
Mechanical Engineering

Automatic Extrinsic Calibration
and Workspace Mapping
Algorithms to Shorten the Setup time of Camera-guided
Industrial Robots

L.N.M. Middelplaats

M
as

te
ro

fS
cie

nc
e

Th
es

is

Automatic Extrinsic Calibration and
Workspace Mapping

Algorithms to Shorten the Setup time of Camera-guided Industrial
Robots

Master of Science Thesis

For the degree of Master of Science in BioMechanical Engineering at
Delft University of Technology

L.N.M. Middelplaats

June 11, 2014

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© BioMechanical Engineering (BME)
All rights reserved.

Delft University of Technology
Department of

BioMechanical Engineering (BME)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Automatic Extrinsic Calibration and Workspace Mapping

by
L.N.M. Middelplaats

in partial fulfillment of the requirements for the degree of
Master of Science BioMechanical Engineering

Dated: June 11, 2014

Supervisor(s):
Prof.dr.ir. P.P. Jonker

Dr.ir. M. Wisse

Reader(s):
Dr.ir. A.J.J. van den Boom

Abstract

In small to medium enterprises (SME), industrial robot arms are not used very much despite
the fact that they offer a large potential to increase the competitiveness. The problem is that
to be effective in the SME sector, robot systems should be more flexible. To be economically
effective a robot arm should be used with multiple different tasks which are usually in different
locations in the company. Therefore, the robot should be able to be reconfigured quickly to the
new task and location giving a low robot set-up time. Prevention of collisions with obstacles in
the different locations and the extrinsic calibration of sensors on the robot are two important
and time consuming tasks during set-up of the robot. Automatic generation of a 3D map of
obstacles near the robot would decrease set-up time and therefore increase the flexibility. The
calibration of the camera is also a tedious procedure which could be automated. Therefore,
in this thesis a system is proposed which extrinsically calibrates a camera on the robot arm,
and uses the calibrated camera to scan the environment in a safe way to create a collision
map. Several calibration methods are investigated. The method created by Tsai et al. gives
the best results and is selected. The calibration system works by estimating the position
of the camera relative to a checker-board pattern from multiple points and matching this
with the robot orientation. From this the camera position and orientation on the robot are
calculated. In this thesis the system is tested in simulation and on a Universal robots UR5
robot arm. To safely map the environment without colliding in to obstacles which are not seen
yet a Next Best View (NBV) viewpoint generation system is proposed. The system generates
viewpoints for the camera which add the most new information to the map. A virtual wall
in the map round the robot represents the unknown space, which prevents the robot to move
into unknown space. By viewing the unknown space with the camera the unknown space is
cleared. As monocular mapping algorithms are not available yet, a 3D camera is used for data
acquisition. Data is stored in an OctoMap system, which is a memory efficient, discretized
probabilistic storage system. This system is also implemented on the UR5 robot arm. The
calibration system works successfully. In addition, we concluded that noise in the camera
pose estimation system is the main limiting factor for achieving high precision. The collision
map system has been implemented correctly and also functions successfully. For this part
of the system, we conclude that the main limiting factor for the processing speed could be
removed if the mapping system would be integrated in the NBV software.

Master of Science Thesis L.N.M. Middelplaats

ii

L.N.M. Middelplaats Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Thesis Goals . 2
1-2 Test system . 3

1-2-1 Robot arm . 3
1-2-2 Control software . 3
1-2-3 Camera system . 3

Depth camera . 4
Selected sensors . 4

1-3 Thesis outline . 5

I Camera pose estimation 7

2 Camera pose estimation 9
2-1 Types . 10

2-1-1 Checkerboard targets . 10
2-1-2 Augmented reality (AR) markers . 10
2-1-3 Selection . 10

2-2 AR marker pose estimators . 10
2-2-1 Performance . 11

2-3 Discussion . 12
2-4 Conclusion . 14

3 Simulation 15
3-1 Simulation set-up . 15

3-1-1 Main node . 15
3-1-2 Controller . 17
3-1-3 Camera . 17

Master of Science Thesis L.N.M. Middelplaats

iv Table of Contents

3-1-4 Pose estimators . 17
ARToolKit . 18
ARToolKitPlus . 18
Checkerboard pose estimator . 18

3-2 Simulation tests . 19
3-2-1 Simulated dimensions . 19
3-2-2 ARToolKit, ARToolKitPlus and different marker configurations 20

Results . 21
3-2-3 Resolution dependence . 21

4 Validation with a real camera 25
4-1 Test hardware . 25
4-2 Software . 25

4-2-1 Intrinsic calibration . 25
4-2-2 Camera pose estimation . 26

Checkerboard pose estimator . 26
Checkerboard_detector2 . 27

4-3 Error of the pose estimator . 27
4-3-1 Results . 28
4-3-2 Discussion . 30
4-3-3 Conclusion . 30

II Extrinsic calibration 31

5 Extrinsic calibration of the camera in the workspace 33
5-1 Robot hand calibration . 34

5-1-1 Separable closed form solutions (two stage) 34
5-1-2 Simultaneous solutions . 36
5-1-3 Iterative solutions for rotation and translation 36

5-2 Simultaneous robot hand and robot world calibration 37
5-2-1 Overview of methods . 38

5-3 Structure from motion . 38
5-4 Comparative studies . 39

5-4-1 Selection of method . 45
5-4-2 Discussion . 45

6 Simulation 47
6-1 Simulation setup . 47

6-1-1 Transform broadcaster . 47
6-1-2 Calculation node . 47
6-1-3 Main node . 48

6-2 Hand-Eye algorithm . 48

L.N.M. Middelplaats Master of Science Thesis

Table of Contents v

6-2-1 Comparison with other algorithms in Matlab 49
Results . 49

6-2-2 Sensitivity to noise . 51
6-3 Combined system . 51
6-4 Discussion . 53
6-5 Extrinsic calibration using the PR2 robot . 53

7 Usage 57
7-1 Usage . 57

8 Extrinsic calibration on the UR5 robot 59
8-1 Test setup and tests . 59

8-1-1 Hardware . 59
8-1-2 Software . 60

8-2 Calibration results . 60
8-3 Repeatability test . 61

8-3-1 Results . 61
8-4 Validation of the extrinsic calibration . 61

8-4-1 Discussion . 64
8-4-2 Conclusion . 67

III Workspace mapping 69

9 Workspace mapping 71
9-1 Target . 71
9-2 Problem type . 71
9-3 Related Work . 72

9-3-1 Depth sensor . 72
9-3-2 Map storage methods . 75
9-3-3 Octrees . 75

Extensions . 78
9-4 Proposed design . 79
9-5 Conclusion . 80

10 Workspace mapping: Simulation 81
10-1 Goal . 81
10-2 Related software . 81

10-2-1 Next best view in ROS . 81
10-3 Simulation with the PR2 . 81

10-3-1 Simulation set-up . 82
Octomap server . 82
Arm navigation . 83
Self Filter . 83

10-3-2 Results . 83
10-4 Conclusion . 85

Master of Science Thesis L.N.M. Middelplaats

vi Table of Contents

11 Workspace mapping with the UR5 87
11-1 Hardware . 87
11-2 Software . 87

11-2-1 Performance . 88
11-2-2 Kinect . 88
11-2-3 3D data switch . 89
11-2-4 Collision Map and NBV map . 89
11-2-5 Information gain . 90
11-2-6 NBV controller . 91
11-2-7 Movement controller and Arm Navigation 93

11-3 Results . 93

12 Conclusion and future work 97
12-1 Conclusion . 97
12-2 Discussion . 98
12-3 Future work . 98

12-3-1 Extrinsic calibration . 98
12-3-2 Workspace mapping . 98

A Formula derivations 101
A-1 Usable distance . 101
A-2 OctoMap formula . 102

B Custom OctoMap server 105
B-1 Improvements using the Point Cloud Library (PCL) and labelled octrees 105
B-2 Clearing space without obstacles . 106

C Simulation documentation 107
C-1 Simulation block diagram . 107
C-2 Custom material . 108
C-3 Self Filter . 108

D Robot specifications and camera calibration data 109
D-1 Universal Robots UR5 Specifications . 109
D-2 Simulated Camera . 109
D-3 Logitech Pro 9000 . 110
D-4 Calibration Kinect . 111
D-5 Checkerboard pose estimator settings . 112

E Software 113
E-1 Error of the pose estimator . 113
E-2 PR2 extrinsic calibration . 113
E-3 Validation of the extrinsic calibration . 113
E-4 Workspace Mapping . 113

L.N.M. Middelplaats Master of Science Thesis

Table of Contents vii

Bibliography 115

Glossary 121
List of Acronyms . 121
List of Symbols . 121

Master of Science Thesis L.N.M. Middelplaats

viii Table of Contents

L.N.M. Middelplaats Master of Science Thesis

List of Figures

1-1 The Kinect sensor (top) and a Logitech camera taped to the end effector of the
UR5 robot arm. Below it a Fetch Hand from Lacquey. 2

2-1 Overview of the camera pose estimation system. The system estimates the distance
and orientation to the local coordinate system of the marker (the black square).
Image from the ARToolKit Website[1]. 9

2-2 Tracking Error versus Range and rotation angle. A 80 mm marker was used in-
combinatin with a 263x234 pixels camera. Reproduced from [2]. 13

3-1 Screenshot from the simulation of the robot in Gazebo. 16
3-2 Block diagram of the simulation system. 16
3-3 Standard ArToolKit marker. Two circles and the frame are projected on it to mark

the detection by ARToolKit. 18
3-4 Markerboard for use with ArToolKitPlus. Edges are highlighted with circles and

the marker number is overlayed. 18
3-5 Screen shot from the transformation visualization tool (Rviz). 20
3-6 Comparison of ARToolKit, ARToolKitPlus with different marker sizes and multi

marker versus single marker. It can be seen that with the smaller markers more
outliers are present. 22

3-7 Comparison of ARToolKit, ARToolKitPlus with different marker sizes and multi
marker versus single marker of the rotation. 22

3-8 Comparison of ARToolKit, ARToolKitPlus with different marker sizes and multi
marker versus single marker. Close up of the previous plot, the outliers at 0.4 and
-0.6 are here not displayed. 23

3-9 The translation error between the static and measured marker for three camera
resolutions: 640 by 480 pixels, 800 by 600 pixels and 1200 by 900 pixels. 24

3-10 The rotation error between the static and measured marker for three camera res-
olutions: 640 by 480 pixels, 800 by 600 pixels and 1200 by 900 pixels. It can be
clearly seen that the error scales with the resolution. 24

4-1 Block diagram of the checkerboard pose estimator. 26

Master of Science Thesis L.N.M. Middelplaats

x List of Figures

4-2 Visulatization of the robot model with the transformations. 28
4-3 Error of the Logitech camera with checkerboard pose estimation. 29

5-1 Example of an UR5 robot arm with a gripper and camera system fitted on the tool
center point. The camera is pointed at an Augmented Reality (AR) marker. . . 34

5-2 Visualization of the different poses in Matlab using the Camera Calibration Tool-
box. Each pyramid represents a camera pose and the square the marker. 34

5-3 Visualization of the different poses in Matlab using the Camera Calibration Tool-
box. Adapted from [3]. 35

5-4 Simultaneous robot hand and robot world calibration. Usually formulated as
AX=YB or AX=ZB. Adapted from [3]. 37

6-1 Block diagram of the system. Solid lines are information streams (topics in ROS
vocabulary), dotted lines symbolize service calls. The main node controls the sim-
ulated robot arm in Gazebo through the joint controllers. Gazebo then generates
information like the camera image and transformations between the hand (outer
link) and eye (the camera). The green ’ROS transform system’ block keeps track
of all the transformations between parts of the robot and the transforms between
camera and marker. In appendix C a block diagram with the corresponding file
names is given. 48

6-2 Overview of the error of different algorithms for a different number of steps. . . . 50
6-3 Overview of the errors of the different algorithms in Matlab with noise. 144 poses

are used. Both rotation and translation noise is varied between -0.02 and 0.02. . 52
6-4 Overview of the errors of the different algorithms in Matlab with noise. 144 poses

are used. Both rotation and translation noise is varied between -0.02 and 0.02. . 52
6-5 The error between the result of ViSP and the correct translation. The dotted line

is the zero line. 53
6-6 The error between the result of ViSP and the correct translation. The dotted line

is the zero line. 54
6-7 Screenshot from the simulation of the PR2 robot in Gazebo. The black bar above

the gripper represents the Kinect. 55

8-1 Block diagram of the extrinsic calibration system used with the UR5 robot arm. . 60
8-2 Translation and rotation results for the four algorithms with different random sub-

sets (70%) of the data. 62
8-3 The calibration rotation results in quaternions. It can be seen that the ROS

implementation of the Tsai et al. algorithm has a relatively low spread. The
QR24e algorithm deviates a bit from the rest of the algorithms. 62

8-4 Overview of the transforms on used to calculate the error. The position of the
camera is calculated by calculating the position using the base to CB and CB to
cam transforms and the base to cam transform. 63

8-5 The same visualization but now in the visualization tool of ROS visualizing the real
estimated checkerboard position and a transformation from base to checkerboard
to check this. There is some offset between the estimated and ’correct’ transform. 63

8-6 The TCP of the UR5 with a bolt fitted in the top left corner thread. The tip of
the bolt is pointed at the centre of the checkerboard. The positions of crossings
of the checkers are also measured in this way. 63

8-7 Visualisation of the coordinate frames of the robot with the Logitech camera. On
the left top the TCP frame (ee_link) with the two camera frames (relative to the
Tool Centre Point (TCP) and relative to the checkerboard) next to it. On the top
right the checkerboard with in blue circles the TCP positions of outer corners in
circles and crosses for the inner. In green the checkerboard positions. Dimensions
in meters. 65

L.N.M. Middelplaats Master of Science Thesis

List of Figures xi

8-8 Visualisation of the coordinate frames of the robot with the Kinect. On the left
top the TCP frame (ee_link) with the two camera frames (relative to the TCP
and relative to the checkerboard) next to it. It can be seen that the frames almost
overlap, better than with of the Logitech camera. On the top right the TCP
positions of the corners of the checkerboard in blue circles. In green crosses the
checkerboard corners. Dimensions in meters. 66

9-1 The Kinect sensor with its cover removed. 73
9-3 By changing the depth of query multiple resolutions of the same map can be

generated at any time. Reproduced from [4]. In the first picture the resolution
(size of the nodes) is 0.08 meters, the second 0.64 meters and in the third 1.28
meters. 75

9-4 The voxels through which the ray traces from sensor origin to its endpoint. Adapted
from [5]. 78

9-5 A sweeping laser scanner first lists a voxel as occupied (gray) but in the next scan
line the voxel is updated to free again. Adapted from [5]. 78

9-6 Block diagram of the Next Best View system. 79

10-1 Block diagram of the simulation set-up. 82
10-2 The collision OctoMap with a model of the PR2 robot in it. The hand with the

Kinect on it is highlighted with a circle. 84
10-3 At the start (a) of the simulation the space round the PR2 is initialized as occupied.

The Kinect mounted at the gripper of the PR2 starts registering obstacles and free
space. Occupied space which turns out to be free is cleared again (the small hole
in the ’wall’). After moving the Kinect arround more space is cleared (b).The
octomap in these pictures has a 0.05 meter resolution. 84

10-4 The Next Best View map at the beginning when a few movements have been made
(a). And after several movements (b) when a larger portion of the room has been
seen. 84

11-1 Block diagram of the Next Best View system implemented on the UR5 robot arm.
The lines from the Kinect to Information gain and Arm navigation nodes represent
a data stream containing a 3D map of the environment. The thick solid lines
represent service calls. The self filter has been replaced with a ’switch’ which
switches the data stream on and off. 88

11-2 The virtual wall in the Collision OctoMap at the start of a scan. The robot is in
the center of the cylinder. It can be seen that the Kinect has already scanned the
wall behind the robot and some voxels of the virtual wall have been cleared already. 89

11-3 The NBV OctoMap with the robot in it. This Map is initialized empty. It can be
seen that the same area as in the previous image has been added to the map. . . 89

11-4 Diagram of the information gain method. 90
11-5 Program flow of the mapping system. The left column is the joint control part,

the right the Next Best View (NBV) part. 91
11-6 Representation of the coordinate systems used for the random point generation.

The box represents the camera which is above the the end effector. By taking a
random value for ϕ and θ an end effector position is generated. Using the Roll,
Pitch and Yaw angles an orientation is generated separate. 92

11-7 Screenshot from the visualization tool RViZ of the robot arm with occupied voxels
in green around the robot. The red sphere with the arrow visualizes a new scan
point and the direction of the camera. The table where the robot is standing on
is clearly visible as well as the table next to it. 93

Master of Science Thesis L.N.M. Middelplaats

xii List of Figures

11-8 State of the voxels of the map. 94
11-9 Example of the NBV controller making the robot look to the space behind the

movable screens. 95
11-10Example of the NBV controller making the robot look to the space behind the box. 95
11-11The NBV map after 3 scans. 96
11-12The NBV map after 23 scans. 96
11-13The NBV map after 38 scans. 96
11-14The Inverted NBV map, unknown space is now displayed as occupied. 96
11-15The inverted map after 23 scans. The blue voxels are unknown space and the

green voxels are occupied. 96
11-16The inverted map after 38 scans. 96
11-17The occupied map after 3 scans. 96
11-18The occupied map after 23 scans. 96
11-19The occupied map after 38 scans. 96

A-1 Coordinate system used to calculate the grasp error. On the top left the object is
given and on the right the camera coordinate system. 102

C-1 The block diagram with the file names of the source files of the nodes. 107

L.N.M. Middelplaats Master of Science Thesis

List of Tables

2-1 Overview of the error reported in different studies. 13

3-1 Parameters of the simulated camera. 17
3-2 Configuration of ARToolKit. 17
3-3 The settings used in ARToolKitPlus. 19
3-4 The error for the normal and the high resolution. The translation error is millime-

tres. The rotation error in Roll, Pitch, Yaw representation in milliradians 23

4-1 The range (maximum minus minimum value) of the measurement per axis for
the translation (x,y,z) and rotation (in Roll, Pitch, Yaw system) sand the average
standard deviation of the measurements. Translations in millimetres and rotation
error in milliradians. 30

5-1 Overview of the advantages and disadvantages of each method. Applicable for
AX=XB and AX=YB methods. 38

5-2 Translation (first box) and rotation errors (second box) for the different methods.
Matrices that result in the lowest RMS error have been used. Dimension for the
translation is millimetres and degrees for the rotation, lowest values bold. The
QR24m method is a preconditioned version of QR24. Adapted from[6]. 40

5-3 Overview of studies(horizontal) that compare different methods (vertical). Differ-
ent methods with the same author are listed with a reference instead of a dot. The
result column lists what that according to that study is the best method among
the compared methods. 42

5-4 Overview of studies that compare methods with results. The first line of the error
is the translation error, the second the rotation error. Different methods with the
same author are listed with a reference instead of a dot. 44

6-1 Error of VisP package for synthetic data. Dimensions for x,y,z in millimetres and
R,P,Y in milliradians. 49

6-2 The error of several algorithms in Matlab with the synthetic (correct) data, all in
millimetres. 144 poses are used for the calculation. Lowest error is in bold, lowest
Matlab algorithm error italic. 50

Master of Science Thesis L.N.M. Middelplaats

xiv List of Tables

6-3 The errors of several algorithms in Matlab for the rotation with the synthetic
(correct) data (all in milliradians).144 poses are used for the calculation. Lowest
value in bold. 50

6-4 The error for the translation of the hand-eye calibration for different camera pose
estimation algorithm. Dimension in millimetres. 51

6-5 The error of the rotation for different algorithms in milli rad. 53
6-6 The error of the final value of the Tsai algorithm for the translation for the various

pose estimators. Average of the last 5 values. Fourth value is the Root Mean
Square (RMS) error of x, y and z together, lowest value per system in bold. In
millimetres. 54

6-7 The error of the final value of the Tsai algorithm for the rotation for the various
pose estimators. Last five results averaged, in milliradians. RMS of the R, P and
Y value. Lowest value per system in bold. 54

7-1 The error for the translation of the hand-eye calibration for different camera pose
estimation algorithm. Dimension in millimetres. 58

7-2 The error of the rotation for different algorithms in milli rad. 58

8-1 Translation and rotation error (difference between the axis systems from figure 8-7.
For the Logitech webcam an average of three measurements on different positions
was taken. For the Kinect 11 measurements were taken. 67

8-2 Translation and rotation errors and their standard deviations for the Logitech we-
bcam and the Kinect. For the Logitech camera 19 poses have been used. For the
Kinect 21 poses have been used. The static measurements use 10 measurements
from the same position. 68

9-1 Kinect parameters from [7],[8]. According to the Kinect for Windows documenta-
tion the nominal viewing angles are 58.5◦and 45.6◦[9]. 74

9-2 Different map building methods. 76

C-1 Configuration of the self occlusion filter. 108

D-1 Specifications for the UR5 robot arm. Source: Universal Robots specification sheet. 109
D-2 ARToolKitPlus parameters for the Kinect on the PR2. 109
D-3 ARToolKitPlus parameters used in the simulation. 110
D-4 Calibration data for the Logitech Pro 9000 for a 640 by 480 pixels resolution. . . 110
D-5 Calibration data for the Logitech Pro 9000 for a 800 by 600 pixels resolution. . . 110
D-6 Calibration data for the Logitech Pro 9000 for a 1600 by 1200 pixels resolution. . 111
D-7 Calibration data for the Kinect RGB camera for a 640 by 480 pixels resolution. . 111
D-8 Configuration settings for the pose estimation algorithms. 112

L.N.M. Middelplaats Master of Science Thesis

“Learning never exhausts the mind.”
— Leonardo da Vinci

Chapter 1

Introduction

Robotics are used a lot in large scale enterprises for production. This enables them to produce
at low cost with a constant quality. One would thus expect that given these advantages the
smaller enterprises would also use robot systems. However, from the literature review it was
found that the Small to Medium Enterprises (SME) are not using very much robotic systems.
Usage of robotics could improve the production and help stay completive. The problem is
that current robot systems are not sufficiently flexible enough. Although robotic systems have
become much more affordable they still represent a large investment. Therefore, to be cost
efficient the robot system needs to be usable for different tasks, which are usually at different
places in the factory. This requires repeated reconfiguration, which is very time consuming.
If this is done often it cuts the effective working time and thus increases the payback time of
the robot. In conclusion, the key to increasing the uptake of robotics in SME’s is to reduce
the time required for reconfiguration.

Vision systems mounted on the robot and in its surroundings can make the system a lot more
flexible. If the robot for instance would be able to scan for obstacles in the surroundings itself
then the changes in setup and location would not be such a problem. The robot can be moved
from location to location for different tasks. Or changes in the setup like different conveyor
belts or machines that need to be tended could be automatically detected. If the robot could
scan its new environment again and update its collision map this could save time.

Vision systems can also be used to determine the location of the product that needs to be
grabbed. With this the exact location of the product does not need to be programmed. This
gives less constraints to environment, as it is then not necessary to design a guiding system
to put a product precisely in a spot so that the robot can grab it. By using vision systems
the product can be in different locations in different orientations. This makes the system a
lot more flexible and possibly also more robust.

However for both these tasks the location of the camera needs to be known to get a precise
location of the surroundings or objects in it. Therefore it is necessary to calibrate the location
of the camera. Manual recalibration is a tedious procedure. So it should also be automatic
so that this part can also increase the flexibility of the robot system. It could be beneficial

Master of Science Thesis L.N.M. Middelplaats

2 Introduction

Figure 1-1: The Kinect sensor (top) and a Logitech camera taped to the end effector of the
UR5 robot arm. Below it a Fetch Hand from Lacquey.

for some applications that the camera is placed on an other part of the robot or in a different
location. For a grasping task for instance the camera is probably placed near the end effector
where a gripper is placed. But if the camera is used for collision prevention for instance, then
the camera could be placed on the first link (near the base of the robot). For the flexibility
the time needed to change between these tasks should be as low as possible. Automatic
calibration would also be beneficial in prototyping robot set-ups or in research. Here camera’s
are sometimes taped to the robot, see for instance figure 1-1.

1-1 Thesis Goals

The goal of this thesis is to contribute to fast reconfigurability of industrial robot arms by
automating two parts of the installation process:

• Develop a system that can help with fast (extrinsic) calibration of a camera on a robot
arm.

– Accuracy and precision
The combined error should be below a centimetre so that the camera can be used
to grasp something using the camera with a Lacquey gripper.

• Use the camera to automatically map the surroundings of the robot for obstacles.

– Mapping the surroundings (workspace) of the robot arm should be done in a safe
way, during scanning the robot should not collide with an unknown object.

Here we define a Camera as: a monocular Red Green Blue (RGB) camera
And a Robot arm as: for instance a 6 Degree Of Freedom (DOF) manipulator like the UR5.
Method should be applicable to more or less DOF robot arms.

L.N.M. Middelplaats Master of Science Thesis

1-2 Test system 3

1-2 Test system

The created system will be implemented on a robot system.

1-2-1 Robot arm

The resulting system is tested on an Universal Robots UR5 robot arm. This is a relatively
new robot arm that has a several advantages over traditional robot arms which makes it a
good candidate for usage in the SMEs:

• The UR5 does not need safety fences around it as it operates at low speed and has
a form of collision detection. This has the advantage that there are no modifications
to the workplace necessary. And the robot can also be used among factory workers.
Automating the whole production process or a single process step could not be econom-
ically feasible. But in this case a part can be automated or a mixture of human workers
and robot arms can be used.

• Easy to move around. The robot is light so it can be placed on a moveable table
which can be moved by a single person. The robot is powered by normal wall wart
connection, it does not require lots of power or a specialized power connection. This
makes it possible to move the robot around and use it for a variety of tasks. Traditional
robots are fixed to the floor, the whole environment needs to be changed if another
tasks or operation has to be done.

1-2-2 Control software

From the literature review it was found that current robot control software is not very flexible.
It cannot be changed easily, generally it can only be used with one robot arm brand and cannot
easily interface with new sensors. By using an extra software layer, a middleware between
the operating system of the user and that of the robot the flexibility can be increased. Open
source robot middlewares can interface with different robot brands and support a lot of
different sensors. They offer also support multiple robot systems from different brands. From
the literature review the Robot Operating System (ROS) was found to be the best candidate
for this. Therefore the system will be created on top of this middleware. The UR5 robot has
also support in ROS.

1-2-3 Camera system

A monocular RGB camera system would be ideal for SME usage. Compared to other camera
systems like depth camera’s monocular cameras are relatively cheap and the technology is
more standardised and matured. This type of camera can for instance be used for locating
objects that need to be moved by the robot.

For the creation of depth maps however monocular camera’s are more difficult to use. There
is however a system created by Newcombe et al. that can do mapping with a monocular
camera using structure from motion[10]. The software for this is however not available yet.

Master of Science Thesis L.N.M. Middelplaats

4 Introduction

And with structure from motion it would mean that the camera has to move to see depth.
But when checking for possible collisions this could mean that the robot could collide with
an obstacle which it can not see yet. Therefore it was chosen for the collision mapping part
to use a depth camera.

Depth camera

Several depth camera systems exist which can be used for workspace mapping. A short
overview of available depth sensors will be given next.

Triangulation based sensors This class of sensors uses a light source that projects a point
or a pattern on the object and looks at the reflection with a camera. By using triangulation
the distance can be calculated. This approach is similar to stereovison, only instead of using
two cameras one camera is replaced with a projector. The usage of this type of sensor has
increased a lot after the introduction of the Microsoft Kinect. As this sensor was developed
to be used with the Xbox game console the sensor is relatively cheap compared to existing
depth sensors. Due to the popularity of the Kinect in research it has good driver support and
documentation. Disadvantage of this projection method is that there could be shadows in the
image, places where the depth cannot be measured[11]. Because there is an offset between
camera and projector it is possible that either the view of the camera or projector is blocked.
This creates the shadow in the image. Highly reflective surfaces can also create gaps as this
can create over exposure of the image[12].

Time of flight sensors (ToF) This class of sensors consists mainly out of laser scanners and
time of flight camera’s but radars and ultrasonic sensors also use the same principle. These
sensors use the time required for a light pulse to travel to the object and back. Advantage of
these sensors is that they are more compact compared to the triangulation based sensors as
there is no baseline required between the projector and the camera. The minimum distance
at which they can be used is generally also lower that of for instance the Kinect. But like the
Kinect they can also have problems with reflections. These sensors were also quite expensive
but the costs are decreasing. The new Kinect coming with the Xbox One console will also be
a ToF camera.

Stereovision Stereovision works by looking at similarities in the images of two cameras which
have fixed distance between them. The different locations of a feature in both images gives
a measure for the distance. Stereovision has the problem that enough features or intensity
patterns have to present in both images. This gives problems with objects which have don’t
have much features on them like plates. In a industrial setting with metal machines this could
give problems.

Selected sensors

As ’normal’ camera a Logitech 9000 webcam will be used. Because of the availability and the
good support of the Kinect in ROS this sensor will be used as depth sensor.
It also possible to use the other sensors if the limitations given above are taken into account.

L.N.M. Middelplaats Master of Science Thesis

1-3 Thesis outline 5

1-3 Thesis outline

This thesis is divided in to three parts. Each part is dived into a literature review, a simulation
part and a real world test. The parts are:

• Camera pose estimation
To determine the camera location on the robot the camera location relative to a fixed
point needs to be known. Therefore the first part will discuss the different camera
pose estimation methods. The different implementations will be discussed, tested in
simulation and with a real camera on a robot.

• Extrinsic calibration
Next the methods for estimating the position of the camera on the robot will be dis-
cussed. These methods use position of the camera relative to a fixed point as discussed
in the previous part. This is combined with the pose of the robot to get an estimate of
the location of the camera on the robot. This is also tested in simulation and on a real
robot arm.

• Workspace Mapping
The last part discusses the methods that can be used to get a 3D map of the obstacles
in the direct environment of the robot. This should be done in a safe way. So that when
building this map the robot doesn’t collide with an unknown obstacle. The extrinsic
calibration of the camera as obtained in the previous part is used for the map building.
With this the map building software knowns where the camera is in the map.

Master of Science Thesis L.N.M. Middelplaats

6 Introduction

L.N.M. Middelplaats Master of Science Thesis

Part I

Camera pose estimation

Master of Science Thesis L.N.M. Middelplaats

Chapter 2

Camera pose estimation

To get the location of the camera on the robot extrinsic calibration methods will be used,
which will be discussed in the next chapter. Extrinsic calibration methods generally require
the position of the camera relative to a calibration target to be known. Therefore methods to
get the camera pose relative to a calibration target will be studied. In figure 2-1 an example
of such a system is given.

For the hand-eye algorithm the motion of the hand and the eye (the camera) need to be
known. The hand motion can be determined using the encoders of the robot. Determining
the motion of the camera is more difficult.

With a monocular camera displacements in the x and y directions (image plane motions) and
rotation round the z-axis can be estimated relatively easily. In plane motions give a large
change in the image so this can be detected relatively well compared to the other motions.
Movement in the z direction or rotations round the x- and y-axis are more difficult as the
change in the image is small. The displacements and rotations have an arbitrary scale. By
using a calibration target with known dimensions the rotations and displacements can be
quantified.

Figure 2-1: Overview of the camera pose estimation system. The system estimates the distance
and orientation to the local coordinate system of the marker (the black square). Image from the
ARToolKit Website[1].

Master of Science Thesis L.N.M. Middelplaats

10 Camera pose estimation

2-1 Types

Several types of camera calibration targets exist. We will focus here on planar targets as they
can be easily used in the workspace of the robot. They can be easily printed with a standard
printer and fixed to a surface. Planar targets can be subdivided in to repeated pattern types
(like checkerboard patterns) or non repeating patterns like Augmented Reality (AR) markers.

2-1-1 Checkerboard targets

Checkerboard patterns are usually used to calibrate cameras. By getting an image of a
checkerboard from multiple viewpoints or checkerboard locations the lens parameters can be
estimated. The sharp edges of the checkerboard are used to calibrate the intrinsic parameters
of the camera. Other patterns like for instance circles are also used. The checkerboards can
also be used to estimate the pose of the checkerboard relative to the camera.

2-1-2 Augmented reality (AR) markers

AR markers are also called fiducial (individually identifiable) markers. Compared to checker-
board patterns they have the advantage that a code or number can be assigned to the different
patterns. Or even a text can be encoded in to the pattern. It is also possible to perform
calibration using markers[13]. As the markers can have an identification number it is also
possible to use multiple markers which can have a specific distance to each other.

2-1-3 Selection

With AR markers it is possible to use multiple markers with a specific distance to each other.
This could enhance the precision of the system or it would enable the system to work if one
or more markers are occluded. Fiducial markers are used a lot in Augmented reality (AR) to
determine the camera movements relative to the marker. As there is a lot of research done
is this area the best algorithms for camera pose estimation are probably used in this area.
Therefore AR markers will be used.

2-2 AR marker pose estimators

Several systems for marker pose estimation exist. There are for instance:

ARToolKit (2000) [2] This is the most popular system which has been used a lot in research
and commercial applications. ARToolKit uses binary thresholding. The markers can be
arbitrary images than are framed in a black square. It is available on several platforms and
is also ported to for instance cell phones. It is also available as a ROS package. It has a
GPLv21 and a commercial license.

1An open source license that requires that the source code of programs derived from software also has to
be released.

L.N.M. Middelplaats Master of Science Thesis

2-2 AR marker pose estimators 11

ARTag (2005) [14] Is based on ARToolKit. It uses edge detection instead of binary thresh-
olding. Has a GNU General Public License (GPL) license, it is however not downloadable
any more.

ARToolKitPlus (2007) [15] A rewritten version of ARToolKit in C++ making it more
memory efficient and faster. It also has several improvements like automatic thresholding
and it can track multiple markers. It uses a more advanced pose estimation algorithm, the
Robust Pose estimator from a Planar target (RPP). It uses binary coded markers, GPLv3
license.

Studierstube (2008) [16] Developed by the same group that developed ARToolKitPlus
(Graz University). It is supposed to be faster and less memory intensive than ARToolK-
itPlus. Features six marker types, two pose estimators and three thresholding algorithms.
The software is closed source, support seems to have stopped since 2008.

AprilTag (2010) [17] Uses modified lexicode for markers and uses line detection for marker
detection. Has an open source license.

Aruco (2011) [18] OpenCV based. Can track up to 1024 distinct markers and has a BSD
license2. As it is relatively new there are no reports available which compare it to other
systems.

This a small overview based on popularity. An overview of more methods is given in [19], [20]
and [21].

The system should be open source. This makes it possible to adapt the system to this
specific application. If the code is open source it is also easier to make a Robot Operating
System (ROS) package of the created system on which other applications can be created. It
should track 6 Degree Of Freedom (DOF) and have a high accuracy. The precision should
also be high, although the hand eye algorithm can compensate a bit for this by using multiple
measurements for this.

2-2-1 Performance

To determine which is the pose estimator system and what the expected performance will
be, we will look into comparative studies. Main criteria will be the robustness to different
lighting conditions and the accuracy of the estimated pose.

Lighting conditions In [22] ARTag and ARToolKitPlus were compared on lighting conditions
and dealing with occlusion. ARTag could deal better with partial occlusion of the marker.
ARTag could worked also better if the light intensity varied over the image.

2Open source license which allows that the software may be incorporated in proprietary closed source
software.

Master of Science Thesis L.N.M. Middelplaats

12 Camera pose estimation

Accuracy In [23] the pose estimators of ARToolKit and ARToolKitPlus were compared. The
first uses Kato et al.’s algorithm while the latter uses Robust Pose estimator from a Planar
target (RPP). The RPP method gives the most uniform results and is according to this study
the best. In this study the performance was evaluated in a simulation (unfortunately no
information is given about the distance, marker size or camera model). The RPP method
has a maximum error (Euclidean distance) of about 6 cm while the method from Kato et al.
has a maximum error of 1 metre. Distance to the marker is however not specified. From the
test it also follows that using more markers and markers that are more away from each other
provide a better result.

In [24] an evaluation for ARToolKit was performed. A webcam with a resolution of 640x480
pixels was used with a marker of 5.5 mm. The distance to the marker was 20 to 100 cm. The
error increases for the distance, between 20 and 70 cm the error was low according to the
study. Although the error was about 7 cm at 70 cm distance. Which relatively high compared
to the other studies but the marker used in this study is very small. For a larger marker and
a camera with a larger resolution this error could however be lower.

In [25] a (very) basic accuracy test of ARToolKit was performed. Using a 640x480 pixel
firewire camera with a 20x20 cm marker the accuracy was evaluated. Only the X and Y
measurements were evaluated. At 2.4 meters the error was 12 percent for the X axis while 18
percent for the Y. A maximum error of ± 27 millimetres at 2.5 meters was given. An upper
limit for detection is 2.5 meters. The error also seems to fluctuate with the angle at which
the camera is held.

In [20] ARToolKitPlus was tested with an 640x480 pixel grayscale camera with 30x30mm
markers at 0.5 meter distance. Here an accuracy for the x,y direction is listed as 5 mm and
20 mm in the z direction. The setup is not calibrated but ARToolKitPlus can undistort the
image this using the camera parameters. But according to the author there could be still
some distortion present. As the origin is not exactly known he uses relative measurements
between the markers. The use of grayscale camera instead of a color camera helps. As is it is
not necessary to interpolate the colors in the Bayer filter[26].

On the ARToolKit website3 and [2] some benchmarks are given although without any mea-
surement conditions or marker size. In figure 2-2 an overview of dependence between the
error, the distance and the rotation is given.

In [17] Apriltag and ARToolKitPlus were compared. Tests were done use a 400x400 pixel
camera with a focal length of 400 pixels in simulation, the used marker size is however not
given. In a distance test the detection rate drops to 50 percent at 25 meters for ARToolKitPlus
while Apriltag works till 50 meters and seems more accurate.

2-3 Discussion

According to [19] circular markers offer better pose estimation characteristics than square
ones. However according to his literature review: “there are no tried and tested circular
marker systems which do not require multiple markers and which are free to use and open-
source“. But this could be a recommendation for the future. A more through comparison with

3http://www.hitl.washington.edu/artoolkit/documentation/benchmark.htm

L.N.M. Middelplaats Master of Science Thesis

http://www.hitl.washington.edu/artoolkit/documentation/benchmark.htm

2-3 Discussion 13

Figure 2-2: Tracking Error versus Range and rotation angle. A 80 mm marker was used incom-
binatin with a 263x234 pixels camera. Reproduced from [2].

Table 2-1: Overview of the error reported in different studies.

Study System Resolution Marker
size [mm] Distance [m] Error [mm]

Abawi [24] ARToolKit 640x480 5.5 0.2-1
70 (at 0.7 m),
approx. 100
(at 1 m)

Wayne [25] ARToolKit 640x480 200 0-2.4 27 (at 2.5m)
Kler [20] ARToolKitPlus 640x480 30 0.5 X,Y= 5 Z=20

Andersen [23] ARToolKitPlus - - - X=50, Y:35, Z=20

Olson [17] ARToolKitPlus
Simulation

400x400 - 50 10.000

Master of Science Thesis L.N.M. Middelplaats

14 Camera pose estimation

experiments of all the algorithms would also be a recommendation. Because several studies
do not list essential parameters like marker size or distance from the camera to the marker.
A metric that incorporates marker size and the resolution of the camera would make such
study more useful general applications.

A checkerboard can contain more edges than a same sized AR marker which could make this
more robust. This should also be tested.

2-4 Conclusion

An overview of the studies and their results is given in table 2-1. It can be seen that is difficult
to generalize the results as the setups are different and different metrics are used. All the
studies use different marker sizes, camera resolutions or the error is not clearly defined. It
is thus difficult to get a good estimate of the expected performance of the pose estimation.
As ARToolKit is used very much in research and was already available in ROS this was
tested first. The accuracy of this algorithm turned out to be limiting the system. As another
graduation research showed good results with ARToolKitPlus this was also tested. As this
was not available yet in ROS an own implementation was made which could communicate
with other ROS nodes.

L.N.M. Middelplaats Master of Science Thesis

Chapter 3

Simulation

3-1 Simulation set-up

To test the pose estimator under ideal conditions it was tested in simulation. This makes
it possible to test the tracking algorithms without any distortion in the camera image and
under perfect lighting conditions. The main target of these tests is to test how precise the
camera position estimation can be. And to test under which conditions the optimal results
can be achieved. In the simulation it is for instance possible to use a camera with a very high
resolution.

The simulator used for this was Gazebo, the simulation package used in Robot Operating
System (ROS). With this camera images can be generated for the marker recognition and
the calibration can be tested. There was no working implementation of the UR5 robot arm
available (the ROS versions Fuerte, Groovy and Hydro were tested, but all had different
issues). Therefore a simple robot model was created. In figure 3-1 a screen shot from the
simulation is given. It consists of a simple arm with two degrees of freedom and a pole with an
image of a marker on it. As Gazebo is a physics simulator it is not possible to just change the
orientation of a part. Small changes are possible but large deviation makes the part oscillate.
Therefore it was necessary to create a controller to apply a force on a joint. An overview of
the system is given in figure 6-1. The simulation consists of several programs, nodes in ROS
terminology, that each have a specific task.

3-1-1 Main node

The main node controls all the other nodes. The program contains the measurement procedure
for one test. It sends joint angles for the robot arm to the controller, waits on the robot to
reach the specified orientation and logs the transformations to a log file. In this part only
the transformation between the estimated marker position and the real position is important.
But it logs more transformations so that the log file can also be used to determine the camera
position on the robot.

Master of Science Thesis L.N.M. Middelplaats

16 Simulation

Figure 3-1: Screenshot from the simulation of the robot in Gazebo. The blue box contains the
camera. It moves together with the link of the arm beneath it. The pole on the right has a white
box on top with four AR markers on it. Different marker configurations were tested. The marker
is slightly rotated relative to the base as zero rotation gave numeric problems in the marker pose
estimator.

Figure 3-2: Block diagram of the system. Solid lines are information streams (topics in ROS
vocabulary), dotted lines symbolize service calls (through which commands are sent). The main
node controls the simulated robot arm in Gazebo through the joint controllers. The controllers
use the PR2 controller manager structure. Gazebo then generates information like the camera
image and transformations between the hand (outer link) and eye (the camera). The block with
’ROS transform system’ in it is in green as this a standard ROS node, this node keeps track of all
the transformations between parts of the robot and the transform to the marker. The ARToolKit
node is from the ROS repository while the ARToolKitPlus node is an own implementation. In
appendix C a block diagram with the corresponding file names is given.

L.N.M. Middelplaats Master of Science Thesis

3-1 Simulation set-up 17

3-1-2 Controller

First a custom Proportional-Integral-Derivative (PID) controller was created that applied a
torque to the joint directly. Although there was put a lot of effort in tuning the gains it
was not possible to control the arm without oscillations. This could have to do with the
synchronisation between the simulation in Gazebo and the separate ROS controller node. To
solve this problem the custom controller was abandoned and the PR2 controller package was
used. These controllers are made for real-time control of the PR2 robot but can also be used
for other robots. A controller based on this architecture did not have these problems and
was also better configurable. Therefore controllers based on the PR2 real-time controllers
are used. Advantage of this architecture is also that the main controller can be configured to
control an arbitrary amount of joints. Because of the modular structure it is possible to create
extra controllers for more joints with controller gains that are adjustable per controller. The
main controller node reads the number of joints and their names from the parameters which
are set in the launch file. For each joint a state checker is created which sends the joint state
goals to the controllers and checks if these goals are reached. The controllers that actually
control the arm run in a separate node per controller. This is because these nodes are run in
real time at 1 kHz. In appendix C a block diagram with the corresponding file names of the
nodes is given.

3-1-3 Camera

A simulated camera with a resolution of 800x600 pixels is used. There is no distortion added
to the image, representing a perfectly intrinsically calibrated camera. The camera parameters
are listed in table 3-1. The hfov value is the horizontal field of view in degrees. Nearclip and
Farclip determine the drawing range for the simulator, objects outside of this range are not
drawn. An overview of all the camera parameters used in ROS is given the documentation1.

Parameter Value Unit
Image size 800x600 pixels

hfov 45 degrees
Nearclip 0.1
Farclip 100

Update rate 30 Hz

Table 3-1: Parameters of the simu-
lated camera.

Parameter Value Unit
Pattern Hiro
Width 500 mm

Threshold 100 (Default)
Use history True

Table 3-2: Configuration of AR-
ToolKit.

3-1-4 Pose estimators

ARToolKit and ARToolKitPlus were tested. To prevent both from interfering with each other
only one pose estimator was active per test.

1 http://www.ros.org/reps/rep-0104.html

Master of Science Thesis L.N.M. Middelplaats

http://www.ros.org/reps/rep-0104.html

18 Simulation

Figure 3-3: Standard ArToolKit
marker. Two circles and the frame are
projected on it to mark the detection
by ARToolKit.

Figure 3-4: Markerboard for use with
ArToolKitPlus. Edges are highlighted
with circles and the marker number is
overlayed.

ARToolKit

To use ARToolKit in combination with ROS a wrapper of ARToolKit in ROS was used2.
The used parameters are listed in table 3-2. For thresholding the default level is used. The
previous position estimate of the marker is used to improve that of the current estimate.
The marker which has a 500x500 mm surface with a text (’Hiro’, arbitrary text) is used. A
threshold of 100 is used for thresholding. The setting ’use history’ is used so that the previous
marker estimate is used to improve the current estimate. The image of the simulated marker
is shown in figure 3-3.

ARToolKitPlus

As there was no well documented wrapper for ARToolKitPlus available in ROS an own
implementation of ARToolKitPlus was made. ROS uses a custom image format which cannot
be used with ARToolKitPlus. Therefore the CvBridge package was used to convert the
image to the OpenCV image format that ARToolKitPlus can use. The camera calibration
parameters for ARToolKitPlus are listed in appendix D-3.

ARToolKitPlus can use a single marker but it can also track multiple markers at the same
time. Or translate the measurements of multiple markers back to one point. This has the
advantage that if one or more markers are occluded the point can still be tracked. The mea-
surements can also be fused to get a better result. The image of the simulated markerboard
is given in table 3-4. Again the surface of the marker (or combined markers) is 500x500 mm.

ARToolKitPlus also does thresholding and undistortion of the image. The settings are listed
in table 3-3.

Checkerboard pose estimator

A checkerboard with a checkerboard pose estimation algorithm was also used. The system
was however not able to detect the checkerboard. This could have been because no distortion
parameters were used.

2http://www.ros.org/wiki/ar_pose

L.N.M. Middelplaats Master of Science Thesis

http://www.ros.org/wiki/ar_pose

3-2 Simulation tests 19

Parameter Value Description
Borderwidth 0.125f The black border width of the markers is 1/8 of the marker side

Auto threshold yes
Threshold retries 3 Number of retries for thresholding

Pixelformat BGR BGR color space
Marker type BCH Binary coded marker

Pose estimator RPP Robust Planar Pose algorithm
Hull mode Hull full

Undistortion mode LUT Undistortion using lookup tables
Iter 10 number of iterations for distortion compensation

Table 3-3: The settings used in ARToolKitPlus.

3-2 Simulation tests

The target of the simulation tests is to test:

1. Accuracy and precision of the pose estimation algorithm

2. Influence of lighting conditions

3. Influence of camera resolution

4. Accuracy and precision of the resulting hand-eye transformation

5. Influence of the number of obtained poses

6. Influence of the marker size

The first three items will be tested by comparing the known location of the marker with the
estimate given by the pose estimation algorithm. The logger node logs this difference to a
text file which can be analysed using Matlab. Lighting conditions can be changed by adding
extra light in the simulation. The camera resolution can be changed easily in the simulation
description files.

The last three items will be tested by calculating the result for a different amount of poses.
This will be discussed in a later chapter.

3-2-1 Simulated dimensions

The robot arm consists of a single link with two rotation axes. The camera is placed in the
middle of the link at 500 mm and 300 mm height (from the beginning of the link) So that
the that link doesn’t fully obstruct the view of the camera. The distance that the hand-eye
algorithm calculates is the distance between the end of the link (the hand) to the camera.
This is 600 mm and 275 mm height (relative to the end of the link). The marker is placed at
2.5 meters away from the robot at 1.45 meters heigh (center of the marker). First the total
(corner to corner) dimension of the marker was 0.5 by 0.5 meters. 0.18 by 0.18 metres was
also tested, with these dimensions the marker fits on an A4 paper.

Master of Science Thesis L.N.M. Middelplaats

20 Simulation

Figure 3-5: Screen shot from the transformation visualization tool (Rviz). On the right the
transformations of points on the robot are displayed, with the robot_camera_link the transfor-
mation to the camera and armshoulder_pivot the hand of the robot. From the robot base and the
robot camera link two transformations are drawn, the first is the correct (static) transformation
while the other is the estimated transformation from ArToolKitPlus. It can be seen that there is
a small error in the estimation as the lines of axis system do not completely overlap.

3-2-2 ARToolKit, ARToolKitPlus and different marker configurations

The difference in accuracy and precision between ARToolKit and the improved version AR-
ToolKitPlus were tested. This was done by measuring the error between the static and the
measured marker position. In figure 3-5 the transforms are displayed. The measured marker
transformation is displayed by the line from the robot_camera_link while the line from the
base represents the static transformation. The following configurations were compared:

• ARToolKit

– 0.5x0.5 meter marker
– 0.18x0.18 meter marker

• ARToolKitPlus

– 0.5x0.5 meter single marker
– 0.18x0.18 single marker
– 4 0.20x0.20 multimarkers
– 4 0.08x0.08 multimarkers

The simulated camera was placed on the a robot arm with with one link which can rotate
over two axes. The arm was moved so that the whole board with the markers stayed in the
image but had different positions in the image. Due to the detection of the marker round the
edges of the image the number of measurements varies between 185 and 201.

Interesting to note is that ARToolKitPlus needs extra light to properly detect the marker in
simulation. It detects the marker at more positions if an source of light is created above the
arm. Without the light the image is clearly viewable but to perhaps the extra contrast the light
gives a better edge detection. This is odd as ARToolKitPlus has extra dynamic thresholding

L.N.M. Middelplaats Master of Science Thesis

3-2 Simulation tests 21

features in comparison to ARToolKit, so it it supposed to perform better. ARToolKit on the
other hand gives errors with extra light. If the marker is partly in the image and there is
extra light a marker is detected very far away.

Results

The results can be seen in figure 3-6 and figure 3-7. A zoomed-in version of the rotation error
is given in figure 3-8.

Translation It can be seen that the translation error for all configurations is for the Z
axis the largest. This can be explained by the fact that a change in distance on the z-axis
does not change the image very much in comparison with movements in the other directions.
Interesting is also that the average error is not round zero but it has a bias which is below zero
for the X and Y axes while its above zero for the Z axis. If the methods per axis are compared
it can seen that the single configurations (methods using one marker) perform slightly better
than the multi marker method. For the 0.5x0.5 meter marker ARToolKit performs slightly
better than ARToolKitPlus. Which is odd as ARToolKitPlus should be an improvement. For
the 0.18x0.18 meter marker the difference is a bit bigger.

Rotation For the rotation error it stands out that ARToolKitPlus has outliers that are
lying very far away from the rest of the measured errors. This effect is only present for the
smaller markers. Interesting is that the outliers are all lying on the same side. In figure 3-8
a zoomed-in version is given. It can be seen that the errors are the largest for the Roll and
the Pitch angles. Again this can be explained by the change of the marker in the image. In
plane rotation gives a large deviation of the image while out of plane rotation gives a lesser
change in the image. If the large marker configurations are compared it can be seen that
ARToolKitPlus works slightly better. The single and multi marker method perform similarly.
For the smaller marker it can be seen that ARToolKit has a bias while the average error of
ARToolKitPlus is near zero. The minimum and maximum of ARToolKit is lower than that of
ARToolKitPlus. Although the outliers are on similar levels with the minimum and maximum
of ARToolKitPlus.

3-2-3 Resolution dependence

Using the single marker with ARToolKitPlus the effects of testing a different resolution were
tested. A single marker with dimensions of 0.5 by 0.5 meters was used with different camera
resolutions (and different calibration files for ARToolKitPlus). Three resolutions were tested:
640 by 480 pixels, 800 by 600 pixels and 1200 by 900 pixels. Higher resolutions were also
tested, but the marker detection at higher resolutions than 1200 by 900 pixels did not seem
to work.

From the result it can be seen that accuracy and precision of the estimation of the position
and orientation of the marker is also determined by the resolution of the camera. In figure 3-9
the translation error between the static marker and the estimated marker is given. It can be
seen that especially the z axis very depended of the resolution. It can be seen that precision

Master of Science Thesis L.N.M. Middelplaats

22 Simulation

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x x 0.18 xs+ xs+0.18 x+4 x+4 0.08 y y 0.18 y+s ys+0.18 y+4 y+4 0.08 z z 0.18 z+s z+s 0.18 z+4 z+4 0.08

E
rr

o
r

[m
]

Translation error between measured and static marker

ARToolKitPlus 4 0.5x0.5 (z+4)

ARToolKitPlus 4 0.08x0.08 (x+4 0.08)

ARToolKitPlus single 0.18x0.18 (x 0.18)

ARToolKitPlus single 0.5x0.5 (xs+)

ARToolKit 0.18x0.18 (x 0.18)

ARToolKit 0.5x0.5 (x)

Figure 3-6: Comparison of ARToolKit, ARToolKitPlus with different marker sizes and multi
marker versus single marker. It can be seen that with the smaller markers more outliers are
present.

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

R R 0.18 Rs+ Rs+0.18 R+4 R+4 0.08 P P 0.18 P+s ys+0.18 P+4 P+4 0.08 Y Y 0.18 Y+s Y+s 0.18 Y+4 Y+4 0.08

E
rr

o
r

[r
a

d
]

Rotation error between measured and static marker

ARToolKitPlus 4 0.08x0.08 (R+4 0.08)

ARToolKitPlus 4 (R+4)

ARToolKitPlus single 0.18x0.18 (Rs+0.18)

ARToolKitPlus single 0.5x0.5 (Rs+)

ARToolKit 0.18x0.18 (R 0.18)

ARToolKit 0.5x0.5 (R)

Figure 3-7: Comparison of ARToolKit, ARToolKitPlus with different marker sizes and multi
marker versus single marker of the rotation. Interesting to see is that the ARToolKitPlus has in
some configurations a lot of outliers. These in the 20x20 centimetres and 18x18 single configu-
rations. But the smaller 8x8 centimetres configuration doesn’t have this. Given that the marker
size is smaller here more outliers should be present here compared to the larger images.

L.N.M. Middelplaats Master of Science Thesis

3-2 Simulation tests 23

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

R R 0.18 Rs+ Rs+0.18 R+4 R+4 0.08 P P 0.18 P+s ys+0.18 P+4 P+4 0.08 Y Y 0.18 Y+s Y+s 0.18 Y+4 Y+4 0.08

E
rr

o
r

[r
a
d
]

Rotation error between measured and static marker

ARToolKitPlus 4 0.08x0.08 (R+4 0.08)

ARToolKitPlus 4 (R+4)

ARToolKitPlus single 0.18x0.18 (Rs+0.18)

ARToolKitPlus single 0.5x0.5 (Rs+)

ARToolKit 0.18x0.18 (R 0.18)

ARToolKit 0.5x0.5 (R)

Figure 3-8: Comparison of ARToolKit, ARToolKitPlus with different marker sizes and multi
marker versus single marker. Close up of the previous plot, the outliers at 0.4 and -0.6 are here
not displayed.

x y z RMS R P Y RMS
Lowres 3.535 -4.606 -5.419 4.585 17.5 -0.6267 3.624 10.32
Normal 5.059 -7.555 5.244 6.06 10.27 -5.677 5.46 7.472
Highres 1.479 -7.786 2.955 4.884 6.619 -2.935 -1.187 4.236

Table 3-4: The error for the normal and the high resolution. The translation error is millimetres.
The rotation error in Roll, Pitch, Yaw representation in milliradians

improves for all axis but the accuracy only improves for the Y and Z axes. In figure 3-10
the error for the rotation is given. Here the relation between the precision and the resolution
is even stronger. The accuracy is however not improved very much here. The effect is the
strongest for the yaw axis but the error is not improved very much.

Master of Science Thesis L.N.M. Middelplaats

24 Simulation

−0.02

−0.01

0

0.01

0.02

0.03

x lowres x x highresy lowres y y highresz lowres z x highres

E
rr

o
r

[m
]

Translation error between measured and static marker

1200x900 pixels

800x600 pixels

640x480 pixels

Figure 3-9: The translation error between the static and measured marker for three camera
resolutions: 640 by 480 pixels, 800 by 600 pixels and 1200 by 900 pixels.

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

R lowres R R highres P lowres P P highres Y lowres Y Y highres

E
rr

o
r

[r
a

d
]

Rotation error between measured and static marker

1200x900 pixels

800x600 pixels

640x480 pixels

Figure 3-10: The rotation error between the static and measured marker for three camera
resolutions: 640 by 480 pixels, 800 by 600 pixels and 1200 by 900 pixels. It can be clearly seen
that the error scales with the resolution.

L.N.M. Middelplaats Master of Science Thesis

Chapter 4

Validation with a real camera

To be able to estimate the position of the camera on the robot arm the pose of the camera
relative to a calibration target needs to be known. This pose estimation system has been
tested in simulation in the previous chapter. To validate the simulation results the camera
pose estimation will now be tested on a real robot system.

4-1 Test hardware

Robot arm The Universal Robot UR5 robot arm was used. As three of these arms were
available in the lab it was logical to use this type of robot arm. This six Degree Of Freedom
(DOF) arm can be used without safety fences around it. This makes it easier to use in a
normal environment. The robot arm is supported in Robot Operating System (ROS) and
can be controlled using a laptop which is connected through ethernet to the robot controller.
Full specifications are given in appendix D-1.

Camera system A Logitech Webcam Pro 9000 was used. This camera was taped to a mount
which was screwed to the Tool Centre Point (TCP) of the robot.

4-2 Software

4-2-1 Intrinsic calibration

For the extrinsic calibration to work the camera intrinsics need to be known. ROS can store
calibration data and send this data along the image stream. To get this data the camera
needs to be calibrated. Intrinsic parameters vary per camera model and even within the same
model parameters can vary. But if the focus stays fixed the parameters are relatively fixed
(they will probably drift over time). These parameters used here are: the principal point, the
focal length and the distortion coefficients (5 coefficients using Plumb Bob model[27]).

Master of Science Thesis L.N.M. Middelplaats

26 Validation with a real camera

Figure 4-1: Block diagram of the checkerboard pose estimator. The first step (image acquisition)
is performed outside the program. Between brackets the ROS package or OpenCV function which
is used for the task is given.

The checkerboard used for the extrinsic calibration can also be used to calibrate the camera
intrinsically. ROS has a module which was build on the Open Source Computer Vision
library (OpenCV) calibration method which can be used to calibrate the camera(which uses
an algorithm based on Zhang et al.[28]). By moving the checkerboard around in the image
field of the camera several checkerboard poses can be captured. Indicators on the visualization
give and indication of enough poses are captured. An optimisation routine then determines
the parameters.

The camera intrinsics for the camera’s used in this study are listed in appendix D.

4-2-2 Camera pose estimation

ARToolKit and ARToolKitPlus were tested. Results were not very precise. Especially at
larger rotations the error increased, there was probably a conversion error somewhere. As
there were also doubts about the precision of the Augmented Reality (AR) markers a checker-
board pose estimator was tested.

Checkerboard pose estimator

The checkerboard pose estimator uses functions from OpenCV to detect a checkerboard in
the image and estimate its position and orientation. In figure 4-1 a block diagram of the
system is given.

Image acquisition is done outside the program through a ROS camera driver. This can be
for instance the uvc_camera driver (USB Video Class) or the gscam (Gstreamer based). The
camera driver creates an image stream and camera info stream. The camera is assumed to
be calibrated. The camera driver loads the calibration information and distributes this over
the camera info stream. The Checkerboard pose estimator subscribes to the image stream
and the camera info stream on which the camera intrinsics are published. This makes it

L.N.M. Middelplaats Master of Science Thesis

4-3 Error of the pose estimator 27

possible to use different (calibrated) camera’s as the camera intrinsic parameters are loaded
automatically. The image data is then converted to an image format that OpenCV can use.
Next corners are searched to detect if there is a checkerboard present in the image or not.
The function looks for the internal corners of the chessboard. The number of corners that
need to be found are loaded from a configuration file. In this function the histogram of the
image is first equalized. With the average brightness as threshold the image is then converted
to black and white after which the corners are searched. The function also has a fast check
option which speeds up the detection. In tests turned out that this sometimes impedes the
detection while a marker is clear in the image. This is therefore not used.
In the next step the position of the corners is tried to be refined to a subpixel accurate location
by calculating gradients. With these these corners the position of the camera relative to
checkerboard are calculated. The parameters which are used are given in appendix D-8.
The pose is calculated with the OpenCV solvepnp() or solvePnPRansac() functions. The pnp
part stands for Perspective-N-Point. Both try to match a predefined grid of corner locations
to the grid of detected corners in the image. This function also use the camera matrix and the
distortion coefficients of the camera. This parameters are obtained through the camera info
stream. The function can use the previous guess as an starting point for the next estimation
and outputs the translation and rotation of the checkerboard. The solvePnPRansac function
uses a RANdom SAmple Consensus (RANSAC) method to minimize the error between both
grids. Both methods can use the following methods to solve the PnP problem:

• CV_ITERATIVE (default), Levenberg-Marquardt optimization.

• CV_P3P, a method developed by Goau et al. [29]. Can only use four points.

• CV_EPNP, a method developed by Lepetit et al.[30]

The default is used.
The function outputs a translation and rotation of the object in camera coordinate system.
The rotation is given as 3 by 1 (compact) Rodrigues rotation vector. This is converted first
to a rotation matrix. Which is then converted to a rotation in quaternions which is the
standard rotation representation in ROS. The resulting transformation is broadcasted over
the transformation system of ROS so that other nodes can use the obtained position.

Checkerboard_detector2

The ROS package checkerboard_detector2 also uses OpenCV functions to estimate the po-
sition of the checkerboard. It also uses the default solvepnp() settings and does not have
RANSAC method. It does remove corners and can detect multiple markers. In appendix D-8
an overview of the configure settings of both nodes is given.

4-3 Error of the pose estimator

To test the error of the checkerboard pose estimator the camera was moved parallel to the
marker. The camera was held at approximatively 0.77 metres from the wall, parallel to the

Master of Science Thesis L.N.M. Middelplaats

28 Validation with a real camera

Figure 4-2: Visulatization of the robot model with the transformations. On the left below is a
’static transformation’ to the marker position which is used to calculate the error. Above it is the
estimated marker position, it can be seen that there is some offset between the two positions.

wall. Three resolutions were tested: 640x480, 800x600 and 1600x1200 pixels. The normal
solvePnP solver was used as well as a RANSAC based one. In the ROS transformation system
a static transform publisher to marker was used to calculate the error. The distance from the
robot base to the marker was taken as the estimated distance when the camera is in front of
the marker, which should be the ideal condition.

4-3-1 Results

The results are given in figure 4-3.

For the 640x480 pixels resolution and the 800x600 pixels resolution the test was ran three
times, for the 1600x1200 pixels it was ran twice. With the 1600x1200 pixels resolution the
chequerboard wasn’t detected sometimes. This had probably to do with the larger computa-
tional load. Lowering the number of frames per second in the camera to 10 frames per second
did not help, the pose estimator did run at an even lower rate. It can be seen that the results
are pretty comparable except for the 1600x1200 pixels resolution. If we look at table 4-1 it
can seen that the standard deviation even increases a little bit. This is in contrast with the
simulation in which there was a clear improvement when using higher resolutions. This could
be due to distortion in the lens and a limiting optical resolution of the lens. The algorithm
uses the distortion parameters but this could still be a limiting factor. The optical resolution
of the lens could also influence the results. It could be that the image is not becoming much
sharper when using a higher resolution due to the lens resolution.

It can be seen that the error for the Z axis is very constant. This is probably because there
is no movement and rotation in this direction, the camera stays at the same distance and
orientation to marker. Rotation is also in plane, a small rotation will give a large number
of pixels that change. This in contrast to the out of plane rotation were a small rotation
changes much less pixels in the image. The change in error for the X and Y translation is
more difficult to explain. This could be due to distortion. The image of the checkerboard is
moved over the sensor, it does not occupy the whole sensor. So distortion round the edges of
the frame could be of influence, although the algorithm should compensate for this.

If we look at the table 4-1 it can be seen that standard deviation for the translation on the
x and z axes is in the order of millimetres. While it is in the order of centimetres for the y

L.N.M. Middelplaats Master of Science Thesis

4-3 Error of the pose estimator 29

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Movement parallel to wall [m]

E
rr

o
r

[m
]

x

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Movement parallel to wall [m]

E
rr

o
r

[m
]

y

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Movement parallel to wall [m]

E
rr

o
r

[m
]

z

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

Movement parallel to wall [m]

E
rr

o
r

[r
a

d
]

R

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Movement parallel to wall [m]

E
rr

o
r

[r
a

d
]

P

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Movement parallel to wall [m]

E
rr

o
r

[r
a

d
]

Y

640x480 800x600 800x600 ransac 1600x1200

Figure 4-3: Error of the Logitech camera with checkerboard pose estimation. First row the
translation error, second row the rotation error. On the X axis the movement parallel to the wall.
The zero point on the x axis approximately 0.2 metres of the marker center. Interesting to see is
that for the translation on the x and z axis the error is relatively constant. While for the y axis
the error decreases for the movement in x direction.

Master of Science Thesis L.N.M. Middelplaats

30 Validation with a real camera

640x480 800x600 800x600 RANSAC 1600x1200
range x 5.294 6.3865 6.665 11.984
std x 1.4627 2.0078 1.996 3.5158

range y 31.326 31.554 31.349 26.893
std y 9.3172 9.4692 9.4266 7.065
range z 2.8482 4.992 6.2209 15.271
std z 0.616 14 1.445 1.4498 4.7785

range R 35.59 37.698 38.458 90.18
std R 9.896 9.8469 7.8219 29.382
range P 35.925 48.91 51.056 73.332
std P 8.2749 16.17 15.397 24.154

range Y 3.6707 11.54 14.17 29.713
std Y 0.863 3.8146 3.7258 7.9038

Table 4-1: The range (maximum minus minimum value) of the measurement per axis for the
translation (x,y,z) and rotation (in Roll, Pitch, Yaw system) sand the average standard deviation
of the measurements. Translations in millimetres and rotation error in milliradians.

axis. For the rotation it is round 35 millirads for the Roll and the Pitch, while is a factor ten
lower for the Yaw. For higher resolutions the deviation increases.

4-3-2 Discussion

In this experiment the rotation was tested but the distance to the marker also varied. A test
with constant distance to the marker i.e. a curved trajectory would have been better. The
checkerboard pose estimator had problems with coupling in the rotations and translations.
Rotations on one axis resulted in translations and rotations. This problem originated some-
where in the conversion of the estimated position in the program and with the coupling to
position of the robot. This was solved for the checkerboard detector. It could be possible
that a similar problem was limiting the performance of the AR marker systems. Due to time
constraint this was not tested if this was the case.

4-3-3 Conclusion

From this test it was found that the standard deviation of the checkerboard pose estimator
is in the order of millimetres on the x and z axes. For the y axis there is linear relation with
the translation of the camera. A higher resolution does not contribute to a better result.

L.N.M. Middelplaats Master of Science Thesis

Part II

Extrinsic calibration

Master of Science Thesis L.N.M. Middelplaats

Chapter 5

Extrinsic calibration of the camera in
the workspace

In the previous chapter methods to estimate the position of the camera relative to a calibration
target have been studied and tested. This position data will now be used with the pose of the
robot to calculate the position of the camera on the robot. After this methods for mapping
the workspace will be given.
The problem of determining where a camera is relative to a marker or to its environment
has been studied extensively. The more specific problem of determining where a camera
is mounted relative to a gripper is called Hand-Eye calibration. The first solutions of this
problem date back to 1987. First by Shiu and Ahmad [31] and later by Tsai-Lenz [32].
Although a lot of different solutions have been presented since then the method by Tsai and
Lenz still remains very popular.
The hand eye calibration problem has been approached with several sensor systems. There are
implementations that use stereo cameras[33], lasers, Kinect senor[34], IMU’s combined with
indoor GPS[35] and several others. As in this study a monocular camera is used the discussion
here will be limited to this sensor system. If we limit the set of methods to the methods that
use monocular cameras the methods can be grouped in two categories. These categories are
robot hand calibration and simultaneous robot hand and robot world calibration. In the first
category the pose of a camera on a robot arm is calibrated relative to the gripper (the hand)
of the robot. In the second category the robot pose relative to the world coordinate system
is also calculated. According to [36] both approaches can be subdivided into:

• Separable closed form solutions (two stage)

• Simultaneous closed form solutions

• Iterative closed form solutions

Most approaches work by moving the camera round a reference object like a checkerboard. By
using multiple viewpoints the camera position can be determined. In figure 5-1 an example

Master of Science Thesis L.N.M. Middelplaats

34 Extrinsic calibration of the camera in the workspace

Figure 5-1: Example of an UR5 robot
arm with a gripper and camera system
fitted on the tool center point. The
camera is pointed at an AR marker.

−200

−100

0

100

200

300

400

500

600

700
−400

−300
−200

−100
0

100
200

300
400

500

0

100

200

300

400

500

600

700

800

4

Y
world

1

3

2

10

9

16

Extrinsic parameters (world−centered)

18

15
17

11

12

14

13

X
world

6

19

5

8

7

20

Z
w

o
rl
d

Figure 5-2: Visualization of the dif-
ferent poses in Matlab using the Cam-
era Calibration Toolbox. Each pyra-
mid represents a camera pose and the
square the marker.

setup is given of a robot arm with a gripper and camera on the tool center point and an
Augmented Reality (AR) marker beneath it. The robot arm can move the camera round
the marker and capture images of the marker from different viewpoints. The viewpoints are
visualized in figure 5-2.

An overview of the different methods will be given. The studies listed in bold are studies that
are compared in the ’Selection of Method’ section. After this section a method is selected.

5-1 Robot hand calibration

Using this approach the camera position and orientation of the camera relative to the gripper
of the robot are determined.

5-1-1 Separable closed form solutions (two stage)

The first approach is relating the hand movement to the perceived motion of the image of the
camera:

AX = XB (5-1)

In this formulation A is the Tool Centre Point (TCP) (the ’hand’) motion T t2
t1 , B the perceived

camera motion T c2
c1 and X the transformation between the hand and the camera. The motion

of the TCP is determined using the encoders of the robot. And the motion of the camera
is extracted from the sensor. This can be for instance a camera with a calibration target
or a 3D camera. The motions between these points can be sub-dived into a rotation and a
translation. This is usually noted by the homogeneous matrix:

A =
[
RA tA
0 1

]
(5-2)

L.N.M. Middelplaats Master of Science Thesis

5-1 Robot hand calibration 35

Figure 5-3: Visualization of the different poses in Matlab using the Camera Calibration Toolbox.
Adapted from [3].

The whole equation can be formulated as:

AX = XB (5-3)

(
RA tA
0 1

)(
RX tX
0 1

)
=
(
RX tX
0 1

)(
RB tB
0 1

)
(5-4)

The separated rotation:

RARx = RxRB (5-5)

And translation:
RAtx + tA = RxtB + tx (5-6)

Shiu and Ahmad [31] were the first to formulate the problem like this. An angle-axis formu-
lation is used to solve the rotational part.

Rx = Rot(kAi , βi)RxPi
(5-7)

With:
RxPi

= Rot(v, ω)
v = kBi × kAi

ω = atan2(|kBi × kAi |, kBi · kAi)
(5-8)

With Rx known the translation can be calculated using linear algebra:RA1 − I
...

RAn − I

 tx =

RXtB1 − tA1
...

RXtBn − tAn

 (5-9)

Zhuang et al.[37] reformulated the solution of Shiu and Ahmad with quaternions making it
possible to also use rotations round 180◦. Problem with the solution of Shiu and Ahmad is

Master of Science Thesis L.N.M. Middelplaats

36 Extrinsic calibration of the camera in the workspace

that every time that a frame is added to the system the size of the linear system doubles. In
a later formulation by Tsai and Lenz [32] a fixed size system is used. Again an angle axis
method is used to solve the rotation in 5-5 and then using linear least squares the translation
can be calculated.

Sk(kRA1
+ kRB1

)k′Rx
= kRA1

− kRB1
(5-10)

kRx =
2k′Rx√

1 + |k′Rx
|2

(5-11)

Sk(x) =

 0 −x(3) x(2)
x(3) 0 −x(1)
−x(2) x(1) 0

 (5-12)

Angle of rotation:
θ = 2arctan(|k′Rx

|) (5-13)

With the rotation Rx known linear least squares is used to get the translation from 5-6.

The camera needs to make at least two movements with non-parallel rotation axis for a
solution[32],[38] but more movements increase precision of the result. Wang[39] also used
an angle-axis formulation. Three methods are presented which are all closed form. The first
method requires a reference object at a pre-calibrated location and uses just transformations.
The second method also requires a reference frame and is comparable to Tsai-Lenz and Shiu-
Ahmad. In the third method no calibration target is necessary but there are special motions
of the robot arm necessary.

Other approaches are based on quaternion algebra by Chou et al.[40], [41] and Horaud and
Dornika(referenced here as Horaud-Dornika’95)[42], screw motion analysis[38], properties
of the Euclidean group[43], Li et al.[44] use canonical matrix representation and non-linear
equations.

5-1-2 Simultaneous solutions

The two stage methods presented before have the advantage that they are fast. But the error
in the rotations propagates through in the translations. Therefore there are also other ap-
proaches which simultaneously determine rotation and translation. For this formulation there
are several implementations available. Daniilidis et al. use dual quaternions to describe
the system[45]. Andreff et al.[46] use the Kronecker product to create a linear system. The
method has as problem that the resulting Rx rotation is not necessarily orthogonal which
could lead to errors in the resulting transformation.

5-1-3 Iterative solutions for rotation and translation

It is also possible to use an iterative solution. By minimizing ||AX −XB||. This approach
also solves the problem with the propagating orientation errors. But this method can be
computationally expensive because of the complex optimizations. If the number of equations

L.N.M. Middelplaats Master of Science Thesis

5-2 Simultaneous robot hand and robot world calibration 37

Figure 5-4: Simultaneous robot hand and robot world calibration. Usually formulated as AX=YB
or AX=ZB. Adapted from [3].

get larger the differences between closed form and iterative solutions becomes smaller[36].
Wei et al.[47] developed a method which does not use a calibration point but can just use
points in the image. To do this however stereovision is used. The method can also estimate
the internal parameters of the cameras. In the study also the movements which create an
optimal result are studied.

In [48] the sensors of the PR2 robot are calibrated using a bundle adjustment approach and
Levenberg-Marquardt optimization.

5-2 Simultaneous robot hand and robot world calibration

The previous methods determined the pose of the camera on the robot. But it is also possible
to simultaneously determine the pose of the base of the robot relative to world (usually
the calibration target). This is usually called simultaneous robot hand and robot world
calibration. This class of methods can also be divided in to separable closed form solutions,
simultaneous solutions and iterative solutions.

The simultaneous determination of the hand eye transformation and the robot world trans-
formation is usually formulated as:

AiX = Y Bi (5-14)

In this formulation A is the pose of the camera frame relative to the calibration frame. B
is the pose of the TCP relative to the robot base. And X and Z respectively are the hand
eye and world-base transformations. This formulation can also be divided in to separable,
simultaneous and iterative solutions. This was first formulated by Zhuang et al[49] in a linear
approach. A closed form and a non-linear approach were later created by Dorniaka et al[3].
Shah et al. [50] combined the quaternion methods of [3] and [51], with the Kronecker
methods of [52] and [53].

Ernst et al. [54], [6] argue that industrial robots are not calibrated optimally and that
deviations of 2-3 millimetre can arise. Also optimally calibrated optical tracking systems can
also give Root Mean Square (RMS) errors in the order of 0.2-0.3 millimetres. This can lead

Master of Science Thesis L.N.M. Middelplaats

38 Extrinsic calibration of the camera in the workspace

Method Advantages Disadvantages
Separable Simple, fast Errors in rotational part prop-

agate to translational part.
Simultaneous No propagation of rotation errors Results depend on scaling.
Iterative Possibly more accurate No guarantee optimal solution

is found, depended on starting
criteria.

Table 5-1: Overview of the advantages and disadvantages of each method. Applicable for
AX=XB and AX=YB methods.

to non-orthogonal rotation matrices which can give computational problems. They developed
therefore a method which allows the X and Y matrices to be non-orthogonal. This method
is called the QR24 calibration algorithm, which simultaneously solves for the rotation and
translation using least squares with QR factorisation (hence the name). A variant of this,
OR15 also works without or with incomplete rotational data input. If there is no complete
six Degree Of Freedom (DOF) tracking data available this method can give a partial solution
as opposed to other methods which would not work then. The number after the QR stands
for the number of parameters that are estimated.

5-2-1 Overview of methods

In table 5-1 a very general overview of the advantages and disadvantages of the various
calculation methods is given[36]. Both the robot hand (AX=XB) and the simultaneous robot
hand and robot world calibration (AX=YB) can be solved using the same calculation method.

5-3 Structure from motion

In most studies a calibration target is used. This can be a point in the image or for instance
a checker board or AR marker. From the 2D images the position and orientation is then
estimated using the camera intrinsics. It is also possible to use structure from motion to
determine the camera movement. Structure from motion tracks features from image to image
and estimates the camera motion from this. An advantage of using this method is that can be
used in dirty environments where the calibration target would get dirty. A good example of
this is given in Schmidt et al.[55] where the calibration is used to calibrate a camera which
is attached to an endoscope. In this case a marker is impractical in a sterile environment. In
this case the ’hand’ is at the end of the endoscope which is outside the body. A marker is
attached to this to track the ’hand’ position. While the ’eye’ at the other end is inside the
body of a person undergoing surgery. A disadvantage of this method is that the translation
is estimated with an unknown scale factor which also needs to be estimated.

Ai =
(
Rai λuai

000 1

)
(5-15)

With Rai the rotation between image i-1 and i and u the translation which is related to
the camera translation as tai = λuai [53]. By using pure translations and pure rotations it

L.N.M. Middelplaats Master of Science Thesis

5-4 Comparative studies 39

is possible to calculate the scale factor λ. According to [55] Structure from motion is less
accurate than methods that use a calibration target. In the method presented by Andreff et
al. in [46] the points needed for structure from motion also need to be tracked over the whole
robot movement which is difficult for a long trajectory.

5-4 Comparative studies

Although there are a lot of different algorithms there are few comparative studies available
comparing several methods at the same time. Although the method presented by Tsai-
Lenz[32] is relativity old the method still performs reasonably well compared to newer algo-
rithms. An overview of the studies that compare different algorithms will be given next. In
table 5-3 an overview of the studies is given and which methods they compare. In 5-4 the
results per algorithm are given.

Wang in [39] compares Tsai-Lenz and Shiu-Ahmad with his own methods. For the input
data a monocular camera (510x490 pixels) with a calibration grid is used. The method of
Tsai-Lenz has the lowest standard deviation and is selected as best.

In [44] Li and Betsis compare Tsai-Lenz, Horaud-Dornika’95[42] and there own methods which
include a least squares solution, geometric and a non-linear optimization with quaternions.
Test are done in simulation and on the KTH head-eye system. They concluded that their
own non-linear and the Tsai-Lentz algorithm give the best results.

In Wei et al.[47] an active motion approach is used to calibrate both the intrinsic and extrinsic
parameters. In this study a stereovision set-up is used with cameras with a resolution of
460x420 (TV lines). The method is compared with an extended version of the Tsai-Lenz
method, which can also determine the intrinsic parameters. In the experiments their own
method performs better than the modified Tsai-Lenz method.

In [56] a method was developed that does not need markers and gave average values of 2×10−3

rad for rotation and 2 mm for translation. For this a camera was used with a resolution of
1260x960 pixels. Although the authors claim that the new method is well suited in reference
to the method of Tsai-Lenz no comparative data is given.

In [53] a comparison between the Algorithm of Tsai-Lenz, Daniilids et al. [57], Horaud[42]
and two new algorithms was made. A new linear formulation is introduced which can handle
small rotations. When the robustness to noise is tested the new method and the method
of Tsai-Lenz are the best. For higher noise levels is the translation error lower for the dual
Quaternion method of Daniilidis et al. The effect of the number of motions is also tested.
The new formulation proved better although the Tsai-Lenz algorithm was also very close.

In [6] hand-eye calibration was investigated for application in Transcranial Magnetic Stimula-
tion (TMS). TMS is performed on human heads which needs high precision. The Tsai-Lenz,
Daniilidis’ dual quaternion method and three own methods (QR24, QR15 and QR24m) were
tested. The influence of different distance sensor systems was also compared: an optical
system, magnetic, laser and synthetic data were used. Poses were tested for n=5 to 250.
The translation error is for the QR methods the lowest. But for the rotation error the Dual
Quaternion method works the best on real data. On synthetic data all methods perform
similar. In table 5-2 the translation and rotation errors for the different methods are given.

Master of Science Thesis L.N.M. Middelplaats

40 Extrinsic calibration of the camera in the workspace

In this table the results obtained with laser data are also included. The errors of all the
algorithms with this sensor method are higher indicating that this data source probably has
more noise in it. This gives and indication of the effect of noise on the algorithms. It can
be seen that for the rotation the methods of Tsai-Lenz and Daniilidis et. al perform also
good. The number of pairs that gave the optimal result was also tested. The optimal number
varied for the different sensor types. For instance for the optical tracking the new methods
and the Daniilidis method stabilized very quickly for the translation while the error of the
Tsai-Lenz method increased after about 25 pairs. For the rotation all lines have about the
same pattern, they all have a minimum at about 90 pairs. For the synthetic data the results
are different. The new methods again converge quickly. Both the Tsai-Lenz and Daniilidis
method have a minimum below 100 pairs for the error which increases again until 150 pairs
on which gets to roughly the same error again. The rotation error of all methods decreases
very quickly. At about 140 pairs all algorithms get even a small negative error. Note that is
study was done with relatively small workspaces. The effect of increasing the workspace was
also tested. Although the maximal workspace with radius 500 mm and a maximal rotation
angle of 30 degrees is still small for industrial robots. The calibration error slightly increased.
For the synthetic tests all methods had errors below 0.25 mm and 0.1 degrees.

Test Optical Laser
Translation Min Median Max Min Median Max
Algorithm
Tsai-Lenz 0.0350 0.2950 0.9289 1.2812 7.6678 18.1265

Daniilidis et. al 0.0156 0.2239 0.8305 2.0395 6.7426 13.3181
QR24m 0.0388 0.2255 0.6833 4.4768 10.6338 28.5564
QR24 0.0223 0.1317 0.3095 0.8984 1.3517 3.3947
QR15 0.0223 0.1314 0.3089 0.8848 1.3216 3.4044
Test Optical Laser

Rotation Min Median Max Min Median Max
Algorithm
Tsai-Lenz 0.0042 0.0979 0.3758 0.2883 0.8088 1.4628

Daniilidis et. al 0.0072 0.0857 0.3832 0.4873 0.9475 1.4691
QR24m 0.0117 0.0961 0.3860 0.2442 0.8193 1.3946
QR24 0.0130 0.0940 0.4069 0.4121 0.8574 1.4730
QR15 - - - - - -

Table 5-2: Translation (first box) and rotation errors (second box) for the different methods.
Matrices that result in the lowest RMS error have been used. Dimension for the translation is mil-
limetres and degrees for the rotation, lowest values bold. The QR24m method is a preconditioned
version of QR24. Adapted from[6].

In [55] hand-eye calibration was used for a less common usage. It was used to calibrate a
camera mounted on an endoscope used for surgery. Hand data was acquired using an infra-red
optical system (outside the body) while the camera (inside) used structure from motion to
track its position. As no ground truth was available the calculated hand-eye transform was
used estimate the eye movement from the hand movement and compare this with the actual
movement. The method was compared to that of Daniilidis et. al, Horaud-Dornika’95[42]
and that of Andreff et al. All methods gave similar results, although the method of Horaud-

L.N.M. Middelplaats Master of Science Thesis

5-4 Comparative studies 41

Dornika’95 gave the lowest total error (rotation and translation combined).

Master of Science Thesis L.N.M. Middelplaats

42
Extrinsic

calibration
ofthe

cam
era

in
the

workspace

Study Year Ts
ai
-L
en

z[
32

]

Sh
iu

et
al
.

D
an

iil
id
is.

Er
ns
t

Li D
or
na

ik
a,

H
or
au

d

Sh
ah

[5
0]

W
ei
[4
7]

W
an

g

A
nd

re
ff

B
es
t
M
et
ho

d

Wang[39] 1992 • • • Tsai-Lenz, non-lineair method comparable
Li and Betsis[44] 1995 • [44] • Tsai-Lenz
Shah [50] 2013 [52] [3] • Shah
Ernst et al. [6] 2012 • • • Ernst
Wei[47] 1998 • • Wei
Andreff et al. [53] 2001 • • [42] • Andreff, Tsai-Lenz second
Schmidt [55] 2005 • [42] • Dornaika,

Andreff comparable

Table 5-3: Overview of studies(horizontal) that compare different methods (vertical). Different methods with the same author are listed with
a reference instead of a dot. The result column lists what that according to that study is the best method among the compared methods.

L.N
.M

.M
iddelplaats

M
asterofScience

Thesis

5-4
Com

parative
studies

43

1Standard deviations after 10 measurements [mm] and [degrees], no error provided.
2No unit listed for translation, presumably [mm], rotation in degrees.
3Error only represented in graphs.
4No rotation error provided.
5No units are given for translation or rotation.
6No ground truth was available as in this experiment as an endoscope was used inside a body. The hand was a marker which was tracked outside the body

while the eye was the camera of the endoscope. Using structure from motion the camera movement was tracked. By using the calculated transform the hand
and eye movement could be related. The percentage is a measure of how good these relate.

M
asterofScience

Thesis
L.N

.M
.M

iddelplaats

44
Extrinsic

calibration
ofthe

cam
era

in
the

workspace

Study Ts
ai
-L
en

z

Sh
iu

et
al
.

D
an

iil
id
is.

Er
ns
t

Li D
or
na

ik
a,

H
or
au

d

Sh
ah

[5
0]

W
ei
[4
7]

W
an

g

A
nd

re
ff

Sc
hm

id
t

R
es
ul
t

Wang[39]1 3.39
0.59

7.70
2.41

3.64
0.97 Tsai-Lenz

Li and
Betsis[44] 2

0.011
0.3278

0.011
0.3279

0.011
0.3279

Tsai-Lenz,
non-linear
method
comparable

Shah [50] 3 >20 >5 Shah
Ernst et al.
[6] 0.2950

0.0979
0.2239
0.0857

0.1317
0.0940 Ernst

Wei [47] 4 3.25 2.11 Wei
Andreff et al.
[53] 5

0.018
0.000011

0.096
0.0000161

0.149
0.0000977

0.023
0.0000006

Andreff,
Tsai-Lenz
second

Schmidt [55] 6 21.5%
5.5%

15.85%
5.36%

16.45%
5.35%

18.10%
5.36%

Dornaika,
Andreff
comparable

Table 5-4: Overview of studies that compare methods with results. The first line of the error is the translation error, the second the rotation
error. Different methods with the same author are listed with a reference instead of a dot.

L.N
.M

.M
iddelplaats

M
asterofScience

Thesis

5-4 Comparative studies 45

5-4-1 Selection of method

A lot of methods exist for determining the pose of a camera. The pose of the robot base
relative to the world is not as important as the pose of the camera on the robot. Therefore
the robot hand calibration methods are preferred over the simultaneous robot and robot world
calibration methods. There are relatively not very much comparative studies. But from the
studies it can be seen that a lot of methods perform similarly. If we look at table 5-3 it can be
seen that the method by Tsai-Lenz is selected as the best or second best the most often. In
the case of table 5-2 we consider rotation errors more of influence than the translation errors.
As the rotation errors can be of more influence than translation errors at a larger distance.
If we look at the rotation error in table 5-2 then the minimum and maximum errors of the
Tsai-Lenz are the lowest. Therefore this algorithm is chosen.

5-4-2 Discussion

The influence of noise on the algorithms should be investigated. This could have a large
influence of on the result.

Master of Science Thesis L.N.M. Middelplaats

46 Extrinsic calibration of the camera in the workspace

L.N.M. Middelplaats Master of Science Thesis

Chapter 6

Simulation

On a real robot system it is difficult to get a ground truth as it is difficult to measure correctly.
In simulation it is easier to check the results and exclude the effects of noise. Therefore the
system was first tested in simulation.

6-1 Simulation setup

The same simulation setup as used in chapter 3 was used. Only now a transform broadcaster
and a hand-eye calculation node were added.

6-1-1 Transform broadcaster

In the first implementation positions of the marker and the gripper were sent continuously
to the hand eye calculation node. This resulted however in very large datasets and very long
computation times. From previous researches it was found that after a certain threshold
the result not necessarily improves if more points are added [6]. Therefore a node that can
regulate the data was put in between. The main node sends a request to send the positions to
the hand eye node. Then the logging node requests the positions of the gripper and marker
from the central transformation node. These positions are then broadcasted to the hand eye
node which stores them.

6-1-2 Calculation node

The calculation node calculates the hand eye transform. The hand-eye algorithm used was
that of Tsai et al. implemented in a package called ViSP hand eye calibration1. This node
stores the transforms from the base to the hand and the transforms between base and eye that
are send from the logger node. If the calculation service is called it calculates the distance
from the hand to the eye using all the recorded transforms.

1ros.org/wiki/visp_hand2eye_calibration

Master of Science Thesis L.N.M. Middelplaats

ros.org/wiki/visp_hand2eye_calibration

48 Simulation

Figure 6-1: Block diagram of the system. Solid lines are information streams (topics in ROS
vocabulary), dotted lines symbolize service calls. The main node controls the simulated robot
arm in Gazebo through the joint controllers. Gazebo then generates information like the camera
image and transformations between the hand (outer link) and eye (the camera). The green ’ROS
transform system’ block keeps track of all the transformations between parts of the robot and the
transforms between camera and marker. In appendix C a block diagram with the corresponding
file names is given.

6-1-3 Main node

The main node moves the robot arm through a predefined set of joint angles. With these
angles the image of the marker moves over the sensor and reaches the edges of the sensor. It
is also possible to let the system look for the marker. In this mode the base link is rotated
around until a marker is found. If the marker is found all the links are rotated separately to
detect on which link the camera is. First the outer link is rotated after which the inner links
are rotated. If the marker position changes than it means that the camera is on the link that
is moved.

When the link the camera is on is known the system starts measuring where the camera is on
the link exactly and what its orientation is. This is done by moving the link with the camera
some more and recording the transformations to the marker and transformations to the outer
part of the link for several poses.

When a number of poses is stored the calculation procedure is called which determines the
position and orientation.

6-2 Hand-Eye algorithm

The pose estimation algorithm introduces noise in the measurements. To test the Hand-Eye
algorithm without this noise the pose estimation algorithm was replaced with the correct

L.N.M. Middelplaats Master of Science Thesis

6-2 Hand-Eye algorithm 49

Number Error x Error y Error z Error R Error P Error Y
5 -3.8800 367.1460 -22.5520 -0.2855 0.4755 -10.5591
10 -1.0420 -5.0751 0.4220 0.6721 0.1434 1.9140
15 -0.7070 -1.7275 0.0910 0.6940 0.1255 1.1680
30 -0.3010 -0.5192 -0.5192 0.7400 0.0656 0.9020
50 -0.1960 -0.1843 -0.0340 0.7540 0.0497 0.8320
100 -0.0790 -0.0317 -0.0260 0.7750 0.0227 0.8030
200 -0.0260 -0.0094 -0.0170 0.7860 0.0117 0.79800

Table 6-1: Error of VisP package for synthetic data. Dimensions for x,y,z in millimetres and
R,P,Y in milliradians.

transformations. This can be done in ROS using a static transformation broadcaster, which
sends a transformation similar to the pose estimation algorithm. With this the hand-Eye
transformation can be calculated without the noise.
In table 6-1 the error for different numbers of poses is given. The algorithm needs at least
three poses to work but it can be seen that the error at five poses is still very large. At ten
poses however the error has dropped to the millimetre range and milliradians range for the
rotation. After about 50 poses the rate in which error changes decreases.
The calculation time increases as more position pairs are added. On a relatively slow Core
2 Duo processor the calculation in the beginning of the simulation takes a few seconds, this
increases to over a minute with 180 pairs. Real calculation times will be much shorter as the
computer is already overloaded with the simulation. The ’top’ command lists a load average
of over 12, which means that the processor is about 600% overloaded.

6-2-1 Comparison with other algorithms in Matlab

By using a node in the simulation that publishes the correct transformation from camera
to the marker it is possible to get noise free input data for the algorithms. Combined with
the transformations from the base to the camera link it is possible to test several algorithms
in Matlab. A Matlab implementation of Tsai-Lenz was used2 and several algorithms from
the calibration-toolbox3. This toolbox contains algorithms from Tsai-Lenz[32], Daniilidis et
al[45], Park et al.[43] and Horaud-Dornika’95 [42]. The Tsai-Lenz implementation from the
toolbox will be listed as Tsai-Lenz Matlab 2.
All algorithms use the transformation from base to the gripper. The single Tsai-Lenz im-
plementation uses the local coordinate system, the transformations from marker to camera.
While the in the toolbox all implementations use the inverse, the transformation from camera
to marker. 144 poses are used for the calculation.

Results

The results can be seen in table 6-2 for the translation and in table 6-3 for the rotation. It
can be seen that the Robot Operating System (ROS) implementation of Tsai-Lenz gives the

2http://lazax.com/www.cs.columbia.edu/~laza/html/Stewart/matlab/handEye.m
3https://www.vision.ee.ethz.ch/software/calibration_toolbox//calibration_toolbox.php

Master of Science Thesis L.N.M. Middelplaats

http://lazax.com/www.cs.columbia.edu/~laza/html/Stewart/matlab/handEye.m
https://www.vision.ee.ethz.ch/software/calibration_toolbox//calibration_toolbox.php

50 Simulation

Axis Tsai-Lenz
ROS

Tsai-Lenz
Matlab

Tsai-Lenz
Matlab 2

Horaud-
Dornika’95
[42]

Park [43] Daniilidis [45]

δ x -0.02 0.08791 0.2946 0.6018 0.1721 0.6793
δ y -0.007011 0.1069 1.348 1.298 1.302 2.227
δ z -0.02 0.1278 -0.1071 -0.621 0.09642 -0.6046

RMS δ 0.01682 0.1088 0.7992 0.9003 0.7601 1.389

Table 6-2: The error of several algorithms in Matlab with the synthetic (correct) data, all in
millimetres. 144 poses are used for the calculation. Lowest error is in bold, lowest Matlab
algorithm error italic.

Axis Tsai-Lenz
ROS

Tsai-Lenz
Matlab

Tsai-Lenz
Matlab 2

Horaud-
Dornika’95
[42]

Park [43] Daniilidis [45]

δ R -0.01032 -0.02391 -0.418 -1.445 -0.009008 -1.244
δ P 0.009686 -0.1361 -0.1797 0.01573 -0.00648 -0.1261
δ Y 0.003677 0.1658 0.1777 -0.007118 0.00089 0.1493

RMS δ 0.008444 0.1246 0.282 0.8343 0.006427 1.389

Table 6-3: The errors of several algorithms in Matlab for the rotation with the synthetic (correct)
data (all in milliradians).144 poses are used for the calculation. Lowest value in bold.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
10

−4

10
−2

10
0

steps

E
rr

o
r

[m
]

Tsa−Lenz

Tsa−Lenz 2

Horaud−Dornika 95

Park et al.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
10

−5

10
0

steps

E
rr

o
r

[r
a
d
]

Figure 6-2: Overview of the error of different algorithms for a different number of steps.

L.N.M. Middelplaats Master of Science Thesis

6-3 Combined system 51

measurement x y z
ArToolKit 1.212 -35.41 -2.789
ArToolKit+ 4.502 -5.808 5.859
ArToolKit+4 2.857 -1.022 -0.286

Table 6-4: The error for the translation of the hand-eye calibration for different camera pose
estimation algorithm. Dimension in millimetres.

best results followed by the Matlab implementation. For the rotation error the algorithm
of Park et al. performs best although the Tsai-Lenz implementation in ROS is also very
near this value. The ROS implementation of Tsai-Lenz gives a better result than the Matlab
implementations of the same algorithm. This could be due to conversion errors, although both
Matlab implementations also give different results. In figure 6-2 the error for the number of
steps is given.

With wrong translation matrices the algorithms still work reasonably. Accidentally the base
to hand transformations were build using the correct rotation matrices but using the marker
to static marker translation vector. Although the order of the resulting translations were
wrong the magnitude of the translations was still near the correct value.

6-2-2 Sensitivity to noise

To test the sensitivity to noise for the different algorithms noise was applied to the correct
transformations. Noise (uniformly distributed pseudo random) was applied on the transfor-
mations from the camera to the marker (and the inverse). To simulate noise in the encoder
readings a little noise was applied to the base to gripper transformations. The translation
noise on the camera marker transformations was varied between -0.04 and 0.04 meters. The
rotation noise varied between -0.04 and 0.04 radians. Analysis of the error showed that the
actual translation error varies between -0.02 and 0.02 (approximately) and -0.02 and 0.01 rad
for the rotation. This noise was applied by converting the rotation matrices back to Roll,
Pitch and Yaw (RPY) angles, adding the noise and convert the angles back to a rotation
matrix. Using this approach the rotation matrix properties stayed correct.

The results are given in figure 6-3 for the translation and figure 6-4 for the rotation. The
Method of Daniilidis et al. is omitted as for certain data set the results became complex. It
can also be seen that the methods of Horaud-Dornika and Park et al. look the same for the
X and Y axes. There is however a minimal difference.

6-3 Combined system

The resulting hand eye transformation for the measurements is given in table 6-6 for the
translation and the rotation in table 6-7. The pose estimation error for this dataset is given
was discussed in chapter 3, in figure 3-6 (translation) and 3-7 (rotation). It can be seen that
the error of ArToolKitPlus in the single configuration is the smallest. But for a smaller size
the error increases a lot. For the rotation ARToolKitPlus with four markers performs best
but the single configuration is also very near.

Master of Science Thesis L.N.M. Middelplaats

52 Simulation

Error x Error y Error z

−0.2

−0.1

0

0.1

0.2

0.3

0.4
E

rr
or

 [m
]

Translation error

Tsa−Lenz
Tsa−Lenz 2
Horaud−Dornika 95
Park et al.

Figure 6-3: Overview of the errors of the different algorithms in Matlab with noise. 144 poses
are used. Both rotation and translation noise is varied between -0.02 and 0.02.

Error R Error P Error Y

0

0.05

0.1

0.15

0.2

0.25

E
rr

or
 [r

ad
]

Rotation error

Tsa−Lenz
Tsa−Lenz 2
Horaud−Dornika 95
Park et al.

Figure 6-4: Overview of the errors of the different algorithms in Matlab with noise. 144 poses
are used. Both rotation and translation noise is varied between -0.02 and 0.02.

L.N.M. Middelplaats Master of Science Thesis

6-4 Discussion 53

Measurement R P Y
ArToolKit -3.154 29.13 -3.278

ArToolKit+ single -2.665 -0.9484 10.22
ArToolKit+4 -2.684 -6.966 4.685

Table 6-5: The error of the rotation for different algorithms in milli rad.

Figure 6-5: The error between the result of ViSP and the correct translation. The dotted line is
the zero line.

In figure 6-5 the translations and in figure 6-6 rotation errors for a different number of pose
pairs have been determined. The input data are the transformations give by ArToolKitPlus
(with light). It can be seen that the error for the translation is very large until about 60 pose
pairs. The y and z error remain large and approach asymptotically the zero line. While the
x error reaches this much faster. For the rotation the steady state is reached after about 100
pose pairs.

6-4 Discussion

In the tests the camera was fixed on a dual axes arm. This means that the possible movements
are limited. An arm with more links has more possible positions a larger displacements for
the end effector. This could improve the results.

6-5 Extrinsic calibration using the PR2 robot

To test with a robot arm with more degrees of freedom the extrinsic calibration was also
tested with a simulated PR2 robot. A Kinect camera was fixed to the right gripper palm
link (r_gripper_palm_link in the robot description). The Red Green Blue (RGB) camera of

Master of Science Thesis L.N.M. Middelplaats

54 Simulation

Figure 6-6: The error between the result of ViSP and the correct translation. The dotted line is
the zero line.

Axis ARToolKit ARToolKit ARToolKit+ ARToolKit+ ARToolKit+4 ARToolKit+
Config. single single +4 +4

Surface [m2] 0.52 0.182 0.52 0.182 0.22 0.082

x 3.986 -2.513 4.517 69.23 4.874 128.5
y -33.88 -60.2 -7.65 405.2 17.83 698.8
z 10.1 -1.128 4.743 -295.1 -1.598 -909

RMS 20.54 34.79 5.815 292.1 10.71 666.1

Table 6-6: The error of the final value of the Tsai algorithm for the translation for the various
pose estimators. Average of the last 5 values. Fourth value is the RMS error of x, y and z
together, lowest value per system in bold. In millimetres.

Axis ARToolKit ARToolKit ARToolKit+ ARToolKit+ ARToolKit+4 ARToolKit+
Config. single single +4 +4

Surface [m2] 0.52 0.182 0.52 0.182 0.22 0.082

R 1.825 30.66 9.919 613.5 -0.6962 1173
P -31.76 -53.46 -5.905 191.2 9.67 118.1
Y 5.018 -5.311 4.481 286.5 7.328 588.8

RMS 18.59 35.71 7.149 406.2 7.016 761.1

Table 6-7: The error of the final value of the Tsai algorithm for the rotation for the various pose
estimators. Last five results averaged, in milliradians. RMS of the R, P and Y value. Lowest
value per system in bold.

L.N.M. Middelplaats Master of Science Thesis

6-5 Extrinsic calibration using the PR2 robot 55

Figure 6-7: Screenshot from the simulation of the PR2 robot in Gazebo. The black bar above
the gripper represents the Kinect.

the Kinect was used, camera parameters in appendix D-2. A 0.5 by 0.5 meters marker was
placed 2.5 meters away from the PR2 with the center of the marker 0.85 meters high. This
means the marker is 1.73 meters away from the Kinect frame (r_gripper_kinect_frame). The
calibration was tested for 15 poses. The x error was about 4 centimetre, y error 46 centimetre
while the z error was about 1 cm. Rotation errors are in the order of 0.01 degree. The
translation results is thus worse than previous results with the 2 Degree Of Freedom (DOF)
robot arm. The rotation result is a lot better. It could be that this bad translation result
was due to small amount of poses. The result for more poses was however not tested.

Master of Science Thesis L.N.M. Middelplaats

56 Simulation

L.N.M. Middelplaats Master of Science Thesis

Chapter 7

Usage

7-1 Usage

The camera that is calibrated using the hand eye calibration system can be used for several
applications. Examples are:

• Workspace mapping for obstacle avoidance

• active collision checking

• Visual servoing: use the camera to grasp something

For the first two options relatively large safety margins are used. For safety the robot should
stay away relatively far from the obstacle. Therefore some error in the camera calibration can
be tolerated if the boundaries of the possible error are known. For the third option, grasping,
the calibration should be as accurate as possible. The calibration error will be probably too
high for high precision applications. But usually these systems are position programmed and
don’t use a camera system. In the Small to Medium Enterprises (SME) handling of goods is
an application that has a high interest to be automated. By using a camera system this could
be made more flexible. A robot handling system that handles food will therefore be taken as
an example application here. A gripper from the company Lacquey will here be taken as an
example. This gripper can handle position inaccuracies of about 1 cm.

To calculate the maximal distance on which the object can be we take the error of ARToolK-
itPlus+4 with 0.5 meter marker, given in table 7-1 and table 7-2.

For a worst case scenario the maximal distance at which the camera can be used to grasp an
object will be calculated. The gripper can compensate for a positioning error of 1 centimetre
at the object that needs to be grasped. First we take the translation error:

(0.01− 2.857
1000 −

1.022
1000 −

0.286
1000) = 0.0058 (7-1)

Master of Science Thesis L.N.M. Middelplaats

58 Usage

Measurement x y z
ArToolKit 1.212 -35.41 -2.789
ArToolKit+ 4.502 -5.808 5.859
ArToolKit+4 2.857 -1.022 -0.286

Table 7-1: The error for the translation of the hand-eye calibration for different camera pose
estimation algorithm. Dimension in millimetres.

Measurement R P Y
ArToolKit -3.154 29.13 -3.278

ArToolKit+ single -2.665 -0.9484 10.22
ArToolKit+4 -2.684 -6.966 4.685

Table 7-2: The error of the rotation for different algorithms in milli rad.

This means that after compensating for the translation error the gripper can still compensate
for half a centimetre. If we also take the rotation errors in to account the maximum distance
at which the gripper can be used (more steps in appendix A-1) is:

√
(0.01− 2.857

1000 −
1.022
1000 −

0.286
1000)2

tan(−6.966/1000)2 + tan(4.685/1000)2 = 0.6909[m] (7-2)

This means that the camera should be no more than 69 cm away from the object to reliably
grasp the object. For this the roll error is not taken in to account as this depends on the size
of the object.

L.N.M. Middelplaats Master of Science Thesis

Chapter 8

Extrinsic calibration on the UR5 robot

The extrinsic calibration method has been tested in simulation in the previous chapter. In
this chapter it will be tested how good the system works in a real robot setup. After this
chapter the resulting hand-eye calibration will be used for workspace mapping with the robot.

8-1 Test setup and tests

Target of this chapter is to determine and validate the location of two camera’s on the robot
arm:

• A Logitech webcam

• A Kinect

The created extrinsic calibration system will be tested on the UR5 robot arm. During the
test the system will give the location of the camera. The data required for the calibration will
also be saved and used to do a offline extrinsic calibration. By using different subsets of the
data in random order the repeatability of calibration result will be tested. The repeatability
of the results of other algorithms will also be tested by using their Matlab implementation.

After this the calibration result will be validated by estimating the camera position in two
different ways.

8-1-1 Hardware

Robot The Universal Robots UR5 was used again. The Arm Navigation package was used
to move the end effector to various positions.

The UR5 robot arm has according to the specifications a repeatability of ±0.1 millimetres.

Master of Science Thesis L.N.M. Middelplaats

60 Extrinsic calibration on the UR5 robot

Figure 8-1: Block diagram of the extrinsic calibration system used with the UR5 robot arm.
Images from the Kinect or the Logitech webcam are processed by the Pose estimator which
estimates the position of the checkerboard. This is then send to the ROS transform system where
the position of the checkerboard can be used by the calculation node and the Controller node.
The Controller node is also responsible for logging all the transformations to a text file.

Camera system In separate tests the Logitech 9000 camera and a Microsoft Kinect were
used. The Logitech camera was mounted approximately 7 cm above the Tool Centre Point
(TCP). While the Kinect was mounted approximately 14 centimetres above the TCP. Image
acquisition was done at 640x480 pixels.

8-1-2 Software

A similair software system as used in the simulation was used. In figure 8-1 a block diagram
is given.

Controller A ROS node which commanded the arm to a set of predefined TCP positions
was used. This node sent the TCP position to the Arm Navigation software. After a point
was reached the transformations between various points were collected using the tf node and
logged to a file. To cancel the effects of possible vibrations from movement the program paused
for several seconds before taking the measurements so that the vibrations could dampen out.

8-2 Calibration results

The following hand-eye transform was obtained for the Logitech webcam:

T cam
T CP =


0.0052 −0.0523 0.9986 0.0266
−0.9994 0.0328 0.0069 −0.0162
−0.0331 −0.9981 −0.0521 0.0777

0 0 0 1

 (8-1)

For the Kinect the average result of three tests was taken:

T cam
T CP =


0.99425 −0.0066764 −0.10684 0.1035

0.0065052 0.99998 −0.0019509 0.0418
0.10686 0.0012447 0.99427 0.1447

0 0 0 1

 (8-2)

L.N.M. Middelplaats Master of Science Thesis

8-3 Repeatability test 61

For the Logitech webcam 48 points were used, although the translation result is after 10 poses
already in the millimetre range near the final value. For the Kinect 3 sets of 22 measurements
were averaged.

8-3 Repeatability test

To test the repeatability of the calculated hand-eye transforms the hand-eye calculation has
been done a 100th times with a random 70% subset of the measurement data from the Logitech
camera. Two Tsai implementations, Horaud et al. ’95, Ernst et al. (OR24e) and Daniilidis
et al. in Matlab were tested. The same data was also send to the Tsai ROS implementation.
For this a new node was created which reads in the same logfiles as the Matlab uses and
publishes this over the ROS topics used by the calculation node.

8-3-1 Results

In figure 8-2 and in figure 8-3 the calibration results are given. It can be seen that the three
Tsai implementations give slightly different results. The ROS implementation gives the lowest
spread. The Horaud et al. ’95 implementation has the largest spread. If we look a the ROS
implementation the the difference between the minimum and maximum are: for x approx. 1
cm, y approx. 0.5 cm and for z approx. 0.5 cm. This gives and indication of how much the
calculated value can be off in the most extreme case.

8-4 Validation of the extrinsic calibration

To validate the extrinsic calibration of the camera ground truth is necessary. If the exact
location and orientation of the camera is known the accuracy of the calibration result can be
validated. But it was proven very difficult to measure the exact location and orientation of
the camera. The housing of the camera is rounded which makes it difficult to mount it parallel
or orthogonal to a link of the robot. And there is no translation known from the mounting
point to sensor. The rotation of the sensor in the housing is also not known. Therefore it
would difficult to get a good estimate of the transformation from TCP to camera. It would
be easier to use an industrial camera with known transformations. This was however not
available.

To get an estimate of the accuracy it is possible to use the estimated position of the checker-
board. This can be measured in two ways relative to the robot base:

• Using the camera and the calculated transform of the checkerboard pose estimator.

• By placing the robot TCP to the checkerboard and using the encoders of the robot arm
to measure the position of the TCP.

With these two transformations to the same point an error can be calculated. See figure
8-4 for the transformations. The error was determined at the camera coordinate system
and not at the checkerboard. This location is chosen as a slight error in the rotation of the

Master of Science Thesis L.N.M. Middelplaats

62 Extrinsic calibration on the UR5 robot

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

tr
a
n
s
la

ti
o
n
 e

rr
o
r

[m
]

X

−0.022

−0.02

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

tr
a
n
s
la

ti
o
n
 e

rr
o
r

[m
]

Y

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

tr
a
n
s
la

ti
o
n
 e

rr
o
r

[m
]

Z

−1.64

−1.635

−1.63

−1.625

−1.62

−1.615

−1.61

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

R
o
ta

ti
o
n
 e

rr
o
r

 r
p
y
 [
ra

d
]

R

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

R
o
ta

ti
o
n
 e

rr
o
r

 r
p
y
 [
ra

d
]

P

−1.58

−1.575

−1.57

−1.565

−1.56

−1.555

−1.55

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

R
o
ta

ti
o
n
 e

rr
o
r

 r
p
y
 [
ra

d
]

Y

Figure 8-2: Translation and rotation results for the four algorithms with different random subsets
(70%) of the data. Translation on top, rotation below (in Roll Pitch Yaw notation). It can be
seen that the Tsai et al. algorithm has a low spread compared to the other algorithms.

0.488

0.49

0.492

0.494

0.496

0.498

0.5

0.502

0.504

0.506

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

R
o

ta
ti
o

n
 e

rr
o

r
 q

−0.515

−0.51

−0.505

−0.5

−0.495

Tsai Tsai 2 Tsai RosHoraud QR24e Daniilidis

R
o

ta
ti
o

n
 e

rr
o

r
 q

0.51

0.515

0.52

0.525

0.53

Tsai Tsai 2 Tsai Ros Horaud QR24e Daniilidis

R
o

ta
ti
o

n
 e

rr
o

r
 q

−0.484

−0.482

−0.48

−0.478

−0.476

−0.474

−0.472

−0.47

−0.468

Tsai Tsai 2 Tsai RosHoraud QR24eDaniilidis

R
o

ta
ti
o

n
 e

rr
o

r
 q

Figure 8-3: The calibration rotation results in quaternions. It can be seen that the ROS imple-
mentation of the Tsai et al. algorithm has a relatively low spread. The QR24e algorithm deviates
a bit from the rest of the algorithms.

L.N.M. Middelplaats Master of Science Thesis

8-4 Validation of the extrinsic calibration 63

Figure 8-4: Overview of the trans-
forms on used to calculate the error.
The position of the camera is calcu-
lated by calculating the position using
the base to CB and CB to cam trans-
forms and the base to cam transform.

Figure 8-5: The same visualization
but now in the visualization tool of
ROS visualizing the real estimated
checkerboard position and a trans-
formation from base to checkerboard
to check this. There is some offset
between the estimated and ’correct’
transform.

Figure 8-6: The TCP of the UR5 with a bolt fitted in the top left corner thread. The tip of the
bolt is pointed at the centre of the checkerboard. The positions of crossings of the checkers are
also measured in this way.

calculated hand-eye transform gives a large deviation on the checkerboard position. If the
camera location is used the translation and rotation error are not coupled.

To determine the exact location of the checkerboard a bolt with cut off bolt head was inserted
in top left thread on the TCP. Using a sharp point on the bolt tip it could be positioned on
the centre of the checkerboard and the crossings of the checkers. In figure 8-6 an image of
this is given.

Using manual positioning the tip was positioned on the centre of the checkerboard, the outer
corners and a part of the inner corners of the checkerboard. By translating the TCP point
to the end of the bolt the position of the checkerboard outer corners in robot coordinates
(TCBcorners

base) are found.

TCBcorners
base = T ee_link

base T be
ee_link (8-3)

Where T ee_link
base is the position of the end effector and T be

ee_link the translation of the TCP to

Master of Science Thesis L.N.M. Middelplaats

64 Extrinsic calibration on the UR5 robot

the end of the bolt (all homogeneous coordinates).

The center of the checkerboard is found by using the Matlab ABSOR package1 which uses
Horn’s quaternion-based method. It can calculate the translation and rotation of the checker-
board frame in base coordinates using least squares. This is calculated with the translations
of the checkerboard corners in base coordinates and the corners in checkerboard frame co-
ordinates. The result of this is displayed in figure 8-7. The blue dots represent the TCP
coordinates in the base frame and the green dots the corner coordinates using the translation.
The axis system through it gives the transformation of the checkerboard in base coordinates
(TCB

base).

By using the measured transform from checkerboard to camera (the inverse of which was
measured with the camera pose estimator) the position of the camera can be calculated:

T camCB
base = TCB

baseT
cam
CB (8-4)

The position can also be calculated by transforming through the robot links and using the
calculated hand-eye transform:

T camrobot
base = T ee_link

base T cam
T CP (8-5)

The difference between the two transformations is then the error:

T camCB
camrobot = T camrobot

base − T camCB
base (8-6)

8-4-1 Discussion

There are a few limitations in the measurements which limit the accuracy of the result:

• The checkerboard corners are not measured very precise as the robot is manually posi-
tioned to the corners. The board can also deform a bit. If we look for instance at the
height difference between the top and bottom corners this has an error of 4 mm on the
left and 2 mm on the right.

• Errors in the estimate of the rotation of the checkerboard give a large offset at the
camera position because of the distance.

• The camera pose estimator is not very precise.

• The UR5 accuracy is not specified by the manufacturer but the repeatability is spec-
ified at ±0.1 mm. This error occurs both in the measurement of the location of the
checkerboard using the robot and in the measurement using the camera.

To limit the influence of sources of error given above multiple measurements have been taken.
For the checkerboard position and orientation 20 corners have been measured. For calculation
of this the least squares method is used which gives a maximum error of 1.2 millimetres for
the second set.

1http://www.mathworks.com/matlabcentral/fileexchange/26186-absolute-orientation-horns-method

L.N.M. Middelplaats Master of Science Thesis

http://www.mathworks.com/matlabcentral/fileexchange/26186-absolute-orientation-horns-method

8-4 Validation of the extrinsic calibration 65

−0.4

−0.2

0

0.2

−0.3
−0.2

−0.1
0

0.1
0.2

0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X
CB

c
enter

Z
CB

c
enter

Y
CB

c
enter

{CB
c
enter}

Y
base

Z
base

{base}

X
base

X
camera from base

X
camera from marker

Z
camera from base

Z
camera from marker

X
ee

l
ink

Y
camera from base

{camera from base}
{camera from marker}

{ee
l
ink}
Y

camera from marker

Z
ee

l
ink

Y
ee

l
ink

Checkerboard

frame

Base

frame

ee_link
camera

(relative to

 base &

checkerboard)

Figure 8-7: Visualisation of the coordinate frames of the robot with the Logitech camera. On the
left top the TCP frame (ee_link) with the two camera frames (relative to the TCP and relative
to the checkerboard) next to it. On the top right the checkerboard with in blue circles the TCP
positions of outer corners in circles and crosses for the inner. In green the checkerboard positions.
Dimensions in meters.

Master of Science Thesis L.N.M. Middelplaats

66 Extrinsic calibration on the UR5 robot

−0.5

−0.4

−0.3

−0.2

−0.1

0

−0.1

0

0.1

0.2

0.3

0.4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

X
CB

c
enter

Z
CB

c
enter

Y
CB

c
enter

{CB
c
enter}

X
camera from marker

X
camera from base

X
ee

l
ink

Z
camera from marker

{camera from marker}{camera from base}

Z
camera from base

Z
ee

l
ink

{ee
l
ink}

Y
camera from marker

Y
camera from base

Y
ee

l
ink

TCP (ee_link)

Camera frame

 (from base

 and checkerboard

frame)

checkerboard

Figure 8-8: Visualisation of the coordinate frames of the robot with the Kinect. On the left top
the TCP frame (ee_link) with the two camera frames (relative to the TCP and relative to the
checkerboard) next to it. It can be seen that the frames almost overlap, better than with of the
Logitech camera. On the top right the TCP positions of the corners of the checkerboard in blue
circles. In green crosses the checkerboard corners. Dimensions in meters.

L.N.M. Middelplaats Master of Science Thesis

8-4 Validation of the extrinsic calibration 67

Translation Error [mm] Rotation Error [degrees]
Camera x y z x y z Measurements
Logitech webcam −14.381 7.974 −16.768 4.607 −1.839 −1.500 7
Kinect −12.854 −10.254 0.414 −0.798 0.558 0.258 11
Logitech Webcam

(test II) −13.864 4.915 −14.053 4.3282 −2.236 −2.3629 19

Kinect
(test II) −6.383 −4.858 −2.115 −0.910 0.221 0.125 31

Table 8-1: Translation and rotation error (difference between the axis systems from figure 8-7.
For the Logitech webcam an average of three measurements on different positions was taken. For
the Kinect 11 measurements were taken.

By taking 10 measurements from the same position an estimate for the standard deviation
of the error from the pose estimator can be made. If we look at table 8-2 it can be seen
that in the worst case this is approximatly 0.6 millimetres for the Logitech camera and 0.2
millimetres for the Kinect. This is however from one pose, the error could vary from position
to position. If we look at the standard deviation in chapter 4 it can be seen that the error
could also be in the order of a centimetre.

The error can be calculated for multiple poses round the checkerboard. For the second test
the error has been calculated 19 times for Logitech webcam and 21 times for the Kinect. With
this a measure for the overall precision can be made. If we look at table 8-2 it can be seen
that for the Logitech webcam the standard deviation for the translation is approximately half
a centimetre for the x and y axes while it is almost a centimetre for the z axis. For the Kinect
the standard deviation is much less, 3 millimetre for the x and round 1 for the other axes.
The rotation standard deviation is also a less than that of the Logitech webcam.

8-4-2 Conclusion

Using equation 8-6 the difference between the two axes systems can be calculated which forms
the error. This error can be calculated for different viewpoints. In table 8-1 and in table 8-2
the results are given. It can be seen that the calibration result is correct in the order of
centimetres per axis. For the rotation the error is for the Kinect less than a degree. For the
Logitech webcam the error is larger, the largest error is 4.6 degrees.

Master of Science Thesis L.N.M. Middelplaats

68 Extrinsic calibration on the UR5 robot

Logitech Webcam Kinect RGB Logitech Webcam
static

Kinect RGB
static

Translation [mm]

x −13.864 −4.2605 −16.16 −10.841
std 6.6539 3.3922 0.061 578 0.0951
y 4.9159 −5.3612 4.2203 −3.8038
std 4.1217 1.1585 0.606 53 0.2307
z −14.053 −2.6687 −14.476 −0.9525
std 8.9131 1.3441 0.125 37 0.2218

Rotation [deg]

X 4.3282 −0.9082 4.2298 −0.9147
std 0.338 54 0.0687 0.0138 0.002 24
Y −2.236 0.1143 −2.2198 0.4465
std 0.131 61 0.2006 0.0011 0.0238
Z −2.3629 0.0051 −2.5439 0.3797
std 0.238 14 0.1624 0.0583 0.0258

Table 8-2: Translation and rotation errors and their standard deviations for the Logitech webcam
and the Kinect. For the Logitech camera 19 poses have been used. For the Kinect 21 poses have
been used. The static measurements use 10 measurements from the same position.

L.N.M. Middelplaats Master of Science Thesis

Part III

Workspace mapping

Master of Science Thesis L.N.M. Middelplaats

Chapter 9

Workspace mapping

In the previous chapters methods for calibrating the camera extrinsically were discussed and
tested. This calibration will now be used to create a 3D map of the environment of the robot.
Using the calibrated position the 3D map can be created relative to the robot base. And the
camera can be moved to a position relative to the base to scan an unknown area.

9-1 Target

With the extrinsic calibration, as discussed in the previous chapters, the robot can now be
easily equipped with a camera system. This is the first step in increasing the flexibility of
the robot system. Next step will be the automatic creation of a 3D obstacle map of the
surroundings of the robot. With this the robot arm can be easily used for different tasks in
different places in the factory. Normally when the robot arm is put in a new environment the
location of the obstacles have to be programmed in the motion planning system. With this
mapping system this isn’t necessary any more, the robot can be easily moved and started.
Which decreases the required setup time. The robot should create a 3D map of its direct
surroundings. This map should contain all obstacles so that the robot can be safely used after
the mapping and can plan around all the obstacles. While creating the map the robot does
not know the locations of possible obstacles yet. Therefore it should not move in to unknown
space. The idea is that the robot has a small ’safe zone’ which is clear of obstacles. From
this zone the robot can scan the surroundings and map all the unknown space.

9-2 Problem type

Determining the placement for a sensor to explore unknown areas is known as Next Best
View (NBV) planning. The Next Best View approach was first discussed in [58]. Classical
problems related to this are 3D modelling of objects, the art gallery problem and pursuit and
evasion. The problem discussed here is related to the 3D scanning of objects. Only with this

Master of Science Thesis L.N.M. Middelplaats

72 Workspace mapping

problem the robot is limited in the space it can move in, as it can not move in unknown space.
And the whole environment is to be modelled. Compared to other exploration approaches
like SLAM (Simultaneous localization and mapping) this problem is different as the robot is
fixed and the location of the sensor is known.

9-3 Related Work

In ’Hierarchies of octrees for efficient 3D mapping’ [59] a hierarchy of octree maps is used
to model the environment. It is not clear if the current OctoMap implementation also uses
this. OctoMap can subdivide the voxels but it is not clear if really separate maps are used
in this paper. A NBV approach is used for testing with a PR2 robot. The robot can drive
round the table to obtain better views. The hierarchy octree is less memory intensive than
the monolithic octree.

In ’Sensor-based Exploration for general robotic systems’ [60] and the following paper ’An
exploration method for general robotic systems equipped with multiple sensors’ [61] explo-
ration is done using a expanding boundary. For this octrees are used with sensors like stereo
cameras or lasers. It seems that their current implementation does not deal with uncertainty
of the measurements. They do suggest how this can be done. It was not tested on a real
robot.

In [62] extra information is added to the voxel, information about by which sensor a cell is
seen is added. They also store information about if the neighbour cell is occupied or not.

In [63] a NBV algorithm is used with Kinect mounted on a PR2 robot. This is done to deal
with occlusions in a cluttered environment. Not only the point with the highest information
gain is selected but also the probability of seeing the point is taken into account. A Proba-
bilistic Roadmap (PRM) planner is used to optimize the route to the point for the highest
information gain. This study does not go in to safe scanning.

In [64] the known 2D frontier-based exploration methods are extended towards 3D environ-
ments. This is done by calculating voids, which are unknown areas which are not occluded
or enclosed. These area’s are combined with the frontiers (free cells with a unknown cell next
to it) to get the best viewpoint. The algorithm is tested on a Mesa Robotics matilda robot
platform with a Schunk custom-built 5-DOF manipulator on it. The author notes that the
system needs to be improved to be used in real time.

In [65] a workspace mapping approach with multiple sensors is researched. A combination
of the DLR Laser-Range Scanner, stereo vision and a single and dual laser stripe profile
projector with camera are used. The approach is tested on a Kuka KR16 in a Small to
Medium Enterprises (SME) usage scenario.

9-3-1 Depth sensor

The Kinect has been chosen as depth sensor in paragraph 1-2-3. It can measure depth using
an InfraRed (IR) projector and an IR camera and also take normal images with an Red Green
Blue (RGB) camera. The RGB camera was used to determine the location of the camera
using the extrinsic calibration. As the IR camera and the RGB camera are fixed with a known

L.N.M. Middelplaats Master of Science Thesis

9-3 Related Work 73

relative distance to each other the location of the IR camera is then also known. But it is
also possible to use the IR camera for the extrinsic calibration directly (for accurate results
the IR projector should then be covered and an external IR light source should be used1).
Specifications for the depth camera are given in table 9-1. To understand how the Kinect
can be used best with workspace mapping we also look in to the accuracy and range of the
Kinect. This also important to determine the mapping resolution.

Figure 9-1: The Kinect sensor with its cover removed. From left to right: the infrared projec-
tor, the RGB camera and the IR camera. The IR projector and camera are approximately 7.5
centimetres apart. Source: iFixit2

Accuracy and precision According to [12] the resolution of the depth measurements de-
creases quadratically. It is about 2 millimetres at one meter and at 3 meters 2.5 centimetres.
While at 5 meter it is increased to about 7 centimetres. This is because of the IR grid the
Kinect uses to calculate the depth. The features in the grid lay further apart at larger dis-
tances thus the resolution decreases. The random error in the depth measurements is a few
millimetres at half a meter which increases quadratically to 4 centimetres at 5 meters. For
mapping applications the range they are recommending is therefore 1-3 meters.

For the Openni driver of ROS the precision was evaluated3, see figure 9-2. This graph was
created by pointing the Kinect at a wall and fit a square using RANdom SAmple Consensus
(RANSAC) on the point cloud. The fitted wall gives then the average distance. The graph
shows how far off the measurements are from this average.

Range The Kinect depth sensor range is according to Microsoft5 minimum 0.8m and maxi-
mum 4m. The Kinect for Windows Hardware can however be switched to Near Mode which
provides a range of 0.5 m to 3m instead of the Default range. The OpenKinect page specifies
0.8 to 3.5 meters6. In [67] a minimum distance of 0.6 is given.

A small own test with the Kinect pointing at a wall indicated that the minimum range is
0.45 metres. If an object is placed before the wall at this range a hole with the contour of the
object is created in the depth data. This should be taken into account when implementing
the NBV algorithm.

1http://wiki.ros.org/action/show/openni_launch/Tutorials/IntrinsicCalibration?action=
show&redirect=openni_camera%2Fcalibration

2http://www.ifixit.com/Teardown/Microsoft+Kinect+Teardown/4066
3 http://wiki.ros.org/openni_kinect/kinect_accuracy
4http://wiki.ros.org/openni_kinect/kinect_accuracy
5http://msdn.microsoft.com/en-us/library/hh438998.aspx
6http://openkinect.org/wiki/Imaging_Information

Master of Science Thesis L.N.M. Middelplaats

http://wiki.ros.org/action/show/openni_launch/Tutorials/IntrinsicCalibration?action=show&redirect=openni_camera%2Fcalibration
http://wiki.ros.org/action/show/openni_launch/Tutorials/IntrinsicCalibration?action=show&redirect=openni_camera%2Fcalibration
http://www.ifixit.com/Teardown/Microsoft+Kinect+Teardown/4066
http://wiki.ros.org/openni_kinect/kinect_accuracy
http://wiki.ros.org/openni_kinect/kinect_accuracy
http://msdn.microsoft.com/en-us/library/hh438998.aspx
http://openkinect.org/wiki/Imaging_Information

74 Workspace mapping

Figure 9-2: Kinect Precision for two Kinects4. Tested by pointing the Kinect at a wall for various
distances and fitting a plane on the pointcloud. This provides the average distance to which the
distance to the other points is measured. The used resolution is not specified.

Parameter Value Value Microsoft Primesense Unit
Viewing angle vertical 43 45.6f 45 ◦

Viewing angle horizontal 57 58.5 58 ◦

Frame rate (Gazebo) 30 fps
Frame rate (max) 60 Hz
Farclip (Gazebo) 5

Resolution 1280x1024@15Hz,
640x480@30Hz (default)

Min. (Gazebo) 0.8 ([66] cite 0.5) meters
Max. distance real Kinect 5(3 on near range) 0.8m - 4.0m 0.8m - 3.5m m

Table 9-1: Kinect parameters from [7],[8]. According to the Kinect for Windows documentation
the nominal viewing angles are 58.5◦and 45.6◦[9].

L.N.M. Middelplaats Master of Science Thesis

9-3 Related Work 75

It possible to add a lens before the Kinect lenses to decrease the minimum range. The Nyko
Zoom lens (misleading name, it is actually a wide angle lens) can do this for instance7. This
makes the Kinect lose depth information at the edges however[67].

9-3-2 Map storage methods

Several map storage methods exist. A small comparison between map storage methods was
made. The map should represent free, occupied and unknown areas.

In table 9-2 an overview of different map storage methods is given with their advantages and
disadvantages.

The OctoMap system is chosen as it can deal with unknown space, is very efficient and it has
good support in Robot Operating System (ROS). Due to its probabilistic storage it can deal
with noise from the sensor. With the ROS implementation it is also possible to use multiple
depth sensors that add data to the map.

9-3-3 Octrees

As the OctoMap system is an important part of the mapping system a short overview of the
system will be given (based on [4], [59] and [5]).

Octrees are hierarchical data structures which describe the state of a volume of space. Each
node in a Octree represents the space contained in a cubic volume which is usually called
a voxel[4]. This volume can be subdivided in to eight sub volumes, hence the name. The
sub volumes can be subdivided again until the minimum voxel size is reached. As the tree
is an hierarchical structure the readout can be stopped at a higher level to get a coarser
subdivision of a volume. This makes it possible to use different resolutions for different
applications. For instance a the planner of robot platform doesn’t need as high resolution as
the robot manipulator on top of it for navigation. In figure 9-3 an example of the different
resolutions of the same map is given.

Figure 9-3: By changing the depth of query multiple resolutions of the same map can be
generated at any time. Reproduced from [4]. In the first picture the resolution (size of the nodes)
is 0.08 meters, the second 0.64 meters and in the third 1.28 meters.

Voxels mark the space as free or occupied. Unknown areas are marked as uninitialized spaces
in the Octree. The known nodes are probabilistic, each node encodes a probability of how
certain it is that a node is occupied or free. Using a probabilistic approach instead of a binary

7http://www.nyko.com/products/product-detail/?name=Zoom

Master of Science Thesis L.N.M. Middelplaats

http://www.nyko.com/products/product-detail/?name=Zoom

76 Workspace mapping

Type Advantages Disadvantages

Point Clouds
• No discretizaton of data

• Map area not limited

• Unbounded memory usage

• No representation of free or un-
known space

• Cannot easily cope with sensor
noise

• No Unknown state, but it can
be added with a custom type8

3D vixel grids
• Probabilistic update

• Constant access time

• Memory requirement

– Complete map is allocated
in memory

– Extent of map has to be
known

2.5D (elevation) maps • memory efficient

• Memory requirement

• Not completely probabilistic

• No distinction between free and
unknown space

• Cannot model underpasses

• Cannot store free or unknown
areas in a volumetric way

Octrees

• Encodes free, occupied and un-
known space by default

• Probabilistic, helps with sensor
noise

• Flexible multi resolution

• Memory efficient

• Data is discretized, information
is lost

• Loop closure can be difficult
(less of a problem with a fixed
robot) [68]

• traversability estimate not very
precise

Table 9-2: Different map building methods.

L.N.M. Middelplaats Master of Science Thesis

9-3 Related Work 77

representation helps dealing with false data which is added to the map due to noise in the
sensor readings. The more an occupied space is seen the higher the occupancy probability of
the voxel will be.

The probability P (n|z1:t) of a leaf node n to be occupied given the sensor measurements z1:t
is estimated according to:

P (n|z1:t) =
[
1 + 1− P (n|zt)

P (n|zt)
1− P (n|z1:t−1)
P (n|z1:t−1)

P (n)
1− P (n)

]−1
(9-1)

Where P (n|zt) the probability of the node n being occupied given measurement zt is. P (n|z1:t−1)
the probability based on the previous measurements. And P (n) the prior probability.

Using the log odds notation equation 9-1 can be rewritten (in appendix A-2 the steps required
are described) as:

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (9-2)

With:
L(n) = log

[
P (n)

1− P (n)

]
(9-3)

This formulation is used as it provides faster updates as multiplications are replaced by
additions. If the sensor models are pre computed than the logarithms do not need to be
recalculated during the update of the probabilities.

A threshold is used to discriminate between the free and the occupied state. Each observation
that a voxel is occupied increases this probability. And then needs the same amount of
observations that the voxel is empty to get it back to the same state again. This makes the
map however less dynamic, a voxel which is observed as occupied several times will not change
back to free fast. This can be problematic however in dynamic environments. Therefore
clamping thresholds are introduced. These prevent the value from growing to much in one
direction by clamping the value to a minimum or maximum value. This gives a different
update rule:

L(n|z1:t) = max
(
min

(
L(n|z1:t−1) + L(n|zt), lmax

)
, lmin

)
(9-4)

Where lmin and lmax the minimum and maximum log-odds values are. This has the advantage
that the map can change faster. Due to the clamping neighbouring nodes get the same value
which makes it possible to compress these voxels with pruning.

With pruning nodes with the same probability can be merged to achieve compression.

Sensor model OctoMap can use any distance sensor which can sense the distance to the
detected endpoint (so discrete infra red collision detection sensors cannot be used). It uses a
beam based inverse sensor model to determine which voxels need to be updated. To do this a
’virtual ray’ is cast between the sensor origin and the endpoint (see figure 9-4). The volumes

Master of Science Thesis L.N.M. Middelplaats

78 Workspace mapping

Figure 9-4: The voxels through which the ray traces from sensor origin to its endpoint. Adapted
from [5].

Figure 9-5: A sweeping laser scanner first lists a voxel as occupied (gray) but in the next scan
line the voxel is updated to free again. Adapted from [5].

through which the ray travels are updated with the free probability and the endpoint with
the occupied probability. In

L(n|zt) =
{
locc, if the beam is reflected in the volume
lfree, if the beam is reflected

(9-5)

In log-odds the occupied value locc is positive and the free value lfree is negative. For instance
locc = 0.85 and lfree = −0.4, corresponding to probabilities of 0.7 and 0.4 for occupied and
free volumes.

This sensor model can however lead to holes in the scan when a sweeping sensor is used. An
example of this is given in figure 9-5. This can be prevented by treating a set of scan lines as
one update.

Extensions

In [69] a method is presented to incrementally update the map based on detected changes
which is incorporated in OctoMap version 1.5. In [59] hierarchies for OctoMaps are used,
creating a hierarchical data structure of sub maps which can be updated individually and can
have different resolutions. This means that for instance for a mobile robot a coarse resolution
can be used for the overall map while sub maps, the top of a table for instance, can have a
much finer resolution. With this approach the whole map doesn’t need to use the same finer
resolution.

L.N.M. Middelplaats Master of Science Thesis

9-4 Proposed design 79

Figure 9-6: Block diagram of the Next Best View system. The same system (with different
parameters and models) can be used for the simulated PR2 robot or the real UR5 robot arm.
The lines from the Kinect to Information gain and Arm navigation nodes represent a data stream
containing a 3D map of the environment. The thick solid lines represent service calls.

9-4 Proposed design

To create a map of the surroundings an empty OctoMap is used at the start. The robot
cannot move through unknown space. By using a depth camera the robot scans the room
and checks if an area is free or occupied with an obstacle. The camera will be mounted on the
end effector because this has the most dexterity. This means however that the robot cannot
clear the room around the robot. Therefore there should be a small ’safe’ zone free of obstacles
round the robot so that it has some movement freedom in the beginning. A NBV algorithm
will be used to generate new points (viewpoints). A number of points are generated and for
each point it is tested in the existing map how much new information about the environment
is obtained from this point. The point with the greatest information gain is selected and the
end effector is moved to this point. While planning the trajectory to this point the planner
uses the collision map to plan around occupied and unknown space. It cannot move through
unknown space as there could be an obstacle present there. The extrinsic calibration will be
used to get the position of the sensor on the robot.

In figure 9-6 an overview is given of the implementation of workspace mapping system. The
working of the system will be discussed by following the arrows from the ’Robot’ block.

Robot A robot arm with a depth sensor somehere on a moveable link. Preferably an outer
link (near the Tool Center Point, TCP) as this link has more dexterity.

Depth sensor The depth sensor is mounted somewhere at on a robot on a link which can
move. In the robot description the position of the sensor on the link is given. This can
be obtained using the extrinsic calibration. The 3D sensor produces a 3D point cloud of
perceived points in the environment of the sensor.

Collision map An Octomap map server which records the 3D data from the depth sensor
and stores this in the map.

NBV controller The NBV controller selects a number of points. With the map data the
information gain (how much unknown spaces are seen from the viewpoint) per point is cal-
culated. The point with the highest gain is selected and send to the Arm Navigation Node.

Master of Science Thesis L.N.M. Middelplaats

80 Workspace mapping

Arm navigation This node receives a point from the NBV controller and plans a route from
the current camera position to the given camera position. The Arm navigation then checks
the route against a map from the Collision map server. By using the robot description file
(which tells how big all the links are) the route is checked for collisions with objects and
traversal through unknown space.

9-5 Conclusion

In this chapter a method for scanning the workspace has been selected. Also a way to store
the data from the scans has been selected. In the next chapters these will be implemented,
first in simulation and after this on a real robot.

L.N.M. Middelplaats Master of Science Thesis

Chapter 10

Workspace mapping: Simulation

In the previous chapter a design for a 3D workspace mapping system has been proposed. The
best way to implement this will be tested in simulation first. After this it will be tested on a
real robot.

10-1 Goal

Goal of this chapter is to investigate how the proposed design can be implemented and how
this will perform.

10-2 Related software

Some software was already available in ROS so this was tested first.

10-2-1 Next best view in ROS

The next best view package in ROS1 was reviewed. It seems to be made for a mobile robot
with a laser scanner. As this project has not been updated for a long time it had several
problems with changed code interfaces. It uses a combination of OctoMap and the Point
Cloud Library (PCL). Because of these (practical) problems and the limited documentation
it was chosen not to use this package.

10-3 Simulation with the PR2

It was not possible to get the UR5 robot working in simulation using the Gazebo package.
Three ROS versions (Fuerte, Groovy and Hydro) with different versions of Gazebo were

1http://www.ros.org/wiki/next_best_view

Master of Science Thesis L.N.M. Middelplaats

http://www.ros.org/wiki/next_best_view

82 Workspace mapping: Simulation

Figure 10-1: Block diagram of the simulation set-up.

tested but all had problems in some subsystem. Therefore the usage of other robot arms
available in simulation was investigated. The robot arm needed to have at least 5 Degree Of
Freedom (DOF) to be able to attain a different poses and orientations. The PR2 robot was
found much better supported and also has arm which can be used for workspace mapping.
The arm has seven DOF so this complies with requirement. The PR2 is however a large
moveable robot with a torso, head and two arms. This meant that all the room around the
robot can not be scanned as the torso is blocking the view.

10-3-1 Simulation set-up

In figure 10-1 the overview of the simulation is given. Switching back from the simulated
PR2 to the real UR5 later would take some time. Therefore it was chosen to test only using
a predefined set of point and test the NBV algorithm only on the real robot.

Octomap server

The robot should not move through occupied space but also not through unknown space.
The standard motion planning software of ROS, the arm navigation package, can however
not be configured to plan around unknown space. The flexible collision library (FCL) might
offer support for this in the future. But this whole package is still under development and
not ready for release2.

The arm navigation package will plan around occupied space in the OctoMap. To deal with
unknown space it was chosen to initialize the map with occupied space and load this map
at the start. In this way the robot can not move through unknown space. It can ’clear’ the
occupied space again by looking at the occupied area. See figure 10-3.

This does give problems with generating the Next Best View (NBV). To determine the best
new viewpoint the NBV algorithm will look for the viewpoint in which the most unknown
space will be seen. This will be then the view that sees the most occupied space as this also
represents unknown space. But it can then not differentiate between occupied space which
represents an object and unknown space. The NBV algorithm will thus keep looking at the
same occupied area thinking it has not been seen yet.

Therefore it is necessary to use two OctoMaps:

• One OctoMap which is used for the collision checking which is initialized to occupied.
This will noted as the collision map.

2http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html

L.N.M. Middelplaats Master of Science Thesis

http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html

10-3 Simulation with the PR2 83

• One OctoMap that is used for generating the next best view. This map will not be
initialized. This map will be noted as the NBV map.

The collision map will not be fully initialized with occupied space. Only the space reachable
by the robot needs to be initialized to prevent movement in to unknown space. It is pos-
sible to initialize the whole space but this will require extra memory while it has no added
functionality.

Arm navigation

The arm navigation package was used to plan trajectories between points in Cartesian space.
The arm navigation package used the (occupied) collision map to check for collisions.

Self Filter

The 3D data obtained by the sensor is filtered through a filtering node. This node uses
the robot shape (from the Universal Robotic Description Format (URDF) description on the
parameter server) to filter out parts of the robot that could be blocking the view in the image.
This prevents that parts of the robot are added to the 3D map. Although these parts could
be indeed an obstacle it is not necessary to add them to the map as the motion planning node
(the Arm navigation node) can also check for self collisions without the map. And parts of
the robot can also move so the collision map is not a reliable way to check for self collisions.
For the UR5 robot arm self occlusions are not very common in the current setup. But for the
PR2 robot for instance it is quite common that the other arm is blocking the view. For self
filtering several packages are available in ROS package system:

• Robot Self Filter3

• RGBD Self Filter4

• Camera Self Filter5

The Robot Self Filter is part of the Arm Navigation Stack. Camera Self Filter (from the
Bosch stack) seems to be for RGB camera’s only. The RGBD self filter package claims to
need 50-70 ms to filter and to be significantly faster than the Robot Self Filter. This probably
because it is GPU based, unfortunately it is not downloadable any more. Therefore Robot
Self Filter is used. In appendix C-1 the used parameter are listed.

10-3-2 Results

In figure 10-3a the occupied map with the PR2 robot is given. The wall around the robot
limits its movements. Next to it in figure 10-4a the NBV map is given. It can be seen that is

3 http://www.ros.org/wiki/robot_self_filter
4 http://www.ros.org/wiki/rgbd_self_filter
5 http://www.ros.org/wiki/camera_self_filter

Master of Science Thesis L.N.M. Middelplaats

http://www.ros.org/wiki/robot_self_filter
http://www.ros.org/wiki/rgbd_self_filter
http://www.ros.org/wiki/camera_self_filter

84 Workspace mapping: Simulation

Figure 10-2: The collision OctoMap with a model of the PR2 robot in it. The hand with the
Kinect on it is highlighted with a circle.

(a)

(b)

Figure 10-3: At the start (a) of the sim-
ulation the space round the PR2 is initial-
ized as occupied. The Kinect mounted
at the gripper of the PR2 starts register-
ing obstacles and free space. Occupied
space which turns out to be free is cleared
again (the small hole in the ’wall’). After
moving the Kinect arround more space is
cleared (b).The octomap in these pictures
has a 0.05 meter resolution.

(a)

(b)

Figure 10-4: The Next Best View map
at the beginning when a few movements
have been made (a). And after several
movements (b) when a larger portion of
the room has been seen.

L.N.M. Middelplaats Master of Science Thesis

10-4 Conclusion 85

partly empty, although the Kinect has already seen a part of the scene. In the figure below
it (figure 10-3b) can be seen that after a few movements the ’wall’ around the robot has be
cleared for a large part. In the figure next to it (figure 10-4b) can be seen that NBV map
contains now a larger part of the environment of the robot.

From this test it was found that the initial NBV map also needed to be initialized. Not
with occupied space like in the collison map but the free space in the ’safe zone’ should be
initialized to free. Otherwise the area round the camera will be unknown. Then the NBV
algorithm would not work efficiently at the start. As the first voxel in front of the camera
would be unknown the raytrace that used to determine new viewpoints would stop there. If
the direct area round the robot is initialized as free in the NBV OctoMap then it is possible
to start raytraces from more locations. This is important for the NBV algorithm. Because if
the area is not initialized as free it means that new viewpoints can only be generated in the
area that is cleared from the first viewpoint which limits the set of usable points very much.
This will make the scan take more time as in the beginning of the scan more viewpoints which
have less information gain have to be used to clear the direct area.

10-4 Conclusion

It was not possible to simulate the UR5 therefore the PR2 robot was used. As switching back
from the PR2 to the real UR5 would take some time it was chosen not test the whole design
in simulation.

From part that was simulated it was found that the proposed design with one OctoMap is
not possible due to limitations in the Arm Navigation Package. Two OctoMap servers need
to be used, one for collision checking and one for determining the next best view. It was also
found that is better initialize a small area around the robot as free in the next best view map.
As the set of possible viewpoints in the beginning is then much larger the scan will take less
time.

Master of Science Thesis L.N.M. Middelplaats

86 Workspace mapping: Simulation

L.N.M. Middelplaats Master of Science Thesis

Chapter 11

Workspace mapping with the UR5

In the second part extrinsic calibration methods have been studied and tested to get the
location of a Kinect camera on the robot. With this location known the camera will now be
used to scan the surroundings of the robot for obstacles in a safe manner. In the previous
chapters it was found that two OctoMaps should be used. In this chapter the NBV algorithm
will be implemented and tested on a UR5 robot arm.

11-1 Hardware

The Universal Robot arm was used with a Kinect mounted on the TCP above the gripper.
The calibration result from the previous chapter was used to get the transformation from the
end effector to the Kinect. A laptop was used to control the robot and process the Kinect
data.

11-2 Software

In figure 11-1 an overview of the system is given. The blocks indicate the ROS nodes (separate
programs) and their interaction.

We will discuss the high level working of the system here first, in the next parts a more detailed
description will be given. The ’Robot’ block is the biggest subsystem in this diagram. This
block represents a real robot or a simulated one. From this the robot pose and the Kinect
pose is generated using values from the encoders . The Kinect scans the world and generates
a 3D image from it (a pointcloud). This data is then streamed to two OctoMap servers: The
Collision OctoMap server and the NBV OctoMap server. Difference between these servers
is that the Collision Map server uses a map which contains a virtual wall round the robot
while the NBV is started empty. The flow of 3D images to the servers is controlled by the
3D data switch. The Map from the NBV OctoMap server is used by the Information Gain
node to determine where to move to. The Collision Map OctoMap server is used to check

Master of Science Thesis L.N.M. Middelplaats

88 Workspace mapping with the UR5

Figure 11-1: Block diagram of the Next Best View system implemented on the UR5 robot arm.
The lines from the Kinect to Information gain and Arm navigation nodes represent a data stream
containing a 3D map of the environment. The thick solid lines represent service calls. The self
filter has been replaced with a ’switch’ which switches the data stream on and off.

for collisions both by the Arm Navigation Node and the Information Gain node. The NBV
Controller node is the central node which controls all the nodes and generates points for the
robot to move to. Movement commands are processed by the Movement Controller, the Arm
navigation and the Robot driver.

11-2-1 Performance

The raytracing operations in the OctoMap server nodes use a lot of processing power. The
planning of the trajectories for the robot is also a very processing power demanding task.
During tests it was found that the processor of the laptop (a bit older dual core Intel Core2Duo
processor) had difficulties keeping up with the processing of incoming data. Because of this
the OctoMap servers sometimes missed data, areas that were scanned by the Kinect were
not cleared in the map. Requests for data from the map servers also took several minutes.
Therefore some adjustments to the programs had to be made which will be explained later.

A more modern quad core processor with hyper-threading (for instance a Intel Core i7) would
increase the performance of the system probably a lot, as then each node can then run in a
separate thread. The programs could also be be optimized more, in the future work section
in chapter 12 possible solutions are given.

11-2-2 Kinect

The Microsoft Kinect is used to get 3D positions of the obstacles. The Kinect driver is set
to drop 8 of the 10 frames. This done to lower the rate at which the 3D images are sent
to the OctoMap servers. This a trade off between data acquisition and performance. A
higher rate would mean that a point is seen multiple times which increases the certainty of a
measurement. But it also means that the OctoMap server can have trouble keeping up and
starts dropping incoming data. The robot is not moving very fast so it possible to set the
rate lower.

L.N.M. Middelplaats Master of Science Thesis

11-2 Software 89

11-2-3 3D data switch

This is a simple node which receives data from the Kinect and publishes the data again on
another topic. With service call other nodes can stop the publication on the second topic,
switching the stream ’off’. This again done for performance reasons. During testing it was
found that the time necessary to send a map from the OctoMap servers to the Information
gain node decreased significantly when the OctoMap servers were not receiving any data at
this moment. Therefore this node stops the 3D data to the OctoMaps when a map update
request is sent.
The switching node does create extra overhead, therefore other options to disable the stream
were also investigated. The Kinect driver has no option of disabling it with software. It is
possible to use a bug in the driver by enabling hardware registration. This stops the stream
but increases the CPU usage of the Kinect driver. The driver for the Asus Xtion does have
a option to temporary disable it.

11-2-4 Collision Map and NBV map

The 3D images are added to both the Collision and the NBV map. For the UR5 setup a
collision map which is cylindrically shaped is used. It has a free zone of 0.5 meters around
the robot. The occupied zone is from 0.5 to 1.1 meters, which is maximum of the distance
the robot can reach. The height is 1.15 metres high, which is above the maximum height the
robot can reach at the beginning of the occupied space. See figure 11-2 for the collision map.
The NBV map only has the free zone, see figure 11-3.

Figure 11-2: The virtual wall in the Colli-
sion OctoMap at the start of a scan. The
robot is in the center of the cylinder. It can
be seen that the Kinect has already scanned
the wall behind the robot and some voxels
of the virtual wall have been cleared already.

Figure 11-3: The NBV OctoMap with the
robot in it. This Map is initialized empty.
It can be seen that the same area as in the
previous image has been added to the map.

Both maps have a resolution of 5 centimetres. This means that the smallest feature in the map
is a 5x5x5 centimetre voxel. Lower resolutions are possible but this decreases the performance.

Master of Science Thesis L.N.M. Middelplaats

90 Workspace mapping with the UR5

For collision checking 5 centimetres is enough as the robot should stay away even further from
obstacles. The resolution should also be matched to the precision and the accuracy of the used
sensor and the actuator it is fixed on. If we look at the accuracy of the Kinect as discussed
in paragraph 9-3-1 it can be seen that the accuracy in workspace of the robot is below this
resolution.

11-2-5 Information gain

The information gain node gets the collision map and NBV map through a service call from
the OctoMap servers. The NBV map is used to test how much unknown space can be seen
from a certain viewpoint. This is done by ray casting in the 3D OctoMap, from the generated
viewpoint ’rays’ are sent to an endpoint. This is done for multiple rays so that an ’image’ is
generated from that viewpoint. This image gives an indication how much unknown cells can
be seen from the generated viewpoint. In figure 11-4 an example of the image that is made
is given.

Figure 11-4: The grid on the right represents the ’image’ that is made. To the center of each
cell in the grid a ray is traced. The blue line represents such a ray. This ray will stop at the black
obstacle and not reach the ’image’. The occluded area means that less unknown area is seen from
this viewpoint. Another viewpoint in which parts of the image are not occluded will have more
unknown area which can be seen and added to the map. The distance in this figure is not in scale
with the robot.

This ’image’ represents the area that the camera would see if the view is not blocked. The
size of the ’image’ is determined by the field of view of the Kinect(57 degrees horizontal and
43 degrees vertical) and its maximum range (5 metres). This gives a square of 5.4296 (width)
by 3.9391 (height) meters at 5 meters from the camera (the maximum range of the Kinect).

The rays are casted from the camera to this area. The number of rays needed to check the
area depend on the resolution. With a resolution of 5 centimetres for the OctoMap voxels this
means that 108x78 rays need to be traced. The rays ’fly’ from the camera in the direction of
the image until they hit an obstacle or unknown space. The number of rays to the image that
hit unknown space are counted. If occupied cells are hit it means this part of the area has

L.N.M. Middelplaats Master of Science Thesis

11-2 Software 91

Figure 11-5: Program flow of the mapping system. The left column is the joint control part,
the right the NBV part.

already been seen at least once. The more unknown cells in the ’image’ the more interesting
this viewpoint is.

There is also a weighted variant of this function implemented in this node which can subtract
the distance to the number of unknown cells. In this way it possible to favour unknown cells
that are close to the robot over unknown cells that are further away.

Another function this node implements is counting the states of all voxels and generate
statistic’s about the map. The node has also functions to check the status of a voxel at a
certain coordinate and a function to save the map.

11-2-6 NBV controller

The Next Best View (NBV) controller is the node that controls the whole system, it controls
the robot and can also switch of the data stream from the Kinect. In figure 11-5 the flow of
the program is given.

At the start first the maps are updated, this means that the information node asks new maps
from the OctoMap servers. With the maps loaded in memory statistics from the voxel states
are generated (number of occupied, free and unknown voxels). As the collision map contains
a virtual wall the robot cannot easily move yet. This gave problems with the path planner,
very odd trajectories were generated because of the limited space. Therefore for the initial
scan joint control is used instead of Cartesian control. With joint control a first scan is made

Master of Science Thesis L.N.M. Middelplaats

92 Workspace mapping with the UR5

Figure 11-6: Representation of the coordinate systems used for the random point generation.
The box represents the camera which is above the the end effector. By taking a random value for
ϕ and θ an end effector position is generated. Using the Roll, Pitch and Yaw angles an orientation
is generated separate.

of the direct environment of the robot. This is done by rotating the base link and the y-axis
of the end effector. After each step statistics are generated.

After this part the Next Best View part is started. As the direct environment of the robot is
now cleared there is more room to move and Cartesian control can now be used. With the
NBV algorithm unknown area’s that are missed from the initial scan are scanned. This done
by moving to different viewpoints from which unknown area’s can be scanned.

For each step the map is first updated by commanding the Information gain node to request a
new map from the OctoMap server. Before the map update the Kinect is disabled to increase
the map loading speed. Then the maps are requested, after which the Kinect is enabled again.

Next 20 random end effector poses (position and orientation) are generated. This is done
with spherical coordinates, see figure 11-6. For each point the information gain is calculated
by the information gain node. The distance from the current position to the generated point
is also calculated. With weighting factors the gain and distance are subtracted from each
other. Viewpoints with a lot of unknown voxels in the ’image’ get a high score. While the
distance is subtracted from this score, penalizing viewpoints that are far away. This gives the
combined value value which is stored. Each point is then checked if it is not in an occupied
or unknown area. If this is the case the point is removed.

Next the points are sorted to the total combined value. The motion planner is then ordered to
plan to the point with the highest score (the combination of the largest number of unknown
cells and the lowest travel distance). If the motion planning fails because for instance the
trajectory is in collision or not reachable, the second point is taken. This is done until a
point is reached. If the system is out of points before a point is reached a new set of points
is generated.

L.N.M. Middelplaats Master of Science Thesis

11-3 Results 93

Figure 11-7: Screenshot from the visualization tool RViZ of the robot arm with occupied voxels
in green around the robot. The red sphere with the arrow visualizes a new scan point and the
direction of the camera. The table where the robot is standing on is clearly visible as well as the
table next to it.

11-2-7 Movement controller and Arm Navigation

During tests it was found that the planning was aborted often because the allowed planning
time was exceeded. This was solved by increasing the allowed time and disable the Kinect
after three tries. Disabling the Kinect gives the planner more processing power thus making
it possible that more trajectories can be tested. But if a satisfactory trajectory is found it is
executed immediately so there is no time to enable the Kinect again. Disabling has thus the
disadvantage that no scans can be made during movement.

11-3 Results

The scanning system works but due to the computational load it takes some time for a scan
to complete. This a trade-off between operating speed and data loss due to the processing
speed. The system can scan faster but then area’s are not cleared although they have been
scanned with the Kinect. This probably because of that the OctoMap servers can then not
cope with the amount of incoming data and are dropping data.

If the speed is kept at a moderate level the system can keep up. In figure 11-8 the scan statistics
are plotted. It can be seen that in the first seven scan points a lot of the surroundings are
seen. This is during the first scans which use joint control. After this the NBV algorithm
scans the places that could not be seen using joint control. It can be seen that after 20 scan
points the map doesn’t change much any more. In figure 11-11 to figure 11-13 the NBV map

Master of Science Thesis L.N.M. Middelplaats

94 Workspace mapping with the UR5

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14
x 10

4

steps

N
u
m

b
e

r
o

f
v
o
x
e
ls

free

occupied

unknown

Figure 11-8: State of the voxels of the map.

is given. First it is empty after which obstacles are added. Below it is the same map but now
inverted, unknown space is displayed as occupied. In figure 11-14 it can be seen that most
space is still unknown. In figure 11-15 it can be seen that more space is known now. There is
still a lot of unknown space visible but this behind occupied space (the green voxels) so these
are spaces which never can be seen. In figure 11-17 the occupied collision map is given. It
can be seen that the cylinder shaps is completly cleared in figure 11-18.

During tests it can be seen that the NBV algorithm really has some added value to the scan
process. For instance in figure 11-9 and figure 11-10 it can be seen that the NBV algorithm
makes the robot look behind obstacles. The NBV algorithm also made the robot look through
a cut-out of a box which simulated a machine opening. If only a scan is made by rotating
the robot this opening isn’t properly scanned. With the NBV algorithm it is scanned better.
Although as the NBV algorithm uses random poses there is no guarantee it will always do
this.

L.N.M. Middelplaats Master of Science Thesis

11-3 Results 95

Figure 11-9: Example of the NBV con-
troller making the robot look to the space
behind the movable screens.

Figure 11-10: Example of the NBV con-
troller making the robot look to the space
behind the box.

Master of Science Thesis L.N.M. Middelplaats

96 Workspace mapping with the UR5

Figure 11-11: The
NBV map after 3
scans.

Figure 11-12: The
NBV map after 23
scans.

Figure 11-13: The
NBV map after 38
scans.

Figure 11-14: The
Inverted NBV map,
unknown space is now
displayed as occupied.

Figure 11-15: The
inverted map after 23
scans. The blue vox-
els are unknown space
and the green voxels
are occupied.

Figure 11-16: The
inverted map after 38
scans.

Figure 11-17: The
occupied map after 3
scans.

Figure 11-18: The
occupied map after 23
scans.

Figure 11-19: The
occupied map after 38
scans.

L.N.M. Middelplaats Master of Science Thesis

Chapter 12

Conclusion and future work

12-1 Conclusion

The goal of this thesis, as defined in the introduction, was to contribute to fast reconfigura-
bility of industrial robot arms by automating two parts of the installation process:

1. Develop a system that can help with fast (extrinsic) calibration of a camera on a robot
arm.

• Accuracy and precision
The combined error should be below a centimetre so that the camera can be used
to grasp something using the camera with a Laquey gripper.

2. Use the camera to automatically map the surroundings of the robot for obstacles.

• Mapping the surroundings (workspace) of the robot arm should be done in a safe
way, during scanning the robot should not collide with an unknown object.

For the first goal, the extrinsic calibration, it can be concluded that this works good. It was
difficult to validate the result by measuring the camera pose directly. Therefore the position of
the checkerboard was measured by placing the Tool Centre Point (TCP) at the checkerboard.
The error was then calculated by determining the camera location in two ways. The first
way is to use the robots encoders and the calculated hand-eye transform. The second is by
using the estimated camera position relative to the checkerboard. The error of the calibration
result for the Logitech webcam is in the order of a centimetre for the x axis, for the other
axes it is less. The rotation error is approximately 4 degrees for the x axis and also less for
the other axes. For the Kinect the calibration result is better, the largest translation error is
approximately half a centimetre. The rotation error is also lower, the largest error is in the
order of a degree and the errors for the other axes are lower.

For the second goal, the workspace mapping system, it can be concluded that this also works
good. The Next Best View (NBV) algorithm looks with the camera behind objects and sees

Master of Science Thesis L.N.M. Middelplaats

98 Conclusion and future work

unknown space that is otherwise not seen. The robot cannot plan movements in unknown
space and will thus not collide with objects it has not seen yet. Doing an initial scan by
rotating the joints first solved the problem of the complex trajectories which were generated
by a lack of movement space.

12-2 Discussion

Interesting to note is that in simulation the camera pose estimation result was proportional
with the resolution of the camera. In practice this was however not the case, changing the
resolution did not have much effect on the error. This could be due to the distortion and
the optical resolution of the used webcam. In simulation the image improves when using a
higher camera resolution, giving a better pose estimate. But in the practice the lens could be
limiting the resolution increase on the sensor of the camera. Calibration helps compensate
the distortion but probably the resolution of the image is still affected.

12-3 Future work

12-3-1 Extrinsic calibration

The system should be tested on different locations of the robot. Further away from the TCP
seems to improve the result.

Augmented Reality (AR) markers were discarded as the results in practice were not good
enough. But this was probably due to a conversion error somewhere. AR Markers could still
be interesting. With AR markers it is possible to cover large parts of the surroundings of
the robot with different markers. If this is done it is possible to use a subset of the markers
giving a larger set of possible viewpoints. With a single checkerboard the number of possible
viewpoints is more limited. Using more viewpoints could improve the of the calibration.
Disadvantage is that the locations of the markers relative to each other does need to be
known very precise with this.

It would also be interesting to refine the results of the output of the Tsai-Lenz algorithm with
an iterative algorithm. Using an iterative algorithm directly could be computationally taxing
but if a good estimate is already known then this could be less of a problem.

12-3-2 Workspace mapping

The current implementation is adapted to deal with the slow computer used in the research.
If a more recent quad core computer would be used the system could scan a lot faster. The
current implementation proves that the method works, but it could be implemented a lot more
a efficient. The current setup consists of two OctoMap servers which could be integrated in
one custom made OctoMap server. If a custom OctoMap server is implemented the NBV
algorithm can be implemented inside this system. This will increase the speed a lot as shared
memory can then be used instead of slow socket communication. The operating speed will also

L.N.M. Middelplaats Master of Science Thesis

12-3 Future work 99

increase as there is then only one computationally intensive raytracing operation necessary
when adding new data to the map.

With a custom implementation it will also be possible to implement a maximum range method.
With this the space can also be cleared if nothing is hit, in appendix B-2 methods for this
are given.

It is also possible to implement labelled voxels which can store additional information like
timestamps or color information. With timestamps for instance, occupied area’s which have
not been seen for a long time can be set to unknown again. Another improvement would be
to use the Point Cloud Library (PCL) to filter the data and segment objects with this (see
appendix B-2).

Master of Science Thesis L.N.M. Middelplaats

100 Conclusion and future work

L.N.M. Middelplaats Master of Science Thesis

Appendix A

Formula derivations

A-1 Usable distance

Goal is to calculate the r in figure A-1 which represents the distance at which the error (err)
at the object is below 0.0058 metres.

Using Pythagoras:

err2 = a2 + b2 (A-1)

The error depends on the calibration error per axis:

a =tan(ϕ)r
b =tan(θ)r

(A-2)

The usable distance r is then:

r2 = err2

tan(ϕ)2 + tan(θ)2 (A-3)

r =
√

0.00582

tan(−6.966/1000)2 + tan(4.685/1000)2 = 0.6909[m] (A-4)

Master of Science Thesis L.N.M. Middelplaats

102 Formula derivations

Figure A-1: Coordinate system used to calculate the grasp error. On the top left the object is
given and on the right the camera coordinate system.

A-2 OctoMap formula

In section 9-3-3 formula 9-1 (from [5]) was rewritten. In this appendix the steps required to
get from A-5 to A-12 will be given.

P (n|z1:t) =
[
1 + 1− P (n|zt)

P (n|zt)
1− P (n|z1:t−1)
P (n|z1:t−1)

P (n)
1− P (n)

]−1
(A-5)

If the multiply the Right Hand Side (RHS) by the denominator, we can express P (n|z1:t) as

P (n|z1:t) = P (n|zt)P (n|z1:t−1)(1− P (n))
P (n|zt)P (n|z1:t−1)(1− P (n)) + (1− P (n|zt))(1− P (n|z1:t−1))P (n) (A-6)

Multiplying by minus one and adding one at both sides:

1− P (n|z1:t) = (1− P (n|zt))(1− P (n|z1:t−1))P (n)
P (n|zt)P (n|z1:t−1)(1− P (n)) + (1− P (n|zt))(1− P (n|z1:t−1))P (n) (A-7)

Subtracting and taking the inverse of both sides, we get:

P (n|z1:t)
1− P (n|z1:t)

= P (n|zt)P (n|z1:t−1)(1− P (n))
(1− P (n|zt))(1− P (n|z1:t−1))P (n) (A-8)

Taking the logarithm of both sides leads to:

log
[

P (n|z1:t)
1− P (n|z1:t)

]
= log

[
P (n|z1:t−1)

1− P (n|z1:t−1)

]
+ log

[
P (n|zt)

1− P (n|zt)

]
− log

[
P (n)

1− P (n)

]
(A-9)

L.N.M. Middelplaats Master of Science Thesis

A-2 OctoMap formula 103

In the paper[5] the following definition was made:

L(n) = log

[
P (n)

1− P (n)

]
(A-10)

Using this notation L(n) we have

L(n|z1:t) = L(n|z1:t−1) + L(n|zt)− L(n) (A-11)

A uniform prior probability is assumed where P (n) = 0.5, leading to L(n) = 0, giving the
compact update equation:

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (A-12)

Master of Science Thesis L.N.M. Middelplaats

104 Formula derivations

L.N.M. Middelplaats Master of Science Thesis

Appendix B

Custom OctoMap server

In this study two OctoMap servers have been used. But it is also possible to create an own
implementation of the OctoMap server as there are templates of the OctoMap server available.
If a custom version is implemented it is possible to add other improvements.

B-1 Improvements using the Point Cloud Library (PCL) and la-
belled octrees

• PCL methods can be used to segment data before adding it to the map. Surfaces can
be first fitted for instance. This could improve the quality of the map.

• Use PCL VoxelGrid filtering1 to filter and limit data to usable range and downsample
it to the leaf size

• Use semantic mapping, label objects. So that the context can be used. If a machine or
conveyor is moved the whole object could be moved in a interface.

• With the labelled octree type2 one OctoMap server could be used. Using the label
extra information can be stored. It also possible to use one map in the server but
send different maps to other nodes using one basis map. The arm navigation could for
instance receive a map where unknown space is also set to occupied. Other Octree types
are also possible: color information, timestamps or storing with which sensor a voxel
has been seen is also possible.

1 http://wiki.ros.org/pcl_ros/Tutorials/VoxelGridfiltering
2http://code.google.com/p/alufr-ros-pkg/source/browse/branches/octomap_

mapping-experimental/octomap/include/octomap/OcTreeNodeLabeled.h

Master of Science Thesis L.N.M. Middelplaats

http://wiki.ros.org/pcl_ros/Tutorials/VoxelGrid filtering
http://code.google.com/p/alufr-ros-pkg/source/browse/branches/octomap_mapping-experimental/octomap/include/octomap/OcTreeNodeLabeled.h
http://code.google.com/p/alufr-ros-pkg/source/browse/branches/octomap_mapping-experimental/octomap/include/octomap/OcTreeNodeLabeled.h

106 Custom OctoMap server

B-2 Clearing space without obstacles

The point cloud created by the depth sensor describes occupied space by giving the coordinates
to it. Obstacles far away are used to clear the empty space between the camera and the
obstacle. However if there are no objects present within the maximum range of the sensor
nothing is returned. A solution can be to scan downwards so that the floor is always seen.

Another, better solution would be to modify the OctoMap server. This could be done in two
ways3

• Using ’fake points’ beyond the maximum range of the sensor. This will fill the rays with
free space up to the maximum range.

• Using a custom update in the OctoMap which sets all the elements along the ray to
free. This is similar to the ground plane segmentation system (if the floor should not
added to the map). With this rays to the floor are only used for clearing space not
setting occupied space.

3 https://groups.google.com/#!topic/octomap/O0YA_xBML_Q

L.N.M. Middelplaats Master of Science Thesis

https://groups.google.com/#!topic/octomap/O0YA_xBML_Q

Appendix C

Simulation documentation

C-1 Simulation block diagram

The detailed block diagram of the structure of the simulation can be seen in figure C-1.
The corresponding source files are listed next to the blocks. If the package is outside the
ar_joint_controller package than then package name is listed in front.

Figure C-1: The block diagram with the file names of the source files of the nodes.

Master of Science Thesis L.N.M. Middelplaats

108 Simulation documentation

C-2 Custom material

A checkerboard pattern was not available in the Gazebo Simulator. Therefore a custom
material script was created.

1 <v i s u a l name=’arm_base_checkerboard_bch0’>
2 <o r i g i n pose=’-0.0 -0.00 0.85 0.0 0 0’/>
3 <geometry>
4 <! -- x y z 0.5 0.12 0.5 -->
5 <box s i z e=’0.21565 0.22 0.27915’/>
6
7 </geometry>
8 <mate r i a l s c r i p t=’Gazebo/checkerboard’/>
9 </ v i s u a l>

In

/simulator_gazebo/gazebo/gazebo/share/gazebo-1.0.2/Media/materials/scripts

Checkerboard material:
1 material Gazebo/checkerboard
2 {
3 technique
4 {
5 pass
6 {
7 ambient 1 .0 1 .0 1 . 0 1 . 0
8 diffuse 1 .0 1 .0 1 . 0 1 . 0
9 specular 0 .2 0 .2 0 . 2 1 . 0 12 .5

10
11 texture_unit
12 {
13 texture checkerboard_freiburg2 . png
14 filtering trilinear
15 }
16 }
17 }
18 }

C-3 Self Filter

Parameter Value
min_sensor_dist 0.01
self_see_padd 0.02
elf_see_scale 1

Table C-1: Configuration of the self occlusion filter.

L.N.M. Middelplaats Master of Science Thesis

Appendix D

Robot specifications and camera
calibration data

D-1 Universal Robots UR5 Specifications

Specification Value Unit
Reach 850 mm

Movement +/- 360 degrees
Repeatability +/- 0.1 mm

DOF 6
Payload 5 kg

Speed Joint max. 180 degrees/s
tool approx 1 m/s

Table D-1: Specifications for the UR5 robot arm. Source: Universal Robots specification sheet.

D-2 Simulated Camera

Parameter Value Description
x size 640 pixels in horizontal direction
y size 480 pixels in vertical direction
ccx 320.5 principal point in pixels x
ccy 240.5 principal point in pixels y
fcx 589.36645488527788 focal length in pixels x
fcy 589.3664548852778 focal length in pixels y

kc1 - kc4 0.0 distortion coefficients
Iter 10 number of iterations for distortion compensation

Table D-2: ARToolKitPlus parameters for the Kinect on the PR2.

Master of Science Thesis L.N.M. Middelplaats

110 Robot specifications and camera calibration data

Parameter Value Description
x size 800 pixels in horizontal direction
y size 600 pixels in vertical direction
ccx 400.5 principal point in pixels x
ccy 300.5 principal point in pixels y
fcx 965.68563990468 focal length in pixels x
fcy 965.68563990468 focal length in pixels y

kc1 - kc4 0.0 distortion coefficients
Iter 10 number of iterations for distortion compensation

Table D-3: ARToolKitPlus parameters used in the simulation.

D-3 Logitech Pro 9000

Parameter Value Description
Hardware id 046d:0809 USB hardware id

x size 640 pixels in horizontal direction
y size 480 pixels in vertical direction
ccx 308.629039 principal point in pixels x
ccy 226.921375 principal point in pixels y
fcx 534.782032 focal length in pixels x
fcy 534.103333 focal length in pixels y
kc1 0.045860 distortion coefficient
kc2 -0.130100 distortion coefficient
kc3 0.002500 distortion coefficient
kc4 -0.000597 distortion coefficient
kc5 0.000000 distortion coefficient

Table D-4: Calibration data for the Logitech Pro 9000 for a 640 by 480 pixels resolution.

Parameter Value Description
Hardware id 046d:0809 USB hardware id

x size 800 pixels in horizontal direction
y size 600 pixels in vertical direction
ccx 381.662765 principal point in pixels x
ccy 285.042717 principal point in pixels y
fcx 644.891113 focal length in pixels x
fcy 650.425720 focal length in pixels y
kc1 0.022619 distortion coefficient
kc2 -0.093668 distortion coefficient
kc3 0.008655 distortion coefficient
kc4 -0.002706 distortion coefficient
kc5 0.000000 distortion coefficient

Table D-5: Calibration data for the Logitech Pro 9000 for a 800 by 600 pixels resolution.

L.N.M. Middelplaats Master of Science Thesis

D-4 Calibration Kinect 111

Parameter Value Description
Hardware id 046d:0809 USB hardware id

x size 1600 pixels in horizontal direction
y size 1200 pixels in vertical direction
ccx 723.615497 principal point in pixels x
ccy 649.802808 principal point in pixels y
fcx 1524.010254 focal length in pixels x
fcy 1541.401733 focal length in pixels y
kc1 0.051928 distortion coefficient
kc2 -0.238112 distortion coefficient
kc3 0.022684 distortion coefficient
kc4 -0.010708 distortion coefficient
kc5 0.000000 distortion coefficient

Table D-6: Calibration data for the Logitech Pro 9000 for a 1600 by 1200 pixels resolution.

D-4 Calibration Kinect

Parameter Value Description
Hardware id USB hardware id

x size 640 pixels in horizontal direction
y size 480 pixels in vertical direction
ccx 321.610538 principal point in pixels x
ccy 252.175642 principal point in pixels y
fcx 537.327026 focal length in pixels x
fcy 538.345520 focal length in pixels y
kc1 0.179381 distortion coefficient
kc2 -0.318182 distortion coefficient
kc3 -0.002684 distortion coefficient
kc4 0.002093 distortion coefficient
kc5 0.000000 distortion coefficient

Table D-7: Calibration data for the Kinect RGB camera for a 640 by 480 pixels resolution.

Master of Science Thesis L.N.M. Middelplaats

112 Robot specifications and camera calibration data

D-5 Checkerboard pose estimator settings

Parameter Package
Checkerboard_detector2 find_extrinsics

Solvepnp() Solvepnp() SolvepnpRansac()
Iterations 20 30 30
Threshold 1e-2 0.1 0.1

Search window size (5,5) (11, 11) (11, 11)
Zero zone None None None
Iterations 100

reprojectionError 8.0
minInliersCount 10
useExtrinsicGuess False False False

Table D-8: Configuration settings for the pose estimation algorithms.

L.N.M. Middelplaats Master of Science Thesis

Appendix E

Software

The commands necessary to run the various parts of the designed software.

E-1 Error of the pose estimator

ur5_real_find_extrinsics_only2.launch
rosrun ar_joint_controller ur_collector

E-2 PR2 extrinsic calibration

roslaunch ar_joint_controller pr2_extrinsic.launch

rosrun ar_joint_controller ar_tracker
/usb_cam/image_raw:=/r_gripper_kinect/r_gripper_kinect/rgb/image_raw

rosrun ar_joint_controller move2pose_extrinsic

E-3 Validation of the extrinsic calibration

roslaunch ur5_real_validation.launch
rosrun ar_joint_controller ur_collector

E-4 Workspace Mapping

roslaunch ar_joint_controller ur5_real_nbv_cylinder.launch
rosrun ar_joint_controller nbv_controller

Master of Science Thesis L.N.M. Middelplaats

114 Software

L.N.M. Middelplaats Master of Science Thesis

Bibliography

[1] P. Lamb, “Tutorial 2: Camera and Marker Relationships.”

[2] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration for a video-based
augmented reality conferencing system,” in Proceedings 2nd IEEE and ACM Interna-
tional Workshop on Augmented Reality (IWAR’99), pp. 85–94, IEEE Comput. Soc, 1999.

[3] F. Dornaika and R. Horaud, “Simultaneous robot-world and hand-eye calibration,”
Robotics and Automation, IEEE . . . , vol. 14, no. 4, pp. 617–622, 1998.

[4] K. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, andW. Burgard, “OctoMap: A prob-
abilistic, flexible, and compact 3D map representation for robotic systems,” . . . practice
in 3D . . . , 2010.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:
an efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots,
vol. 34, pp. 189–206, Feb. 2013.

[6] F. Ernst, L. Richter, and L. Matthäus, “Non-orthogonal tool/flange and robot/world
calibration,” . . . Journal of Medical . . . , no. January, pp. 407–420, 2012.

[7] Microsoft, “Kinect for Windows Sensor Components and Specifications.”

[8] Microsoft, “Coordinate Spaces.”

[9] Microsoft, “Natural User Interface (NUI), constants.”

[10] R. a. Newcombe and A. J. Davison, “Live dense reconstruction with a single moving
camera,” 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 1498–1505, June 2010.

[11] M. Andersen, T. Jensen, and P. Lisouski, “Kinect depth sensor evaluation for computer
vision applications,” 2012.

Master of Science Thesis L.N.M. Middelplaats

116 Bibliography

[12] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of Kinect depth data for
indoor mapping applications.,” Sensors (Basel, Switzerland), vol. 12, pp. 1437–54, Jan.
2012.

[13] B. Atcheson, F. Heide, and W. Heidrich, “CALTag: High Precision Fiducial Markers for
Camera Calibration.,” in VMV 2010: Vision, Modeling & Visualization, 2010.

[14] M. Fiala, “Artag, an improved marker system based on artoolkit,” 2004.

[15] D. Wagner and D. Schmalstieg, “Artoolkitplus for pose tracking on mobile devices,” in
Computer Vision Winter Workshop 2007, p. 9, 2007.

[16] D. Schmalstieg and A. Fuhrmann, “The studierstube augmented reality project,” Pres-
ence: . . . , vol. 11, no. 1, pp. 33–54, 2002.

[17] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” 2011 IEEE Interna-
tional Conference on Robotics and Automation, pp. 3400–3407, May 2011.

[18] S. Garrido-Jurado, “Automatic generation and detection of highly reliable fiducial mark-
ers under occlusion,” Pattern Recognition, 2014.

[19] J. Stork, Camera pose estimation with circular markers. Thesis, University of Amsterdam
(UvA), 2012.

[20] T. D. Kler, “Integration of the ARToolKitPlus optical tracker into the Personal Space
Station,” Section: Computer Science, University of Amsterdam, . . . , 2007.

[21] J. Matoušek, Depth map for augmented reality improvement. Thesis, Czech Technical
University in Prague, 2011.

[22] M. Fiala, “Comparing ARTag and ARToolkit plus fiducial marker systems,” IREE Inter-
national Worksho on Haptic Audio Visual Environments and their Applications, 2005.,
pp. 147–152, 2005.

[23] R. Andersen, “Systematic test of pose estimation algorithms for use in a specific scene.,”
covil.sdu.dk, vol. 2, no. 1, pp. 1–11.

[24] D. F. Abawi, J. Bienwald, J. W. G.-u. Frankfurt, and R. Dörner, “Accuracy in Optical
Tracking with Fiducial Markers : An Accuracy Function for ARToolKit,” no. Ismar,
pp. 0–1, 2004.

[25] P. Wayne, W. Piekarski, and B. Thomas, “Measuring artoolkit accuracy in long distance
tracking experiments,” In 1st Int’l Augmented Reality . . . , no. C, pp. 1–2, 2002.

[26] E. Olson, “EECS568 Mobile Robotics: Methods and Principles,” 2011.

[27] D. Brown, “Decentering Distortion of Lenses,” Photometric Engineering, vol. 32, no. 3,
pp. 444–462, 1966.

[28] Z. Zhang, “A flexible new technique for camera calibration,” Pattern Analysis and Ma-
chine Intelligence, IEEE . . . , vol. 1998, no. 11, pp. 1330–1334, 2000.

L.N.M. Middelplaats Master of Science Thesis

117

[29] X. Gao and X. Hou, “Complete solution classification for the perspective-three-point
problem,” Pattern Analysis and . . . , vol. 25, pp. 930–943, Aug. 2003.

[30] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An Accurate O(n) Solution to the
PnP Problem,” International Journal of Computer Vision, vol. 81, pp. 155–166, July
2008.

[31] Y. Shiu and S. Ahmad, “Finding the mounting position of a sensor by solving a homoge-
neous transform equation of the form AX= XB,” Robotics and Automation. Proceedings.
. . . , pp. 1666–1671, 1987.

[32] R. Tsai and R. Lenz, “A new technique for fully autonomous and efficient 3D robotics
hand/eye calibration,” Robotics and Automation, IEEE . . . , vol. 5, no. 3, 1989.

[33] T. Kiesche and N. Krüger, Hand-eye calibration with a stereo camera. PhD thesis, 2006.

[34] D. W. Kim and J. E. Ha, “Hand/Eye Calibration Using 3D-3D Correspondences,” Applied
Mechanics and Materials, vol. 319, pp. 532–535, May 2013.

[35] R. Schmitt, Y. Cai, and P. Jatzkowski, “Estimation of the absolute camera pose for
environment recognition of industrial robotics,” Production Engineering, vol. 7, pp. 91–
100, Dec. 2012.

[36] M. Shah, R. D. Eastman, and T. Hong, “An overview of robot-sensor calibration meth-
ods for evaluation of perception systems,” Proceedings of the Workshop on Performance
Metrics for Intelligent Systems - PerMIS ’12, p. 15, 2012.

[37] H. Zhuang and Z. Roth, “Comments on "Calibration of wrist-mounted robotic sensors
by solving homogeneous transform equations of the form AX=XB" [with reply],” 1991.

[38] H. Chen, “A screw motion approach to uniqueness analysis of head-eye geometry,” Com-
puter Vision and Pattern Recognition, 1991. . . . , pp. 145–151, 1991.

[39] C. Wang, “Extrinsic calibration of a vision sensor mounted on a robot,” Robotics and
Automation, IEEE Transactions on, vol. 8, no. 2, 1992.

[40] J. C. K. Chou and M. Kamel, “Finding the Position and Orientation of a Sensor on a
Robot Manipulator Using Quaternions,” The International Journal of Robotics Research,
vol. 10, pp. 240–254, June 1991.

[41] J. Chou and M. Kamel, “Quaternions Approach to Solve the Kinematic Equation of
Rotation AaAx= AxAb of a Sensor Mounted Robotic Manipulator,” IEEE International
Conference on Robotics and . . . , no. 2, pp. 656–662, 1988.

[42] R. Horaud and F. Dornaika, “Hand-eye calibration,” The International Journal of
Robotics Research, vol. 3, no. 6769, 1995.

[43] F. Park and B. Martin, “Robot sensor calibration: solving AX=XB on the Euclidean
group,” IEEE Transactions on Robotics and Automation, vol. 10, no. 5, pp. 717–721,
1994.

[44] M. Li and D. Betsis, “Head-eye calibration,” Computer Vision, 1995. Proceedings., Fifth
. . . , vol. 2, no. 7, pp. 40–45, 1995.

Master of Science Thesis L.N.M. Middelplaats

118 Bibliography

[45] K. Daniilidis, “Hand-Eye Calibration Using Dual Quaternions,” The International Jour-
nal of Robotics Research, vol. 18, pp. 286–298, Mar. 1999.

[46] N. Andreff, R. Horaud, and B. Espiau, “On-line hand-eye calibration,” in Second Inter-
national Conference on 3-D Digital Imaging and Modeling, 1999.

[47] Q. Wei, K. Arbter, and G. Hirzinger, “Active self-calibration of robotic eyes and hand-eye
relationships with model identification,” IEEE Transactions on Robotics and Automa-
tion, vol. 14, no. 1, pp. 158–166, 1998.

[48] V. Pradeep, K. Konolige, and E. Berger, “Calibrating a multi-arm multi-sensor robot:
A bundle adjustment approach,” Experimental Robotics, 2014.

[49] H. Z. H. Zhuang, Z. Roth, and R. Sudhakar, “Simultaneous robot/world and tool/flange
calibration by solving homogeneous transformation equations of the form AX=YB,”
IEEE Transactions on Robotics and Automation, vol. 10, no. 4, 1994.

[50] M. Shah, “Solving the Robot-World/Hand-Eye Calibration Problem Using the Kronecker
Product,” Journal of Mechanisms and Robotics, vol. 5, p. 041009, July 2013.

[51] R. Hirsh, G. DeSouza, and a.C. Kak, “An iterative approach to the hand-eye and base-
world calibration problem,” Proceedings 2001 ICRA. IEEE International Conference on
Robotics and Automation (Cat. No.01CH37164), vol. 3, pp. 2171–2176, 2001.

[52] A. Li, L. Wang, and D. Wu, “Simultaneous robot-world and hand-eye calibration using
dual-quaternions and Kronecker product,” International Journal of the Physical . . . ,
vol. 5, no. 10, pp. 1530–1536, 2010.

[53] N. Andreff, “Robot Hand-Eye Calibration Using Structure-from-Motion,” The Interna-
tional Journal of Robotics Research, vol. 20, pp. 228–248, Mar. 2001.

[54] L. Richter, “Robotized Transcranial Magnetic Stimulation,” in Robotized Transcranial
Magnetic Stimulation, ch. 4, New York, NY: Springer New York, 2013.

[55] J. Schmidt, F. Vogt, and H. Niemann, “Calibration-free hand-eye calibration: a
structure-from-motion approach,” in Pattern Recognition, p. 526, 2005.

[56] T. Ruland, T. Pajdla, and L. Kruger, “Globally optimal hand-eye calibration,” Computer
Vision and Pattern . . . , no. 2, pp. 1035–1042, 2012.

[57] K. Daniilidis and E. Bayro-Corrochano, “The dual quaternion approach to hand-eye cal-
ibration,” Proceedings of 13th International Conference on Pattern Recognition, pp. 318–
322 vol.1, 1996.

[58] C. Connolly, “The determination of next best views,” Proceedings. 1985 IEEE Interna-
tional Conference on Robotics and Automation, vol. 2, pp. 432–435, 1985.

[59] K. M. Wurm, D. Hennes, D. Holz, R. B. Rusu, C. Stachniss, K. Konolige, and W. Bur-
gard, “Hierarchies of octrees for efficient 3D mapping,” 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4249–4255, Sept. 2011.

L.N.M. Middelplaats Master of Science Thesis

119

[60] L. Freda, G. Oriolo, and F. Vecchioli, “Sensor-based Exploration for general robotic
systems,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2157–2164, Sept. 2008.

[61] L. Freda, G. Oriolo, and F. Vecchioli, “An exploration method for general robotic sys-
tems equipped with multiple sensors,” Intelligent Robots and Systems, . . . , no. 045359,
pp. 5076–5082, 2009.

[62] S. Kohlbrecher, K. Petersen, G. Steinbauer, J. Maurer, P. Lepej, S. Uran, R. Ventura,
C. Dornhege, A. Hertle, R. Sheh, and J. Pellenz, “Community-driven development of
standard software modules for search and rescue robots,” 2012 IEEE International Sym-
posium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–2, Nov. 2012.

[63] C. Potthast and G. S. Sukhatme, “Seeing with your hands: A better way to obtain
perception capabilities with a personal robot,” Advanced Robotics and its Social Impacts,
pp. 50–53, Oct. 2011.

[64] C. Dornhege and A. Kleiner, “A frontier-void-based approach for autonomous exploration
in 3D,” Advanced Robotics, vol. 27, pp. 459–468, Apr. 2013.

[65] M. Suppa, Autonomous robot work cell exploration using multisensory eye-in-hand sys-
tems. PhD thesis, Gottfried Wilhelm Leibniz University of Hannover, 2008.

[66] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Workshops), pp. 1154–1160, Nov.
2011.

[67] M. T. Draelos, The Kinect Up Close: Modifications for Short-Range Depth Imaging. PhD
thesis, University of Colorado at Boulder, 2012.

[68] M. Fallon, “Efficient scene simulation for robust Monte Carlo localization using an RGB-
D camera,” Robotics and Automation . . . , 2012.

[69] B. Lau, C. Sprunk, and W. Burgard, “Efficient grid-based spatial representations for
robot navigation in dynamic environments,” Robotics and Autonomous Systems, vol. 61,
pp. 1116–1130, Oct. 2013.

Master of Science Thesis L.N.M. Middelplaats

120 Bibliography

L.N.M. Middelplaats Master of Science Thesis

Glossary

List of Acronyms

DOF Degree Of Freedom

AR Augmented Reality

IR InfraRed

GPL GNU General Public License

TCP Tool Centre Point

NBV Next Best View

OpenCV Open Source Computer Vision library

PID Proportional-Integral-Derivative

PCL Point Cloud Library

RGB Red Green Blue

RHS Right Hand Side

RMS Root Mean Square

ROS Robot Operating System

RANSAC RANdom SAmple Consensus

SME Small to Medium Enterprises

URDF Universal Robotic Description Format

Master of Science Thesis L.N.M. Middelplaats

122 Glossary

L.N.M. Middelplaats Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Thesis Goals
	Test system
	Robot arm
	Control software
	Camera system
	Depth camera
	Selected sensors

	Thesis outline

	I Camera pose estimation
	Camera pose estimation
	Types
	Checkerboard targets
	Augmented reality (AR) markers
	Selection

	AR marker pose estimators
	Performance

	Discussion
	Conclusion

	Simulation
	Simulation set-up
	Main node
	Controller
	Camera
	Pose estimators
	ARToolKit
	ARToolKitPlus
	Checkerboard pose estimator

	Simulation tests
	Simulated dimensions
	ARToolKit, ARToolKitPlus and different marker configurations
	Results

	Resolution dependence

	Validation with a real camera
	Test hardware
	Software
	Intrinsic calibration
	Camera pose estimation
	Checkerboard pose estimator
	Checkerboard_detector2

	Error of the pose estimator
	Results
	Discussion
	Conclusion

	II Extrinsic calibration
	Extrinsic calibration of the camera in the workspace
	Robot hand calibration
	Separable closed form solutions (two stage)
	Simultaneous solutions
	Iterative solutions for rotation and translation

	Simultaneous robot hand and robot world calibration
	Overview of methods

	Structure from motion
	Comparative studies
	Selection of method
	Discussion

	Simulation
	Simulation setup
	Transform broadcaster
	Calculation node
	Main node

	Hand-Eye algorithm
	Comparison with other algorithms in Matlab
	Results

	Sensitivity to noise

	Combined system
	Discussion
	Extrinsic calibration using the PR2 robot

	Usage
	Usage

	Extrinsic calibration on the UR5 robot
	Test setup and tests
	Hardware
	Software

	Calibration results
	Repeatability test
	Results

	Validation of the extrinsic calibration
	Discussion
	Conclusion

	III Workspace mapping
	Workspace mapping
	Target
	Problem type
	Related Work
	Depth sensor
	Map storage methods
	Octrees
	Extensions

	Proposed design
	Conclusion

	Workspace mapping: Simulation
	Goal
	Related software
	Next best view in ROS

	Simulation with the PR2
	Simulation set-up
	Octomap server
	Arm navigation
	Self Filter

	Results

	Conclusion

	Workspace mapping with the UR5
	Hardware
	Software
	Performance
	Kinect
	3D data switch
	Collision Map and NBV map
	Information gain
	NBV controller
	Movement controller and Arm Navigation

	Results

	Conclusion and future work
	Conclusion
	Discussion
	Future work
	Extrinsic calibration
	Workspace mapping

	Appendices
	Formula derivations
	Usable distance
	OctoMap formula

	Custom OctoMap server
	Improvements using the PCL and labelled octrees
	Clearing space without obstacles

	Simulation documentation
	Simulation block diagram
	Custom material
	Self Filter

	Robot specifications and camera calibration data
	Universal Robots UR5 Specifications
	Simulated Camera
	Logitech Pro 9000
	Calibration Kinect
	Checkerboard pose estimator settings

	Software
	Error of the pose estimator
	PR2 extrinsic calibration
	Validation of the extrinsic calibration
	Workspace Mapping

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

