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Introduction
Historically the aviation industry has shown a steady growth which is expected to continue in the long-
term according to SESAR JU [76]. In order for this growth to be able to continue, Air Traffic Control
(ATC) has to be able to accommodate these extra flights. However, as argued by Majumdar et al. [46]
the airspace capacity is already limited by the workload an Air Traffic Controller (ATCo) can manage.
Multiple ATC solutions are being developed making the role of the ATCo redundant in the future, but
do not include a transition plan from the current system. Hence, as argued by Hoekstra et al. [29],
fully automated ATC solutions are not feasible in the near future. On top of this, transferring to an
automated system in which the controller is not considered often leads to worse performance as argued
by Bainbridge [6], as humans gain more knowledge of the system by interacting with it. In order to
increase airspace capacity in the shorter term, an automated system should support the ATCo with
decision making instead of replacing him.

An example of a decision support system is the Solution Space Diagram (SSD) which was intro-
duced in the work of Velasco [47]. It is a visual tool which gives ATCos a clear overview of all conflict-
free velocity vectors that could be issued to a pilot. Multiple studies have shown that the SSD has a
significant effect on the reduction of controller workload [47, 19, 34, 9]. Furthermore, Westin et al.[85]
introduced the notion of strategic conformance which aims to make automation individual-sensitive to
the controller currently using the system. Enough evidence was provided to reasonably hypothesize
that an advised solution, from automation, would be more readily accepted if it matches the individual
problem-solving style of the controller. Combining the SSD and strategic conformance, Van Rooijen
et al.[59] introduced a Convolutional Neural Network (CCN) which is trained on the actions of an indi-
vidual controller. Using the SSD as input to the network allows the sytem and the controller to work
from a shared mental model. With experiments, Van Rooijen et al.[59] showed that trained models
can reasonably predict resolutions using three separate CNNs for command, type, and magnitude. In
addition, it was found that a model achieves higher predictive performance if the controller has a more
consistent problem-solving style.

Problem Statement
This research of van Rooijen et al. [59] can be seen as a proof of concept into the capability of an
individual-sensitive trained CNN to predict controller resolutions given a SSD as input. This research
will expand on this, by evaluating how suchmodel should be constructed in order to establish an optimal
human-machine system which will be accepted by the controller. The following research question is
defined to pursue this goal:

”How can acceptance of Convolutional Neural Networks for Conflict Detection & Resolution
be improved for use by Air Traffic Controllers?”

It is hypothesized that, an ATCo is more likely to accept an advisory CNN during Conflict Detection
& Resolution (CD&R) if an automation system is able to predict resolutions more accurately. Therefore,
this research will explore how such system should be constructed with the sole objective of increasing
predictive performance.This will be done from two different viewpoints:

• the most efficient use of a CNN in the context of CD&R;
• the optimization of the input to the CNN, i.e. feature engineering;

Methodology
In order to answer the research question a literature review will be presented first. In which the state-of-
the-art regarding CD&R, acceptance of automation, CNNs and SSDs will be elaborated on. After this,
two experiments are conducted in order to analyse the viewpoints presented above. Both experiments
follow the same four phases as presented in figure 1 being Simulation, Data Generation, Training and
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Evaluation. First, a simulation is done in which resolutions are applied to conflict situations in order to
create data. This data is transformed into data sets which consist of SSDs describing the situation and
the corresponding resolutions. After this, a CNN is trained such that it can predict the resolutions given
the input. Finally, a test data set is used to evaluate the performance of the model.

                          
                     

Simulation Data 

Generation

Training Evaluation

Figure 1: The overall research methodology followed during both experiments.

Report Outline
• Part I: Scientific Paper
The knowledge obtained during the literature review, preliminary analyses and the final experi-
ment are combined in a paper in order to answer the main research question.

• Part II: Preliminary Thesis
This part starts with a literature review which covers the state-of-the-art regarding CD&R and
automation, CNN’s, the SSD, feature engineering, Explainable Artificial Intelligence and interface
design. After this, the methodology and the results of the initial analysis will be discussed. Lastly,
this part will give a proposition for the main experiment.

• Part III: Appendices
Appendices which give more detailed information on the execution and intermediate results of
the main experiment are presented in this part. The chapter follows the four main phases of the
main experiment.

• Part IV: Conclusions and Recommendations
This report is finalised by stating the conclusion found in all previous parts followed by recommen-
dations for future research.
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In the future, Air Traffic Controllers are expected to work together with more
advanced computer-based automation that can automatically take action. The main
challenge is then how to design such computer-based tools such that they foster
acceptance among air traffic controllers. One possible approach to foster acceptance
is by matching the automated decisions and actions to individual human problem-
solving styles, the so-called strategic conformance. Another approach is by making the
automated tool more transparent and thus interpretable. Previous research aimed to
combine these two approaches by making use of the Solution Space Diagram, a decision-
support tool for Conflict Detection and Resolution, as a visual feature for a supervised
machine learning method that aimed to generate individual human prediction models.
Results were promising, but prediction accuracy could be significantly improved.
In this study, the impact of feature engineering and a revised machine learning
architecture on prediction accuracy will be investigated. This is done by evaluating
different feature engineering and architecture options using data generated by a
simulation in which Conflict Detection and Resolution is performed. It was found that a
Convolutional Neural Network can accurately predict exact resolutions using regression
and a more optimized architecture is introduced which significantly increases predictive
performance. Furthermore, it is concluded that a larger solution space results in a
slight increase in predictive performance while using a color scheme with more colors
does not necessarily result in a higher predictive performance.

I. Introduction

Advanced computer-based automation systems
are expected to work together with Air Traffic

Controllers (ATCo) more often in the future [1]. As en-
route air space capacity is limited by ATCo workload
[2], a demand exists for methods that allows safe
control over more en-route aircraft simultaneously. To
accommodate this, fully automated ATC solutions are
being researched [1]. However, a transition from the
current ATC system to such solution is not feasible in
the near future as a transition plan often does not exist
[3]. Instead of using fully automated ATC solutions,
automation systems should support ATCo’s in the
form of an efficient human-machine collaboration.

The main challenge faced by any implementation
of an automation system is controller acceptance [4]

which will only be achieved if the controller trusts
the system [5]. An automated system which is never
used, will not provide benefits in efficiency and there-
fore not contribute to increasing airspace capacity.
Understanding the functioning of the system is the
main component for a controller needed in order to
trust an automated system[6]. Therefore, to overcome
the hurdle of acceptance, controller conformance and
transparency should be taken into account when de-
signing an automated system.

Recent work has introduced the theoretical con-
cept of strategic conformance in order to increase
controller acceptance [4]. A strategically conformal
system is constructed in such a way that the problem
solving strategy is equivalent to the strategy of the hu-
man controller. Human-in-the-loop experiments have
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shown that systems which are strategically conformal
are accepted more often when compared to systems
which are not [4, 7]. A suitable technique to achieve
strategic conformance is Supervised Learning (SL)
which uses labeled data in order to train algorithms
to predict outcomes accurately. It is expected that
an accurate supervised learning algorithm, trained
on personal controller decisions, will produce solu-
tions which are in conformance with the controllers
strategy.

Another approach to increase transparency and ac-
ceptance is the introduction of the Solution Space
Diagram (SSD) [8]. This is a visual tool which gives
the ATCo a clear overview of safe and unsafe heading
and speed combinations for a particular aircraft. In
a recent study, the SSD was used as an input to an
individually trained model in order to predict reso-
lutions [9]. As the figure inputted into the system
is identical to the figure shown to the ATCo, human
and machine work from a shared mental model which
results in higher interpretability. Using data from
a human-in-the-loop experiment it was shown that
a CNN can successfully predict the bin to which a
certain resolution belongs, e.g. a heading change to
the left larger than 45 degrees. One could argue that a
classification CNN predicts a certain strategy instead
of an exact resolution depending on the size of the
bins. This means the ATCo would still be required to
formulate an exact resolution within the predicted bin
without any help.

The main task of Air Traffic Control (ATC) regard-
ing en-route traffic is Conflict Detection & Resolution
(CD&R) and is therefore the primary focal point of
this research. Under normal operations, the minimum
horizontal separation between aircraft is defined to be
5 nautical miles [10]. During CD&R, ATCos predict
the trajectory of aircraft, detect conflicts and resolve
them in order to maintain sufficient separation. This
paper will introduce an alternative CNN architecture
performing a regression task in order to predict an
exact resolution in the form of a velocity vector. The
main ambition will be to create an efficient person-
alised prediction model in terms of predictive power
using two approaches: architecture optimization and
feature engineering. For the purposes of this research,
predictive power will relate to the ability of the model
to predict a certain velocity vector. As a velocity
vector is defined by a combination of heading and

speed, increasing predictive power is equivalent to
decreasing the true heading and true speed error.

During a preliminary test, it is analysed whether
a CNN is capable of predicting resolutions using
regression given an SSD as input. Additionally, the
influence of the shape and size of the SSD’s solution
space on the predictive power will be evaluated. The
main focus of this research will be to find an optimized
CNN architecture and hyperparameters in order to
obtain satisfactory training behaviour. Additionally,
changes to the color coding of the SSD will be done
to analyse the effect in terms of predictive power. The
final design of the SSD is intended to be optimised for
the CNN while still being interpretable for an ATCo
to maintain a shared mental model.

The next section gives an introduction into the
SSD and CNNs and evaluates how they were used
for predicting resolutions in a recent study. The
third section will discuss the methods used during
this research and the experiment results. After this,
a discussion is provided and recommendations for
future research will be given. Finally, conclusions to
the research will be given in the final section.

II. Background
The main concepts used to build the resolution pre-
diction model introduced in this paper are the SSD
and CNN. In order to illustrate how the model is con-
structed, background information on these concepts
is given in this section. After this, a recently intro-
duced prediction model [9] consisting of CNNs will
be discussed as well as opportunities to improve upon
it.

A. Solution Space Diagram
The SSD is a visual support tool which incorporates
multiple parameters applicable to the CD&R task. In
recent years, it has been used for various application
but was first introduced in an aerospace context by
van Dam et al.[11] as a self-separation tool. After
this, multiple researches have been conducted into
the SSD related to workload. Hermes et al.[12],
d’Engelbronner et al.[13] and Mercado Velasco et
al.[8] all concluded that the use of the SSD has a
positive effect on controller situational awareness and
workload.
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Figure 1. Construction of the SSD: a) conflicting relative velocities, b) flight envelope and velocity
vector displacement, and c) limit to solution space [9].

Figure 1 gives a representation of how a SSD is
constructed. The SSD is constructed by drawing a
triangle, known as the Forbidden Beam Zone (FBZ)
[14], from the controlled aircraft to the edge of the
intruding aircraft’s protected zone. Two circles are
drawn around the controlled aircraft to indicate the
minimum and maximum airspeed. The FBZ is shifted
with the velocity vector of the intruding aircraft and
the velocity vector of the controlled aircraft is added
to obtain the SSD. When the velocity vector ends in
the area enclosed by the FBZ the aircraft’s trajectory
will result in Loss of Separation (LoS). The space
between the velocity limitations and outside the FBZ
is referred to as the solution space. Multiple FBZ’s
can be present inside the SSD if there is a situation
with multiple intruding aircraft.

B. Convolutional Neural Networks
From the year 2000 onwards, neural networks be-
came very adequate for detection, segmentation and
recognition tasks. A few examples of these tasks
are pedestrian detection [15], biological segmentation
from microscopical images [16], traffic sign recogni-
tion [17]), localization of joints [18] and autonomous
off-road driving [19, 20]. In recent years, CNN archi-
tectures have become larger, solving more complex
problems. Recently, an architecture was introduced us-
ing 60 million trainable parameters in order to classify
1.2 million high-resolution images into 1000 different
classes for different objects [21]. As the input to the
prediction model to be constructed in this research is
an image, a CNN is the most obvious model choice.

A neural network is constructed using multiple

layers consisting of a set of neurons. Introduced by
Rosenblatt [22], a neuron is defined as

𝑦 = 𝜙

(∑︁
𝑛

𝑤𝑛𝑥𝑛 + 𝑏

)
(1)

where inputs 𝑥𝑛 are weighted with 𝑤𝑛 and summed
with bias 𝑏. This summation is fed to an activation
function 𝜙 which calculates the output 𝑦. A CNN
consists of at least one convolutional layer whose filters
slide over the image to create a feature map. A filter
consists of a set of weights which together are able
to detect a certain feature from the image. Equation
2 gives a small example of how the convolutional
operation is performed.

Input
0 1 3
4 5 6
6 7 8

 ∗

Filter[
0 1
2 3

]
=

Output[
24 31
38 44

]
(2)

The training of a CNN is done by optimising the
weights and biases using a labelled data set. Each
image of the data set is fed to the untrained network
during the first iteration. A performance metric is used
to compare the network output with the respective
label. In order to update the weights of the network,
the partial derivatives 𝜕𝐸

𝜕𝑤𝑛
of the error E with respect

to all weights 𝑤𝑛 are calculated. The weights are
updated by

𝑤𝑛+1 = 𝑤𝑛 − 𝑙𝑟
𝜕𝐸

𝜕𝑤𝑛

(3)

with 𝑙𝑟 being the learning rate.

3



Running an image through the network is referred
to as the forward pass while updating the weights is
referred to as the backward pass. If the forward and
backward pass are executed consecutively an epoch
is completed. In order for a network to learn how to
accurately predict a certain outcome, multiple epochs
are needed. After each epoch, progress is monitored
using a performance metric until satisfactory perfor-
mance is achieved. An often used performance metric
for numerical data, which will also be used in this
research, is the Mean Squared Error (MSE) [23].

C. Resolution Prediction
In order to create a prediction model using a CNN
with the SSD as visual input, four general steps are
needed: simulation, data generation, model training
and evaluation. The simulation is preferably done us-
ing data from ATCo’s as they are the intended users of
the prediction model. However, due to the amount of
data needed and the time constraints involved perform-
ing an experiment with real ATCos a computerized
simulation using an existing CD&R algorithm can
also be used. From the simulation a data set has to
be created consisting of SSD images and their true
label or value. In order to train a CNN a suitable
architecture and hyperparameter tuning is needed in
order to find satisfactory training results. Finally,
an evaluation metric has to be chosen which fits the
output format of the network.

In the recent work of van Rooijen et al. [9] an ar-
chitecture of three independent CNNs was introduced
for resolution prediction. Each of these networks (as
shown in figure 2) predict one of the components
which together form a resolution, e.g. resolution type,
direction and value. The resolution type network
predicts whether the situation can best be solved with
a heading (HDG), speed (SPD) or direct-to command
(DCT). The direction network advises left or right and
faster or slower in case of a HDG or SPD command,
respectively. The final network, in case of a HDG
command, predicts the bin to which the magnitude of
the heading change relative to the current heading be-
longs. These bins are defined as [0, 10], [10, 45] and
greater than 45 degrees. In case of a SPD command
two bins were predicted: [200, 250] and [250, 290]
knots.

Using 12 novice ATCos, data was generated during

multiple CD&R simulation runs from which individ-
ual data sets were created in order to train the model.
The data sets consisted of SSDs (as shown in figure
3) and the commands issued by controllers. As HDG
changes larger than 90 degrees are uncommon, the
bottom half of the SSD was excluded from the image.
The FBZs are displayed using three colors depending
on time to closest point of approach (𝑡𝑐𝑝𝑎), i.e. red
(𝑡𝑐𝑝𝑎 < 60𝑠), orange (60 < 𝑡𝑐𝑝𝑎 < 120𝑠) and gray
(𝑡𝑐𝑝𝑎 > 120𝑠). Additionally, the velocity vector of the
controller aircraft is shown in green and the direction
to the exit waypoint is added to the SSD with blue.

Figure 3. Example of an SSD used in the research
of van Rooijen et al. [9].

Using this model, Van Rooijen et al. [9] achieved
a mean Matthews Correlation Coefficient of 0.52,
0.76 and 0.64 for type, direction and value prediction
respectively. It was concluded that more research is
needed in terms of model architecture and feature
engineering the input in order to improve predictive
performance.

1. Model Architecture
One could argue that this model does not support
the ATCo formulating a safe resolution. The main
reason being the large bin size, i.e. as the model
advises a certain bin the controller still has to find a
safe resolution within that bin. After having received
an advise, the controller should decide whether to
accept it after which he returns to the original task of
finding a safe resolution. The ensemble in which a
safe resolution has to be found has reduced in size but
an extra action is added for the controller. Therefore, it
would be worthwhile to reduce the bin size or predict
exact velocity vectors.

The airspace is a continuous state space and the

4



Filters: 32
Size: 31x63

Convolutions Subsampling Convolutions Subsampling

Flatten

Dropout

Filters: 32
Size: 15x61

Filters: 64
Size: 14x30

Filters: 64
Size: 7x15

Filters: 32
Size: 6x14

Convolutions

2688 1024 1024

FC

OUTPUT
Classes: 3

INPUT
Channels: 3
Size: 32x64

Figure 2. Overview of one of the CNNs used in the research of van Rooijen et al. [9]. All filters inside
the convolutional layers have a size of 2x2 pixels.

FBZ’s presented inside an SSD are not bounded by
any bins. In addition to classification, CNNs can
also be used to solve regression problems, e.g. image
orientation prediction [24] and 3D pose estimation
of objects [25]. The problems addressed in these
studies show similarities to the prediction of exact
velocity vectors. Therefore, this research will explore
the options of using regression for exact resolution
prediction with CNNs given the SSD as input.

2. Feature Engineering
The input images used in the current model are clearly
interpretable for a human controller, but are not opti-
mised as input to a CNN. Feature engineering provides
a framework to increase predictive power by changing
the input. Observing figure 3 it can be seen that a
significant area of the image does not contain any
useful information. These pixels are irrelevant for the
calculation of the output, but are fed through the net-
work. This inefficiency could be solved by increasing
the size used for solution space.

Furthermore, the SSD is a polar representation of
all velocity vectors while the input to the CNN is a
Cartesian grid of pixel values. This means a Cartesian
grid of equally sized squares will be laid over the
solution space. Considering the polar representation,
the area used for equal ensembles of velocity vectors is
not evenly distributed. Hence, the CNN processes the
low speed velocity vectors using less pixels compared
to the high speed velocity vectors. This could have
the consequences that low and high speed velocity
vectors are calculated with different accuracies.

On top of this, only three colors are used to indicate
the 𝑡𝑐𝑝𝑎 of the intruder aircraft. Red, orange and

grey, are easily distinguishable for humans but it may
be possible that this is not the most optimal way to
present it to a CNN as it reads information as a set of
2D matrices. Hence, it could be fruitful to use a color
scheme with more colors to increase the resolution of
the intruder’s 𝑡𝑐𝑝𝑎. Another option would be to use
a continuous color scheme where the pixel value is
directly related to a certain 𝑡𝑐𝑝𝑎.

Lastly, the FBZs of the SSDs used by van Rooijen et
al. [9] indicates 𝑡𝑐𝑝𝑎 with different colors. One could
argue that time to Loss of Seperation (𝑡𝑙𝑜𝑠) is more
critical information compared to 𝑡𝑐𝑝𝑎. A primary
task of an ATCo during CD&R is detecting conflicts.
A conflict occurs when an aircraft is on a trajectory
which will result in LoS [10]. Hence, the time in
which LoS will happen is therefore more useful for
an ATCo. The model introduced in this research will
use SSDs form which the colors of the FBZs indicate
𝑡𝑙𝑜𝑠.

III. Methodology
From the previous sections it was concluded that, pre-
dictive performance may be improved by introducing
a different model architecture and feature engineering
the SSD. Regarding the model architecture, it should
first be explored whether predicting resolutions in a
regressive manner is possible at all before finding a
more optimized model architecture. Additionally, it
will be evaluated how a SSD with a larger or Cartesian
solution space and a FBZ color scheme with more
colors influences the predictive power of the overall
model. In an initial test, the possibility of using re-
gression and using a SSD with a larger and Cartesian
solution space are analysed. The best performing
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prediction method and SSD format will be used as
a starting point for the main experiment. In this ex-
periment, an effort is done to find a more optimized
architecture and multiple color coding schemes are
evaluated.

A. Initial Testing
Initial tests were performed to analyse the possibility
of predicting exact resolutions using regression and
to evaluate the impact of using SSDs with different
configurations. Namely, a SSD in which the solution
space is maximized and a Cartesian version of the
SSD. Due to the preliminary nature of these tests, only
pairwise conflicts are included during this phase. In
each scenario the controlled aircraft (𝐴𝑐𝑜𝑛) is heading
North while an intruding aircraft (𝐴𝑖𝑛𝑡 ) has a conflict-
ing trajectory as can be seen in figure 4. In total, 8605
conflict pairs are generated by varying 𝐴𝑐𝑜𝑛’s conflict
angle, CPA and look-ahead-time as presented in table
1.

CPA

Conflict 
angle

Aint

Acon

Figure 4. Simulation geometry.

Table 1. Parameters for data generation.

Parameter Value Unit

Conflict angle [20, 21 .. 349, 350] deg
CPA [-3, -2.5..2.5, 3] nm
Look-ahead time 150, 300 s

Three different SSD formats are introduced, the
Standard, Zoomed and Cartesian SSD, from which
individual data sets are created. Figure 5 shows an
example of these SSD formats given the same scenario.

Figure 5. From top to bottom an example of the
Standard, Zoomed and Cartesian SSD given the
same scenario, respectively. The blue cell presents
how the same area is mapped.

The Standard SSD is constructed using the same
method as described in subsection II.A and will be
used as a baseline.

The Zoomed SSD is designed such that the so-
lution space is maximised by manually defining the
radii which indicate minimum and maximum airspeed.
For each pixel inside the solution space, the related
airspeed is calculated as

𝑣 = 𝑣𝑚𝑖𝑛 + (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)
𝑑𝑥,𝑦 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

(4)

with 𝑣𝑚𝑖𝑛 the minimum true airspeed, 𝑣𝑚𝑎𝑥 the
maximum true airspeed, 𝑑𝑥,𝑦 distance between pixel
x,y and the center of the SSD, 𝑑𝑚𝑖𝑛 lower solution
space boundary and 𝑑𝑚𝑎𝑥 upper solution space bound-
ary. The airspeed together with the heading, as seen
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from the center of the SSD, form the velocity vector
of a particular pixel. Using the velocity vector of that
pixel the flight trajectory is calculated. In case of
a trajectory resulting in a conflict with an intruding
aircraft the pixel is colored. From figure 4 it can be
observed that the Zoomed SSD uses more space, and
thus more pixels, for the same solution space area.
It is expected that this will result in better predictive
performance. A disadvantage of this format is the
variable solution space resolution if the flight enve-
lope changes. If the flight envelope becomes larger,
the area used for solution space remains the same,
meaning more information needs to be present in the
same space. Additionally, it can be observed that a
single FBZ has lost it triangular shape while it still
presents the SSD in a circular shape.

The Cartesian SSD is constructed using the same
method as the Zoomed SSD but velocity vectors are
calculated using horizontal and vertical pixel positions.
Hence, all pixels on the same column or row represent
equal heading or speed, respectively. From figure 4
it can be seen that the area used for solution space
is further expanded compared to the Zoomed SSD.
It can also be observed that an equal amount of area
is now used for low and high speed velocity vectors.
It is expected that this SSD format further increases
predictive performance, especially in terms of speed
prediction.

For each data set, a CNN was trained which has
an identical architecture as the CNN used by van
Rooijen et al. [9] except for the final layer. In order
to be able to output a specific resolution, in the form
of a velocity vector, the final layer is modified such
that it has two normalized output values for heading
and speed. Table 2 shows an overview of all the
hyperparameters used to train all three networks.

Table 2. Training hyperparameters.

Hyperparameter Value

Optimizer Stochastic Gradient Descent
Loss function Mean Squared Error
Train/val/test ratio 0.6/0.15/0.25
Learning rate 0.01
Dropout rate 20
Input dimension 32x64

Training over 100 epochs produced converging
learning curves for all data sets as shown in figure
6. Hence, it is possible for a CNN to learn exact
resolutions in the form of a velocity vector given
SSDs as input. The Zoomed SSD and Cartesian SSD
have shown slightly better performance compared
to the Standard SSD for the training and validation
data set while the difference between the Zoomed and
Cartesian SSD is negligible.
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Figure 6. MSE during training calculated using
the normalized output of the validation data set.

In the final phase of the initial experiment the test
data set is used to evaluate the three final models.
Table 3 shows the average absolute heading and speed
error on the test data set for each SSD format. Similar
to the training performance, the Zoomed and Cartesian
SSDs outperform the Standard SSD while the differ-
ence between them is negligible. However, it can be
observed that the Cartesian SSD performs marginally
better when it comes to predicting velocities.

Table 3. Mean true heading and speed errors and
standard deviations for different SSD formats.

Mean errors
HDG [degrees] SPD [knots]

Standard SSD 0.66 ± 12.64 0.98 ± 25.24
Zoomed SSD −0.44 ± 10.73 −0.82 ± 20.99

Cartesian SSD −0.32 ± 11.12 −0.61 ± 20.84

It can be argued that the Cartesian SSD is not
conformal to the mental model of the controller. In
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contrast to the Zoomed and Standard SSDs, it has
lost its circular shape which means it has lost its
intuitiveness and interpretability. Therefore, it was
concluded that, given the simulation used in this
research, the Zoomed SSD is most suitable as input
to the network as it gives optimal performance while
being conformal to the mental model of the ATCo.

B. Experiment
Predicting resolutions using regression instead of
classification fundamentally changes the task of the
CNN. Hence, it is likely that the architecture used
in the initial test is non-optimal for this prediction
model. Furthermore, the SSD can be further feature
engineered by optimizing the color coding of the FBZ
to improve model performance. To further investigate
how a CD&R prediction model can most optimally be
constructed, an experiment is conducted to find a better
performing architecture and to analyse the influence of
FBZ color coding schemes. The experiment consists
of four phases as presented in figure 7.

                          
                     

Simulation Data 

Creation

Architecture 

Optimization

Evaluation

Figure 7. The four experimental phases.

1. Simulation
In order to generate data, simulations have to be con-
ducted. These simulations only consider horizontal
resolutions and all aircraft fly at equal altitude with
equal initial ground speed. Due to time constraints
and the amount of data needed, the simulation is per-
formed using the Modified Voltage Potential (MVP)
algorithm [26] in a fictional ATC area (figure 8) cre-
ated in BlueSky [27]. The simulation consists of
controlled aircraft flying from South to North cross-
ing four airways at which intruding aircraft have to be
avoided. Intruding aircraft appear at the beginning of
each waypoint at random intervals with sufficient sep-
aration to simulate variable traffic flows. All aircraft
have equal true entry velocity of 320 knots and the
same fixed altitude. The controlled aircraft is the only
one allowed to perform resolution maneuvers while

all possible conflicts between intruding aircraft are
ignored.

Figure 8. ATC area used during simulation. The
initial trajectories of the controlled and intruding
aircraft are presented in blue and red, respectively.

Using this area, the simulation is done twice with
different look-ahead-times and separation factors to
replicate different controller strategies. The time at
which a resolution is initiated before LoS would have
happened is defined as the look-ahead-time. The
separation factor is a margin placed on top of the
separation distance of 5 nm, i.e. a separation factor of
2 means that resolutions are aimed to result in a sepa-
ration of 10 nm. The Reactive and Proactive strategies
have a look-ahead-time of 2.5 and 5 minutes and a
separation factor 2 and 1.5, respectively. This results
in the Reactive strategy performing more aggressive
resolutions with larger heading and speed changes
compared to the Proactive strategy as can be seen in
figure 9. The simulation has run until approximately
10,000 conflicts have been collected for each strategy.
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Figure 9. Heat-Map of the resolution distribution
for the Proactive and Reactive strategy, respec-
tively.

2. Data Generation
For every variation to the FBZ color coding two data
sets are created, one for each strategy, using the format
of the Zoomed SSD. All SSD versions will be cropped
to only the top half before being fed into the network,
resulting in a fixed image size 32x64 pixels. A color
scheme with 3 colors will be used as a baseline for
which an example is shown in figure 10. The colors
indicate 𝑡𝑙𝑜𝑠: red (𝑡𝑙𝑜𝑠 < 180𝑠), orange(180𝑠 < 𝑡𝑙𝑜𝑠 <

300𝑠) and gray (300𝑠 < 𝑡𝑙𝑜𝑠 < 600𝑠).

Figure 10. Example of a SSD used as baseline for
this experiment.

The colors gray, orange and red are commonly
used in aviation to indicate different levels of con-
cern as they are easily distinguishable for humans. A
CNN however, reads pixel values as numbers and can
therefore distinguish a near infinite amount of colors
accurately. In addition to the baseline SSD, 5 other
SSDs using different color schemes are introduced to
analyse the influence on predictive performance. Fig-
ure 11 shows these versions given the same situation
as the baseline SSD presented by figure 10. The 600

tint version uses a different tint for every second of
𝑡𝑙𝑜𝑠 which linearly transforms from dark red to red,
to orange, to grey and white at 𝑡𝑙𝑜𝑠 of 0, 180, 300,
450 and 600, respectively. It is chosen to also include
the colors dark red and white in order to add more
difference to the color scheme, i.e. using red and grey
at 𝑡𝑙𝑜𝑠 of 0 and 600, respectively results in orange
being the dominant color in most SSDs. The SSD
versions using 5, 10 and 20 tints are constructed using
the same color scheme as the 600 tint scheme using
steps of equal length. Lastly, a version using only the
color red was added to analyse the outcome of using
less colors than the baseline SSD.

3. Architecture Optimization
As an explicit procedure to find a suitable CNN ar-
chitecture does not exist, it is often a trial and error
process. Due to the large number of parameters that
can be changed, an almost infinite amount of combi-
nations can be analysed which can not be done due
to time constraints. Instead, the architecture used
by van Rooijen et al. [9] (figure 2) will be used as
a starting point, since it already has proven descent
performance in the initial test. From this network, a
more optimal architecture will be sough after in a 7
step process. At each step, multiple variations to the
architectures will be trained using the baseline SSD
(figure 10) for both strategies. The best performing
model will progress to the next step. Aside from the
first step, the steps are ordered in descending order of
expected influence in predicted performance. In order
to evaluate all variations at each step the model was
trained with the hyperparameters from table 2 for 500
epochs after which training curves were compared.

1) Padding: At each convolutional layer without
padding, the image size reduces which limits
the number of layers and size of filters which
can be applied. Therefore, it is evaluated at this
step whether or not padding has a negative in-
fluence on the model. It was found, as expected,
that padding does not have a negative influence
meaning more variations can be analysed in the
next steps.

2) Ouput layer: A linear activation function is
commonly used in the output layer of a regres-
sive network [28]. It was found that a linear
output layer results in better performance com-
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Figure 11. Example SSDs for different color scheme variations describing the same situation. Below,
the color schemes itself and pixel values for individual RGB colors are presented for different 𝑡𝑙𝑜𝑠.

pared to the current ReLU output layer.
3) Filter size: A commonly used characteristic of

CNNs is an odd filter size which expands to-
wards the end of the network [28], e.g. 3x3, 5x5
and 7x7 for a CNN consisting of three convolu-
tional layers. The baseline architecture however
uses only 2x2 filters which is less common. Next
to the baseline architecture, a setup is evaluated
where the three convolutional layers have a filter
size of 3x3, 5x5 and 7x7, respectively. This
last setup has shown to significantly increase
training performance.

4) Number of layers: Another fundamental vari-
able of any CNN is the number of convolutional
layers. Testing architectures with 2, 3 and 4
convolutional layers it was found that 3 convo-
lutional layers gives the best trade-off between
terms of predictive power and computational
power.

5) Layer depth: Compared to the baseline archi-
tecture a shallower and deeper architecture were
evaluated with sizes of 16-32-64 and 64-128-
256. It was found that the original depth of
32-64-128 results in the best performance.

6) Dropout: Another way to increase predictive
performance is placing a dropout before the

final layer where some inputs are randomly set
to zero. In this experiment dropout rates of 0,
10, 20 and 30% are evaluated. The original
dropout rate of 20% is found to achieve the best
performance.

7) Optimization algorithm: Some more elaborate
optimization algorithms are evaluated which au-
tomatically tune learning rate, momentum, etc.
ADAM and RMSProp are both state of the art
optimizers which have shown accurate results in
recent years [29]. Evaluating them it was shown
that both have better overall training perfor-
mance compared to Stochastic Gradient Descent
while ADAM slightly outperforms RSMProp.

Table 4 gives an overview of the final architecture
after optimization. It was found that the ADAM op-
timization algorithm and an initial learning rate of
0.001 results in the best training performance and the
highest predictive performance. Figure 12 presents
the validation errors obtained by training the baseline
and final architecture. Comparing the baseline with
the final architecture it can be observed that the new
architecture results in: 1) faster convergence, 2) lower
absolute error, 3) more variability and 4) performance
decreases over time due to overfitting. As a result of
the performance decrease early stopping is applied,

10



i.e the weights of the model are saved after a new min-
imum is found and training will stop after 50 epochs
without any improvement. The training curve vari-
ability does not compromise the overall performance
of the model and is therefore left as is.

Table 4. Final network architecture.

Layer type

Input size

Filter size

Depth

Activation

CONV 32x64x3 3x3 32 ReLU
POOL 32x64x32
CONV 16x32x32 5x5 64 ReLU
POOL 16x32x64
CONV 8x16x64 7x7 128 ReLU
Flatten 8x16x128

FC 2688 ReLU
Dropout 1024

FC 1024 Linear
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Figure 12. Mean Squared Error achieved after
each epoch by feeding the validation data set into
the network.

Using the newly introduced architecture and train-
ing procedure, training is done for all SSD versions
defined during the previous step of this experiment.
Figure 13 shows the validation error obtained during

training for both controller strategies. It can be ob-
served that all SSD versions, except the SSD using
only one color, show similar training performance in
terms of training curve and the final error. Regarding
convergence speed, significant differences are only
found for the Reactive strategy. Additionally, it can
be seen that the lowest global MSE is found using the
10 and 600 color SSD version for the Reactive and
Proactive strategy, respectively.

4. Evaluation
Using the test data set, the final models are evalu-
ated for both strategies. The outputs of the CNN
are converted back to true heading and speed values
and subtracted from the true values coming from the
data set to obtain the true error. Table 5 presents the
mean value and interquartile ranges of these errors for
all models. It can be observed that the architecture
introduced in this paper achieves higher predictive
performance for both strategies regarding heading and
speed errors. Regarding the different color schemes,
it can be observed that differences in predictive per-
formance are minimal excluding the one color version
which shows worse performance. Considering in-
terquartile range, it can be concluded that using the
the SSD with 20 and 5 different colors results in
the most optimal performance for the Reactive and
Proactive strategy, respectively.

Finally, it is analysed how the model generalizes
given a different ATC area with different conflict dy-
namics. The controlled aircraft flight trajectory from
figure 8 is reversed to create a simulation with different
conflict dynamics. For both strategies a simulation is
done, creating 1000 conflicts approximately, using the
same MVP settings as used during the original simu-
lation. Data sets are created using the baseline color
scheme which is evaluated using the weights from the
final model. Table 6 shows the mean true heading and
speed errors and interquartile ranges given the origi-
nal and generalization simulation. It can be observed
that predictive performance reduces substantially if
a model is evaluated using data from a simulation
with different conflict geometry. This means that the
weights of the final model will only result in accurate
performance given the conflict geometries generated
by the original simulation. Hence, the model is only
applicable to the ATC area used in this research.
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Figure 13. Validation error during training for the baseline and final architecture.

Table 5. Mean true heading and speed errors and interquartile ranges shown between brackets for
both architectures given multiple color schemes.

Number Reactive strategy Proactive strategy
Architecture of colors HDG [degrees] SPD [m/s] HDG [degrees] SPD [m/s]

Baseline 3 0.62 (7.78) 0.11 (4.18) 0.27 (5.62) -0.14 (3.94)

Final

1 -0.14 (5.30) 0.35 (2.55) 0.31 (4.10) -0.04 (3.18)
3 -0.32 (3.90) 0.07 (2.08) -0.06 (2.92) -0.22 (2.42)
5 0.46 (3.44) 0.50 (1.74) 0.40 (2.67) 0.40 (2.19)
10 -0.17 (3.65) 0.43 (1.82) -0.43 (2.91) 0.62 (2.10)
20 -0.42 (3.34) 0.34 (1.48) 0.05 (2.72) -0.10 (2.42)
600 0.27 (5.62) 0.57 (1.47) -0.80 (2.79) 0.55 (2.18)

Table 6. Mean true heading and speed errors and interquartile ranges shown between brackets for the
initial and generalization simulation given the baseline SSD with the final architecture (table 4).

Reactive strategy Proactive strategy
Simulation HDG [degrees] SPD [m/s] HDG [degrees] SPD [m/s]

Initial -0.32 (3.90) 0.07 (2.08) -0.06 (2.92) -0.22 (2.42)
Generalization -3.36 (10.66) 5.21 (8.04) 2.30 (5.90) 4.25 (7.59)
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IV. Discussion
The main objective of this research was to achieve
individual-sensitive personalized automation which
will be accepted by controllers. By introducing a
prediction model using SL which takes the SSD steps
have been made towards this main ambition. Using
the work of van Rooijen et al. [9] as a starting point,
a different model architecture was introduced and the
SSD is feature engineered to optimize performance.
A model which regresses to a specific velocity vector
instead of predicting a certain class bin was proposed.

As the newly introduced model regresses to a single
velocity vector, a different performance measure was
needed compared to the work of van Rooijen et al. [9].
Hence, a direct measurement in terms of performance
between the model proposed in this paper and the
model proposed by van Rooien et al. [9] was not
possible. However, from a qualitative point of view,
one could argue that a model which predicts an exact
resolution more accurately advises resolution to its
controller compared to a model which predicts a
certain bin. Also, it can be observed from table 5 that
all interquartile ranges are lower than the bins used
in the research of van Rooijen et al.[9]. Therefore, it
can be concluded that a model which uses regression
outperforms a model which uses classification in terms
of predictive performance given the simulations used
in this research.

Due to the extensive amount of data needed and
the current Covid measurements it was not possible
to generate data through human-in-the-loop experi-
ments. All data was collected through simulations in
which resolution commands were issued by the MVP
algorithm [26]. The settings of the algorithm have
been tuned such that it represents a human controller
as much as possible and it was assumed that the reso-
lutions generated are representative for a professional
human ATCo. There is no guarantee however that
the results obtained in this research are also valid for
a prediction model trained using human data. Ad-
ditionally, a large data set was generated to ensure
that training was possible. The minimum amount of
data needed is still unknown and is probably highly
dependent on data set variation, controller strategy
and traffic complexity.

Nevertheless, two different MVP [26] settings were
used to simulate different controller strategies. The
Proactive strategy has a larger look-ahead-time and

therefore acts sooner compared to the Reactive strategy
resulting in more subtle resolutions. This means the
spread of resolutions issued is smaller resulting in a
simpler task for the prediction model. This can also be
confirmed by observing the validations errors which
can be observed in figure 13. For the Reactive strategy,
training performance increases as more colors are
used while this is not necessarily true for the Proactive
Strategy.

Regarding feature engineering, it was proven that
a relation exists between the size of the solution
space and predictive power. The solution space was
maximized while still maintaining the layout of the
original SSD. Future research could further analyse
the solution space size as the maximum size may
not be the most optimal. Additionally, it was shown
that adding more colors to the FBZ color scheme
does not necessarily increase predictive power. The
original SSD using only three colors was designed
such that the colors are easily distinguishable by a
human operator. However, the influence of adding
more or less colors to the FBZ on the controllers
judgement is not analysed in this research. Another
direction in which further research could be directed
is more feature engineering techniques which could
potentially increase predictive performance, e.g. a
larger image, including the bottom half, adding the
exit waypoint of conflicting aircraft, etc.

Regarding architecture optimization, an extensive
search for an architecture which results in better per-
formance is done. Nevertheless, many more design
options can be explored and different combinations
could potentially result in better performance. The
steps in which the new architecture is found are or-
dered in descending expected influence on predictive
performance. Due to time constraints not all possible
combinations have been explored meaning it can not
be stated that the introduced architecture has optimal
performance. Additionally, it might be true that a dif-
ferent architecture results in better performance when
a different data set is used, i.e. difference in traffic
scenarios, controller strategy and SSD format. Future
research could potentially further analyse the influence
of different data sets on architecture performance.
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V. Conclusion
This research introduced an alternative Convolutional
Neural Network architecture performing a regression
task in order to predict an exact resolution in the
form of a velocity vector given a Solution Space Di-
agram as input. Using data generated by an initial
simulation it was proven that Convolutional Neural
Networks are capable of predicting resolutions ac-
curately using regression. Furthermore, a Solution
Space Diagram format with a larger solution space
was introduced which resulted in higher predictive
power. A more elaborate simulation was conducted
with different settings to simulate two controllers with
different strategies. For each strategy, 6 data sets were
created using the newly introduced Solution Space
Diagram format. Each data set consisted of Solution
Space diagram which uses 1, 3, 5, 10, 20 and 600
colors to indicate different times to loss of separation.
Using the 3 color Solution Space Diagram data sets,
architecture optimization and hyperparameter tuning
has been done which has shown to significantly in-
crease predictive power. No considerable differences
are found between the different color schemes using
the introduced architecture except for the decreased
performance caused by the Solution Space Diagram
which uses one color. However, as these conclusions
are solely based on the simulations done during this re-
search, a guarantee that such model behaves similarly
when used on human data does not exist. Future re-
search therefore could potentially further evaluate the
model given data from real Air Traffic Controllers.
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1
Introduction

Historically the aviation industry has shown a steady growth which is expected to continue in the long-
term according to SESAR JU [76]. In order for this growth to be able to continue, Air Traffic Control
(ATC) has to be able to accommodate these extra flights. However, as argued by Majumdar et al.
[46] the airspace capacity is already limited by the workload of an Air Traffic Controller (ATCo) can
manage. Multiple ATC solutions are being developed making the role of the ATCo redundant in the
future but do not include a transition plan from the current system. Hence, as argued by Hoekstra et
al. [29], fully automated ATC solutions are not feasible in the near future. On top of this, transferring
to an automated system in which the controller is not considered often leads to worse performance as
argued by Bainbridge [6], as humans gain more knowledge of the system by interacting with it. In order
to also increase airspace capacity in the shorter term, an automated system should support the ATCo
with making decision instead of replacing him.

An example of a decision support system is the Solution Space Diagram (SSD) which was intro-
duced in the work of Velasco [47]. It is a visual tool which gives ATCo’s a clear overview of all conflict-
free velocity vectors that could be issued to a pilot. Multiple studies have shown that, the SSD has a
significant effect on the reduction of controller workload [47, 19, 34, 9]. Furthermore, Westin et al.[85]
introduced the notion of strategic conformance which aims to make automation individual-sensitive to
the controller currently using the system. Enough evidence was provided to reasonably hypothesize
that an advised solution, from automation, would be more readily accepted if it matches the individual
problem-solving style of the controller. Combining the SSD and strategic conformance, Van Rooijen
et al.[59] introduced a Convolutional Neural Network (CCN) which is trained on the actions of an indi-
vidual controller. Using the SSD as input to the network allows the sytem and the controller to work
from a shared mental model. With experiments, Van Rooijen et al.[59] showed that trained models can
reasonably predict resolutions using three separate CNNs for command, type, and magnitude. Further-
more, it was found that a model achieves higher predictive performance if the controller has a more
consistent problem-solving style.

This research of van Rooijen et al. [59] can be seen as a proof of concept into the capability for an
individual-sensitive trained CNN to predict controller resolutions given a SSD as input. This research
will expand on this, by evaluating how suchmodel should be constructed in order to establish an optimal
human-machine system which will be accepted by the controller. This will be done from three different
viewpoints:

• the most efficient use of a CNN in the context of CD&R;
• the optimization of the input to the CNN;
• and the presentation of the advised solution towards the ATCo.

It is hypothesized that, an ATCo is more likely to accept an advisory CNN during CD&R if predictive
power is increased and the presentation of the advised solution is done in such way that it provides
reasoning behind a certain solution.

As the objective of this research is to increase acceptance of automation during CD&R a more
specified research question can be formulated:
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”How can acceptance of Convolutional Neural Networks for Conflict Detection & Resolution
be improved for use by Air Traffic Controllers?”

To be able to answer the research question, four sub-questions are formulated which are summa-
rized below and visually shown in figure 1.1.

How can acceptance of Convolutional Neural Networks for Conflict Detection & 
Resolution be improved for use by Air Traffic Controllers?

What aspects influence acceptance by 
Air Traffic Controllers?

What is the definition of 
acceptance?

Which requirements are needed 
for an automation system to be 

accepted?

Which characteristics are needed 
to meet these requirements?

How can acceptance be 
measured?

How can a Convolutional Neural 
Network solve the Conflict Detection & 

Resolution problem?

What is the state-of-the-art 
regarding Convolutional Neural 

Networks?

In what way can a Convolutional 
Neural Network solve the Conflict 
Detection & Resolution problem 

most successfully?

How can feature engineering be used to 
increase accuracy?

What is the definition of 
accuracy?

Which features of the current 
automation system can be 

optimized?

What is the effect of feature 
optimization in terms of accuracy?

How should the output of the system 
be presented to an Air traffic 

Controller?

Which elements of the output 
should be presented?

How can these elements be 
presented visually?

How can these elements be 
included into the interface used 

during Conflict Detection & 
Resolution?

Final Thesis Preliminary Analyses Literature Review

Figure 1.1: Overview of research questions with colors that indicate in which phase it is expected that the question is
answered.

1. What aspects influence acceptance by Air Traffic Controllers?

(a) What is the definition of acceptance?
(b) Which requirements are needed for an automation system to be accepted?
(c) Which characteristics are needed to meet these requirements?
(d) How can acceptance be measured?

2. How can a Convolutional Neural Network solve the Conflict detection & Resolution prob-
lem?

(a) What is the state-of-the-art regarding Convolutional Neural Networks?
(b) In what way can a Convolutional Neural Network solve the Conflict Detection & Resolution

problem most successfully?

3. How can feature engineering be used to increase accuracy?

(a) What is the definition of accuracy?
(b) Which features of the current automation system can be optimized?
(c) What is the effect of feature optimization in terms of accuracy?

4. How should the output of the system be presented to an Air traffic Controller?

(a) Which elements of the output should be presented?
(b) How can these elements be presented visually?
(c) How can these elements be included into the interface used during Conflict Detection &

Resolution?
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This research attempts to answer the main question in three different phases: being the literature
review, the preliminary analysis and the final thesis. During the literature review SQ1 will be answered
and possible methods to answer SQ2, SQ3 and SQ4 will be found and analysed. During the preliminary
analyses, basic experiments will be executed in order to find the best method to answer the SQ2, SQ3
most accurately. In the last phase, research regarding SQ4 will be executed after which the research
question will be answered by a discussion.

This preliminary thesis contains the findings of the literature review, the findings of the preliminary
analyses and a proposal for the final experiment. In chapter 2, the state-of-the-art regarding CD&R
and automation will be discussed and an attempt will be made to answer SQ1. After this, a greater
understanding of CNN’s and feature engineering will be established. With this knowledge the algo-
rithm used in the work of van Rooijen[59] will be analysed in order to find opportunities to increase its
performance in terms of predictive power. The third chapter will give an overview of promising XAI
techniques applicable to the problem addressed in this research. At the end of the literature review
several different interface design frameworks will be discussed. Chapter 6 will discuss the execution
and findings of the preliminary analyses. After this, the results of the literature review and preliminary
analysis will be concluded and a direction for further research will be chosen. Finally, a proposal for
the main experiment will be given in the final chapter.



2
Air Traffic Control and Automation

In this chapter the current state-of-the-art regarding to automation in Air Traffic Control (ATC) will be
discussed. Firstly, an introduction to Conflict Detection and resolution (CD&R) will be given as this re-
search will only focus on this task. Secondly, the automation efforts which have been investigated prior
to this research and the future expected developments regarding ATC and automation are reviewed.
After this, a discussion will be given about the definition of acceptance, system requirements and their
needed characteristics. Lastly, some methods in order to measure acceptance are analysed.

2.1. Introduction to Conflict Detection and Resolution
Air Traffic Management (ATM) is defined by ICAO[32] as: ”ATM is the dynamic, integrated management
of air traffic and airspace including air traffic services (ATS), airspace management (ASM) and air traffic
flowmanagement (ATFM)—safely, economically and efficiently— through the provision of facilities and
seamless services in collaboration with all parties and involving airborne and ground-based functions.”
One of the services provided by ATS is ATC, which has the purpose of expediting and maintaining an
orderly flow of air traffic and preventing collisions. These tasks are carried out on three different levels
by the Area Control Centre (ACC), the Approach Control (APP) and the Aerodrome Control (TWR). An
overview of this structure is given in figure 2.1.

Air Traffic 
Management (ATM)

Air Traffic Services (ATS)

Air Traffic Control (ATC) 
Service

Area Control Service

Approach Control Service

Aerodrome Control Service

Advisory Service Flight Information Service Alerting Service

Air Traffic Flow 
Management (ATFM)

Airspace Management 
(ASM)

Figure 2.1: Air Traffic Management overview

As automation in ATC is still in an initial phase[76], this research will focus on the service provided
by the ACC. This unit controls en-route traffic within its own control area and has the least external
variables compared to the other units. Hence, introducing automation to this control unit is the most
straight forward. Within the ACC, ATCo’s execute multiple tasks simultaneously. However, CD&R is
the most important task within ACC which involves active decision making and is therefore the primary
and only concern of this research.
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As described by ICAO[32] aircraft have a minimum separation of 1000 ft vertically and 5 nm hori-
zontally in designated airspace under FL 410. A conflict occurs when aircraft are on a trajectory which
will violate the minimum separation. When the minimum separation is actually violated by the aircraft
one speaks of Loss of Separation (LoS). During CD&R an ATCo predicts the trajectory of an aircraft,
identifies potential conflicts and resolves them. As described by Seamster et al.[63] the key issues an
ATCo must avoid are, in descending order, violation of minimum separation, deviations from standard
operating procedures, disorder that may result in cognitive work overload and making unnecessary
requests to pilots.

2.2. Air Traffic Control and Automation
In the past, multiple automation systems for CD&R are investigated. In a paper submitted in the year
2000 by Kuchar et al.[37] 68 CD&Rmodelling methods were already reviewed. In all of these modelling
methods a given solution approach to the problem is proposed and exercised, typically through a set
of constrained and simplified examples. Kuchar et al. concluded that the majority of the models have
multiple concerns which should be addressed in future research. Some of these issues are the effects
of uncertainty, inability to handle multiple conflicts, controller acceptance and robustness to degradation
or failure. Some more recent efforts are proposed based on multi-agent self-separation (Agogino et
al.[3]; Hoekstra et al.[27]; Nguyen-Duc et al.[51]), fuzzy logic (Pineau[33])and Reinforcement Learning
(Cruciol et al[13]; Weigang et al.[84]). In the work of Regtuit et al.[56] a strategic conformal automation
system using machine learning was introduced. In this study, only conflicts with two aircraft in a two-
dimensional horizontal plane were taken into account. Data was also created manually by actively
using certain strategies extracted from the dataset afterwards. A first proof-of-concept in the usage
of machine learning for achieving strategic conformal automation for CD&R was given in this study.
However, the authors stated that further research was needed involving more complex scenarios, data
generated by professional ATCo’s and more states.

The work of van Rooijen et al.[59] is a continuation on the work of Regtuit et al.[56] of achieving
strategic conformance using machine learning. In order for the automation and the controller to work
from a shared mental model the algorithm incorporated features which are also used by human con-
trollers. The used parameters for the model were extended to the Closest Point of Approach (CPA),
time to CPA, conflict angle, relative velocity, traffic density, traffic complexity and exit waypoint. These
parameters were incorporated in a Solution Space Diagram (SSD) as shown in figure 2.2. It is a visu-
alisation of the problem based on the solution space, introduced by Velasco et al.[47]. The SSD will
be elaborated on extensively in the next chapter. Van Rooijen et al. used a control sector inspired
by Amsterdam Sector South 1 and did a human-in-the-loop experiment using ATCo’s. They had to
perform the CD&R task during a simulation where the SSD was shown to the controllers while solving
conflicts horizontally. All the actions of the controllers were logged and used to train a Convolutional
Neural Network (CNN). As input of the CNN the SSD is used, as this is conformal to the tool used by the
controller. The output of the CNN is a resolution type (heading, speed or direct to waypoint), direction
(left or right) and directional value. An extended elaboration on CNN’s, in general, and the CNN used
for this algorithm will be given in the next chapter.
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Figure 2.2: Example of the Solution Space Diagram. All safe velocity vectors within the flight envelope of the aircraft are
shown using white space. If a certain velocity vector results in a LoS, this area will be grey, orange or red depending on tLoS .

Green is used to visualize the current velocity vector and blue gives the heading towards the goal waypoint.

Currently the world is in the middle of the Covid pandemic meaning the level of air traffic is lower
compared to the pre-pandemic situation. Historically, the number of flights has always shown a steady
growth with some temporary reduction due to unforeseen situations like 9/11 and the financial crisis of
2008 [52]. After each dip, the number of flights stabilised to its initial steady growth. SESAR JU [76]
expects this increase to continue in the long-term from 11 million flight per year in 2018 up to 15 million
flight per year in European airspace by the year of 2035. The consequences of this growth are the
increase in delays and future air space capacity problems. In the vision described in SESAR’s ATM
Masterplan, a scalable air traffic managements system will be delivered in the future for both manned
and unmanned aircraft which is capable of handling the expected growth. With the main goal of the
system being to enable airspace users to fly preferred flight trajectories as cost-efficiently as possible.
An increase in automation level and connectivity will digitally transform the current ATM structure. This
will result in a more modular and agile system which enables user to use the services regardless of
national borders.

As Artificial Intelligence (AI) is progressively transforming the world, it is expected to be a funda-
mental building block in the transformation of the current ATM system. As stated by SESAR and EU-
ROCONTROL[77] AI has a huge potential in areas where it can reduce human workload or increase
human capabilities in complex scenarios. Six accelerators were introduced in the report in order to
resolve the remaining key challenges:

1. Foster data sharing for AI:
Access to large shared data sets will give stakeholders the opportunity to maximise the benefits
of AI.

2. Federate an aviation/ATM AI-specific infrastructure:
In order to enable data storage, data preparation and facilitate access to computing power an
infrastructure should be established.

3. Develop a new joint human machine system, skills and training:
A joint human-AI system combines human intelligence with computational methods will outper-
form either controller operating in isolation.

4. Guarantee the safe use of AI:
Maintaining or further improving safety in the aviation industry is a notion which always should be
considered, also with the introduction of AI.
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5. Master AI to remain cyber resilient:
The introduction of AI new risks when it comes to cybersecurity, this risks should be investigated
in order to be resilient to cyber-attacks.

6. Build up an inclusive AI aviation/ATM partnership:
In order to share learned lessons and guidelines based on best practices an AI community should
be established for the exchange of data.

This research contributes to the third accelerator, the development of a new joint human machine
system by giving ATCo’s a greater understanding of the actual system.

2.3. The Acceptance of Automation
As argued by Majumdar et al.[46] the airspace capacity is limited by the workload of its controllers.
Higher level of automation in order to reduce the workload of ATCo’s will be inevitable in the near future,
if the level of air traffic is to keep . However, as concluded in the work of Bainbridge[6] automation
can also have negative effects on the performance of the controller. These effects could be over-
reliance, reduced alertness, degradation of human motor skills and short-term workload peaks. These
considerations should be taken into account when designing a new automation system in order to
prevent misuse, disuse or total rejection of the system. Nonetheless, automation only reduces workload
if it is used in the correct way and accepted by its user. In a study conducted by Bekier et al.[7] it was
shown that ATCo’s accept automation less if it changes their role fundamentally, e.g. preventing them
from formulating decisions regarding CD&R. It was also concluded that the levels of automation that
will be accepted are at a fairly low level. Therefore, it will be desirable, especially due to the high impact
of failures, for the automation to be an advisory decision support tool.

According to Hillburn et al.[26], the acceptance of a newly implemented automation system by an
ATCo is one of the greatest hurdles which has to be overcome. As stated by Lee et al.[42] people tend
to rely on automation they trust and tend to reject automation they do not. Hence, an automation sys-
tem will only be successful if the user has enough trust in the system. In a literature review conducted
by Westin et al.[85] the following was concluded: ”1) trust in automation develops over time as a result
of prolonged experience, 2) acceptance and operator performance decrease when the authority and
autonomy of automation increases and 3) acceptance and operator performance benefit from automa-
tion actively involving the operator in the control and decision making loop.” However, a paradox can
be found when taking into account initial acceptance. As stated in the same work: ”an operator might
only develop trust after using a system, but might also be unwilling to trust a system he/she has not
used.” Furthermore, Hoff et al.[30] concluded that trust, and thus also acceptance, fluctuates based
on the operator’s understanding of the methods an automated system uses to perform tasks. In or-
der for a controller to understand the functioning of a system it should function as expected and be
interpretable. As a strategic conformal CNN is considered in this research, the expectation is directly
related to predictive performance, also known as accuracy, of the algorithm. Unfortunately, a CNN can
be considered a black-box system and is therefore not interpretable by itself. Therefore, the output
of the system should be presented in such way that the reasons behind a certain decision becomes
understandable. Figure 2.3 shows the relations between all definitions related to acceptance.

Acceptance Trust Understandability

Expectation Accuracy

Interpretability Presentation

Figure 2.3: In order for a controller to accept automation he has to trust it which will only be achieved if he understands the
functioning of the system. In order for automation to be understandable it should behave as expected present a solution which
will be understood. In the context of this research, this means that expectation is directly related to predictive accuracy and

interpretability to the presentation of the solution.

The primary goal of this research is to maximise the acceptance of a CNN used for CD&R by
increasing the understandability. This is done by maximising the accuracy and presenting the output
in such way that the system is easily interpretable.
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2.4. Measuring Acceptance
Acceptance within this research should be defined before it can be evaluated. The automation system
will give a certain resolution action advisory which the controller can accept or reject. A distinction
has to be made on whether the system advises a resolution which successfully solves the conflict or
not. Therefore, acceptance will be defined throughout this research as follows: ’An advisory decision
support tool is accepted when the controller adheres to the advise given by the tool when a successful
resolution advisory is presented’.

Murdoch et al.[50] introduced a framework which helps with selecting and evaluating interpretability
methods. They introduced the PDR framework consisting of three desiderata which should be consid-
ered when selecting a interpretation method for a particular model: predictive accuracy, descriptive
accuracy and relevancy. Predictive accuracy is a notion which is highly researched in the field of
machine learning and can easily be measured using the test set accuracy for which a performance
measure will be defined in the next chapter. Descriptive accuracy and relevancy are concepts which
are not directly measurable and are highly influenced by the user of a system. In the context of in-
terpretation, Murdoch et al[50] defines descriptive accuracy as: ”the degree to which an interpretation
method objectively captures the relationships learned by machine learning models.” The concept of
relevancy is described as the ability to provide insight for a particular audience into a chosen domain
problem. The main difference between these two concepts is to what they relate, i.e. the data or the
person controlling the system. Descriptive accuracy and relevance should be considered using domain
knowledge when designing a system and can only be evaluated using a human-in-the-loop experiment
as they are subjective concepts. When evaluating these concepts a distinction between them can not
clearly be identified as both concepts influence each other. Throughout this research, interpretability
evaluation will refer to evaluations of a combination of predictive accuracy and relevance. It is common
practice to evaluate interpretability in a subjective way using questionnaires during or after a such an
experiment. Nevertheless, a method to indirectly quantify interpretability is introduced in the work of
Poursabzi et al.[54]. An experiment was conducted where participants had to estimate house prices
after details about a particular house were shown. After this, the prediction from a model was shown
and participants were given the chance to update their initial prediction. From this the Weight of Advice
(WoA) was calculated which effectively is the willingness of an operator to change his answer after an
advise is given. The WoA is defined as:

WoA =
|u2 − u1|
|m− u1|

(2.1)

where m, u1 and u2 represent the model prediction, the initial prediction of the human and the
prediction of the human after the advice is given respectively. When the human is not willing to change
his belief after been given an advice the WoA will be equal to zero. In the case where the operator
chooses to completely grant the advice given the AoW will be equal to one.

Measuring the level of acceptance using the WoA is only possible when a human-in-the-loop exper-
iment will be conducted with the final model. Given the current Covid situation and the limit time frame
in which this research has to be completed, it is unlikely that such an experiment will be conducted.
Therefore, the WoA will only be proposed as a method to measure acceptance for further research.
During this research, it will be assumed that acceptance will increase if predictive accuracy increases
and the solution of the model will be presented in such way that it supports interpretability.



3
Convolutional Neural Networks for

Conflict Detection & Resolution
This chapter will elaborate on CNN’s and analyse how to use them for CD&R. First, an introduction to
CNN’s is given to present a basic understanding and to inform about the state-of-the-art. After this, an
explanation about the SSD will be given and how it has been used as input to a CNN for CD&R. Finally,
some approaches in order to increase the accuracy related to CNN use and feature engineering will
be discussed.

3.1. Introduction to Convolutional Neural Networks
The concept of giving machines the ability to carry out tasks which humans would consider ’smart’ is
defined as AI. Within AI multiple applications exist, however machine learning has experienced the
greatest technological advancement in recent years. Due to these advancements, both definitions
are often used interchangeably which can cause confusion. Machine learning is defined in the book
of Mitchell [48] as: ”The study of computer algorithms that allow computers to automatically improve
through experience.” Within machine learning three principal types are identified by Mitchell [48] as
visualized in figure 3.1. In Supervised learning, data is fed to the system to predict a label which will
be compared to the given label. The system learns to apply the correct label to a piece of data also
when it has not seen the particular data before. With unsupervised learning, labels are not given to the
system but the tools for understanding the properties of the data. It is able to cluster data into groups
if a great amount of data is fed to the system. Lastly, reinforcement learning is a technique where a
system learns a sequence of decisions based on a reward function. The algorithm explores different
decisions in order to maximise the result.

Machine Learning

Supervised Learning
Unsupervised

Learning
Reinforcement

Learning

Figure 3.1: Categorisation of the three machine learning techniques and their subcategories. Note that multiple taxonomies for
machine learning algorithms exist.

The algorithm used in this research intends to reproduce the strategy of an individual ATCo which
is done by training, using data and labels coming from actual ATCo decisions. Therefore, the system
is a supervised learning algorithm using a CNN. Neural networks (NN) are the most often used tool
within supervised learning especially useful for image classification [78, 38]. This section will give an

28
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introduction into CNNs by first explaining the basics of NNs. From these basics, an explanation will
be given on CNs and the architecture of such networks. Larger neural networks are defined as Deep
Neural Networks (DNN), they have shown great advancements in recent years which are discussed at
last [36].

3.1.1. Neural Networks
The foundation of all neural networks is the neuron which was originally introduced as a perceptron
by Rosenblatt [61] in 1958. A schematic representation of perceptron is given by figure 3.2. As can
be observed in formula 3.1 the perceptron consists of a weighted sum of inputs xn with weights wn to
which a bias b is added. This summation is fed to an activation function ϕ which calculates the output
y.

y = ϕ

(∑
n

wnxn + b

)
(3.1)

Figure 3.2: Schematic representation of a perceptron [61].

When a neural network is ’learning’, it is actually updating the weights and bias on every iteration.
As an activation function enables the neural network to have a non-linear relation between input and
output it has to be selected with great care. Many different activation function exist but only a subset
of them are widely used as argued by Sharma [66]. These functions are the Binary Step Function,
the Linear function, the Sigmoid Function, the Hyperbolic Function, the Rectified Linear Unit (ReLU),
the Swish function and the SoftMax function for which the mathematical representations are given by
equations 3.2 through 3.8 respectively.

ϕ(x) = θ(x) (3.2)

ϕ(x) = x (3.3)

ϕ(x) =
1

e−x + 1
(3.4)

ϕ(x) = tanh(x) =
2

e−2x + 1
− 1 (3.5)

ϕ(x) = max(0, x) (3.6)

ϕ(x) =
x

1− ex
(3.7)

σ(z)j =
ezj∑K
k=1 ezk

(3.8)

By staking multiple neurons on top of each other a layer is created. A neural network always exists
of at least three layers which are the input layer, the hidden layer and the output layer. A network with
more then three layers has multiple hidden layers. A schematic representation of a neural network with
three layers is given by figure 3.3.
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Figure 3.3: Schematic representation of a basic neural network.

In order for a NN to train, the output of the network, with the current weights, is calculated first. This
output is compared to the corresponding label and an error is calculated. Multiple metrics are defined
for this matter, one of which introduced in the work of Rumelhart et al. [62] and shown in equation
3.9. In this equation, c and j represent an index over cases and output units respectively and y and d
represent the output state and the desired state respectively.

MSE =
1

2

∑
c

∑
j

(yj,c − dj,c)
2 (3.9)

When the error is calculated, the weights are updated using the back propagation. The error is
propagated backwards through the network up to the input layer in order to calculate each parameter’s
influence on the error. Multiple back propagation algorithms exist, the simplest form of which is standard
gradient descent introduced by Rumelhart et al.[62]. The partial derivative of the error to each weight
∂E
∂wn

is calculated for each individual output. In order to update the weights the partial derivative is
multiplied with the learning rate which is then subtracted from the current states. The learning rate is
a hyperparameter used to regulate the speed of convergence. A so called epoch is completed when
all the data is evaluated and all the weights are updated. Usually a network takes many epochs to fully
converge.

Many variations of the optimisation algorithm described above exist. These variations differ in how
the backpropagtion is carried out and ow the learning rate is upated dynamically. A popular variation to
back propagation is stochastic gradient descent (SGD) introduced in the work of Bottou [10]. Instead
of finding the partial derivatives to all outputs only a stochastic subset is selected. This has proven
to decrease computation power needed and with it the time for convergence. Other more complex
optimisation algorithms are momentum (Sutton[70]), Adagrad (Duchi et al.[18]), RMSprop (Tieleman et
al.[72]) and Adam (Kingma etal.[35]).

3.1.2. Convolutional Neural Networks
As stated above, neural networks are particularly useful when it comes to image classification. This
is done using a CNN which is a neural network with at least one convolutional layer. It was firstly
introduced in the work of LeCun et al.[41] where a CNN was used to recognise handwritten zip codes.
The input to a CNN is most often one in case of gray scale images. For colorized images three matrices
are needed one for each RGB channel of the images. Each pixel value is connected to the first layer
of neurons. At a convolutional layer a filter shifts over the image in order to obtain a new feature map.
The weights inside the filter will be optimised in order to extract certain features from the image. A basic
example of the convolution operation is shown by equation 3.10.

Input0 1 3
4 5 6
6 7 8

 ∗
Filter[
0 1
2 3

]
=

Output[
24 31
38 44

]
(3.10)

Multiple parameters have to be set in a convolutional layer:
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• Filter size:
When using a larger filter more pixels of the original image are taken into account for the calcu-
lation of each convolution. The filter size also influences the output size as can be seen in the
example of equation 3.10. It is common practise to use a square filter of odd-number dimension

• Depth:
The depth of a convolutional layer correspond to the number of filters used in parallel in one layer.
With a higher depth more features are extracted in that layer.

• Stride:
The stride corresponds to the step size as the filter slides over the input matrix image, e.g. with
a stride of two, the filter moves two pixels at each step skipping one pixel. This will influence the
size of the output quit drastically.

• Padding:
As said above a convolutional layer reduces the size of the input image. As this can be undesirable
in some situations padding can be added to the borders of a matrix. In most cases these pixels
will have a value of zero. Padding is also used when the pixels at the edges of the images are
important.

Besides convolutional layers, subsampling layers and fully connected layers can be found in a CNN.
A subsampling layer, which is often also referred to as a pooling layer, is used to reduce the size of an
image. This layer can also be described as a convolutional layer where the filter size and stride are set
in such a way that every pixel is only used once. A basic example of such operation is given in equation
3.11 where an 8x8 sized matrix is reduced to a 2x2 sized matrix using a 2x2 filter size and a stride of 2.
However, the difference between a subsampling layer and a convolutional layer is that no weights are
optimised. Multiple variations to a subsampling layer exist, the max-pooling and the average-pooling
are used most often. Both variations can be observed in figure 3.11. The fully connected layer is often
found close to the end of a neural network. As multiple convolution and subsampling layers are used,
the output will have the form of a long array of ’matrices’ with size 1x1 each. Each of these ’matrices’
are essentially a neuron containing the probability of a certain feature. In a fully connected layer every
output is connected to every neuron. The weights of this determine whether the probability of a certain
feature contribute to the probability of a certain output. For example, the output which represents the
probability of an image containing a cat has high probabilities on features like fur, whiskers, a tail and
possibly more features which define a cat.

Max-pooling[
9 7
8 8

]
⇐=

Input
0 4 7 4
9 3 3 2
5 4 6 1
3 8 9 8

=⇒
Average-pooling[

4 4
5 6

]
(3.11)

By adding different layers of all types together a CNN architecture is created. In figure 3.4 the
architecture of the LeNet-5 network, which was introduced in the work of LeCun et al.[39], is presented
as an example. As can be seen in the figure it uses six layers in total with two of each type. The
architecture of the CNN used in this research is a variation to the network shown in figure 3.4. In this
research a variation on LeNet-5 is used which will be discussed more extensively in the next section.

Figure 3.4: Architecture of LeNet-5 [39], a CNN used for digit recognition.
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3.1.3. Deep Neural Networks
Larger neural networks which contains a large number of layers and a high layer depth are often referred
to as Deep Neural Networks. larger CNN’s, especially have proven to be an excellent tool for almost
all recognition and detection tasks as argued by LeCun et al.[40]. At the base of this revolution stands
the LeNet-5 architecture of Lecun et al.[39] which was used for document reading. Around the 1990s
experiments where done using neural networks for speech recognition (Waibel et al.[83], localising
faces (Vailant et al.[78]) and actual face recognition (Lawrence et al.[38]). From the year 2000 onwards
neural networks became more successful at detection, segmentation and recognition tasks. A few
examples of these tasks are pedestrian detection (Sermanet et al.[65]), biological segmentation from
microscopical images (Ning et al.[20] and Turaga et al.[74]), traffic sign recognition (CireşAn et al.[12]),
localization of joints (Tompson et al.[73]) and autonomous off-road driving (Hadsell et al.[24] and Muller
et al.[49]). Even though, these networks have proven to be very accurate they still are not considered
DNN’s. Only in recent years CNN architecture have become very large in order to increase performance
on object recognition. In the work of Kriszhevsky et al.[36] 1.2 million high-resolution images where
classified into 1000 different classes. The training of the network took 5 to 6 days using 2 high end
GPUs optimising the 60 million trainable parameters distributed over 650,000 neurons.

3.2. Conflict Detection &Resolutionwith Convolutional Neural Net-
works

As stated in the introduction, van Rooijen et al.[59] implemented a CNN which predicts a resolution
given a SSD as input. In order to understand how this is done, the characteristics of the SSD will be
explained first. After this, the algorithm used by van Rooijen et al[59] will be elaborated on.

3.2.1. The Solution Space Diagram
The SSD is a visual support tool which incorporates multiple parameters applicable to the CD&R task.
In recent years, it has been used for various applications but was first introduced in an aerospace
context by van Dam et al.[80] as an self-separation tool. After this, researche have been conducted
into the effect of the SSD on workload. Hermes et al.[25], d’Engelbronner et al.[14] and Mercado
Velasco et al.[47] all investigated the correlation between controller workload and several solution-
space properties or using the SSD. It was introduced for the first time as an input to an automated
system by van Rooijen et al.[59]. This allows the automation and the controller to work from a shared
mental model.

Figure 3.5 gives a representation of how the SSD is constructed. The construction starts by calculat-
ing the Forbidden Beam Zone (FBZ) which was introduced in the work of Visser et al.[82]. Considering
aircraft A and B, the FBZ of aircraft A can be constructed by drawing two lines originating at its own po-
sition to the edges of the protected zone of aircraft B. As can be seen in figure 3.5.a this creates a zone
in which the relative velocity of aircraft A to B results in LoS in the near future. Shifting the FBZ with the
velocity vector of aircraft B defines a zone which results in LoS if the absolute velocity vector of aircraft
A ends within this zone as can be seen in figure 3.5.b. After this, two circles are drawn around the air-
craft representing the minimum and maximum velocity. Adding the velocity vector of aircraft A the SSD
as presented by figure 3.5.c is constructed. When the velocity vector ends in the area enclosed by the
FBZ it is on a trajectory which will result in LoS. The space between the velocity limitations and outside
the FBZ is referred to as the solution space. Multiple FBZ’s can be present inside the SSD if there is a
situation with multiple intruding aircraft. Note that the SSD is limited to horizontal resolutions currently.
This is not a concern for this research however as also only horizontal resolutions are considered.
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Figure 3.5: The construction of the Solutions Space Diagram [59].

The SSD gives the controller a clear overview of the situation and helps in finding an appropriate
resolution solution. The following parameters are presented visually by the SSD:

• Closest Point of Approach (CPA):
Using the translation of the FBZ the CPA can be visualised.

• Time to CPA (tCPA):
The tCPA is represented by the width of the FBZ, a large tCPA results in a narrow FBZ. Optionally,
color coding can be used for visualising tCPA. Within a FBZ different tcpas can be presented as
it is collection of velocity vectors.

• Relative velocity:
This can be visualised using the tip of the FBZ and the velocity vector. The vector between these
points is the relative velocity. Alternatively, insight in this can be obtained by the rate of increasing
with of the FBZ.

• Conflict angle:
The conflict angle is visualised by the heading of the center line of the FBZ.

• Traffic density:
All other aircraft appear inside the SSD with a separate FBZ.

• Traffic complexity:
The amount of space which is not covered by a FBZ is considered to be the solution space. The
traffic complexity is represented by the free solution space.

• Exit waypoint:
Optionally, the heading towards the exit waypoint can be visualised using a symbol on the SSD.

3.2.2. Past Effort of Convolutional Neural Network for Conflict Detection & Res-
olution

The algorithm van Rooijen et al[59] used is trained on a dataset consisting of RGB images of SSDs
with size of 128x128 pixels. The velocity vector is visualised using a green vector and the exit waypoint
is indicated with a blue marker. Furthermore, the FBZ’s are colour coded as red (tCPA < 60s), orange
(60s < tCPA < 120s) or gray (TCPA > 120s). The images are rotated such that the velocity vector is
always orientated upwards. After this, the lower half of the images is deleted as turns larger than 90
degrees are highly unlikely and not desirable. This results in a 64x128 pixels image which will be down
sampled to 32x64 pixels to decrease computational load. The image is fed to the algorithm in RGB
format, each pixel representing the value for red, green or blue. In this way, the solution space, the
velocity vector and the exit bearing are incorporated separately. Figure 3.6 shows the SSD as it is fed to
the system in its complete form and the three colour channels. The architecture used for this algorithm
is a variation on the LeNet-5 architecture (figure 3.4) introduced in the work of LeCun et al.[39]. Table
3.1 includes the total architecture of the algorithm implemented by van Rooijen et al.[59].
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Table 3.1: Architecture of used network.

Layer type Input size Filter size Stride Filters Activation function Output size
Convolutional 32x64x3 2x2 1 32 ReLU 31x63x32
Max-Pooling 31x63x32 15x31x32
Convolutional 15x31x32 2x2 1 64 ReLU 14x30x64
Max-Pooling 14x30x64 7x15x64
Convolutional 7x15x64 2x2 1 32 ReLU 6x14x32
Flatten 6x14x32 2688
Fully Connected 2688 1024
Dropout 1024 1024
Fully Connected 1024 SoftMax 2 or 3

Figure 3.6: The SSD as it is fed into the algorithm and the three separate color channels. From left to right the three separate
color channels are red, green and blue.

During a human-in-the loop experiment all the actions a controller executed and the related SSD
images were logged. This data set was used to train three personalized CNN’s for each controller
using part of the data set for validation and testing. Each model predicts one of the three decision
stages which are resolution type, direction and directional value. The resolution type prediction can be
heading (HDG), speed (SPD) or direct to waypoint (DCT). Secondly, the direction prediction can be left
or right in the case of a heading command or faster or slower in the case of a speed command. Lastly,
directional value is divided into three classes being 0 to 10 degrees, 10 to 45 degrees and larger than
45 degrees for a heading command. For a speed command it gives the command relative to the current
state. A complete overview of how the three models together come up with a prediction is presented
by figure 3.7. The construction of the CNN’s was done using the Keras and TensorFlow libraries in
Python. The training for all networks was done with identical hyper parameters which are presented in
table 3.2.

SSD
Neural Network for

direction

Neural Network for
resolution type

Neural Network for
directional value

Left/right or 
faster/slower

HDG/SPD/DCT

0-10/10-45/>45

Resolution advice

Figure 3.7: Fundamental model architecture used by van Rooijen et al. [59]
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Table 3.2: Hyperparameters used for training by van Rooijen[59].

Hyperparameter Value
Optimization algorithm Adam
Output activation function SoftMax classifier
Loss function Categorical entropy
Train/validation/test ratio 60/15/25
K-folds 5
Mini batch-size 32
Steps per epoch 2 x training samples / batch size
Epochs 30
Learning rate 0.01
Dropout rate 20
Input image dimensions 32x64

3.3. Opportunities for algorithm optimization
Van Rooijen et al.[59] did an initial attempt to use a CNN as an advisory system for CD&R with the SSD
as input. It was stated that, further research is needed refining model architecture and optimizing the
input to the system. This section will discuss these opportunities for improving the algorithm in terms
of accuracy. First, an analyses will be given on the optimal use of the current architecture. After this,
an introduction to feature engineering will be given and some possibilities for accuracy optimization
related to feature engineering will be discussed. The accuracy of a certain system has to be measured
using a suitable metric. Therefore, the final subsection will define accuracy and a suitable metric given
the problem and system researched.

3.3.1. Use of architecture
In the initial attempt, three networks are used used in order to predict a suitable resolution strategy. In
order to do this bins were defined which were used for classification. The output from each network
together form the resolution advice given to an ATCo. For example, an heading change to the left of
30 degrees will be shown as: HDG → LEFT → [10, 45]. One could argue that using this structure is
sub-optimal due to multiple reasons:

• Independent networks:
The three separate CNN’s are used separately for different tasks without any connection between
them. Nevertheless, the task for the direction and directional value changes due to the output
of the resolution type network. For example, the direction network predicts left or right when the
output of the resolution type network is a heading change. When the resolution type is a speed
change the direction network uses the same weight to predict faster or slower. As there is no
connection between them, the direction network can not make a distinction between what type
of output is predicted. This can result in error propagation if the resolution type network gives a
false classification

• Bin size:
Another sub-optimal characteristic of this algorithm are the large bin sizes in which an advise is
given. The system advises a bin which is an assemble of multiple possible velocity vectors. Even
if the systems output is considered correct there can be velocity vectors in the bin which result in
a LoS. Therefore, a controller should still derive a solution and search for a save velocity vector.
Therefore, one could argue that an advisory system with such large bin size does not result in a
reduced workload for ATCo’s.

• Direct to type resolutions are redundant:
Often, during CD&R conflicts are solved using two resolutions. The first resolution is a speed
or heading command to solve the conflict after which a direct to command will be used when a
direct path to the exit waypoint is free. As stated earlier, the heading leading to the exit waypoint
is incorporated within the original design of the SSD. It is straightforward for an ATCo to detect
whether the exit waypoint is laying inside the free solution space or not. Therefore, the prediction
of a direct to resolution is redundant and can possibly lead to a sub optimal performance.
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ATCo’s give commands to pilots in specific steps, i.e. heading change commands are done with a
minimum of 10 degrees. Despite this, aircraft fly in continuous space and the FBZ’s presented inside an
SSD are not bounded by any bins. Therefore, the output of the CNN should ideally also be continuous
in the form of a singe velocity vector. Van Rooijen et al.[59] used the CNN architecture for classification
with predefined bins. This is a logical choice as CNN’s have shown to be particular successful with
image classification. However, CNN’s can also be used for other tasks than classification. In the
work of Fischer et al.[21] a regression type of approach was used in order to predict image orientation.
Another example of using a CNN for regression is presented in the work of Mahendran et al.[45]. They
constructed a CNN which predicts the 3d pose of an object in an image. Both papers conclude that
CNN’s can be used for regression and show competitive performance compared to classification given
their problem. As a single velocity vector can be constructed using only a number for heading and
speed, a CNN should be able to predict a resolution using regression. This can be done by using only
one network which has two outputs for heading and speed. Within machine learning the inputs and the
labels need to be normalized between 0 and 1 in order to converge. This will mean the output of the
network consists of two values between 0 and 1. These values will have to converted to to the heading
range of -90 to 90 and the speed range equal to minimum and maximum speed of the aircraft.

3.3.2. Feature Engineering
With the development of machine learning algorithms, preparing the data is found to be the most time
consuming activity. According to Dasu and Johnson[16], 80% of data analysis is spent on the process
of cleaning and preparing the data. This process is often referred to as feature engineering. Despite
the time consuming aspect, very little research on the topic is published in a formal way. According to
Locklin [44] feature engineering is another topic which does not seem to merit any review papers or
books, or even chapters in books. Also, feature engineering is a term used in the domain of software
engineering to which most research papers relate. nevertheless, it is a critical aspect for machine
learning algorithms. As argued in the work of Domingos [17] the most important factor for the success
of amachine learning project are the used features. Raw data is often not optimal for learning algorithms
but from this data features can be created that are. Additionally, feature engineering is the only phase
in machine learning in which domain knowledge of the problem can be taken into account.

A team of students from the National Taiwan University have shown that using domain knowledge
for feature engineering can have exceptional effects on the performance[87]. They participated in the
KDD Cup 2010 which is a data mining competition where teams have to predict student algebraic
performance. Prediction of the performance was done using two data sets which contained logs for a
large number of interaction steps with intelligent tutoring systems. Some of the techniques used were
binary data tables for categorical data, scaling for numerical data and identifying feature pairs. The
extensive use of feature engineering enabled the team to use only a simple linear regression ensemble.
With this method, the team achieved a higher performance compared to other teams, which all used a
more elaborated algorithm, and therefore won the competition.

Within the domain of machine learning a feature is defined as an individual measurable variables
that is used as an input to a system. Feature engineering aims to optimise these variables in order
to make them compatible with the system and to improve the performance. A clear definition is not
given in most literature and multiple variations exist. The definition of feature engineering used in this
research is the same as used by Brownlee[11]: ”Feature engineering is the process of transforming
raw data into features that better represent the underlying problem to the predictive models, resulting
in improved model accuracy on unseen data.”

Feature engineering can be seen as a broad discipline in which a diverse range of tasks can be
executed. As there is little documentation on the topic, a framework which defines the procedure of fea-
ture engineering does not yet exist. Therefore, using feature engineering in a successful way is solely
dependent on the domain knowledge of the developer. Manual feature engineering relies on trial and
error using multiple techniques which are not necessarily defined by a clear framework. Nevertheless,
multiple techniques within feature engineering exist which include mathematical operations or focus
more on the selection of features or variables. Some of the techniques which are applicable to CNN’s
or this research are listed below:

• Scaling:
One of the most straight forward techniques of feature engineering is scaling. This is done by
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normalizing the variables of a data set to a fixed scale. As CNN’s use the pixel values of an image
as input it is of great importance all images are scaled conformal to each other. Generally, the
colour of a pixel is described using values ranging form 0 to 255 but a scale from 0 to 1 is also
common in machine learning.

• Handling outliers:
Images often contain noise which is non-optimal for the output of a CNN. These pixels often have
a value which differs significantly from its neighboring pixel and can therefore be seen as an
outlier. Handling outliers for a CNN is identifying these pixels and assigning a different value.

• Variable selection:
As CNN’s are mainly used for image recognition, variable selection often is not applicable. How-
ever, the SSD is a figure which is a schematic representation of certain situation. To construct this
figure, certain domain knowledge of a particular situation is needed. Using this domain knowledge
certain parts of the figure can be identified as more relevant compared to others.

In the experiment done by van Rooijen et al.[59] SSD’s were captured as a screenshot from a
simulation. These input images are clearly readable for a human controller but are not optimised for
using them as input to a CNN. Feature engineering can provide a framework to increase accuracy by
changing the input. The main reason to use a CNN for CD&R is that it allows the controller and the
automation system to work from a shared mental model. When designing new features, this mental
model should be taken into account such that it is not lost. Below three changes to the SSD are
proposed in order to increase accuracy:

• The use of easy distinguishable colors:
CNN’s identify colours in a different way compared to humans. Humans are able to identify
colours directly from the complete image while a CNN breaks it down into three layers, in case
of a colorized image, and identifies the values. Table 3.3 provides the pixel value (range) in
percentage, over the three colour channels used, to represent the different colours for the SSD
shown in figure 3.6. From the table it can be observed that tCPA, speed vector and exit bearing
are not all effectively incorporated separately in a color channel. Furthermore, it can be observed
that the pixel value ranges for white, orange and red are close together. In an ideal situation, the
pixel values for a specific colour always have the same value and information regarding tCPA,
velocity vector and exit bearing are coming from a separate channel.

Table 3.3: Pixel values for different colours distributed over the three colour channels.

Input
colour

Colour channels Effective
meaningRed[%] Green[%] Blue[%]

Black 0 0 0 Background
White 100 100 100 Solution space
Gray 87-91 87-91 87-91 tCPA > 120s
Orange 79-97 71-83 59-73 60s > tCPA > 120s
Red 100 0 0 tCPA < 60s
Green 0 100 0 Speed vector
Blue 0 0 100 Exit waypoint

• Scaling the solution space:
The SSD is constructed in such a way that it is conformal to the mental model of a controller.
This means the heading is presented in a circular shape and the speed by the distance from the
middle. This increases situational awareness and therefore reduces workload. However, a CNN
does not have an internal representation of a situation. The algorithm reads a 32x64 pixel image
which consists of the capture of a SSD. Each pixel is seen by the algorithm as a variable inside a
32x64 grid which means input layer consists of 2048 pixel variables. In the most optimal situation
all these variables should contribute to the calculation of the output. However, approximately 58%
of all pixels are part of the background which do not have any relation to the applicable situation
and therefore do not affect the solution. This is non-optimal in terms of computational power. A
possible solution could be to scale the size of the solution space.
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• Polar coordinates:
Another inefficiency of pixel use is the non-linear distribution of velocity vectors over the solution
space. The solution space can be converted into polar coordinates which all represent a velocity
vector. For example, figure 3.8 shows polar coordinates grouped with a heading separation of 5
degrees and 4 speed groups. It can be observed that the velocity vectors with a lower speed are
represented by a smaller area compared to velocity vectors with a larger speed. A CNN reads
an image as a cartesian plain of squares of the same area which is inconsistent with the area
distribution of the SSD. Hence, the velocity vectors with a smaller speed are represented by less
pixels compared to the velocity vectors with a larger speed. This means the variables are non-
linear distributed over the velocity vectors and the lower speed solution space is shown in a less
precise way when compared to the high speed solution space.

Figure 3.8: Polar coordinate representation of a SSD.

3.3.3. Defining Accuracy
Before any experiment is done it is important to define what accuracy is in the context of this research.
In general, accuracy relates to the condition of quality of being correct. For this machine learning
application, accuracy is the number of correctly predicted data points out of an entire data set. In this
research accuracy will also relate to the predictive power of the algorithm. Van Rooijen et al.[59] used
the Matthews Correlation Coefficient (MCC) as an accuracy measure in order to evaluate the predictive
power of the algorithm. It is considered a balanced method without bias to evaluate model performance
for classification algorithms. However, such an accuracy metric can not directly be used when a CNN
does not solve a classification task. As this research intends to use a regression approach in order to
solve the CD&R problemwith a CNN, a different accuracymeasure has to be used. With the normalized
numerical output of the CNN the Mean Squared Error (MSE) which is defined by Fürnkranz et al.[23]
is a straight forward accuracy measure which can be used directly. It is defined as

MSE =

∑n
i=1(yi − λ(xi))

2

n
(3.12)

where yi is the true value for xi, λ(xi) the predicted value for xi and n the total number of test data
points. In contrast to the MCC, a high accuracy is achieved with a low MSE. In order to discriminate
between heading and velocity error the MSE can be converted to true heading and velocity error.



4
Explainable Artificial Intelligence for

Convolutional Neural Networks
AI is becoming more and more a part of the daily lives of humans. The statistics portal Statista forecasts
that revenues coming from the AI market will increase exponentially from 4.8 trillion U.S. dollars in
2020 to 31 trillion U.S. dollars in 2025 [68]. Decision algorithms, which use AI, are already a part of
our daily life, e.g. personalized advertisement, movie recommendation on streaming platforms, friend
suggestions in a social network, etc. These examples have in common that the decisions proposed by
them do not affect our lives in a fundamental way. Little harm is done when such an algorithm gives
an inaccurate or wrong prediction. However, the use of AI is also increasing in systems where more
critical decision are made, e.g. disease diagnosis, military applications, autonomous vehicles and ATC.
With all these applications, an inaccurate or wrong decision can seriously harm human beings or even
result in loss of life. As argued by Adadi and Berrada [2], when it comes to life-changing decisions
it is important to know the reasons behind such a critical decision. Machine learning algorithms in
particular are often black-box systems which cannot explain themselves. Therefore, thrusting themwith
important decisions can result in obvious dangers. Explainable Artificial Intelligence (XAI) intends to
mitigate these dangers by improving the interpretability of an AI. Within this research, the XAI definition
from Arrieta et al. [5] will be used: ”Given an audience, an explainable Artificial Intelligence is one that
produces details or reasons to make its functioning clear or easy to understand.” Within this definition
the ATCo is referred to as the audience which has to be considered when designing an XAI algorithm.

In the work of Arrieta et al. [5] a distinction has been made between transparent and black-box
macine learning techniques. Transparent models are understandable and therefore do not need any
post-hoc explaining techniques. As CNN’s are black-box models this research will only focus on post-
hoc explaining techniques. Another separation which can be made is between techniques which are
specific to a certain model and which are not. Within the framework of XAI a broad variation of tech-
niques exist for different types of models. Figure 4.1 shows all XAI techniques which can be applied
to CNN’s. In this research however, only models from which the explanation can be shown in a visual
form applicable to CNN’s will be considered. Furthermore, XAI techniques which require to change
the original architecture of the CNN will also not be considered. As many XAI methods exist, not all
can clearly be subdivided to a particular technique. For example, a particular method can visually ex-
plain the relevance of certain features. However, it is possible to make a division on general strategies
applicable to CNN’s.
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Figure 4.1: XAI techniques for CNN’s.

In the next sections, multiple explanation strategies are detailed such as: explanation by example,
saliency maps and local models. Each strategy will be explained using a particular method which has
shown to have promising performance within its strategy. Next to this, a short discussion will be given
on the usefulness of this technique for this research.

4.1. Deep k-Nearest Neighbors
One of the strategies to increase interpretability is an explanation by example. In the work of Papernot
and McDaniel [53] the Deep k-Nearest Neighbors (DkNN) algorithm is introduced which finds patterns
between intermediate results of a particular test item and the training data set. The nearest neighbors
inside the training data when a certain test input is fed to the algorithm is found in order to find these
patterns. This is done at every layer within the network to confirm that the prediction made is supported
by the training data. It enables the user to inspect whether the final prediction is consistent with each
intermediate computation. Each hidden layer inside a network calculates a different representation of
its input. This representation is fed to the next layer until the final layer outputs a particular class. As
the input to the final layer is the output from the second to last layer, the intermediate result of this layer
can also be assigned to the same class. This can be back-propagated until the input layer is reached
at which point the data can be shown visually as a picture. The nearest neighbors of an input should
have the same class throughout every layer of the network. Due to the high-dimensional data of the
intermediate results the Locality-Sensitive Hashing function, introduced by Andoni et al. [4], is used
for finding nearest neighbors. This function defines a list of candidate nearest neighbors using cosine
similarity between vectors.

With DkNN, Papernot and McDaniel [53] aimed to improve the confidence, interpretability and ro-
bustness of DNN’s. In this research, the main focus will be on the interpretability as experienced by
the ATCo. The overall goal is to support the controller in understanding why a certain decision is made
by the system. As argued in the work of vailant[79] and Dasgupta et al. [15] locality-sensitive hashing
may be a general way of doing computations inside the human brain. In the research done by Stock
and Cissé [69] an example of how this works is given using a picture of Barack Obama throwing a
football. The picture is wrongly classified as ’Basketball’ instead of ’Football’ by a residual neural net-
work. Papernot and McDaniel [53] applied the DkNN algorithm to this network in order to explain this
classification. Figure 4.2 shows two versions of the input picture and its 10 closest neighbors. Taking
a closer look it becomes clear why the algorithm classified the image as ’Basketball’. The color of the
football is similar to the basketballs, in 7 of the closest neighbors the player is black and the ball is po-
sitioned at the upper part of the image. On the right side the picture is cropped to exclude the football
which results in the algorithm predicting ’Racket’. Here it can be seen that the majority of the nearest
neighboring pictures include players dressed in white, have a green background and the arm position
of the player is above the head. From figure 4.2 it becomes apparent that biases exist within neural
networks which can be easily identified by a human using the nearest neighboring training images.
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Figure 4.2: Incorrect classifications of Barack Obama throwing a football [53].

DkNN is a comprehensible technique which gives the user the tool to clearly discover biases a
CNN might have learned. Having knowledge of such bias can help when a user has to decide to
accept a certain outcome. However, the parent goal of the system to be designed is to decrease ATCo
workload. An explanation will consist of several SSDs which are the most related to the current conflict.
This means an ATCo will have to process several SSDs instead of only one. Therefore, explanation by
example is not a suitable technique for this research.

4.2. Gradient Class Activation Mapping (Grad-CAM)
Another possible technique to give explanations to an ATCo during CD&R could be Gradient Class
Activation Mapping (Grad-CAM). This technique, introduced by Selvaraju et al. [64], produces the class-
discriminative localization map Grad-CAM Lc

Grad−CAM ∈ ℜu×v of width u and height v for class c. This
map shows the importance of a region of a image for a particular category. With respect to a particular
feature map Ak the gradient of the score for a particular class ∂yc

∂Ak is computed. These gradients flow
back into the network using Global Average Pooling (GAP) which is an operation introduced in the work
of Lin et al. [43]. GAP was originally used to replace the fully connected layers of CNN’s. With this
operation a feature map for each category is generated by the network in the last convolutional layer.
The average is taken from these feature maps which is then inputted into the final softmax layer. By
applying GAP to the gradients the importance weight αc

k can be calculated as shown in equation 4.1.

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(4.1)

The weight αc
k indicates the importance of feature map k for a target class c. In order to obtain

Lc
Grad−CAM , a ReLU activation function is used on the weighted combinations of weights for all feature

maps as shown in equation 4.2. The Relu is applied as only the features which have an influence on
the class of interest are positive. The result of this operation is a heat-map which has the same size
as the original convolutional feature maps. A schematic representation of this operation can be found
in figure 4.3.

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
(4.2)
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Figure 4.3: Schematic representation of the Grad-CAM operation applied to a medical context [64].

Before grad-CAM other techniques which used heat-maps in order to explain the output of a neural
network. For example Class Activation Mapping (CAM), introduced by Zhou et al. [88], produces a
similar heat map using a different operation. CAM replaces the final fully connected layer with a Gap
layer. With this modification the CNN architecture is changed and will learn a feature map in the last
convolutional layer. This introduces an additional risk of seriously compromising the performance of
the algorithm. Another drawback is the fact that it is only applicable to a particular CNN architecture.
CAM can only be applied to an algorithm in which the softmax layer can be directly followed after the
last convolutional layer. As the algorithm in this research uses multiple fully connected layers it is not
possible to apply GAP without a fundamental change in the architecture. Grad-CAM however, can be
implemented with any CNN architecture which makes it a suitable method to give explanation to an
ATCo.

4.3. Local Interpretable Model-agnostic Explanations (LIME)
A technique based on local explanations was introduced in the work of Ribeiro et al. [57]. They pre-
sented the Local Interpretable Model-agnostic Explanations (LIME) technique with the goal of identify-
ing an interpretable model over the interpretable representation that is locally faithful to the classifier.
In order to establish an explanation, LIME constructs a local linear model around a prediction of any
model. It divides the input into smaller components using contiguous superpixels which are regions of
an image which have similar pixel values. More information on this technique can be found in the work
of Achanta et al. [1]. These smaller, perturbed instance are fed through the model in order to obtain a
data set of probabilities. After this, a linear model is trained on this locally weighted data. The output of
LIME is a feature map which presents the superpixels with the largest positive weights. In addition to
the visual explanations the probability of a prediction van be given. Figure 4.4 shows an example where
the three different predictions for the original picture are explained. The network used to produce this
example is Google’s Inception Neural network introduced in the work Szegedy et al. [71]. The predic-
tion probabilities for electric guitar, acoustic guitar and labrador are 0.32, 0.24 and 0.21, respectively.
For each prediction the explanations shows features which explain the classification in a interpretable
way, e.g. the fretboard of the electric guitar prediction.
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Figure 4.4: LIME applied to an image of a dog playing a guitar(a) with three different prediction solutions (b), (c) and (d) [57].

One of the advantages of LIME is that it is model-agnostic. The method is able to explain a black-
box model without the need for any intermediate results. Only the input and the output are considered
for constructing the explanation. Therefore, it is flexible and easy to implement on any model. It can be
implemented in Python using the LIME module which consists of multiple functions applicable to any
model. This explanation technique can thus be applied without any knowledge of the inner working of
it. On the other hand, LIME has to train multiple linear models for the explanation of each prediction.
This can be a computationally expensive process when a greater amount of contiguous superpixels is
needed. Creating an explanation for one image can take several minutes which makes it inadequate
for real-time applications like CD&R.



5
Interface Design

As automation is increasingly applied to more applications, one could argue that the role of human
beings in such systems is decreasing to a point that the controller is taken out of the loop. However,
as stated by Borst et al. [8], it has become evident that humans continue to be an essential part
of technical systems. In the design of complex systems, not all potential problems can be taken into
account and therefore they rely on the flexibility and creativity of its controllers. This is one of the ironies
of automation described in the work of Bainbridge [6]. Increasing levels of automation tend to distance
its controllers further and further from the operations but automation still depends on them in case of an
unforeseen situation. Additionally, with the shift to a more supervisory role, the only communication tool
between the controller and the system is the interface. This interface should therefore, be constructed
in such a way that situational awareness is not lost during operations. As stated by Hollnagel [31]:
”A good man-machine system should provide the right information at the right time and in the right
way.” However, without a specification of what ’right’ actually means in each specific work domain
this definition is useless. In this research, the information from one of the previously discussed XAI
techniques has to be presented visually to the ATCo. Therefore, it is of great importance that the ’right
definition’ for this research is defined. In the first section, three approaches to human-machine design
will be presented and their usefulness for this research will be discussed. In the second section, the
framework for designing an interface belonging to the most useful approach will be analysed.

5.1. Human-machine Design Approaches
In the work of Flach et al. [22] multiple design approaches for human-machine systems and their
implications for what ’right’ means are reviewed. It is argued that the ecological approach is a more
comprehensive framework in which the other frameworks can influence it.

5.1.1. Technology Centered Approach
A technology centered approach is the most straight forward approach which is often used for less
complex systems. It highlights the technological capabilities of the machine and shows the raw sensor
values. A basic example is an older car, it only has a few displays like the speedometer, revolutions
per minute and the fuel meter. As each displays indicates only one value coming from one sensor
also often referred to as the single-sensor-single-indicator approach. In systems with less sensors
this is a valid approach however as the systems become more complex the information which has
to be processed can be beyond the capabilities of the controller. As argued in the work of Vicente
and Rasmussen [81], controllers are only informed about direct sensor data and have to derive higher
order domain knowledge themselves. Moreover, the way information is presented in the single-sensor-
single-indicator approach is often not conformal to the human perceptual system. In the context of
CD&R, multiple states of different aircraft have to be overseen by the ATCo. Perceiving the actual state
for a given situation is highly complex when all information has to be derived from numerical values,
such as positional coordinates and aircraft attitude. This research intends to design an interface for
CD&R with a resolution advice and some explanation. Depending on the explanation, the technology
centered approach can be a valid method, e.g. if an explanation only contains the probability of a
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certain prediction. On the other hand, an explanations which highlights certain pixels from the input
image should not be expressed in numerical values.

5.1.2. User Centered Approach
In the user centered approach the focus is on the end user, their capabilities and skills, their specific
tasks and their preferences. The attitude indicator in a cockpit shows the attitude of the aircraft from
the perspective of the pilot and is therefore an example of the user centered design. This reduces the
task complexity of the pilot as the individual states do not have to be processed separately in order
to obtain situational awareness. In essence, a user centered design addresses the limitations of the
human operator in terms of physical, perceptual and cognitive limitations. It reduces the amount of
information the controller needs to perceive in order to successfully control a system. However, this
approach also introduces some complications. First of all, it gives little to no support in a situation
which is unforeseen or unusual. Also, humans interpret systems in different ways and therefore this
approach is not always conformal to the mental model of the controller. These complications can
be overcome using an additional explanation coming from an XAI technique. However an interface
designed according the user centered approach can not give any extra guidance to explain why a
certain resolution is chosen. Therefore, the user centered approach is an accurate method for providing
guidance in terms of a speed vector within an SSD but it is not suitable for providing explanations.

5.1.3. Ecological Approach
As argued by Flach et al. [22] the use centered or ecological approach provides the most comprehen-
sive framework for interface design. It was first introduced in the work of Rasmussen and Vicente[81]
and is the only approach which defines the system relative to its work domain. The ecological interface
design approach can be described in three steps:

• Work domain analyses:
During the work domain analyses, the functional constraints of a certain system are identified.
Examples of functional constraints are the flight envelope of an aircraft, traffic, terrain and weather.

• Semantic mapping
The functional constraints should be visually presented onto the interface in such a way that
it is conformal to the mental model of the controller and in the correct coordinate system. For
example, in the case of an all engine out emergency an interface could show reachable land
using an optimum glide path.

• Worker competencies analysis
In the work of Rasmussen[55] the Skill, Rule and Knowledge (SRK) taxonomy was introduced
to define three types of controller behaviour during information processing. The last step in the
ecological approach is to identify which behavior is needed for a certain task and design the inter-
face accordingly. For skill based behavior, the interface should show information which triggers
fast motor and cognitive responses. For rule based behavior information which triggers familiar
actions should be shown. For a knowledge based behavior task, information which supports the
controller in solving a new problem for which no rules yet exist.

The ecological approach assumes that the actions which should be executed can only be described
by a certain state of the work domain. Therefore, it is important to incorporate these states within the
interface for the highest situational awareness. Instead of focusing on the technology of the system
itself, the technology should be considered as tool to achieve a certain goal relative to the work domain.
In this research, an explanation will be given in order for the controller to understand the reasoning of
the system. As the SSD gives a representation of the situation and is the input to the system it could
be treated as the ’work domain’. An explanation should be given relative to the work domain which
consists of a highlighted area in the original SSD image. Moreover, the SSD itself is an interface which
is designed according to the ecological approach. As the goal of this research is to add an explanation
to this interface, the design approach of the explanation should be conformal to the existing interface.

5.2. Basic Principles of Display Design
Usually, an interface consists of one ore more displays which support the controller to perceive the vari-
ables of the system. The display is a channel of communication between the system and its controller
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that should help with the controller’s perception and awareness. In the work of wickens et al.[86] 13
human factors principles related to display design are described. These principles can be divided into
perceptual principles, mental model principles, principles based on attention and memory principles. In
the following subsections, these principles and how they relate to this research will be described.

5.2.1. Perceptual Principles
1. Make displays legible or audible:

The first principle relates to the legibility of the display, aspects such as contrast, visual angle
and illumination all contribute to this principle. This principle is rather straight forward but of great
importance when designing a display. Aspects influencing legibility are mostly a result of the
hardware used. In this research the end product will be the design of the interface rather than a
physical interface. Therefore, legibility will only be addressed in aspects of the display which can
be influenced by the software, e.g. colour use and contrast.

2. Avoid absolute judgement limits:
Humans usually do not perform well when attaching labels to levels, e.g. colors, shapes, sizes,
etc. For example, using different tints of one colour for different time to CPAs are hard to be
distinguished by humans. Instead, different hues can be used to assign different levels. Within
aviation standard colors are assigned for different purposes, a display designed in this research
should be conformal to this.

3. Top-down Processing:
Humans are biased to interpret information as they expect it to be. This is particularly important
is the case of an anomaly such as a warning signal. An example of this is the example given
by figure 5.1, a sequence of on messages can invite the controller to perceive the last line to be
’on’. This problem can easily be solved by highlighting such an anomaly with for example colors.
In the case of an explanation which highlights certain pixels in the SSD, it could be true that the
algorithm always highlights a certain part of the SSD when an accurate prediction is presented.
When another part of the SSD is highlighted this could possibly indicate an inaccurate prediction.
In this example, the designer should consider extra cues to indicate the possibility of a false
prediction.

Figure 5.1: An example of a checklist where the final line can easily be perceived as ’on’[86].

4. Redundancy gain:
A certain message has a higher change of being perceived correctly if it is given in more than one
ways. Presenting the same message using an alternative form also prevents perception in case
of degradation of the system. For example, a warning sign presented visually and with audio, it
can still be perceived if the visual display fails. Another clear example of a redundancy gain is the
traffic light, it uses different locations and colors for the same message. Within CD&R a conflict
could be presented with an audio signal in addition to the display.
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5. Discriminability:
As similar signals can cause confusion it is important to use discriminable elements. As described
in the work of Tversky[75] two signals are received as similar by humans when the ratio is high. A
designer of display should by all means prevent confusion by eliminating irrelevant similar features
or highlight the differences between similar elements. In order to prevent confusion an explanation
should be given in such a way that it does not interfere or can be confused with any other element
which is shown on the interface.

5.2.2. Mental Model Principles
6. Principle of pictorial realism:

The principle of pictorial realism was introduced in the work of Roscoe [60]. In order for a display
to be conformal to the mental model of its controller it should look the variable that its present. For
example, temperature is thought of as high or low values and should therefore be visualised on
a vertical scale. Moreover, when a display contains multiple elements they should be placed in
conformation with the actual environment if possible. As heading is a variable which is perceived
by humans in a circular form, the SSD is also presented in a circular way.

7. Principle of the moving part:
Also introduced by Roscoe[60] is the principle of the moving part. A moving elements on a display
should move in a direction which is compatible with the mental model of its controller. This can be
done using an ego-centric and an exo-centric depending on the controller. Figure 5.2 shows the
difference between the two styles for a simple representation of the attitude display. Both displays
show an aircraft banking to the right. However, the left and the right figure are conformal to the
mental model of the pilot and someone outside the aircraft respectively. In contrary to cockpit
displays, ATC uses preferably exo-centric displays as this is conformal to someone outside an
aircraft. The interface designed in this research should therefore be exo-centric.

Figure 5.2: An ego-centric (left) and exo-centric (right) attitude displays.[86]

5.2.3. Principles Based on Attention
8. Minimizing information access cost:

Different displays within an interface should be organised in such a way that frequent used in-
formation can easily be found in an easy to find location. When supervising multiple displays, a
cost in time or effort usually exists when selective attention shifts between displays. Moreover,
presenting displays in an organized way reduces these costs as displays are more easy to find.
An example of this principle is the standardised basic T grouping used in all cockpits. This princi-
ple should be taken into account when designing an interface in this research. The radar screen
which is already presented to an ATCo will be extended with an SSD and a yet to be designed
explanation. These three elements should be organised such that the information access cost is
minimal.

9. Proximity compatibility principle:
The proximity between different information has an influence on the attention of the controller.
When mental integration of multiple information sources is needed for a particular task, it is ben-
eficial to have close proximity between information sources. Close proximity can be obtained by
minimising the distance, using matching colors and uniform displays. An example of this principle
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is a spider graph which is often used process control domains. On the other hand, close proxim-
ity can be harmful if focused attention is required for a certain task. When different information
that do not contribute to the same task are presented in close proximity it can lead to confusion.
During CD&R multiple tasks have to be conducted. The information sources needed and how
they should relate to each other should be analyzed when designing the interface.

10. Principle of multiple resources:
When a great amount of information has to be processed it could be beneficial to divide informa-
tion over multiple resources. Auditory and visual resources could be addressed at the same time
instead of entirely relying on visual information. During CD&R the greatest amount of information
which has to be processed comes from the radar image. It contains different information of mul-
tiple aircraft within a sector. ATCo’s have had extensive training in processing all the information
from the radar screen visually. Dividing information over multiple resources is inapplicable and
therefore unrelated to this context. However, as stated earlier, in addition to giving a warning
visually it can be done using sound.

5.2.4. Memory principles
11. Replace memory with visual information:

Humans have a limited memory and can not learn everything by heart. When designing a display
the amount of prior knowledge needed has to be taken into account. Different types of controllers
have different prior knowledge of the system. Computers programs like Microsoft Excel provide
a clear example as they can be operated using prior knowledge or by knowledge shown on the
computer screen. A novice user will address certain functions using a menu which gives ’knowl-
edge in the world’. An expert user on the other hand has memorized certain keyboard shortcuts
and relies more on ’knowledge in the head’. An ATCo is considered to be an expert user as a
great amount of time will be spent using the system. However, designing a system which re-
quires much prior knowledge increases time needed to get familiar with the system and therefore
increases the change of being unaccepted. When designing the interface, the amount of prior
knowledge needed should be minimised while presenting to much ’knowledge in the world’ can
overburden the controller.

12. Principle of predictive aiding:
For effective use of a system controllers often require to be proactive. However, humans are
generally not accurate when it comes to predicting how a state will behave in the future. Especially
when other tasks also have to be executed at the same time a controller is tempted to take a
reactive role. A display can help the controller become more proactive by showing the future
prediction for a certain state. The SSD already does this by showing which speed vectors result
in a LoS in the nearby future. Also, when two aircraft are in conflict it is shown on the radar screen
usually with colors. These two features are already accurate ways to make sure the controller
maintains a proactive role. As state prediction is inapplicable for the design of the explanation
predictive aiding will not be considered when designing the explanation.

13. Principle of consistency:
As humans use a certain display for a longer time they get familiar with it which can trigger in-
appropriate actions when a new display is introduced. When designing a display these habits
should be taken into account as a way to avoid this does not exist. For example, within aviation
standardised colors represent different functions throughout all displays. When designing a new
interface it should be conformal to the displays already in use. In this research, an additional
display will be added to the already existing radar screen. This should be designed in such a way
that it is conformal to the existing displays which the ATCo already is using.



6
Preliminary Analysis

It was hypothesized that acceptance improves by increasing predictive performance and providing the
solution conformal to the controller’s mental model while providing insight into the reasoning behind a
certain solution. The preliminary analysis will solely focus on optimizing the predictive performance of a
CNN used for CD&R. The CNN architecture used by Van Rooijen et al. [59] will be the foundation from
which the opportunities described in chapter 3 will be analysed in an experiment. The first goal of this
experiment is to determine whether it is possible for a CNN to predict resolutions using a regression
approach.

Chapter 3 also describes some suggestions in order to change the SSD input using feature engi-
neering. These suggestions are: using clear colors, scaling the solution space and converting to a
Cartesian representation of the SSD. In order to test these features multiple data sets have to be con-
structed. The second goal of this preliminary analyses is to evaluate the effects in terms of predictive
performance of the network when it is trained using an alternative SSD format. These alternative for-
mats include an SSD with a maximised solution space in terms of size and a Cartesian solution space
which will use all pixels available.

Themain goal of the research is to increase the acceptance by ATCo’s of a CNN during CD&R. From
literature it can be concluded that a shared mental model is a great tool to achieve this. During this
preliminary analysis alterations to the original SSD will be made in order to test the effect on predictive
performance. In order not to lose the shared mental model, the ATCo should be shown the same
version of the SSD as fed to the CNN. A SSD which is very efficient in terms of predictive performance
could have indistinguishable features for a human operator. As the controller and the CNN are using
the same figure an trade off has to be made in order to have sufficient predictive performance while an
SSD which is still easily readable for an ATCo. The following research question can be formulated for
the preliminary analysis:

• Can a Convolutional Neural Network solve the Conflict Detection & Resolution problem?
• How can feature engineering be used to increase accuracy?

– What is the effect of scaling the solution space in terms of predictive performance?
– What is the effect of using an Cartesian SSD in terms of predictive performance?
– Which SSD format is most suitable as the input to an CNN for CD&R while still maintaining
a shared mental model with the ATCo.

The preliminary analysis will consist of 4 phases. In the first phase, the ATM simulator BlueSky [28]
will accommodate simulations where resolutions are done by the Modified Voltage Potential (MVP) [29]
algorithm. In the second phase multiple data sets with different SSD formats are generated from the
simulation data. After this, the actual CNN will be designed which will be trained on the different data
sets. In the last phase, the predictive performance of the different SSD formats will be evaluated. An
overview of the methodology chronicle is given in figure 6.1. After the preliminary analysis, a discussion
will be given followed by a conclusion on the preliminary analysis research questions.

49



6.1. Part A: Data Generation 50

• BlueSky

• MVP algorithm

• Simulation data

Part A: 
Simulation

• Train/Validation/Test 
dataset

• SSD construction

Part B: Dataset 
Construction • Model construction

• Supervised learning

• Training evaluation

Part C:  
Training

• Accuracy measures

Part D: 
Evaluation

Figure 6.1: Methodology of the preliminary analysis.

6.1. Part A: Data Generation
In order to test whether a CNN, using regression, can successfully solve the CD&R problem a suitable
dataset is needed. Ultimately, the CNN is supposed to approximate individual controller decisions. Van
Rooijen et al.[59] did a human-in-the-loop experiment with 12 non-professional participants with varying
skill in CD&R. They showed different results in terms of consistency which influenced the predictive
power of the algorithm. From this, 12 individual data sets were constructed and used for training. The
size of these data sets vary and contain an insufficient amount of data points for supervised learning.
This research however, will only address the optimization of the predictive power of a CNN without
assessing controller consistency. Therefore, the assumption will be made that professional ATCo’s are
sufficiently consistent such that a CNN can successfully learn resolution decisions. Furthermore, it is
desired to have a data set of sufficient size in order to prevent convergence problems during training.
During the preliminary analysis a computer generated data set will be used which will approximate a
human controller as close as possible.

The open-source ATM simulator BlueSky developed by Hoekstra and Ellerbroek [27] will be used
to generate data. An extensive amount of scenarios are constructed each consisting of two conflicting
aircraft. Each scenario consists of a controlled aircraft with heading 0 and an intruding aircraft with
varying headings to enforce different conflict angles. The conflict angle is defined clockwise starting
at the heading of the controlled aircraft. Both aircraft initially fly at 250 knots and only the controlled
aircraft will perform a resolution. The MVP algorithm developed by Hoekstra et al. [28] will be used
to commit resolutions commands to the controlled aircraft. The look-ahead time, CPA and conflict
angle will be varied to generate 8605 individual scenario’s. Two different look-ahead times are used to
enforce the MVP to have a long and short term strategy adding more variety to the proposed resolutions.
Furthermore, an update interval of 10 seconds is used and a margin of 2 nm is set on top of the
separation zone of 5 nm such that the MVP algorithm behaves more ’human like’. All parameters of
the simulation can be found in table 6.1.

During each scenario the controlled aircraft performs a resolution after which it returns to its initial
heading and speed of 0 degrees and 250 knots respectively. The MVP algorithm is designed for com-
plete autonomous flight and does not considers turn dynamics. The resolutions are performed with
incremental steps sending multiple resolutions to an aircraft. As these steps are small and it is unde-
sirable to send multiple resolution commands to a pilot, the commands can not be used directly. In
order to simulate a human controller as much as possible, the states of both aircraft at the beginning
of a resolution manoeuvre and the maximum heading and speed deviation of the controlled aircraft are
captured. An example of such scenario is given in figure 6.2. The states will later be used to construct
the actual SSD which, together with the resolutions, form the dataset. From this 15% and 25% of the
data set is randomly subsampled for validation and testing respectively.
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Table 6.1: Parameters for data generation.

Parameter Value Unit
Resolution algorithm MVP -
Number of conflicting aircraft 2 -
Resolution types Combined heading and speed -
Update interval 10 s
Protected zone radius 5 nm
Optimal cruise speed 250 kts
Min/max speed 162/354 kts
Conflict angles [20, 21 .. 349, 350] deg
Closest Point of Approach [-3, -2.5..2.5, 3] nm
Look-ahead time 150, 300 s

Figure 6.2: An example scenario with conflict angle of 120 degrees, look-ahead time of 150 seconds and cpa of 0 nm.

The MVP algorithm was able to successfully solve all conflict scenario with an exception of 18 cases
which are deleted from the data set. These 18 cases have in common that the conflict angle was close
to 0 or 360 degrees and the LoS occured at the beginning of each scenario. As LoS already occurred
during initialisation, it is not an error of the MVP algorithm. This always occurred at the beginning of
a simulation with conflict angles close to 0 or 360 degrees. As can be seen in figure 6.3, the CPA of
all other scenarios lies between 5 and 7 nm with the majority close to 7 nm. Figure 6.4 shows the
spread of all resolutions the MVP algorithm has issued to the controlled aircraft. It can be observed
that the algorithm is biased to some specific velocity vectors. One could argue that this is conformal to
a strategy which a human controller could use for multiple scenarios.
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Figure 6.3: Closest Point of Approach for both scenarios.
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Figure 6.4: Spread of different resolutions the MVP algorithm issues. Resolutions are binned and color coded to indicate how
often a resolution in a certain bin occurred. A darker color represents a more resolutions issued in the particular bin.

6.2. Part B: Solution Space Diagram Construction
Having a data set which only consists of aircraft states and a resolution gives the ability to manually
construct the SSD’s using multiple methods. This section will describe how three different SSD formats
were constructed in order to test the effect of feature engineering on predictive accuracy. All SSD for-
mats use a green line for the velocity vector and a single red color to indicate the FBZ of the intruding
aircraft. Furthermore, the SSD formats are defined to investigate fundamental design methods consid-
ered in the literature review. The effect of the size of the figure fed to the CNN will not be considered
during the preliminary analysis, i.e. All SSD’s will have 64 by 32 pixels. The following three versions
which are shown visually in figure 6.5 were constructed:

• Standard SSD:
The first SSD format will be used as a baseline in order to compare the other two. The solution
space is defined by a half donut where the maximum speed is set equal to the maximum radius
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possible in the figure. The minimum speed boundary is defined proportional to this maximum
radius. After this, the ’start’ of the FBZ triangle is calculated using the velocity vector of the
intruding aircraft. The distance and heading towards the intruding aircraft is used to calculate the
outer angles of the FBZ. All solution space with a heading between these angles is then colored
red.

• Zoomed SSD:
A considerable amount of the pixels of the standard SSD belong to the ’background’ and are
therefore not used in the calculation of a resolution. In order to resolve this problem a SSD
format where the solution space is maximised is proposed. As can be seen in pseudocode 1,
the solution space boundaries are manually defined. For each pixel within the solution space
the distance to the center of the SSD is calculated using Pythagoras. As the distance is used to
indicate the speed of a certain velocity vector, it can be used to calculate the real velocity using

v = vmin + (vmax − vmin)
dx,y − dmin

dmax − dmin
(6.1)

with vmin the minimum airspeed, vmax the maximum airspeed, dx,y distance between pixel x,y
and the center of the SSD, dmin lower solution space boundary and dmax upper solution space
boundary. For the heading of the velocity vector such transformation is not needed as it is equal
to the heading of the pixel relative to the center of the SSD. After this, for each velocity vector
the flight trajectory will be calculated. If a flight trajectory results in LoS in less tham 10 minutes
the related pixel will be colored red. As a consequence of this method, a single FBZ does not
necessarily appear as a triangle on the SSD as can be seen in figure 6.5.

Algorithm 1 Construction of the Zoomed SSD.
1: Define empty array with size equal to SSD image
2: Define image radii for solution space boundaries
3: for each column in SSD array do
4: for each row in SSD array do
5: if pixel belongs to solution space then
6: Append pixel coordinate to solution space coordinate list
7: Calculate pixel distance between solution space coordinates and SSD center using Pythagoras
8: Calculate real velocity for all solution space coordinates using equation 6.1
9: Calculate real heading for all solution space coordinates using the tangent function
10: Calculate flight trajectory intruding aircraft
11: for each velocity vector inside solution space do
12: Calculate related flight trajectory using Trigonometric functions
13: Calculate minimum distance between controlled and intruding flight trajectories using Pythago-

ras
14: if minimum distance between flight trajectories < separation zone then
15: Append pixel coordinate to FBZ
16: Find pixel coordinates belonging to controlled aircraft velocity vector
17: Assign pixel values to solution space, FBZ and controlled velocity vector

• Cartesian SSD: The last SSD format is optimized to include all available pixels into the solution
space. In order to do this the solution space is converted from the half donut shape to a rectangle
equal to the figure size. The construction steps are presented by the pseudo code of algorithm
2. It is done in a similar way as the Zoomed SSD but velocity vectors are assigned to pixels
differently. The main difference is that the heading and velocity are indicated by horizontal and
vertical pixel position, respectively. This means that the upper and lower velocity boundaries are
represented by the upper and lower pixel rows. The first and last pixel column represent a heading
of -90 and 90 degrees, respectively. All pixels between the boundaries are given heading and
velocity values linearly in relation to the boundaries. As can be seen in figure 6.5, this methods
fundamentally changes the appearance of the SSD. As it is optimised to include all pixels into the
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solution space the half donut shape of the SSD is lost completely. It can also be seen that shape
of the FBZ has changed considerably more compared with the Zoomed SSD.

Algorithm 2 Construction of the Cartesian SSD.
1: Define empty array with size equal to SSD image
2: Obtain heading related to each pixel column
3: Obtain velocity related to each pixel row
4: Calculate flight trajectory intruding aircraft
5: for each combination of heading and velocity do
6: Calculate related flight trajectory using Trigonometric functions
7: Calculate minimum distance between controlled and intruding flight trajectories using Pythago-
ras

8: if minimum distance between flight trajectories < separation zone then
9: Append pixel coordinate to FBZ
10: Find pixel coordinates belonging to controlled aircraft velocity vector
11: Assign pixel values to solution space, FBZ and controlled velocity vector

Standard SSD

Zoomed SSD

Cartesian SSD

Figure 6.5: The three different SSD formats from multiple scenario’s.

6.3. Part C: Model and Training
The network used for this experiment will be similar to the network used by van Rooijen et al.[59].
However, the last SoftMax layer of the original architecture can not be used for regression and has
been replaced by a ReLU activation. Another change in architecture will be the output size which will
be 2 in all cases. An overview of the architecture is given in table 6.2.
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Table 6.2: Network architecture during the preliminary analysis.

Layer type Input size Filter size Stride Filters Activation function Output size
Convolutional 32x64x3 2x2 1 32 ReLU 31x63x32
Max-Pooling 31x63x32 15x31x32
Convolutional 15x31x32 2x2 1 64 ReLU 14x30x64
Max-Pooling 14x30x64 7x15x64
Convolutional 7x15x64 2x2 1 32 ReLU 6x14x32
Flatten 6x14x32 2688
Fully Connected 2688 1024
Dropout 1024 1024
Fully Connected 1024 ReLU 2

As the fundamental task of the CNN changes different parameters have to be selected. Even
though hyperparameter tuning will not be analysed during this experiment, it is inevitable in order to
obtain satisfactory model performance. The hyperparameters used in the experiment of van Rooijen
et al.[59] has been the starting point for selecting hyperparameters. However, by using a different data
set and doing regression the following hyperparameters became inapplicable:

• Adam optimization algorithm
• Categorical entropy loss function
• K-folds validation
• Mini batch size
• Steps per epoch

A different optimization algorithm and loss function had to be selected for which Stochastic Gra-
dient Descent (SGD) and MSE have been selected respectively. Firstly introduced by Robbins and
Monro[58], SGD has been proven to be a straight forward optimization algorithm with suitable perfor-
mance. Using the MSE is also a straight forward decision as it is also used as accuracy measure during
the evaluation phase. Furthermore, it has been observed that 30 epochs is not enough for reaching
satisfactory convergence using regression. Therefore, training will be done using 100 epoch which
have proven to enable better training performance. All hyperparameters of the network used in this
preliminary analysis are shown in table 6.3.

Table 6.3: Characteristics used to train the Convolutional Neural Network during the preliminary analysis.

Hyperparameter Value
Optimization algorithm Stochastic Gradient Descent
Loss function Mean Squared Error
Train/validation/test ratio 60/15/25
Epochs 100
Learning rate 0.01
Dropout rate 20
Input image dimensions 32x64

Training the network using the above mentioned hyperparameters results in train and validation loss
during training as shown in figures 6.6 and 6.7 respectively. First of all, it can be observed convergence
is achieved for training with all SSD formats. Hence, it can be concluded that a CNN can solve the
CD&R problem using regression successfully. Another observation which can be made, is the slightly
improved training performance of the zoomed and Cartesian SSD compared to the standard SSD. Also,
the zoomed SSD surprisingly shows a negligible better performance compared to the Cartesian SSD.
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Figure 6.6: Mean Squared Error of the training data set.
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Figure 6.7: Mean Squared Error of the validation data set.

6.4. Part D: Test Results
In order to evaluate the SSD formatss the test dataset, consisting of 2151 data instances, is fed to the
trained models. Each normalized output consists of a value for heading and speed respectively which
has first been converted to real values. As can be seen in table 6.4, the average absolute heading
and speed errors of the zoomed and Cartesian SSD has slightly improved compared to the standard
SSD. It can be observed that the zoomed and Cartesian SSD are more accurate in heading and speed
respectively. Figures 6.8 and 6.9 shows the distribution of the test errors using all SSD formats in a
violin plot. In these figures the same results can be observed.

Table 6.4: Average absolute heading and speed error for the different SSD formats.

Standard SSD Zoomed SSD Cartesian SSD
Average absolute heading error [degrees] 7.64 6.81 6.89
Average absolute speed error [knots] 15.11 13.14 12.83
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Figure 6.8: Heading error evaluation of test data set.
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Figure 6.9: Speed error evaluation of test data set.

In order to visually show these errors, the true and predicted velocity vectors are projected on the
input SSD in figure 6.10. It can be observed that the blue predicted vector in all cases is directed in
the direction of the purple true vector. However not in all cases this is done accurately, in the second
scenario from the left all three SSD formats propose a resolution which will result in LoS for example.



6.4. Part D: Test Results 57

Standard SSD

Zoomed SSD
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Figure 6.10: Visualization of 6 random subsampled predictions projected on the input image. The purple velocity vector
represents the true resolution while the blue velocity vector represents the resolution as predicted by the model.
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6.5. Conclusions and Discussion
Using a regression approach instead of classification not only changes the possible accuracy measure
but also the amount of data needed. As the model now predicts exact values instead of probabilities
of two or three bins, the task becomes more complex. Therefore, a significantly larger data set was
needed in order to train the network successfully compared to the data used in the work of van Rooijen et
al. [59]. This data set was generated using decisions of amateur controllers with varying consistencies.
In this phase of the research however, consistency is not considered in any way as the main focus will
be with improving accuracy. In order to obtain a larger data set, artificial data was generated using a
’free flight’ ATC solution algorithm which can be considered to be highly consistent.

Due to the different data set and accuracy measure a direct numerical comparison is impossible.
Despite this, many subjective conclusions can be drawn comparing the results. First of all, the bins
used by van Rooijen et al. [59] were designed in such way that only a certain resolution strategy was
advised. The actual resolution within this strategy is still to be determined by the controller without any
assistance of the CNN. With the regression approach proposed in this research, an exact solution will
be advised which can be interpreted directly. Hence, one could conclude that a regression approach
will result in a lower workload compared to classification with large bins. Furthermore, the average
heading errors of all SSD formats are smaller than the smallest heading bin used by van Rooijen et
al. [59]. The bin for speed was only defined as faster or slower relative to the current speed so a
comparison can not be made. However, given the large flight envelope of the simulation done the error
can be considered small. All things considered, it can be concluded that a CNN, given a SSD as input,
can predict resolutions more accurately when it uses regression instead of classification. It will provide
a more useful solution to an ATCo and can achieve higher predictive performance.

During the preliminary analysis three SSD formats were constructed and used for training. All of
them contained the same information and used the same color coding. The standard SSD format will
be used as a baseline and is constructed using the same method as done in all previous literature.
However, due to the large simulation flight envelope, the solution space is reasonably larger compared
to most SSDs used in literature. Nevertheless, the CNN can quite accurately predict resolutions using
this SSD format. The zoomed SSD is constructed in an alternative way which allows for more scaling
options. It shows a slightly improved performance compared to the standard SSD format. It can also
be observed that the shape of the FBZ is not a triangle with straight lines anymore. The Cartesian
SSD format uses all pixels available as solution space but only shows similar overall performance to
the zoomed SSD. The fact that the Cartesian format is not conformal to the controllers mental model is
a critical drawback. A solution will be to show the controller and network a different version of the SSD.
However, this is also undesirable as the shared mental model between human and machine will then
be lost. Therefore, it can be concluded that the zoomed SSD format is the most suitable as it provides
the highest accuracy while still maintaining a shared mental model between controller and automation
system.



7
Conclusion

To conclude this preliminary thesis an effort is done below to answer the questions introduced in the
introduction. After this, a short discussion will follow on the direction of further research.

1. What aspects influence acceptance by Air Traffic controllers?
An automated system will only be accepted if a controller understands its functioning. It should
behave as expected by the controller which is directly related to predictive performance. Further-
more, interpretability can be increased by presenting the output of the system in such way that it
gives insight why a certain solution is given.

2. How can a Convolutional Neural Network solve the Conflict detection & Resolution prob-
lem?
The preliminary analysis has shown that a CNN can more accurately predict resolutions using re-
gression instead of classification. Furthermore, regression can further decrease controller work-
load as a precise resolution can be advised instead of a strategy.

3. How can feature engineering be used to increase accuracy?
The preliminary analysis has shown that increasing the size of the solution space positively in-
fluences the predictive power. A Cartesian SSD on the other hand, does not achieve greater
accuracy compared to a SSD with a maximised solution space. The zoomed SSD is most opti-
mal for resolution prediction using a CNN as accuracy is maximised and the SSD is still conformal
to the controllers mental model.

4. How should the output of the system be presented to an Air traffic Controller?
In order to improve interpretability the interface of the system should be designed accordingly. It
should contain an explanation which provides reasoning to why a solution is advised. The advised
resolution and the explanation should be included into the existing interface using an ecological
design approach.

Exactly predicting a certain resolutions using regression fundamentally changes the task of the CNN.
However, the CNN architecture used in the preliminary analysis was optimized for a much simpler clas-
sification task. Further research should be conducted in order to analyse what CNN architecture is most
optimal for regression in the context of CD&R. On top of this, more information can be added to the
SSD if data is generated using a more realistic multi aircraft simulation. For example, a color scheme
which indicates what the tCPA is could possibly further increase predictive power. For the remainder
of this research the areas of XAI and interface design will not be analysed as multiple opportunities
to further optimise predictive power still remain. In the following chapter further research will be pro-
posed to analyse the CNN architecture and the features of an SSD consisting more information with
an experiment.
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8
Experiment Proposal

This research aims to analyse how a personal-sensitive trained trained CNN with the SSD as input can
be used most optimal during CD&R. The ultimate goal is a human-machine automation system which
will be accepted by ATCo’s and decreases workload. This goal is linked to the following research
question:

”How can the acceptance of Convolutional Neural Networks for Conflict Detection &
Resolution be improved among Air Traffic Controllers?”

From the preliminary analysis it became clear that a CNN can predict exact velocity vectors with
reasonable accuracy. Using the architecture from van Rooijen et al. [59] for a regression tasks showed
promising but far from perfect performance. Furthermore, it was proven that increasing the size of
the SSD’s solutions space positively influences the predictive power of the CNN. Both conclusions
show promising results but are not yet analysed fully. The architecture used during the preliminary
analysis was optimized by van Rooijen et al. [59] to do a classification task and more information can
be included into the SSD when data is coming from a more extensive simulation. Therefore, the final
experiment will be designed solely with the objective of further increasing predictive power, since it is
hypothesized that increasing predictive power will lead to higher acceptance. During the experiment it
will be assumed that artificially generated resolution data can be constructed such that the consistency
is similar to professional ATCo’s. With this assumption the notion of consistency will not be analysed
during this experiment.

The experiment will consist of three phases as shown in figure 8.1. In the first phase, two more
realistic simulations are done from which the data will be used throughout this experiment. Both simu-
lations are designed to generate data as if it is coming from a human ATCo’s with different strategies.
Data will be generated during these simulations to a create baseline SSD’s. After this, an effort will be
done to find a more optimal network architecture inspired by two classic networks being Lenet-5 [41]
and VGG[67]. In the final phase, more information will be added to the SSD in order to analyse the
effect on predictive performance.
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Figure 8.1: Experiment setup.

8.1. Part A: Simulation and Data Generation
In order to test the predictive performance of the to be designed CNN model a data set is needed. The
data set should resemble a real life scenario as close as possible and more importantly deliver a data
set suitable for training. First of all, the simulation scenario and its constraints will be described. After
this, an explanation will be given on the simulation software and the resolution algorithm used during
the simulation. Finally, the data extracted from the simulation will be used to construct a baseline SSD.

8.1.1. Scenario
The scenario will be constructed to simulate realistic air traffic flows following airways. However, as
conflicts are only solved horizontally a real Control Area (CTA) with existing routes can only be used
with heavy modification. Instead a theoretic CTA will be defined inspired by Amsterdam CTA West
shown in figure 8.2. The overall shape of this CTA will be used with theoretical waypoints and routes.
The traffic flow will have a variable traffic density simulating a normal traffic flow during the simulation.
For simplicity, the simulation is exclusively done with Boeing 737s flying at a realistic altitude such that
there flight envelope is limited. In order to obtain enough data for training , the scenario will at least
contain 7000 resolutions.
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Figure 8.2: Chart of Amsterdam CTA West.

A resolution can typically be divided into a manoeuvre to solve the conflict and a direct to waypoint
command after the conflict is resolved. The SSD itself presents all safe and unsafe solution space
in a clear manner. For an ATCo it is obvious to interpret whether the target waypoint lies on a safe
heading. Therefore, only the manoeuvre to resolve the conflict itself will be included into the data set
as resolution.

8.1.2. Software
Similarly to the preliminary analysis, the above described scenario will be accommodated by the open-
source ATM simulator BlueSky developed by Hoekstra and Ellerbroek [27]. In BlueSky it is possible
to create a custom ATC area with waypoints in a real world enviroment. Also, aircraft have a real
life inspired flight envelope and scenario’s are easily applied using python generated text files. Two
simulation will be conducted to imitate two different controller with a long and short-term strategy. The
MVP algorithm will enforce this by a look-a-head time of 5 and 2.5 minutes respectively. Other MVP
settings to imitate a human controller, are a no-look time of 10 seconds and an additional separation
zone margin of 5 nm. At every second the identification code, latitude, longitude, heading and speed
will be logged for all aircraft. In order to construct the SSDs, the states will be saved at the start of
each resolution manoeuvre. The resolution itself will be saved at the end of the manoeuvre to imitate
a resolution as given by a controller.

8.1.3. SSD Construction
Two data sets will be created consisting of a resolution in the form of a velocity vector and a baseline
SSD. The SSD will have equal solution space size as the zoomed SSD from the preliminary analysis
but contains the same information as the SSD used in the work of van Rooijen et al. [59]. The FBZ’s
are indicated using red, orange and grey, representing a tCPA lower than 60 seconds, between 60
and 120 seconds and larger than 120 seconds respectively. Furthermore, the heading towards the exit
waypoint will be indicated by a blue line projected on the solution space. This SSD format will be used
throughout part B where the model architecture will be analysed.
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8.2. Part B: Architecture optimization
Finding a suitable network architecture can generally be a tedious task involving a trial and error ap-
proach without a clear procedure. However, starting with small filters and layers and increasing this
incrementally is a basic principle when constructing a CNN. Adhering to this principle will enforce the
network to first capture fundamental local information after which the information captured will become
higher level and more global. In order to find a more optimal CNN architecture for predicting resolutions
three models will be constructed. First of all, the model from the preliminary analyses will be used as
a baseline. After this, two models will be constructed using the above principle applied to the general
structure of two classical CNNs. The first CNN structure used was introduced by Lecun et al. [41] in
which convolutional layers and pooling layers alternate. The original architecture, Lenet-5, is visually
presented in figure 3.4. The other network used as inspiration is the VGG type architecture introduced
by Simonyan and Zisserman [67]. In this type of network more convolutional layers are placed in be-
tween the pooling layers as can be seen in figure 8.3. For this experiment, the general structure of
alternation between two convolutional layers and one pooling layer will be used to construct the model.

Figure 8.3: Architecture overview of VGG-16[67].

The LeNet and VGG inspired models will be optimised using a similar amount of effort in multiple
steps. For both models, the starting point will be a network with a minimal number of shallow layers
for which optimal performance will be found using hyperparameter tuning. After this, the networks
architecture will be increased in a step-wisemanner while maintaining compliance with the above stated
principle. Each variation to the starting networks will again be optimized using basic hyperparameter
tuning with a similar amount of effort. During this phase the hyperparameters shown in table 8.1 will
remain constant while the number of epochs, learning rate and dropout rate will be varied. After the
most optimal architecture is found in terms of number of layers, layer size and filter size, an effort will
be done to further increase predictive performance by experimenting with different activation functions.
Finally, a more extensive effort to hyperparameter tuning will be done usingmore advanced optimization
algorithms. As computational power will always be limited, a trade-off might be applicable between
predictive power and architecture size. This should be taken into account during the entire process.

Table 8.1: Constant hyperparameters during architecture optimization

Hyperparameter Value
Optimization algorithm Stochastic Gradient Descent
Loss function Mean Squared Error
Train/validation/test ratio 60/15/25
Input image dimensions 32x64

8.3. Part C: Feature Engineering
Using a more realistic scenario more information can be included into the SSD which gives the opportu-
nity to further analyse how predictive performance can be increased using feature engineering. During
the simulation done in the preliminary analysis a conflict was resolved after which the aircraft returned
to its original heading and speed. During this experiment however, all aircraft have a target waypoint
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which might influences the most optimal resolution given a certain conflict. Different formats to include
the heading towards this waypoint can be applied concerning shape, color and thickness.

Doing a simulation with more than two aircraft at the same time results in multiple FBZ’s in the SSD
with different tCPA. In the original SSD this is indicated using bins with grey, orange and yellow. Many
variations to this colour scheme can have an effect on the accuracy of the model. For example, a color
scheme with continuous pixel values using different saturation levels of a single color. Another option
is applying different colors based on distance towards intruding aircraft.

To truly analyse each alteration to the SSD, all variations will be used for training with the most op-
timal model established in part B. The number of variation that will be tested is dependent on available
project time and the accuracy achieved during the previous phases. Alterations to the SSD which are
most likely to have a larger impact will be done first prior to changes which are believed to have a lower
impact. Therefore, this phase will start with analysing how accuracy is influenced using other FBZ col-
oring for different tCPA indication. It is hypothesized that color coding the FBZ using a continuous color
scheme will achieve a higher predictive performance opposed to a binned color scheme. Optionally, an
analysis can be done on the general formatting of the SSD, included thickness and shapes, and adding
extra information to the SSD. Examples of extra information could be heading to non-target waypoints
and non-conflicting aircraft. Throughout this entire phase of the research a the trade-off between con-
troller conformance and accuracy should be taken into account. Alternating the SSD with as goal a
higher predictive power could result in undesirable indistinguishable features for a human operator.
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A
Simulation

This chapter details the simulations conducted and the data sets obtained by it. The first section gives
an overview of the distribution of conflict angles during the simulation. After this, the previously shown
resolution distribution will be presented in more detail. Finally, a graph will present the distribution of
SSD complexity for both strategies.
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A.1. Conflict Angle
Figure A.1 presents the conflicts angles between Acon and Aint for both simulations. As simulations
are done in the same ATC area, bith simulations show similar conflict angles. However, it can be seen
that the Reactive strategy has more smaller conflict angles due to sequential conflicts, i.e a conflict
caused by the resolution of a previous conflict.
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Figure A.1: Conflict angle distribution for the Reactive and Proactive strategy simulation.
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A.2. MVP strategy
Figure A.2 and A.3 shows the heat map of resolution issued by the MVP algorithm [28] for the simu-
lations with the Proactive and Reactive strategy, respectively. As the initial speed of Acon is always
320 knots it can be observed that for this simulation the algorithm only issues resolutions with equal
or lower velocity. Additionally, it can be observed that the Reactive strategy uses larger heading and
speed changes more often compared to the Proavtive strategy. This is as expected due to the shorter
look-ahead-time and larger separation factor.
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Figure A.2: Heat map of the resolution distribution for the Reactive strategy.
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Figure A.3: Heat map of the resolution distribution for the Proactive strategy.
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A.3. SSD Complexity
Figure A.4 shows the spread of SSD complexity over both data sets. The percentage of solution space
pixels occupied by a FBZ is defined as the SSD complexity, e.g. if al solution space is occupied by FBZ
the complexity is 100%. Only trajectories with LoS smaller than 600 seconds are included in the FBZ
and no distinction in lower LoS is made with the calculation of these graphs.
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Figure A.4: Distribution off SSD complexity in the data sets coming from both simulations.



B
Architecture Optimization

This chapter will give a more detailed insight intro the process of finding a suitable CNN architecture.
The first 6 sections will present the validations errors during training of all individual steps for both
strategies. After this, the final model will be compared with the initial model in terms of training validation
error and predictive performance.

71



B.1. Padding and Output Layer 72

B.1. Padding and Output Layer
Figure B.1 presents the training validation errors for both strategies for the first two optimization steps.
First, it was analysed whether padding has a negative influence on the model. Using a network with
padding enables more architecture variations to be analysed in further steps. Compared to the baseline
strategy, it was found that there is a limited performance reduction for the Reactive strategy while the
Proactive strategy shows similar performance. Due to the greater flexibility in further steps it was
chosen to continue with padding. After this, the possibility of a linear output layer activation function
was evaluated. This is a common output layer function for regressive networks and therefore expected
to increase performance. It can be observed in figure B.1 that this is indeed true, especially for the
Proactive Strategy.
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Figure B.1: Validation error during training for the baseline architecture, an architecture with padding and one with a linear
output activation function.
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B.2. Filter Size
The original architecture uses only 2x2 sized filters in the convolutional layers while odd sized filters
which increase in size deeper into the network are more common. Most common is a structure of 3x3,
5x5, 7x7, etc. which enables to capture local features early in the network after which more high level
features are observed. At this step, it is evaluated whether this structure also results in better predictive
performance given the model analysed in this research. Figure B.2 show that this is indeed true based
on training validation error for both strategies using a 3 layer architecture. At this step, only the general
filter size structure was evaluated. At later steps this structure will be used when more or less layers
are evaluated.
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Figure B.2: Validation error during training for the network with original filter size structure and a filter size structure of 3x3, 5x5
and 7x7.
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B.3. Number of Layers
Another common used CNN feature is convolutional layers getting deeper with a factor of 2 when
progressing deeper into the network. Most commonly a structure in which the convolutional layers
have a depth of 32-64-128 and so on. As can be seen in figure B.3 it is found that using this structure
with 2 layers does not decrease training performance. After this, a 3 layer architecture was evaluated
which was found to increase convergence speed and predictive power. An effort to train a 4 layer
architecture is also done. This training run was aborted due to substantial increase in training time.

0 200 400

Epochs

0.006

0.008

0.010

0.012

0.014

0.016

0.018

M
ea

n
S

q
u

ar
ed

E
rr

or

Reactive strategy

0 200 400

Epochs

0.008

0.010

0.012

0.014

Proactive strategy

32-64-32 32-64 32-64-128

Figure B.3: Validation error during training for the architecture with different convolutional layer structures.
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B.4. Layer Depth
At this step, it was analysed whether shallower or deeper convolutional layers result in better training
performance. Next to the original network, architecture using 16-32-64 and 64-128-256 structures were
evaluated. As can be seen in figure B.4 the shallower networks shows worse performance in terms
of convergence speed and minimal error for both strategies. An effort to evaluate the deeper network
was done but similar to previous step aborted due to increased training time.
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Figure B.4: Validation error during training for the original network and one with shallower convolutional layers.
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B.5. Dropout Rate
The dropout layer is placed just before output layer and randomly sets some of inputs to 0 at each
epoch. The dropout refers to the percentage of inputs set to 0 related to the total input for that particular
layer. Van Rooijen et al. [59] found that a dropout rate of 20% improves accuracy of the model. For
completeness it is also evaluated for the model analysed in this research with dropout rates of 0%, 10%,
20% and 30%. As can be seen in figure B.5, a 20% results in faster convergence for the Proactive
strategy and lower final error for the Reactive strategy.
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Figure B.5: Validation error during training for 0%, 10%, 20% and 30% dropout rate.
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B.6. Optimization Algorithm
At the final step two more elaborate optimization algorithms are evaluated. Figure B.6 shows that for
both strategies RMSProp and Adam outperform SGD. The final architecture will be trained using Adam
as it results in a slightly lower global MSE. However it can be seen that RMSProp and Adam have
more variability and an increase in performance after a certain amount of epochs compared to SGD.
Therefore, an early stopping condition is added in which the weight are saved if a global minimum is
found and training will stop if no global minimum is found after 50 epochs.
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Figure B.6: Validation error during training for the final architecture trained with different optimization functions.
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B.7. Final Architecture
All steps described above have led to the CNN architecture presented in table B.1. With this network
the training performance has significantly increased in terms of global MSE an convergence time as
can be seen in figure B.7. Using the test data set evaluation has been done from which the true heading
and speed error distributions are presented in the boxplots shown in figure B.8. It can be observed that
the predictive performance is substantially decreased for both strategies in terms of true heading and
speed error.

Table B.1: Final network architecture.

Layer type Input size Filter size Depth Activation
Convolutional 32x64x3 3x3 32 ReLU
Max pool 32x64x32

Convolutional 16x32x32 5x5 64 ReLU
Max pool 16x32x64

Convolutional 8x16x64 7x7 128 ReLU
Flatten 8x16x128

Fully connected 2688 ReLU
Dropout 1024

Fully connected 1024 Linear
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Figure B.7: Validation error during training for the final architecture trained compared to the initial architecture.
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C
Feature Engineering

This chapter will present the SSD color schemes evaluated in this research with more detail. After this,
the training curves corresponding to each dataset will be presented. Finally, evaluation of the SSD
versions will be detailed using boxplots.

C.1. color Schemes
Figures C.1, C.2, C.3, C.4 and C.5 detail the color schemes which use 1, 5, 10, 20 and 600 colors,
respectively. From top to bottom, each figure shows an example SSD, the color scheme itself and
pixel values for individual RGB colors plotted against tlos, respectively. The top example SSDs are
generated using the same conflict situation.
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Figure C.1: Example SSD for the color scheme using 1 color, the color schemes itself and pixel values for individual RGB
colors plotted against tlos.
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Figure C.2: Example SSD for the color scheme using 5 color, the color schemes itself and pixel values for individual RGB
colors plotted against tlos.
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Figure C.3: Example SSD for the color scheme using 10 color, the color schemes itself and pixel values for individual RGB
colors plotted against tlos.
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Figure C.4: Example SSD for the color scheme using 20 color, the color schemes itself and pixel values for individual RGB
colors plotted against tlos.
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Figure C.5: Example SSD for the color scheme using 600 color, the color schemes itself and pixel values for individual RGB
colors plotted against tlos.

C.2. Evaluation
By feeding the test data set to the trained models for different color schemes variation their predic-
tive power is evaluated. Figure C.6 presents the true heading and speed error distributions for both
strategies in boxplots. It can be seen that adding more colors not necessarily results in better pre-
dictive performance. All color scheme variations, excluding the scheme with 1 color, show similar
performance.
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schemes for both strategies.



D
Model Generalization

The chapter details themodel generalization analyse. It was was evaluated how amodel behaves given
data generated with a different ATC area with different conflict dynamics. First, a different ATC area was
constructed in which the a new simulation can be conducted. After this, it has been evaluated whether
the new data indeed has different conflict dynamics. The third section details how the resolutions are
distributed by the MVP algorithm [28] after which the SSD complexity graphs will be analysed. Finally,
the predictive performance of applying the model to data coming from the original or new simulation
will be evaluated.
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D.1. ATC Area
Figure D.1 shows the ATC area during the model generalization analyses. It can be observed that
the new area is identical to the original area except the direction of Acon’s trajectory. By altering the
direction, the conflict dynamics will be different while all other variables remain the same.

Figure D.1: ATC area used for the model generalization analyses.
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D.2. Conflict Angle
The conflict angles obtained during the model generalization simulation are presented by figure D.2.
Comparing this figure with the conflict angels obtained by the original simulation (figure A.1), it can be
observed from a qualitative view that conflict dynamics are different.
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Figure D.2: Conflict angle distribution for the model generalization simulation for both strategies.
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D.3. MVP Strategy
Figure D.3 and D.4 present the distribution of resolution issued by the MVP algorithm [28] during the
model generalization simulations for Reactive and Proactive strategy, respectively. Comparing these
figures with figures A.2 and A.3 similarities can be found. It can be observed that the Proactive strategy
uses smaller heading changes and larger changes in speed are less common.
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Figure D.3: Heat map of the resolution distribution for the Reactive strategy issued during the model generalization simulation.
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Figure D.4: Heat map of the resolution distribution for the Proactive strategy issued during the model generalization simulation
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D.4. SSD Complexity
The spread of SSD complexity over both data sets using the model generalization simulation is shown
in figure D.5. The percentage of solution space pixels occupied by a FBZ is defined as the SSD
complexity, e.g. if al solution space is occupied by FBZ the complexity is 100%. Only trajectories with
LoS smaller than 600 seconds are included in the FBZ and no distinction in lower LoS is made with the
calculation of these graphs. Comparing D.5 with figure A.4, it can be observed that dissimilarities exist
between the distribution of SSd complexity for both strategies. This is another confirmation that conflict
dynamics for the model generalization simulations are indeed different. The model generalization data
sets generated for this analyses use the Zoomed SSD format using 3 colors to indicate different tlos.
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Figure D.5: Distribution off SSD complexity in the data sets generated by the model generalization simulations.
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D.5. Predictive Performance
In order to evaluate how the model generalizes to different conflict dynamics, the model generalization
data sets are fed into the final model introduced in this research. Figure D.6 compares the true heading
and speed error distribution for this evaluation and the final model introduced in this research. It can
be observed that true heading and speed errors increase significantly when a data set is used with
different conflict dynamics for both strategies. Hence, the model does not generalize well to different
conflict dynamics.
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Conclusions and Recommendations
This research evaluates how an individual-sensitive advisory prediction model for Conflict Detection
& Resolution can be constructed in order to establish an optimal human-machine system which will
be accepted by its controller. To realize this goal, a literature review, a preliminary analysis and a
simulation experiment is performed.

Literature review
For an individual-sensitive advisory prediction model to be accepted by its controller, it should be accu-
rate and present its output such that it is easy interpretable. Reviewing recent work, in which Solution
space Diagrams were used as input to a set Convolutional Neural networks, it was found that opportu-
nities exist to improve accuracy in terms of predictive performance. First of all, using regression task
instead of classification could possibly predict exact resolutions instead of certain bins. Secondly, using
an Solution Space format in which the solution space has a larger area may have a positive effect on
predictive performance. Lastly, using a Cartesian Solution Space Diagram format low and high speed
solution space can be analysed by the model with equal accuracy.

Preliminary analysis
Using the Multi Voltage Potential Algorithm in the open-source air traffic simulator BlueSky, a simulation
is done in which resolutions were issued in order to generate data. A Zoomed and Cartesian Solution
Space Diagram formats with are introduced which have a maximized and Cartesian, respectively. With
both formats, data sets are created which are fed to a single Convolutional Neural Network which pre-
dicts exact resolutions in the form of a velocity vector. Evaluation has shown that the model is able to
accurately predict exact resolutions and that a larger solution space results in higher predictive perfor-
mance. Additionally, the Cartesian format does not notably increase predictive performance compared
to the Zoomed format while conformance with the mental model of the controller is lost.

Experiment
For the final phase of this research it is decided to further expand on improving predictive performance.
As the network architecture itself is not considered and more feature engineering options are not ex-
plored, a more elaborated computer simulation is executed using two different agents imitating different
controller strategies. From this simulation multiple data sets are created consisting of Solution Space
Diagrams which use color schemes with 1, 3, 5, 10, 20 and 600 different colors to indicate time to Loss
of Separation. After architecture optimization and hyperparameter tuning it was found that all Solution
Space Diagram color schemes, except the 1 color schemer, result in similar predictive performance.
Evaluating the true heading and speed error for these schemes, average interquartile ranges of 3.4
degrees and 2 m/s are found, respectively. Therefore it can be concluded that the introduced model
can predict exact resolutions to satisfying accuracy while adding more colors does not necessarily im-
prove predictive performance. During the literature study it was found that higher accuracy, in terms of
predictive performance, results in a higher chance for automation to be accepted by its controller.

Recommendations
First of all, due to time constraints all simulations are done artificially. As it is assumed that the virtual
agents used imitates a human controller flawlessly, all analyses are based on artificially generated data.
The model is constructed such that it is optimized to predict the resolutions generated by the algorithm
used. There is no guarantee that the model will achieve similar performance if human data is used.
Future research could possibly test the model using professional air traffic controllers.

Secondly, all feature engineer applied to the Solution Space Diagram are designed in order to
improve predictive performance of the model. The model and the controller are intended to work from
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a sharedmental model meaning the same imagewill be presented to the controller. It is not yet analyzed
how these changes to the Solution Space Diagram influence the readability as perceived by the human
operator. Future research could possibly analyze how the Solution Space Diagrams proposed in this
research influence the decision making of an Air Traffic controller.

Finally, the initial goal of this research is to increase controller acceptance by increasing predic-
tive performance and presenting the output such that it is interpretable. Due to time constraints, the
presentation of the prediction is not considered in this research. Making the model interpretable for its
controller is a fundamental characteristic needed in order to achieve acceptance. Future research could
possibly experiment with the Explainable Artificial Intelligence techniques considered in the literature
review and design a Conflict Detection & Resolution interface accordingly.
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