
 
 

Delft University of Technology

RSS-based sensor localization in underwater acoustic sensor networks

Xu, Tao; Hu, Yongchang; Zhang, Bingbing; Leus, Geert

DOI
10.1109/icassp.2016.7472409
Publication date
2016
Document Version
Accepted author manuscript
Published in
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Citation (APA)
Xu, T., Hu, Y., Zhang, B., & Leus, G. (2016). RSS-based sensor localization in underwater acoustic sensor
networks. In M. Dong, & T. F. Zheng (Eds.), 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP): Proceedings (pp. 3906-3910). IEEE.
https://doi.org/10.1109/icassp.2016.7472409
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/icassp.2016.7472409
https://doi.org/10.1109/icassp.2016.7472409


RSS-BASED SENSOR LOCALIZATION IN UNDERWATER ACOUSTIC SENSOR NETWORKS

Tao Xu1,2, Yongchang Hu3, Bingbing Zhang4 and Geert Leus3

1 Tianjin 712 Communication & Broadcasting Co. Ltd, Tianjin, 300462, China
2 Institute of Microelectronics, Tsinghua University, 100084, Beijing, China

3 Fac. EEMCS, Delft University of Technology, Mekelweg 4, 2628CD, Delft, Netherlands
4 Fac. EE, National University of Defence Technology, 410073, Changsha, China

ABSTRACT
Since the global positioning system (GPS) is not applicable under-
water, source localization using wireless sensor networks (WSNs) is
gaining popularity in oceanographic applications. Unlike terrestrial
WSNs (TWSNs) which uses electromagnetic signaling, underwater
WSNs (UWSNs) require underwater acoustic (UWA) signaling.
Received signal strength (RSS)-based source localization is consid-
ered in this paper due to its practical simplicity and the constraint
of low-cost sensor devices, but this area received little attention
so far because of the complicated UWA transmission loss (TL)
phenomena. In this paper, we address this issue and propose two
novel semidefinite programming (SDP) approaches which can be
solved more efficiently. The numerical results validate our proposed
SDP solvers in underwater environments, and indicate that the
placement of the anchor nodes influences the RSS-based localization
accuracy similarly as in the terrestrial counterpart. We also highlight
that adopting traditional terrestrial RSS-based localization methods
will fail in underwater scenarios.

Index Terms— Underwater, Localization, RSS-based, SDP.

1. INTRODUCTION

Underwater acoustic (UWA) communication systems differ from
terrestrial telemetry due to differences in system geometry and
environmental conditions [1]. Underwater wireless sensor networks
(UWSNs) are envisioned for oceanographic applications such as
pollution monitoring, offshore exploration, disaster prevention, as-
sisted navigation, and tactical surveillance applications, while source
localization is another important task. Apart from localization
protocol designs [2], researchers paid a lot of attention to four
different underwater distance measurement techniques [3] as applied
in TWSNs, including time difference of arrival (TDoA), time of
arrival (ToA), received signal strength (RSS), and angle of arrival
(AoA). ToA is widely employed in underwater source localization
works for measuring the distance, e.g., [4], although it demands
a precise synchronization among nodes which is challenging in
UWSNs. TDoA either uses two different transmission media (like
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Fig. 1. Demonstration of UWA localization

radio and acoustic waves) or adopts reference beacons to estimate
the distance. However, the former is infeasible since RF is not
applicable in aquatic environments [5], while the latter can lead
to problems due to the unpredictable UWA velocities [6]. AoA
relies on a direct line-of-sight (LOS) UWA transmission path which
may not exist at all unlike in terrestrial radio [7], while typical
multi-path components in UWA channels can also lead to large
errors in AoA measurements [8]. RSS-based underwater source
localization gets less attention as another alternative to measure
distance, since it is difficult to achieve accurate ranging due to
multipath propagations and the complicated UWA transmission loss
(TL) phenomena [3]. However, it can be argued that for certain
water depths, the UWA channels show nice transmission features
that fit well to a TL model and thus RSS-based localization can be
considered for such cases [9]. To represent the TL features of an
UWA channel, the Urick propagation model [10] is among the most
popular, based on which some statistical models are derived [11].
Other UWA TL modeling methods can also be found, e.g., using
Lambert W function [12]. In this paper, we consider RSS-based
UWA localization using UWSNs, where the target is a source node
that transmits acoustic signals to all the anchor nodes (beacons)
which usually lie on the water surface and are able to obtain their
precise locations via GPS as depicted in Fig. 1. Literature studying
RSS-based localization underwater using acoustic waves is rather
rare, yet it includes [9] choosing the Lambert W function to model
the UWA TL and performing a simple triangulation method based
on known distances, [13] combining TOA and RSS measurements
where the RSS-based measurements are simply assumed known
and [14] adopting a terrestrial acoustic wave propagation model to
study RSS-based underwater localization. In this sense, we may for
the first time introduce SDP solvers for UWA RSS-based localization
in UWSNs based on a UWA propagation model.

Notation: Upper (lower) bold-face letters stand for matrices
(vectors); superscript T denotes transpose, [A]k,m stands for the
(k,m)th entry of the matrix A, Trace[A] for the trace of the matrix
A, Rank[A] for the rank of the matrix A; RM represents the M -
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dimensional field of real numbers.

2. SYSTEM MODEL

Acoustic transmission loss (TL) in water is classified as spread-
ing loss, including spherical and cylindrical, and attenuation loss
consisting of absorption, duct leakage, scattering and diffraction.
Generally, attenuation parameters relate to the medium (salinity,
acidity, pressure, and temperature) and the environment (air bubbles,
sediment absorption, surface reflection and scattering) [5]. The
TL that a narrow-band acoustic signal centered at frequency f
experiences along a distance d > 0 can be described in decibels
(dB) as

ψTL(f, d) = 10βlog10d+ α(f)d+ ξ(f,d), (1)
where the term 10βlog10d accounts for geometric spreading which
increases with the propagation distance and is independent of fre-
quency, with β ≥ 0 being the path-loss exponent (PLE); the
term α(f)d accounts for the frequency-dependent absorption by the
medium in the Urick propagation model [15] with α(f) being the
absorption coefficient that can be obtained in dB per kilometer using
Thorp’s empirical formula as [11]

0.11
f2

1 + f2
+ 44

f2

4100 + f2
+ 2.75× 10−4f2 + 0.003, (2)

while other formulae also exist [16]; the parameter ξ(f,d) can be
viewed to contain other residual factors in the TL model, e.g., the
reflection loss [16]. We notice that the deformation forms of the TL
model (1) can be found widely in UWA research, e.g., (1) in [17], (1)
in [11] and (8-32) in [18]. Utilizing the RSS as a measurement means
that the average of the instantaneous received power is attained over
several consecutive time slots and hence the small-scale fading can
be neglected. Hence, we describe the RSS value P (f)

i , measured
using the frequency component f by the i-th anchor node located at
si ∈ RM over a distance di = ∥x− si∥2 > 0 with the source node
located at x ∈ RM , using the following formula

P
(f)
i = P

(f)
0 − (ψTL(f, di)− ψTL(f, d0))

= P
(f)
0 − 10βlog10

di
d0

− α(f)(di − d0) + n
(f)
i , (3)

where P (f)
0 is the received power at the reference distance d0 using

the frequency component f , while n(f)
i = ξ

(f,d0)
0 − ξ

(f,di)
i , for

i = 1, 2, · · · , N with N being the number of the anchor nodes.
A similar model is adopted in [19]. It is noteworthy that when
α(f) ≡ 0 as in [14], a popular RSS-based terrestrial localization
scheme is obtained and classic RSS-based localization methods can
be utilized [20].

From now, we choose d0 = 1 for convenience. When the PLE β
and the absorption coefficient α(f) are assumed perfectly known, the
most popular way to solve (3) is given by the following optimization
problem [21]

x̂basic = argmin
x∈RM

N∑
i

(P
(f)
i + 10βlog10di + α(f)di)

2, (4)

which can align with the maximum likelihood (ML) estimator if
n
(f)
i is zero-mean Gaussian distributed. Unfortunately, we do

not have such a guarantee about n(f)
i underwater. In any case,

the solution of (4) cannot be formulated in closed-form and can
only be approximated by iterative numerical techniques such as
the Gauss-Newton method, whose drawback is that it requires a
good initialization to make sure that the algorithm converges to the
global minimum. Otherwise, the iterative solver can return a local
minimum or saddle point with a large estimation error.

3. SEMIDEFINITE PROGRAMMING SOLOVER

In this section, our proposed estimators will be derived. As
mentioned previously, the cost function in (4) is severely nonlinear
and nonconvex [22], requiring involved computations. By using
semidefinite relaxation (SDR), we convert the optimization problem
into a convex semidefinite programming (SDP) problem. The
advantage of the SDP problem over iterative solvers is that it can be
solved with efficient computational methods that certainly converge
to its global minimum [23].

3.1. RSS-based Approach

From (3), we approximately obtain

λ
(f)
i d2i + γ

(f)
i di − 1 = ϵ

(f)
i , (5)

where we refer the readers to the Appendix for the detailed deriva-
tions as well as for the expressions of λ(f)

i and γ(f) as well as ϵ(f)i .
To solve (5), the straightforward method is again to minimize

the ℓ2 norm of the residual error. Specifically, we have

argmin
x∈RM

N∑
i

(λ
(f)
i d2i + γ(f)di − 1)2 (6)

which includes a quadratic polynomial form w.r.t. di, and hence it
is very troublesome to handle. In addition, we do not have enough
information about n(f)

i (also ϵ(f)i )), which means that (6) may not
lead to an ML estimate at all. Thus we are motivated to introduce
the ℓ1 norm instead of the ℓ2 norm to formulate the underwater
localization problem, leading to

min
x∈RM

N∑
i

∣∣∣λ(fk)
i d2i + γ(f)di − 1

∣∣∣ (7)

Note that replacing the ℓ2 norm with the ℓ1 norm for solving
optimization problems can also be found in other work, e.g., in [24].

By introducing di = ∥x− si∥2 > 0 and the slack variable
ti ≥ 0, we can convert the optimization problem (7) into

min
x,di,ti

N∑
i

ti, (8a)

s.t. − ti < λ
(f)
i d2i + γ(f)di − 1 < ti (8b)

d2i = ||x− si||22 (8c)

For convenience, we now introduce the variables X
.
=[

x
1

] [
xT 1

]
=

[
xxT x
xT 1

]
and D

.
=

[
d
1

] [
dT 1

]
=

[
ddT d
dT 1

]
,

where the vector d collects all values of di, such that the relations
x = [X]1:M,M+1, d2i = [D]i,i and di = [D]N+1,i can be used later
to facilitate our derivations. For example, the constraint (8c) can be
converted into

[D]i,i =
[
xT 1

] [ IT −si
−sTi sTi si

] [
x
1

]
= Trace [XSi] (9)

where Si
.
=

[
IT −si
−sTi sTi si

]
. However, X and D come with

some more constraints since they are both positive semidefinite and
Rank(X) = Rank(D) = 1.

After using the Schur complement to construct some linear ma-
trix inequalities (LMIs), our optimization problem (8) is equivalent
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to

min
D,X,ti

N∑
i

ti, (10a)

s.t. − ti < λ
(f)
i [D]i,i + γ(f)[D]N+1,i − 1 < ti (10b)

[D]i,i = Trace [XSi] (10c)
X ≽ 0, D ≽ 0 (10d)
[X]M+1,M+1 = [D]N+1,N+1 = 1 (10e)
Rank(X) = Rank(D) = 1 (10f)

We now apply SDR by omitting the rank constraint (10f),
leading to

min
D,X,ti

N∑
i

ti, (11a)

s.t. − ti < λ
(f)
i [D]i,i + γ(f)[D]N+1,i − 1 < ti (11b)

[D]i,i = Trace [XSi] (11c)
X ≽ 0, D ≽ 0 (11d)
[X]M+1,M+1 = [D]N+1,N+1 = 1 (11e)

which is an SDP optimization problem that converges to the global
minimum [23], and our SDP-based estimate is given by x̂ =[
X̂
]
1:M,M+1

.

3.2. FDRSS-based Approach

So far, we have considered a single frequency component, e.g.,
f , and did not take advantage of the frequency-dependent features
in (3). Now, we consider a differential RSS (DRSS) scheme by sub-
tracting the RSS values in (3) according to two distinctive frequency
components at each anchor, called the frequency-dependent DRSS
(FDRSS) approach. Specifically, we have

P
(∆)
i = P

(∆)
0 − α(∆)(di − d0) + n

(∆)
i , (12)

where P (∆)
i = P

(fk)
i − P

(fp)
i , P (∆)

0 = P
(fk)
0 − P

(fp)
0 , α(∆) =

α(fk) − α(fp) and n(∆)
i = n

(fk)
i − n

(fp)
i for k ̸= p. In such a

FDRSS expression, the frequency-independent geometric spreading
term in (3) is eliminated, and there are no approximation operations
as in (17) and (18) any more. We argue that although α(f) is usually
small [11] and thus P (∆)

i may be too small to be sensible in practice,
we can always quantify them by high-precision devices. Hence we
rewrite (12) by taking d0 = 1 as

α(∆)di − η
(∆)
i = n

(∆)
i ,

(13)

where η(∆)
i = P

(∆)
0 + α(∆) − P

(∆)
i , and its estimate is given by

argmin
x∈RM

N∑
i

(α(∆) ∥x− si∥2 − η
(∆)
i )2 (14)

which can be solved by [20]

min
D,X

N∑
i

(
α(∆)2 [D]i,i − 2α(∆)η

(∆)
i [D]N+1,i + η

(∆)2

i

)
, (15a)

s.t. [D]i,i = Trace [XSi] (15b)
X ≽ 0, D ≽ 0 (15c)
[X]M+1,M+1 = [D]N+1,N+1 = 1 (15d)

which is also a SDP solver and the definitions of D, X and Si are the
same as in (11), while the estimate is given by x̂ =

[
X̂
]
M+1,1:M

.

4. COMPUTER SIMULATIONS AND DISCUSSIONS

In this section, we perform a number of computer simulations
to demonstrate the performance of the proposed methods. The
RSS values according to each frequency component are obtained
according to (3) with d0 = 1, where β = 2 corresponds to
an UWA spherical spreading case [17]. We select a number of
frequency components and obtain the related α(f) according to (2).
For instance, α(f1) ≃ 0.001 dB per meter when f1 = 9 kHz
and α(f2) ≃ 0.01 dB per meter when f2 = 34 kHz, both of
which are adopted for far distance UWA propagation in reality, while
α(f3) ≃ 0.1 dB per meter at f3 = 454 kHz.

For simplicity, we adopt M = 2 (i.e., x ∈ R2 and si ∈ R2)
and assume that n(f)

i in (3) is a zero-mean Gaussian random vari-
able spatially correlated with covariance matrix W(f) specified by[
W(f)

]
i,j

= ρ
(f)
i,j σ

(f)2 , where σ(f) is the standard deviation which

is constant with distance, while ρ(f)i,j is the correlation coefficient

between the ith and the jth links such that ρ(f)i,i = 1 for i =

1, 2, · · · , N and ρ(f)i,j > 0 for i ̸= j. Such spatial correlation is
also widely witnessed in terrestrial shadowing, e.g., in [25]. Fig. 2
depicts the cost functions related to the models in (4) and (7), which
indicates that since the target node cannot overlap with the anchor
nodes, every location of the anchor node becomes a singular point
in (4) yielding multiple minima, while the counterpart in (7) is more
smooth and has only a single optimal point.

We have conducted a Monte Carlo (MC) simulation using 1000
trials on a 100m × 100m field, where one target node and N = 10
anchor nodes are randomly deployed for each trial. The variance of
n
(f)
i is assumed to be σ(f)2 ∈ [−8, 10] [dB] and ρ(f)i,j ≡ 0.6 when
i ̸= j for all frequencies. Fig. 3 describes the root mean square
error (RMSE) to evaluate the performance of our estimators, which
validates our proposed SDP solvers. Specifically, it explicates that
the performance of our RSS-based SDP solver deteriorates with an
increasing α(f) and/or n(f)

i , because of the higher approximation
errors induced by (17) and (18), respectively. In this figure, we also
give the RMSE result of our RSS-based approach when α(f) = 0.1

for the channel setup but we deliberately discard λ(f)
i , i.e., λ(f)

i = 0
in (11), to represent the case of adopting a traditional terrestrial RSS-
based localization method for UWA scenarios. Not surprisingly, it
yields the worst RMSE result in this test as shown in Fig. 3, because
discarding the effect of the absorption coefficient (i.e., λ(f)

i ) during
the localizing operation can be viewed as replacing (18) with a bad

approximation given by 10
α(f)di
10β ≃ 1, which is unacceptable. It

also implies that using a standard solver for a terrestrial RSS-based
localization problem cannot be simply adopted for an underwater
environment. In Fig. 3, the performance of our FDRSS-based solver
is also validated with α(f1) = 0.001 and α(f2) = 0.1. It indicates
that a better result of the FDRSS-based approach is yielded than the
RSS-based approach since there are no approximation operations as
in (17) and (18).

We also have conducted a MC simulation using 1000 trials on a
100m × 100m field, where one target node is randomly deployed
for each trial but N anchor nodes are fixed at the surface of the
water column, i.e., the y-coefficient for each si equals 100m for
i = 1, 2, · · · , N . Herein, we fix α(f) = 0.01 and keep n

(f)
i

the same as in the previous test. We consider two cases where
we place N = 4 and N = 8 anchors, respectively, by uniformly
distributing their x-coefficients within [0, 100m]; For the third case,
we place N = 8 anchors but constrain their x-coefficients to the
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Fig. 2. Comparison between the cost functions related to the models
in (4) and (7) with N = 4 anchor nodes located at (59; 62), (35;
5), (10; 40) and (26; 1) while the target node is at (50; 50) on a
100× 100 field in R2; σ(f)2 = 10 [dB] and ρ(f)i,j ≡ 0.6 for i ̸= j.
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Fig. 3. Performance comparison under different channel setups

range [80m, 100m]. The RMSE results of these three cases are
shown in Fig. 4 where we have adopted our SDP solver from (11). It
is clear that the placement of the anchors influences the RSS-based
localization accuracy. The distributed placement clearly yields a
better performance than the clustered placement in this test. It also
tells that more anchors can help accelerate the localization accuracy.
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Fig. 4. Performance comparison with different anchor placements

5. CONCLUSIONS

RSS-based localization for underwater wireless sensor networks
using acoustic signals has been introduced and studied. Based on
a popular UWA transmission loss (TL) model, we have proposed
and analyzed novel semidefinite programming (SDP) estimators,
including an RSS-based approach and a frequency-dependent dif-
ferential method called the FDRSS-based approach, both of which
yield desirable localization performances. By numerical results, we
have pointed out that using a standard solver for terrestrial RSS-
based scenarios will fail in underwater cases, and the placement
of the anchors matters for the underwater RSS-based localization
accuracy. Future work includes studies on the optimal placement
of underwater anchors, the impact of real-life underwater ambient
noises, as well as model parameter estimation for the underwater TL
model.

6. APPENDIX

To obtain (5), we rearrange (3) with d0 = 1 and then divide it by
10β, giving

P
(f)
i − P

(f)
0 − α(f)

10β
+ log10di +

α(f)

10β
di =

n
(f)
i

10β

Taking the power of 10 on both sides yields

10
P

(f)
i

−P
(f)
0 −α(f)

10β × di × 10
α(f)di

10β =10
n
(f)
i

10β . (16)

When n(f)
i is sufficiently small (|n(f)

i | ≪ 10β/ ln 10) which is also
widely adopted for terrestrial shadowing, we are allowed to use the
first-order Taylor series expansion, approximately yielding

10
n
(f)
i

10β ≃ 1 +
ln 10

10β
n
(f)
i . (17)

We argue that n(f)
i = ξ

(f,1)
0 − ξ

(f,di)
i can be sufficiently small

especially in deep water environments where the reflection loss can
ignored [18]. Similarly, we use

10
α(f)di
10β ≃ 1 +

ln 10

10β
α(f)di, (18)

since it is known that the absorption term α(f)di can be relatively
small [11] (α(f)di ≪ 10β/ ln 10) especially in deep water. We then
substitute (17) and (18) into (16) resulting in

γ
(f)
i × di ×

(
1 +

α(f) ln 10

10β
di

)
= 1 +

ln 10

10β
n
(f)
i (19)

with

γ
(f)
i = 10

P
(f)
i

−P
(f)
0 −α(f)

10β .

We can then shorten (19) to be

λ
(f)
i d2i + γ

(f)
i di − 1 = ϵ

(f)
i

which gives (5) with

λ
(f)
i =

γ
(f)
i α(f) ln 10

10β

and

ϵ
(f)
i =

ln 10

10β
n
(f)
i .
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