] an approach is presented to perform SLAM using distance estimation based on
these oscillations, described in [16]. The adaptive control pipeline from this thesis is shown
in Fig. 2-4, where the horizontal control is scaled using the pseudo-scale λ′i as described by
eq. 2-33, where α is a positive constant.

λ′i =
Ki

α
(2-33)
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Figure 2-4: Control pipeline from [30]

2-3-1 Event Based Optical Flow

In [43] an event based optical flow estimation algorithm is created and used to perform a
smooth landing with an MAV, based on local gradients of Σe, which is the same as the
surface of active events described in section 2-2-2. The method is first introduced in [6] to
track a line on a rotating disk using a static camera and involves the creation of a surface Σe,
which is defined in eq. 2-34, where t is the last time stamp at which an event occurred at the
pixel located at [x, y]. Now using the gradient of this surface, the local flow velocity can be
found using eq. 2-35, which is locally regularized to compensate for missing events.

Σe(x, y) = t (2-34)

∇Σe = (
1

vx
,

1

vy
)T (2-35)

In [43] the approach is slightly altered to express the flow velocity as the normal vector to Σe

in eq. 2-37 expressed in function parameters of the surface Π = [px, py, pt, p0]T around the
pixel [xi, yi] described in eqs. 2-36. Strong edges sometimes cause multiple events in quick
succession, leading to an overestimation of the flow velocity. To prevent this, a refractory
period tR = 0.3s after a pixel’s last emitted event is introduced, when events are not accepted
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from that location.
pxxi + pyyi + ptti + p0 = 0 (2-36)

[
u
v

]
=

1

‖∇Σe‖2
∇Σe = − pt

p2
x + p2

y

[
px
py

]
(2-37)
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Chapter 3

Discussion

As mentioned in the introduction a visual servoing approach will be used to achieve the
research objective. Now since the objective states the MAV is to land on a platform of
unknown dimensions, a PBVS approach will not suffice. An HVS approach is selected
because, as mentioned in section 2-1, the angular readings are provided at a high rate anyway
and using them creates a more stable controller.

Performing deep learning pose, state space or depth estimation is out of the scope of
this thesis, also there are few working examples of this approach on MAV’s. The projects in
which visual servoing is done based on the outcome of one of these algorithms also only show
performance in a single environment. The fact that this type of control requires training in
every new environment renders it a less attractive approach.

For this thesis an HVS Interaction Matrix approach using image moments will be
used, because it is a proven concept for MAV control. Also it is possible to test this approach
using the Visual Servoing Platform from Inria.

For tracking, it makes sense to use an existing event-based algorithm, because creat-
ing a more efficient one from current frame based solutions is out of the scope of this thesis.

The simplicity of the approach in [7] makes it attractive, however a bivariate normal
distribution does not seem like the proper way to represent a moving object as seen by
an event based camera. Mainly object edges are visible by a DVS, so the center of a flat
object is unlikely to be visible, while a bivariate normal distribution gives the highest
probability at its center. The optimal value of β depends on the width of the object in
view, meaning this value should change with height. To do this an approach such as in [31]
can be used, where the tracker window size depends on event detections in the extension
of the cluster and the number of events detected within the cluster per period of time.
When such an approach is used, the object should be probabilistically represented as a line
rather than a plane. Preferably, this line should depend on the outline of the object, as
viewed by the DVS, so the events induced by a textured background can be excluded. The
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activity function to be used for such a tracker can simply be a threshold; when a tracker
is inactive for more than two seconds it is reinitialized near the average position of all
trackers. Also instead of calculating the probability P of an event belonging to a tracker for
every event, a threshold distance can be calculated from the threshold probability and the
current window size value β. That way only the distance between the event and the tracker
has to be calculated, saving processing power w.r.t. calculating the probability for every event.

The algorithm to be tested in this thesis is to use a FAST corner detection algorithm
on the dataset, to find the location of a set of corners and use their average as an approx-
imation of the middle of the platform. A window will be defined around every corner to
perform corner detection on, thus reducing the calculation effort. It should be noted that the
initial corner detection is not necessarily performed on event data, but could be performed
on images from the frame based camera that is included in the DVS.

Since this project will not make use of a PBVS approach a constant optical flow di-
vergence strategy is chosen for performing a controlled landing using vision. To prevent
instabilities, the gain for this constant divergence controller is varied with height, which
is estimated based on oscillations, as described in section 2-3. Using a logarithmic k as a
function of time as proposed by [25], will not be done, because the MAV might be required
to stop descending for a period of time, in order to accurately track the platform. Such an
approach can however be used in between estimations of h.
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Initial Investigations

This chapter describes the findings of the initial investigations performed parallel to the liter-
ature review laid down in Ch. 2. The three fields briefly looked into first in this preliminary
phase are: the DVS data, control architecture and corner detection.

After creating the DVS, the University of Zurich also created a DVS simulator. The simulator
can be used to create an event dataset, compressed into a ’.bag’ file, from a Blender scene and
a camera trajectory. This simulator can be used to get an idea of the type of data generated
by the DVS and the ’.bag’ files can be used as inputs to test the suggested corner tracking
algorithm, depth estimation and visual servoing control loop. For all of these applications, this
simulator is of great use, because other than with real world data, the relative and absolute
positions of every object in view is precisely known at every timestamp. An example of what
the output of the simulator looks like, can be found in the appendices.

A Homography based controller, with the task to servo into a configuration where a detected
object is in the center of the camera view, was created in Matlab’s Simulink and can be found
in the appendices. Most important is that the HVS controller is occasionally fed with a delayed
height estimate. This delay is introduced because height will either be: asynchronously
updated based on the oscillatory behavior of the MAV or be updated based on a calculation
of the derivative of the divergence; which in any case requires some time to update.

Also an attempt was made to create a Harris corner detection algorithm in Python on a
dataset from the simulator described above. However the detector described next was found
early on in the process, this detector already includes a working interface with ’.bag’ files,
visualization tools and two working detectors in C++: a Harris and a FAST corner detector.

More elaborate investigations are performed into converting the University of Zurich’s
corner detection algorithm into a corner tracking algorithm and using Lagadic’s ViSP to
simulate a vehicle controlling based on an IBVS approach.

The event corner detection algorithms described in Ch. 2 have been created and integrated
with the DVS simulator by the Scaramuzza group at the University of Zurich. This corner
detection algorithm is altered in this preliminary thesis in order to track the corners of an
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object initiated at the center of an object in view. Ideally this initialisation is done by the
user by a click and drag approach to define a window in which to look for corners of the
object to track, but for now this initialisation is done by defining an initialisation location for
the centroid and the radius to search around it for the also predefined number of corners.

The working principle of this tracker is visually explained in Fig. 4-1, which shows how step by
step the events are excluded from further processing, ultimately excluding 97% of the events
because they are either not a corner or do not belong to the object to be tracked. Clearly the
size of the search window, which is initialised by the user, should be updated based on the
estimated height. A separate loop makes sure that all inactive trackers are reinitialized at
a random location close to the center of the tracked object, because in a dynamic situation,
unused trackers make it possible for other corners, that appear close to the initial center of
the object at a later timestamp, to be identified as a corner to be tracked. Another measure
implemented to prevent this is that a corner is discarded when it is further away from the
centroid than twice the distance of the second most distant corner belonging to the object.
Figure 4-2 shows the corner tracker applied to a dataset with several figures displayed on a
table, with the tracked corners in blue and red.

Figure 4-1: Corner tracker logic

Figure 4-2: Corner tracker applied to dataset with various static shapes and a moving camera

Another area of investigation is Lagadic’s Visual Servoing Platform (ViSP), for which the
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use as a simulation tool and onboard application on a robot is inquired. The pre-made
IBVS simulation, shown in Fig. 4-3, of a robot servoing to center four points in the camera
reference frame, can be used as a baseline for this thesis. In the figure, the green lines are the
trajectories of the points in the camera view (on the left) and the world view (on the right).

Figure 4-3: IBVS simulation in ViSP

However a lot still has to be done in order to simulate the situation where an MAV servos in
order to center an object in view based on a number of detected corner points. For that a
quadcopter dynamic model has to be inserted as a vehicle model, which is not readily available
in ViSP and will have to be found elsewhere. The fact that this IBVS simulation is not based
on an MAV model, introduces another issue: derotation of the image (the Virtual Camera
approach) has to be implemented too; the simulated robot does not have to rotate in order
to translate.

Finally when the approach has shown to perform in simulation, the controller can be imple-
mented on board an MAV. For this it is beneficial that the ViSP architecture has shown to
work for a range of robots in visual servoing tasks and that the source code for these projects
is available on github.
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Chapter 5

Research Plan

This chapter describes the technical and experimental work to be performed in this thesis.

The question to be answered by this research is the following:

Research Question
Is it possible to design a controller for a quadopter MAV, using only angular information from
an IMU and visual data from a Dynamic Vision Sensor, performing an autonomous landing
with constant optical flow divergence on a moving, flat platform of unknown dimensions,
without any knowledge of the environment?

This question is constructed out of the smaller sub-questions:

Sub-Question 1
Can a smooth landing be performed on flat a platform of unknown dimensions, without any
knowledge of the environment?

Sub-Question 2
Can a moving platform of unknown dimensions be tracked accurately using a Dynamic Vision
Sensor?

Sub-Question 3
Can an MAV perform a 3D control task, solely based on angular information from an IMU
and 2D image offsets?

Sub-Question 4
Can the solutions to Sub-Questions 1,2 & 3 be combined into one solution within their
combined limitations?

The objective of this research follows logically from the research question:

Research Objective
To design a controller for a quadcopter MAV, based only on angular information from an
IMU and visual data from a Dynamic Vision Sensor, enabling autonomous landing with
constant optical flow divergence on a moving, flat platform of unknown dimensions without
any knowledge of the environment.
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Just as logically do the sub-goals follow from the sub-questions:

Sub-Goal 1
Design a constant optical flow controller, able to land an MAV on a moving flat platform of
unknown dimensions, without any knowledge of the environment.

Sub-Goal 2
Design an object tracking algorithm, able to track a moving platform of unknown dimensions
based on DVS events.

Sub-Goal 3
Design a controller able to servo into a certain configuration w.r.t. some object in view,
based on angular information and 2D image offsets.

Sub-Goal 4
Create an onboard MAV controller with the combined functionalities described in Sub-Goals
1,2 & 3.

When sub-goal 4 is reached, the first onboard event-based visual servoing MAV, capable of
landing on a moving platform, has been created.

Creating a working prototype of a new concept such as proposed in this project proposal is
a time consuming exercise. Rather likely, problems will be met along the way, involving the
implementation of the created algorithms onboard the MAV with a data stream from the
DVS. However the controller as implemented in [43] will be available for use as a starting
point in this project.

Rein de Vries provided the MAV-lab with a DVS from Insightness A.G. to be used for
this project. His plan is to start his own company around a visual servoing MAV using
a DVS. Which would potentially be a lighter and more accurate solution with a higher
update rate and dynamic range than the same product using a frame-based camera for vision.

The tasks to be performed to meet the research objective are distributed over the fol-
lowing three categories: TSi: involving the creation of a Simulink controller, TEi: converting
Event data to corner coordinates and TOi: Onboard tasks, combining and implementing TSi
& TEi. The tasks are listed below:

Task (TS1)
Create a Simulink controller able to servo into the goal configuration for a static object

Task (TS2)
Create a Simulink controller able to keep within error range of the current configuration
w.r.t a moving object

Task (TS3)
Create a Simulink controller able to perform constant divergence landing on a static platform
using a decaying gain controller based on height approximation using observed oscillations

Task (TS4)
Combine the controllers created in TS1,TS2 & TS3 to come to a Simulink controller that
meets the research objective

Task (TE1)
Create a corner detection algorithm which can be used on a simulated event dataset
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Task (TE2)
Create an object tracking algorithm using the corners detected in a simulated event dataset

Task (TE3)
Edit the corner detection algorithm, such that it works on a dataset created using the DVS

Task (TE4)
Use the algorithms created in TE2 & TE3 to create an object tracking algorithm for DVS
data

Task (TO1)
Implement the algorithm created in TE4 in the controller in paparazzi, to show the corner
coordinates of the object to be tracked

Task (TO2)
Make the rotor’s rpm depend on the corner coordinates

Task (TO3)
Convert the controller created in TS4 into C-code, integrated in Paparazzi

Task (TFinal)
Tune the controller such that it meets the research objective

Clearly all TOi tasks build up to Tfinal which is the task to achieve Sub-goal 4 and with that
the research objective. Sub-goal 1 & 3 are reached when all TSi tasks are finished and the
TEi tasks work towards reaching sub-goal 2.

All TSi will be performed in Matlab’s Simulink. For which a start has been made
early on in the project. All TEi tasks will initially be performed in Python, after which the
code will be transformed into C-code for use in the embedded tasks (TOi). Using TU Delft’s
Paparazzi, the code created in TE4 & TS4 will be gradually implemented on the MAV in the
TOi tasks. Paparazzi contains libraries which can be used to test the code in small steps,
using for example the OpenCV libraries.

The tests to conclude the TOi’s can be performed using several data visualization in-
terfaces included in paparazzi. For example writing results in the terminal and showing
corner coordinates on screen using the Open CV interface.

The conclusion of Tfinal is an experiment in TU Delft’s CyberZoo, attempting a landing
on an unknown platform at a random position. If this is completed successfully, the plat-
form will be placed on a remote controlled car to test its ability to land on a moving platform.

The DVS event data to be worked with in this thesis is of the form e = [x, y, t, p],
where the polarity p indicates whether the pixel has gotten lighter or darker, the position
[x, y] is given as the pixel number to the right and below the left upper corner of the camera
screen and time stamp t is nanosecond accurate. The simulator outputs these as a bag
of events for every second, while the DVS outputs the events grouped into 100µs data
packages. For the experiments linked to TSi, the values MSi,j by which the performance will
be measured are:
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Measurable (MS1,1)
Relative convergence speed ∆t

‖xw
MAV −x̄w

p ‖ for a range of
Sp

zw
MAV −zw

p

Measurable (MS1,2)
Mean steady state error

Measurable (MS2,1)
Mean position error for range of platform velocities ‖ẋp‖ and maximum acceleration ‖ẍp,max‖

Measurable (MS2,2)
Maximum position error for range of platform velocities ‖ẋp‖ and maximum acceleration
‖ẍp,max‖

Measurable (MS2,3)
Maximum platform velocity for stable controller

Measurable (MS3,1)
Vertical velocity at landing

Measurable (MS3,2)
Minimum platform size

Measurable (MS4,1)
MS2,3, MS3,1 & MS3,2

Measurable (MS4,2)
Mean offset at landing

Measurable (MS4,3)
Maximum offset at landing

Where Sp is the area of the platform. For the event-based experiments the performance will
be measured using the following parameters:

Measurable (ME1,1)
Maximum ratio of distance and corner separation size at which two corners can still be
distinguished

Measurable (ME1,2)
False positive ratio in proximity of an actual corner for a textured background

Measurable (ME2,1)
Maximum flow velocity ‖ ẋz ‖ at which a corner can still be accurately tracked

Measurable (ME2,2)
Maximum acceleration for which a corner can still be accurately tracked

Measurable (ME2,3)
Average estimation error for a range of velocities and accelerations
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Measurable (ME3)
ME1,1 & ME1,2

Measurable (ME4)
ME2,1, ME2,2 & ME2,3

Finally the performance during the onboard experiments is evaluated using the following
measurables:

Measurable (MO1,1)
Maximum approximation error of corner coordinates

Measurable (MO1,2)
Mean approximation error of corner coordinates

Measurable (MO1,3)
Delay in approximation of corner coordinates

Measurable (MFinal)∑
i,j MSi,j

The values
∑

jMO1,j are found by comparing the output of the algorithm to OptiTrack data.

As can be seen from the Gantt chart in the appendices, implementation onboard the MAV
in the first place requires working processing blocks for the DVS events (M ′Es). Since a start
has already been made on the M ′Ss and an event dataset has been created, the first priority
is to start working on the ME milestones.

The thesis work is divided over two periods, with a three week holiday break in be-
tween. The first part consists of finishing the literature review and working on the TSi &
TEi tasks. After that the TOi & TFinal tasks are performed in combination with writing the
Mid-Term report and describing the outcomes in the final thesis. To be able to follow this
planning, a couple of issues should be tackled early on, such as finding the following values:

• Mass and Inertia

• Actuator and Measurement Delay

• Maximum Thrust and Moments τ

Which are required in order to properly model the control of the MAV, just as the following
software, hardware and facilities are required to successfully perform all the tasks:

�3 Install Paparazzi on Ubuntu

�3 Install OpenCV and DAVIS simulator

�3 Access to CyberZoo, MAVLab

� Access to the DVS sensor

� Access to an MAV with DVS integrated with paparazzi
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ID Task 

Mode

Task Name Duration Start Finish

1 MSc. Thesis 11,15 mons Thu 1-3-18 Mon 7-1-19

2 Thesis part 1 118 days Thu 1-3-18 Sun 12-8-18

3 Thesis part 2 90 days Tue 4-9-18 Mon 7-1-19

4 Summer Holiday 16 days Mon 13-8-18 Mon 3-9-18

5 Literature Study 88 days Thu 1-3-18 Sun 1-7-18

6 Research Methodologies 45 days Tue 1-5-18 Sat 30-6-18

7 Simulink Simulations 55 days Tue 1-5-18 Sun 15-7-18

8 TS1 33 days Tue 1-5-18 Thu 14-6-18

9 TS2 33 days Tue 1-5-18 Thu 14-6-18

10 TS3 22 days Fri 1-6-18 Sun 1-7-18

11 TS4 11 days Mon 2-7-18 Sun 15-7-18

12 Event data processing 25 days Tue 12-6-18 Sun 15-7-18

13 TE1 17 days Tue 12-6-18 Wed 4-7-18

14 TE2 6 days Thu 5-7-18 Thu 12-7-18

15 TE3 2 days Fri 13-7-18 Sat 14-7-18

16 TE4 1 day Mon 16-7-18 Mon 16-7-18

17 Onboard Implementation 22 days Tue 17-7-18 Wed 15-8-18

18 TO1 12 days Tue 17-7-18 Wed 1-8-18

19 TO2 12 days Tue 17-7-18 Wed 1-8-18

20 TO3 21 days Tue 17-7-18 Tue 14-8-18

21 Final tuning and 

experiment (Tfinal)

53 days Tue 4-9-18 Thu 15-11-18

22 Reporting 86 days Tue 4-9-18 Tue 1-1-19

23 Prepare defence 5 days Tue 1-1-19 Mon 7-1-19

11-225-211-325-3 8-4 22-4 6-5 20-5 3-6 17-6 1-7 15-729-712-826-8 9-9 23-97-1021-104-1118-112-1216-1230-1213-127-1

1 February1 March 1 April 1 May 1 June 1 July 1 August 1 September1 October 1 November1 December1 January
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Figure 1: Example dataset created by the DVS simulator
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Figure 2: Homography based controller in Simulink
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In this research, successful landings were performed using IBVS logic applied to features in the virtual camera
frame, combined with an adaptation of optical flow divergence based landing rationale. The algorithm was
applied to a range of starting heights and divergence settings in Gazebo simulations in Paparazzi.

These landings were performed solely on textured objects, because the algorithm requires the tracking of at
least 2 corners and preferably more, because more corners lead to a more stable approximation of the size
increase and translation of the object in the camera view. If not enough texture can be found in the region
specified in the camera view, the MAV directly goes into the final landing phase, which means it will descend
with a constant thrust setting, slightly lower than what would be required for hover.

From the experiments it is clear that Db can be used to replace DLK which is the result of global optical flow
estimations. Thanks to the small errors on the linear approximation and the overall availability, in contrast
to the outcome of the Lukas-Kanade scheme, a well functioning system, robustly servoing and landing on a
specified location in the screen, can be created based on Db .

The results of the Db experiments would probably be even better when
vz,i+vz,i−1

2 is used as ground truth D ,

since that is the value Db = dw
wdt = wi−wi−1

wi dt actually approximates; the approximation is shifted by 1
2 T f r ame .

Another way to improve the approximation power of Db as D̂ would be applying a filter to them based on
data from the accelerometer. The effect of assuming the camera to be a perfect convex lens, can further
be countered by initializing the window more gradually, by for example only reinitializing features from an
outer sub-window in an inner sub-window. When a feature for example moves to a location at 70 % of the
image width it can be reinitialized between 0 and 50 %, avoiding a difference in accuracy for different window
initializations.

From the experiments it is evident that the controller becomes less stable for lower starting altitudes. This
is probably due to the fact that the controller gains are already too high at the start of the tuning process,
which seems to agree with the fact that landing phases 1 & 2 are quite short at these low altitudes, meaning
oscillations are found after only a slight increase of the controller gains. Reducing the starting gain and the
step-wise increase, are therefore likely to increase the performance.

Improving the horizontal performance could also be achieved by putting effort into finding a better fit for the
ratio of the horizontal and vertical gain, as the horizontal control seems to be more aggressive than the vertical
control. For now the horizontal gain is tuned based on the vertical gain, probably the controller performance
would however be better when a similar type of gain tuning is applied to the horizontal gain as is done for the
vertical gain, in a separate second oscillation detection phase. This phase could for example have as a goal to
keep the object centered in the virtual camera frame. Similar to the vertical gain tuning, the control gain for
this task would then be increased until the MAV is clearly oscillating over the object.

A real world experiment was attempted to validate the results acquired from Gazebo simulation. It was
however unsuccessful, due to the occasional complete loss of tracked corners between two frames, twice
in a row, triggering flight phase 4 e.g. a constant thrust descend.

An increase in performance can also be achieved by a change in hardware: using an event-based camera
instead of a regular frame based camera. The Dynamic Vision Sensor (DVS) developed by IniLabs is such an
event-based camera, sending the pixel location and timestamp of a pixel changing by more than a threshold
in greyscale intensity. A tracking algorithm, similar to the one used throughout this research, was created for
event data from such a camera and could be used to replace the current object tracking module. Upsides of
using the DVS as a vision sensor are its exceptionally high update rate and its natural edge indication, since
edges cause brightness changes in a dynamic environment. This natural edge indication enables corner de-
tection at low processing cost, while the high update rate enables fast corrections for instantaneous changes.

Next steps for application of this new control logic would be to apply it to landing on a moving platform,
or a platform with a vertical offset from the background. Because the information taken from the images is
restricted to the tracked object, the algorithm should also work for those situations in which the visual queues
from the object differ from those belonging to the background.

The DVS seems to simply be a better fit for a computer vision task such as the one described in this paper.
If a step was made to apply the strategy to landing on a moving platform, the benefits become even more
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evident, especially since the DVS does not suffer from motion blur and is less sensitive to changes in lighting
conditions.
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.1. Flight test height over time

This chapter shows the height over time for an MAV in successful landings in Gazebo simulation using the Db

approach starting from heights h0 = [2,3,4,5,6] with divergence settings Db = [0.02,0.04,0.08,0.16,0.24]. The
runs are combined in one figure per height setting.

Figure 1: Height of MAV for runs starting from a height of 6m Figure 2: Height of MAV for runs starting from a height of 5m

Figure 3: Height of MAV for runs starting from a height of 4m Figure 4: Height of MAV for runs starting from a height of 3m

Figure 5: Height of MAV for runs starting from a height of 2m
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.2. Flight test horizontal error over time

This chapter shows the horizontal offset to the landing spot over time for an MAV in successful landings in
Gazebo simulation using the Db approach starting from heights h0 = [2,3,4,5,6] with divergence settings
Db = [0.02,0.04,0.08,0.16,0.24]. The runs are combined in one figure per height setting.

Figure 6: Horizontal offset of MAV to the landing spot for runs
starting from a height of 6m

Figure 7: Horizontal offset of MAV to the landing spot for runs
starting from a height of 5m

Figure 8: Horizontal offset of MAV to the landing spot for runs
starting from a height of 4m

Figure 9: Horizontal offset of MAV to the landing spot for runs
starting from a height of 3m

Figure 10: Horizontal offset of MAV to the landing spot for runs starting from a height of 2m
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