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1
Introduction

Every imaging system is subject to noise. Noise emerges from several sources as low lit environ-
ments, short exposure times or small image sensors. Image noise removal is an important field of
study across many sectors which rely on imaging quality, as surveillance systems and medical applica-
tion. Deep learning methods leveraging Convolutional Neural Networks (CNNs) have shown excellent
performance when applied to the denoising task [6, 9, 27]. However, CNNs are typically trained on ex-
tensive datasets, composed by clean-noisy image pairs. Since capturing a clean-noisy dataset using
digital cameras is a tedious and complex task [6, 18], publicly available datasets with real-noise images
are few and small. This limits the applicability of CNNs denoisers with real world imaging systems.

In this thesis we address data scarce denoising by employing transfer learning. During transfer learning
a CNN is first pre-trained on a large dataset and then finetuned with a small target dataset. Researchers
have shown that is possible, using transfer learning, to achieve competitive results on real-noise data,
pre-training a CNN denoiser with numerous synthetic-noise samples [13]. Nevertheless transfer learn-
ing presents its own set of challenges. It is unclear how dataset size affects final denoising performance.
Furthermore, finetuning all CNNs parameters with small datasets can lead to overfitting, deteriorating
performance on real-noise images. Lastly, how to evaluate the domain discrepancy between the pre-
training noise distribution and the finetuning noise distribution remains unanswered.

We set to investigate denoising transfer learning by establishing a precise scientific environment, where
we define transfer learning using 4 key variables: (i) the size of the pre-training dataset; (ii) the size of
the finetuning dataset; (iii) the set of CNN’s parameters updated during finetuning; and (iv) the similarity
between the pre-training and finetuning noise distributions. We aim to analyse the effect of each vari-
able under progressively complex experimental set-ups and different testing conditions, to demonstrate
generality of the uncovered concepts. We show our findings have direct applicability on real-noise im-
ages and, thus, further the conceptual understanding of denoising transfer learning.

This thesis is structured as follows. In Chapter 2 we present our findings and research methodology
as a scientific article. At the end of the article we provide an appendix with additional results, aimed at
validating applicability of our findings across different environments. Chapter 3 is intended for computer
vision and deep learning non-experts. In Chapter 3.1 we provide background information for gaining
familiarity with image noise concepts such as noise distribution models and metrics for noise quantifi-
cation. In Chapter 3.2 we discuss deep learning and how we employ it in our research. Lastly Chapter
3.3 provides visual information regarding the image datasets used in our experiments.
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Abstract

Deep convolutional neural networks (CNNs) have
achieved current state-of-the-art in image denoising, but
require large datasets for training. Their performance re-
mains limited on smaller real-noise datasets. In this pa-
per, we investigate robust deep learning denoising using
transfer learning. We explore the impact of dataset sizes,
CNN parameter updates, and noise distribution similarity.
Our findings demonstrate that finetuning the decoder while
fixing the encoder of an encoder-decoder network archi-
tecture avoids overfitting during transfer learning. More-
over, we introduce the concept of noise similarity in trans-
fer learning, showing that reducing the similarity distance
between pre-training and finetuning noise significantly en-
hances CNN performance in denoising. Our results are
demonstrated on multiple datasets and various noise cam-
era models. Finally, we validate the robustness and applica-
bility of our approach on real-noise images. All our results
and analyses hold and generalize across different datasets,
highlighting our insights into the potential of transfer learn-
ing for image denoising.

1. Introduction

Image denoising is a fundamental aspect of image pro-
cessing and refers to the task of removing unwanted dis-
tortions from digital images to enhance their quality. Dig-
ital camera noise originates from multiple sources, such as
small image sensor size, short exposure times, electronic
interference, and the camera’s image processing pipeline.

Recently image denosing deep learning methods us-
ing Convolutional Neural Networks (CNNs) have achieved
state-of-the-art results [6, 17, 41, 42]. These CNN-based
methods require extensive datasets consisting of clean-
noisy image pairs and are typically trained with synthetic
Gaussian noise. However, the performance of deep denois-
ers trained with Gaussian noise deteriorates considerably
when confronted with real-noise images, due to the domain
discrepancy between training-noise and real-noise [17, 22].

Addressing this issue by gathering large real-noise
datasets captured using digital cameras is a demanding task

(a) ”0047 002” from LG G4 [1] (b) Noisy

(c) Direct training
PSNR = 25.92, SSIM = 0.909

(d) Ground truth

(e) TL Combined synthetic-noise
PSNR = 34.66, SSIM = 0.936

(f) TL Similar synthetic-noise
PSNR = 35.54, SSIM = 0.944

Figure 1. Comparing direct training and transfer learning (TL) ap-
proaches using real-noise images captured with the LG G4 camera
from SSID-Small dataset [1]. With a small dataset size, typical
CNN supervised training (c) fails to achieve satisfactory results.
Moreover, pre-training with synthetic-noise similar to the target
real-noise (f) achieves better results compared to pre-training with
a generic collection of synthetic noise (e). This is clearly visible in
the image, where color distortions and noisy artifacts are evident.

[3, 11, 29]. It involves overcoming operational complexi-
ties, such as minimizing object motion during prolonged
exposure, and post-processing challenges, as the genera-
tion of valid clean images to use for ground truth data.
Due to these difficulties, current publicly available real-
noise datasets generally present less than 40 distinct image
scenes [3, 29, 38].

An alternative approach involves employing realistic
noise distributions during synthetic-noise training. CBD-
Net [17] employs this technique to achieve good perfor-
mance on real-noise images. Nevertheless, a domain dis-
crepancy between the training and testing noise still exists.

To reduce the noise domain discrepancy, transfer learn-



ing has been employed to adapt a model pre-trained on a
large dataset to a target dataset with a different noise dis-
tribution [9, 22, 27, 36]. AINDNet [22] is pre-trained on
synthetic-noise data and finetuned on a smaller real-noise
dataset to enhance denoising of real-world images. AIND-
Net achieves strong performance with several benchmark-
ing real-noise datasets such as DND [28]. While AIDNet
proposes an effective transfer learning scheme, it is spe-
cialized for its own architecture. Current transfer learning
methods focus on the design of specific CNN architectures,
which makes their general applicability limited.

Furthermore, despite its advantages, transfer learning
presents its own set of challenges. The connection between
performance and the sizes of pre-training or finetuning
datasets remains undefined for image denosing. Moreover,
adapting the entire complete parameter set of a CNN can
lead to overfitting [26, 27]. Lastly, the choice of synthetic-
noise for pre-training lacks clear criteria.

In this study, we investigate how to train a robust deep
denoiser using transfer learning. We specifically define the
denoising transfer learning framework with four key vari-
ables: (i) the size of the pre-training dataset; (ii) the size of
the finetuning dataset; (iii) the set of CNN’s parameters up-
dated during finetuning; and (iv) the similarity between the
pre-training and finetuning noise distributions.

We conduct experiments with varying pre-training and
finetuning dataset size to explore the conditions under
which our findings remain consistent and to assess how de-
noising performance responds to data availability. In the
more realistic experimental scenarios, we maintain fixed
dataset sizes to simulate real-world conditions.

We analyze which subset of the CNNs parameter needs
to be updated, to prevent overfitting. We select the U-
Net [31] network as our architecture framework. U-Net’s
efficient encoder-decoder structure, comprising a contract-
ing and expanding part, is widely adopted in many state-
of-the-art denoising networks [14, 17, 22]. Our empirical
results demonstrate that finetuning the decoder part of the
network outperforms finetuning the encoder. Furthermore,
updating only the expanding part of the network effectively
minimizes overfitting.

We develop an approach to compute noise distributions
similarity, independent to the choice of the specific sim-
ilarity distance metric. We show that pre-training a net-
work using synthetic-noise similar to the finetuning noise
effectively reduces domain discrepancy and outperforms a
network pre-trained on less similar noise. Notably using
similar noise for pre-training outperforms using a range of
generic synthetic camera noise distributions (see Fig. 1).

We conduct our analysis using realistic synthetic-noise.
We use the Poisson-Gaussian noise model [15], which is
suitable for modeling real-noise [3, 15], to simulate differ-
ent camera noise distributions. Next, we validate our re-

sults using camera-specific synthetic-noise models tailored
to mimic the characteristics of distinct real cameras. Lastly
we demonstrate the influence of noise similarity on real-
noise datasets, SSID-Small [1] and RENOIR [3].

To sum up, this paper makes the following contributions:

• We present a comprehensive evaluation of transfer
learning in the denoising context, including multiple
noise models, dataset sizes and applicability to real
noise scenarios.

• We identify which components of an encoder-decoder
network architecture lead to the most significant im-
provements when updated, highlighting how updating
only the decoder gives faster convergence and can pre-
vent overfitting for small finetuning dataset.

• We introduce the concept of noise adaptation via trans-
fer learning, by quantifying noise similarity and as-
sessing its effect in the finetuning process.

2. Related work

Deep learning denoising. Since the introduction of
DnCNN [41], a denoising CNN using batch normalization
[20] and residual learning [18], CNN-based methods have
outperformed previous state-of-the-art non-CNN denoising
methods [5, 13, 16].

Notably, encoder-decoder structures with a contracting
and expanding part, such as U-Net [31], have standard-
ized deep learning denoising methods. This architecure is
used in several networks which achieve state-of-the-art per-
formance with real noise datasets, like CBDNet [17] and
AINDNet [22]. The flexibility of the encoder-decoder struc-
ture is used in deep denoisers which exploit transformers,
SUNnet [14], or more generally attention, EnlightenGAN
[21]. Furthermore a U-Net architecture is effective at cap-
turing captures essential low-level image priors [35]. From
these observations we utilize U-Net for our framework ar-
chitecture, when conducting our denoising experiments.

Transfer Learning in Denoising. Deep-CNN meth-
ods are typically trained with supervision, requiring large
datasets of clean-noisy image pairs. Nevertheless, collect-
ing real-noise image pairs using a digital camera is a chal-
lenging task. Hence the collected datasets are usually too
small for typical supervised learning. To address the prob-
lem CBDNet [17] is trained using a combination of real-
noise data and images corrupted by realistic synthetic noise.
However, this approach can lead to training instability due
to training with different camera-noise distributions and is
not effective for training distinct real-noise datasets [22].

Transfer learning adaptation methods have shown
promising results in scenarios where only a limited num-
ber of image pairs are available. AINDNet [22] adapts



from synthetic-noise to real-noise by updating the normal-
ization parameters of the model. Similarly, LIDIA [36],
a lightweight architecture for image denoising, achieves
state-of-the-art results by adapting the network to a target
input image. While denoising transfer learning schemes are
effective, they are usually constrained to a specific network
architecture. In this study, we aim to define and explore
transfer learning characteristics that can be utilized by gen-
eral CNN architectures.

Parameters update. Finetuning the full parameter set of
a CNN on a small dataset can lead to overfitting [27]. Due to
their large number of parameters, CNNs can fit the finetun-
ing noise-images without effectively capturing the under-
lying noise distribution patterns. AINDNet [22] prevents
overfitting by only updating the normalization parameters.
LIDIA [36] is a specialized architecture which employs a
reduced number of parameters. More common techniques
as early stopping [34], also show effectiveness in prevent-
ing overfitting during denoising transfer learning. Gain-
Tuning [27] introduces a universal transfer learning scheme
aimed at preventing overfitting by updating only a scaling
factor preceding each layer. Recent research has examined
finetuning different U-Net parameters [2, 12]. Results for
the segmentation task show that finetuning the early lay-
ers is more effective than finetuning the final layers of a U-
Net [2]. We investigate whether finetuning the decoder or
the encoder part of U-Net is more important in denoising,
and if fixing either effectively prevents overfitting.

Noise distribution similarity. Quantifying similarity
between different distributions is a well-known topic with
several techniques. Similarity distances, quantifying how
far apart two distributions are, can be categorized as satis-
fying metric proprieties or not, in which case they are re-
ferred to as divergences [7]. Euclidean distance [7] can be
used as a metric for comparing distributions, treating prob-
ability function values as points in a vector space. Common
metrics rely on Shannon’s concept of entropy [32]. Jensen-
Shannon distance [24] is based on the Kullback–Leibler di-
vergence [23], with the important difference that it is sym-
metric and always finite. Variation of information [33] uses
mutual information and entropy to compute the distance be-
tween discrete probabilities distributions. A conceptually
different metric is Wasserstein distance [30], measuring the
”cost” of turning one distribution into another.

Noise similarity is crucial in transfer learning methods
for denoising, since it measures the discrepancy between
the pre-training noise domain and the finetuning noise do-
main. We use similarity metrics to evaluate these discrep-
ancies and show that pre-training on a noise distributions
more similar to the finetuning noise produces better results.

Noise modelling. The noise in real images originates
from multiple sources, as the camera sensor size or type
and its high susceptibility to photon noise. The Poisson-

Gaussian [15] noise model has been proposed to approxi-
mate the noise in real images. Poisson-Gaussian is com-
posed by two parts: the Poisson component, which models
photon sensing, and the Gaussian component, used to rep-
resent the remaining stationary disturbances in the image.
The model is therefore signal-dependent and can accurately
fit real image noise [3, 4, 15, 43]. Several techniques can be
used to estimate the Poisson-Gaussian parameters given a
set of real-noise images [4], using the variance of the values
of the noisy image pair. We use the Poisson-Gaussian noise
model to simulate different camera’s noise distributions and
to estimate the noise distribution of real-noise images. Fur-
thermore, to validate our results we use synthetic-noise gen-
erated by camera-specific noise models and real-noise im-
ages captured by distinct cameras.

3. Transfer Learning within Denosing
In a typical supervised context, for a dataset D composed

by clean-noisy image pairs (x, y), we optimize the parame-
ters θ of a CNN denoiser F , by minimizing for a loss func-
tion L(·),

θ = argmin
θ

∑
(x,y)∈D

L(x,F(y;θ)). (1)

During transfer learning, networks parameters are op-
timized twice: initially with a pre-training dataset S and
afterwords with a finetuning dataset T . Given two differ-
ent image noise datasets S and T , collected using different
cameras with noise distributions ηs and ηt, we define the
denoising transfer learning framework with four key vari-
ables:

(i) the size of the pre-training dataset S;

(ii) the size of the finetuning dataset T ;

(iii) the CNN parameter subset θt updated for target
dataset T ;

(iv) the similarity distance between the noise distributions
of S and T , denoted as d(ηs, ηt).

To assess these variables we define which set of parame-
ters we investigate, and how we compute the similarity dis-
tance between two different noise distributions. Lastly, we
outline how we generate realistic synthetic-noise to simu-
late different cameras in our experiments.

3.1. Updating CNN parameters

The U-Net architecture has an encoder-decoder structure
with a contracting FE and expanding FD part. The encoder
part takes a noisy observation y to produce the inputs for the
decoder, as



FUNet(y;θ) = FD(FE(y;θE);θD), (2)

where θE and θD are the encoder and decoder parameter
subsets of the full paramater set θ.

We investigate the impact of restricted parameter updates
during transfer learning, to prevent overfitting. Specifically
we updated either the encoder θE or the decoder θD.

3.2. Computing noise similarity distances

To evaluate the impact of noise similarity during transfer
learning, we propose a methodology for retrieving the noise
probability distributions, over which we can quantify sim-
ilarity distances. We estimate a noise distribution using its
probability mass function (PMF).

Consider an image signal with intensity within the range
[0., 1.]. Let i be the intensity of a signal observation, then
yi is its noisy value and xi is the ground truth value. The
relation between yi and xi is given by

yi = xi + ηi, (3)

where ηi is the noise of the signal. The signal noise ηi
follows a probability distribution. Therefore, we can view
yi as an outcome of a random variable Y , which describes
the noise distribution.

To estimate the PMF of Y we use a frequency histogram
Hist(Y ). We sample xi uniformly from [0., 1.], avoiding
bias towards specific signal intensities. Assuming we know
ηi, we compute yi using Eq. (3). Finally, the number of bins
of Hist(Y ) is set to 256, aligned with signal quantization
which typically uses 8 bits to represent signal intensities.
The resulting Hist(Y ) is a nominal type histogram [8],
where each level or bin is independent. The PMF P for
the noise distribution is produced by dividing each level by
the number of samples generated N , P = Hist(Y )/N .

Given two noise distributions ηs and ηt, we derive their
respective PMFs Ps and Pt to compute the noise similarity
distance. In Tab. 1 we show the similarity distance mea-
sures for three different camera-specific noise distributions.
The relative similarity distances between the camera noise
distributions are independent of the metric chosen. In our
experiments we quantify similarity using variation of infor-
mation (Appendix A).

3.3. Noise modelling

We generate realistic synthetic noise using the Poisson-
Gaussian noise model [15], which combines two compo-
nents: signal-dependent Poisson noise arising from photon
sensing, and stationary signal-independent Gaussian noise.
Extending Eq. (3), we define the relationship between a
noisy signal value yi and its respective ground truth value
xi using the Poisson-Gaussian noise model, as

Camera-noise Similarity distance to Omni camera-noise

Euclidian ↓ Normalized VI ↓ Wasserstein ↓
Sony A 0.047 0.803 5.19 · 10−4

Sony B 0.014 0.621 1.47 · 10−4

Table 1. Comparing similarity distances between two different
Sony camera-specific noises and an Omni camera-specific noise
using three distinct metrics: (i) Euclidean distance; (ii) Normal-
ized Variation of Information (VI); (iii) Wasserstein distance. All
metrics indicate that Sony B camera noise is closer to the Omni
camera noise, indicating that relative similarity distance is inde-
pendent of the metric chosen.

0.0 0.5 1.0 1.5 2.0
g (simulated gain)

0.0

0.1

0.2

0.3

0.4

0.5

RM
SE

0.25
0.5
0.75

Figure 2. Poisson-Gaussian noise models with different λ show
varying responses to changes in simulated gain g, as assessed
through root mean squared error (RMSE) between sampled ground
truth signal x and respective noisy signal y. Thus, we can simu-
lated distinct cameras by altering λ, and sample different noise
levels varying simulated gain g.

yi = xi + ηp(xi) + ηg, (4)

where ηp is the Poisson noise component and ηg is the
Gaussian noise component.

The two noise components are mutually independent,
and their distributions can be characterized as follows,

(xi + ηp(xi))/a ∼ P(xi/a), ηg ∼ N (0, b), (5)

where a > 0 and b ≥ 0 are the parameters of the Pois-
son P and Gaussian N distributions. Parameter a is related
to quantum efficiency, and can be interpreted as the signal
value of a single detected photon. Parameter b represents
the variance of the stationary noise.

Modelling different camera-specific noise. We control
noise level of camera-specific noise models using a gain pa-
rameter. Higher levels of gain amplify signal values, in-
creasing noise. Each camera-specific noise model responds



differently to gain changes. To represent this relationship
within a Poisson-Gaussian noise model, we introduce pa-
rameter g > 0, to simulate gain. We define the Poisson-
Gaussian parameters a and b as a decomposition of g, char-
acterized by a parameter λ ∈ [0., 1.], as

a = λg, b = (1− λ)g. (6)

Variations in λ result in different responses of the
Poisson-Gaussian noise model to changes in g, as depicted
in Fig. 2. Altering λ is, therefore, akin to simulating dif-
ferent cameras. Notably, for λ = (0.25, 0.5, 0.75), across
the simulated gain g range (0., 2.14], λ = 0.25 exhibits the
most noise, while λ = 0.75 the least noise in terms of aver-
age variance (see Fig. 2).

Estimating real noise distribution. To compute the
noise similarity distance we assume the noise distribution η
is known, which is not true for images with real-noise. We
estimate η for a real-noise image dataset using the Poisson-
Gaussian noise model [3,4,15] (see details in Appendix B).

4. Experiments and Results

To investigate transfer learning in the context of de-
noising, we conduct our experiments in three distinct en-
vironments: Toy-Set (fully controlled camera noise distri-
butions and datasets), Color Natural-Images (fully con-
trolled camera noise distributions and real images), and
Camera-Specific Noise Models (real camera-specific noise
distributions and real images). Finally we extend to Real-
Noise Images with unknown camera noise model to show
applicability of noise distribution similarity.

Each experiment involves pre-training a network on im-
ages corrupted by a specific noise distribution and then fine-
tuning the network on a different noise distribution. We
conduct Toy-Set experiments 10 times with distinct net-
work initialization, while experiments in the other envi-
ronments are repeated 5 times. Experimental results are
grouped by the investigated transfer learning variable.

Implementation details. We train the U-Net models us-
ing a combination of Charbonnier [10] (LChar) and SSIM
[37] (LSSIM ) loss,

L = LChar + LSSIM . (7)

The ADAM algorithm is used for optimization with mini
batch size of 16. The models are trained for 1000 epochs,
with initial learning rate 10−2, which is then reduced by fac-
tor of 10−1 after every 400 epochs. Finetuning the models
start with learning rate 10−3. We use early stopping [34]
selecting the model’s weights at the epoch that achieved
the highest validation set performance. Training images are
cropped into random patches of size 256× 256.

DT TL
| | = 100

TL
| | = 500

TL
| | = 5000

16

17

18

19

20

21

22

23

24

PS
NR

 (d
B)

| | = 25, t = 0.5

DT TL
| | = 100

TL
| | = 500

TL
| | = 5000

| | = 100, t = 0.5

Figure 3. Toy-Set. Dataset size results for finetuning set sizes
|T | = (25, 100) and λt = 0.5. Increasing the pre-training dataset
size |S| improves performance. Transfer learning (TL) perfor-
mance remains unaffected by changes in finetuning dataset size
within the toy dataset. Yet, direct training (DT) exhibits signifi-
cant improvement with more available data, as an increase of 75
images for training leads to a performance increase of ∼ 1.5 dB.

4.1. Toy-Set

Experimental set-up. We create a toy dataset from
FashionMnist [39]. Each image consists of 5 random fash-
ion elements positioned at random non-overlapping loca-
tions. The images have a gray gradient background with
pixel intensity in [0.,0.3]. The images have size of 128×128
pixels, therefore in the Toy-Set, we do not use random crop-
ping. In addition, the models are trained for 100 epochs.

We simulate 3 different camera noise distributions us-
ing Poisson-Gaussian noise with λ = (0.25, 0.5, 0.75). For
each λ, we uniformly sample simulated gain g from the
range (0., 2.14], relative to pixel intensity [0., 1.]. We con-
duct experiments for each combination of λs and λt.

We vary the pre-training dataset sizes as |S| =
(100, 500, 5000) and the finetuning dataset sizes as |T | =
(25, 100). To examine the impact of dataset size, each ex-
periment is executed for every pair of |S| and |T |.

The final networks are evaluated against 1000 test im-
ages corrupted with the finetuning λt noise distribution.

Exp 1: Effect of dataset size. What is the effect of
varying the size of the pre-training and finetuning dataset
on transfer learning?

Results for λt = 0.5 are presented in Fig. 3. Transfer
learning consistently outperforms training directly on the
finetuning dataset. Increasing the pre-training set size im-
proves transfer learning performance. Elevating the target
set size from 25 to 100 instances, leads to a direct train-
ing performance increase of ∼ 1.5 dB, but does not affect
transfer learning performance. We conclude that having ac-
cess to an extensive pre-training dataset is fundamental for
denoising transfer learning, regardless of the availability of
data during finetuning. Results for λt = (0.25, 0.75) are



Parameter Set Finetune λt (PSNR ↑ / SSIM ↑)

λt = 0.25 λt = 0.5 λt = 0.75

full 21.92 / 0.8565 22.12 / 0.8612 22.75 / 0.8705
encoder 21.83 / 0.8545 22.14 / 0.8587 22.59 / 0.8661
decoder 21.93 / 0.8568 22.26 / 0.8632 22.64 / 0.8700

Table 2. Toy-Set. Results for different sets of finetuned parame-
ters evaluated on finetuning set size 100. Optimal performance is
achieved by updating either the decoder or the all the parameters.

provided in Appendix C.
Exp 2: Updating the model’s parameter. Does re-

stricting the parameter set updated during transfer learning
outperform updating all parameters by avoiding overfitting?
We compare updating the encoder, decoder and the full pa-
rameter set of U-Net.

Updating only the decoder generally outperforms the en-
coder or full set updates. The difference between the en-
coder and decoder results is evident (Appendix D), with
the decoder consistently outperforming the encoder for all
metrics and finetuning distributions, as seen in Tab. 2.
However, updating the entire parameter remains competi-
tive. Finetuning the decoder achieves best results for λt =
(0.25, 0.5), but updating the full network achieves slightly
better performance for λt = 0.75, by ∼ 0.09 dB.

Notably restricting the finetuned parameter set is more
efficient than adapting all parameters, as the networks con-
verges faster to optimal performance (Appendix E).

Exp 3: Effect of noise distribution similarity. Can pre-
training with a similar noise distribution improve perfor-
mance on the finetuning distribution? We investigate simi-
larity distances between the different simulated cameras λ
distribution using normalized variation of information [33].

Results for finetuning λt = 0.75 are presented in Fig. 4.
Finetuning similar noise distributions outperforms using
less similar distributions. For pre-training dataset size |S| =
500, conducting pre-training using the most similar noise
distribution leads to an improved performance of ∼ 1 dB.

Results for λt = (0.25, 0.5) are provided in Appendix F.

4.2. Color Natural-Images

Experimental set-up. We evaluate if our findings still
apply when using realistic color datasets. We use BSD400
[25], a standard natural-images dataset, for training. We
pre-train the models on the entire dataset and finetune us-
ing a subset of 100 and 25 images. Similar to previ-
ous set-up, we simulate three different cameras with λ =
(0.25, 0.5, 0.75) and simulated gain g uniformly sampled
from the range (0., 2.14]. The final networks are evaluated
against test sets BSD68 [25] and Set14 [40], corrupted with
the finetuning noise distribution.

Exp 1: Updating the model’s parameter. Does fine-
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Figure 4. Toy-Set. Results for finetuning noise distribution
λ = 0.75, highlighting similarity distance by variation of infor-
mation dV I . Optimal performance is attained through finetuning
with similar noise distributions.

Parameter Set BSD68, |T | = 25 (PSNR ↑ / SSIM ↑)

λt = 0.25 λt = 0.5 λt = 0.75

full 20.77 / 0.5605 20.57 / 0.5697 21.05 / 0.5932
encoder 20.79 / 0.5591 20.50 / 0.5686 20.78 / 0.5897
decoder 20.84 / 0.5607 20.62 / 0.5702 21.17 / 0.5947

Table 3. Color Natural-Images. Results for different sets of up-
dated parameters evaluated on finetuning set size |T | = 25. Up-
dating the decoder achieves optimal performance.

tuning only the decoder outperform updating the entire pa-
rameter set when using realistic images?

Adapting only the decoder consistently outperforms up-
dating the full parameter set when the finetuning set size is
limited. Tab. 3 presents the results for test set BSD68 using
finetune set size |T | = 25. The table shows that the decoder
outperforms adapting the encoder or the full network for all
target distributions λt. However, as the finetune set size in-
creases, we find that updating the full parameter set exhibits
improved performance.

In conclusion, adapting the entire parameter set of U-
Net leads to overfitting when the finetuning dataset size is
small. In such cases, updating only the decoder proves to
be the optimal strategy.

Exp 2: Effect of noise distribution similarity. Does
pre-training on noise distributions similar to the finetun-
ing noise improve performance with real images? By us-
ing standard natural-images dataset BSD400, we extend the
results applicability to diverse image signals.

Our findings indicate that noise similarity positively im-
pacts performance. In Fig. 5 we highlight the results for
finetuning noise distributions λt = 0.25, which represents
the most noisy simulated camera, and λt = 0.75, which
represents the least noisy simulated camera. For test dataset
BSD68, finetuning with the most similar noise distribution
improves performance by ∼ 0.2 dB for λt = 0.25 and
by ∼ 0.6 dB for λt = 0.75. The results hold consistent
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Figure 5. Color Natural-Images. Transfer learning perfor-
mance results as mean and standard deviation, for finetuning
λt = (0.25, 0.75), evaluated using the BSD68 and Set14 test sets.
Similarity distances are computed with normalized variation of in-
formation. Here, λt = 0.25 represents the most noisy simulated
camera, while λt = 0.75 corresponds to the less noisy simulated
camera. The results consistently demonstrate that noise similar-
ity improves performance in both directions, finetuning from less
noisy to more noisy distributions, or vice versa

across test dataset Set14, where noise similarity leads to an
enhancement of ∼ 0.2 and ∼ 1.5 dB for λt = 0.25 and
λt = 0.75 respectively.

4.3. Camera-Specific Noise Models

Experimental set-up. To validate our findings, we em-
ploy real camera-specific noise models from two distinct
Sony cameras (referred to as Sony A and Sony B) as well
as an Omnivision (Omni) camera. Unlike the simulated
Poisson-Gaussian camera model where the gain is capped
at a maximum of 2.14 due to noise variance plateauing, real
camera-specific noise models exhibit a much wider gain
range. For each camera-specific noise model we uniformly
sample gain from the range [0, 1024], relative to pixel in-
tensity [0., 1.]). We use the same datasets set-up as in the
Color Natural-Images environment.

Exp 1: Updating the model’s parameter. How is per-
formance affected by restricting the parameter set updated
during transfer learning when using real camera-specific
noise distributions? We pre-train U-Net on one camera’s
noise and finetune across the other distributions.

Finetuning only the decoder parameters generally out-
performs updating the full parameter set, when the finetune
set size is limited. Results for finetuning camera Omni are
presented in Fig. 6, which illustrates that updating the full
network can lead to overfitting and lower performance com-
pared to restricting the adapted parameter set. Additional
results for finetuning camera Sony A and Sony B are re-
ported in Appendix G.

Exp 2: Effect of noise distribution similarity. Can
noise similarity enhance transfer learning using real
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PSNR (dB)
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Figure 6. Camera-Specific Noise Models. Results for target cam-
era Omni and finetune set size 25. Updating only the decoder pre-
vents overfitting and achieves the best performance.

Pre-train Camera dV I ↓
Finetuning Sony A (PSNR ↑ / SSIM ↑)

Set14 BSD68

Omni, Sony B - 24.59 / 0.7739 27.54 / 0.8162
Omni 0.80 23.81 / 0.7721 26.85 / 0.8132
Sony B 0.76 27.18 / 0.7984 27.85 / 0.8220

Table 4. Camera-Specific Noise Models. Results for finetuning
camera Sony A. Models pre-trained with Sony B, the most simi-
lar camera noise, achieve the highest performance, outperforming
models pre-trained with Omni camera noise or on a set of images
featuring both noise distributions.

camera-specific noise distributions? We evaluate whether
pre-training on a similar target camera noise distribution
leads to improved results compared to less similar distribu-
tions. Results for finetuning camera Sony A are presented in
Tab. 4. Our findings indicate that pre-training with similar
noise enhances performance, even outperforming the use of
combined noise models.

In Appendix H we present the results for cameras Sony
B and Omni, while in Appendix I we extend our findings to
diverse finetuning data.

4.4. Real-Noise Images

Experimental set-up. We investigate applicability of
noise similarity in the context of real-noise images with
unknown camera noise distribution. We pre-train the U-
Net models using the BSD400 [25] dataset. As finetuning
data, we employ the real-noise datasets SSID-Small [1] and
RENOIR [3], specifically utilizing images from the LG G4
camera camera in SSID-Small and images from the Xiaomi
Mi3 camera in the RENOIR dataset. SSID-Small contains
16 clean-noisy image pairs from 8 distinct image scenes
captured using the LG G4 camera. These are divided into
6 image pairs for training, 4 for validation, and 6 for test-
ing. Similarly, RENOIR contains 79 clean-noisy image
pairs from 40 image scenes captured using the Xiaomi Mi3



Technique Pre-train Noise Finetuning LG G4 Finetuning Xiaomi Mi3

dV I ↓ PSNR ↑ SSIM ↑ dV I ↓ PSNR ↑ SSIM ↑
Direct training - - 25.51 0.8894 - 26.24 0.7862
Transfer learning λs = (0.25, 0.5, 0.75) - 31.19 0.9178 - 30.69 0.8175
Transfer learning λs = 0.25 0.77 31.16 0.9113 0.82 28.75 0.8055
Transfer learning λs = 0.75 0.62 31.59 0.9214 0.67 30.19 0.8137
Transfer learning λs = 0.5 0.39 35.03 0.9448 0.64 31.16 0.8180

Table 5. Real Noise Images. Average PSNR and SSIM results for test sets LG G4 and Xiaomi Mi3. Transfer learning enhances perfor-
mance in comparison to direct training on the target datasets. Networks trained on noise distributions similar to the target outperform those
trained on less similar or varied noise sources. Notably, greater noise similarity correlates with higher performance gains.

camera. This dataset is partitioned into 47 image pairs for
training, 12 for validation, and 20 for testing.

LG G4 images have 2988 × 5312 pixels, while Xiaomi
Mi3 images have 3000×3000 pixels. BSD400 images have
generally 481 × 321 pixels. A single image from the real-
noise datasets has more than 50 times the amount of data
present in a BSD400 image. Therefore, we update the entire
parameter set during transfer learning since, in this context,
we cannot apply the numerical boundaries we found in the
previous experiments for preferring finetuning the decoder
over the whole parameter set.

Since we estimate the noise distribution of the real-noise
images using the Poisson-Gaussian noise model, we use
the Poisson-Gaussian simulated cameras for U-Net pre-
training, in order to fairly compare noise similarity (Ap-
pendix K). We use three different simulated camera distri-
butions with λ = (0.25, 0.5, 0.75) and simulated gain g uni-
formly sampled from the range (0., 2.14].

Exp 1: Effect of noise distribution similarity. Does
noise similarity enhance transfer learning using real-noise
images? The results for finetuning cameras LG G4 and Xi-
aomi Mi3 are presented in Tab. 5. For the LG G4, mod-
els pre-trained on the most similar noise distribution show
an improvement of approximately ∼ 10 dB compared to
models directly trained on the target images, and around
∼ 3.5 dB compared to models pre-trained on the second
most similar noise. The models performance follows an
order determined by similarity distance. Interestingly, the
models trained on the most similar noise distribution out-
perform the models trained on pre-training data containing
all available noise distributions.

These findings indicate that noise similarity signifi-
cantly improves real-noise transfer learning performance.
We expand the robustness of these results by consider-
ing confounding variables (Appendix J) and evaluating
the significance of real-noise distribution estimates (Ap-
pendix K). Furthermore, our insights extend beyond the
encoder-decoder framework (Appendix L), establishing the
broad applicability of noise similarity in transfer learning.

5. Limitations and Conclusion

Our findings regarding which U-Net parameter set to
update during transfer learning depend on the scale of the
images used during experimentation. However, real-world
image data is typically significantly larger, limiting direct
applicability of the dataset sizes bounds where overfitting
occurs. Nevertheless, contemporary CNN denoisers em-
ploy more parameters than U-Net, leading to overfitting
challenges even with large real-world data. Therefore our
emphasis on updating the expanding part of the encoder-
decoder network structure remains relevant.

Real world noise originates from different sources, be-
sides the sensor size or type, like JPEG compression. These
factors cannot be well modeled solely by the employed
Poisson-Gaussian noise distribution. Our similarity find-
ings rely on the capacity of this distribution to model real
image noise, and thus, they are constrained by it. Further-
more, our comparison of noise similarity assumes image
noise to be channel and spatially independent. This may not
hold in the real-noise images, in which case a more com-
plex method needs to be employed to compute the PMF of
a noise distribution.

To conclude, we presents a comprehensive analysis en-
compassing four key components of transfer learning in the
denoising domain. We highlight the significance of pre-
training and finetuning dataset size. We demonstrate how
a limited finetuning set size can lead to overfitting during
parameters update. We show that finetuning the decoder
of a U-Net architecture produces better denoising results
and convergence rates, compared to updating the encoder.
Moreover, we introduce the concept of noise distribution
similarity in denoising transfer learning. Our empirical re-
sults demonstrate noise similarity has a significant impact
on performance improvement, effectively reducing domain
discrepancy between the pre-train noise domain and the
finetune noise domain.
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A. Variation of Information
Variation of Information (V I) is an information theoretic

metric which quantifies the information distance between
two random variables [33]. It is closely related to mutual
information, with the difference that V I is a true metric.
We use VI to measure the similarity distance between two
probability mass functions (PMFs) representing two distinct
noise distributions. V I can be computed by the sum of the
conditional entropy of the distributions, each ”measuring”
the distance between one distribution to the other.

The V I between two PMFs P and Q is defined as:

V I(P,Q) = H(P |Q) +H(Q|P ), (8)

where H(P |Q) is the conditional entropy of distribution
P given Q and H(Q|P ) is the conditional entropy of distri-
bution Q given P . The conditional entropy of a distribution
is defined as follows,

H(P |Q) = −
∑
yp,yq

P (yp, yq) log(
P (yp, yq)

Q(yq)
), (9)

where yp, yq range over the signal intensities for which
the PMFs are defined, P (yp, yq) is the joint probability of
signal intensities yp and yq according to distribution P , and
Q(yq) is the probability of signal intensity yq according to
distribution Q.

In our experiments we use normalized V I . We normal-
ize V I by dividing the metric by the joint entropy of the two
distributions. The normalized value will then be within the
interval [0., 1.], simplifying comparisons.

B. Estimating Poisson-Gaussian noise parame-
ters from real-noise images

Based on the properties of the Poisson and Gaussian dis-
tributions [15, 43] the mean µ and variance σ2 of noisy sig-
nal yi with ground truth signal xi, can be written as

µ(yi) = xi, σ2(yi) = axi + b. (10)

Consider a real clean-noisy image pair. We define Yi as
the set containing all noisy signals yi for a specific clean
signal xi with signal intensity i. Since by Eq. (10) the mean
of Yi is xi, we empirically compute the variance σ̂2 of yi,

σ̂2(yi) =
1

|Yi|
∑
yi∈Yi

(yi − xi)
2. (11)

Finally since σ2(yi) = axi + b (Eq. (10)), we can esti-
mate parameters a, b of the real-noise image using the least
squares method,

â, b̂ = argmin
a,b

∑
i

(σ̂2(yi)− axi − b)2. (12)



In Fig. 7 we show the results of the estimation method
for an image pair from the RENOIR [3] dataset.
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Figure 7. Noise variance as a function of ground truth signal in-
tensity, estimated from a RENOIR test image. We show the noise
estimation using (a) the RAW version of the image pair and (b) the
RGB version of the image pair. Non-linearity near the boundaries,
is likely the result of clipping [15].

B.1. Is it appropriate to estimate Poisson-Gaussian
real-noise from RGB images?

Raw images represent unprocessed sensor data, while
RGB images result from sensor data undergoing several
processing steps, including color correction. In this study,
we estimate Poisson-Gaussian parameters from RGB im-
ages, prompting the question of its appropriateness.

Raw images directly reveal noise characteristics in rela-
tion to sensor data, but raw image datasets are scarce. Fur-
thermore, attempting to reconstruct raw data from RGB im-
ages only produces an approximation, given complex or un-
known image processing pipelines.

Therefore, estimating real-noise from RGB images of-
fers practical advantages, and we show is sufficient to iden-
tify optimal pre-training noise distributions for finetuning
with real-noise images.

C. Toy-Set: dataset size effect results for
λt = (0.25, 0.75)

In Fig. 8 we present the dataset size effects results for
λt = 0.25 and λt = 0.75. As outlined in Sec. 4.1 increasing
the finetuning set size |T | leads to direct training increas-
ing performance by 1 to 2 dB. However, transfer learning
performance remains unaffected. Conversely increasing the
pre-training dataset size |S| significantly impacts transfer
learning performance, with ∼ 1 dB improvement from |S|
100 to 500.

Notably, when λt = 0.75 and |T | = 100, direct train-
ing slightly outperforms transfer learning with only 100 pre-
training instances. Nonetheless, the difference is marginal,
as the data available for both direct training and transfer
learning is quite comparable. In all other cases, transfer
learning outperforms direct training, validating the poten-
tial of the method.
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Figure 8. Toy-Set. Dataset size results with finetuning set sizes
|T | = (25, 100), for (a) λt = 0.25 and (b) λt = 0.75. Increasing
pre-train set size |S| significantly enhances transfer learning (TL)
performance. While extending the finetuning set size |T | impacts
direct training (DT) performance, it has minimal effect on transfer
learning performance.

D. Updating individual U-Net layers
We investigate our results indicating that finetuning the

decoder outperforms finetuning the encoder, by updating
each singular layer of the U-Net architecture while fixing
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Figure 9. Toy-Set. Results showing mean and standard deviation of performance obtained by updating a single layer. Layers are numbered
as they appear in the U-Net architecture following an input signal. The last layers typically perform better than the first.

the remaining layers.
We perform our analysis on the toy dataset using pre-

training set size 5000 and different finetuning set sizes (100,
50, 25). We keep all other experimental set-up parameters
as in Sec. 4.1.

The results are presented in Fig. 9. We find that updating
the final layers generates better results on average, provid-
ing insight into the decoder’s superior performance in the
denoising domain.

E. Convergence rate of different parameter
sets

We analyse the time required for finetuning, while up-
dating distinct parameter sets. We measure time in terms of
epochs taken to converge to the best model relative to the
validation dataset. We gather the results using the Toy-Set
experimental set-up (Sec. 4.1).

The results are presented in Fig. 10. While there are
no notable differences in convergence speed with finetuning
dataset size of 100, as the finetuning dataset size decreases,
updating only the decoder becomes the most efficient con-
figuration for transfer learning. When the finetuning dataset
contains 25 instances, the difference in epoch needed for
convergence between updating the whole network and the
decoder alone is on average ∼ 20.

F. Toy-Set: noise similarity effect results for
λt = (0.25, 0.5)

In Fig. 11 we present the noise similarity effects results
for λt = 0.25 and λt = 0.5. The results follow the trend
discussed in Sec. 4.1, wherein pre-training with a noise dis-
tribution similar to the finetuning distribution leads to per-
formance enhancement.
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Figure 10. Toy-Set. Epoch count taken by each parameter set
to reach the best model relative to the validation dataset. With
smaller finetuning dataset sizes, the decoder converges faster com-
pared to the other configurations.

Notably, instances for λt = 0.25 do not exhibit signif-
icant performance difference. Furthermore, at pre-training
set size |S| = 100, utilizing less similar noise actually pro-
duces improved results. However, it’s important to empha-
size that this behavior is isolated to a single data point.

G. Camera-Specific Noise Models: parame-
ters set effect results for finetuning cam-
eras Sony A and Sony B.

In Fig. 12 we present the results relative to parameters
set update for finetuning cameras Sony A and Sony B. As
discussed in Sec. 4.3 adapting only the decoder generally is
more stable and performs better, compared to the encoder
or the whole network.
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Figure 11. Toy-Set. Noise similarity results for (a) λt = 0.25
and (b) λt = 0.5. Generally pre-training on noise similar to the
finetuning distribution improves performance.
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Figure 12. Camera-Specific Noise Models. Updating different
parameter’s set of U-Net for cameras (a) Sony A and (b) Sony B.
The decoder generally outperforms the other configurations.

H. Camera-Specific Noise Models: noise simi-
larity effect results for finetuning cameras
Sony B and Omni.

In Tab. 6 and Tab. 7 we present, respectively, the noise
similarity results for finetuning cameras Sony B and Omni.
Noise similarity properties hold for both cameras, since the
most similar noise distribution achieves the highest perfor-
mance across all metrics. These findings indicate noise sim-
ilarity can be applied beyond simple Poisson-Gaussian cam-
era noise models.

Pre-train Camera dV I ↓
Finetuning Sony B (PSNR ↑ / SSIM ↑)

Set14 BSD68

Sony A 0.76 22.05 / 0.7355 25.69 / 0.7751
Omni 0.62 24.88 / 0.7485 26.37 / 0.7778

Table 6. Camera-Specific Noise Models. Results for finetuning
camera Sony B. Models pre-trained with Omni, the most similar
camera noise, achieve the highest performance.

Pre-train Camera dV I ↓
Finetuning Omni (PSNR ↑ / SSIM ↑)

Set14 BSD68

Sony A 0.80 24.45 / 0.7339 25.69 / 0.7778
Sony B 0.62 25.89 / 0.7551 26.85 / 0.8132

Table 7. Camera-Specific Noise Models. Results for finetuning
camera Omni. Models pre-trained with Sony B, the most similar
camera noise, achieve the highest performance.

I. Noise similarity with different finetuning im-
age content

Does noise similarity continue to enhance performance
when the finetuning images have different characteristics
from the pre-traininng images? We investigate the effect
of noise similarity using the Urban100 dataset [19], which
is composed by urban scene images with high-self similar-
ity. The dataset introduces a content shift compared to the
natural-images dataset BSD400 [25], which we use as our
pre-training dataset. We hold out 40 images from Urban100
for testing. We keep all other experimental set-up parame-
ters as in Sec. 4.3.

We present results for finetuning camera Sony A in
Tab. 8. Networks pre-trained with Sony B camera noise, the
most similar noise distribution to Sony B, achieve the high-
est performance, with improvement of ∼ 0.5 dB. The result
indicate that even when there is a domain shift in image con-
tent between the pre-training and finetuning datasets, noise
distribution similarity still enhances performance.



Pre-train Camera T Data T Camera dV I ↓ PSNR ↑ SSIM ↑
Omni, Sony B Urban images Sony A - 27.09 0.8299
Omni Urban images Sony A 0.80 26.99 0.8288
Sony B Urban images Sony A 0.76 27.56 0.8383

Table 8. Camera-Specific Noise Models. Results for finetun-
ing T camera Sony A using Urban100 [19] as finetuning set and
BSD400 [25] as pre-training set. Results indicate that even with an
image content domain shift noise distribution similarity enhances
transfer learning performance.

J. Effect of pre-training signal range

In our experiment with real-noise images we pre-train
our models with the BSD400 [25] dataset. Images from
BSD400 have normal brightness conditions, while images
with real-noise are typically taken in dark conditions. What
is the effect of pre-training on a dataset with a wider signal
range relative to the finetuning dataset?

We create a copy of the BSD400 dataset, by scaling the
signal range to the one present in real-noise images from the
Xiaomi Mi3 camera, effectively creating a darker version of
BSD400. We pre-train U-Net on the normal and dark ver-
sion of BSD400. We use the Poisson-Gaussian noise dis-
tribution estimate of the Xiaomi Mi3 image noise, which is
defined at a specific noise level.

Average results for finetuning dataset Xiaomi Mi3, are
presented in Tab. 9. Pre-training U-Net with BSD400 un-
der normal brightness conditions outperforms pre-training
using the down scaled signal version of the dataset. The re-
sults indicates that a wider signal range enhances transfer
learning performance when finetuning with a dark dataset.
The finding supports our strategy of using a dataset with
normal brightness conditions as BSD400 in our experiments
with real-noise transfer learning.

Pre-Train Data Pre-Train Noise Finetuning Xiaomi Mi3

PSNR ↑ SSIM ↑
Dark BSD400 Xiaomi Mi3 Estimate 27.36 0.7868
Normal BSD400 Xiaomi Mi3 Estimate 28.93 0.7984

Table 9. Real-Noise Images. Average results for the Xiaomi Mi3
test set by pre-training on the normal BSD400 dataset or its darker
version (with signal range matching the Xiaomi Mi3 data). Pre-
training on a brighter dataset enhances transfer learning perfor-
mance when finetuning on darker images.

K. Pre-training on real-noise distribution esti-
mate

Does pre-training using the real-noise Poisson-Gaussian
distribution estimate outperform pre-training with the syn-
thetic camera models? We compare pre-training using

simulated Poisson-Gaussian camera noise model with pre-
training using the Poisson-Gaussian distribution estimating
the noise of the real-noise finetuning dataset.

We use λ = (0.25, 0.5, 0.75) and sample simulated gain
g uniformly from range (0., 2.14]. We estimate the noise
distribution of Xiaomi Mi3 (camera from RENOIR [3]) as
detailed in Appendix B. We pre-train U-Net on each noise
distribution using the BSD400 [25] dataset. We then fine-
tune the models on the Xiaomi Mi3 real-noise images.

Average results are presented in Tab. 10. Pre-training
with the estimated real-noise distribution under-performs
compared to pre-training using the simulated camera mod-
els. Since pre-training simulated camera noise is defined
over a range of parameter g, the results indicate that pre-
traing on a wide range of noise levels has a significant pos-
itive effect on finetuning performance.

This finding highlights the importance of evaluating
noise similarity. While several techniques are available to
estimate the noise distribution parameters of real-noise im-
ages, they are only able to do so for a specific noise level.
By evaluating noise similarity against simulated camera
noises, we are able to select a pre-training noise distribu-
tion for which we can model noise at different levels.

Computing noise similarity between the estimated real-
noise distribution and the available Poisson-Gaussian dis-
tributions, is akin to using the estimated a and b parameters
to retrieve the λ parameter that best simulates the camera
which captured the real-noise images.

Pre-Train Noise g Interval Finetuning Xiaomi Mi3

PSNR ↑ SSIM ↑
Xiaomi Mi3 Estimate - 28.93 0.7984
λ = 0.25 (0., 2.14] 28.75 0.8055
λ = 0.75 (0., 2.14] 30.19 0.8137
λ = 0.5 (0., 2.14] 31.16 0.8180

Table 10. Real-Noise Images. PSNR and SSIM results for Xiaomi
Mi3 test images. Pre-training on the simulated camera models
outperforms pre-training on the real-noise distribution estimate.
We note that the simulated camera models are defined for wide
noise levels, while the real-noise distribution estimate is defined
for a single noise level. The results highlight the importance of
noise similarity in denoising transfer learning, since it allows us to
select a noise distribution similar to the finetuning noise, but for
which we can simulate several noise levels.

L. Assessing real-noise similarity with DnCNN
[41]

Does noise similarity enhance transfer learning perfor-
mance when applied to network architectures beyond the
traditional encoder-decoder structure? To address this, we
replicate the experiments outlined in Sec. 4.4, focusing on



images captured with the Xiaomi Mi3 camera from the
RENOIR dataset [3]. However, we now employ DnCNN
[41], a popular network architecture specifically designed
for image denoising. DnCNN leverages a sequence of con-
volutional layers with residual connections and does not
have an encoder-decoder structure.

Our findings, presented in Tab. 11, closely resemble
those obtained using the U-Net architecture in Sec. 4.4.
Pre-training with noise distributions similar to the target
real-noise significantly enhances performance. Notably,
pre-training with the most similar noise distribution out-
performs pre-training with all available noises. Further-
more, transfer learning continues to demonstrate substantial
performance gains over direct training on the Xiaomi Mi3
dataset.

In conclusion, our results highlight the adaptability of
noise similarity across different CNNs architectures.

Technique Pre-train Noise Finetuning Xiaomi Mi3

dV I ↓ PSNR ↑ SSIM ↑
Direct training - - 23.17 0.7581
Transfer learning λs = (0.25, 0.5, 0.75) - 29.48 0.8095
Transfer learning λs = 0.25 0.77 29.26 0.8081
Transfer learning λs = 0.75 0.62 29.56 0.8090
Transfer learning λs = 0.5 0.39 29.84 0.8104

Table 11. Real Noise Images. PSNR and SSIM results for test
set Xiaomi Mi3 using DnCNN architecture. Similarity noise cor-
relates with higher performance gains. This indicates noise simi-
larity effectiveness extends beyond encoder-decoder architectures.
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3.1. Image Noise
Digital images are the result of digital cameras capturing light patterns (photons) from scenes and
converting them into digital forms. However, this process introduces noise. Signal noise is a well-
studied phenomenon within the field of signal processing, as it degrades the quality and accuracy of
the original signal.

This thesis centers on noise removal from digital images. Thus, it is important to establish a foundational
understanding of image noise, its nature, sources, and how we measure it.

3.1.1. What is image noise?
Image noise is defined as a random variation of brightness or color information among an image’s pixels,
appearing as a grainy structure covering the image (see Figure 3.1). These fluctuations mask the
original signal values and inevitably degrade image quality. The presence of image noise complicates
the identification of important image features, which has a negative impact on several applications such
as camera surveillance, medical imaging and object detection.

Figure 3.1: Noisy image captured with a Samsung Galaxy S6 Edge camera [1]. Noise appears as a grainy random structure
covering the image.

Noise emerges from a range of sources, including low lighting, long exposure times, heat, and faults
within the image sensor. Broadly speaking, noise can be divided into two main categories: signal-
dependent noise and signal-independent noise. Signal-dependent noise, as the term implies, depends
on the intensity of incoming photon signals. Conversely, signal-independent noise maintains a constant
variance and is influenced by factors as image sensor dimensions or type. Within these two noise
categories, shot noise and read noise are typically the most prevalent. We will focus on them, since
they lay the foundation for understanding the nature of image noise.

Shot Noise
Digital cameras use an image sensor to capture images. The image sensor is composed by an array of
pixels. Pixels are tiny light-sensitive units, which accumulate electric charge upon photon impact. This
charge is then converted into digital information. Shot noise emerges from the inherent randomness of
photons. Their arrival times at any pixel location is unpredictable, thus introducing variability into the
measurements (see Figure 3.2).

The photon-induced shot noise is well fitted by the discrete Poisson distribution [28]. The Poisson
distribution models the uncertainty of a given number of events occurring over a period of time. In this
context, these events are the actual photons hitting the pixels at specific times. Hence, the Poisson
distribution is well suited to model shot noise.

Read Noise
Read noise emerges as the camera converts accumulated pixel charge into voltage. Read noise is,
therefore, a measurement error and depends on factors as the camera quality and its electronic circuits.
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Camera Sensor Camera Sensor Camera Sensor

Time

Figure 3.2: Illustrating shot noise. At different time units, the number of photons hitting the pixels from the same light source
varies.

Importantly, read noise does not depend on the signal intensity, and thus it is signal-independent [3].
Modelled as a Gaussian distribution with a zero-mean, its standard deviation determines the noise
level.

Combining Shot and Read Noise, the Poisson-Gaussian noise model.
The signal-dependent and the signal-independent nature of image noise are combined in the Poisson-
Gaussian noise model distribution [8]. The model is composed by a Poisson component P which
captures the signal-dependent part of the noise, α, and a Gaussian N component which captures the
signal-independent part of the noise, β. The distribution is parameterized with factors a and b, outlined
as:

α ∼ P(x/a), β ∼ N (0, b), (3.1)

where x represents the clean signal value. a can be interpreted as the signal value of a single detected
photon [28], while b is simply the variance of the signal-independent noise component. This thesis
employs the Poisson-Gaussian noise model to simulate real world cameras, by combining the effects
of shot and read noise.

(a) a=0, b=0
PSNR: 100
SSIM: 1

(b) a=0.4, b=0
PSNR: 10.7

SSIM: 1.8E−1

(c) a=0, b=0.4
PSNR: 8.21

SSIM: 0.8E−1

(d) a=0.1, b=0.1
PSNR: 10.7

SSIM: 1.6E−1

(e) a=0.04, b=0.04
PSNR: 13.6

SSIM: 2.8E−1

(f) a=0.1, b=0.3
PSNR: 8.53

SSIM: 0.9E−1

Figure 3.3: Results of adding Poisson-Gaussian noise with different parameters to an image from Set14 [26].

3.1.2. PSNR and SSIM, computing image quality.
Assessing image quality requires considering multiple factors as color, structure, brightness, or con-
trast. Determining how to evaluate all these aspects is often a subjective and task-specific assignment.
Therefore, no universally applicable metrics exists, instead there are numerous metrics, each with its
own advantages and drawbacks [10, 16]. Within the domain of image denoising, the two most popular
metrics are Peak Signal-to-Noise Ratio (PSNR) [4] and the Structural Similarity Index Method (SSIM)
[23]. In this thesis we utilize both metrics to evaluate our experiments’ results.

PSNR
PSNR is a metric used to evaluate image quality under several applications [16]. It is easy to compute
and is mathematically convenient for optimization. It builds on top of the Mean Squared Error (MSE)
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calculation, which quantifies the average squared difference between the pixels of an original noise-
free image X and of its corresponding denoised estimation X̂. MSE is defined for pixels i = 0, 1, ..., N
as,

MSE =
1

N

N∑
i=0

(Xi − X̂i)
2. (3.2)

Derived from MSE, PSNR incorporates the maximum pixel value (MAXI ) and employs the logarithmic
scale:

PSNR = 10 · log10

(
MAXI

2

MSE

)
. (3.3)

The logarithmic transformation emphasizes even small changes in MSE, making PSNR particularly
sensitive to variations in image quality.

SSIM
SSIM is a metric for evaluating the similarity between two images, and is correlated with the human
visual perception of image quality [10]. SSIM represents image distortion as a blend of three key
elements: loss of correlation, luminance distortion, and contrast distortion. Loss of correlation captures
deviations in the relationship between neighboring pixels. Luminance distortion takes into account
variations in the brightness or intensity of the pixels. Lastly, contrast distortion addresses discrepancies
in the range of pixel intensities.

Selecting an image noise metric.
When it comes to selecting between SSIM and PSNR for evaluating image quality, there exist no strict
guidelines, and both metrics present their own challenges (see Figure 3.4). However a dual approach
is effective, and leveraging both SSIM and PSNRmetrics produces reliable image quality assessments.

(a) Ground Truth

MSE=306

(b) Mean Shifted

MSE=306

(c) Blurred

(d) Ground Truth

SSIM=0.74

(e) Gaussian Noise

SSIM=0.77

(f) Saturation Changed

Figure 3.4: Challenges with PSNR and SSIM metics. (a-c) PSNR assigns identical scores to distorted images despite obvious
quality differences [22]. (d-f) SSIM scores remain similar, even as visual quality varies [14].
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3.2. Deep Learning
Within the domain of image denoising and quality enhancement, methods using deep learning ap-
proaches have achieved state-of-the-art results [7, 9, 13]. Deep learning uses architectures known as
Neural Networks (NNs) to effectively extract important task-specific features from the available data.
Furthermore, this thesis investigates transfer learning, a specific technique within the deep learning do-
main. Here, we will outline the nature of NNs, how they are employed in our thesis, and what transfer
learning is.

3.2.1. Neural Networks
Imagine having two data points, x and y, from distinct setsX and Y , with unknown underlying relation-
ship f(·),

y = f(x), x, y ∈ X,Y . (3.4)

Given many samples of x and y, an NN can approximate f(·).

NNs are intricate functions with numerous parameters. Typically depicted as graphs, nodes represent
neurons, mathematical units applying non-linear operations to the inputs, while the edges represent
weights, the parameters that scale and alter input data (Figure 3.5).

x y

Layer

Neuron

Weight

Figure 3.5: Visualization of a Neural Network. The weights adjust the input, while the neurons aggregate inputs and apply
non-linear operations. Neurons are commonly organized into layers. The accumulation of layers gives depth to the network,

inspiring the term ”deep learning.”

In the context of noisy images, consider a clean imageX and its noisy variant Y . NNs learn to generate
a denoised estimate X̂ from the noisy image Y . This learning employs back-propagation [20]. In simple
terms, back-propagation involves computing the estimation error between X̂ and X, and propagating
it back across the NN, so that its parameters can be updated to minimize the estimation error.

In essence, deep learning constitutes an optimization challenge: to identify the parameter set θ of an
NN F that minimizes the estimation error. This error is computed with a loss function L, and across a
dataset D of clean-noisy image pairs (X,Y ),

θ = argmin
θ

∑
(X,Y )∈D

L(X,F(Y ;θ)). (3.5)

3.2.2. U-Net, an encoder-decoder architecture.
The U-Net architecture [19] is a a popular NN design for several imaging tasks. Initially introduced for
image segmentation, U-Net architectures are now also extensively employed in image denoising [7, 9,
12, 13, 18]. In this thesis we use this architectures for our experiments. Therefore, it is important to
have a general idea of the U-Net structure.
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U-Net uses convolutional layers, which are NNs neurons specialized in extracting local image features
[17]. The architecture is composed by two main parts: a contracting path, encoder, and an expansive
part, decoder (see Figure 3.6).

The encoder captures image features through successive convolutional layers. After each convolu-
tional layer, a pooling operation is applied. Pooling reduce the size of the input by half. This compres-
sion creates a densely packed feature representation of the input image.

The decoder converts the abstract features back to the original input image dimensions. Using con-
volutional layers, the decoder reconstructs the original input by merging features. Instead of pooling,
up-sampling operations are applied to expand the input size.

The U-Net’s distinctive ”U” shape reflects the symmetry between the encoder and the decoder. This
symmetry preserves spatial details while capturing contextual information.

Figure 3.6: U-Net [19] architecture.

3.2.3. Loss functions for denoising.
Several loss functions are used in image denoising. Two common options are the L2 loss [21] and the
L1 loss [25]. The L2 loss computes the mean squared difference between the denoised image X̂ and
the clean image pixels X:

L2 =
1

N

N∑
i=0

(X̂i −Xi)
2, (3.6)

where i = 0, 1, ..., N are the image pixels. Similarly, the L1 loss measures the mean absolute pixel
difference:

L1 =
1

N

N∑
i=0

|X̂i −Xi|. (3.7)

However, both of these approaches have limitations. While L2 effectively reduces noise, it can overlook
blurriness. On the other hand, L1 is more sensitive to blurriness, but it requires longer reconstruction
times. The Charbonnier loss [5] is often employed to address these challenges. This loss behaves like
L1 for large pixel differences and is similar to L2 for smaller differences. It’s formulated using an error
term ϵ:

LCharbonnier =

√
L1(X̂,X)2 + ϵ2. (3.8)

In our experiments, we combine the Charbonnier loss with the SSIM loss, where SSIM is computed
based on the denoised and ground truth images:
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L = LCharbonnier(X̂,X) + LSSIM (X̂,X). (3.9)

We empirically select this combined approach for our experiments, over using the individual loss func-
tions.

3.2.4. Transfer Learning
Transfer learning is a technique used to train a Neural Network when only a small task-specific dataset
is available. First, the network is pre-trained using a large dataset. Then, it is finetuned using the
smaller dataset that is specific to the target task (see Figure 3.7).

Consider a real-world analogy. Imagine you want to learn snowboarding, but you have no prior experi-
ence with mountain activities. So, you enroll in a snowboarding class. You notice a particular classmate
is learning very fast and is already doing the hardest slopes. You ask her how she managed to make
this kind of progress with only a couple of lessons. Her response: ”I already knew how to ski really
well.” Transfer learning in Neural Networks follows a similar logic. Networks are first trained on a large
dataset, learning general patterns. Then, they are finetuned for a specific task, for which we only have
a small dataset available. This approach utilizes the knowledge gained from the general task to solve
effectively the new task.

Pre-training

Finetuning

CNN

CNN

Figure 3.7: Transfer learning scheme. A Convolutional Neural Network (CNN) is first pre-trained on a large dataset with a
particular noise distribution. Then it is finetuned with a dataset presenting a different noise distribution, for which only a few

samples are available.

Transfer learning is at the forefront of the current NN research [29], since data availability is a recurrent
problem in many fields. In this thesis we explore the impact of transfer learning in the image denoising
domain. We show the effectiveness of the technique with real-noise image dataset, which are scarce
and few. We identify 4 key variables which influence the performance of transfer learning (Figure 3.8),
and we investigate them under numerous conditions.

Parameters

CNN θ

Pre-training

|S|

Finetuning

|T|

Similarity
η

S T
η

Figure 3.8: Transfer learning variables under investigation in this thesis: (i) pre-training dataset size |S|, (ii) finetuning dataset
size |T |, (iii) network’s parameters θ subset which is finetuned, (iv) noise similarity between the pre-training noise distribution

ηs and the finetuning noise distribution ηt.
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3.3. Datasets
In this section, we present visual examples of the datasets we used throughout the experiments in this
thesis.

3.3.1. Toy dataset
The toy dataset is generated combining images from FashoionMnist [24] with a gradient gray back-
ground.

Figure 3.9: Toy dataset

3.3.2. Real image datasets
We use several real image datasets in our experiments. BSD400 [15], BSD68 [15] and Set14 [26] are
generic natural-image datasets. Urban100 [11] is a dataset composed by urban scenes images.

Figure 3.10: BSD400
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Figure 3.11: BSD68

Figure 3.12: Set14
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Figure 3.13: Urban100

3.3.3. Real-noise image datasets
Our real-noise results are validated on subsets of the RENOIR [2] and SSID-Small [1] datasets, selected
according to digital camera. Images are here presented as clean-noisy pairs.

(a) ”0045_002” (b) ”0149_007”

Figure 3.14: LG G4 camera from SSID-Small

(a) ”20160210” (b) ”20160223”

Figure 3.15: Xiaomi Mi3 camera from RENOIR
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