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Abstract The elastic—full plastic loading curve is for all
materials sufficient to explain the strength of beams and
beam columns loaded by bending and compression. This
theory is extended for the influence of shear stress, and it is
shown to be the only way to explain the combined bending-
shear strength from test results. Also, the in the past derived
bearing strength theory is extended here for bracing action.
It will be shown for continuous beams as example, that be-
sides moment redistribution by plastic flow in bending, a
plastic shear flow mechanism exists that is also able to cause
full moment redistribution. The derivations lead to require-
ments for the design rules and show how the shear stress
may reduce the ultimate bending capacity.

Herleitung der Scherfestigkeit von Durchlaufträgern

Zusammenfassung Die bi-lineare elastisch-plastische Ar-
beitslinie reicht bei allen Materialien aus, um die Festig-
keit von Balken und Stützen unter Biege- und Druckbe-
lastung zu beschreiben. Diese Theorie wird hier um den
Einfluss der Scherspannung erweitert, und es wird gezeigt,
dass nur auf diese Weise die in Versuchen ermittelte, kom-
binierte Biege-Scherfestigkeit bestimmt werden kann. Des
Weiteren wird die herkömmliche Traglasttheorie für den
Fall der Stüzenwirkung erweitert. Am Beispiel des Durch-
laufträgers wird gezeigt, dass neben der Momentenumla-
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gerung durch plastisches Fließen infolge Biegung auch ein
plastisches Fließen infolge Schubs existiert, das ebenfalls zu
einer vollständigen Momentenumlagerung führen kann. Aus
den Herleitungen ergeben sich Anforderungen an die Be-
messungsregeln, und sie zeigen, wie die Scherspannung die
Biegetragfähigkeit reduzieren kann.

1 Introduction

Because of the renewed attention to the bearing and shear
strength of beams, leading to new proposals for the Eu-
rocode, that should not be based on empirical rules, a the-
oretical analysis, explaining the test results, is necessary as
real basis for the design rules. As continuation on the theo-
retical explanation of the bearing strengths of locally loaded
blocks in van der Put (2008) and the bracing action in van
der Put (1991), the theory is extended here, based on the data
of beams loaded close to the supports (Vermeijden 1968) by
showing that besides the ultimate compression strength by
confined dilatation, the shear strength is determining for this
mechanism. Thus, by adequate dimensions of the bearing
plates, the shear strength is determining.

Based on the elastic-plastic beam theory, that was ex-
tended for the influence of normal force and shear in van der
Put (1991), the apparently contradictory test results by Le-
icester and Young (1991) of the shear- and bending strengths
of beams and continuous beams could be explained. It ap-
pears that the usually applied secant modulus approach ac-
cording to the theory of elasticity is not able to explain the
data by Leicester and Young (1991) and Vermeijden (1968),
nor to give the right stress distribution in two span beams,
underestimating the bearing capacity by a factor of 2/3, in
Vermeijden (1968), while the elastic-plastic beam theory ac-
cording to Fig. 1 gives a very precise description of the data

mailto:vanderp@xs4all.nl


422 Eur. J. Wood Prod. (2011) 69:421–430

Fig. 1 Bending and shear
stresses
Abb. 1 Biege- und
Scherspannungen

and the determining shear- and bending strengths. These
derivations, confirmed by the tests, lead to the proper re-
quirements for design rules for the Codes, given here in the
conclusions.

2 Shear and bending strengths of beams

When there is plastic flow in compression, shear only can be
carried in the elastic region. It has been shown before that
perfect linear elastic-plastic behavior, leading to this simple
shear stress distribution, given in Fig. 1, is a good approach,
according to the equilibrium method, to model plastic de-
formation with respect to the theoretical one given in van de
Kuilen (1991), where the exact tanh-approach is used for the
stresses in the compression zone.

Accordingly, Fig. 1 is for bending of a rectangular beam
of width b and height h, loaded by a moment M and a shear
force V :

M

b
= σc + σt

2
(h − x)

(
h

2
− h − x

3

)
(1)

The resultant normal force is zero, thus:

σc = σt + σc

2

(
1 − x

h

)
(2)

Elimination of x/h from (1) and (2) gives for σm the quasi
linear bending stress:

σm = 6M

bh2
= σc

3σt − σc

σt + σc

(3)

The total shear force V is:

V = 2

3
σ ′

vbh

(
1 − x

h

)

or by substitution of 1 − x/h from (2):

σv = 3V

2bh
= 2σcσ

′
v

σc + σt

(4)

where σc, σt , σ ′
v are the compression, tension and shear

stress, respectively. The design shear stress σv is the quasi
linear elastic shear stress divided by the total height “h”, fol-
lowing from a linear elastic stress calculation. Thus, σv and
the design bending stress σm follow from the secant modu-
lus up to the ultimate load point.

At bending failure is: σc = fc, or σt = ft and the design
σm = fm. At shear failure is: σ ′

v = f ′
v and the design σv =

fv .

Fig. 2 Test specimen for the bending strength, L/h = 18, sample
size 50, fm = 77.8 MPa with σv = 3.2 MPa (<fs , no shear failures)
Abb. 2 Proben für die Biegefestigkeit, L/h = 18, Probenanzahl 50,
fm = 77,8 MPa mit σv = 3,2 MPa (<fs , keine Scherbrüche)

Fig. 3 Test specimen for the shear strength, L/h = 6, sample size 70,
σm = 64.8 MPa and fv = 5.4 MPa (only shear failures)
Abb. 3 Proben für die Scherfestigkeit, L/h = 6, Probenanzahl 70,
σm = 64,8 MPa und fv = 5,4 MPa (nur Scherbrüche)

For failure in bending and shear, there is a critical value of
the shear slenderness Mu/Vuh where the ultimate bending
strength is reached at the same time as the ultimate shear
stress. In the test of Fig. 3 is, according to (3) and (4):

Mu

Vuh
= ac

h
= 3ft − fc

8f ′
v

= fm

4fv

= 3 (5)

The value 3 as critical value mostly applies as mean value
for common dimensions and strength classes. At this critical
value the strengths fm according to Fig. 2 (bending failure)
and Fig. 3 (shear—bending failure at a/h = 3) are equal.
However, this is not the case for high grades as discussed
below. The meaning of a/h is given in Fig. 2. Above the
critical value of a/h, shear is not determining and there is
bending failure with σc = fc and σt = ft . Below this value,
rotation and bending strength is reduced by the high shear
force reducing the thickness of the plastic zone x until x = 0
(at M/V h ≈ 1 to 1.5, depending on the grade). Then the
maximal possible shear strength is reached: Vu = 0.67f ′

v

bh = 0.67fvbh, at a moment: Mu = fmbh2/6 = fcbh2/6
(ft > fc because ft is the bending tensile strength that,
by the volume effect, is about 1.7 times the real tensile
strength). For high grades thus a different critical a/h ap-
plies. This can be explained by the modified beam theory
given here. This was shown in a review of the preliminary
publication by Leicester and Young (1991) but not applied
by the author in its final version. It is therefore published in
van der Put (1991) of the same meeting.

In Leicester and Young (1991) the following supposed
contradictions were given regarding the strengths of high
quality wood, LVL (laminated veneer lumber):

– Figures 3 and 4 show a lower bending strength than Fig. 2,
although the opposite is expected because of the volume
effect.
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Fig. 4 Australian test specimen for the shear strength, L/h = 6, sam-
ple size 14, fm = 50.0 MPa with σv = 7.6 MPa (2 specimens failed in
shear)
Abb. 4 Australische Proben für Scherfestigkeit, L/h = 6, Probenan-
zahl 14, fm = 50,0 MPa mit σv = 7,6 MPa (bei 2 Proben Brüche unter
Scherlast)

– The shear strength of 7.6 MPa of Fig. 4 is about 40%
higher than the shear strength of 5.4 MPa of the standard
shear test of Fig. 3, while the bending strength is lower.

To explain this, first the elastic moment distribution of
the beam on 3 supports, occurring at first flow, is deter-
mined. A cut of the beam at the middle support at point
B (Fig. 4) will give a rotation at B by the loading P of:
ϕ = PL2/16EI . Only the non-symmetrical shear strain due
to MB/L will also give a rotation at B. The moment at
support B to close the gap gives a contrary rotation of
ϕ′ = MBL/3EI . However, the shear deformation caused by
the reaction MB/L of this moment also closes the gap by:
γ = τ/G ≈ MB/LbhG. Thus:

ϕ − γ = PL2

16EI
− MB

LbhG
= MBL

3EI
or:

MB = 3PL

16
· 1

1 + 4h2

L2

(6)

With: h = 45 mm; L = 270 mm follows that MB = 0.9 ·
3PL
16 . Consequently, for σm, 0.9 · 50 = 45 MPa is found.

It now appears that the field- and support moments are
equal and also that σm ≈ fc ≈ 45 MPa. The equality of field-
and support moment is verified by a finite element calcula-
tion for this case in van de Kuilen and Leijten (2001).

The shear slenderness: M/V h of the field moment at the
side of the free support is: M/V h = L/2h = 3. This is not
determining because at the mid-support is: MB

VBh
≈ L

4h
≈ 1.5

(= fm/4fv = 45/(4 · 7.6) ≈ 1.5).
In general, the shear slenderness M/V h can be written

according to (5) and (3), with α being the ratio between ten-
sile stress and compression strength α = σt

fc
:

M

V h
= fm

4fv

= 3α − 1

α + 1
· fc

4fv

or at Point B:

1.5 = 3α − 1

α + 1
· 45

4 · 7.6
giving: α ≈ 1,

showing that there is just no plastic flow and indicating that
the maximal bending stress is: σm = fc = 45 MPa and the
maximal shear stress is: fv = f ′

v = 7.6 MPa. For Fig. 3 now
applies: M/V h = L/2h = 3 and fv = 5.4 MPa or:

3 = 3α − 1

α + 1
· 45

4 · 5.4
or α = 1.56,

giving a bending strength of:

σm = 45 · (3 · 1.56 − 1)

(1 + 1.56)
= 64.9 MPa

in agreement with the measured value of 64.8 MPa.
The bending strength of the bending test of Fig. 2 is:

fm = 77.8 MPa. Thus:

77.8 = 45 · 3α − 1

α + 1
or α = 2.15

as is common for high quality wood (van der Put 1991). The
maximal shear stress of 7.6 MPa occurs at the neutral line at
point B. For shear failure at plastic flow in compression, as
in Fig. 2, the maximal shear stress is combined with a ten-
sion stress and will be, also due to the volume effect, about
0.9 times lower. Thus: f ′

v = 0.9 · fv = 0.9 · 7.6 = 6.8 MPa.
This means that the real design shear strength at the maximal
bending strength will be:

fv,m = 2f ′
v

α + 1
= 2 · 6.8

1 + 2.15
= 4.3 MPa (7)

that will occur in the test at: a/h = (3 · 2.15 − 1) · 45/(3.15 ·
4 · 4.3) = 4.5.

Thus for LVL the bending test can be repeated with the
load at a distance of 203 mm from the support to obtain the
shear strength at ultimate bending without bending strength
reduction.

In this comparison of different beams and loading cases,
it is assumed that corrections for volume effect for bend-
ing, as for clear wood, can be ignored for LVL. If there
is any effect, it will be included in the values of α. The
same is to be expected for the tropical hard woods in van
de Kuilen and Leijten (2001). The measured shear strength
of 9.1 N/mm2 of the web of the Spruce I-profile in van de
Kuilen and Leijten (2001) is, as can be expected from (9):
fv = 19.20 − 3.03 logAv , or fv = 19.20 − 3.03 log(110 ×
20) = 9.1 N/mm2, where Av is the area of the web.

Because in Fig. 4 the field and support moments are al-
most equal and MB is equal to the linear elastic ultimate
moment due to the high shear loading, this should also be
the case for the field moment and a brittle failure in bend-
ing is to be expected. This is not reported in Leicester and
Young (1991), and from the tests by Vermeijden (1968) it
follows that by the high shear stress, there is stress redis-
tribution and a flow in shear, making the gap between the
beams AB and CB, to be closed by MB , much smaller, re-
ducing MB and providing compatibility for flow of the field
bending moments in the ultimate state.

3 Shear strength of close to the support loaded two
span beams

3.1 Test results

In Vermeijden (1968), two series of tests have been done for
concrete formwork according to Figs. 5 and 6 with variable
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Table 1 Mean values of the strengths in MPa; Pmax in kN
Tab. 1 Durchschnittswerte der Festigkeiten in MPa; Pmax in kN

a

(cm)
σc,90 σv At B

σm,B

At P

σm,P

Mean
Pmax

8 8.2 8.0 40.3 26.0 21.45 Series A:
4 × 5 specimens12 7.1 6.9 46.9 29.8 17.70

16 6.6 6.3 52.2 33.0 15.95

24 5.4 5.2 54.9 35.2 12.20

8 7.0 6.9 24.1 3.7 21.15 Series B:
5 × 4 specimens12 7.4 7.3 36.7 8.5 22.85

14 7.0 6.8 37.7 10.8 21.55

16 6.8 6.7 42.1 13.2 21.45

24 6.0 5.8 48.7 23.2 20.00

Lowest Dutch (1960) strength class. Moisture content 20%. Underlined values means: determining failure value. Besides determining bending
failures at a = 24 cm, also failure by compression perpendicular to the grain was determining at a = 8 cm, while failure by shear combined with
compression and bending occurred in all other cases

Fig. 5 Series A, a = 8, 12, 16 and 24 cm; L/h = 11.6, sample size
4 × 5 = 20; b × h = 59 × 78 mm2

Abb. 5 Prüfreihe A, a = 8, 12, 16 und 24 cm; L/h = 11.6, Proben-
anzahl 4 × 5 = 20; b × h = 59 × 78 mm2

values of “a”. Here, the calculated MB/VBh values range
from 0.9 to 2.6, giving an extension around the shear slen-
derness value of 1.5 of Fig. 4. The test-results are given in
Table 1. The design stresses follow from:

σmB = 6MB

bh2
; σv = 1.5V

bh
; σc,90 = RB

As

For Series A, the reactions R, shear forces V and moments
M are:

RA = RC = P

(
1 − 3a

2L
+ 3a2

2L2

)
= VA

RB = 2P

(
1 + 3a

2L
− 3a2

2L2

)
= 2VB

MB = −1.5Pa

(
1 − a

L

)

MP = MD = Pa

(
1 − 3a

2L
+ 3a2

2L2

)

The failure modes of Series A are as follows:

• At a = 80 mm, failure occurs by compression perpendic-
ular to the grain after a huge deformation (flow) at the
loading points and in one of the 5 beams also by shear
and bending failure at point B.

Fig. 6 Series B , a = 8, 12, 14, 16, 24 cm; L/h = 10.3, sample size
5 × 4 = 20; b × h = 59 × 78 mm2

Abb. 6 Prüfreihe B , a = 8, 12, 14, 16, 24 cm; L/h = 10.3, Proben-
anzahl 5 × 4 = 20; b × h = 59 × 78 mm2

• At a = 120 mm, there also is a strong deformation at
the loading points. Failure of 4 of the 5 beams occurs by
bending in the field at knots near P and in one case also at
point B. One beam failed by shear.

• At a = 160 mm, the same occurred as at a = 120 mm.
• At a = 240 mm, all 5 beams failed by bending in the field

and 2 beams also by failures at the middle support.

For Series B , the reactions R, shear forces V and mo-
ments M are:

RA = RB = P + P

(
a2

L2

)(
1.5 − a

2L

)
= VA

RB = 2P

(
1 − a

L

)(
1 + a

L
− a2

2L2

)
= 2VB

MB = −Pa

(
1 − a

L

)(
1 − a

2L

)

MP = MD = P

(
a2

2L

)(
3 − a

L

)(
1 − a

L

)

σmB = 6MB

bh2
; σv = 1.5V

bh
;

σc,90 = RB

As

; As = 58.7 × 100 mm2
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The failure modes of Series B are as follows:

• At a = 80 mm, failure occurred by compression, press-
ing the wood fully together. Secondary bending failure
also occurred in 2 beams after strong deformation and cut
through of the fibers by the steel plates of the middle sup-
port, point B. At a = 120 mm, there is also a strong defor-
mation at the support and loading points. Failure occurred
by shear and in one case also by secondary bending fail-
ure at B.

• At a = 140 mm, bending failure occurred at the middle
support.

• At a = 160 mm, bending failure occurred at B in 3 of the
4 beams, in one case combined with shear failure. Shear
failure alone occurred in 1 of the 4 beams.

• At a = 240 mm, all beams failed by bending at point B.
In one beam also at point P.

3.2 Discussion of the test results

In Table 1 of Series A, at a = 240 mm, all beams failed by
bending in the field although the bending moment at support
B is 1.6 times higher. This cannot be explained by a volume
effect or a round-off of the moment-peaks by the fact that
the reaction is not a point load, because then the strength
should also strongly increase with smaller values of a/h,
yet the contrary is occurring. According to Larsen (1975),
the volume effect for bending is:

fm

fm,0
= c ·

(
200

h

)0.11

where “c” ranges from c = 1.05 when L/h = 35 to c = 1.15
when L/h = 7. Consequently:

fm

fm,0
=

(
L0

L

)0.0565

·
(

200

h

)0.11

For equal beam depths, the determining strength ratio by the
volume effect thus is:

MB

MP

=
(

L − a/2

a/2

)0.0565

=
(

80 − 12

12

)0.0565

= 1.1

while the round-off effect of MB is of the same order: 0.9,
showing the total influence of these effects to be negligible
and as a result, there should be a strong moment redistribu-
tion by plasticity.

Flow in compression perpendicular to the grain in the
oblique bracing direction, also causes flow in shear defor-
mation of the beams cross section at B. This strongly re-
duces the moment at the support MB . This shear deforma-
tion at the B cross section also occurred at a/h = 1, and for
a higher value of a = 160 mm, even a pure shear mechanism
did occur. It can be concluded that there is clear moment re-
distribution, reducing MB which at the end will be equal to
the field moment as shown by the failure of both moments

in e.g. beam 8a and 10a. The calculation of the real failure
stresses should therefore not be based on linear elastic de-
sign values, but on a mechanism according to the theory of
plasticity as will be discussed later.

3.3 Explanation of the measured shear strength

The shear strength of a large number of tests can e.g. be
found in Larsen (1975) and the regression line of all tests of
shear in bending, shear in torsion and block shear is:

fv = 20.95 − 3.35 logAv, (8)

where fv is in MPa and Av is the sheared area in mm2.
Omitting the block tests, the regression line is:

fv = 19.20 − 3.03 logAv (9)

For the tests by Vermeijden (1968), the values of Av =
b × a are: for b = 58.7 mm and a = 80, 120, 140, 160
and 240 mm, given in Table 2. For the median value of
Av = 58.7 × 140 = 8218 mm2, the reference value for the
shear strength becomes:

fv,0 = 20.95 − 3.35 log 8218 = 7.8 MPa, (10)

and (8) can be written:

fv − fv,0 = −3.35 log

(
Av

8218

)
= −3.35 · 0.434 ln

(
Av

8218

)

= −1.455 ln

(
Av

8218

)

fv

fv,0
= 1 − 0.186 · ln

(
Av

8218

)

According to the theory of the Appendix A the power law
approximation gives:

n =
[
∂

(
fv

fv,0

)/
∂

(
Av

8218

)]
A=8218

= −0.186

and the last equation becomes:

fv

fv,0
=

(
Av

8218

)−0.186

The other regression line (9) gives n = 0.18 and fv,0 =
7.3 MPa. For the data by Vermeijden (1968), fv,0 is still

Table 2 Theoretically extrapolated first flow values of fv in MPa
Tab. 2 Theoretisch hochgerechnete erste Fließwerte von fv in MPa

a

(cm)
Av = b · a
(mm2)

Theory Eq. (11)
fv

Measurements
Series A + B
fv

8 4696 7.6 7.5

12 7044 7.0 7.1

14 8218 6.8 6.8

16 9392 6.6 6.5

24 14,088 6.1 (5.5)
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lower, fv,0 = 6.8 MPa, probably because only bending with
shear is involved and due to the higher moisture content and
lower grade. The power law representation of the regression
line gives a meaning to the data to represent the volume ef-
fect according to the Weibull weakest link theory. The varia-
tion coefficient for the occurring of failure determining dis-
turbances is 1.2 · 0.186 = 0.22.

Because fv is not very sensitive for the value of “n”, a
rounded value of n = 0.2 can be chosen. This is the same
value as given in Eurocode 5 for larger dimensions. This
value leads to:

fv = fv,0 ·
(

Av

8218

)−0.2

, (11)

giving a precise fit in Table 2 and an explanation of the mea-
sured strength values to be governed by shear failure in prob-
ably all cases.

3.4 Determination of the bending strength

When shear is determining, the pure shear flow mechanism
over length “a” of the beam requires two equal opposite ul-
timate shear forces VU and thus also two equal opposite end
moments of VUa/2. Thus for Series B, the field moment
MP is equal to MB , the moment at the support as given in
Fig. 7. For Series A, this also is the case due to the bending
flow mechanisms which start earlier before shear flow. It can
be seen in Table 3 for Series A that σm reaches the bending
strength.

According to Fig. 7 is, for equal moments:

MD − MB(L − a)

L
= MB or:

P · a ·
(

1 − a

L

)
− MB(L − a)

L
= MB or:

MB = Pa
1 − a/L

2 − a/L
(12)

Fig. 7 Equal field and support moments MP = MB of Series B
Abb. 7 Gleiche Feld- und Auflagenmomente MP = MB von Prüfrei-
he B

VB = P
L − a

L
+ MB

L
= P

1 − a/L

1 − a/2L
(13)

MB

VBh
= a

2h
(14)

The same applies for Series A, Fig. 8, leading for the highest
shear force to:

MB = Pa

1 + a/L
VB = P

1 + 2a/L

1 + a/L
,

MB

VBh
= a

h
· 1

1+2a/L

(15)

These equations result in the strength values given in Ta-
ble 3.

The shear strength according to (11), adapted to the
strength of 6.35 MPa at a = 140 mm, becomes:

fv = 6.35 ·
(

Av

8218

)−0.2

(16)

and is given in Table 4.
The data of fv suggest the same cause and type of shear

failure in Series A and B shown in Tables 2 and 4. The calcu-
lated mean value of the shear strength of both series appears
to follow the theoretical (16) precisely.

Table 3 Measured strength values at (shear-) flow
Tab. 3 Gemessene Festigkeitswerte bei Scherfließen

a

(mm)
M/V h P

(kN)
σm,B ,
σm,P

(MPa)

σv

(MPa)
σc,90
(MPa)

80 0.9 21.45 26.3 7.6 7.9 Series A

120 1.2 17.70 31.3 6.5 6.7

160 1.5 15.95 36.2 6.0 6.2

240 2.0 12.20 38.6 4.8 5.0

80 0.5 21.15 13.4 6.5 6.8 Series B

120 0.8 22.85 21.1 6.8 7.1

140 0.9 21.55 22.8 6.35 6.6

160 1.0 21.45 25.5 6.2 6.5

240 1.5 20.00 33.0 5.4 5.6

Fig. 8 Equal field and support moments MP = MB of Series A
Abb. 8 Gleiche Feld und Auflagenmomente MP = MB von Prüfrei-
he A
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Table 4 Theoretical flow
values of fv in MPa
Tab. 4 Theoretische Fließwerte
von fv in MPa

a

(mm)
Av = b · a
(mm2)

Theory
Eq. (16)
fv

Measurements
Series A
fv

Measurements
Series B
fv

Measurements
mean A + B
fv

80 4696 7.1 7.6 (6.5) 7.1

120 7044 6.6 6.5 6.8 6.6

140 8218 6.4 6.4 6.4

160 9392 6.2 6.0 6.2 6.1

240 14,088 5.7 4.8 5.4 5.1

Table 5 Theoretical strength
values of Series A with fv in
MPa
Tab. 5 Theoretische
Festigkeitswerte von Prüfreihe
A mit fv in MPa

a

(mm)
Av = b · a
(mm2)

Theory
f ′

v (18)
M/V h fm,B

fm,P

Theory α

Eq. (17)
Theory fv

Eq. (19)
Measurements
fv

80 4696 7.6 0.9 (26.3) ∼1 7.6 7.6

120 7044 7.0 1.2 31.3 1.13 6.6 6.5

160 9392 6.6 1.5 36.2 1.34 5.7 6.0

240 14,088 6.1 2.0 38.6 1.47 4.9 4.8

The increase of the bending strength fm is explained
by the beam theory (see Fig. 1 and (1) to (5)) showing
a decrease of the ultimate shear force with the increase
of M/V h and an increase of the bending rotation with a
coinciding increase of the bending moment. Series B, at
a = 240 mm, did show only bending failure, while for lower
values of “a” combined bending and shear failures occurred.
The boundary of this combined failure thus lies here at a
value of a = 160 mm. This means for Series B of Table 3
at a = 160 mm, that α = 1, and fm = fc = 25.5 MPa and
fv = f ′

v = 6.2 MPa. For a = 240 mm then, the ultimate
combined shear-bending strength according to (3) is:

fm = fc · (3α − 1)

(α + 1)
= 33 = 25.5 · (3α − 1)

(α + 1)
or:

α = 1.34.

Consequently:

fv = 2f ′
v

(α + 1)
= 2 · 6.2

2.34
= 5.3 MPa

which agrees with the measured value of 5.4 MPa in Table 3.
The value of α = 1.34 = ft/fc = 1.7 · ft,0/fc, gives

ft,0/fc = 1.34/1.7 = 0.8. Thus the tensile strength ft,0 is
0.8 times the compression strength. The factor 1.7 is due to
the volume effect of the bending tensile strength ft with re-
spect to the pure tensile strength ft,0. Below a slenderness
ratio of M/V h = 1, there is no flow in bending and there is
a linear elastic bending stress state: σm < fm; σm,t = σm,c,
or α = 1. Thus the point where fm = fc and fv = f ′

v and
α = 1, occurs at M/V h = 1 in Series B. For Series A,
this point is found by interpolation in Table 3 between
a = 80 mm and 120 mm, where M/V h = 0.9 to 1.2, giv-
ing fm = fc = 28 MPa. With this value of fc, the values

of fm/fc for other values of “a” can be calculated. Accord-
ing to (17), based on (3), the values of α are known and are
given in Table 5.

α = (1 + fm/fc)

(3 − fm/fc)
(17)

An adaptation of f ′
v,0 of (16), to give the value of 7.6 MPa

at a = 80 mm, is:

f ′
v = 6.8 · (Av/8218)−0.2 (18)

This adaptation of fv for the stronger Series A is, according
to (4) or (7):

fv = 2f ′
v

(α + 1)
(19)

Based on the data base at that time, the bending strength
at 20% m.c. is 35.4 MPa for ungraded wood at commercial
sizes applying for beams of at least twice the height of the
test specimens. Thus, including the volume effect, the bend-
ing strength here is: (2)0.11 · 35.4 = 1.08 · 35.4 = 38.2 MPa.
According to Table 5, the maximal bending strength is thus
reached at a = 240 mm, at M/V h = 2.

4 Bracing behavior for small values of a/h

Generally, the shear strength in combination with the vol-
ume effect determines the load carrying capacity for beams
loaded close to the support. However, this bearing capac-
ity may be reduced further when the compression strength
perpendicular to the grain is made determining as well. As
mentioned in Table 1, at a = 80 mm, failure by compression
perpendicular to the grain starts to be determining for the
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Fig. 9 Bearing or bracing mechanism
Abb. 9 Tragfähigkeits- oder Befestigungsmechanismus

strength at the chosen dimensions of the bearing plate at the
support. Compression perpendicular to the grain shows no
volume effect. The by the volume effect increasing shear-
ing strength is cut-off for values of “a” smaller than 80 mm.
This cut-off also applies for bearing by one or two dowel
joints. It is shown for many cases, for instance in van der
Put and Leijten (2000) that the spreading model also ap-
plies for a load on a beam by a dowel. The compression
strength of the inclined bracing of Fig. 9 follows from the
bearing strength, discussed in van der Put (2008). This bear-
ing strength is:

kc = σs,φ

σc,φ

= c

√
0.5 + 3H/ cosφ + L/ cosφ

2s/ cosφ

= 1.1 ·
√

0.5 + 3H + L

2s
= fs

fc,90
(20)

thus it is the same as for not inclined bracing. The equality:
σs,φ/σc,φ = fs/fc,90 follows from the maximum stress cri-
terion perpendicular to the grain, that is a safe lower bound
of the strength for not too high angles φ because it does not
contain the influence of hardening. With L = 60 mm and
s = 50 mm of the loading plates and H = 80 mm, is:

kc = 1.1 ·
√

0.5 + 3 · 80 + 60

2 · 50
= 2.1 (21)

Thus fc,90 = 7.3/2.1 = 3.5 MPa as mean value of Table 3 of
Series A and B, at the determining value of a = 80 mm. This
is comparable with the fc,90 values by van der Put (2008).

Because in this investigation the σc,90 stresses decrease
when “a” increases from a = 80 to a = 240 mm, exactly
the same way as the shear strength fv , the shear strength is
determining and not the compression strength perpendicular
to the grain of the bracing action. This should be the case
up to the situation of Fig. 10, because for smaller values of
a < 80 mm, not the whole load R/2 is transmitted by shear.
Thus half the length of the central bearing plate should be:
l = 0.67 · fv ·h

fs
= 0.67 · 7.0 · 80/7.3 = 50 mm, as is applied.

Here fv = 7 MPa is the shear strength at a = 80 mm, the
mean value at a = 80 mm in Table 4. In general, for the
bearing length applies: l = 0.64 · h. For a middle support
two times this value it thus applies,

l = 1.27 · h (22)

Fig. 10 No overlap of bearing plates at a = 80 mm
Abb. 10 Kein Überlappen von Auflageplatten bei a = 80 mm

Because the spreading for combined shear failure is not
higher than for compression failure in this case, this rule
should also apply for design values of the strengths.

5 Biaxial failure criterion

The design rules for bearing blocks (van der Put 2008) are
based on flow and hardening in triaxial conditions by the
confined dilatation. This confinement often depends on the
friction between wood and the steel bearing plate and not
on structural means. Maybe therefore these rules are not
used for the verification of combined stresses at the sup-
ports and loading points of beams. Current failure criteria
in design codes, such as Eurocode 5 for combined stresses
are based on test results of biaxial and uniaxial tests. For
combined stresses in beams, the tensor-polynomial failure
criterion by van der Put (1993) then should be applied. It
follows from van der Put (1993) that the bending compres-
sion strength along the grain increases by compression per-
pendicular up to a maximum and then decreases when com-
pression perpendicular to grain is further increased. For this
reason, there still is no decrease of the bending compression
strength when the compression perpendicular is about half
of the uniaxial compression strength fc,90/2 (in the weak-
est plane). As long as the multi-axial stress approach is not
used, the compression stress perpendicular to the grain at a
middle support should safely be limited to fc,90/2 in order
to maintain the ultimate compression stress of the bending
strength of the beam. For end-supports, fc,90 should apply.
This leads to l/h = 1.33 for end-supports and 2l/h = 5.33
for the middle support, which is fully unrealistic. This means
that, by applying much smaller values or l/h in practice and
in the Codes, the triaxial compression strength and harden-
ing discussed above have already been accepted.

6 Conclusion

• The elastic-plastic beam theory is extended for the influ-
ence of shear force (Fig. 1), providing the means to give
the definition of the combined bending-shear strength.
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• Based on this extended beam theory, the apparent con-
tradictory LVL test results (Leicester and Young 1991) of
the shear- and bending strengths of beams and continuous
beams and tests on two span beams (Vermeijden 1968) are
precisely explained.

• It appears that the linear secant modulus theory of elastic-
ity is not able to explain the strength data by Leicester and
Young (1991) and Vermeijden (1968), nor is it able to give
the correct stress distribution in two span beams. It un-
derestimates the bearing capacity of the tested beams by
Vermeijden (1968) by a factor of 2/3. The bending failure
of Series “A” occurred in the field although the bending
moment at the middle support is 1.6 times higher than the
field moment, according to the theory of elasticity. Thus
it is shown that there is a moment redistribution by plastic
flow by a strong visible shear flow between loading point
and middle support.

• Flow in compression perpendicular to the grain in the
oblique bracing direction, at low values of M/Vh, also
causes flow in shear deformation at the middle support.
The shear angle strongly reduces the rotation angle by
bending. This strongly reduces the moment at this support
and causes failure to start in the field, although according
to the theory of elasticity the field moment is lower by a
factor of 1.6 than the moment at the middle support (see
Table 1).

• Thus the ultimate moment distribution of continuous
beams does not follow the theory of elasticity, but the
theory of plasticity showing equal field and support mo-
ments. For low values of M/V h this is due to a shear flow
mechanism over the length of the beam, by equal opposite
shear forces and moments at the ends.

• The shear strength can be explained from the regression
line of many tests of shear in bending, shear in torsion and
block shear. This regression line can be transformed to a
power law form, representing the volume effect accord-
ing to the Weibull weakest link theory. It gives a precise
fit of the available data showing the load carrying capac-
ity to be determined by the shear strength in all cases (of
M/V h < .3).

• According to the extended beam theory, there is a crit-
ical value of the shear slenderness M/V h (the relative
moment-shear force ratio), where the maximal ultimate
moment is reached, and at the same time as the ulti-
mate shear force is determining. Above this critical value,
bending alone is determining with the same maximal ul-
timate moment. Below this critical value, the rotation ca-
pacity, and thus also the ultimate bending moment, is re-
duced by the shear force, which is then decisive for failure
(see Fig. 1).

• This critical value for the shear slenderness ratio is about
M/V h = 3 to 4.5, depending on the wood quality. This
follows from the data by Leicester and Young (1991)

while the data by Vermeijden (1968) suggest the possi-
bility of an even lower critical value of M/V h ≈ 2 for
lower quality grades.

• For values of M/V h ≤ 1, there is a linear bending stress
distribution over the depth of the beam and no plastic flow
in bending: σm < fm; σm,t = σm,c, or α = 1. The point
where fm = fc and fv = f ′

v and α = 1 occurs at M/V h =
1 in the series by Vermeijden (1968) and is 1.5 for the high
quality laminated veneer lumber by Leicester and Young
(1991).

• As continuation on the theoretical explanation of the bear-
ing strengths of locally loaded blocks (van der Put 2008),
the bracing model of beams loaded close to the supports
(van der Put 1991) is extended and verified by tests by
Vermeijden (1968).

• Because the shear strength should be determining and not
the compression strength perpendicular to the grain by the
bracing action, the cut-off of the shear strength should not
be earlier than in the situation of Fig. 10, when the entire
load is transmitted by shear. Therefore, the length of the
bearing plate should be: l = 0.64 · h at end supports and
l = 1.27 · h at central supports. This prescription is a sim-
ple rule for a design standard.

• For combined stresses, the failure criterion used in the
Codes, is based on biaxial and uniaxial tests. It follows
from van der Put (1993) that there is then no decrease of
the bending compression strength when the compression
perpendicular is about half of the uniaxial compression
strength fc,90/2 (in the weakest plane). This is not fol-
lowed by the empirical rules of the Codes meaning that
the triaxial compression strength is already accepted and
the local compression strength perpendicular to the grain
can be based on (20).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Derivation of the power law

Any function f (x) can always be written in a reduced vari-
able x/x0 f (x) = f1(x/x0) and can be given in the power
of a function: f (x) = f1(x/x0) = [{f1(x/x0)}1/n]n and ex-
panded into the row:

f (x) = f (x0) + x − x0

1! · f ′(x0) + (x − x0)
2

2! · f ′′(x0) + · · ·
giving:

f (x) =
[
{f1(1)}1/n + x − x0

x0

1

n
{f1(1)}1/n−1.f ′(1) + · · ·

]n

= f1(1).

(
x

x0

)n
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when: (f1(1))1/n = (f1(1))1/n−1 · f ′
1(1)/n, or: n =

f ′
1(1)/f1(1), where: f ′

1(1) = [∂f1(x/x0)/∂(x/x0)] for x =
x0 and f1(1) = f (x0). Thus:

f (x) = f (x0) · xn

x0
with n = f ′

1(1)

f1(1)
= f ′(x0)

(x0)
(A.1)

It can be seen from this derivation of the power law (A.1),
using only the first two expanded terms, that the equation
only applies in a limited range of x around x0.
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