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Abstract

This thesis outlines the use of measured data collected using the bGrid system to estimate the
number of people in two rooms in the Microsoft office at Schiphol. The main objective is to derive a
correlation that transforms the data into a specific number of people.

The bGrid system consists of a network of sensor nodes that measure COኼ concentration, move-
ment intensity, relative humidity, ambient temperature, infrared object temperature and sound intensity.
These nodes are strategically placed throughout the building and are interconnected through a gate-
way that is also part of the bGrid system. The specific offices used had an equal area of roughly 16
mኼ, a capacity for eight people and contained two bGrid sensor nodes each. Data was collected on
two days, separated by one day, yielding 1396 minutes of data. Ground truth data was collected using
direct observation from outside the offices as to not interfere with the measurements. Since the offices
were of equal area and capacity, were both used for the same purpose and each contained two sensor
nodes, the rooms were deemed equivalent and could therefore be combined. On the first day of ob-
servation, only room 1 could be observed but on the second day both rooms could be observed. The
data from room 1 was used to synthesise occupancy models while the data from room 2 was used for
validation.

Two methods were used to model the occupancy. An approach based on Multiple Linear Regres-
sion used a combination of the movement intensity and COኼ concentration to achieve a performance
of 93.49%, with performance being defined as the times the model returns a number of people that
is within one person of the observed occupancy expressed as a percentage of the total number of
iterations. This was achieved by first splitting the data based on the observed occupancy to derive
specific regression coefficients for those levels of occupancy. These were used in a Simulink model
that actively chose which regression coefficient to use based on the input. Secondly a method using
a three-layer, fully connected neural network with a combination of hyperbolic tangent and leaky ReLu
activations functions used the ambient temperature, relative humidity, movement intensity and COኼ
data to achieve a performance of 93.86%. This was achieved using a network structure with three
hidden layers with 19, 21 and 39 neurons respectively. These numbers were derived using the genetic
algorithm to optimise for 43 iterations with the number of neurons per hidden layer and the learning
rate as optimisation variables.

The final result yielded two models that were able to estimate the number of people in room 2
within one person of the observed number of people, respectively 93.49% and 93.86% of the time. The
resulting models could, when verified further with additional data, be used to aid HVAC systems with
ambient temperature control; having a reliable metric for occupancy allows people to be added to the
energy balance of a room, which in turn allows for the creation of more accurate models of the indoor
thermal climate. These models would allow for model based temperature controllers as opposed to
PID type controllers that are currently used in most office thermostats.
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Preface

Everyone who has ever produced a thesis or dissertation knows the preface is an optional addition
that is quite often omitted. It can contain personal information about the writer that lead to the research
that is presented and/or how the writer’s background and experience relate to the subject that is being
researched. It may also give some information about the intended audience. Knowing this, it is clear
why it is often omitted in theses. The reasons this research topic was chosen can usually be sum-
marised as “I had to find a graduation subject and this opportunity presented itself”. The relationship
between the writer’s background and experience and the subject of research is usually also not too
difficult to discern since the thesis subject will be closely related to the master program for which it is
written. And finally, the intended audience usually does not need to be specified. A master thesis is not
a novel that some passerby can grab, read the abstract and think “nope, this is not for me”. Generally
the only people reading master theses are the people intended to read those master theses. However,
having already dedicated so many words to the questionable existence of the preface it would be a
shame not to continue and actually finish this chapter. So here goes; following the standard approach,
the following paragraphs will tell how I landed on the subject for this thesis, how my background and
experience relate to the subject and a description of the intended audience.

Some time ago I was invited to talk to a representative from bGrid solutions at De Delftse
Bedrijvendagen. She introduced me to Wouter Kok, executive at bGrid solutions, to talk about a possi-
ble thesis subject. bGrid solutions is a company specialising in smart building technology so it had to be
possible to find research that was relevant for the company while also offering an academic standard
that would enable me to graduate. It was a lengthy process with ups, downs, more ups and definitely
more downs but in the end the subject that resulted in this thesis was found. A subject that I would not
have chosen if I had known then what I know now but a subject that lead to a process that has taught
me valuable lessons nonetheless. I can therefore look back without regret (if and only if I obtain the
degree of Master of Science with this thesis) and am pleased with the results.

I find it difficult to describe how my personal background and experience has lead to this thesis.
One thing that always interested me in the field of systems and control is how applicable the theory
is once reality has been mathematically modelled. Once the world is transformed into a system of
equations, reality dissolves into something that anyone with sufficient knowledge on system theory,
mathematics and control theory should be able to understand. This realisation is what lead me to think
that the area in which I performed my research should not matter, as long as I was able to transform it
into something that I could understand. With the benefit of hindsight, I stand by this claim though it is a
little more nuanced than I initially thought. Specific knowledge of the area that acts as the foundation
for research always helps, even if the research itself is highly mathematical. This meant it took quite
some time for this thesis to reach a point that I would call “fun”, leading to delays that may not have
occurred if a different path was chosen in the beginning.

This thesis was attempted to be written in a way that would make it accessible to anyone with a
background in control engineering, mathematics and/or systems and control. Additionally the contents
should be interesting for data analysts and people working with smart building technology. It should
also be mildly enjoyable for anyone with a technical background or people who know me personally,
though I assume for the latter the joy received from reading this will gradually decrease in the following
chapters if the only reason for reading is their relationship to me. Regardless of who you are, my hope is
that at the end of this thesis you will have a clear understanding of what I achieved and how I achieved
it. If that is not the case, you can always say that this thesis described how I obtained the degree of
Master of Science and with any luck, you will be correct.
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1
Introduction

A revolutionary development in building technology is the introduction of intelligent buildings (also
referred to as smart buildings). The Intelligent Building Institute (IBI) in the United States and the Eu-
ropean Intelligent Building Group (EIBG) based in the United Kingdom propose the most accepted
definitions for what constitutes an intelligent building. The IBI defines an intelligent building as ‘one
which provides a productive and cost-effective environment through optimization of its four basic el-
ements including structures, systems, services and management and the interrelationships between
them’, while EIBG defines an intelligent building as ‘one that creates an environment which maximizes
the effectiveness of the building’s occupants, while at the same time enabling efficient management
of resources with minimum life-time costs of hardware and facilities’ [37]. Including smart building
technology in a structure enables a deeper level of control than would be possible without this technol-
ogy. Some examples are adaptive lighting that responds to real time occupancy, adaptive ventilation
and ambient temperature control. But is this development forming just because people are unable to
manage their environment themselves? Shouldn’t people be able to adjust thermostats and ventilation
controls when they’re uncomfortable? The reason humans often fail in this aspect is because the level
of thermal comfort is unlikely to be equal across multiple people because of all different factors that in-
fluence thermal comfort. People all have their own personal threshold for thermal comfort that depends
not just on the ambient temperature. Humidity plays a big role as well, influencing how the ambient
temperature is experienced. Additionally, humans are notoriously untrustworthy thermometers. If tem-
perature changes occur gradually (less than 0.5∘C per minute) people can remain unaware of a 4-5∘C
change in ambient temperature, if the skin remains within the neutral thermal region of 30-36∘C [57].

For this and other reasons there is an increasing demand for a method to approach ambient temper-
ature management in a more intelligent manner. Currently most buildings’ ambient temperature control
is set up such that the building is at the desired temperature at the start of the day but the Heating, Venti-
lation and Air-Conditioning (HVAC) system spends the rest of the day cooling to counteract the thermal
energy added by the occupants and the outdoor environment. From a Systems and Control point of
view the HVAC management side of the problem seems the most interesting, especially since build-
ings are responsible for roughly 38% of the total energy consumption globally [35, 59]. Granted, this
includes both the commercial sector as the residential sector. Looking at the commercial sector alone
the contribution remains big with heating, cooling and lighting being the largest contributors, taking the
United states and Japan as an example, at 58% of a building’s total energy in the United States and
69% in Japan [59]. Research has shown that energy-related occupant behaviour is both unpredictable
and a big contributing factor to a building’s energy consumption. Often occupant behaviour is repre-
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1. Introduction 2

sented using standardised schedules that can lead to simulation inaccuracies [21]. Since the impact of
a building’s occupants is so big and seemingly unpredictable this would be a more valuable area for re-
search and is what this thesis hopes to cover. In the early stages of the literature review some time was
spent researching the different methods that were previously used to design temperature controllers to
maximise user comfort in a multi-sensor setting. Lacking knowledge of the occupancy of the inspected
room, this idea wasmodified. These papers will be used as a basis for possible future work in chapter 7.

As mentioned the impact of occupants to the indoor climate of a building is significant. Research has
shown that a single person can add up to 120W of thermal power to the indoor environment with light
office work, a value close to the thermal output of a small office printer returning one page every minute
[12, 19]. Additionally, from a building management point of view, knowing when and to what extent
offices are occupied enables office managers to map out the exact utilisation of a building’s resources
on a day to day basis. A 2013 paper by Norm G. Miller showed bigger companies are transitioning to
smaller office footprints to achieve higher utilisation rates [39]. The struggle is that the need for col-
laboration and innovation is working against this goal, forcing companies to retain meeting rooms and
collaboration areas to facilitate this need. Because of this, it becomes vital that those retained spaces
are used optimally, which would demand accurate knowledge of the occupation.

This, along with people’s impact on the indoor climate are some of the reasons why it would be in-
teresting to know exactly how many people occupy a specific room at any given time. The method that
first comes to mind would be to use image recognition software and high resolution cameras to capture
everything that happens inside the office. One can imagine the complications with respect to privacy
however, so a method that uses measured data like motion detection, COኼ concentration, humidity or
temperature instead of images would be preferable. This leads to the following problem statement:

Is it possible to accurately estimate the occupancy of a room using measured data such as COኼ and
movement without using cameras?

The answer to the question stated above is not immediately evident. Based on the impact people
have on the indoor environment, it is likely that the effects are measurable. If that is indeed the case, the
effect of human presence and behaviour will show itself in measured data. The data is gathered with
the help of bGrid Solutions, a company resulting from a joint venture between Evalan in Amsterdam
and Deerns in Rijswijk. bGrid Solutions is an emerging company that specialises in delivering smart
building technology to offices and other large buildings. Their goal is to equip buildings with integrated
control systems for managing a variety of processes that are linked via a network, but additionally also
have the ability to learn about the environment and the occupants to adapt the control accordingly.
Their system, which will get an in-depth review in chapter 2, consists of a network of sensor nodes
capable of capturing a wide variety of information about their environment.

Using the measured data, numerical methods will be used to find a correlation between the mea-
surements and the ground truth data gathered through direct observation. The methods this thesis will
outline are based on linear regression and artificial neural networks, both because these methods are
widely used in data based modelling and because both have been successful in research that will be
presented in chapter 3.

This thesis is structured as follows: after the introduction, the second chapter will cover the bGrid
system and outline its different components and attributes. This chapter will also highlight the main
merits and challenges that the bGrid system may bring. Chapter three covers literature on both the
thermal comfort versus energy consumption problem and the occupancy estimation problem. Chapter
four dives deeper into linear regression and artificial neural networks which, based on the literature, are
thought to provide a solid foundation for this research. The fifth chapter covers the experimental anal-
ysis that starts with collecting ground truth data through direct observation and methods for managing
the sensor data. It continues by presenting and performing the methods for estimating the occupancy
and finishes by summarising the results. Chapter six will wrap things up by comparing the results from
chapter three to the literature and the thesis closes with chapter seven where some suggestions for
future work are made.



2
The bGrid System

In order to judge the merit of different research results in the context of what can be achieved with
the bGrid sytem, a close look will have to be taken at its different attributes and components. In this
chapter the bGrid system will be broken down and looked at to see what possibilities and challenges
this particular system might bring when it comes to ambient temperature control and more importantly,
occupancy estimation. Before the bGrid system is discussed, some background information about
the company itself is in order. As mentioned in the introduction, bGrid Solutions (bGrid in short) is a
company resulting from a joint venture between Evalan in Amsterdam and Deerns in Rijswijk that was
founded in 2015. Their goal is to equip a building with the kind of technology that allows it to commu-
nicate with its users and vice versa. Their products all revolve around IoT (Internet of Things) which is
the technology that connects seemingly unrelated devices to the same network, allowing for example
a smartphone to connect to both a fridge, a dishwasher, a car and the interior lighting. bGrid Solutions
does state that the Internet of Things can quickly turn into the Internet of Too Many Things, which is why
a big part of their objective is pairing the hardware they develop with intuitive software. Their system
is centred around gathering vast amounts of data that other processes and devices can use. Some
preliminary examples include ambient temperature, relative humidity and COኼ concentration measure-
ments that are fed to the HVAC system and movement detection that is connected to the lights. The
next section will dive deeper into the individual components.

2.1. System Overview
The bGrid system is modular and envelops five distinct parts [5, 6, 7, 8] as shown in Figure 2.1.

The parts shown in blue are part of the bGrid system while the other components in the figure refer to
third party software and/or hardware.

• Sensor node: the bGrid system revolves around the sensor nodes that measure the relevant
parameters present in the building such as movement intensity, sound intensity, COኼ concentra-
tion, ambient light, relative humidity and temperature. Note that the nodes are not equipped with
all the measuring capabilities by default. Some features like measuring the COኼ concentration
require specialised parts that introduce extra costs while the demand might not be there and are
thus optional. The nodes use Bluetooth Low Energy (BLE) advertisement messages to send the
sensor data to a gateway that in turn sends it to the backend application. The sensor nodes are
also suited to be connected to lamps from third-party manufacturers to enable lighting control.
The nodes can be integrated into the ceiling, mounted on the ceiling or underneath desks. The
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2. The bGrid System 4

sensor nodes can be seen as agents as described by E. Bonabeau in a 2002 paper [9]. Agents
are capable of individually assessing their environment and make decisions based on a prede-
fined set of rules . As of yet the nodes don’t control the building’s HVAC system directly. However,
since they do detect movement most Building Management Systems (BMS) use the nodes as a
switch for the ventilation system. Table 2.1 lists an overview of bGrid functions and the range and
accuracy of the different sensors.

Function Unit Frequency Performance Comments 

Temperature 

Measurement (T) 

°C Every minute Range -20 to 60 °C 

Accuracy 0.5 °C 

The measurement may differ from the actual 

temperature in the room for nodes that are 

placed in the ceiling near the heating/cooling 

duct or the lamp 

Presence Detection 

(PIR) 

Continuous Average response 

time 

<1 second 

Presence detection using a passive infrared 

sensor (PIR sensor) is not included in all nodes. 

The exact number of PIR-nodes must be 

determined in consultation with the client. 

Light Intensity 

Measurement (LI) 

LUX Every minute Range 0.1 to 20000 

LUX 

Accuracy 1 LUX 

Used as a relative reference since the accuracy 

of light intensity measurements at default are 

highly dependent on surface underneath. 

Relative Humidity 

Measurement RH) 

% Every minute Range 0% to 100% 

Accuracy 5% 

Sound Intensity 

Measurement (SI) 

- Every minute Depends on sound 

frequency 

Measures the volume of sound through a 

human comfort directed algorithm 

Beacon Mode iBeacon Unique identification number (UUID) of the 

beacon can be entered via API. 

Scanning Mode Continuous Average detection 

time <10 seconds 

Detects BLE devices that send a signal, or on-

purpose BLE asset tags. 

DALI Node acts as DALI bus master, instructions to 

lamp on/off/intensity adjustment. 

Light On/Off Switch <1 second Triggered by in-network control or external 

action received via API. 

BACnet Gateway passes sensor data to BMS via 

BACnet. 

CO2 ppm Every minute Range 0 to 2000 

ppm 

Accuracy 50 ppm 

Automated calibration during the night 

Over-The-Air Software 

Updates 

Software updates can be installed on the nodes 

wirelessly. 

Table 2.1: Specification of bGrid functions [7]

• Gateway: The bGrid gateway collects the sensor data from a fixed group of sensor nodes via
BLE and sends it through an Internet Protocol (IP) to the backend application. The gateway can
be used for direct control in some use cases but it is mostly used as a hub to collect sensor data
from up to 25 nodes and forward the commands it receives from the backend application. One of
the use cases in which the gateway is used for direct control is the light management. Here the
gateway can switch the lights of a predefined group of nodes connected to light units on and off
directly, based on the nodes’ presence detection. The gateways are mounted on the ceiling so
that signals can travel uninterrupted.

• Backend application: The backend application gathers data from multiple gateways via an IP
connection, storing all data it receives on both the cloud server and the on-site server. The
backend application is the connecting element in the bGrid system since it connects the gateways
and sends commands via IP. The routines that require the data to perform algorithms acquire this
from the backend application via the Application Programming Interface (API). These routines
can send their commands through the API to the cloud server. The API also grants third parties
access to the data and enables third parties to send commands to the cloud server.

• On-site server: Each building where the bGrid system operates contains 2 on-site servers, one
of which serves as a backup to the other and contains a copy of all the data. The backup server
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can be configured to take over all functions should the main server fail.

• Cloud server: The cloud server is where the API is stored. It is hosted in a secured industrial
datacenter.

• Routines: The routines process all algorithms and are communicated to the cloud server via an
API.

Additionally the bGrid system is able to communicate with a variety of third-party components (the white
squares in Figure 2.1), excluding the third-party DALI light because it is not relevant to the subject:

• Third-party server: Similar to the bGrid servers the third-party server communicates with the
cloud server to request data from the bGrid system. This communication occurs via API in a User
Interface (UI) or via third-party devices and can contain commands to the cloud server to adjust
relevant parameters.

• Third-party UI: Third-parties can implement their own UI to interact with the bGrid system. This
could for example be a tool to visualise the data and send commands through the third-party
server.

• Third-party device: Third-parties can implement devices that are connected to their server and
can receive and send data through that connection. They can also send BLE messages to and
receive BLE messages from the bGrid sensor nodes.

• Third-party BMS: The BMS (Building Management System) is responsible for the control of all
connected components (heating, ventilation etc.) of a building. The bGrid system integrates with
the BMS such that it can use the information collected by the bGrid sensor nodes through the
gateway for control. The BMS uses a one-way BACnet protocol [36] via IP to communicate with
the gateway.

• Third-party control Unit: Third-parties can connect units for the control of for instance air con-
ditioning to their BMS. The bGrid system is connected to the BMS, allowing it to collect building
parameters through the bGrid system and send commands to the control units.

2.2. Conclusion
In the context of this project one of the biggest assets of the bGrid system is the sensor node. These

devices are strategically placed throughout a building and generate a vast amount of data. The amount
of nodes (25 per gateway as mentioned before) can be especially useful to eliminate outliers without
losing the amount of data required for accurate modelling and control. It is not uncommon for nodes
to be placed in a less strategic place or to be blocked in a later stage of a building’s development by
third-parties. This could result in anomalous sensor data which could throw off modelling techniques
and control strategies if there were only a few nodes in the area. At this point it has to be noted that the
overlap between nodes is minimal. On the one hand, environmental data such as COኼ concentration,
temperature and relative humidity are not expected to vary much between nodes that are placed in the
same room, though this does rely somewhat on the total room volume and the distance between the
nodes. For those data types an adjacent node could serve as a backup in a case of packet drops or
bad reception. Looking on the other hand at sound intensity and movement intensity, this is no longer
the case. The data collected by one node can be very different than the data collected by an adjacent
node because the sensors do not cover the same area. As said, there is some overlap but this is
minimal. This only becomes an issue when the reception is bad and/or when a lot of data is lost during
transmission and it is therefore not guaranteed to cause problems.

The measurement range and accuracy of the nodes is another benefit (range -20∘C to 60 and ac-
curacy 0.5 as can be seen in Table 2.1) . Humans are notoriously untrustworthy thermometers in that
the perceived temperature is influenced by more than just the ambient temperature. If temperature
changes occur gradually (less than 0.5∘C per minute) people can remain unaware of a 4-5∘C change
in ambient temperature, if the skin remains within the neutral thermal region of 30-36∘C [57]. The res-
olution of the sensor nodes is therefore sufficiently high to pick up on any changes in temperature that
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Figure 2.1: Deployment diagram of the bGrid system [7]

could affect user comfort.

An asset that creates a big challenge is the amount of data that the nodes are able to collect. A
complete data set over a period of 24 hours can amount to 1GB of rough data. To give any algorithm
a fighting chance of recognising patterns there has to be some periodicity in the data. For an office
building most activity repeats daily but larger patterns emerge on a weekly basis (weekly meetings,
weekly schedules etc.), meaning a full comprehensive data set could add up to 14GB. This size can
be reduced when data that is not relevant for the purpose of this project is omitted and only the period
between for instance 9:00 and 17:00 is looked at, but the amount of data may still pose a challenge.
On the other side, acquiring sufficient ground truth data (on site observations) may be challenging. Not
having access to camera footage means all observations will have to be done in person on location,
making it a very time consuming and error prone activity. Another potential challenge comes with
determining if a specific data point is valid or caused by noise. One can imagine that especially the
sound and movement data is very susceptible to noise. The sound sensors not only pick up sound from
the room where the node is located but also from neighbouring rooms or corridors. Movement sensors
not only pick up movement from people who are currently occupying a room but also from people who
just open the door and have a look inside. These things need to be taken into account as well.



3
Literature Study

This chapter summarises the literature review as follows: Section 3.1 will handle engineering so-
lutions to the comfort management versus energy consumption minimisation problem. Section 3.2
will look into research concerning occupancy estimation and occupant behaviour modelling. For each
piece of research there will be a brief summary; the main contributions are listed and the benefits and/or
drawbacks in the context of replicating those results with the bGrid system are listed. Section 3.3 will
compare the methods in terms of complexity and applicability. The chapter finishes with Section 3.4
where conclusions will be drawn.

3.1. Thermal Comfort Management
This project started out with the idea of designing an intelligent ambient temperature controller that

could maximise user comfort while minimising energy consumption. The first thing that was researched
is how to define thermal comfort, since this term is commonly used in all papers concerning comfort
management. There are two distinct ways of looking at thermal comfort: the rational approach, where
thermal comfort is assessed through heat balance calculations, and the psychological approach that
assesses thermal comfort by measuring occupant satisfaction with the thermal environment through
polls and inquires. Examples of the rational approach are the ASHRAE 55 standard and the equiva-
lent EN 15251 standard for indoor thermal comfort [4, 12]. Both take into account a human’s average
metabolic rate for typical tasks, clothing insulation for typical ensembles, ambient air temperature, ra-
diant temperature, air flow and humidity to illustrate environmental conditions that are acceptable to
80% or more of the users of a room. Besides the heat balance approach for thermal comfort, another
method that both standards used for defining thermal comfort is the adaptive approach. One of the
main contributions of this approach to thermal comfort is that it relates the indoor comfort temperature
to the outdoor temperature. This method is fundamentally different from the heat balance approach as
that relates the comfort temperature to environmental (as in indoor environment) factors and personal
factors. A downside to this approach is that the correlation between comfort and outside temperature
was intended for free-running or non air-conditioned buildings and is more complex and less stable for
heated/cooled buildings [14, 15, 18, 23, 24, 25, 27, 44].

The trade-off between managing user comfort and minimising a building’s energy consumption is a
problem that has become more relevant in the recent years than it has ever been. Starting on the next
page, this part covers papers centred around solving this issue.
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Research team: Yang et al. [32, 47, 65]
Subject: Ambient temperature management using PSO (Particle Swarm Optimisation).
Contributions/conclusion:
The algorithm used PSO to maximise the overall user comfort level based on ambient temperature,
illumination levels and COኼ concentration. In simulation this method achieved maximum comfort while
consuming less energy than conventional methods even though the energy consumption was not ac-
tively minimised. The comfort values were predefined by a group of users.
Benefits/drawbacks in context of available data:
The research done by Yang et al. provide a good foundation for further research. Their results showed
that PSO is a valid solution for managing ambient temperature with a multi-agent sytem in a domes-
tic environment. On the downside, this approach uses user defined values to determine the comfort
levels. These are values that we do not have and would therefore be impractical to walk down this road.

Research team: Wang et al. [16, 17, 20, 60, 63, 64]
Subject: Ambient temperature management and power minimisation using MO-PSO (Multi-Objective
Particle Swarm Optimisation).
Contributions/conclusion:
A continuation of the aforementioned research where the same research team extended the procedure
to minimise the energy consumption while also maximising user comfort. To achieve this the PSO
algorithm evolved into the MO-PSO algorithm which actively minimises the predefined user comfort
and energy consumption cost functions. Additionally the research team was able to run this algorithm
inside the central controller agents as opposed to previous research where the algorithm had to run on
separate hardware.
Benefits/drawbacks in context of available data:
The solutions provided in the research done by Rui Yang and Linfeng Wang et al. relied on using the
MOPSO algorithm to solve the conflict between maximising user comfort on the one hand and min-
imising energy consumption on the other. In the context of this project this approach has the benefit
of being able to optimise two objectives at the same time and is thus guaranteed to save energy if
implemented successfully. The downside is that it requires a level of control that the bGrid system is
not always capable of. The system designed by Yang/Wang was intended for domestic use while the
bGrid system operates in a corporate setting. In a domestic setting a system can be installed such
that it has direct control over all climate influencing appliances. For office buildings and large buildings
in general there is a Building Management System (BMS) with which any third party system needs
to communicate, prohibiting or hindering the level of control any additional system would have. This
is a barrier that would make a solution as proposed by Yang and Wang et al. less viable because it
relies not only on having that level of control, but also access to all data necessary to make accurate
estimations of energy consumption and personal comfort levels.

Research team: Ghahramani et al. [1, 2, 28, 29, 30]
Subject: A knowledge based approach for selecting energy-aware and comfort-driven HVAC temper-
ature set points.
Contributions/conclusion:
Ali Ghahramani et al. developed a method in which thermal comfort preferences were learned online
and then modelled as zone level personalised comfort profiles. The zone temperature set points were
then selected through solving an optimisation problem for energy consumption with comfort, indoor air
quality, and system performance constraints taken into consideration.
Benefits/drawbacks in context of available data:
The research conducted here showed similarities with that conducted by Yang et al. in that both meth-
ods required amulti agent set-up with control at a zone level. This 3-part approach relies heavily on user
provided data, a functionality that the bGrid system does not yet utilise. Another thing Ghahramani et
al. introduced was an estimation for energy consumption. The energy consumption for a specific zone
was shown to be proportional to the airflow into that zone. However, this method relies on a specific
type of HVAC system where all heating and cooling is exclusively handled by manipulating volumes of
air (Variable Air Volume Air Handling Units). This is rare in most office buildings in the Netherlands and
therefore not easily reproducible. The idea of scaling down the complexity is still a valuable contribution
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and may be something to fall back on should the complexity exceed manageable limits.

Research team: Mozer et al. [13, 41, 42, 48]
Subject: Neural network aided optimal control
Contributions/conclusion:
Mozer et al. developed an adaptive controller that regulates indoor air temperature in a residence by
switching the furnace on or off based on the results of an optimal control problem. The task considers
both comfort and energy costs as part of the control objective. Because the consequences of control
decisions are delayed in time, the algorithm had to anticipate heating demands with predictive models
of occupancy patterns and the thermal response of the house and furnace. Occupancy pattern predic-
tion was achieved by a hybrid neural network and look-up table combination.
Benefits/drawbacks in context of available data:
The study performed by Mozer et al. showed that no life is too irregular to be predicted, at least partly.
Even highly non-deterministic schedules can serve as a basis for a predictive controller. A downside to
the approach of Mozer et al. is that, just as the work done by Ghahramani et al. it assumes individual
users to be able to override control decisions. In a domestic setting this approach will yield valuable
but, more importantly, manageable data due to the small number of occupants. In a corporate setting
the amount of occupants will be considerably higher making it unfeasible to use the same approach.
Additionally, users of buildings equipped with the bGrid system don’t have the degree of control that
the occupants in the test setup of Mozer et al. had. The idea of using neural networks for pattern
recognition in otherwise highly stochastic behaviour is nevertheless worth exploring, since occupancy
in a corporate setting is not necessarily linked to specific individuals.

3.2. Occupancy Estimation
What became evident during the literature review concerning methods for thermal comfort man-

agement is the importance of human behaviour and accurate occupancy figures. All the methods
summarised previously relied on knowledge of the occupancy in one way or another but none of the
methods looked into accurately estimating the occupancy from sensor data. Dedicated research on
this topic has been scarce and more focused on predicting occupant behaviour rather than determining
the exact occupancy. A 2020 study by Salvatore Carlucci et al. reviewed approaches, methods and
key findings in studies related to modelling occupants’ presence and actions (OPA) in buildings [49].
They identified a total of 753 papers relating to the subject, of which 478 had to be disregarded due
to them not being in English or the full text not being available. Of the remaining 278 only 53 were
specifically about presence and activity, with the rest focusing on occupant activity such as window,
shading and lighting operation. Of the remaining 53, only 4 papers researched determining a count for
room-level occupancy.

Research team: Kjærgaard et al. [52]
Subject: Development of a fusion algorithm to determine the occupancy on a room-level using 3D
camera footage
Contributions/conclusion:
The 2016 study by Kjærgaard et al. detailed the development of a fusion algorithm named PLCount for
estimating occupancy using 3D camera footage. The algorithm builds on an existing counting method-
ology that uses cameras or thermal sensors to detect passing of so called count lines, a metric for
occupancy. However, this method has its flaws and the error in occupancy adds up over time. The
method detailed in this paper was able to minimise that error by op to 86% by using a dynamic pro-
gramming approach to solve the count correction problem.
Benefits/drawbacks in context of available data:
The method described in this research is promising but the use of cameras makes it impossible to repli-
cate. The issue of privacy was briefly mentioned in the study and was the reason the research team
was not allowed to use footage from consecutive days for validation. In the Netherlands, if a single
person objects to being filmed it is not allowed to collect any footage. Attempting a method similar to
this research would require a controlled testing facility of some kind, which wasn’t in the cards.
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Research team: Kjærgaard et al. [33]
Subject: Designing a probabilistic algorithm to determine the occupancy on a room-level using COኼ
and movement data
Contributions/conclusion:
Continuing with a 2018 study, Kjærgaard et al. developed a method they called DCount that was able
to achieve room-level counts with a documented low normalised RMSE of 0.93. They achieved this
using a probabilistic algorithm that would assign a count to a room based on the measured COኼ data
and movement detection through PIR sensors. To evaluate the algorithm they obtained sensor data
and building information data from a 8,000 𝑚ኼ office building, containing offices, classrooms and study
areas with an average total daily occupancy of 1000 people. Multiple PC2 3D stereo-vision cameras
were used to monitor transitions through the entrances and exits of the building. Analysing the video
footage with their PLCount algorithm and collecting sensor data over a period of 30 days from Septem-
ber to October 2016 yielded a reference people count of 345,600 people, 3,499,200 PIR readings and
3,844,000 COኼ measurements (both on a one minute basis). With this approach the research team
was able to achieve considerably lower RMSE and reduce the estimation error up to 86% when com-
pared to the raw people count.
Benefits/drawbacks in context of available data:
The method described in this research shows many similarities with what this thesis is trying to achieve.
It was shown that COኼ and movement data can paint a clear enough picture to accurately estimate the
occupancy, given a large data set. The lack of video cameras will make it unfeasible to gather a similar
amount of data but the bGrid system does collect more than just COኼ and movement data which may
compensate for the fewer number of samples.

Research team: Mora et al. [40]
Subject: Obtaining occupancy patterns via cluster analysis and logical flowcharts.
Contributions/conclusion:
In 2018 Mora et al. designed an experimental set-up in an office aimed to establish patterns in oc-
cupancy by monitoring occupancy state, relative humidity, COኼ concentration, VOC (Volatile Organic
Compounds), temperature, door and window opening and electricity usage. The correlation between
all variables was looked into and both temperature and humidity did not show any clear correlation with
the observed occupancy. Using cluster analysis and models based on logical flowcharts an error of
12% was achieved using one parameter. Using two parameters the error decreased to 10% but using
more than three parameters didn’t significantly improve the accuracy.
Benefits/drawbacks in context of available data:
The main takeaway in the context of this thesis is the work Mora et al. did to find the correlation between
different data types. This may be used to a priori disregard temperature and humidity data because
these did not show significant correlation with the occupancy. Instead, the focus can be on movement
and COኼ concentration which did show significant correlation with the occupancy.

Research team: Causone et al. [11]
Subject: A data driven approach to model occupancy in residential buildings using smart meters
Contributions/conclusion:
In 2019 a team lead by Francesco Causone developed a novel data-driven method that generates
yearly occupancy and occupant-related electric load profiles. These were used to improve building en-
ergy modelling in terms of reliability and peak performance. The method starts by identifying occupant-
related electric load profiles by reading out smart meters in the testing facility, a residential estate in
Milan. It was impossible to identify the nature of the electrical appliances with the available smart
meters and therefore the measured energy consumption covered all the appliances installed in each
apartment. The resulting electric load profiles could be especially valuable to modellers who don’t have
access to ground truth data (direct observations).
Benefits/drawbacks in context of available data:
The research performed by Causone et al. does not contribute greatly in the context of this thesis. It is
relevant because the results showed that knowledge of the use of electrical appliances could be used
as a metric for determining occupancy at a room level, but to determine the exact number of people
would require more sophisticated meters than what they had access to. Had the testing facility been
equipped with smart wall outlets for example, the research may have looked different. In the context
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of this thesis, no such data is available and can therefore not be used.

3.3. Comparison
Having discussedmultiple papers concerning both comfort management and occupancy estimation,

this section compares the individual research in terms of merits and drawbacks. The following tables
rate and compare the previously discussed papers on the complexity of the methods used and the
applicability in the context of this thesis or possible future work based on this thesis, since comfort
management is beyond the scope of what this thesis hopes to achieve. The individual papers are
specified by leading author and ranked on a five tier scale, indicated with ’++’,’+’, ’0’, ’-’ and ’- -’.

Yang et al. Wang et al. Ghahramani et al. Mozer et al.
Complexity - - - 0 +
Applicability - - + - - 0

Table 3.1: Comfort management method comparison

In Table 3.1, a ’+’ in complexity indicates that the specific method is in fact not excessively complex.
Looking at the table, only the research by Yang et al. and Wang et al. were deemed to be overly
complex compared to the others [60, 63, 64]. The reason for this is that these methods both ran an
online optimisation method to manage user comfort, requiring more computing power than the (partly)
offline or otherwise less involved approaches in the other papers. The research done by Ghahramani
et al. for instance utilised a database containing user defined preferences and a scalar optimisation
problem, requiring less computing power than the multi-objective optimisation problem as proposed by
Yang et al. Similarly the research by Mozer et al. captured predictable patterns in occupant behaviour
in a database while using an online reinforcement learning approach for the stochastic parts.

The applicability of the papers on comfort management is rated taking future work into account, on
the premise that this thesis achieves what it aims to achieve. The most applicable research seems to
be that of Wang at al. which is the only one that actively minimises the energy consumption. In this
aspect having knowledge of the exact occupancy could be a great help. A common theme among all
papers is the requirement of input that the bGrid system cannot deliver to manage thermal comfort.
Features such as access to individual comfort preferences of the occupants or occupants having a
degree of control that is very difficult to reproduce in a corporate setting and the bGrid system is there-
fore not (yet) equipped with. This could however be bypassed by making some assumptions based
on for example the ASHRAE 55 standard for indoor thermal comfort. Using that, maximising thermal
comfort becomes a heat balance problem where knowledge of the number of occupants in a room at
any given time is essential because of the contribution people have to the thermal environment [12,
19]. Looking past this fact however, there are parts of the research by Mozer et al. in particular that
could be applied to the research in this thesis. Using a neural network for pattern recognition the way
Mozer et al. did show similarities to what this thesis is trying to achieve and will therefore be looked
into further in chapter 4.

Table 3.2 shows a similar comparison as before, using the occupancy estimation research. Again
the papers have been scored on a five tier scale in terms of complexity and applicability in the context
of this thesis. The only paper that was deemed overly complex is the paper by Mora et al. Where
this thesis focuses on relating measured data to observed occupancy the research by Mora et al. tried
to find a correlation between all measured data and observations through cluster analysis and logical
flowcharts, which is beyond the scope of this thesis. Comparing that to the work done by Kjærgaard
et al. in 2016 where they used 3D cameras as a tool for occupancy estimation, the latter is rather less
involved. They continued their work in 2018 where they used the method developed in the first paper
to gather ground truth data while designing a method based on measured data to estimate occupancy,
increasing the complexity. This approach does make the 2018 research by Kjærgaard et al. very
applicable, which will be discussed in the next paragraph.
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Kjærgaard et al.
(2016)

Kjærgaard et al.
(2018) Mora et al. Causone et al.

Complexity ++ + - 0
Applicability - - ++ - - - -

Table 3.2: Occupancy estimation method comparison

Since these papers are centred around the same subject as this thesis, the work should be more
applicable. However most methods that were discussed still use data that the bGrid system cannot
deliver. The 2016 study by Kjærgaard et al. for example used data captured by 3D cameras as a
basis for occupancy estimation while Caosone et al. used insight in the use of the electrical systems
to achieve similar results. The 2018 study by Kjærgaard et al. however is highly applicable to this
thesis, as mentioned before. Cameras were still used to collect ground truth data but this is not the
only way in which ground truth data can be collected and can therefore be circumvented. The rest
of the research showed that both movement data and COኼ data can serve as a good foundation for
accurate occupancy estimation. Since the bGrid data is able of providing exactly those data types, this
is a valuable realisation and a good place to start from.

3.4. Conclusion
Having compared all methods in terms of complexity and applicability, some conclusions can be

drawn. The focus will be on the methods for occupancy estimation as that is what is most in line with
the direction of this thesis. Based on the research done by Mora et al. the data types that will be used
a priori will be COኼ and movement, since these showed significant correlation with the occupancy.
This is supported by the work done by Kjærgaard et al. which also showed COኼ and movement data
resulted in accurate occupancy estimates. Of course the bGrid sytem does provide additional data
types, one of which is the sound intensity. This data type in particular is something that sets the bGrid
system apart from others and will be looked into. Additionally the work by Mozer et al. showed that
even highly stochastic behaviour could be modelled by a artificial neural networks. Because of this and
again supported by the work by Kjærgaard et al. the next chapter will dive deeper into neural networks
while also looking at a linear modelling method.
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Based on what has been achieved in previous research, this thesis aims to achieve similar or better
results in terms of occupancy estimation. The one thing that separates previous work from what this
research is trying to attempt is the amount of ground truth data available. The office that was used was
not equipped with cameras and thus ground truth data had to be gathered through direct observation.
This is a time consuming method of gathering data and the ground truth data set is therefore quite
limited. However, if a strong relation between measured data and the observed occupancy does exist,
even a relatively small data set could probe sufficient. The first method that will be looked into is a
linear regression method due to its widespread usage in data based modelling. Secondly an artificial
neural network approach will be discussed, partly based on the work in [33].

4.1. Linear Regression
As mentioned linear regression methods are widely used in data based modelling. The most stan-

dard variant is simple linear regression, using a single scalar input variable x and a single scalar output
variable y. In most real-world problems however, the inputs and outputs are not scalar and thus a
vector based method is required. Two such methods will be discussed below.

Multiple Linear Regression [62]
MLR is an elementary data driven modelling technique that uses a vector of regression coefficients

⃗⃗𝑏 and a vector of residual errors ⃗⃗𝑒 in the following relation:

⃗⃗⃗𝑦 = X ⃗⃗𝑏 + ⃗⃗𝑒 (4.1)

Where ⃗⃗⃗𝑦 is the output vector containing the m individual outputs 𝑦። and X is the m x n data matrix
containing the individual inputs 𝑥።,፣. Equation 4.1 has a unique solution for ⃗⃗𝑏 if and only if 𝑚 = 𝑛 and
the data matrix is of full rank. This is rare however and thus an exact solution for ⃗⃗𝑏 can often not be
determined. Still, it is possible to reach a solution by minimising the residual error ⃗⃗𝑒 using for example
the least squares method. The objective function then becomes:

𝐿 =
፦

∑
።዆ኻ

𝑒ኼ። = (⃗⃗⃗𝑦 −X ⃗⃗𝑏)ፓ(⃗⃗⃗𝑦 −X ⃗⃗𝑏) (4.2)
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Resulting in a solution for ⃗⃗𝑏 of the form:
⃗⃗𝑏 = (XፓX)ዅኻX ⃗⃗⃗𝑦 (4.3)

This method is well understood and widely used due to its simplicity and applicability. The only thing
left to do is to select the inputs that this model will include. Usually, a trial and error based method is
used to see which inputs achieve the best performance.

Principal Component Regression [38, 50, 67]
A problem with the MLR technique is possible collinearity between the supposedly independent

variables. PCR is a variation of MLR that uses principal component analysis to construct an orthogonal
basis from X. From this basis a subset is selected which is then used to predict y. Determining the
number of principal components to base a prediction on can be difficult. Using too many can result
in extra noise while using too few could result in an incomplete weight description of X. There are a
multitude of methods to find the optimal number of principal components, of which the cross validation
[61] and average eigenvalue [31] methods are some of the most well known. First, the matrix X is
decomposed in a score matrix T and a loading matrix P, consisting of the right singular values of X in
the following way:

X = T Pፓ + X̃ = T Pፓ + T̃P̃ፓ = [T T̃][P P̃]ፓ (4.4)
Where the matrix X̃ = T̃P̃ፓ contains the residual errors. The loading matrix P describes the projections
of a unit vector along the principal components while the score matrix T contains the coordinates of the
data points on the matching principal component line. After the transformation, MLR can be utilised to
solve the original problem with a higher chance of success due to the eliminated collinearity and overall
reduction of the problem size.

4.2. Artificial Neural Networks
It has long been known that ANN can be used to solve problems in system identification. [10, 54]

Largely speaking, ANN can be classified in two categories: feedforward neural networks (FFANN) as
shown in Figure 4.1a, and recurrent neural networks (RANN) as shown in Figure 4.1b.

(a) Example of feedforward neural network (b) Example of recurrent neural network

Figure 4.1: Neural network types

FFANN are mostly used in pattern recognition problems, similar to the problem presented in this the-
sis. RANN are more powerful and can grow into vast complex systems. Outputs from neurons can be
fed back into the network, creating a system with something that resembles a memory of past events.
Unless stated otherwise the next part will concern FFANN.

In the case where an ANN is used to find a relation between past input-output data gathered in the
vector 𝜙(𝑡) 𝜖ℝ፝ and future output 𝑦(𝑡), the general function expansion looks like this:

�̂�(𝑡|𝜃) = 𝑔(𝜙(𝑡), 𝜃) =
፧

∑
፤዆ኻ

𝜃(𝑘)𝑔፤(𝜙(𝑡)) (4.5)
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Where 𝑔፤(𝜙(𝑡)) is a basis for a general function that maps ℝ፝ −→ ℝ, �̂�(𝑡|𝜃) is used instead of 𝑦(𝑡) to
indicate that 𝑔(𝜙(𝑡), 𝜃) is an estimate for 𝑦(𝑡) given 𝜙(𝑡) and given a particular parameter value 𝜃. The
”optimal” value for 𝜃 can be obtained by solving the optimisation problem stated below:

�̂�ፍ = 𝑎𝑟𝑔𝑚𝑖𝑛
ፍ

∑
፤዆፬

|𝑦(𝑡) − �̂�(𝑡|𝜃)|ኼ (4.6)

Where, once more, �̂� is used to indicate that this is the best estimation and not the actual value. To go
from the general function expansion in Equation 4.5 to an ANN with one hidden layer and one output
neuron, some assumptions need to be made. If 𝑔፤(𝜙) = 𝛼፤𝜎(𝛽፤𝜙 + 𝛾፤) is chosen as a basis, where
𝛽፤ is a parameter vector with dimension matching 𝜙 and both 𝛾፤ and 𝛼፤ are scalars, the following is
obtained:

𝑔(𝜙) =
፧

∑
፤዆ኻ

𝛼፤𝜎(𝛽፤𝜙 + 𝛾፤) + 𝛼ኺ (4.7)

Where 𝛼ኺ is an arbitrary parameter to adjust the mean [54]. 𝜎(⋅) is the activation function and is usually
the same for all neurons. The activation function determines what input values activate the specific
neuron. A common choice for an activation function is the sigmoid or logistic function, which squeezes
all real numbers between the values 0 and 1, of the form:

𝜎(𝑥) = 1
1 + 𝑒ዅ፱ (4.8)

This specific sigmoid function is popular because it allows the use of gradient based parameter estima-
tion methods such as back propagation and gradient descent. An alternative to the sigmoid function
that offers the same functionality is the hyperbolic tangent function of the form:

𝑡𝑎𝑛ℎ(𝑥) = 𝑒፱ − 𝑒ዅ፱
𝑒፱ + 𝑒ዅ፱ (4.9)

Figure 4.2 shows both activation functions side by side.
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(a) Hyperbolic tangent function
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Sigmoid function

(b) Sigmoid or logistic function

Figure 4.2: Two sigmoidal activation functions

Contrary to the logistic function, the hyperbolic tangent function squeezes its inputs between -1 and +1.
What sets the hyperbolic tangent function apart from the sigmoidal logistic function is that negative in-
puts will be mapped as strongly negative while zero inputs will remain at zero. A downside to sigmoidal
functions like the logistic function and the hyperbolic tangent function is that, using back propagation
for example, these functions can be saturated. The inputs are squeezed between the range limited by
0 and 1 in the case of the logistic function (-1 and +1 for the hyperbolic tangent) which means if the error
of the neural network is stuck at a sufficiently high constant value during learning, the performance will



4. Methods 16

no longer improve [66]. This is known to be caused by an inappropriate choice in initial weights which
is why these will be randomised. In that way the risk of saturation due to inappropriate initial weights
is minimised [45].

An alternative to sigmoidal activation functions are non-saturating activation functions. These func-
tions don’t squeeze the input and are consequentially not susceptible to saturation. An example are
the Rectified Linear Units (ReLU) and Leaky Rectified Linear Units (Leaky ReLU) functions shown in
Figure 4.3 and described by the following equations:

𝑅𝑒𝐿𝑈(𝑥) = {0 𝑓𝑜𝑟 𝑥 ⩽ 0
𝑥 𝑓𝑜𝑟 𝑥 > 0 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {𝑎𝑥 𝑓𝑜𝑟 ⩽ 0

𝑥 𝑓𝑜𝑟 𝑥 > 0 (4.10)
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(a) ReLU function
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(b) Leaky ReLU function

Figure 4.3: Two non-saturating activation functions

Using a four-layer convolutional neural network with ReLU shaped activation functions on CIFAR-10 (a
collection of images commonly used to train machine learning algorithms) it was shown that a training
error of 25% could be obtained six times faster than a similar network that used the hyperbolic tan-
gent activation function [34, 43]. This speed boost is especially useful when using big data sets for
training and validation and may therefore not achieve significantly better performance in this research.
However, since combining multiple activation functions in one network is not uncommon, using a com-
bination of sigmoidal and non-saturating activation functions is worth looking into. Research by MD
Asaduzzaman showed using a combination of activation functions can increase the training speed and
performance[3].

The choice of activation function influences how quickly a network converges to the desired error
but it is not the only influence. The learning rate also influences convergence time and general perfor-
mance. The learning rate is a variable that determines how heavily the error is fed back to the neurons.
A high learning rate means the error is weighed heavily and the network reacts strongly to a slight
error, making it unlikely the algorithm will converge to a local minimum. However it also means that the
training algorithm is prone to overcorrect itself, making convergence difficult to achieve. On the other
hand, a low learning rate means the error is not weighed as heavily and the network reacts to the error
more gently. This makes it more likely the training algorithm will converge, although it getting stuck in a
local minimum is a valid concern. Generally a learning rate smaller than 10e-2 but greater than 10e-6
is considered safe [55].

The final hyper-parameters that will be discussed are the number of hidden layers and the number
of neurons per layer. These parameters determine the complexity of the network and influence the risk
of under- or overfitting. Underfitting is where a network has not learned enough from the training data
and does not produce a tight fit. Overfitting is the opposite, where a network has learned too much
from the training data and is therefore not generalisable. These attributes can also be caused by a lack
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of variation in the training data but this is generally not something that can be easily changed [53, 55].
Avoiding both under- and overfitting is vital to the performance of a network and can be achieved by
optimising the number of layers and neurons. A common optimisation method used for this purpose
is the genetic algorithm as it allows for integer optimisation [55]. Another method specifically designed
to prevent overfitting is called dropout. This method randomly drops a predefined number of neurons
and their connections, characterised by the variable p. It can be applied to a single hidden layer or all
input and hidden layers. The variable p has a value between zero and one and determines the fraction
of neurons that are dropped (i.e. p=0.5 means half of the neurons and their connections are randomly
selected and dropped).

(a) Standard Neural Network (b) Neural Network with dropout

Figure 4.4: A standard neural network with two hidden layers (a) and a network produced by applying dropout to the network
on the left (b). Crossed neurons have been dropped [22].

Since the method randomises which neurons get dropped, the presence of any specific neuron
becomes unreliable. This breaks up any co-adaptations that are inherent to fully connected networks
trained through back propagation [22]. Figure 4.4 shows an example of a simple neural network using
dropout.

4.3. Comparison
Similar to the previous chapter, the discussed methods will be rated in terms of complexity and

applicability. In this case all methods are applicable, otherwise they would not have made the cut. The
score they receive for applicability will consequently be based more on how suited the method is given
the relatively small data size and nature of the data set. Once again a five tiered rating system will be
used, consisting of ’++’, ’+’, ’0’, ’-’ and ’- -’.

MLR PCR FFANN RANN
Complexity ++ + + -
Applicability 0 - 0 -

Table 4.1: Modelling methods comparison

Table 4.1 compares the methods discussed previously. Looking at the linear methods first, MLR
stands out as the least involved. PCR adds a layer of complexity because of the necessary transforma-
tion and therefore scores lower in that area. Looking at the applicability, both methods would be better
suited for larger data sets. This is a bigger issue for PCR which reduces the data size even further. The
relationship between the measured data and the occupancy is also expected to be non-linear, making
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it difficult for either linear method to achieve decent performance. The non-linearity could possibly be
circumvented by sorting the measurements based on the observed number of people, more on this in
subsection 5.2.1.

Looking next at the non-linear methods, the RANN can be disregarded immediately. The feedback
element inherent to RANN adds unnecessary complexity to an already complex problem. The added
complexity makes this type of network especially suited for speech recognition, a field in which these
networks are widely used [51]. For the non-linear methods that were discussed, the one remaining
is the FFANN. Looking at the complexity it was rated equal to PCR, even though non-linear methods
are more involved by nature. The reason for this is that the basic design and architecture need not be
very complex and can be gradually expanded and improved as desired. Looking at the applicability,
the score was neutral. The reason for this is that a FFANN is perfectly suited to solve problems similar
to what this thesis offers but does struggle to perform well when the training data set is relatively small.

4.4. Conclusion
This chapter outlined two linear methods and one non-linear method that can be used to model

the occupancy from the measured data. Comparing the linear methods showed MLR was the best
candidate. The added complexity and data size reduction that come with PCR contribute to the lower
score in Table 4.1 and will therefore not be used in the experimental analysis. MLR is the first method
that will be used, starting in subsection 5.2.1.

Secondly artificial neural networks were researched, based on the work by Kjærgaard et al.[33,
52] and Mozer et al.[41, 42] discussed in chapter 3. As discussed, the problem can be seen as a
pattern recognition problem and so a feedforward neural network would be an appropriate choice to
start with. The initial architecture should not be overly complex to avoid long computation times and/or
overfitting. A good starting point would be a network with three hidden layers and an equal number
of hidden neurons per layer, all using the same activation function. The hyperbolic tangent function is
perfectly suitable in combination with back propagation as this function allows the network to respond
equally well to positive and negative errors. Issues with activation function saturation can be dealt with
if and when they present themselves, but a priori no counter methods have to be applied. Later on the
dropout method can be applied if overfitting becomes an issue. The experimental analysis will start
with structuring the data properly, followed by an approach centred around MLR and will finish with
a neural network centred approach. The results for each approach will be presented as the methods
progress.



5
Experimental Analysis

Based on the previous work and literature, this chapter will outline the approach to generate the
occupancy from the measured data using both the MATLAB and Simulink programming environments
by the MathWorks inc. The approach will consist of two parts, starting with observation and data
management. The second part will consist of modelling using two distinct methods that were outlined
in chapter 4 and the validation of these models.

5.1. Observation and Data Management
The first step was to perform occupancy observations in a building equipped with the bGrid system.

The Microsoft Office at Schiphol in Amsterdam was chosen for this due to the abundance of meeting
rooms with glass walls so that the observations could be performed without interfering with office work
or affect the data. An added benefit was easy accessibility since the office was located at Schiphol
airport, which is easily accessed both by car and by train (and by airplane, obviously). Two similar
meeting rooms of roughly 16mኼ were chosen with a rated maximum capacity of eight people, similar
to the office shown in Figure 5.1.
The observations were performed over two days on 18 November and 20 November of 2019 on a one
minute basis, keeping track of the occupancy and activity in the two offices. This resulted in a total of
1396 minutes of observation to use as a target, spread over 3 sets of data: Room 1 on day 1, room 1
on day 2 and room 2 on day 2.

Using the bGrid sensor nodes, data was collected over the two 2 days of observation. The bGrid
nodes transfer themeasurements wirelessly to a server in one-minute batches. Because of the wireless
transfer, solid signal strength is essential to limit packet drops. This is something that can not always be
ensured, resulting in gaps in the data that can cause problems when algorithms count on a steady data
flow as input. As an example,Figure 5.2 shows actual movement data from day 1 taken from the two
nodes situated in room 1 at the Microsoft Office. The most important difference between Figure 5.4a
and Figure 5.4b is the number of missing data samples. The data is gathered in the time between 10:09
and 17:30 and thus should consist of 442 samples. In comparison, the data from node 2 contains 422
samples (95%) whereas the data from node 1 contains 304 samples (69%). Besides the obvious packet
drops there is also a less obvious consequence of bad signal strength. Under normal conditions the
nodes send their data every 60 seconds. In the case of node 1 specifically, this time is increased to
roughly 64 seconds. The reason for this is that the algorithm responsible for the data transfer has a
buffer that continues trying to send the data for a fixed time. Only when it fails to send the data within

19
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Figure 5.1: Meeting room at Microsoft Office similar to the ones used for observations ©Microsoft

the set time is the data dropped. This results in less samples in a given window of time, even if no
samples are dropped.
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(a) Node 1
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(b) Node 2

Figure 5.2: Preprocessed movement data taken on 18-11-2019 in room 3309 at the Microsoft office

Note that using node 2 as a backup to node 1 when a piece of data is dropped (and vice versa) is
not an option. Even though both nodes are monitoring the same room, the overlapping area is minimal.
This would mean that for instance movement that is picked up by node 1 may not be picked up by node
2. Note that this issue is more relevant when looking at the movement intensity. Environmental such
as relative humidity, COኼ concentration and temperature are continuous by nature, meaning there will
be a correlation between consecutive samples measured by the same sensor. In both cases it is best
to rely on older samples from the same node, rather than using data from another node and possibly
introducing singularities.

There are several methods to cope with the data loss, two of which will be discussed in this section.
First, because of the nature of the project it may not be necessary to use a sample size of one minute.



21 5.1. Observation and Data Management

Based on the observations, occupancy isn’t particularly volatile and thus a sample size of five minutes
may prove to be sufficient. The samples would be gathered in five minute blocks and averaged over
the available samples. The main benefit is that, since the collected data never shows 5 consecutive
sample drops, this method would ensure a data set with no gaps. The downside is that the number
of samples is reduced by a factor of 1/5 which given that there are only two days of data is quite a
steep price to pay. Secondly, the data can be resampled to the desired amount of samples using a
variety of functions in MATLAB. Two functions were investigated, namely the resample function and
the fillmissing functions. For the first one, the data was fed in unaltered, after which the algorithm uses
the given sample rate to generate a new data set with the requested number of samples. The main
benefit is the ease of use and the speed of the algorithm. The downside is that the algorithm does not
know where samples are missing. The resulting data will have lost a lot of correlation with the original,
as can be seen in Figure 5.3.
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Figure 5.3: Movement data taken on 18-11-2019 in room 3309 at the Microsoft office, zoomed in

Again, the movement data from the same meeting room is used. Figure 5.3 show the resampled data
in red versus the preprocessed raw data in blue, zoomed in at a piece of data that shows the shortcom-
ings of the algorithm. Note that the data set with the most sample drops (node 1) was used. Figure 5.3
shows that the resampled data is clearly ahead of the original, something that occurs throughout the
data set. The algorithm performs better when a more complete data set is used but given the nature
of the collected data, this is not something that can be guaranteed. This method is therefore less than
ideal.

The fillmissing function requires some preprocessing. The raw data doesn’t show any gaps when
it is in its raw form but by looking at the difference in the timestamps it is possible to determine if and
where to introduce gaps in the data. Once the gaps are in place, the fillmissing function can go to
work. Moving median was chosen over moving average as the interpolation method due to its inherent
robustness and unaffectedness to outliers [26]. The window was chosen as 10 samples because this
showed to produce less artefacts than taking the median of a smaller window. Filling the gaps in the
data from node 1 and 2 used in the example increased the number of samples to 411 (93%) and 440
(99%) respectively as shown in Figure 5.4. The original data is shown in blue while the interpolated
data is shown in red.
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Figure 5.4: Results of the fillmissing function

5.2. Modelling
Now that the data is in a more manageable format, the modelling phase can begin. The goal is to

derive a model that can transform the data into a certain number of people in real time. Throughout the
modelling phase the data from room 1 on day 1 and 2 will be used for the design while the data from
room 2 on day 2 will be used for validation.

5.2.1. Linear Regression
Looking at the data, it is clear that linear methods used on the data as a whole will not yield positive

results. However, using linear methods on certain parts of the data may prove quite potent. The linear
modelling method is handled as follows:

1. Separate the data based on the observed occupancy.

2. Perform linear regression analysis on the separated data sets.

3. Create a switched system to switch between the different regression coefficients based on the
input data.

4. Validate the results using the validation data.

To separate the data the observed occupancy is split into monotone parts, making sure the times-
tamps are preserved and unscrambled. Once the occupancy data is split, the measured data can be
matched up and separated. This yields new sets of data that correspond to a certain constant oc-
cupancy. Figure 5.5 shows the results, displaying the movement intensity measured by both nodes
in blue and green and the average movement intensity value in yellow. This last value is especially
important because using that it is possible to say if a linear method has a chance of success. If the
average value for a certain data type for a certain occupancy level is close to equal to the average
value at a different occupancy level, the regression coefficients will be too close together to tell the
difference between different levels of occupancy. Similarly, the average values should increase as the
occupancy does. If this is not the case, using a linear method does not make sense. That being given,
it would be interesting to look at the different average values for different occupancy levels. Table 5.1
shows exactly that. The COኼ concentration and movement intensity data behave as expected, show-
ing higher average values as the occupancy increases. The sound however appears counter intuitive,
showing lower average values for higher occupancy. The average value was taken using both nodes
with equal weight but the average values for individual nodes were also checked. This yielded similar
results, indicating sound is an unreliable metric and as a result should be omitted for this research.

With the data separated, the linear regression method described in section 4.1 can be applied.
Table 5.2 shows the regression coefficients for both the movement intensity data and the COኼ con-
centration for all levels of occupancy. A few things stand out when looking at the values. While the
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(a) Occupancy of 1 person
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Figure 5.5: Separated movement data and average value

Occupancy Movement(#) CO2(PPM) Sound (dB)
1 15.8711 730.1221 21.9042
2 21.5159 826.1981 23.7848
3 24.4610 851.1961 18.5432
4 25.7313 958.0088 14.1992
5 27.5050 1227.6129 27.2043

Table 5.1: Average values

previously shown average values for both data types increased as the occupancy increased, the same
can not be said for the regression coefficients. In the case of the movement the regression coefficient
for an occupancy of 4 and 5 people are smaller than the one for 3 people. This can be explained by the
fact that the movement intensity at higher levels of occupancy can be significantly higher than at lower
levels, meaning the regression coefficient needs to be smaller. Looking at the regression coefficient
for the COኼ concentration data, the ones for an occupancy of 4 and 5 are nearly identical. This does
not mean that the COኼ values are on average the same at those levels of occupancy, it simply means
the step in COኼ concentration from 4 people to 5 people is close to linear.

Occupancy 1 2 3 4 5
Movement 0.0546 0.1023 0.2446 0.1557 0.2217
CO2 0.0014 0.0024 0.0035 0.004 0.0041

Table 5.2: Linear regression coefficients

The regression coefficients shown in Table 5.2 can be used to estimate the occupancy based on
the second day of data. As a starting point, the COኼ concentration and movement intensity data will be
used separately. Starting with the COኼ concentration the first thing to fix, since the COኼ concentration
is slow to react to a change in occupancy, is that the occupancy has to be zero when no movement is
detected. Movement intensity will always be the leading data type for detecting presence. The easiest
way is to set the COኼ concentration to zero when there is no movement, even though it is technically
impossible for the COኼ concentration in an office to be zero. The pseudocode in Equation 5.1 shows
the process.
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𝑓𝑜𝑟 𝑖 = 1 ∶ 𝑓𝑖𝑛𝑎𝑙𝑙𝑒𝑛𝑔𝑡ℎ
𝑖𝑓 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑖) = 0 (5.1)
𝐶𝑂ኼ(𝑖) = 0

𝑒𝑛𝑑
𝑒𝑛𝑑

This will ensure the COኼ concentration doesn’t lag when people leave the room. It should also ensure
that occupancy is immediately measured asmovement is detected. Next a method has to be developed
to choose a specific regression coefficient based on the input data. This can be done using lower and
upper bounds based on the average value of the training data shown in Table 5.1.

𝑓𝑜𝑟 𝑖 = 1 ∶ 𝑓𝑖𝑛𝑎𝑙𝑙𝑒𝑛𝑔𝑡ℎ
𝑖𝑓 𝑑𝑎𝑡𝑎(𝑖) = 0
𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖) = 0

𝑒𝑙𝑠𝑒𝑖𝑓 𝑑𝑎𝑡𝑎(𝑖) > 0 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎(𝑖) < 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑ኻ
𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖) = 𝑟ኻ ∗ 𝑑𝑎𝑡𝑎(𝑖)
⋅
⋅ (5.2)
⋅

𝑒𝑙𝑠𝑒𝑖𝑓 𝑑𝑎𝑡𝑎(𝑖) > 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑ኾ 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎(𝑖) < 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑኿
𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖) = 𝑟኿ ∗ 𝑑𝑎𝑡𝑎(𝑖)

𝑒𝑛𝑑
𝑒𝑛𝑑

The pseudocode shown in Equation 5.2 shows this process, where 𝑑𝑎𝑡𝑎(𝑖) can refer to either the
movement intensity data or the COኼ concentration data since the method is the same for both data
types. The only difference between the two is the value of the lower and upper bounds. 𝑟። are the
regression coefficients from Table 5.2 and the values for 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑። are based on the values in
Table 5.1. Rounding the output to the closest integer yields the results shown in Figure 5.6, with
Figure 5.6a using the movement intensity data and Figure 5.6b using the COኼ concentration data.
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Figure 5.6: Results of linear regression method using movement intensity and COᎴ concentration separately

Ameasure for performance will be the number of times the system produces a correct result divided
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by the total number of iterations, multiplied by 100 to arrive at a percentage:

𝑃 = 100 ∗ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑖፭፨፭ፚ፥
(5.3)

Using this, the performance of the method used in Figure 5.6a and Figure 5.6b was calculated to be
37.0% and 65.3% respectively, a result that does not seem too impressive. Looking at Figure 5.6a it
is clear that the movement intensity data enables the algorithm to react quickly to changes at the cost
of accuracy but looking at the COኼ concentration based method in Figure 5.6b the opposite is true. A
combination of both data types should hence yield better results.

Combining the COኼ concentration and movement intensity seamlessly was easiest using a Simulink
model. The full Simulink model can be found in Appendix A but the main parts are highlighted below.
The first part, shown in Figure 5.7a is the signal generator that perfectly replicates the data that was
loaded into MATLAB. It is therefore necessary to first run the data management and linear regression
file to make sure the Simulink model has access to all the required parameters from the MATLAB
workspace.

(a) Simulink model signal
generator

(b) Simulink model node weights

Figure 5.7: Zoomed in details for the Simulink model

In Simulink a few additions can be made to give additional control to the way the algorithm handles
the data. The first addition was a modifier that changes the weight of an individual node, shown in
Figure 5.7b. Movement intensity data is collected by both nodes in the room, each covering part of the
office. As mentioned earlier, one is positioned near the door (node 1) while the other is located near
the back wall (node 2). Since node 1 is picking up the movement at the entrance to the office, it also
detects movement when somebody is only opening the door. Because of this, the data collected by
node 1 is more susceptible to noise and is given a lower weight. Additionally, node 1 suffered more data
loss than node 2. This was of course corrected but the fact remains that node 2 contains more original
data than node 1, making it more reliable. Below, Figure 5.8a shows the block where the upper bounds
for in this case the movement intensity data are set. These fixed values highly influence whether the
algorithm performs well or not and hence should be adaptable. To serve that purpose, these bounds
where connected to slider gains shown in Figure 5.8b to manually find which values yield the best
performance.
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(a) Simulink model
movement intensity upper

bounds

(b) Simulink model movement intensity slider gains for adjusting the upper bounds

Figure 5.8: Zoomed in details for the Simulink model

Figure 5.9 shows how the movement intensity is used as the leading data type for presence detec-
tion. As mentioned before, when no movement is detected the occupancy is zero. This means all data,
for the purpose of occupancy estimation, should be zero as well. The system shown accomplishes
exactly this.

Figure 5.9: Simulink model movement moving average and system for setting data to zero when no movement is detected

Figure 5.10 shows the decision tree for the movement intensity data. The inputs 3 up to and in-
cluding 6 are the bounds that are shown in Figure 5.8a. As mentioned, the subsystem labelled with
’Decision tree movement’ is where the upper bounds determine which regression coefficient is used.
Since there are five regression coefficients corresponding to the five different occupancy levels, the
five signals need to be combined into one. This is not a problem since at any given time only one of
the five will be nonzero and the signals can therefore be added together.
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Figure 5.10: Simulink model movement intensity decision tree

Similar to Figure 5.7b, weights are given to both the movement intensity data and the COኼ con-
centration data to make the algorithm able to rely more on one or the other. Based on earlier results,
the movement intensity is more usable as a presence detection metric while the COኼ concentration
showed to be more accurate for estimating the occupancy. A benefit of using the movement inten-
sity data however, is how quickly it responds to changes in occupancy. Using it in conjunction with the
COኼ concentration will thus enable the system to respond more quickly. However, since accuracy is the
main objective the weights will be chosen to give the COኼ concentration a higher influence in the output.

This method yielded the results shown in Figure 5.11 and was within one person of the target or spot
on 93.49% of the time while being exactly correct 75.84% of the time. It may also be useful to express
performance in terms of the Root Mean Square Error (RMSE), similar to the papers by Kjærgaard et
al. that were discussed in section 3.2 [33, 52]. The method for describing performance chosen in this
thesis was thought to be more insightful than the RMSE because it acts as a measure for how accurate
the methods are in time. If the method is presented with an input, this performance measure will tell
how likely the method is to get a correct result. RMSE on the other hand is an absolute measure for
the fit to presented data, with lower values indicating a better fit. The RMSE can be calculated with the
formula shown in Equation 5.4.

𝑅𝑀𝑆𝐸 = √
፧

∑
።዆ኻ

(�̂�። − 𝑦።)ኼ
𝑛 (5.4)

Equation 5.4 shows how the RMSE can be calculated, with �̂�። being the 𝑖’th element of the estimated
occupancy, 𝑦። being the 𝑖’th element of the observed occupancy and 𝑛 being the total number of sam-
ples. Using this the RMSE is calculated to be RMSE=0.78.

The performance gain after combining both data types is impressive. Comparing Figure 5.11 to
the previous attempts it is also visually evident that this method performs better. Using the movement
intensity alongside the COኼ concentration, the algorithm was able to react more quickly to changes
in occupancy while the COኼ concentration ensured the algorithm would not miss the target by much.
The one caveat to this seemingly excellent performance is that the algorithm was actively adjusted to
reach its best performance on this data set. Using the system in its current state on the data sets used
to derive the regression coefficients yielded a maximum performance of 56%. A possible reason for
why the performance using the validation set is so much higher is the lower complexity of the data
set compared to the previous day. Day 1 showed higher occupancy levels in both rooms and more
variation throughout the day. Nevertheless the results are acceptable for a linear method. In the next
section a non linear method will be used to try and achieve similar or better performance.
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Figure 5.11: Occupancy estimation using the Simulink model

5.2.2. Artificial Neural Network
With the linear regression finished and showing decent performance, the time has come to look at

the non-linear method discussed in section 4.2 to see if those results can be improved. The approach
for designing an artificial neural network looks as follows:

1. Normalise the input data and construct the input matrix.

2. Generate the target vector using one-hot encoding.

3. Create an initial architecture for testing and debugging.

4. Experiment with different activation functions and/or dropout to improve the results.

5. Use the genetic algorithm to optimise the hyper parameters.

6. Validate the results using the validation data.

Contrary to the linear approach, when designing an artificial neural network normalising the input
data is key. Normalising the input data can greatly improve the speed and accuracy of the resulting
network [56]. There is a multitude of methods for data normalisation that will not all be discussed. The
choice for a certain method over another depends on the specific data. With sufficient knowledge of
the minimum and maximum values and low number of outliers in the data set the following pseudocode
normalises the data in suitable way:

𝑓𝑜𝑟 𝑖 = 1 ∶ 𝑓𝑖𝑛𝑎𝑙𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑎𝑡𝑎፧፨፫፦ፚ፥።፬፞፝(𝑖) = 𝑑𝑎𝑡𝑎(𝑖) − 𝑚𝑖𝑛(𝑑𝑎𝑡𝑎)
𝑚𝑎𝑥(𝑑𝑎𝑡𝑎) − 𝑚𝑖𝑛(𝑑𝑎𝑡𝑎) (5.5)

𝑒𝑛𝑑

Where data is the specific data (movement intensity, COኼ concentration e.g.) before normalisation,
max(data) is the maximum value and min(data) is the minimum value.

After normalisation the input vector can be defined. As mentioned before, the training data consists
of {room 1 day 1} and {room 1 day 2}, both of which contain temperature, movement intensity, relative
humidity, COኼ concentration and sound data but the sound data will again be omitted. The input vector
X will be constructed so that it corresponds with the target vector Y, but before that the target needs
to be constructed using one-hot encoding. This is because the problem at hand is categorised as a
class identification problem. Each possible number of people will be a different class. This means there
will be a total of six classes since in the training data there are six possible states for the occupancy.
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The minimum is 0 while the maximum occupancy recorded was 5. An example of a six state one-hot
encoded vector is shown in Equation 5.6

⎡
⎢
⎢
⎢
⎢
⎣

0
1
2
3
4
5

⎤
⎥
⎥
⎥
⎥
⎦

−→

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

(5.6)

The target vector will be the stacked one-hot encoded occupancy vectors of {room 1 day 1} and {room
1 day 2}. Both the input matrix and target vector are shown in Equation 5.7

𝑋 = [𝐶ኻ 𝑀ኻ,ኻ 𝑀ኻ,ኼ 𝑇ኻ,ኻ 𝑇ኻ,ኼ 𝐻ኻ,ኻ 𝐻ኻ,ኼ
𝐶ኼ 𝑀ኼ,ኻ 𝑀ኼ,ኼ 𝑇ኼ,ኻ 𝑇ኼ,ኼ 𝐻ኼ,ኻ 𝐻ኼ,ኼ] , 𝑌 = [𝑌ኻ,፡፨፭𝑌ኼ,፡፨፭] (5.7)

where the subscript i,j on the input side represent the day and the node number respectively. The
input matrix consists of the [nx1] and [mx1] column vectors COኼ concentration (C), movement intensity
(M), temperature (T) and relative humidity (H) with n and m being the total number of samples for each
day. How the individual inputs are arranged is not important as long as it is consistent for the entire
matrix. This means the data types from both days need to be structured in the same way, as shown in
Equation 5.7. On the target side, the subscript i,hot indicates the one hot encoded occupancy vector
of the i’th day.

Figure 5.12: Initial architecture of ANN with hyperbolic tangent activation function, trained with back propagation

The initial architecture consisted of three hidden layers with an arbitrary 30 neurons each. That
number was chosen as a starting point to already give the network some complexity. The input layer
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has seven neurons, one for each input. The output layer has six neurons, corresponding to the six
possible states in the one-hot encoded vector. The output has to be translated back into a specific
occupancy count so that it can be visualised. Back propagation is used as a training method and
initially all neurons use the hyperbolic tangent activation function. The initial weights and biases are
randomised as discussed previously to avoid activation function saturation. The resulting architecture
is shown in Figure 5.12. The colours red and blue indicate the sign of the connection between the
neurons while the brightness corresponds with the magnitude; a bright red connection between two
neurons for example indicates a large positive weight and bias. This architecture was trained for 1000
epochs with a learning rate of 0.001 and no dropout.

This first architecture mainly served as a trial run to see if the algorithm was working correctly. It
was not expected to achieve exceptional performance and in that regard it did not disappoint. The
performance was calculated in the same way as before, as shown in Equation 5.3. Using that the initial
architecture achieved a peak training performance of 87.84% and a validation performance of 62.16%.
When the network misses the target it is usually not off by much. It was calculated to be a maximum
of 1 person off the target a total of 7.49% of the time using the training data and 16.46% using the
validation data. To calculate the performance, the output of the network first had to be converted to a
vector containing the occupancy count. Since the network will never return ones and zeros, this was
done by looking at the maximum value in each row. The results were then compared to the target as
shown in Figure 5.13.
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Figure 5.13: training results (a) and the validation results (b) of initial network architecture

Figure 5.13a nicely shows the output of the network trying to match the target. Based on the per-
formance and supported by the visual it is fair to say overfitting is not yet an issue. In the next iteration
the complexity can be increased and/or a different activation function can be used.

Starting with an increase in complexity in hopes of increasing performance, the number of neurons
is increased from thirty to 100 for all three hidden layers. This more than doubles the computation time
and looking at the results had an adverse effect. Figure 5.16a shows the network is currently overfitting
to the training data. This results in a network that is less responsive than before when presented with
new data, resulting in Figure 5.16b.
The performance on the validation set does not look bad at first glance, however it clearly has difficulty
reaching occupancy levels other than 2. Calculating the performance resulted in a value of 83.05%,
a value that continued to appear each time a network was overfitting to the training data. Other than
the number of neurons per layer, everything was kept as it was in the first architecture. The poor
performance is especially clear when the data that was used for training is presented to the network.
The results are shown in Figure 5.15.
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Figure 5.14: training results (a) and the validation results (b) of the more complex architecture, clearly showing overfitting
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Figure 5.15: Results of using the training data on the trained more complex network, showing poor performance

Using the training data shows the same issues as with the validation data; the network is unable
to accurately predict the non-zero occupancy. These are indicators that the current architecture is too
complex for the problem at hand and something needs to change.

Before changing the number of neurons to decrease the complexity and with that the issue of over-
fitting, the dropout technique mentioned in section 4.2 is applied. To start with, a p value of 0.05 is used
and applied to the first hidden layer. This means five of the 100 neurons are randomly dropped every
iteration, making it more difficult for the network to overfit. However, this did not have the intended
result. Instead of improving the performance, the algorithm produced exponentially increasing errors
that eventually resulted in outputs so large Matlab could only display them as NaN. Even reducing the
p value did not solve this issue and thus this method was disregarded. The issue is probably caused by
the exploding gradient problem, a problem common to neural networks using a gradient based training
method [46]. It occurs mostly in very deep networks but since randomly dropping neurons essentially
deepens the network it is not uncommon to see this issue in more shallow networks. Solutions to the
problem include using ResNets (residual neural networks) [58]. However, since this issue showed itself
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using dropout and it is not evident that dropout is in fact necessary, this does not yet have to be looked
into, if at all. Dropout was tried to prevent overfitting but decreasing the network’s complexity may also
prove effective.

The goal of tweaking the hyper parameters (learning rate and number of neurons per hidden layer)
to reach optimal performance is a problem well suited for optimisation. The genetic algorithm (GA) was
selected as the optimisation method because of its ability to deal with integer variables. The number
of neurons per hidden layer has to be an integer and though other methods can be modified to suit this
need, problem may arise that can be circumvented by using the genetic algorithm. The downside to
using GA is the time it takes for the algorithm to converge, especially when multiple variables are used.
GA works by selecting the best properties of a generation through a process of selection, mutation and
inheritance to create the next generation. Because of this it can be hard to replicate results and as
mentioned before, it can take a long time for the algorithm to reach a global optimum. The parameters
to be optimised will be the learning rate (bounded by 10e-6 and 10e-2) and the number of neurons for
all 3 individual layers (bounded by 5 and 100). The integer constraint was naturally only applied to the
number of neurons. In addition parallel programming was used to speed up the process. The initial
optimisation was run using an architecture that used the hyperbolic tangent function for all neurons.
The optimisation results are shown in Table 5.3.

Learning rate 0.002
Neurons HL1 20
Neurons HL2 50
Neurons HL3 30
Iterations 56
Performancetrainingdata 63.14%
Performancevalidationdata 75.18%

Table 5.3: Optimisation results

The results from the first optimisation are very comparable to the initial architecture, showing an in-
crease in peak performance using the validation data. The performance on the training data should not
be interpreted as training performance. At this point, training performance will be in the range of 90%
because all architectures achieve a close fit with the training data during training. The performance
of the trained network on the data it was trained with is valuable because it paints a better picture of
the training effort. Note that the optimisation returns the optimal architecture which is does not nec-
essarily always produce the highest performance all the time. This depends on the result of training
that architecture and in turn on the initial weights and biases. Since these values are randomised to
avoid activation function saturation, results may vary. At this point no other activation functions than
the hyperbolic tangent were used.

Through an iterative procedure, the Leaky ReLuwith an a value of 0.3 was chosen to be used on the
output neurons while keeping the hyperbolic tangent function for the other neurons. The optimisation
is ran again, keeping the lower and uppers bounds on the parameters equal to before. The results are
shown in Table 5.4.

Learning rate 0.001
Neurons HL1 19
Neurons HL2 21
Neurons HL3 39
Iterations 43
Performancetrainingdata 61.55%
Performancevalidationdata 76.17%

Table 5.4: Final optimisation results

The final optimisation showed a slight improvement in peak performance on the validation set while
staying close to the performance on the training set. Themain thing to look for besides raw performance
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Figure 5.16: Results of using the training data (a) and the validation data (b) to test the final network architecture

is the network’s ability to reach different occupancy levels. Looking back at the overfitting architecture,
the network struggled to reach all occupancy levels. Looking at Figure 5.16 the network is able to reach
most levels op occupancy between the two data sets while achieving a higher or comparable peak
performance when compared to the first architecture. Looking at the networks performance during
training shown in Figure 5.17 it achieves a fit close to the example of overfitting, however the results
clearly show that overfitting is not an issue with this architecture.
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Figure 5.17: Training output vs target using the final network architecture

The final architecture also performed well when looking at near misses. The network missed the
target by just 1 person 17.69% of the time using the validation data and 27.89% using the training
data. Using Equation 5.4 again, the RMSE is calculated to be RMSE=0.67 for the validation data and
RMSE=0.98 for the training data.

At this point the performance has reached the limits of the available data given the current architec-
ture. It stands out that the performance difference between different successful versions of the network
described in this section is minimal. This can be attributed to the rigorousness of the training method
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or the ”luck” that the initial values for the hyper parameters were already close to the values derived by
the genetic algorithm. The final architecture is shown in Figure 5.18. Comparing the final architecture
to the initial one shown in Figure 5.12, it is clear that the complexity has increased significantly. The
increased complexity enables the network to learn smaller details in the training data, adding to the
improved performance. However, as was previously shown, adding complexity is not a sure fire way
to increase performance.

Figure 5.18: Final architecture with mixed htan and Leaky ReLu activation functions, trained using back propagation

5.3. Conclusion
With both the linear and non-linear methods completed, the results can be compared. A priori it

was expected that a non-linear approach would yield better results due to the non-linear nature of the
problem. Based on what could be observed there did not seem to be much linearity in the relationship
between occupancy and the measured data. Nevertheless the linear approach proved reasonably
successful. Table 5.5 compares the absolute performance of all methods, as well as the times the
algorithms produced a result that was one more or less than the target and the times where the results
were more than one removed from the target.

LRmov LRCO2 LRcomb ANNtanh ANNmix
Performance 40.50% 65.31% 75.84% 75.18 76.17%
Off by one not calculated not calculated 17.65% 15.72% 17.69%
Off by more not calculated not calculated 6.51% 9.10% 6.14%

Table 5.5: Performance comparison between the linear and non linear methods using the validation data

Where LRmov, LRCO2
and LRcomb are the linear regression methods that usedmovement, CO2 and a

combination of the two respectively. ANNtanh is the neural network that exclusively used the hyperbolic
tangent activation function and ANNmix is the network that used a mix of hyperbolic tangent and Leaky
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ReLu. For the linear regression methods that only used one data type anything other than absolute
performance was not calculated. The reason for this was that the idea had always been to combine
multiple data types and one metric for comparison was thought to be sufficient. As mentioned at the
start of this section, it is surprising to see how well the best performing linear method compares to the
neural network approach. The reason for this was briefly touched upon at the end of subsection 5.2.1,
namely that the Simulink model based on linear regression was aimed hard at the validation data.
Table 5.6 shows the performance drops quite a bit when another data set is used. Here the ANN show
their versatility and clearly outperform the linear method.

LRmov ANNtanh ANNmix
Performance 56.09% 63.14% 61.55%
Off by one 33.83% 24.94% 27.89%
Off by more 10.08% 11.92% 10.57%

Table 5.6: Performance comparison between the best linear and non linear methods using the training data

Looking at the values in both tables, it is not immediately clear which method is best. In Table 5.5
both the neural network with mixed activation functions and the linear regression method that combined
COኼ and movement produced very similar results, with the neural network winning only slightly. In
Table 5.6 however, the linear regression method clearly showed sub par performance and thus the
neural network method with mixed activation functions takes the cake.





6
Conclusion

Having finished the practical side of this thesis and gotten decent results for both methods, it is time
to ask what went well and what could have gone better. This chapter will outline exactly that while also
comparing the results from the methods described in chapter 5 to the ones discussed in chapter 3 to
see if improvements were made and if not, why not. This thesis proposed two methods for estimating
real time occupancy using sensor data gathered by the bGrid sensor nodes. After managing the mea-
sured data into a usable format and gathering ground truth data as a target, both a linear regression
and neural network based approach yielded decent results.

The research that compares best to the work done in this thesis is the research by Kjærgaard et al
described in [33]. Calculating the RMSE for the best performing method, the neural network with a mix
of hyperbolic tangent and Leaky ReLu activation functions, yields an RMSE of RMSE=0.67 compared
to RMSE=0.93 for Kjærgaard et al [33]. (lower is better). The achieved RMSE was calculated using the
validation data. Using the training data, which produced overall less impressive results, still returned
an RMSE of RMSE=0.98. In spite of the lower performance using the training data, this value was
close to that found by Kjærgaard et al. It has to be noted at this point that the research mentioned in
[33] was done on a much larger scale than the work presented in this thesis, making the results they
achieved all the more impressive. The results of other methods discussed in chapter 3 are not directly
comparable, except for previous work by Kjærgaard et al. that achieved higher RMSE values and are
therefor not useful to compare. The problem statement asked if it would be possible to accurately esti-
mate the occupancy of a room using measured data. Defining performance as the ability of the system
to estimate the occupancy within one person of the actual number, the best result linear regression
achieved was 93.49% for the validation data and 89.92% for the training data. For the neural network
the best result added up to 93.86% for the validation data and 89.44% for the training data. A side note
to these results is that, even though the results achieved with linear regression appear to be slightly
better than the neural network approach, this only holds when looking at the ability of both models to
be within one person of the actual occupancy. The neural network approach was consistently outper-
forming the linear regression model when only absolute correct predictions were taken into account.
With this it can be concluded that the research was a success.

However, a critical look will always find something that can be improved. The main thing with regard
to this thesis is the scale of the research. The limiting factor in improving the results is the collected
amount of ground truth data, the direct observations. In other research cameras were used to acquire
an amount of ground truth data that would be impossible to match when the observations need to be
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done in person. This also limited the validation that could be done. Ideally an entirely new data set
would have been collected to further validate the models, giving them a more solid foundation. Having
access to more data would not only affect the validation of the models but the synthesis as well. In
the data set used for model synthesis, there was a clear lack of variation in occupancy. Both rooms
that were observed did not exceed an occupancy of five people even though both had the capacity
for eight people. Additionally the available data for an occupancy of five and four people was very
limited as the room was mostly occupied by two or three people. A larger data set would in turn enable
the use of methods such as PCR instead of MLR and a possibly deeper neural network, which could
improve the performance significantly. In the end, this thesis proposes an approach that can be used
as a foundation for future research. Both methods that were discussed can be easily expanded and
tweaked if and when more data is collected. The next chapter will outline some possible areas for
future research.



7
Future Work

This chapter will outline fields of research where the results from this thesis could prove useful.
Recommendations for future work will include both suggestions for the short term or mid term that are
achievable within a few months to half a year, and for the long term that will take years to set up and/or
complete.

The literature review in chapter 3 already outlined recent studies that did not directly apply to this
thesis, but that could act as a basis for future work based on the results found here. As mentioned in
the introduction, there is an increasing demand for adaptive temperature controllers. Given the large
influence people have on the thermal environment, having accurate knowledge of the real time occu-
pancy could be an excellent metric for adaptive control. Especially when the controller not only tries
to maximise user comfort but also conserve energy, having accurate knowledge of the occupancy is
essential. In the long term the results of this thesis could therefore be put to great use. The work done
by Wang et al. for example, where a system was designed to maximise user comfort while minimising
energy consumption, did not use occupancy estimation in their models. Adding the thermal output of
occupant to the heat balance can improve the performance of the energy consumption minimisation
[60]. Improving the results of the method outlined in the paper by Wang et al. would be a feasible goal
for the short to mid term.

However, this relies heavily on the accuracy that an occupancy prediction model could deliver,
meaning the models derived in this thesis would first need to be improved by gathering more data.
The results in this thesis were based on two days of data and could be improved by increasing that to
one or two weeks worth of data. It would however be unrealistic to assume that two weeks of ground
truth data would be collected through direct observations. Alternate methods to gather ground truth
data could be used to circumvent this issue. Taking privacy into account, and taking into account that
it is still desirable to expand this research with similar data which would exclude a controlled setup,
installing cameras would not be an option. A method that may be worth looking into is the use of desk
sensors in desk-heavy offices. An example of a room mostly filled with desks would be a silent study
area at a university or a so called office garden. People occupying such rooms would mostly be at
their desk, meaning a desk sensor would accurately measure the occupancy most of the time without
causing privacy issues. These could then be used to gather ground truth data to enable the expansion
of this research in the short term.

When the models have been improved by using a larger data set, in the long term the models could
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also be used for office management to better allocate human resources. With accurate knowledge of
the occupancy at a room level, predictive models could be generated that would give office managers
the tools to streamline processes like cleaning and overall improve the efficiency of the office area. Un-
derused areas could be repurposed while overly crowded areas could be restructured without waiting
for occupants to issue complaints. It is usually rare to receive complaints about the under use of office
space, meaning parts of an office could go underused for long periods of time without consequence. As
mentioned in the introduction of this thesis, a 2013 paper by Norm G. Miller showed bigger companies
are transitioning to smaller office footprints to achieve higher utilisation rates [39]. This is a good exam-
ple of a subject where accurate occupancy estimation is invaluable. Of course this is all speculative but
it does show that the possibilities of having accurate knowledge of the occupancy can sprout research
in the field of control engineering on one side of the spectrum, as well as human resource management
on the other side of the spectrum.
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B
MATLAB mfiles

Data management and MLR

1 c l c
2 c l ea r a l l
3 c lo se a l l hidden
4 % This i s the main f i l e that s t a r t s with loading a l l data , running data
5 % management funct ions and ends with l i n e a r regres s ion on the movement
6 % data and CO2 data separate ly . The ca lcu lated regres s ion c o e f f i c i e n t s were
7 % then used for the design of the simulink model.
8 sound3256_1811=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\sound\Node3256_2019ዅ11ዅ18ዅR3309_sound15.xlsx ' ) ;

9 sound3256_1811=sound3256_1811.data.Sheet1 ;
10 sound3256_1811 ( : , 4 )=sound3256_1811 ( : , 4 )ዅ 43787∗ones ( length ( sound3256_1811) ,1) ;
11 sound3256_1811_raw=sound3256_1811 ;
12 sound3263_1811=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\sound\Node3263_2019ዅ11ዅ18ዅR3309_sound15.xlsx ' ) ;

13 sound3263_1811=sound3263_1811.data.Sheet1 ;
14 sound3263_1811 ( : , 4 )=sound3263_1811 ( : , 4 )ዅ 43787∗ones ( length ( sound3263_1811) ,1) ;
15 sound3263_1811_raw=sound3263_1811 ;
16

17 % Movement
18 movement3256_1811=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\movement\Node3256_2019ዅ11ዅ18ዅR3309_movement.xlsx ' ) ;

19 movement3256_1811=movement3256_1811.data.Sheet1 ;
20 movement3256_1811_raw=movement3256_1811 ;
21 movement3263_1811=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\movement\Node3263_2019ዅ11ዅ18ዅR3309_movement.xlsx ' ) ;

22 movement3263_1811=movement3263_1811.data.Sheet1 ;
23 movement3263_1811_raw=movement3263_1811 ;
24 % CO2
25 CO23263_1811=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\CO2\Node3263_2019ዅ11ዅ18ዅR3309_CO2.xlsx ' ) ;

26 CO23263_1811=CO23263_1811.data.Sheet1 ;
27 CO23263_1811 ( : , 4 )=CO23263_1811 ( : , 4 )ዅ 43787∗ones ( length (CO23263_1811) ,1) ;
28
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29 % Occupancy
30 occupancy_1811=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Observations_Microsoft_Office_18ዅ11ዅ2019_R3309.xlsm ' ) ;
31 occupancy_1811=occupancy_1811.data.Sheet1 ;
32 occupancy_1811=occupancy_1811(2 :end ,1 :2 ) ;
33

34 % 20ዅ11ዅ2019
35 % Sound
36 sound3256_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\sound\Node3256_2019ዅ11ዅ20ዅR3309_sound15.xlsx ' ) ;

37 sound3256_2011=sound3256_2011.data.Sheet1 ;
38 sound3263_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\sound\Node3263_2019ዅ11ዅ20ዅR3309_sound15.xlsx ' ) ;

39 sound3263_2011=sound3263_2011.data.Sheet1 ;
40 sound2249_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\sound\Node2249_2019ዅ11ዅ20ዅR2309_sound15.xlsx ' ) ;

41 sound2249_2011=sound2249_2011.data.Sheet1 ;
42 sound2264_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\sound\Node2264_2019ዅ11ዅ20ዅR2309_sound15.xlsx ' ) ;

43 sound2264_2011=sound2264_2011.data.Sheet1 ;
44

45 % Movement
46 movement3256_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\movement\Node3256_2019ዅ11ዅ20ዅR3309_movement_2.xlsx ' ) ;

47 movement3256_2011=movement3256_2011.data.Sheet1 ;
48 movement3263_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\movement\Node3263_2019ዅ11ዅ20ዅR3309_movement_2.xlsx ' ) ;

49 movement3263_2011=movement3263_2011.data.Sheet1 ;
50 movement2249_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\movement\Node2249_2019ዅ11ዅ20ዅR2309_movement_2.xlsx ' ) ;

51 movement2249_2011=movement2249_2011.data.Sheet1 ;
52 movement2264_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\movement\Node2264_2019ዅ11ዅ20ዅR2309_movement_2.xlsx ' ) ;

53 movement2264_2011=movement2264_2011.data.Sheet1 ;
54

55 % CO2
56 CO23263_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\CO2\Node3263_2019ዅ11ዅ20ዅR3309_CO2.xlsx ' ) ;

57 CO23263_2011=CO23263_2011.data.Sheet1 ;
58 CO22264_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\CO2\Node2264_2019ዅ11ዅ20ዅR2309_CO2.xlsx ' ) ;

59 CO22264_2011=CO22264_2011.data.Sheet1 ;
60

61 % Occupancy
62 occupancy3309_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\Occupancy\Observations_Microsoft_Office_20ዅ11ዅ2019_R3309.xlsm ' ) ;

63 occupancy3309_2011=occupancy3309_2011.data.Sheet1 ;
64 occupancy3309_2011=occupancy3309_2011(2 :end ,1 :2 ) ;
65 occupancy2309_2011=importdata ( 'C:\ Users\Badass\Google ...

Drive\Systems&Control\Thesis\bGrid\Microsoft ...
data\Occupancy\Observations_Microsoft_Office_20ዅ11ዅ2019_R2309.xlsx ' ) ;

66 occupancy2309_2011=occupancy2309_2011.data.Sheet1 ;
67 occupancy2309_2011=occupancy2309_2011(2 :end ,1 :2 ) ;
68

69 %% Data management
70 % I ' ve condensed a l l steps to handle the missing pieces of data ,
71 % introducing NAN' s in those places and interpo lat ing to f i l l the gaps into
72 % a data management function to clean up the f i l e .
73

74 % 18ዅ11



51

75 movement3256_1811t=datamanagement(movement3256_1811) ;
76 movement3263_1811t=datamanagement(movement3263_1811) ;
77 sound3256_1811t=datamanagement( sound3256_1811) ;
78 sound3263_1811t=datamanagement( sound3263_1811) ;
79 CO23263_1811t=datamanagement(CO23263_1811) ;
80

81 % 20ዅ11
82 movement3256_2011t=datamanagement(movement3256_2011) ;
83 movement3263_2011t=datamanagement(movement3263_2011) ;
84 sound3256_2011t=datamanagement( sound3256_2011) ;
85 sound3263_2011t=datamanagement( sound3263_2011) ;
86 CO23263_2011t=datamanagement(CO23263_2011) ;
87

88 movement2249_2011t=datamanagement(movement2249_2011) ;
89 movement2264_2011t=datamanagement(movement2264_2011) ;
90 sound2249_2011t=datamanagement( sound2249_2011) ;
91 sound2264_2011t=datamanagement( sound2264_2011) ;
92 CO22264_2011t=datamanagement(CO22264_2011) ;
93

94 %% Resampling instead of inte rpo lat ing and vi sua l comparison
95 c lo se a l l
96 f i gu re
97 sound3263_1811_RS=resample (sound3263_1811_raw ( : , 3 ) , round ( length (occupancy_1811) ) ,
98 length (sound3263_1811_raw) ) ;
99 x1=l inspace (1 , length (sound3263_1811_RS) , length ( sound3263_1811) ) ;
100 plot (sound3263_1811_RS , ' r ' ) ; hold on ; plot (x1 , sound3263_1811 ( : , 3 ) , 'b ' ) ;
101 t i t l e ( 'Sound node 3263 interpo lat ing vs resampling ' )
102 legend ( 'Resampled ' , ' Interpolated ' )
103

104 % f igure
105 sound3256_1811_RS=resample (sound3256_1811_raw ( : , 3 ) , round ( length (occupancy_1811) ) ,
106 length (sound3256_1811_raw) ) ;
107 x2=l inspace (1 , length (sound3256_1811_RS) , length ( sound3256_1811) ) ;
108 plot (sound3256_1811_RS , ' r ' ) ; hold on ; plot (x2 , sound3256_1811 ( : , 3 ) , 'b ' ) ;
109 t i t l e ( 'Sound node 3256 interpo lat ing vs resampling ' )
110 legend ( 'Resampled ' , ' Interpolated ' )
111

112 f i gu re
113 movement3263_1811_RS=resample (movement3263_1811_raw ( : , 3 ) , round ( length (occupancy_1811) ) ,
114 length (movement3263_1811_raw) ) ;
115 x3=l inspace (1 , length (movement3263_1811_RS) , length (movement3263_1811) ) ;
116 plot (movement3263_1811_RS , ' r ' ) ; hold on ; plot (x3 , movement3263_1811 ( : , 3 ) , 'b ' ) ;
117 t i t l e ( 'Movement node 3263 interpo lat ing vs resampling ' )
118

119

120 f i gu re
121 movement3256_1811_RS=resample (movement3256_1811_raw ( : , 3 ) , round ( length ( data ) ) ,
122 length (movement3256_1811_raw ( : , 3 ) ) ) ;
123 plot (movement3256_1811_RS , ' r ' ) ; hold on ; plot ( data ( : , 3 ) , 'b ' ) ;
124 t i t l e ( 'Movement node 3263 resampling vs raw ' )
125 legend ( 'Resampled ' , ' raw ' )
126 %% raw data images
127 c lo se a l l
128 f i gu re
129 plot ( data ( : , 3 ) , 'b ' )
130 t i t l e ( 'Raw movement data node 1 18ዅ11 ' )
131

132 f i gu re
133 plot ( data2 ( : , 3 ) , 'b ' )
134 t i t l e ( 'Raw movement data node 2 18ዅ11 ' )
135 % Clearly resampling the data to get r id of the gaps i s an i n f e r i o r
136 % solut ion to i n t e r p o l a t i n g . Not only does resampling introduce
137 % o s c i l l a t i o n s around points where the data i s zero , there are a l so
138 % overshoots introduced , generating an overa l l messier dataset .
139

140 %% Matching data points
141 % It ' s c l ea r that the points don ' t exactly l i n e up on the hor izonta l a x i s .
142 % The occupancy i s sampled on the minute exactly with 60 second in between.
143 % The measurements on the other hand tend to vary from node to node as a
144 % r e s u l t of d i f f e r e n c e s in firmware. My plan i s to look at the dataset with
145 % the lowest number of samples to take as a base l ine (on the 18th that



B. MATLAB mfiles 52

146 % would be the 407 samples in sound3256 and on the 20th the 452 samples in ...
movement3256) . The f i r s t step i s to

147 % use the interp1 function that takes the timestamps of the observations as
148 % x_q, the timestamps of the measurements as x and the values of the
149 % measurements as y to return y_q, the resampled values matching with x_q.
150 % ' pchip ' outperforms the ' l inear ' inte rpo lat ion method in reta in ing most
151 % of the shape of the o r i g i n a l data. I t does mess up the s ta r t of the data
152 % but that isn ' t unexpected s ince the observations contain more samples.
153 % thi s i s something that needs to change , however i t ' s not as easy as just
154 % cutting the beginning and end of f , as the data needs to match between
155 % themselves. The f i r s t step i s to look at the beginning of a l l the data
156 % and look for the l a t e s t timestamp. This i s the s tar t ing point a l l other
157 % data should match the i r f i r s t sample with s ince i t ' s the l imi t ing f a c t o r .
158 % The same goes fo r the end of the data where we ' re looking for the
159 % e a r l i e s t timestamp that ends a dataset . This i s the timestamp that the
160 % other datasets should end c lo se to as w e l l .
161

162 % 18ዅ11
163 i =1;
164 % Occupancy
165 while movement3256_1811(1 ,4)ዅoccupancy_1811( i , 1 )>3.703704000000418eዅ04
166 occupancy_1811( i , : ) = [ ] ;
167 end
168 i=length (occupancy_1811) ;
169 while abs (movement3256_1811(end , 4 )ዅoccupancy_1811( i , 1 ) )>3.703704000000418eዅ04
170 occupancy_1811( i , : ) = [ ] ;
171 i=length (occupancy_1811) ;
172 end
173

174 % Movement
175 i =1;
176 while movement3256_1811(1 ,4)ዅmovement3263_1811( i , 4 )>3.703704000000418eዅ04
177 movement3263_1811( i , : ) = [ ] ;
178 end
179 i=length (movement3263_1811) ;
180 while abs (movement3256_1811(end , 4 )ዅmovement3263_1811( i , 4 ) )>3.703704000000418eዅ04
181 movement3263_1811( i , : ) = [ ] ;
182 i=length (movement3263_1811) ;
183 end
184

185 % Sound
186 i =1;
187 while movement3256_1811(1 ,4)ዅsound3256_1811( i , 4 )>3.703704000000418eዅ04
188 sound3256_1811( i , : ) = [ ] ;
189 end
190 i=length ( sound3256_1811) ;
191 while abs (movement3256_1811(end , 4 )ዅsound3256_1811( i , 4 ) )>3.703704000000418eዅ04
192 sound3256_1811( i , : ) = [ ] ;
193 i=length ( sound3256_1811) ;
194 end
195 i =1;
196 while movement3256_1811(1 ,4)ዅsound3263_1811( i , 4 )>3.703704000000418eዅ04
197 sound3263_1811( i , : ) = [ ] ;
198 end
199 i=length ( sound3263_1811) ;
200 while abs (movement3256_1811(end , 4 )ዅsound3263_1811( i , 4 ) )>3.703704000000418eዅ04
201 sound3263_1811( i , : ) = [ ] ;
202 i=length ( sound3263_1811) ;
203 end
204

205 % CO2
206 i =1;
207 while movement3256_1811(1 ,4)ዅCO23263_1811( i , 4 )>3.703704000000418eዅ04
208 CO23263_1811( i , : ) = [ ] ;
209 end
210 i=length (CO23263_1811) ;
211 while abs (movement3256_1811(end , 4 )ዅCO23263_1811( i , 4 ) )>3.703704000000418eዅ04
212 CO23263_1811( i , : ) = [ ] ;
213 i=length (CO23263_1811) ;
214 end
215
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216 % 20ዅ11
217 % Occupancy
218 while movement2249_2011(1 ,4)ዅoccupancy2309_2011 ( i , 1 )>3.703704000000418eዅ04
219 occupancy2309_2011 ( i , : ) = [ ] ;
220 end
221 i=length ( occupancy2309_2011 ) ;
222 while abs (movement2249_2011(end ,4 )ዅoccupancy2309_2011 ( i , 1 ) )>3.703704000000418eዅ04
223 occupancy2309_2011 ( i , : ) = [ ] ;
224 i=length ( occupancy2309_2011 ) ;
225 end
226

227 while movement3256_2011(1 ,4)ዅoccupancy3309_2011 ( i , 1 )>3.703704000000418eዅ04
228 occupancy3309_2011 ( i , : ) = [ ] ;
229 end
230 i=length ( occupancy3309_2011 ) ;
231 while abs (movement3256_2011(end ,4 )ዅoccupancy3309_2011 ( i , 1 ) )>7.703704000000418eዅ04
232 occupancy3309_2011 ( i , : ) = [ ] ;
233 i=length ( occupancy3309_2011 ) ;
234 end
235

236 % Movement
237 i =1;
238 while occupancy3309_2011 (1 ,1)ዅmovement3263_2011( i , 4 )>3.703704000000418eዅ04
239 movement3263_2011( i , : ) = [ ] ;
240 end
241 i=length (movement3263_2011) ;
242 while abs ( occupancy3309_2011 (end ,1 )ዅmovement3263_2011( i , 4 ) )>3.703704000000418eዅ04
243 movement3263_2011( i , : ) = [ ] ;
244 i=length (movement3263_2011) ;
245 end
246

247 i =1;
248 while occupancy2309_2011 (1 ,1)ዅmovement2264_2011( i , 4 )>3.703704000000418eዅ04
249 movement2264_2011( i , : ) = [ ] ;
250 end
251 i=length (movement2264_2011) ;
252 while abs ( occupancy2309_2011 (end ,1 )ዅmovement2264_2011( i , 4 ) )>3.703704000000418eዅ04
253 movement2264_2011( i , : ) = [ ] ;
254 i=length (movement2264_2011) ;
255 end
256

257 % Sound
258 % R3309
259 i =1;
260 while occupancy3309_2011 (1 ,1)ዅsound3256_2011( i , 4 )>3.703704000000418eዅ04
261 sound3256_2011( i , : ) = [ ] ;
262 end
263 i=length ( sound3256_2011) ;
264 while abs ( occupancy3309_2011 (end ,1 )ዅsound3256_2011( i , 4 ) )>3.703704000000418eዅ04
265 sound3256_2011( i , : ) = [ ] ;
266 i=length ( sound3256_2011) ;
267 end
268 i =1;
269 while occupancy3309_2011 (1 ,1)ዅsound3263_2011( i , 4 )>3.703704000000418eዅ04
270 sound3263_2011( i , : ) = [ ] ;
271 end
272 i=length ( sound3263_2011) ;
273 while abs ( occupancy3309_2011 (end ,1 )ዅsound3263_2011( i , 4 ) )>3.703704000000418eዅ04
274 sound3263_2011( i , : ) = [ ] ;
275 i=length ( sound3263_2011) ;
276 end
277

278 % R2309
279 i =1;
280 while occupancy2309_2011 (1 ,1)ዅsound2249_2011( i , 4 )>3.703704000000418eዅ04
281 sound2249_2011( i , : ) = [ ] ;
282 end
283 i=length ( sound2249_2011) ;
284 while abs ( occupancy2309_2011 (end ,1 )ዅsound2249_2011( i , 4 ) )>3.703704000000418eዅ04
285 sound2249_2011( i , : ) = [ ] ;
286 i=length ( sound2249_2011) ;
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287 end
288 i =1;
289 while occupancy2309_2011 (1 ,1)ዅsound2264_2011( i , 4 )>3.703704000000418eዅ04
290 sound2264_2011( i , : ) = [ ] ;
291 end
292 i=length ( sound2264_2011) ;
293 while abs ( occupancy2309_2011 (end ,1 )ዅsound2264_2011( i , 4 ) )>3.703704000000418eዅ04
294 sound2264_2011( i , : ) = [ ] ;
295 i=length ( sound2264_2011) ;
296 end
297

298 i =1;
299 while occupancy3309_2011 (1 ,1)ዅmovement3263_2011( i , 4 )>3.703704000000418eዅ04
300 movement3263_2011( i , : ) = [ ] ;
301 end
302 i=length (movement3263_2011) ;
303 while abs ( occupancy3309_2011 (end ,1 )ዅmovement3263_2011( i , 4 ) )>3.703704000000418eዅ04
304 movement3263_2011( i , : ) = [ ] ;
305 i=length (movement3263_2011) ;
306 end
307

308 % CO2
309 i =1;
310 while occupancy3309_2011 (1 ,1)ዅCO23263_2011( i , 4 )>3.703704000000418eዅ04
311 CO23263_2011( i , : ) = [ ] ;
312 end
313 i=length (CO23263_2011) ;
314 while abs ( occupancy3309_2011 (end ,1 )ዅCO23263_2011( i , 4 ) )>3.703704000000418eዅ04
315 CO23263_2011( i , : ) = [ ] ;
316 i=length (CO23263_2011) ;
317 end
318

319 i =1;
320 while occupancy2309_2011 (1 ,1)ዅCO22264_2011( i , 4 )>3.703704000000418eዅ04
321 CO22264_2011( i , : ) = [ ] ;
322 end
323 i=length (CO22264_2011) ;
324 while abs ( occupancy2309_2011 (end ,1 )ዅCO22264_2011( i , 4 ) )>3.703704000000418eዅ04
325 CO22264_2011( i , : ) = [ ] ;
326 i=length (CO22264_2011) ;
327 end
328

329 %% Interpo lat ing a l l data to match the timestamps
330

331 % Since the occupancy was observed on the minute exactly , th i s i s the
332 % timestamp that w i l l be used for a l l data.
333

334 % 18ዅ11
335 % Movement
336 movement3256_1811=movement3256_1811 ( : , 3 : 4 ) ;
337 y1=interp1 (movement3256_1811 ( : , 2 ) ,movement3256_1811 ( : , 1 ) , occupancy_1811 ( : , 1 ) , ' l i n e a r ' ) ;
338 movement3256_1811=[y1 occupancy_1811 ( : , 1 ) ] ;
339 movement3263_1811=movement3263_1811 ( : , 3 : 4 ) ;
340 y1=interp1 (movement3263_1811 ( : , 2 ) ,movement3263_1811 ( : , 1 ) , occupancy_1811 ( : , 1 ) , ' l i n e a r ' ) ;
341 movement3263_1811=[y1 occupancy_1811 ( : , 1 ) ] ;
342

343 % Sound
344 sound3256_1811=sound3256_1811 ( : , 3 : 4 ) ;
345 y1=interp1 ( sound3256_1811 ( : , 2 ) , sound3256_1811 ( : , 1 ) , occupancy_1811 ( : , 1 ) , ' l i n e a r ' ) ;
346 sound3256_1811=[y1 occupancy_1811 ( : , 1 ) ] ;
347 sound3263_1811=sound3263_1811 ( : , 3 : 4 ) ;
348 y1=interp1 ( sound3263_1811 ( : , 2 ) , sound3263_1811 ( : , 1 ) , occupancy_1811 ( : , 1 ) , ' l i n e a r ' ) ;
349 sound3263_1811=[y1 occupancy_1811 ( : , 1 ) ] ;
350

351 % CO2
352 CO23263_1811=CO23263_1811 ( : , 3 : 4 ) ;
353 y1=interp1 (CO23263_1811 ( : , 2 ) ,CO23263_1811 ( : , 1 ) , occupancy_1811 ( : , 1 ) , ' l i n e a r ' ) ;
354 CO23263_1811=[y1 occupancy_1811 ( : , 1 ) ] ;
355

356 % 20ዅ11
357 % R3309
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358 % Movement
359 movement3256_2011=movement3256_2011 ( : , 3 : 4 ) ;
360 y1=interp1 (movement3256_2011 ( : , 2 ) ,movement3256_2011 ( : , 1 ) , occupancy3309_2011 ( : , 1 ) , ' l i n e a r ' ) ;
361 movement3256_2011=[y1 occupancy3309_2011 ( : , 1 ) ] ;
362 movement3263_2011=movement3263_2011 ( : , 3 : 4 ) ;
363 y1=interp1 (movement3263_2011 ( : , 2 ) ,movement3263_2011 ( : , 1 ) , occupancy3309_2011 ( : , 1 ) , ' l i n e a r ' ) ;
364 movement3263_2011=[y1 occupancy3309_2011 ( : , 1 ) ] ;
365

366 % Sound
367 sound3256_2011=sound3256_2011 ( : , 3 : 4 ) ;
368 y1=interp1 ( sound3256_2011 ( : , 2 ) , sound3256_2011 ( : , 1 ) , occupancy3309_2011 ( : , 1 ) , ' l i n e a r ' ) ;
369 sound3256_2011=[y1 occupancy3309_2011 ( : , 1 ) ] ;
370 sound3263_2011=sound3263_2011 ( : , 3 : 4 ) ;
371 y1=interp1 ( sound3263_2011 ( : , 2 ) , sound3263_2011 ( : , 1 ) , occupancy3309_2011 ( : , 1 ) , ' l i n e a r ' ) ;
372 sound3263_2011=[y1 occupancy3309_2011 ( : , 1 ) ] ;
373

374 % CO2
375 CO23263_2011=CO23263_2011 ( : , 3 : 4 ) ;
376 y1=interp1 (CO23263_2011 ( : , 2 ) ,CO23263_2011 ( : , 1 ) , occupancy3309_2011 ( : , 1 ) , ' l i n e a r ' ) ;
377 CO23263_2011=[y1 occupancy3309_2011 ( : , 1 ) ] ;
378

379 % R2309
380 % Movement
381 movement2249_2011=movement2249_2011 ( : , 3 : 4 ) ;
382 x=movement2249_2011 ( : , 2 ) ;
383 y=movement2249_2011 ( : , 1 ) ;
384 xi=occupancy2309_2011 ( : , 1 ) ;
385 [ x , index ] = unique (x) ;
386 y1=interp1 (x , y( index ) , xi , ' l i n e a r ' ) ;
387 movement2249_2011=[y1 xi ] ;
388 movement2264_2011=movement2264_2011 ( : , 3 : 4 ) ;
389 x=movement2264_2011 ( : , 2 ) ;
390 y=movement2264_2011 ( : , 1 ) ;
391 xi=occupancy2309_2011 ( : , 1 ) ;
392 [ x , index ] = unique (x) ;
393 y1=interp1 (x , y( index ) , xi , ' l i n e a r ' ) ;
394 movement2264_2011=[y1 xi ] ;
395

396 % Sound
397 sound2249_2011=sound2249_2011 ( : , 3 : 4 ) ;
398 x=sound2249_2011 ( : , 2 ) ;
399 y=sound2249_2011 ( : , 1 ) ;
400 xi=occupancy2309_2011 ( : , 1 ) ;
401 [ x , index ] = unique (x) ;
402 y1=interp1 (x , y( index ) , xi , ' l i n e a r ' ) ;
403 sound2249_2011=[y1 xi ] ;
404 sound2264_2011=sound2264_2011 ( : , 3 : 4 ) ;
405 x=sound2264_2011 ( : , 2 ) ;
406 y=sound2264_2011 ( : , 1 ) ;
407 xi=occupancy2309_2011 ( : , 1 ) ;
408 [ x , index ] = unique (x) ;
409 y1=interp1 (x , y( index ) , xi , ' l i n e a r ' ) ;
410 sound2264_2011=[y1 xi ] ;
411

412 % CO2
413 CO22264_2011=CO22264_2011 ( : , 3 : 4 ) ;
414 x=CO22264_2011 ( : , 2 ) ;
415 y=CO22264_2011 ( : , 1 ) ;
416 xi=occupancy2309_2011 ( : , 1 ) ;
417 [ x , index ] = unique (x) ;
418 y1=interp1 (x , y( index ) , xi , ' l i n e a r ' ) ;
419 CO22264_2011=[y1 xi ] ;
420

421 %% Deal with NaN' s
422

423 movement2249_2011( isnan (movement2249_2011) )=nanmean(movement2249_2011 ( : , 1 ) ) ;
424 movement2264_2011( isnan (movement2264_2011) )=nanmean(movement2264_2011 ( : , 1 ) ) ;
425 movement3256_1811( isnan (movement3256_1811) )=nanmean(movement3256_1811 ( : , 1 ) ) ;
426 movement3256_2011( isnan (movement3256_2011) )=nanmean(movement3256_2011 ( : , 1 ) ) ;
427 movement3263_1811( isnan (movement3263_1811) )=nanmean(movement3263_1811 ( : , 1 ) ) ;
428 movement3263_2011( isnan (movement3263_2011) )=nanmean(movement3263_2011 ( : , 1 ) ) ;
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429

430 sound2249_2011( isnan ( sound2249_2011) )=nanmean(sound2249_2011 ( : , 1 ) ) ;
431 sound2264_2011( isnan ( sound2264_2011) )=nanmean(sound2264_2011 ( : , 1 ) ) ;
432 sound3256_1811( isnan ( sound3256_1811) )=nanmean(sound3256_1811 ( : , 1 ) ) ;
433 sound3256_2011( isnan ( sound3256_2011) )=nanmean(sound3256_2011 ( : , 1 ) ) ;
434 sound3263_1811( isnan ( sound3263_1811) )=nanmean(sound3263_1811 ( : , 1 ) ) ;
435 sound3263_2011( isnan ( sound3263_2011) )=nanmean(sound3263_2011 ( : , 1 ) ) ;
436

437 CO22264_2011( isnan (CO22264_2011) )=nanmean(CO22264_2011 ( : , 1 ) ) ;
438 CO23263_1811( isnan (CO23263_1811) )=nanmean(CO23263_1811 ( : , 1 ) ) ;
439 CO23263_2011( isnan (CO23263_2011) )=nanmean(CO23263_2011 ( : , 1 ) ) ;
440

441

442 %% Making movement the pr inc ipa l data type
443 % When no movement i s detected , a l l other data might as wel l be zero
444 % because the room i s no longer occupied. Hence i t would make sense to l e t
445 % a l l other data actual ly be zero when both nodes detect no movement.
446

447 % 18ዅ11
448 % Sound
449 f o r i =1: length (movement3256_1811)
450 i f movement3256_1811( i , 1 )==0 && movement3263_1811( i , 1 )==0
451 sound3256_1811( i , 1 ) =0;
452 sound3263_1811( i , 1 ) =0;
453 end
454 end
455 % CO2
456 f o r i =1: length (movement3256_1811)
457 i f movement3256_1811( i , 1 )==0 && movement3263_1811( i , 1 )==0
458 CO23263_1811( i , 1 ) =0;
459 end
460 end
461

462 % 20ዅ11
463 % Sound
464 f o r i =1: length (movement3256_2011)
465 i f movement3256_2011( i , 1 )==0 && movement3263_2011( i , 1 )==0
466 sound3256_2011( i , 1 ) =0;
467 sound3263_2011( i , 1 ) =0;
468 end
469 end
470 f o r i =1: length (movement2249_2011)
471 i f movement2249_2011( i , 1 )==0 && movement2249_2011( i , 1 )==0
472 sound2249_2011( i , 1 ) =0;
473 sound2264_2011( i , 1 ) =0;
474 end
475 end
476 % CO2
477 f o r i =1: length (movement3256_2011)
478 i f movement3256_2011( i , 1 )==0 && movement3263_2011( i , 1 )==0
479 CO23263_2011( i , 1 ) =0;
480 end
481 end
482 f o r i =1: length (movement2249_2011)
483 i f movement2249_2011( i , 1 )==0 && movement2264_2011( i , 1 )==0
484 CO22264_2011( i , 1 ) =0;
485 end
486 end
487

488 %% Spl i t t ing data based on occupancy
489 % To give MCR and PCR i t s best chance , I ' l l s p l i t the data based on the
490 % occupancy. This means a l l data corresponding with an occupancy of a
491 % certa in amount of people w i l l be grouped together . Of course , th i s w i l l
492 % not be the case in rea l l i f e scenar ios but i f these methods are
493 % succe s s fu l in f inding cons i s tent r e l a t i o n s between data and a f ixed
494 % occupancy , i t may end up working.
495

496 % 18ዅ11
497 f o r i =1: length (occupancy_1811)
498 i f occupancy_1811( i , 2 )==1
499 occ_1811_1( i , 1 )=occupancy_1811( i , 2 ) ;
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500 CO23263_1811_1( i , 1 )=CO23263_1811( i , 1 ) ;
501 mov3256_1811_1( i , 1 )=movement3256_1811( i , 1 ) ;
502 mov3263_1811_1( i , 1 )=movement3263_1811( i , 1 ) ;
503 sou3256_1811_1( i , 1 )=sound3256_1811( i , 1 ) ;
504 sou3263_1811_1( i , 1 )=sound3263_1811( i , 1 ) ;
505 e l s e i f occupancy_1811( i , 2 )==2
506 occ_1811_2( i , 1 )=occupancy_1811( i , 2 ) ;
507 CO23263_1811_2( i , 1 )=CO23263_1811( i , 1 ) ;
508 mov3256_1811_2( i , 1 )=movement3256_1811( i , 1 ) ;
509 mov3263_1811_2( i , 1 )=movement3263_1811( i , 1 ) ;
510 sou3256_1811_2( i , 1 )=sound3256_1811( i , 1 ) ;
511 sou3263_1811_2( i , 1 )=sound3263_1811( i , 1 ) ;
512 e l s e i f occupancy_1811( i , 2 )==3
513 occ_1811_3( i , 1 )=occupancy_1811( i , 2 ) ;
514 CO23263_1811_3( i , 1 )=CO23263_1811( i , 1 ) ;
515 mov3256_1811_3( i , 1 )=movement3256_1811( i , 1 ) ;
516 mov3263_1811_3( i , 1 )=movement3263_1811( i , 1 ) ;
517 sou3256_1811_3( i , 1 )=sound3256_1811( i , 1 ) ;
518 sou3263_1811_3( i , 1 )=sound3263_1811( i , 1 ) ;
519 e l s e i f occupancy_1811( i , 2 )==4
520 occ_1811_4( i , 1 )=occupancy_1811( i , 2 ) ;
521 CO23263_1811_4( i , 1 )=CO23263_1811( i , 1 ) ;
522 mov3256_1811_4( i , 1 )=movement3256_1811( i , 1 ) ;
523 mov3263_1811_4( i , 1 )=movement3263_1811( i , 1 ) ;
524 sou3256_1811_4( i , 1 )=sound3256_1811( i , 1 ) ;
525 sou3263_1811_4( i , 1 )=sound3263_1811( i , 1 ) ;
526 end
527 end
528

529 occ_1811_1=occ_1811_1(occ_1811_1ᐵ0) ;
530 occ_1811_2=occ_1811_2(occ_1811_2ᐵ0) ;
531 occ_1811_3=occ_1811_3(occ_1811_3ᐵ0) ;
532

533 CO23263_1811_1= CO23263_1811_1( CO23263_1811_1ᐵ0) ;
534 CO23263_1811_2= CO23263_1811_2( CO23263_1811_2ᐵ0) ;
535 CO23263_1811_3= CO23263_1811_3( CO23263_1811_3ᐵ0) ;
536

537 mov3256_1811_1=mov3256_1811_1(mov3256_1811_1ᐵ0) ;
538 mov3256_1811_2=mov3256_1811_2(mov3256_1811_2ᐵ0) ;
539 mov3256_1811_3=mov3256_1811_3(mov3256_1811_3ᐵ0) ;
540

541 mov3263_1811_1=mov3263_1811_1(mov3263_1811_1ᐵ0) ;
542 mov3263_1811_2=mov3263_1811_2(mov3263_1811_2ᐵ0) ;
543 mov3263_1811_3=mov3263_1811_3(mov3263_1811_3ᐵ0) ;
544

545 sou3256_1811_1=sou3256_1811_1(sou3256_1811_1ᐵ0) ;
546 sou3256_1811_2=sou3256_1811_2(sou3256_1811_2ᐵ0) ;
547 sou3256_1811_3=sou3256_1811_3(sou3256_1811_3ᐵ0) ;
548

549 sou3263_1811_1=sou3263_1811_1(sou3263_1811_1ᐵ0) ;
550 sou3263_1811_2=sou3263_1811_2(sou3263_1811_2ᐵ0) ;
551 sou3263_1811_3=sou3263_1811_3(sou3263_1811_3ᐵ0) ;
552

553 % 20ዅ11
554 f o r i =1: length ( occupancy3309_2011 )
555 i f occupancy3309_2011 ( i , 2 )==1
556 occ3309_2011_1( i , 1 )=occupancy3309_2011 ( i , 2 ) ;
557 CO23263_2011_1( i , 1 )=CO23263_2011( i , 1 ) ;
558 mov3256_2011_1( i , 1 )=movement3256_2011( i , 1 ) ;
559 mov3263_2011_1( i , 1 )=movement3263_2011( i , 1 ) ;
560 sou3256_2011_1( i , 1 )=sound3256_2011( i , 1 ) ;
561 sou3263_2011_1( i , 1 )=sound3263_2011( i , 1 ) ;
562 e l s e i f occupancy3309_2011 ( i , 2 )==2
563 occ3309_2011_2( i , 1 )=occupancy3309_2011 ( i , 2 ) ;
564 CO23263_2011_2( i , 1 )=CO23263_2011( i , 1 ) ;
565 mov3256_2011_2( i , 1 )=movement3256_2011( i , 1 ) ;
566 mov3263_2011_2( i , 1 )=movement3263_2011( i , 1 ) ;
567 sou3256_2011_2( i , 1 )=sound3256_2011( i , 1 ) ;
568 sou3263_2011_2( i , 1 )=sound3263_2011( i , 1 ) ;
569 e l s e i f occupancy3309_2011 ( i , 2 )==3
570 occ3309_2011_3( i , 1 )=occupancy3309_2011 ( i , 2 ) ;
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571 CO23263_2011_3( i , 1 )=CO23263_2011( i , 1 ) ;
572 mov3256_2011_3( i , 1 )=movement3256_2011( i , 1 ) ;
573 mov3263_2011_3( i , 1 )=movement3263_2011( i , 1 ) ;
574 sou3256_2011_3( i , 1 )=sound3256_2011( i , 1 ) ;
575 sou3263_2011_3( i , 1 )=sound3263_2011( i , 1 ) ;
576 e l s e i f occupancy3309_2011 ( i , 2 )==4
577 occ3309_2011_4( i , 1 )=occupancy3309_2011 ( i , 2 ) ;
578 CO23263_2011_4( i , 1 )=CO23263_2011( i , 1 ) ;
579 mov3256_2011_4( i , 1 )=movement3256_2011( i , 1 ) ;
580 mov3263_2011_4( i , 1 )=movement3263_2011( i , 1 ) ;
581 sou3256_2011_4( i , 1 )=sound3256_2011( i , 1 ) ;
582 sou3263_2011_4( i , 1 )=sound3263_2011( i , 1 ) ;
583 e l s e i f occupancy3309_2011 ( i , 2 )==5
584 occ3309_2011_5( i , 1 )=occupancy3309_2011 ( i , 2 ) ;
585 CO23263_2011_5( i , 1 )=CO23263_2011( i , 1 ) ;
586 mov3256_2011_5( i , 1 )=movement3256_2011( i , 1 ) ;
587 mov3263_2011_5( i , 1 )=movement3263_2011( i , 1 ) ;
588 sou3256_2011_5( i , 1 )=sound3256_2011( i , 1 ) ;
589 sou3263_2011_5( i , 1 )=sound3263_2011( i , 1 ) ;
590 end
591 end
592

593 occ3309_2011_1=occ3309_2011_1(occ3309_2011_1ᐵ0) ;
594 occ3309_2011_2=occ3309_2011_2(occ3309_2011_2ᐵ0) ;
595 occ3309_2011_3=occ3309_2011_3(occ3309_2011_3ᐵ0) ;
596 occ3309_2011_4=occ3309_2011_4(occ3309_2011_4ᐵ0) ;
597 occ3309_2011_5=occ3309_2011_5(occ3309_2011_5ᐵ0) ;
598

599 CO23263_2011_1= CO23263_2011_1( CO23263_2011_1ᐵ0) ;
600 CO23263_2011_2= CO23263_2011_2( CO23263_2011_2ᐵ0) ;
601 CO23263_2011_3= CO23263_2011_3( CO23263_2011_3ᐵ0) ;
602 CO23263_2011_4= CO23263_2011_4( CO23263_2011_4ᐵ0) ;
603 CO23263_2011_5= CO23263_2011_5( CO23263_2011_5ᐵ0) ;
604

605 mov3256_2011_1=mov3256_2011_1(mov3256_2011_1ᐵ0) ;
606 mov3256_2011_2=mov3256_2011_2(mov3256_2011_2ᐵ0) ;
607 mov3256_2011_3=mov3256_2011_3(mov3256_2011_3ᐵ0) ;
608 mov3256_2011_4=mov3256_2011_4(mov3256_2011_4ᐵ0) ;
609 mov3256_2011_5=mov3256_2011_5(mov3256_2011_5ᐵ0) ;
610

611 mov3263_2011_1=mov3263_2011_1(mov3263_2011_1ᐵ0) ;
612 mov3263_2011_2=mov3263_2011_2(mov3263_2011_2ᐵ0) ;
613 mov3263_2011_3=mov3263_2011_3(mov3263_2011_3ᐵ0) ;
614 mov3263_2011_4=mov3263_2011_4(mov3263_2011_4ᐵ0) ;
615 mov3263_2011_5=mov3263_2011_5(mov3263_2011_5ᐵ0) ;
616

617 sou3256_2011_1=sou3256_2011_1(sou3256_2011_1ᐵ0) ;
618 sou3256_2011_2=sou3256_2011_2(sou3256_2011_2ᐵ0) ;
619 sou3256_2011_3=sou3256_2011_3(sou3256_2011_3ᐵ0) ;
620 sou3256_2011_4=sou3256_2011_4(sou3256_2011_4ᐵ0) ;
621 sou3256_2011_5=sou3256_2011_5(sou3256_2011_5ᐵ0) ;
622

623 sou3263_2011_1=sou3263_2011_1(sou3263_2011_1ᐵ0) ;
624 sou3263_2011_2=sou3263_2011_2(sou3263_2011_2ᐵ0) ;
625 sou3263_2011_3=sou3263_2011_3(sou3263_2011_3ᐵ0) ;
626 sou3263_2011_4=sou3263_2011_4(sou3263_2011_4ᐵ0) ;
627 sou3263_2011_5=sou3263_2011_5(sou3263_2011_5ᐵ0) ;
628

629 f o r i =1: length ( occupancy2309_2011 )
630 i f occupancy2309_2011 ( i , 2 )==1
631 occ2309_2011_1( i , 1 )=occupancy2309_2011 ( i , 2 ) ;
632 CO22264_2011_1( i , 1 )=CO22264_2011( i , 1 ) ;
633 mov2249_2011_1( i , 1 )=movement2249_2011( i , 1 ) ;
634 mov2264_2011_1( i , 1 )=movement2264_2011( i , 1 ) ;
635 sou2249_2011_1( i , 1 )=sound2249_2011( i , 1 ) ;
636 sou2264_2011_1( i , 1 )=sound2264_2011( i , 1 ) ;
637 e l s e i f occupancy2309_2011 ( i , 2 )==2
638 occ2309_2011_2( i , 1 )=occupancy2309_2011 ( i , 2 ) ;
639 CO22264_2011_2( i , 1 )=CO22264_2011( i , 1 ) ;
640 mov2249_2011_2( i , 1 )=movement2249_2011( i , 1 ) ;
641 mov2264_2011_2( i , 1 )=movement2264_2011( i , 1 ) ;
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642 sou2249_2011_2( i , 1 )=sound2249_2011( i , 1 ) ;
643 sou2264_2011_2( i , 1 )=sound2264_2011( i , 1 ) ;
644 e l s e i f occupancy2309_2011 ( i , 2 )==3
645 occ2309_2011_3( i , 1 )=occupancy2309_2011 ( i , 2 ) ;
646 CO22264_2011_3( i , 1 )=CO22264_2011( i , 1 ) ;
647 mov2249_2011_3( i , 1 )=movement2249_2011( i , 1 ) ;
648 mov2264_2011_3( i , 1 )=movement2264_2011( i , 1 ) ;
649 sou2249_2011_3( i , 1 )=sound2249_2011( i , 1 ) ;
650 sou2264_2011_3( i , 1 )=sound2264_2011( i , 1 ) ;
651 e l s e i f occupancy2309_2011 ( i , 2 )==4
652 occ2309_2011_4( i , 1 )=occupancy2309_2011 ( i , 2 ) ;
653 CO22264_2011_4( i , 1 )=CO22264_2011( i , 1 ) ;
654 mov2249_2011_4( i , 1 )=movement2249_2011( i , 1 ) ;
655 mov2264_2011_4( i , 1 )=movement2264_2011( i , 1 ) ;
656 sou2249_2011_4( i , 1 )=sound2249_2011( i , 1 ) ;
657 sou2264_2011_4( i , 1 )=sound2264_2011( i , 1 ) ;
658 e l s e i f occupancy2309_2011 ( i , 2 )==5
659 occ2309_2011_5( i , 1 )=occupancy2309_2011 ( i , 2 ) ;
660 CO22264_2011_5( i , 1 )=CO22264_2011( i , 1 ) ;
661 mov2249_2011_5( i , 1 )=movement2249_2011( i , 1 ) ;
662 mov2264_2011_5( i , 1 )=movement2264_2011( i , 1 ) ;
663 sou2249_2011_5( i , 1 )=sound2249_2011( i , 1 ) ;
664 sou2264_2011_5( i , 1 )=sound2264_2011( i , 1 ) ;
665 end
666 end
667

668 occ2309_2011_1=occ2309_2011_1(occ2309_2011_1ᐵ0) ;
669 occ2309_2011_2=occ2309_2011_2(occ2309_2011_2ᐵ0) ;
670 occ2309_2011_3=occ2309_2011_3(occ2309_2011_3ᐵ0) ;
671

672 CO22264_2011_1= CO22264_2011_1( CO22264_2011_1ᐵ0) ;
673 CO22264_2011_2= CO22264_2011_2( CO22264_2011_2ᐵ0) ;
674 CO22264_2011_3= CO22264_2011_3( CO22264_2011_3ᐵ0) ;
675

676 mov2249_2011_1=mov2249_2011_1(mov2249_2011_1ᐵ0) ;
677 mov2249_2011_2=mov2249_2011_2(mov2249_2011_2ᐵ0) ;
678 mov2249_2011_3=mov2249_2011_3(mov2249_2011_3ᐵ0) ;
679

680 mov2264_2011_1=mov2264_2011_1(mov2264_2011_1ᐵ0) ;
681 mov2264_2011_2=mov2264_2011_2(mov2264_2011_2ᐵ0) ;
682 mov2264_2011_3=mov2264_2011_3(mov2264_2011_3ᐵ0) ;
683

684 sou2249_2011_1=sou2249_2011_1(sou2249_2011_1ᐵ0) ;
685 sou2249_2011_2=sou2249_2011_2(sou2249_2011_2ᐵ0) ;
686 sou2249_2011_3=sou2249_2011_3(sou2249_2011_3ᐵ0) ;
687

688 sou2264_2011_1=sou2264_2011_1(sou2264_2011_1ᐵ0) ;
689 sou2264_2011_2=sou2264_2011_2(sou2264_2011_2ᐵ0) ;
690 sou2264_2011_3=sou2264_2011_3(sou2264_2011_3ᐵ0) ;
691

692 %% Plots , data s p l i t by occupancy
693 c lo se a l l
694 x1=l inspace (1 , length (occ_1811_1) , length (occ_1811_1) ) ;
695 x2=l inspace (1 , length (occ_1811_2) , length (occ_1811_2) ) ;
696 x3=l inspace (1 , length (occ_1811_3) , length (occ_1811_3) ) ;
697 meanmov_1=(mean(mov3256_1811_1)+mean(mov3263_1811_1) )/2
698 meanmov_2=(mean(mov3256_1811_2)+mean(mov3263_1811_2) )/2
699 meanmov_3=(mean(mov3256_1811_3)+mean(mov3263_1811_3) )/2
700

701 % 18ዅ11
702 % Movement
703 f i gu re
704 plot (mov3256_1811_1 ( : , 1 ) , ' g.ዅ ' )
705 hold on
706 plot (mov3263_1811_1 ( : , 1 ) , ' b.ዅ ' )
707 hold on
708 plot (x1 , ones ( length (x1) ,1) ∗meanmov_1)
709 t i t l e ( 'Movement data with occupancy of 1 , room 1 18ዅ11 ' )
710 legend ( 'Node 1 ' , 'Node 2 ' , ' average value ' )
711 ylabe l ( 'movement intens i ty ' )
712
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713 f i gu re
714 yyaxis r ight
715 plot (mov3256_1811_2 ( : , 1 ) , ' g.ዅ ' )
716 hold on
717 plot (mov3263_1811_2 ( : , 1 ) , ' b.ዅ ' )
718 hold on
719 plot (x2 , ones ( length (x2) ,1) ∗meanmov_2)
720 hold on
721 yyaxis l e f t
722 plot (occ_1811_2 ( : , 1 ) , 'k ' , ' l inewidth ' , 2)
723 t i t l e ( 'Movement data vs occupancy of 2 , room 1 18ዅ11 ' )
724 legend ( 'Occupancy ' , 'Node 1 ' , 'Node 2 ' , ' average value ' )
725 yyaxis l e f t
726 ylim ( [0 5 ] )
727 ylabe l ( 'number of people ' )
728 yyaxis r ight
729 ylabe l ( 'movement intens i ty ' )
730

731 f i gu re
732 plot (mov3256_1811_3 ( : , 1 ) , ' g.ዅ ' )
733 hold on
734 plot (mov3263_1811_3 ( : , 1 ) , ' b.ዅ ' )
735 hold on
736 plot (x3 , ones ( length (x3) ,1) ∗meanmov_3)
737 t i t l e ( 'Movement data with occupancy of 3 , room 1 18ዅ11 ' )
738 legend ( 'Node 1 ' , 'Node 2 ' , ' average value ' )
739 ylabe l ( 'movement intens i ty ' )
740

741 % CO2
742 movmeanCO2_1=movmean(CO23263_1811_1, 5 ) ;
743 movmeanCO2_2=movmean(CO23263_1811_2, 5 ) ;
744 movmeanCO2_3=movmean(CO23263_1811_3, 5 ) ;
745 meanCO2_1=mean(movmeanCO2_1)
746 meanCO2_2=mean(movmeanCO2_2)
747 meanCO2_3=mean(movmeanCO2_3)
748

749 f i gu re
750 yyaxis r ight
751 plot (CO23263_1811_1 ( : , 1 ) , ' b.ዅ ' )
752 hold on
753 plot (movmeanCO2_1)
754 hold on
755 yyaxis l e f t
756 plot (occ_1811_1 ( : , 1 ) , 'k ' , ' l inewidth ' , 2)
757 t i t l e ( 'CO2 data vs occupancy of 1 , room 1 18ዅ11 ' )
758 legend ( 'Occupancy ' , 'Node 1 ' , 'Moving average window 10 ' )
759 yyaxis l e f t
760 ylim ( [0 5 ] )
761 ylabe l ( 'number of people ' )
762 yyaxis r ight
763 ylabe l ( 'CO2 concentration ' )
764

765 f i gu re
766 yyaxis r ight
767 plot (CO23263_1811_2 ( : , 1 ) , ' b.ዅ ' )
768 hold on
769 plot (movmeanCO2_2)
770 hold on
771 yyaxis l e f t
772 plot (occ_1811_2 ( : , 1 ) , 'k ' , ' l inewidth ' , 2)
773 t i t l e ( 'CO2 data vs occupancy of 2 , room 1 18ዅ11 ' )
774 legend ( 'Occupancy ' , 'Node 1 ' , 'Moving average window 10 ' )
775 yyaxis l e f t
776 ylim ( [0 5 ] )
777 ylabe l ( 'number of people ' )
778 yyaxis r ight
779 ylabe l ( 'CO2 concentration ' )
780

781 f i gu re
782 yyaxis r ight
783 plot (CO23263_1811_3 ( : , 1 ) , ' b.ዅ ' )
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784 hold on
785 plot (movmeanCO2_3)
786 hold on
787 yyaxis l e f t
788 plot (occ_1811_3 ( : , 1 ) , 'k ' , ' l inewidth ' , 2)
789 t i t l e ( 'CO2 data vs occupancy of 3 , room 1 18ዅ11 ' )
790 legend ( 'Occupancy ' , 'Node 1 ' , 'Moving average window 10 ' )
791 yyaxis l e f t
792 ylim ( [0 5 ] )
793 ylabe l ( 'number of people ' )
794 yyaxis r ight
795 ylabe l ( 'CO2 concentration ' )
796

797 % sound
798 meansou_1=(mean(sou3256_1811_1)+mean(sou3263_1811_1) )/2
799 meansou_2=(mean(sou3256_1811_2)+mean(sou3263_1811_2) )/2
800 meansou_3=(mean(sou3256_1811_3)+mean(sou3263_1811_3) )/2
801 f i gu re
802 yyaxis r ight
803 plot (sou3256_1811_1 ( : , 1 ) , ' g.ዅ ' )
804 hold on
805 plot (sou3263_1811_1 ( : , 1 ) , ' b.ዅ ' )
806 hold on
807 plot (x1 , ones ( length (x1) ,1) ∗meansou_1)
808 hold on
809 yyaxis l e f t
810 plot (occ_1811_1 ( : , 1 ) , 'k ' , ' l inewidth ' , 2)
811 t i t l e ( 'Sound data vs occupancy of 1 , room 1 18ዅ11 ' )
812 legend ( 'Occupancy ' , 'Node 1 ' , 'Node 2 ' , ' average value ' )
813 yyaxis l e f t
814 ylim ( [0 5 ] )
815 ylabe l ( 'number of people ' )
816 yyaxis r ight
817 ylabe l ( ' sound intens i ty ' )
818

819 f i gu re
820 yyaxis r ight
821 plot (sou3256_1811_2 ( : , 1 ) , ' g.ዅ ' )
822 hold on
823 plot (sou3263_1811_2 ( : , 1 ) , ' b.ዅ ' )
824 hold on
825 plot (x2 , ones ( length (x2) ,1) ∗meansou_2)
826 hold on
827 yyaxis l e f t
828 plot (occ_1811_2 ( : , 1 ) , 'k ' , ' l inewidth ' , 2)
829 t i t l e ( 'Sound data vs occupancy of 2 , room 1 18ዅ11 ' )
830 legend ( 'Occupancy ' , 'Node 1 ' , 'Node 2 ' , ' average value ' )
831 yyaxis l e f t
832 ylim ( [0 5 ] )
833 ylabe l ( 'number of people ' )
834 yyaxis r ight
835 ylabe l ( ' sound intens i ty ' )
836

837 f i gu re
838 yyaxis r ight
839 plot (sou3256_1811_3 ( : , 1 ) , ' g.ዅ ' )
840 hold on
841 plot (sou3263_1811_3 ( : , 1 ) , ' b.ዅ ' )
842 hold on
843 plot (x3 , ones ( length (x3) ,1) ∗meansou_3)
844 hold on
845 yyaxis l e f t
846 plot (occ_1811_3 ( : , 1 ) , 'k ' , ' l inewidth ' , 2)
847 t i t l e ( 'Sound data vs occupancy of 3 , room 1 18ዅ11 ' )
848 legend ( 'Occupancy ' , 'Node 1 ' , 'Node 2 ' , ' average value ' )
849 yyaxis l e f t
850 ylim ( [0 5 ] )
851 ylabe l ( 'number of people ' )
852 yyaxis r ight
853 ylabe l ( ' sound intens i ty ' )
854
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855

856 % It ' s c l ea r that the sound shows l i t t l e co r r e l a t i on with the occupancy ,
857 % looking at the average va lues . Looking at the average values fo r movement
858 % and CO2 the cor r e l a t i on i s more c l e a r . For CO2 taking the moving average
859 % with a la rge r window seemed to increase the d i f f e r e n c e in the overa l l
860 % averages between d i f f e r e n t occupancies . Of course , th i s i s given a
861 % constant occupancy. Based on th i s I can try to use a bigger window for
862 % calcu lat ing the moving average on the f u l l data set while using the
863 % l i n e a r regres s ion c o e f f i c i e n t s ca lcu lated from the current data s e t .
864

865 %% Linear regres s ion ana lys i s on CO2
866 % y=X∗b+e with y nx1 column vector containing the occupancy , X an nxm
867 % matrix containing the inputs , b an mx1 row vecor containing regres s ion
868 % c o e f f i c i e n t s and e a nx1 column vector containing the re s idua l e r r o r s .
869 % The object ive i s to minimise th i s error , y i e ld ing the object ive function
870 % L= min_b (yዅXb) '(yዅXb)
871

872 c lo se a l l
873 % occupancy 1
874 y=occ_1811_1 ;
875 X=movmeanCO2_1;
876 b_CO2_1=inv ((X'∗X) )∗X'∗ y ;
877

878 % occupancy 2
879 y=occ_1811_2 ;
880 X=movmeanCO2_2;
881 b_CO2_2=inv ((X'∗X) )∗X'∗ y ;
882

883 % occupancy 3
884 y=occ_1811_3 ;
885 X=movmeanCO2_3;
886 b_CO2_3=inv ((X'∗X) )∗X'∗ y
887

888

889 %% Testing l i n e a r regres s ion c o e f f i c i e n t s on val idat ion data
890 % Now that I ' ve used l i n e a r regres s ion to get the c o e f f i c i e n t s that r e l a t e
891 % the input (CO2) to the output ( occupancy ) , I can create a loop that uses
892 % these c o e f f i c i e n t s to generate a predicted occupancy based on CO2 data
893 % from the second day and/or the other room and compare that to the actual
894 % occupancy. Using a moving average with a bigger window on the input
895 % seemed to show a higher co r r e l a t i on with the input but yie lded the exact
896 % same regres s ion c o e f f i c i e n t s as a moving average with a smaller window so
897 % the smal lest window of 5 samples (5 minutes ) was s e l e c t e d . Using the
898 % moving average o f f e r s some noise reduction but a l so decreases the
899 % reso lut ion of the data so care must be taken in not using a la rge r window
900 % than necessary . Note that I ' ve a l so made the measured movement the
901 % pr inc ipa l data type. This means that a l l data should be zero i f both
902 % nodes in a room detect zero movement.
903 c lo se a l l
904

905 CO22264_2011MA=movmean(CO22264_2011 ( : , 1 ) ,10) ;
906 perf_co2=0;
907 f o r i =1: length (CO22264_2011)
908 i f movement2249_2011( i , 1 )==0 && movement2264_2011( i , 1 )==0
909 CO22264_2011MA( i )=0;
910 end
911 end
912 Occ_pred2309=zeros ( length (CO22264_2011MA) ,1) ;
913 f o r i =1: length (CO22264_2011MA)
914 i f CO22264_2011MA( i )==0
915 Occ_pred2309( i )=0;
916 e l s e i f CO22264_2011MA( i )<780
917 Occ_pred2309( i , 1 )=round (b_CO2_1∗CO22264_2011MA( i ) ,0) ;
918 Occ_pred2309( i , 1 ) =1;
919 e l s e i f CO22264_2011MA( i )<835
920 Occ_pred2309( i , 1 )=round (b_CO2_2∗CO22264_2011MA( i ) ,0) ;
921 Occ_pred2309( i , 1 ) =2;
922 e l s e
923 Occ_pred2309( i , 1 )=round (b_CO2_3∗CO22264_2011MA( i ) ,0) ;
924 Occ_pred2309( i , 1 ) =3;
925 end
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926 i f Occ_pred2309( i )==occupancy2309_2011 ( i , 2 )
927 perf_co2=perf_co2+1;
928 end
929 end
930 f i gu re
931 plot (Occ_pred2309 , ' r ' , ' l inewidth ' ,2)
932 hold on
933 plot ( occupancy2309_2011 ( : , 2 ) , 'k ' , ' l inewidth ' ,2)
934 t i t l e ( 'Occupancy predict ion for room 2 on 20ዅ11 based on CO2' )
935 legend ( ' predicted occupancy ' , ' actual occupancy ' )
936 ylabe l ( 'number of people ' )
937

938 100∗perf_co2/ i
939 % This ear ly te s t with the r e s u l t s from the l i n e a r regres s ion on the CO2
940 % alone already showed some promissing r e s u l t s . At th i s point no
941 % optimisation i s u t i l i s e d to improve the resu l t s , th i s method ' s so l e
942 % purpose was to show that there i s indeed a c l ea r co r r e l a t i on between
943 % the measured data and occupancy. Using l i n e a r regres s ion in combination
944 % with an optimisation method resembles what a ANN would do , which i s why
945 % that should be the thing to look i n t o . F i r s t I ' l l do a l i n e a r regres s ion
946 % on the movement data to see i f that y i e ld s s imi la r r e s u l t s .
947

948 %% Linear Regression on movement data.
949 %close a l l
950 movmeanmov3256_1=movmean(mov3256_1811_1 ,5 ) ;
951 movmeanmov3256_2=movmean(mov3256_1811_2 ,5 ) ;
952 movmeanmov3256_3=movmean(mov3256_1811_3 ,5 ) ;
953 movmeanmov3263_1=movmean(mov3263_1811_1 ,5 ) ;
954 movmeanmov3263_2=movmean(mov3263_1811_2 ,5 ) ;
955 movmeanmov3263_3=movmean(mov3263_1811_3 ,5 ) ;
956 % occupancy 1
957 X1=movmeanmov3256_1 ;
958 X2=movmeanmov3263_1 ;
959 y1=occ_1811_1 (1 : length (X1) ) ;
960 y2=occ_1811_1 (1 : length (X2) ) ;
961 b1_mov_1=inv ((X1'∗X1) )∗X1'∗ y1 ;
962 b2_mov_1=inv ((X2'∗X2) )∗X2'∗ y2 ;
963

964 % occupancy 2
965 X1=movmeanmov3256_2 ;
966 X2=movmeanmov3263_2 ;
967 y1=occ_1811_2 (1 : length (X1) ) ;
968 y2=occ_1811_2 (1 : length (X2) ) ;
969 b1_mov_2=inv ((X1'∗X1) )∗X1'∗ y1 ;
970 b2_mov_2=inv ((X2'∗X2) )∗X2'∗ y2 ;
971

972 % occupancy 3
973 X1=movmeanmov3256_3 ;
974 X2=movmeanmov3263_3 ;
975 y1=occ_1811_3 (1 : length (X1) ) ;
976 y2=occ_1811_3 (1 : length (X2) ) ;
977 b1_mov_3=inv ((X1'∗X1) )∗X1'∗ y1 ;
978 b2_mov_3=inv ((X2'∗X2) )∗X2'∗ y2 ;
979

980

981 % Looking at the ca lcu lated regres s ion c o e f f i c i e n t s data from both nodes
982 % seem to produce s imi la r va lues . Similar to the CO2 data the actual values
983 % of the regres s ion c o e f f i c i e n t fo r d i f f e r e n t occupancies are s u f f i c i e n t l y
984 % d i f f e r e n t to say that they may y ie ld s imi la r r e s u l t s as the CO2 data.
985

986 %% Testing on val idat ion data using movement data
987 c lo se a l l
988 perf_mov=0;
989 mov2264_2011MA=movmean(movement2264_2011 ( : , 1 ) ,10) ;
990 f o r i =1: length (movement2264_2011)
991 i f movement2249_2011( i , 1 )==0 && movement2264_2011( i , 1 )==0
992 mov2264_2011MA( i )=0;
993 end
994 end
995 Occ_pred2309=zeros ( length (mov2264_2011MA) ,1) ;
996 f o r i =1: length (mov2264_2011MA)
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997 i f mov2264_2011MA( i )==0
998 Occ_pred2309( i )=0;
999 e l s e i f mov2264_2011MA( i )<(mean(movmeanmov3256_1)+2)
1000 Occ_pred2309( i , 1 )=round (b2_mov_1∗mov2264_2011MA( i ) ,0) ;
1001 e l s e i f mov2264_2011MA( i )<(mean(movmeanmov3256_2)+2)
1002 Occ_pred2309( i , 1 )=round (b2_mov_2∗mov2264_2011MA( i ) ,0) ;
1003 e l s e
1004 Occ_pred2309( i , 1 )=round (b2_mov_3∗mov2264_2011MA( i ) ,0) ;
1005 end
1006 i f Occ_pred2309( i )==occupancy2309_2011 ( i , 2 )
1007 perf_mov=perf_mov+1;
1008 end
1009 end
1010 f i gu re
1011 plot (Occ_pred2309 , ' r ' , ' l inewidth ' ,2)
1012 hold on
1013 plot ( occupancy2309_2011 ( : , 2 ) , 'k ' , ' l inewidth ' ,2)
1014 t i t l e ( 'Occupancy predict ion for room 2 on 20ዅ11 based on movement ' )
1015 legend ( ' predicted occupancy ' , ' actual occupancy ' )
1016 ylabe l ( 'number of people ' )
1017

1018 100∗perf_mov/ i
1019

1020 % The r e s u l t s are l e s s promissing which may be due to the l imi ta t i ons of
1021 % the data used for r e g r e s s i o n . Try using the data from room 1 on 20ዅ11 for
1022 % regres s ion as that data has values fo r occupancy of 4 and 5 people while
1023 % the data that i s current ly used caps o f f at an occupancy of 3 people .
1024 % This would y ie ld addit ional regres s ion c o e f f i c i e n t s that may improve the
1025 % r e s u l t s in the higher end. An addit ional reason the movement data proved
1026 % l e s s succe s s fu l may be that the average values fo r d i f f e r e n t occupancies
1027 % where l e s s separated. This makes i t hard to set a c l ea r boundary and
1028 % makes i t e a s i e r to miss the mark. Next step : combine r e s u l t s .
1029

1030 %% Linear regres s ion using data from 20ዅ11
1031 %close a l l
1032 movmeanmov3256_1=movmean(mov3256_2011_1 ,5 ) ;
1033 movmeanmov3256_2=movmean(mov3256_2011_2 ,5 ) ;
1034 movmeanmov3256_3=movmean(mov3256_2011_3 ,5 ) ;
1035 movmeanmov3256_4=movmean(mov3256_2011_4 ,5 ) ;
1036 movmeanmov3256_5=movmean(mov3256_2011_5 ,5 ) ;
1037 movmeanmov3263_1=movmean(mov3263_2011_1 ,5 ) ;
1038 movmeanmov3263_2=movmean(mov3263_2011_2 ,5 ) ;
1039 movmeanmov3263_3=movmean(mov3263_2011_3 ,5 ) ;
1040 movmeanmov3263_4=movmean(mov3263_2011_4 ,5 ) ;
1041 movmeanmov3263_5=movmean(mov3263_2011_5 ,5 ) ;
1042 % occupancy 1
1043 X1=movmeanmov3256_1 ;
1044 X2=movmeanmov3263_1 ;
1045 y1=occ3309_2011_1 (1 : length (X1) ) ;
1046 y2=occ3309_2011_1 (1 : length (X2) ) ;
1047 b1_mov_1=inv ((X1'∗X1) )∗X1'∗ y1
1048 b2_mov_1=inv ((X2'∗X2) )∗X2'∗ y2
1049

1050 f i gu re
1051 plot (b1_mov_1∗mov3256_2011_1 ( : , 1 ) , ' g ' )
1052 hold on
1053 plot (b1_mov_1∗X1, ' b.ዅ ' )
1054 hold on
1055 plot (b2_mov_1∗mov3263_2011_1 ( : , 1 ) , 'y ' )
1056 hold on
1057 plot (b2_mov_1∗X2, 'm.ዅ ' )
1058 hold on
1059 plot (occ3309_2011_1 , 'k ' , ' l inewidth ' , 2)
1060 t i t l e ( ' Regression c o e f f i c i e n t s on moving average compared with raw movement data with ...

occupancy of 1 ' )
1061 legend ( ' regressed raw 3256 ' , ' regressed moving average 3256 ' , ' regressed raw ...

3263 ' , ' regressed moving average 3263 ' , ' occupancy ' )
1062 ylabe l ( 'number of people ' )
1063

1064 % occupancy 2
1065 X1=movmeanmov3256_2 ;
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1066 X2=movmeanmov3263_2 ;
1067 y1=occ3309_2011_2 (1 : length (X1) ) ;
1068 y2=occ3309_2011_2 (1 : length (X2) ) ;
1069 b1_mov_2=inv ((X1'∗X1) )∗X1'∗ y1
1070 b2_mov_2=inv ((X2'∗X2) )∗X2'∗ y2
1071

1072 f i gu re
1073 plot (b1_mov_2∗mov3256_2011_2 ( : , 1 ) , ' g ' )
1074 hold on
1075 plot (b1_mov_2∗X1, ' b.ዅ ' )
1076 hold on
1077 plot (b2_mov_2∗mov3263_2011_2 ( : , 1 ) , 'y ' )
1078 hold on
1079 plot (b2_mov_2∗X2, 'm.ዅ ' )
1080 hold on
1081 plot (occ3309_2011_2 , 'k ' , ' l inewidth ' , 2)
1082 t i t l e ( ' Regression c o e f f i c i e n t s on moving average compared with raw movement data with ...

occupancy of 2 ' )
1083 legend ( ' regressed raw 3256 ' , ' regressed moving average 3256 ' , ' regressed raw ...

3263 ' , ' regressed moving average 3263 ' , ' occupancy ' )
1084 ylabe l ( 'number of people ' )
1085

1086 % occupancy 3
1087 X1=movmeanmov3256_3 ;
1088 X2=movmeanmov3263_3 ;
1089 y1=occ3309_2011_3 (1 : length (X1) ) ;
1090 y2=occ3309_2011_3 (1 : length (X2) ) ;
1091 b1_mov_3=inv ((X1'∗X1) )∗X1'∗ y1
1092 b2_mov_3=inv ((X2'∗X2) )∗X2'∗ y2
1093

1094 f i gu re
1095 plot (b1_mov_3∗mov3256_2011_3 ( : , 1 ) , ' g ' )
1096 hold on
1097 plot (b1_mov_3∗X1, ' b.ዅ ' )
1098 hold on
1099 plot (b2_mov_3∗mov3263_2011_3 ( : , 1 ) , 'y ' )
1100 hold on
1101 plot (b2_mov_3∗X2, 'm.ዅ ' )
1102 hold on
1103 plot (occ3309_2011_3 , 'k ' , ' l inewidth ' , 2)
1104 t i t l e ( ' Regression c o e f f i c i e n t s on moving average compared with raw movement data with ...

occupancy of 3 ' )
1105 legend ( ' regressed raw 3256 ' , ' regressed moving average 3256 ' , ' regressed raw ...

3263 ' , ' regressed moving average 3263 ' , ' occupancy ' )
1106 ylabe l ( 'number of people ' )
1107

1108 % occupancy 4
1109 X1=movmeanmov3256_4 ;
1110 X2=movmeanmov3263_4 ;
1111 y1=occ3309_2011_4 (1 : length (X1) ) ;
1112 y2=occ3309_2011_4 (1 : length (X2) ) ;
1113 b1_mov_4=inv ((X1'∗X1) )∗X1'∗ y1
1114 b2_mov_4=inv ((X2'∗X2) )∗X2'∗ y2
1115

1116 f i gu re
1117 plot (b1_mov_4∗mov3256_2011_4 ( : , 1 ) , ' g ' )
1118 hold on
1119 plot (b1_mov_4∗X1, ' b.ዅ ' )
1120 hold on
1121 plot (b2_mov_4∗mov3263_2011_4 ( : , 1 ) , 'y ' )
1122 hold on
1123 plot (b2_mov_4∗X2, 'm.ዅ ' )
1124 hold on
1125 plot (occ3309_2011_4 , 'k ' , ' l inewidth ' , 2)
1126 t i t l e ( ' Regression c o e f f i c i e n t s on moving average compared with raw movement data with ...

occupancy of 3 ' )
1127 legend ( ' regressed raw 3256 ' , ' regressed moving average 3256 ' , ' regressed raw ...

3263 ' , ' regressed moving average 3263 ' , ' occupancy ' )
1128 ylabe l ( 'number of people ' )
1129

1130 % occupancy 5
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1131 X1=movmeanmov3256_5 ;
1132 X2=movmeanmov3263_5 ;
1133 y1=occ3309_2011_5 (1 : length (X1) ) ;
1134 y2=occ3309_2011_5 (1 : length (X2) ) ;
1135 b1_mov_5=inv ((X1'∗X1) )∗X1'∗ y1
1136 b2_mov_5=inv ((X2'∗X2) )∗X2'∗ y2
1137

1138 f i gu re
1139 plot (b1_mov_5∗mov3256_2011_5 ( : , 1 ) , ' g ' )
1140 hold on
1141 plot (b1_mov_5∗X1, ' b.ዅ ' )
1142 hold on
1143 plot (b2_mov_5∗mov3263_2011_5 ( : , 1 ) , 'y ' )
1144 hold on
1145 plot (b2_mov_5∗X2, 'm.ዅ ' )
1146 hold on
1147 plot (y1 , 'k ' , ' l inewidth ' , 2)
1148 t i t l e ( ' Regression c o e f f i c i e n t s on moving average compared with raw movement data with ...

occupancy of 3 ' )
1149 legend ( ' regressed raw 3256 ' , ' regressed moving average 3256 ' , ' regressed raw ...

3263 ' , ' regressed moving average 3263 ' , ' occupancy ' )
1150 ylabe l ( 'number of people ' )
1151

1152 %% Testing on other data
1153 %close a l l
1154 mov3256_2011MA=movmean(movement3256_2011 ( : , 1 ) ,5) ;
1155 f o r i =1: length (movement3256_2011)
1156 i f movement3256_2011( i , 1 )==0 && movement3256_2011( i , 1 )==0
1157 mov3256_2011MA( i )=0;
1158 end
1159 end
1160 Occ_pred3309=zeros ( length (mov3256_2011MA) ,1) ;
1161 f o r i =1: length (mov3256_2011MA)
1162 i f mov3256_2011MA( i )==0
1163 Occ_pred3309( i )=0;
1164 e l s e i f mov3256_2011MA( i )<(mean(movmeanmov3256_1)+2)
1165 Occ_pred3309( i , 1 )=round (b2_mov_1∗mov3256_2011MA( i ) ,0) ;
1166 e l s e i f mov3256_2011MA( i )<(mean(movmeanmov3256_2)+2)
1167 Occ_pred3309( i , 1 )=round (b2_mov_2∗mov3256_2011MA( i ) ,0) ;
1168 e l s e
1169 Occ_pred3309( i , 1 )=round (b2_mov_3∗mov3256_2011MA( i ) ,0) ;
1170 end
1171 end
1172 f i gu re
1173 plot (Occ_pred3309 , ' r ' , ' l inewidth ' ,2)
1174 hold on
1175 plot ( occupancy3309_2011 ( : , 2 ) , 'k ' , ' l inewidth ' ,2)
1176 t i t l e ( 'Occupancy predict ion for room 1 on 20ዅ11 based on movement ' )
1177 legend ( ' predicted occupancy ' , ' actual occupancy ' )
1178 ylabe l ( 'number of people ' )
1179

1180 mov2264_2011MA=movmean(movement2264_2011 ( : , 1 ) ,10) ;
1181 f o r i =1: length (movement2264_2011)
1182 i f movement2249_2011( i , 1 )==0 && movement2264_2011( i , 1 )==0
1183 mov2264_2011MA( i )=0;
1184 end
1185 end
1186 Occ_pred2309=zeros ( length (mov2264_2011MA) ,1) ;
1187 f o r i =1: length (mov2264_2011MA)
1188 i f mov2264_2011MA( i )==0
1189 Occ_pred2309( i )=0;
1190 e l s e i f mov2264_2011MA( i )<(mean(movmeanmov3256_1)+2)
1191 Occ_pred2309( i , 1 )=round (b2_mov_1∗mov2264_2011MA( i ) ,0) ;
1192 e l s e i f mov2264_2011MA( i )<(mean(movmeanmov3256_2)+2)
1193 Occ_pred2309( i , 1 )=round (b2_mov_2∗mov2264_2011MA( i ) ,0) ;
1194 e l s e
1195 Occ_pred2309( i , 1 )=round (b2_mov_3∗mov2264_2011MA( i ) ,0) ;
1196 end
1197 end
1198 f i gu re
1199 plot (Occ_pred2309 , ' r ' , ' l inewidth ' ,2)
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1200 hold on
1201 plot ( occupancy2309_2011 ( : , 2 ) , 'k ' , ' l inewidth ' ,2)
1202 t i t l e ( 'Occupancy predict ion for room 2 on 20ዅ11 based on movement ' )
1203 legend ( ' predicted occupancy ' , ' actual occupancy ' )
1204 ylabe l ( 'number of people ' )
1205

1206 % Results did not show any improvement using data from a more varr ied day.
1207 % A poss ib l e reason i s that the added var iat ion y i e ld s regres s ion
1208 % c o e f f i c i e n t s fo r a higher number of people as wel l as the ones that the
1209 % other data a l so yielded , but the addit ional ones were not used due to a
1210 % lower occupancy on the days of the te s t data. Also , s ince the var iat ion
1211 % on the current set i s higher , l e s s samples are used to generate the
1212 % regres s ion c o e f f i c i e n t s which me cause them to be l e s s accurate . Next
1213 % I ' l l try an optimisation step to both combine and optimise the
1214 % c o e f f i c i e n t s fo r bith movement and CO2.
1215

1216 %% Simulink
1217 % The regres s ion c o e f f c i c i e n t w i l l act as i n i t i a l values fo r the parameters
1218 % that need to be optimised. The chal lenge now becomes def in ing a su i tab l e
1219 % cost function in terms of the ava i lab le data and s e l e c t i n g an appropriate
1220 % optimisation algorithm. So what do we want? The output of the
1221 % optimisation needs to match the observed number of people as c l o s e l y as
1222 % p o s s i b l e . The cost function can there fore look l i k e minimising the
1223 % squared error of the observations minus the output : E=min (OዅY) ² . The
1224 % observations are already n ice ly captured in the ”occupancy” var iab le s in
1225 % the workspace. The output needs to be expressed in terms of the inputs
1226 % and the regres s ion c o e f f i c i e n t s . Since the regres s ion c o e f f i c i e n t s are
1227 % not based on the raw inputs but rather on the occupancyዅcorrected inputs
1228 % ( so the data corresponding to a constant occupancy value ) , the way to do
1229 % thi s i s not immediately ev ident . The output w i l l eventualy look l i k e
1230 % Y=a_1∗M+a_2∗C with a_i the combined regres s ion c o e f f i c i e n t matrices , M the
1231 % movement data matrix and C the CO2 data matrix. Since the observations
1232 % cover 2 days and 2 rooms (1 on the f i r s t day and 2 on the second ) and
1233 % these vectors are of d i f f e r e n t length , i t makes sense to s p l i t the
1234 % problem up in two parts : one fo r the f i r s t day and one for the second.
1235 % This means the output on the f i r s t day w i l l be oneዅdimensional whereas
1236 % the output on the second day w i l l be two dimensional . The movement data
1237 % for each room i s generated by 2 sensor nodes per room and w i l l always have
1238 % dimension nx2m ( where m i s the dimensional ity of the output and n i s the
1239 % number of samples ) . the CO2 data i s produced by a s i n g l e sensor node per
1240 % room and w i l l have the same s i z e as the output. The equation for the
1241 % f i r s t day would look l i k e Y=c_1∗M∗a_1+c_2∗C∗a_2, with Y [ nx1 ] , a_1[2 x1 ] , M[ nx2 ] ,
1242 % a_2[1 x1 ] , C[ nx1 ] and c_i a constant that determines the p r i o r i t y of each
1243 % data type and fo l low sum( c_i )=1. The r e s u l t s show that CO2 i s more
1244 % r e l i a b l e and w i l l there fore have a higher p r i o r i t y . However , we s t i l l
1245 % need to take into account that we have multiple regres s ion c o e f f i c i e n t s
1246 % for each data type to choose from. How do we s e l e c t the most su i tab l e
1247 % regres s ion c o e f f i c i e n t fo r a s p e c i f i c input ( or s e r i e s of inputs i f we ' re
1248 % working with a moving average ) ? My f i r s t thought i s to design a switched
1249 % system in Simulink.
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Data management function

1 function manageddata=datamanagement( data )
2 % This function takes raw data that contains missing samples as an input ,
3 % i d e n t i f i e s and f i l l s the gaps with interpo lated va lues .
4 i =1;
5 while i <(length ( data )ዅ1)
6 i f ( ( data (( i +1) ,4)ዅdata ( i , 4 ) )>0.00085 ) && (( data (( i +1) ,4)ዅdata ( i , 4 ) )<0.0015 )
7 data=[data (1 : i , : ) ; [NaN,NaN,NaN,NaN] ; data ( i+1:end , : ) ] ;
8 i=i +2;
9 e l s e i f ( data (( i +1) ,4)ዅdata ( i , 4 )>0.0017 ) && ( data (( i +1) ,4)ዅdata ( i , 4 )<0.0025 )
10 data=[data (1 : i , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +1) :end , : ) ] ;
11 data=[data ( 1 : ( i +1) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +2) :end , : ) ] ;
12 i=i +3;
13 e l s e i f ( data (( i +1) ,4)ዅdata ( i , 4 )>0.0025 ) && ( data (( i +1) ,4)ዅdata ( i , 4 )<0.0032 )
14 data=[data (1 : i , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +1) :end , : ) ] ;
15 data=[data ( 1 : ( i +1) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +2) :end , : ) ] ;
16 data=[data ( 1 : ( i +2) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +3) :end , : ) ] ;
17 i=i +4;
18 e l s e i f ( data (( i +1) ,4)ዅdata ( i , 4 )>0.0032 ) && ( data (( i +1) ,4)ዅdata ( i , 4 )<0.004 )
19 data=[data (1 : i , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +1) :end , : ) ] ;
20 data=[data ( 1 : ( i +1) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +2) :end , : ) ] ;
21 data=[data ( 1 : ( i +2) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +3) :end , : ) ] ;
22 data=[data ( 1 : ( i +3) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +4) :end , : ) ] ;
23 i=i +5;
24 e l s e i f ( data (( i +1) ,4)ዅdata ( i , 4 )>0.004 ) && ( data (( i +1) ,4)ዅdata ( i , 4 )<0.0046 )
25 data=[data (1 : i , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +1) :end , : ) ] ;
26 data=[data ( 1 : ( i +1) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +2) :end , : ) ] ;
27 data=[data ( 1 : ( i +2) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +3) :end , : ) ] ;
28 data=[data ( 1 : ( i +3) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +4) :end , : ) ] ;
29 data=[data ( 1 : ( i +4) , : ) ; [NaN,NaN,NaN,NaN] ; data (( i +5) :end , : ) ] ;
30 i=i +6;
31 e l s e
32 i=i +1;
33 end
34 end
35 manageddata ( : , 1 : 3 ) = f i l l m i s s i n g ( data ( : , 1 : 3 ) , 'movmedian ' ,10) ;
36 manageddata ( : , 4 ) = f i l l m i s s i n g ( data ( : , 4 ) , ' l i n e a r ' ) ;
37

38 f i gu re
39 hold on
40 plot (manageddata ( : , 3 ) , ' r ' , ' l inewidth ' ,1 .5 )
41 plot ( data ( : , 3 ) , 'b ' , ' l inewidth ' ,1 .5 )
42 legend ( ' Interpolated data ' , 'Raw data ' )
43 end

Neural network training file

1 % This i s the main f i l e fo r the design and tra in ing of a three layer neural
2 % network with a mix of hyperbol ic tangent and Leaky ReLu act ivat ion
3 % functions , trained through back propagation. The function DeepLearning.m
4 % contains the untrained network. This f i l e uses the untrained network to
5 % derive the best performing weights and biases which combined with the
6 % function NeuralNetwork form the f i n a l network.
7 c l c
8 c l ea r a l l
9 c lo se a l l hidden
10 run ( 'datamanagement_addon.m ' )
11 % day 1 room 1
12 CO23263_1811MA=(movmean(CO23263_1811 ( : , 1 ) ,5) ) ;
13 mov3256_1811MA=(movmean(movement3256_1811 ( : , 1 ) ,5) ) ;
14 mov3263_1811MA=(movmean(movement3263_1811 ( : , 1 ) ,5) ) ;
15 temp3256_1811MA=(movmean( temperature3256_1811 ( : , 1 ) ,5) ) ;
16 temp3263_1811MA=(movmean( temperature3263_1811 ( : , 1 ) ,5) ) ;
17 hum3256_1811MA=(movmean( humidity3256_1811 ( : , 1 ) ,5) ) ;
18 hum3263_1811MA=(movmean( humidity3263_1811 ( : , 1 ) ,5) ) ;
19

20 % day 2 room 1
21 CO23263_2011MA=(movmean(CO23263_2011 ( : , 1 ) ,5) ) ;
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22 mov3256_2011MA=(movmean(movement3256_2011 ( : , 1 ) ,5) ) ;
23 mov3263_2011MA=(movmean(movement3263_2011 ( : , 1 ) ,5) ) ;
24 temp3256_2011MA=(movmean( temperature3256_2011 ( : , 1 ) ,5) ) ;
25 temp3263_2011MA=(movmean( temperature3263_2011 ( : , 1 ) ,5) ) ;
26 hum3256_2011MA=(movmean( humidity3256_2011 ( : , 1 ) ,5) ) ;
27 hum3263_2011MA=(movmean( humidity3263_2011 ( : , 1 ) ,5) ) ;
28 % day 2 room 2
29 CO22264_2011MA=(movmean(CO22264_2011 ( : , 1 ) ,5) ) ;
30 mov2249_2011MA=(movmean(movement2249_2011 ( : , 1 ) ,5) ) ;
31 mov2264_2011MA=(movmean(movement2264_2011 ( : , 1 ) ,5) ) ;
32 temp2249_2011MA=(movmean( temperature2249_2011 ( : , 1 ) ,5) ) ;
33 temp2264_2011MA=(movmean( temperature2264_2011 ( : , 1 ) ,5) ) ;
34 hum2249_2011MA=(movmean( humidity2249_2011 ( : , 1 ) ,5) ) ;
35 hum2264_2011MA=(movmean( humidity2264_2011 ( : , 1 ) ,5) ) ;
36

37 f o r i =1: length (movement3256_1811)
38 i f movement3256_1811( i , 1 )==0 && movement3263_1811( i , 1 )==0
39 CO23263_1811MA( i )=0;
40 mov3256_1811MA( i )=0;
41 mov3263_1811MA( i )=0;
42 temp3256_1811MA( i )=0;
43 temp3263_1811MA( i )=0;
44 hum3256_1811MA( i )=0;
45 hum3263_1811MA( i )=0;
46 end
47 end
48

49 f o r i =1: length (movement3256_2011)
50 i f movement3256_2011( i , 1 )==0 && movement3263_2011( i , 1 )==0
51 CO23263_2011MA( i )=0;
52 mov3256_2011MA( i )=0;
53 mov3263_2011MA( i )=0;
54 temp3256_2011MA( i )=0;
55 temp3263_2011MA( i )=0;
56 hum3256_2011MA( i )=0;
57 hum3263_2011MA( i )=0;
58 end
59 end
60

61 f o r i =1: length (movement2249_2011)
62 i f movement2249_2011( i , 1 )==0 && movement2264_2011( i , 1 )==0
63 CO22264_2011MA( i )=0;
64 mov2249_2011MA( i )=0;
65 mov2264_2011MA( i )=0;
66 temp2249_2011MA( i )=0;
67 temp2264_2011MA( i )=0;
68 hum2249_2011MA( i )=0;
69 hum2264_2011MA( i )=0;
70 end
71 end
72 %% Data normalisation
73 % For a better performaning neural network , normalisation of the input i s
74 % c r i t i c a l . This i s done using MINዅMAX s c a l i n g .
75 % day 1 room 1
76 f o r i =1: length (CO23263_1811MA)
77 CO23263_1811S( i , 1 )=(CO23263_1811MA( i )ዅmin(CO23263_1811MA) )/ ...

(max(CO23263_1811MA)ዅmin(CO23263_1811MA) ) ;
78 mov3256_1811S( i , 1 )=(mov3256_1811MA( i )ዅmin(mov3256_1811MA) )/
79 (max(mov3256_1811MA)ዅmin(mov3256_1811MA) ) ;
80 mov3263_1811S( i , 1 )=(mov3263_1811MA( i )ዅmin(mov3263_1811MA) )/
81 (max(mov3263_1811MA)ዅmin(CO23263_1811MA) ) ;
82 temp3256_1811S( i , 1 )=(temp3256_1811MA( i )ዅmin(temp3256_1811MA) )/
83 (max(temp3256_1811MA)ዅmin(temp3256_1811MA) ) ;
84 temp3263_1811S( i , 1 )=(temp3263_1811MA( i )ዅmin(temp3263_1811MA) )/
85 (max(temp3263_1811MA)ዅmin(CO23263_1811MA) ) ;
86 hum3256_1811S( i , 1 )=(hum3256_1811MA( i )ዅmin(hum3256_1811MA) )/
87 (max(hum3256_1811MA)ዅmin(hum3256_1811MA) ) ;
88 hum3263_1811S( i , 1 )=(hum3263_1811MA( i )ዅmin(hum3263_1811MA) )/
89 (max(hum3263_1811MA)ዅmin(CO23263_1811MA) ) ;
90

91 occ_1811S( i , 1 )=(occupancy_1811( i , 2 )ዅmin(occupancy_1811 ( : , 2 ) ) )/



B. MATLAB mfiles 70

92 (max( occupancy3309_2011 ( : , 2 ) )ዅmin(occupancy_1811 ( : , 2 ) ) ) ;
93 end
94

95 % day 2 room 1
96 f o r i =1: length (CO23263_2011MA)
97 CO23263_2011S( i , 1 )=(CO23263_2011MA( i )ዅmin(CO23263_2011MA) )/
98 (max(CO23263_2011MA)ዅmin(CO23263_2011MA) ) ;
99 mov3256_2011S( i , 1 )=(mov3256_2011MA( i )ዅmin(mov3256_2011MA) )/
100 (max(mov3256_2011MA)ዅmin(mov3256_2011MA) ) ;
101 mov3263_2011S( i , 1 )=(mov3263_2011MA( i )ዅmin(mov3263_2011MA) )/
102 (max(mov3263_2011MA)ዅmin(mov3263_2011MA) ) ;
103 temp3256_2011S( i , 1 )=(temp3256_2011MA( i )ዅmin(temp3256_2011MA) )/
104 (max(temp3256_2011MA)ዅmin(temp3256_2011MA) ) ;
105 temp3263_2011S( i , 1 )=(temp3263_2011MA( i )ዅmin(temp3263_2011MA) )/
106 (max(temp3263_2011MA)ዅmin(CO23263_2011MA) ) ;
107 hum3256_2011S( i , 1 )=(hum3256_2011MA( i )ዅmin(hum3256_2011MA) )/
108 (max(hum3256_2011MA)ዅmin(hum3256_2011MA) ) ;
109 hum3263_2011S( i , 1 )=(hum3263_2011MA( i )ዅmin(hum3263_2011MA) )/
110 (max(hum3263_2011MA)ዅmin(CO23263_2011MA) ) ;
111

112 occ3309_2011S ( i , 1 )=(occupancy3309_2011 ( i , 2 )ዅmin( occupancy3309_2011 ( : , 2 ) ) )/
113 (max( occupancy3309_2011 ( : , 2 ) )ዅmin( occupancy3309_2011 ( : , 2 ) ) ) ;
114 end
115

116 % day 2 room 2
117 f o r i =1: length (CO22264_2011MA)
118 CO22264_2011S( i , 1 )=(CO22264_2011MA( i )ዅmin(CO22264_2011MA) )/
119 (max(CO22264_2011MA)ዅmin(CO22264_2011MA) ) ;
120 mov2249_2011S( i , 1 )=(mov2249_2011MA( i )ዅmin(mov2249_2011MA) )/
121 (max(mov2249_2011MA)ዅmin(mov2249_2011MA) ) ;
122 mov2264_2011S( i , 1 )=(mov2264_2011MA( i )ዅmin(mov2264_2011MA) )/
123 (max(mov2264_2011MA)ዅmin(mov2264_2011MA) ) ;
124 temp2249_2011S( i , 1 )=(temp2249_2011MA( i )ዅmin(temp2249_2011MA) )/
125 (max(temp2249_2011MA)ዅmin(temp2249_2011MA) ) ;
126 temp2264_2011S( i , 1 )=(temp2264_2011MA( i )ዅmin(temp2264_2011MA) )/
127 (max(temp2264_2011MA)ዅmin(CO22264_2011MA) ) ;
128 hum2249_2011S( i , 1 )=(hum2249_2011MA( i )ዅmin(hum2249_2011MA) )/
129 (max(hum2249_2011MA)ዅmin(hum2249_2011MA) ) ;
130 hum2264_2011S( i , 1 )=(hum2264_2011MA( i )ዅmin(hum2264_2011MA) )/
131 (max(hum2264_2011MA)ዅmin(CO22264_2011MA) ) ;
132

133 occ2309_2011S ( i , 1 )=(occupancy2309_2011 ( i , 2 )ዅmin( occupancy2309_2011 ( : , 2 ) ) )/
134 (max( occupancy3309_2011 ( : , 2 ) )ዅmin( occupancy2309_2011 ( : , 2 ) ) ) ;
135 end
136

137 %% Define input and target vectors
138 c lo se a l l
139 Xnn=[CO23263_1811S mov3256_1811S mov3263_1811S temp3256_1811S temp3263_1811S ...

hum3256_1811S hum3263_1811S ; CO23263_2011S mov3256_2011S mov3263_2011S ...
temp3256_2011S temp3263_2011S hum3256_2011S hum3263_2011S ] ;

140 % target matrix
141 Ynn=[5∗occ_1811S ; 5∗occ3309_2011S ] ;
142 Xval=[CO22264_2011S mov2249_2011S mov2264_2011S temp2249_2011S temp2264_2011S ...

hum2249_2011S hum2264_2011S ] ;
143 Yval=5∗occ2309_2011S ;
144 save ( ' optim.mat ' ) ;
145 alpha=0.1 ;
146 %%
147 c lo se a l l
148 maxit=500;
149 p=0.01 ;
150 [ w1_best , w2_best , w3_best , w4_best , b1_best , b2_best , b3_best , b4_best , perf_f inal , ...

maxperf , ep , perf_train ]=TrainingNN(Xnn, Ynn, 0.00001 , p , maxit , 5) ;
151 save ( 'DeepNN.mat ' )
152 % Start ing with a learning rate of 0 .1 and using a ru le that incremently
153 % adjusts the learning rate based on the performance , the f i n a l learning
154 % rate that reached the highest performance was 0 . 0 2 . This yie lded a
155 % tra in ing performance of 69 .7% (53 .1% when the tra in ing data was used as
156 % val idat ion ) and a val idat ion performance of 75 .2%. The system showed
157 % the capab i l i ty of reaching occupancy pred ict ions of 0 , 1 , 2 , 3 and 5
158 % people . the fact that an occupancy of 4 people was never predicted may be
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159 % due to the fact that an occupancy of 4 people was hardly ever observed.
160

161 %% optimisation
162 % Here the Genetic Algorithm i s used to f ind the optimal values fo r the
163 % learning rate and number of neurons per l a y e r . The GA usual ly did not
164 % converge and was often stopped prematurely when the r e s u l t s no longer
165 % showed improvements.
166

167 % best values found by the GA
168 % 0.0001 12 .0000 12 .0000 59 .0000
169 % 62 .2%, 63 .9%
170 % 0.0002 19 .0000 21 .0000 39 .0000
171 % 62 .0%
172 % 0.0001 86 .0000 8 .0000 10 .0000
173 % 63 .3%
174

175 maxit=100;
176 FitnessFnc= @TrainingNN_opt ;
177 % A = [1 1 ] ; % Constraints
178 % B = 150; % Inequal i ty constra ints
179 % Aeq = [1 1/1000] ; % Equality constra ints
180 % Beq = 0 .01 +25/1000;
181 LB = [10 eዅ6, 5 , 5 , 5 ] ;
182 UB = [0 .1 , 100 , 100 , 100 ] ;
183 IntCon=[2 , 3 , 4 ] ;
184 options = gaoptimset ( ' UseParal le l ' , true , . . .
185 ' Vectorized ' , ' o f f ' , ' FitnessLimit ' ,0 .35 , . . .
186 ' EliteCount ' , 2 , . . .
187 ' PlotFcns ' , {@gaplotbestf , @gaplotstopping }) ;
188 opts = optimoptions ( ' ga ' , ' PlotFcn ' ,{ @gaplotbestf , @gaplotstopping } , ' FitnessLimit ' , 0 .35 ) ;
189 [ x , fval , e x i t f l a g ] = ga( FitnessFnc , 4 , [ ] , [ ] , [ ] , [ ] , . . .
190 LB,UB, [ ] , IntCon , options )
191 % I 'm trying d i f f e r e n t combinations of act ivat ion funct ions . Using tanh
192 % throughout and leaky ReLu for the output resu l ted in performance of ¬65%.
193 % Using tanh on every layer except the 2nd for which I use leaky ReLu
194 % resu l ted in performance of . . . well , Matlab crashed. Performance didn ' t
195 % look impressive though with the maximum around 55%.
196 %%
197 c lo se a l l
198 f i gu re
199 l abe l1 = { st r ing ( maxperf ) } ;
200 plot ( perf_f inal , 'b ' )
201 hold on
202 plot (ep , maxperf , ' ko ' , ' markerfacecolor ' , ' r ' )
203 text (ep , maxperf , label1 , ' VerticalAlignment ' , 'bottom ' , ' HorizontalAlignment ' , ' r ight ' )
204 t i t l e ( ' Training performance ' )
205 axis ( [ 0 maxit 0 1 ] )
206 legend ( ' Performance ' , 'Maximum performance ' , ' Location ' , ' northwest ' )
207 save ( 'DeepNN.mat ' )
208 % Using tanh improved tra in ing r e s u l t s s i g n i f i c a n t l y as wel l as making the
209 % tra in ing process more co n s i s t e n t . This i s probably due to the tanh
210 % super ior range and responsiveness to negative inputs while a l so keeping
211 % inputs of zero at ze ro . The NN i s s t i l l unable to reach a l l l e v e l s of
212 % occupancy. It ' s able to reach 2 and 0 but not much e l s e . Try optimizing
213 % over the number of hidden neurons and the learning rate
214 %%
215 run ( ' TestDeepLearning.m ' )

Neural network testing file

1 % This f i l e t e s t s the f i n a l network using the va l idat ion data and the data
2 % used for t r a i n i n g .
3 % load ( ' optim ' ) ;
4 c lo se a l l
5 load ( ' DeepNN_best_final.mat ' ) ;
6

7 [ Ytraining]=NeuralNetwork (w1_best , w2_best , w3_best , w4_best , b1_best , b2_best , ...
b3_best , b4_best , Xnn) ;

8

9 Xval=[CO22264_2011S mov2249_2011S mov2264_2011S temp2249_2011S temp2264_2011S ...
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hum2249_2011S hum2264_2011S ] ;
10 Yval=5∗occ2309_2011S ;
11 [ Yresult ]=NeuralNetwork (w1_best , w2_best , w3_best , w4_best , b1_best , b2_best , b3_best , ...

b4_best , Xval ) ;
12 Yhot=zeros ( length (Ynn) ,6) ;
13 f o r i =1: length (Yhot)
14 Yhot( i ,Ynn( i )+1)=1;
15 end
16 [¬ , ¬ , ¬ , ¬ , ¬ , ¬ , ¬ , ¬ , ¬ , out]=DeepLearning (w1_best , w2_best , w3_best , w4_best , ...

b1_best , b2_best , b3_best , b4_best , Xnn, Yhot , alpha , p) ;
17

18 %%
19 % close a l l hidden
20 % Ytraining=[Ytraining ( : , 1 : 2 ) Ytraining ( : , 4 : 6 ) ] ;
21 [¬ , idx]=max( Ytraining , [ ] , 2 ) ;
22 correct ion=ones ( length ( idx ) ,1) ;
23 Y_train=idxዅcorrect ion ;
24 f i gu re
25 plot (Ynn)
26 hold on
27 plot (Y_train )
28 t i t l e ( ' Training output versus target ' )
29 ylabe l ( 'Number of people ' )
30 legend ( ' Training target ' , 'Network output ' )
31 per f t =0;
32 f o r i =1: length ( idx )
33 i f Ynn( i )==Y_train ( i )
34 per f t=per f t +1;
35 end
36 end
37 perf_train=per f t / i
38

39 perft_1=0;
40 f o r i =1: length ( idx )
41 i f Y_train ( i )==(Ynn( i )+1)
42 perft_1=perft_1+1;
43 e l s e i f Y_train ( i )==(Ynn( i )ዅ1)
44 perft_1=perft_1+1;
45 end
46 end
47 per f t1=perft_1/ i
48

49 perft_more=0;
50 f o r i =1: length ( idx )
51 i f Y_train ( i )>(Ynn( i )+1)
52 perft_more=perft_more+1;
53 e l s e i f Y_train ( i )<(Ynn( i )ዅ1)
54 perft_more=perft_more+1;
55 end
56 end
57 perftmore=perft_more/ i
58 RMSError_tr=sqrt (mean(( Y_trainዅYnn) . ^2) )
59 %%
60 % Yresult=[Yresult ( : , 1 : 2 ) Yresult ( : , 4 : 6 ) ] ;
61 [¬ , idx]=max( Yresult , [ ] , 2 ) ;
62 correct ion=ones ( length ( idx ) ,1) ;
63 Y_val=idxዅcorrect ion ;
64

65 f i gu re
66 plot (Yval )
67 hold on
68 plot (Y_val)
69 t i t l e ( 'Output using val idat ion data versus va l idat ion target ' )
70 ylabe l ( 'Number of people ' )
71 legend ( ' Validation target ' , 'Network output ' )
72 perfv =0;
73 f o r i =1: length ( idx )
74 i f Yval ( i )==Y_val( i )
75 perfv=perfv +1;
76 end
77 end
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78 perf_val=perfv/ i
79

80 perf_1=0;
81 f o r i =1: length ( idx )
82 i f Y_val( i )==(Yval ( i )+1)
83 perf_1=perf_1+1;
84 e l s e i f Y_val( i )==(Yval ( i )ዅ1)
85 perf_1=perf_1+1;
86 end
87 end
88 perf1=perf_1/ i
89

90 perf_more=0;
91 f o r i =1: length ( idx )
92 i f Y_val( i )>(Yval ( i )+1)
93 perf_more=perf_more+1;
94 e l s e i f Y_val( i )<(Yval ( i )ዅ1)
95 perf_more=perf_more+1;
96 end
97 end
98 perfmore=perf_more/ i
99

100 RMSError=sqrt (mean((Y_valዅYval ) . ^2) )

Untrained network function

1 function [w1, w2, w3, w4, b1 , b2 , b3 , b4 , perf , out]=DeepLearning (w1, w2, w3, w4, b1 , ...
b2 , b3 , b4 , X, Y, alpha , p)

2 % This function t ra ins a three layer neural network with a mix of
3 % hyperbol ic tangent and Leaky ReLu act ivat ion funct ions using back
4 % propagation. The number of neurons per layer i s determined by the
5 % inputs wi and b i . The ouput w i l l be a oneዅhot encoded matrix of [ nx6 ] ,
6 % with the columns represent ing occupancy values ranging from 0 (column 1)
7 % to 5 (column 6) . The target matrix Y also needs to be a oneዅhot encoded
8 % matrix.
9 per f_init =0;
10 out=zeros ( s i z e (Y) ) ;
11 SZ=s i z e (w1∗X( 1 , : ) ' ) ;
12 f o r i =1: length (X)
13 xi=X( i , : ) ' ;
14 y=Y( i , : ) ' ;
15

16 A=ones ( s i z e (w1∗ xi ) ) ;
17 input_of_HL1=A.∗(w1∗ xi+ones ( s i z e (w1∗ xi ) ) . ∗b1) ;
18 output_of_HL1=tanh (input_of_HL1) ;
19

20 B=ones ( s i z e (w2∗output_of_HL1) ) ;
21 input_of_HL2=B.∗(w2∗output_of_HL1+ones ( s i z e (w2∗output_of_HL1) ) . ∗b2) ;
22 output_of_HL2=tanh (input_of_HL2) ;
23

24 C=ones ( s i z e (w3∗output_of_HL2) ) ;
25 input_of_HL3=C.∗(w3∗output_of_HL2+ones ( s i z e (w3∗output_of_HL2) ) . ∗b3) ;
26 output_of_HL3=tanh (input_of_HL3) ;
27

28 D=ones ( s i z e (w4∗output_of_HL3) ) ;
29 input_of_outputnode=D.∗(w4∗output_of_HL3+ones ( s i z e (w4∗output_of_HL3) ) . ∗b4) ;
30 f inal_output=tanh ( input_of_outputnode ) ;
31 out ( i , : )=final_output ;
32

33 error=(yዅf inal_output ) ;
34 [¬ , idx1]=max(y , [ ] , 1 ) ;
35 [¬ , idx2]=max( final_output , [ ] , 1 ) ;
36 i f idx1==idx2
37 per f_init=per f_init +1;
38 end
39

40 ᏺ = error ;
41

42 error_HL3= w4'∗ ᏺ ;
43 ᏺ3=(input_of_HL3>0) . ∗error_HL3 ;
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44

45 error_HL2= w3'∗ ᏺ 3 ;
46 ᏺ2=(input_of_HL2>0) . ∗error_HL2 ;
47

48 error_HL1= w2'∗ ᏺ 2 ;
49 ᏺ1=(input_of_HL1>0) . ∗error_HL1 ;
50

51 adjustment_w4=alpha∗ᏺ∗output_of_HL3 ' ;
52 adjustment_w3=alpha∗ᏺ3∗output_of_HL2 ' ;
53 adjustment_w2=alpha∗ᏺ2∗output_of_HL1 ' ;
54 adjustment_w1=alpha∗ᏺ1∗xi ' ;
55

56 adjustment_b4=alpha∗ᏺ ;
57 adjustment_b3=alpha∗ᏺ 3 ;
58 adjustment_b2=alpha∗ᏺ 2 ;
59 adjustment_b1=alpha∗ᏺ 1 ;
60

61 w1=w1+adjustment_w1 ;
62 w2=w2+adjustment_w2 ;
63 w3=w3+adjustment_w3 ;
64 w4=w4+adjustment_w4 ;
65

66 b1=b1+adjustment_b1 ;
67 b2=b2+adjustment_b2 ;
68 b3=b3+adjustment_b3 ;
69 b4=b4+adjustment_b4 ;
70

71 out ( i , : )=final_output ;
72 end
73 per f=per f_init / length (X) ;
74

75 end

Trained network function

1 function [ out]=NeuralNetwork (w1, w2, w3, w4, b1 , b2 , b3 , b4 , X)
2 % This function contains a three layer neural network with a mix of
3 % hyperbol ic tangent and Leaky ReLu act ivat ion funct ions . The number of
4 % neurons per layer i s determined by the inputs wi and b i . The ouput w i l l
5 % be a oneዅhot encoded matrix of [ nx6 ] , with the columns represent ing
6 % occupancy values ranging from 0 (column 1) to 5 (column 6) .
7 out=zeros ( length (X) ,6) ;
8 f o r i =1: length (X)
9 x=X( i , : ) ' ;
10

11 A=ones ( s i z e (w1∗x) ) ;
12 input_of_HL1=A.∗(w1∗x+ones ( s i z e (w1∗x) ) . ∗b1) ;
13 output_of_HL1=tanh (input_of_HL1) ;
14

15 B=ones ( s i z e (w2∗output_of_HL1) ) ;
16 input_of_HL2=B.∗(w2∗output_of_HL1+ones ( s i z e (w2∗output_of_HL1) ) . ∗b2) ;
17 output_of_HL2=tanh (input_of_HL2) ;
18

19 C=ones ( s i z e (w3∗output_of_HL2) ) ;
20 input_of_HL3=C.∗(w3∗output_of_HL2+ones ( s i z e (w3∗output_of_HL2) ) . ∗b3) ;
21 output_of_HL3=tanh (input_of_HL3) ;
22

23 D=ones ( s i z e (w4∗output_of_HL3) ) ;
24 input_of_outputnode=D.∗(w4∗output_of_HL3+ones ( s i z e (w4∗output_of_HL3) ) . ∗b4) ;
25 f inal_output=tanh ( input_of_outputnode ) ;
26 out ( i , : )=final_output ;
27 end
28 end

Neural network training function

1 % This function t ra ins a deep neural network with 3 hidden layers using
2 % back propagation. I f only one number of neurons i s spec i f i ed , a l l l ayers
3 % w i l l have the same number of neurons. I f you want d i f f e r e n t number of
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4 % neurons per layer , spec i fy a l l three numbers. Make sure the inputs are
5 % normalised but the output i s not !
6

7 % This function outputs the weights and biases that achieved the highest
8 % tra in ing performance , the f i n a l t ra in ing performance , the best t ra in ing
9 % performance and the performance of the f i n a l neural net when tested with
10 % the tra in ing data.
11

12 function [ w1_best , w2_best , w3_best , w4_best , b1_best , b2_best , b3_best , b4_best , ...
training_performance , best_training_performance , epoch_best , ...
perf_avg_opt]=TrainingNN(X, Y, learning_rate , dropout_rate , ...
max_iterations , number_neurons_1 , number_neurons_2 , number_neurons_3 , ...
number_neurons_4)

13 i f ¬ex i s t ( 'number_neurons_2 ' , ' var ' )
14 % second parameter does not ex i s t
15 number_neurons_2 = number_neurons_1 ;
16 end
17

18 i f ¬ex i s t ( 'number_neurons_3 ' , ' var ' )
19 % third parameter does not ex i s t
20 number_neurons_3 = number_neurons_1 ;
21 end
22

23 i f ¬ex i s t ( 'number_neurons_4 ' , ' var ' )
24 % third parameter does not ex i s t
25 number_neurons_4 = number_neurons_1 ;
26 end
27

28 Yhot=zeros ( length (Y) ,6) ;
29 f o r i =1: length (Yhot)
30 Yhot( i ,Y( i )+1)=1;
31 end
32

33 w1=2∗rand (number_neurons_1 , s i z e (X,2 ) )ዅ1;
34 w2=2∗rand (number_neurons_2 , s i z e (w1,1 ) )ዅ1;
35 w3=2∗rand (number_neurons_3 , s i z e (w2,1 ) )ዅ1;
36 % w4=2∗rand (number_neurons_4 , s i z e (w3,1 ) )ዅ1;
37 % w5=2∗rand ( s i z e (Yhot , 2 ) , s i z e (w4,1 ) )ዅ1;
38 w4=2∗rand ( s i z e (Yhot , 2 ) , s i z e (w3,1 ) )ዅ1;
39 b1=ዅrand (1) ;
40 b2=ዅrand (1) ;
41 b3=ዅrand (1) ;
42 b4=ዅrand (1) ;
43 % b5=ዅrand (1) ;
44 alpha=learning_rate ; % Learning rate
45 p=dropout_rate ; % Dropout rate fo r dropout layer
46 f=waitbar (0) ;
47 training_performance=zeros ( max_iterations , 1 ) ;
48 f o r i =2:( max_iterations+1)
49 [w1, w2, w3, w4, b1 , b2 , b3 , b4 , training_performance ( i ) ]=DeepLearning (w1, w2, w3, ...

w4, b1 , b2 , b3 , b4 , X, Yhot , alpha , p) ;
50 waitbar (( i ዅ1)/max_iterations , f , ' epoch '+st r ing (( i ዅ1)) )
51 [ best_training_performance , ep]=max( training_performance ) ;
52 w1_best=w1;
53 w2_best=w2;
54 w3_best=w3;
55 w4_best=w4;
56

57 b1_best=b1 ;
58 b2_best=b2 ;
59 b3_best=b3 ;
60 b4_best=b4 ;
61 i f training_performance ( i ዅ1)==best_training_performance
62 w1_best=w1;
63 w2_best=w2;
64 w3_best=w3;
65 w4_best=w4;
66 % w5_best=w5;
67 b1_best=b1 ;
68 b2_best=b2 ;
69 b3_best=b3 ;
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70 b4_best=b4 ;
71 % b5_best=b5 ;
72 end
73 % Check how the network performs on the tra in ing data and change the learning rate i f ...

the performance doesn ' t increase
74 [ Ytraining]=NeuralNetwork (w1_best , w2_best , w3_best , w4_best , b1_best , b2_best , ...

b3_best , b4_best , X) ;
75 [¬ , idx]=max( Ytraining , [ ] , 2 ) ;
76 correct ion=ones ( length ( idx ) ,1) ;
77 Y_train=idxዅcorrect ion ;
78 per f t =0;
79 f o r j =1: length ( idx )
80 i f Y( j )==Y_train ( j )
81 per f t=per f t +1;
82 end
83 end
84 perf_train (1)=0.3821 ;
85 perf_train ( i )=per f t / j ;
86 perf_avg_opt=1ዅmean( perf_train ) ;
87 % i f perf_train ( i )<0.5
88 % i f perf_train ( i )<perf_train ( i ዅ1)
89 % alpha=alphaዅ0.001 ;
90 % e l s e
91 % alpha=alpha+0.001 ;
92 % end
93 % end
94

95

96 l abe l1 = { st r ing ( best_training_performance ) } ;
97 l abe l2 = { st r ing ( perf_train ( i ) ) } ;
98 plot ( perf_train , 'b ' ) ;
99 t i t l e ( ' Training performance ' )
100 axis ( [ 0 max_iterations 0 1 ] )
101 hold on
102 p=plot (ep , best_training_performance , ' ko ' , ' markerfacecolor ' , ' r ' ) ;
103 hold on
104 t=text (ep , best_training_performance , label1 , ' VerticalAlignment ' ,
105 ' bottom ' , ' HorizontalAlignment ' , ' r ight ' ) ;
106 hold on
107 s=text ( i , perf_train ( i ዅ1) , label2 , ' VerticalAlignment ' , 'bottom ' ,
108 ' HorizontalAlignment ' , ' r ight ' ) ;
109 hold on
110 drawnow
111 de lete (p)
112 de lete ( t )
113 de lete ( s )
114 end
115 c lo se ( f )
116 c lo se a l l
117 f i gu re
118 plot ( training_performance , 'b ' )
119 hold on
120 plot (ep , best_training_performance , ' ko ' , ' markerfacecolor ' , ' r ' )
121 text (ep , best_training_performance , label1 , ' VerticalAlignment ' , 'bottom ' ,
122 ' HorizontalAlignment ' , ' r ight ' )
123 t i t l e ( ' Training performance ' )
124 axis ( [ 0 max_iterations 0 1 ] )
125 legend ( ' Performance ' , 'Maximum performance ' , ' Location ' , ' northwest ' )
126 % tes t performance on tra in ing data
127

128 epoch_best=ep ;
129

130

131 save ( 'DeepNN.mat ' )
132 end
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