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Stream Window Aggregation Semantics and

Optimisation

Paris Carbone, Asterios Katsifodimos and Seif Haridi

Definition

Sliding windows are bounded sets
which evolve together with an infinite
data stream of records. Each new
sliding window evicts records from the
previous one while introducing newly
arrived records as well. Aggregations on
windows typically derive some metric
such as an average or a sum of a value
in each window. The main challenge
of applying aggregations to sliding
windows is that a naive execution can
lead to a high degree of redundant
computation due to a large number of
common records across different win-
dows. Special optimization techniques
have been developed throughout the
years to tackle redundancy and make
sliding window aggregation feasible and
more efficient in large data streams.

Overview

Data stream processing has evolved
significantly throughout the years, both
in terms of system support and in pro-
gramming model primitives. Alongside
adopting common data-centric operators
from relational algebra and functional
programming such as select, join,
flatmap, reduce etc., stream processors
introduced a new set of primitives that
are exclusive to the evolving nature of
unbounded data. Stream windows are
perhaps the most common and widely
studied primitive in stream processing
which is used to express computation
on continuously evolving subsets out
of a possibly never-ending stream. In
essence, stream windows grant control
on the granularity and the scope of
stream aggregations.

Several early stream processing
systems (e.g., TelegraphCQ (Chan-
drasekaran et al [2003), STREAM
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(Arasu et al| 2004)) provided support
for windowing through a predefined
set of primitives to construct time-
and count-based sliding windows. For
example, periodic tumbling and sliding
windows were already standardized as
early as the SQL-99 standard and stud-
ied thoroughly in the Continuous Query
Language (CQL) (Arasu et al [2006) as
well as the Stream Processing Language
(SPL) (Hirzel et al|2009) among others.
A tumbling window is a simple case of a
stream window type, which is defined as
a sequence of periodic consecutive sets
of records in a stream with a fixed length
that is termed range. For example, if we
assume a stream of car speed events the
following simple query in CQL would
discretize that stream into windows of
every 30sec-interval and compute the
maximum speed per window:

SELECT max(speed)
from CarEvents
[RANGE 30 Seconds]

In principle, in tumbling windows
each record can only belong to a single
window. As a result, the evaluation of
each window can be performed trivially
by grouping records by the window they
belong to, and executing each window
aggregation independently. However,
sliding windows add a challenging twist
to the formula, namely the ’slide’. As an
example consider the following sliding
window query in SQL-99:

SELECT AVERAGE(speed)

FROM CarEvents

[WATIR timestamp
RANGE 7 minute
SLIDE 3 minute ]

The slide represents ‘when’ or ‘how
often’ a window has to be evaluated
while including all records defined in its
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range in the computation of the average
speed. In this sliding window example,
there is an overlap of 5 minutes between
each consecutive window and thus,
a naive execution would result into
redundant operations in its great major-
ity. Beyond periodic windows, today’s
Apache open source systems such as
Flink (Carbone et al/2015} 12017, Beam
and Apex, provide support for more
advanced, often user-defined, sliding
window definitions such as session
(Akidau et al [2015) or content-driven
windows (Bifet and Gavaldal [2007),
among others.

Sliding windows have their own set
of optimization techniques that aim
to reduce the redundant computations
caused by the intersection of events
between neighboring windows. In this
paper we categorize optimization tech-
niques into slicing, pre-aggregation and
hybrid and analyze them throughout the
rest of this chapter.

Basic Concepts

There are many interpretations of win-
dow semantics, from simple range and
count event-time windows (Arasu et al
20006) to policy-based (Hirzel et al[2009)
and composite event-time windows with
retraction for out-of-order processing
(L1 et all 2008b). The SECRET model
(Botan et all 2010) aimed to subsume
most of the windowing semantics
proposed in academia and commercial
systems. However, for the sake of
brevity, a more simplified description is
used here, with a heavy focus on win-
dow aggregation, based on the recent
work on the Cutty aggregator (Carbone
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Fig. 1: Discretization of a count window
of range 5 and slide 2.

et al|2016) and FlatFat (Tangwongsan
et all2015)).

Stream Discretization

Data streams are unbounded sequences
of records which are described by a
given schema 7. More formally, a
stream 5 € Seq(T) is a sequence out
of all possible sequences Seq(T) over
T. Windows are finite subsequences
reflecting intervals of a stream 5. An
interval s[a,b] is simply a set of records
from index a to b over a stream s
and the set of all possible intervals
Str(T) C Seq(T).

In their most general form, windows
can be derived by discretizing an un-
bounded stream. A Discretizer
transforms a stream 5 € Seq(T) into a
sequence w € Seq(Str(T)) of (possibly
overlapping) windows. In the most
system-agnostic manner, every possi-
ble discretization of a stream can be
aided through a discretization function
provided to a special Discretize or
Windowing stream operator.

Definition 1. Discretize: fgz X
Seq(T) — Seq(Str(T))

3

depicts a simple example of

a discretization function f; applied on a
stream of elements which forms count
windows with a ‘range’ of 5 records and
a ‘slide’ of 2 records.

Aggregating Sliding Windows

Conceptually, in data stream program-
ming models an Aggregate operator
computes an aggregation on each win-
dow derived after a stream discretiza-
tion, given an aggregation function f,.

Definition 2. Aggregate : (f, :
Str(T) — T') x Seq(Str(T)) — Seq(T’)

Examples of f, is a SUM or AVG but
also more complex aggregations can be
executed in a window, such as building a
machine learning model. shows
how aggregates are formed on each
consecutive window of a discretized
stream. The main reason for optimizing
the window aggregation process stems
from two issues that can be observed in
this example. First, a consecutive exe-
cution of the aggregation operation after
discretization can be inefficient both in
terms of space needed to log all elements
of each window as windows can be very
large in size. At the same time, the
response time has to be minimized when
iterating through all window contents in
order to calculate an aggregate. Finally,
and most importantly, as highlighted in
IFigure 2|sliding windows might involve
a large amount of overlapping across
consecutive windows. In this example
there is an overlapping of three records
between every two windows.

The first problem is solved by sim-
ply pipelining discretization with aggre-
gation and thus, effectively providing a
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Fig. 2: Aggregation of a count window
of range 5 and slide 2.

partial evaluation of window aggregates.
Partial aggregation is described in
The overlapping problem is more
complex and its optimization techniques
are further classified by window types
into slicing, general pre-aggregation and
hybrid techniques, covered thoroughly

infsection| and respectively.

Partial Window Aggregation

A complete partial window aggregation
scheme has been proposed in both Flat-
Fat (Tangwongsan et al|[2015) and Cutty
(Carbone et al[2016). According to that
scheme, an aggregation f, can be de-
composed into partial aggregation oper-
ations in order to pipeline the process
during discretization. A window aggre-
gation function is therefore decomposed
into, 1ift and lower, anda combine
functions as such:

lift : T — A maps an element of a
window to a partial aggregate of type A.
combine ¢ : A XA — A combines two
partial aggregates into a new partial ag-
gregate (equivalent to a reduce func-
tion).

lower : A — T’ maps a partial aggre-
gate into an element in the type 7’ of
output values.
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The main and only requirement for
partial aggregation is to have an associa-
tive combine function so that aggrega-
tion can be used to evaluate a full win-
dow aggregate in discrete steps in dis-
crete steps (Arasu and Widom| [2004;
Krishnamurthy et al|2006; Tangwongsan
et al|2015).

An example of partial aggregation
of a window is depicted in
The goal in this example is to partially
compute the average value out of a set of
records with values 1 to 5. The invariant
is that only one partial aggregate is kept
in memory (initially an empty aggre-
gate). That aggregate is incrementally
updated by each record that arrives in
a window. To compute an average, two
values have to be maintained in the
aggregate type: a sum and a count. By
using the 1ift function each record is
first mapped into an aggregate type of its
value and a count of 1. The combine
function updates the partial aggregate
with the new sum and count until all el-
ements of a window have arrived. Then
finally, the lower function transforms
the aggregate into the window average,
in this case this is 3.

Window Slicing

The amount of overlapping across slid-
ing windows introduces additional space
and computational complexity that par-
tial aggregation itself cannot solve.

In the case of windows with prede-
fined periodic characteristics such as a
time or count slide, a family of optimiza-
tion techniques are used to further de-
compose windows into non-overlapping
partial aggregates which can be shared
and combined to calculate full window
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Fig. 3: Partial Aggregation Example for Window Average.

aggregates. This technique is typically
name ’slicing’ or ’bucketing’. The two
most popular slicing techniques that are
have also been deployed in production
stream processing systems in the past are

panes (Li et al20054) and pairs

|namurthy et al||2006[).

Panes

The main idea behind Panes is that if
we have a periodic window query with
a fixed slide and a range it is trivial to
break down the aggregation process into
partials with a constant size, equal to
the greatest common denominator of the
respective range and slide. For exam-
ple if we have a sliding window with a
range of 9 minutes and a slide of 6 min-
utes the stream would be sliced and pre-
aggregated into buckets, each of which
corresponds to 3 minutes of the ingested
stream (greatest common denominator
of 6 and 9).

Panes have been criticized
[namurthy et all [2006)) for their lack of
general applicability, yielding unbal-
anced performance that depends highly
on the combination of range and slide.
For example, a window of range 10
seconds and a slide of 3 seconds would
break down to slices of a single second,
no longer exploiting the amount of
non-overlapping segments in a stream

(as depicted in[Figure 4]).

Pairs

The pairs technique (Krishnamurthy

2006) splits a stream into two al-
ternating slices: py = range mod slide

and p; = slide — sp. This technique
utilizes better non-overlapping segments
in a stream and seems to work well
with most combinations of range and
slide. Intuitively, pairs break slicing
only when a stream window starts or

ends. This is visualized in
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Fig. 4: Example of different slicing techniques

where it results into a lower number of
slices for the same window compared
to using panes. Contrary to panes, pairs
has also been proposed for multi-query
aggregation sharing where a large
sequence of shared slices is decided at
compilation time across shared sliding
window aggregation queries in the same
operator.

Slicing Limitations

While slicing offers the best known
space and computational performance
in sliding window aggregation its appli-
cations are limited to periodic window
queries since this is the only type of
windows for which their beginning and
end are predefined. The Cutty technique
(Carbone et all 2016) which is further
analyzed in avoids this strong

assumption by letting user-defined
functions signify during runtime when
windows start or end. In the same
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Fig. 5: Example of a general pre-
aggregation tree

work slicing is also combined with
general pre-aggregation techniques (an-
alyzed in in order to combine
the strongest characteristics of both
domains of window optimization.

General Pre-aggregation

The main incentive of general pre-
aggregation techniques is to be able to
allow for arbitrary segment lookups in a
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Fig. 6: Applicability of slicing and gen-
eral pre-aggregation

stream (e.g., from external user queries)
as depicted in[Figure 3]

The earliest work on general
pre-aggregation was presented in B-
int (Arasu and Widom [2004) which
pre-computes eagerly higher order
partials on different segments of a
stream. The application of B-int was
meant to be fast aggregate retrieval
for ad-hoc stream queries (i.e., using
CQL), however, the applicability of
general pre-aggregation makes such
techniques convenient for aggregating
continuous sliding windows without a
known range or slide or other periodicity
assumptions. The Reactive Aggregator
by IBM Research (Tangwongsan et al
2015) exploits the properties of B-Int
and introduces FlatFat: a fixed size
circular heap binary tree of higher order
partials that “slides” together with the
records of the stream.

General Pre-Aggregation
Limitations

General pre-aggregation offers fast re-
trievals of arbitrary windows on a stream
at the cost of additional space and in-
cremental update computation require-
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ments. That is due to the fact that every
time a new aggregate is added to the bi-
nary tree a sum of log(N) additional par-
tial aggregations need to be employed in
order to update all higher order aggre-
gates of the tree (given N: the number
of active records/leaves in the tree). In
summary, the runtime costs of employ-
ing eager-aggregation, which are also vi-
sualized in are the following:
space: 2N partials need to always be
kept on heap to hold the full aggregation
binary tree.

update/lookup: both update and full
window lookup have O(logN) computa-
tional complexity. In the case of updates
the complexity is fixed (logN) against
slicing which typically involves a single
aggregation per record.

All these costs pose an interesting
trade-off when eager aggregation is
employed per-record in a data stream,
which often results in more operations
than a naive execution of each redun-
dant window aggregation separately.
As a result, it is likely that if general
pre-aggregation is de-facto applied,
its runtime cost would never be amor-
tized across a full run of a continuous
application.

Nevertheless, the power of general
pre-aggregation lies at the observation
that it can be generally applied to any
type of windows, thus, covering a large
space of non-periodic window types
used within research and industrial

applications, as depicted in

Cutty: A Hybrid Approach

Slicing and general pre-aggregation
are orthogonal techniques that can be
potentially combined to support a wider
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Fig. 7: Visualizing the expressive power
of Deterministic Windows for Efficient
Aggregation

variety of stream windows for aggre-
gation. The Cutty aggregator (Carbone
et al [2016) employs such a hybrid
approach that can lead to efficient
aggregation of a broader number of
window types than simply periodic. The
main observation behind its design is
that there is an implicit class of windows
(a superclass of periodic ones), termed
deterministic which can be obtained
by using the right core primitives in
the programming model. Deterministic
windows can be used to enable efficient
shared aggregation without limiting
window expressivity. shows
the expressive power of deterministic
windows, being able to provide optimal
pre-aggregation to more than the limited
periodic windows.

Deterministic Windows

The concept of deterministic windows
stems from the observation that all it
takes to achieve optimal slicing is not
the apriori knowledge of the periodicity
of windows (if any) but the runtime
knowledge of where a new window
starts. While partial aggregation is

employed, as described in a
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Fig. 8: An Overview Example of Cutty

single partial result can be kept in active
memory until we receive a record that
marks the beginning of a new window.
Conceptually, a new window start
means that we will later need a partial
aggregate (or slice) starting at that point
to evaluate the window that started
there.

Cutty proposes user-defined window-
ing through the use of a discretization
function fjis, defined as follows:

fdisc T — <Wbegin : NaWend : N>

where for each record r € T i) Wpgiy 18
the number of windows beginning with r
and ii) W,,,; the number of windows end-
ing with r.

Overview of Cutty

Optimal slicing with deterministic win-
dows minimizes but does not eliminate
redundancy. As an example, consider
the slices produced by Cutty during the

example execution of A de-
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tailed observation of the slices used per
window reveals a level of redundancy
that cannot be handled by slicing. For
example, slices s[4,6] and s[7,9] would
have to be combined together twice:
once for computing f,(s[1,10]) itself,
and once for computing f,(s[4,13]).
Instead, if somehow the evaluation of
fa(s[4,9]) was stored, it would not be
necessary to repeat that aggregation.

Cutty utilizes general pre-aggregation
(FlatFat) in order to further reduce the
cost of full window aggregate evaluation
and compute higher order combina-
tions of aggregates only once. This
idea gives a new purpose to general
pre-aggregation techniques and grants a
low memory footprint since the space
complexity of the aggregation tree is
bounded by the number of active slices
(which is equivalent to the minimum
number of non-overlapping segments in
a stream). A full example run of Cutty
is visualized in showing both
slicing of deterministic windows and
general pre-aggregation and evaluation
on stored partials. In the same example
notice that the partial P(s[6,7]) is
computed once and reused for both
fuls[1,5]) and £u(s{1,6).

For non-deterministic  windows,
Cutty falls back to general pre-
aggregation (simply using FlatFat)
since slicing cannot be applied. Nev-
ertheless, the generality and flexible
(runtime specific) nature of this aggrega-
tion technique also enables the prospect
of using it for applying operator sharing
(Hirzel et al 2014) on data streams.
A full complexity and performance
analysis and comparison are provided in
the original Cutty paper (Carbone et al
2016).

Further Works

Window aggregation is an interesting re-
search topic and there are many relevant
proposed ideas to the ones presented
here. For example, Li et al. (Li et al
2005b| [2008a)) classified window types
by their evaluation context require-
ments, leaving the characterization of
each class as an open research question.
Performing certain types of aggregates
in constant-time was recently proposed
(Tangwongsan et all [2017). Determin-
istic functions in Cutty subsume all
forward-context-free windows (no fu-
ture records are required to know when a
window starts), while non-deterministic
discretization functions are forward-
context-aware. Heuristic-based plan
optimizers have also been proposed
(e.g., TriWeave(Guirguis et al|2012)) to
fine-tune the execution of periodic time
queries dynamically using runtime met-
rics (i.e. input rate and shared aggregate
rate).

Future Directions

Windowing semantics are becoming
increasingly more complex and so-
phisticated as data stream processing
is widely adopted. Aggregation tech-
niques will have to follow the trends
in windowing semantics and adapt to
more dynamic, data-centric window
types. One of the most prominent future
directions in stream windowing is its
standardization and encapsulation in
stream SQL standards that are undergo-
ing in open-source communities (e.g.,
the Calcite project and Google Dataflow
(Akidau et al [2015)). However, no
significant efforts have been made to
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apply relational optimizations in stream
windowing. Another future direction
is to extend slicing capabilities beyond
deterministic windows (if possible)
and cover cases of fully data-driven
windows without FIFO guarantees such
as ADWIN (Bifet and Gavaldal 2007).
Finally, general pre-aggregation data
structures have to employ the notion
of out-of-orderness (Traub et al|[2018)).
Currently, with existing out-of-the-box
solution such as FlatFat it is not possible
to retract already evaluated window
aggregates, thus, making it impossible
to use for systems like Beam and Flink
with out-of-order logic.

Conclusions

Windows over streaming data continue
to be the most central abstraction in
data stream processing. Aggregation
techniques aim to reduce the compu-
tational redundancy to the maximum
extent possible for sliding windows.
Most often, approaches to efficient
aggregation are entangled with actual
windowing semantics, such as assuming
periodic queries to provide efficient
pre-aggregation.  Slicing techniques
provide low memory footprint and
generally good performance at the cost
of limited applicability while general
pre-aggregation techniques can be
employed for any window lookup at the
cost of high computational and memory
footpring. Recent approaches aim for a
hybrid solution by generalizing slicing
further while combining data structures
from general pre-aggregation. Sliding
window aggregation remains a challeng-
ing topic today, and new challenges will
arise with the adoption of richer and

Carbone, Katsifodimos, Haridi

more complex windowing semantics
and out-of-order streams.
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