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Abstract
The advent of global warming has brought an increased interest in non­conventional sources of energy,
one of which is nuclear energy. Threatening the almost year­round functioning of nuclear power plants
are Flow­Induced Vibrations (FIV). One such mechanism, Vortex­Induced Vibration (VIV), holds impor­
tance in areas of cross­flow in nuclear power plants. To make fail­safe designs, computational analysis
in the domain of Fluid­Structure Interactions (FSI) has been increasing over the past two decades.
The thesis work aims to add to the body of knowledge by making predictions for an in­line two­cylinder
configuration, set up as part of a benchmark proposed by the Organization for Economic Co­operation
and Development (OECD), using the commercial code Simcenter STAR­CCM+ (v2020.3.1).

The main objective of this study is to test the efficacy of the URANS framework in predicting VIV which
is strongly correlated with the objective of the OECD to propose recommendations for the Best Practice
Guidelines[23]. To do so, it is desired to shortlist the most appropriate turbulence model for the final
application and point out gaps in the prediction of the same. The thesis work is thus carried out in
three phases: code validation, turbulence model selection and final application. Key results from this
study reveal the ‘Standard K­Epsilon Low Re: Cubic’ model to be the most apt for the final application.
Furthermore, gaps are also identified in the application of URANS to predict VIV resonance conditions,
the primary of which is the overprediction of the vortex shedding frequency.
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1
Introduction

With an increasing worldwide human population comes an increasing energy demand. Different con­
ventional and non­conventional sources of energy are available and made use of which has a direct link
to global warming. The Intergovernmental Panel on Climate Change (IPCC) warns humanity about the
effects of global warming of 1.5°C above pre­industrial levels and related global greenhouse gas emis­
sion pathways.[1] Nuclear energy is a way to transition to a world with low carbon footprint as pointed
by many international studies especially when affordability of energy production is considered.[1]−[7]

An advantage of nuclear power plants is its capability of producing electrical power almost year­round
with the exception of a 3 week period of refuelling and maintenance. For economic benefit, it is de­
sired that the plants run without any unplanned outages. Another reason for this is the possibility of
the nuclear reactor to be unable to restart owing to the build­up of Xenon. After a power decrease
or shutdown, it may take upto about 3 days before a typical reactor is able to override the effects of
Xenon. Translating the time loss into money at a rate of 1 million euro per day,[8],[9] the desire to avoid
outages is made obvious.

A leading reason for the downtime is owed to damage as a result of Flow Induced Vibrations (FIV).
FIV has been pointed to be a cause of fatigue problems, stress corrosion, cracking, fretting wear and
other possible failure modes in nuclear power plants.[9],[10] Increasing energy demand leads to change
of coolant, its flow rate or changes in component material and/or dimensions leading to more prominent
FIV.[11] With this in mind, an introduction to nuclear power plants and associated FIV mechanisms are
provided in section 1.1 and section 1.2 of this chapter. One such mechanism is brought forth into the
limelight through the research objective and associated questions as described in section 1.3. The re­
search methodology adopted in tackling the problem is explained in section 1.4 followed by a general
outline of the remainder of the thesis in section 1.5.

1.1. Nuclear Power Plant
A schematic sketch of the secondary circuit of a generic steam­based power plant is shown in Fig­
ure 1.1. The steam generated in the steam generator (SG) turns the blades of a turbine (T) which is
connected to a generator (G) thereby obtaining electrical energy. After performing work, the steam
is condensed in a condenser (C) making use of a water body nearby or a cooling tower (CT). The
condensed steam is pumped back to the steam generator via a pump (P) for the cycle to be complete.
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2 1. Introduction

Figure 1.1: Schematic Sketch of a Generic Power Plant

A nuclear power plant makes use of nuclear fission to obtain the energy for converting water to steam
in the steam generator. This energy transfer can be done directly as in a Boiling Water Reactor (BWR)
or indirectly using a primary circuit involving a separate reactor such as the Pressurized Water Reactor
(PWR). Nuclear reactors can be classified based on the type of nuclear reaction, moderator, coolant,
phase of fuel, generation, shape of core and use. Based on the type of nuclear reaction, nuclear reac­
tors can be classified as thermal neutron reactors and fast neutron reactors. Thermal neutron reactors
employ slowed or thermal neutrons by the action of moderator material to increase the probability of
fission of an enriched fuel such as uranium­235. Fast neutron reactors employ fast neutrons to cause
fission without the use of a moderator, thereby acting on natural or low­enriched fuel to produce another
nuclear fuel such as uranium­238 forming plutonium­239 which is better at fissioning than uranium­235.

The Institution of Electrical Engineers has classified the nuclear reactors based on the coolant­moderator
combination as follows:[12]

• Gas Cooled & Graphite Moderated ­ GCR, HTR, AGR
• Hard Water Cooled & Moderated ­ PHWR, CANDU
• Light Water Cooled & Moderated – PWR, BWR, VVER
• Light Water Cooled & Graphite Moderated – LWGR, RBMK
• Liquid Metal Cooled – FBR, SFR, LFR

Pioneering work on Gas Cooled Reactors (GCR) has been done in the United Kingdom with their fleet
of Advanced Gas­cooled Reactors (AGR) that use CO2 with a graphite moderator. Further develop­
ment has led to High Temperature Reactors (HTR) which typically uses helium gas as a coolant and a
graphite moderator.

Water cooled reactors use either light or heavy water as the coolant. The coolant can also be a modera­
tor or a separate graphite moderator could be used. The most common types are the earlier mentioned
PWR and BWR. Besides the difference in the extra circuit, PWR employs light water that is pressured
upto about 150 bar which prevents the coolant from boiling in the primary circuit. In both types of such
reactors, refuelling has to be done during an outage. This has consequences for the availability (up
time) of the reactor. In order to minimise the down­time of a reactor, on­line refuelling, i.e. refuelling
during operation, was targeted in other reactor designs. In Russia, this led to the water­cooled graphite­
moderated RBMK reactors. In Canada, this led to the so­called CANDU reactors, a Pressurized Heavy
Water Reactor (PHWR) type. Besides on­line refuelling, these reactors allow, through the use of heavy
water as coolant and moderator, the use of natural uranium, avoiding the need for fuel enrichment
required for most other reactors.

For fast neutron reactors, it is desired to split the uranium­239 isotope instead of the uranium­235. To
achieve this, moderators are not used in so­called Fast Breeder Reactors (FBR). The most commonly
applied coolant is sodium but given its chemically reactive nature, lead and lead­bismuth have also
been employed. According to the latest IAEA Power Reactor Information System (PRIS) data[13],[14],
the following distribution of reactors in operation and in construction reveals PWR to be the most com­
mon type of nuclear reactor.



1.2. Flow Induced Vibration 3

(a) Operational Reactors (b) Reactors Under Construction

Figure 1.2: Types and Electrical Capacity of Reactors Used and Under Construction Worldwide (as of 12 July 2021)[13],[14]

1.2. Flow Induced Vibration
The term Flow Induced Vibration (FIV) is used to describe all the phenomena that are associated with
the response of structures immersed in a flow. In literature for internal flows, the term FIV is used for
stationary (statistically steady) flow where interaction is mainly one­way from fluid to solid and Fluid
Structure Interaction (FSI) is used for two­way interactions in unsteady flows.[15] However, in this re­
port, both terms are used interchangeably to imply any interaction between solid and fluid for nuclear
applications.

Different parts of the nuclear reactor can vibrate due to entirely different excitation mechanisms. Fig­
ure 1.3 shows two important areas of concern for a PWR: the pressure vessel (reactor) and the steam
generator. Although a vertical steam generator is shown here, horizontal steam generators do exist as
have been employed in VVER, a Russian­designed light water cooled and moderated reactor. In fact,
they are better than the vertical type on account of easy sludge handling.[16] As far as FIV is concerned,
the flow around fuel rods is axial whereas the steam generator tubes have both axial and cross flow.
The type of flow along the fuel rods could be single or two­phase. In particular, steam generators have
single phase cross flow at the entry, two­phase axial flow in the middle and two­phase cross flow at the
U­bend. Such flow conditions decide the nature of interaction between the structure and the fluid.

(a) Pressure Vessel[9] (b) Steam Generator[17]

Figure 1.3: Sketches of Areas of Interest for FIV in Nuclear Applications
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Pettigrew et. al.[18] provides the following classification of FIV mechanisms in nuclear applications:

1. Fluid Elastic Instability (FEI): This is a result of coupling between fluid­induced dynamic forces
and the elastic vibration of structures. When the energy absorbed by structure from the fluid
dynamic forces is higher than the energy dissipated by damping, instability occurs. This occurs
beyond a certain critical velocity.

2. Periodic Wake Shedding: This occurs very readily behind structures in cross flow. With periodic
wake or vortex shedding, periodic fluid forces act on the structure which set it to vibrate if the
shedding frequency lies in proximity to its natural frequency. The vibration so occurring is termed
as Vortex­Induced Vibration (VIV).

3. Turbulence Excitation: Turbulence generated locally by the fluid as it flows around a structure
(near­field excitation) and that generated by upstream components such as inlet nozzles, elbows,
etc. (far­field excitation) can create random pressure fluctuations around the surface of compo­
nents causing them to vibrate. This vibration is termed as Turbulence Induced Vibration (TIV)
and is of prime importance in axial flows.

4. Acoustic Resonance: This occurs when the vortex shedding frequency matches with the natural
frequency of the acoustic cavity formed by the structures surrounding the primary structure. This
is of importance in single phase axial flows as well as tube bundles subjected to gas cross flow.

Figure 1.4 relates the vibration excitation mechanisms to different flow situations in nuclear reactor ap­
plications and gives their relative importance. It is observed that for single phase axial flow, acoustic
resonance and turbulence excitation are prime suspects for the cause of damage. For steam gener­
ators, which generally have cross flow at the entry and the U­bend, fluid elastic instability is the prime
suspect for damage. In particular, for liquid flows, periodic shedding and turbulence excitations also
have a role to play. For the thesis work, periodic vortex shedding is of prime importance given the
operational specifications of the problem fall in the range of the lock­in regime, a term that is explained
in a subsequent chapter of this report.

Figure 1.4: Vibration Excitation Mechanisms (Amended from [18])

Figure 1.5 reveals how these mechanisms may be superimposed to get the vibrational response from
a structure. It is observed that FEI is the most destructive mechanism with VIV and acoustic resonance
having a specific range in which the destruction is maximum and random vibration or TIV being present
in the entire range of flow velocities with its detrimental effect increasing with flow velocity.
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Figure 1.5: Vibrational Response as a Superimposition of Different FIV mechanisms[19]

Another way to classify fluid­structure interaction excitationmechanisms given by Rockwell[20] is based
on how they are produced. The categories under this classification are listed below.

1. Extraneously Induced Excitation: This is caused by fluctuations in flow velocities or pressure
that are independent of any instability due to structural movement except the added mass and
fluid damping effects. The exciting force is mostly random but may also be periodic.

2. Instability Induced Excitation: The instability is intrinsic to the flow system created by the struc­
ture being considered. An example of this would be VIV. There is also a possibility of control
mechanisms that can strengthen the excitation such as resonance and fluidelastic feedback.

3. Movement Induced Excitation: This occurs due to fluctuating forces that arise due to the move­
ment of a vibrating body. These type of vibrations are thus aptly named self­excited.

Based on the nature of vibrations, Weaver[21] classifies FIV as (a) forced vibrations induced by turbu­
lence, (b) self­controlled vibrations for which some periodicity exists in the flow field that is independent
of the movement of the structure, and (c) self­excited vibrations. Blevins[22] uses a phenomenological
way of classification, grouping the vibrations as induced by (a) steady flow and (b) unsteady flow. For
this report, the classification given by Pettigrew et. al.[18] is deemed more useful in the context of
nuclear applications.

1.3. Research Objective
The mechanism of interest in the current study is periodic wake shedding and its associated Vortex­
Induced Vibrations (VIV) which is predominant in areas of cross flow around bluff bodies such as that at
the inlet and U­bends of steam generators of nuclear power plants. With the advancements in Compu­
tational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM), ‘coupled CFD­CSM’,
or ‘FSI’ solvers are made use to predict FIV. In particular, FSI calculations must determine forces which
act at both the hydrodynamic frequency and the natural frequency of the structure. The complexity of
calculations is determined by the problem of separating physical instability in the flow from numerical
errors. Therefore, development of recommendations and further update of the Best Practice Guide­
lines[23] on carrying out the coupled calculations appears to be a relevant problem.

In order to deal with this problem, the Organization for Economic Co­operation and Development
(OECD) has proposed a benchmark that provides the possibility of joint measurements of the vibration
and flow hydrodynamic parameters. The current study, carried out at the Nuclear Research and Consul­
tancy Group (NRG) in The Netherlands, aims to present numerical FSI predictions for this benchmark
along with 18 other participants from all around the globe.

For this proposed benchmark, if the challenge is to produce very accurate results, one may very well
go for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) for the CFD side of the FSI
calculations. For the author and NRG, however, an additional constraint is to acquire the calculation
results within the timeframe of this Master Thesis which calls for the use of computationally cheaper
Unsteady Reynolds­Averaged Navier­Stokes (URANS) models. Thus, the current study aims to judge
how well the current state­of­the­art URANS models fair in this challenging FSI benchmark.
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Formally, the main goals of the benchmark from the perspective of the OECD organization are:

1. Obtain experimental data on a strongly coupled novel setup relevant for nuclear applications in
order to validate the calculations of the participants of the benchmark.

2. Developing recommendations for the Best Practice Guidelines[23] based on the approaches and
results of the participants.

The problem so chosen is a novel setup of two in­line cantilevered cylinders (more precisely capped
tubes) housed in a rectangular channel subjected to cross flow at subcritical Reynolds number. More
details about the same are provided in chapter 5. While the current study inherently conforms to the
second goal, the below objective takes the limelight for the thesis work:

“To test the efficacy of URANS models in the prediction of VIV by selecting the best suited
URANSmodel (and associated settings) for theOECDbenchmark and establishing the gap
between this model and the available experimental data”.

The above objective lays the foundation for future improvements in URANS for cross flow FSI predic­
tions, for example via the Pressure Fluctuation Models (PFM) that were proposed earlier in the works
of Kottapalli[24] and Sharma[25]. Now although PFM shows best improvements for TIV, it could help
in improving predictions of vibrations that are both vortex­induced and turbulence­induced (as in the
current study) by providing physical turbulence at the inlet in terms of velocity and pressure fluctuations
rather than modelled turbulence in the form of turbulent kinetic energy alone.

The above objective can also be posed as the following question:

“Can URANS accurately capture VIV of in­line cantilevered cylinders?”

To aid in answering the same, the following sub­questions are raised:

1. Which of the two popular URANS models (𝑘­𝜔 𝑆𝑆𝑇 and 𝑘­𝜖) provides the closest prediction to
the experimental results?

2. Given the novel nature of the benchmark, what mesh size, time step and total simulation time is
to be selected for the simulation? We know that smaller values for the first two and larger values
for the third will lead to better predictions.

(a) What is the expected natural frequency of the structure and the hydrodynamic frequency
(vortex shedding frequency) of the flow? A thumb rule of 100 sampling points per cycle can
help select a time step, while the CFL criterion can help select a corresponding mesh size.

(b) How long does the transient phase of the simulation last until the periodic nature of the
response sets in? Sufficient simulation time (as a thumb rule 6 flow passes) is required
beyond this phase to make sufficiently accurate/detailed frequency­spectra plots.

(c) Given the timeline of the project, what is the current number of cores available and the
physical time taken to compute each time step on these number of cores? This would be
a feasibility check on the selection of time step, mesh size and total simulation time as one
can predict how long the total simulation will take in real time.

The commercial code Simcenter STAR­CCM+ (v2020.3.1) is employed for making the numerical pre­
dictions. This particular multi­physics CFD software comes with an in­built FSI solver: in particular, a
finite volume flow solver with a wide range of turbulence models, a finite element structural solver and
an integrated Gauss­Seidel FSI coupling for the flow and structural solvers.

1.4. Research Methodology
With the objective and research questions in mind, a methodological/sequential process is established
with which the aforementioned questions are answered and the end goals set for the current study are
achieved. Given that the current study involves the code Simcenter STAR­CCM+, the first logical step is
to explore the parameter settings for the associated CFD and CSM solvers as well as the Gauss­Seidel
FSI coupling by testing them against an FSI benchmark before using this tool for the OECD Benchmark.
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Following the validation test of the tool, the turbulence models with their wide range of settings is to
be tested to select/shortlist candidates for the OECD benchmark. Given the large number of options,
it is infeasible to work these models on the benchmark directly; instead another experimental bench­
mark/study is to be adopted that bears some resemblance to the problem but is not as computationally
expensive to carry out.

Finally, the shortlisted candidate models are applied to the open phase (where experimental results
are available) of the OECD benchmark to select the best model and apply it to the blind phase (where
experimental results are not available) of the OECD Benchmark. Further details of the benchmark are
provided in chapter 5 and chapter 6. With these ideas in mind, the current study is structured into the
following 3 phases:

1.4.1. Phase 1
The first phase deals with the validation of the commercial code. This will be done by validating the
calculations of the setup of the well­known numerical benchmark of Turek & Hron[26]. In particular, the
‘CFD3’, ‘CSM2’ and ‘FSI3’ test cases of this benchmark will be tested. The FSI3 test case is specifically
chosen as it is the most strongly coupled test case available (with the fluid and solid densities being
equal) and hence also the most challenging to compute numerically. In addition, the thumb rule of
100 sampling points per cycle mentioned in the previous section is tested using the ‘CFD3’ test case.
Details of the setup and obtained solutions are provided in chapter 4.

1.4.2. Phase 2
Once the code is validated, the focus shifts to shortlisting the model candidates for the OECD bench­
mark. The associated model settings of interest here are ‘constitutive relationship’, ‘Low Re modifi­
cation’ and the ‘Gamma­Re­Theta transition’. Theoretical details about these settings are provided in
chapter 3. Each of these settings in different combinations are tested. The single elastically mounted
rigid cylinder vibration study of Khalak & Williamson[27] is selected for zoning into the candidates for
the OECD benchmark given the samemechanism of vibration and a similar range of Reynolds Number.
To make it feasible to test the models in the time­frame, a 2D simulation study is carried out. Further
details of the setup and obtained solutions are provided in chapter 4.

1.4.3. Phase 3
With the model candidates shortlisted, the OECD benchmark is tackled in two steps:

Open Phase Study
The open phase study of the OECD benchmark contains a setup of two cantilevered in­line cylinders
of diameters 7 𝑚𝑚 each, placed 45 𝑚𝑚 apart in a rectangular channel. The experimental results are
available for this setup at two flow rates: one at resonance (16 𝑚3/ℎ) and other at off­resonance (10
𝑚3/ℎ). For this phase of the study, the candidate models are applied to simulate the resonance case
alone and the one providing the best match with the experimental results is picked for the Blind Phase.
Based on the available resources and thumb rules, the mesh size, time step and total run time of the
simulations are selected. At this point, we already have some inkling as to the capability of URANS in
capturing VIV. Based on the shortcomings of the results, a few hypotheses are formulated about the
specific cause of difference.

Blind Phase Study
With the “best” model and settings selected, the same is applied to the blind phase of the OECD bench­
mark. The setup is exactly the same except for the cylinder size being larger with a diameter of 10𝑚𝑚.
This translates to a different natural frequency thereby requiring different flow rates to test resonance.
For this phase, both proposed flow rates for off­resonance (16 𝑚3/ℎ) and resonance (35 𝑚3/ℎ) are
tested. However, for this phase, the experimental results are not disclosed to the participants. The
blind phase study also serves to test the hypotheses drafted in the open phase study of the bench­
mark. With this final study, the original objective is met.

Further details of the setup and results are provided in chapter 5 and chapter 6 respectively.
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1.5. Thesis Outline
In this chapter, an introduction to nuclear power plants and associated FIV mechanisms was provided.
This was followed by the research objective and methodology. The remainder of the report is structured
as follows:

chapter 2 contains a review on Vortex­Induced Vibrations of single and multi­cylinder configurations
as well as the important non­dimensional quantities affecting the same. chapter 3 provides under­the­
hood details of the numerical procedures and governing equations solved by the STAR­CCM+ code.
chapter 4 provides the details and solutions computed in Phase 1 and 2 of this study. chapter 5 and
chapter 6 formally introduce the open and blind phase OECD benchmark problems of Phase 3 and
the obtained solutions for the same. The report is concluded with key observations and findings in
chapter 7.



2
Vortex­Induced Vibrations

Vortex­Induced Vibration (VIV) is the earliest known mechanism of FIV. In fact, many FEI cases were
thought to be due to VIV. It was only in 1980, where the work of Païdoussis[28], which reanalyzed
practical experiences, pointed out the true culprit as FEI. However, VIV is just as troublesome when it
comes to damaging things in a nuclear reactor.

Since ancient times, the existence of vortex shedding is known. Leonardo da Vinci sketched a row
of vortices in the wake of a piling in a stream.[29] This is shown in Figure 2.1. In 1878, Strouhal found
that the Aeolian tones generated by a wire in the wind were proportional to the wind speed divided
by the wire thickness. He also observed resonance when the natural tones matched with the aeolian
tones. In 1879, Lord Rayleigh observed dominant vibrations of a violin string in the transverse direc­
tion compared to the longitudinal direction. The vorticity of the wake of a cylinder was associated with
vortex formation by Benard in 1908, and with the formation of a stable street of staggered vortices by
von Karman in 1912.[22]

Figure 2.1: Sketch by Leonardo da Vinci: Obstacle creating Turbulent Wake[30]

2.1. Mechanism of VIV
To understand VIV, it is best to grasp the concept of vortex shedding. Consider a single cylinder sub­
jected to cross flow. The following text from Blevins[22] sheds light on the matter:

“As a fluid particle flows toward the leading edge of a cylinder, the pressure in the fluid
particle rises from the free stream pressure to the stagnation pressure. The high fluid
pressure near the leading edge impels flow about the cylinder as boundary layers develop
about both sides. However, the high pressure is not sufficient to force the flow about the
back of the cylinder at high Reynolds numbers. Near the widest section of the cylinder,
the boundary layers separate from each side of the cylinder surface and form two shear
layers that trail aft in the flow and bound the wake.

9
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Since the innermost portion of the shear layers, which is in contactwith the cylinder,moves
much more slowly than the outermost portion of the shear layers, which is in contact with
the free flow, the shear layers roll into the near wake, where they fold on each other and
coalesce into discrete swirling vortices.[31],[32]”

These vortices interact with the cylinder and are the source of the effects called VIV.

For multi­cylinder arrangements, the cause of vibration is seldom only vortex induced. A typical exam­
ple is the work of Zdravkovich[33] for two cylinders. He identified 3 regions of positioning a secondary
cylinder behind and beside a primary cylinder which influence the response of both cylinders. These
are the proximity interference region (can be interpreted as strictly FEI), wake interference region (can
be interpreted as strictly VIV) and a mixed region of wake and proximity interference. This is shown in
Figure 2.2. The influence of position of the second cylinder and flow velocity is made clear in his work.

Figure 2.2: Cylinder Interaction Regimes[33]

2.2. Important Parameters influencing VIV
In order to understand VIV, it imperative to look at the non­dimensional parameters that influence the
flow behaviour around objects prone to VIV. The most important ones are the Reynolds Number (𝑅𝑒)
and the Strouhal Number (𝑆𝑡).

2.2.1. Reynolds Number
Vortex shedding is primarily governed by the Reynolds number, 𝑅𝑒, which is defined by

𝑅𝑒 = 𝑈𝐷
𝜈 (2.1)

where𝑈 is the freestream velocity, 𝐷 is the characteristic length (diameter of a cylinder for example) and
𝜈 is the kinematic viscosity. The major Reynolds Number regimes of vortex shedding from a smooth
circular cylinder are shown in Figure 2.3.

For very low Reynolds numbers (𝑅𝑒 < 5), the flow remains attached to the cylinder. This regime where
the viscous forces dominate the inertial forces is also called Stokes flow.[34] For 5 < 𝑅𝑒 < 40, the flow
separates from both sides of the cylinder. The two vortices at both sides can be considered symmetric
and stable. In the next flow regime, 40 < 𝑅𝑒 < 150, the wake becomes unstable and the vortices are
shed alternately from the cylindrical body. In this regime, the vortex street is still laminar. Between
150 < 𝑅𝑒 < 300 the flow transitions to turbulent in the vortex wake. From 300 < 𝑅𝑒 < 1.5 × 105, the
vortex street has become fully turbulent with the boundary layer still being laminar. This range is also
called the subcritical range where the boundary layer remains fully laminar and the drag coefficient is
nearly constant as can be seen from Figure 2.4.
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Figure 2.3: Regimes of Fluid Flow across Smooth Circular
Cylinders[35]

Figure 2.4: Experimental Measurements of Drag Variation with
Re[36]

In the transitional range from 1.5 × 105 < 𝑅𝑒 < 3 × 106, the cylinder boundary layer becomes tur­
bulent and the separation point moves to an aft position. The formation of laminar separation bubbles
result in an overall reduction in drag, also called drag crisis, as can be seen from Figure 2.4. This flow
regime is highly sensitive to inflow turbulence and surface roughness, therefore measurements of 𝐶𝐷
are more scattered in this region. Here, the regular shedding process is disrupted and the spectrum of
shedding frequencies is broadened for smooth surface cylinders.

The range of 𝑅𝑒 > 3 × 106 is the supercritical regime. Laminar separations are no longer formed
and the flow transitions to turbulence without separating. The flow remains attached longer and so has
higher skin friction. Correspondingly, the drag rises from the dip in the drag crisis as can be seen from
Figure 2.4. Here, the turbulent vortex shedding is re­established.

2.2.2. Strouhal Number
The Strouhal Number, 𝑆𝑡, is the dimensionless proportionality constant between the predominant fre­
quency of vortex shedding, 𝑓𝑠, and the free stream velocity, 𝑈, divided by the cylinder width, 𝐷, and is
given by

𝑓𝑠 =
𝑆𝑡𝑈
𝐷 (2.2)

The Strouhal number of a stationary circular cylinder in a subsonic flow is a function of Reynolds num­
ber and, to a lesser extent, surface roughness and free stream turbulence, as shown in Figure 2.5. In
particular, the effect of surface roughness is pronounced in the transitional regime, where very smooth
surface cylinders have a chaotic, disorganized, high­frequency wake and Strouhal numbers as high as
0.5, while rough surface cylinders have organized, periodic wakes with Strouhal numbers of 𝑆𝑡 = 0.25.
In general, a Strouhal number of 𝑆𝑡 = 0.21 is assumed for single cylinders in cross flow.

However, the same does not hold for multi­cylinder configurations. The array configuration and ge­
ometry significantly affect the vortex shedding and thereby the Strouhal Number. In particular, for two
cylinder in­line configurations, if the second cylinder is placed further away from the first cylinder, the
two cylinders shed their own unique vortices. On the other hand, for small cylinder gaps, the two
cylinders behave like a single object and shed a single combined wake.[33]
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Figure 2.5: Variation of Strouhal Number with Reynolds Number[22]

The discussion so far may give the reader a misconception that vortex shedding is a steady, harmonic,
two­dimensional process. This is quite far from the truth. Vortex shedding from a stationary cylinder in
the higher Reynolds number range does not occur at a single distinct frequency, but rather it wanders
over a narrow band of frequencies with a range of amplitudes and it is not constant along the span. The
three­dimensionality of vortex shedding can be characterized by a spanwise correlation length. This
correlation length, expressed as multiples of diameter, decreases with increasing 𝑅𝑒.[22]

2.2.3. Other Influencing Parameters
Besides the Reynolds number and the Strouhal number, there are other influencing parameters that
impact VIV as well. In Figure 2.6 all the influence parameters are illustrated, as summarized by
Zdravkovich[37]. These parameters tend to have a smaller effect on VIV than the Reynolds number
or Strouhal number, except for the cylinder oscillations. More details about the effect of cylinder oscil­
lations are provided in the following sub­section. Besides the smaller effect of most of the influencing
parameters, their effects have also been investigated at high Reynolds numbers. The interested reader
is referred to studies of Barnett & Cermack[38] and Achenbach & Heinecke,[39] which addressed the
surface roughness and free stream turbulence at supercritical Reynolds numbers, respectively.

Figure 2.6: Typical Disturbances that have an impact on VIV[37]

2.2.4. Effect of Cylinder Motion on Wake
As mentioned in the previous sub­section, the motion of the cylinder has an influence on the vortex
shedding and thereby on VIV. A distinction between in­line oscillations and transverse oscillations has
been made (in reality, both occur at the same time as in the current study). The study of Sarpkaya[40]
found similar response branches for a 2­DoF experiment as in transverse 1­DoF studies. It was con­
cluded that 2­DoF XY motion studies do not lead to significant variations in maximum resonant am­
plitudes compared to Y­only studies. Under the conditions when natural frequency is equal in both
directions, it was shown by Sarpkaya[40] that the response amplitude is 20% larger and the critical
velocity range is also 20% larger. It was reasoned that the transverse oscillations were the main driver
of the response amplitude and the critical wind speed range. The focus is thus brought to transverse
vibrations.
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According to Blevins,[22] there are five main effects of the transverse cylinder motion on the wake.
These are

1. The strength of the shed vortices increases.

2. The spanwise correlation of the wake increases.

3. The vortex shedding frequency can shift to the frequency of cylinder vibration leading to lock­in
or high amplitude vibrations.

4. The mean drag of the cylinder increases.

5. The phase, sequence, and pattern of vortices in the wake can be altered.

The most crucial effects are the alteration of the wake and the lock­in phenomena which relate to
the other prescribed effects of cylinder motion. In particular, differences were observed between free
vibration and forced vibration. In the critical work by Williamson & Roshko[32], 2S (‘S’ for single) and
2P (‘P’ for pair) vortex modes of the wake were discovered for free vibration. On the other hand, for
forced vibration, an additional P+S mode was discovered in many experimental studies.[32],[41]−[43]
These modes are shown in a vortex wake mode map given in Figure 2.7. In the earliest works, such as
those by Bishop & Hassan[44] and Feng[45], a jump in phase of transverse force was observed. This
was attributed to a change from 2S to 2P mode by Williamson & Roshko[32] and was experimentally
confirmed by Brika & Laneville.[46],[47]

Figure 2.7: Map of Regimes for Vortex Wake Modes[32]

The response of a cylinder in VIV has been found to be greatly influenced by themass ratio (𝑚∗ = 𝑚
𝜋
4 𝜌𝐷

2 )

and mass­damping (𝑚∗𝜁) parameter. The early works, such as those by Feng[45], were done using air
and thus a high mass ratio of 𝑚∗ = 248. In a later work by Khalak & Williamson[48] who used water
and thereby a low mass ratio of 𝑚∗ = 2.4, a starkly different response with increasing flow velocity was
observed. This is shown in Figure 2.8. Note that the flow velocity has been non­dimensionalized as
𝑈∗ = 𝑈

𝑓𝑁,𝑤𝑎𝑡𝑒𝑟𝐷
, vibrational frequency as 𝑓∗ = 𝑓𝑜𝑏𝑗

𝑓𝑁,𝑤𝑎𝑡𝑒𝑟
and maximum amplitude as 𝐴∗𝑚𝑎𝑥 =

𝑦𝑚𝑎𝑥
𝐷 . In

some literature, flow velocity is also represented by the reduced velocity, 𝑈𝑅 =
𝑈
𝑓𝑠𝐷

.
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(a) 𝐴∗𝑚𝑎𝑥 vs 𝑈∗
(b) 𝑓∗ vs 𝑈∗

Figure 2.8: Comparison of Response of Low vs High Mass­Damping[49]

Quite some differences are observed from the above figure. In particular, the definition of resonance or
lock­in is challenged. The earlier definition of resonance was defined as that range of frequency when
the vibrational frequency of the object matches with the natural frequency, i.e 𝑓∗ = 1.[22],[50] This
definition was observed to be true for high mass­damping parameter. As we see from Figure 2.8b, for
low mass­damping, the value of 𝑓∗ for the lock­in regime lies at about 1.4. Thus the definition of the
condition for resonance was redefined by Sarpkaya[40] to the match of the shedding frequency, 𝑓𝑠 with
the vibrational frequency of the object, 𝑓𝑜𝑏𝑗.

Another observation is the existence of different branches in the response curve shown in Figure 2.8a.
For the high mass­damping, the curve by Feng[45] shows an ‘initial branch’ and a ‘lower branch’.
However, for the low mass­damping, an ‘upper branch’ is also observed. Furthermore, the range of
synchronization or the lock­in regime appears to be larger for the low mass­damping parameter.

Consider the switch in the timing of vortex shedding described
by Zdravkovich[51] and Williamson & Roshko[32] when the
amplitude jumps from the initial to lower branch in high mass­
damping cases such as Feng.[45] In contrast, for low mass
and damping, there are two mode jumps, and it is not im­
mediately clear which one corresponds to the switch in vor­
tex shedding timing. To shed light on this question, Govard­
han &Williamson[52] considered the “total” fluid force, as well
as the “vortex” force. The basis of the theory came from
Lighthill[53],[54] who showed that the total fluid force (𝐹𝑇𝑂𝑇𝐴𝐿)
can be split into a “potential force” component 𝐹𝑃𝑂𝑇𝐸𝑁𝑇𝐼𝐴𝐿,
given in this case by the potential added mass force, and a
“vortex force” component (𝐹𝑉𝑂𝑅𝑇𝐸𝑋) that is due only to the dy­
namics of all the shed vorticity. Govardhan & Williamson[52]
set out to deduce what the vortex force is from direct experi­
mental measurement of the total fluid force. They also defined
corresponding phase differences 𝜙𝑉𝑂𝑅𝑇𝐸𝑋 and 𝜙𝑇𝑂𝑇𝐴𝐿. Their
result is shown in Figure 2.9.

Figure 2.9: Overview of the Low Mass­Damping
Response[52]

From their work, it was concluded that while traversing from the initial branch to the upper branch,
a jump in vortex phase occurs and thereby a jump from 2S to 2P mode of shedding. On the other
hand, while traversing from the upper branch to the lower branch, a jump in the total phase occurs
which is not associated with switch in the time of shedding contrasting to Zdravkovich’s[51] claim for
high mass­damping case.
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As mentioned earlier, lowering the mass ratio (𝑚∗) in particular seems to increase the extent of syn­
chronization regime. It could be conjectured that as 𝑚∗ → 0, the extent of synchronization should tend
to infinity. In reality, there exists a finite critical mass ratio, 𝑚∗𝐶𝑅𝐼𝑇, below which synchronization regime
becomes infinitely wide. In 1999, Khalak & Williamson[55] had provided an expression for the variation
of 𝑓∗ with 𝑚∗ for high mass­damping. This was given as

𝑓∗ = √ 𝑚∗ + 𝐶𝐴
𝑚∗ + 𝐶𝐸𝐴

(2.3)

where 𝐶𝐴 is the potential added mass coefficient (usually taken as 1) and 𝐶𝐸𝐴 is the effective added
mass coefficient. Govardhan & Williamson[52] provided a similar expression for the lower branch for a
low mass­damping response given as

𝑓∗𝐿𝑂𝑊𝐸𝑅 = √
𝑚∗ + 1
𝑚∗ − 0.54 (2.4)

They thus quoted a critical mass ratio of𝑚∗𝐶𝑅𝐼𝑇 = 0.54±0.02. This unique critical mass ratio is valid for
(𝑚∗ + 𝐶𝐴)𝜁 < 0.05. Figure 2.10 shows the existence of a critical mass ratio. It also shows that for low
amplitude vibrations, if the mass ratio is reduced below the critical value, large amplitude oscillations
can set in.

Figure 2.10: Discovery of a Critical Mass[56]

With the realization of the effect of mass­damping on the response, the next step in research was to
obtain an expression using the mass­damping parameter that could potentially collapse all 𝐴∗𝑚𝑎𝑥 data in
a single plot. The use of mass­damping parameter was based on several studies.[56],[57] A parameter
was independently derived from a response analysis involving the van der Pol equation by Skop &
Griffin,[58] and they compiled data from several different experiments as a means to usefully predict
response amplitudes. The combined response parameter was subsequently termed 𝑆𝐺 in Skop,[59]
and is defined as

𝑆𝐺 = 2𝜋3𝑆𝑡2(𝑚∗𝜁) (2.5)

Griffin[60] made the first extensive compilations of several investigations using 𝑆𝐺 and provided the
famous Griffin plot as shown in Figure 2.11. Voices against the use of the plot were raised by Sarpkaya
on several occasions.[40],[61]−[63] He pointed out that the mass ratio and damping are independent
and that the Griffin plot is valid only for 𝑆𝐺 > 1. On the other hand, Griffin & Ramberg[64] performed two
sets of experiments, each for the same value of 𝑆𝐺 = 0.5–0.6, but with dissimilar mass ratios, 𝑚∗ = 4.8
and 43. The peak amplitude was found to be roughly unchanged with 𝐴∗𝑚𝑎𝑥 = 0.5 despite 𝑆𝐺 < 1.
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Figure 2.11: The Griffin Plot based on Data collected by Skop & Balasubramanian[65]

To add to this conundrum, using a linear scale as in Figure 2.11 rather than the traditional log­log
plot, reveals large scatter in the data. The conclusion made by Khalak & Williamson[55] that it was
unreasonable to collapse data for different VIV systems (free cylinder, cantilever, pivoted cylinders,
etc.) onto a single plot. In particular, Khalak & Williamson[55] provided a response vs mass ratio plot
specifically for elastically mounted cylinders as shown in Figure 2.12. The collapse of data was found
to be successful for 𝑚∗ > 2 and (𝑚∗ +𝐶𝐴)𝜁 > 0.006. This translates to a valid Griffin plot regime down
to about 𝑆𝐺 ∼ 0.01, far lower than the value quoted by Sarpkaya[61] of about 𝑆𝐺 ∼ 1.

Figure 2.12: Griffin Plot for Elastically Mounted Cylinders based on Data by Khalak & Williamson[55]

2.3. VIV of Multi­Cylinder Configurations
Depending on cylinder spacings, as well as other system parameters, vortex shedding may or may not
exist in a cylinder array. Early studies on vibration of cylinder arrays proceeded on the assumption that
vortex shedding was the dominant mechanism. Thus, the main objective was to determine the vortex
shedding frequency and the Strouhal Number. Key reviews in this area are given by Païdoussis[66]

and Weaver & Fitzpatrick[67].

While summarizing the researchwork on the existence of vortex shedding in tube arrays, Païdoussis[66]
stated that periodic vortex shedding or ‘Strouhal periodicity’ commonly appeared for the first rows pro­
vided the upstream turbulence had not suppressed it. The appearance of vortex shedding deep within
arrays is found to be dependent on 𝑅𝑒, array geometry, mechanical properties of the tubes and the
amplitude of tube vibration.
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In later research works, Weaver et. al.[68] and Fitzpatrick et. al.[69] observed the presence of vortex
shedding, if not a flow periodicity, even deep within the arrays. In an interesting flow visualization study
by Abd­Rabbo & Weaver[70], the development of vortex shedding in arrays is observed similar to the
classical vortex shedding behind a single cylinder. The Strouhal periodicity is observed in the closely
placed staggered array configurations, which is reported to be absent in the in­line array configurations.

Further studies on the in­line tube arrays by Ziada & Oengören[71],[72] has enhanced the understand­
ing of the generation of VIV. The fluid flowing in lanes forms the jet like structures, while the wakes
of the cylinders are confined. The vortex shedding excitations are generated in the first row due to
the jet instabilities and persist for couple of rows downstream. The tube pitch ratio and the upstream
turbulence has a major impact on the vortex shedding in the front rows as well as deep in the arrays.

The vortex shedding in the staggered (normal triangular) arrangement is studied by Polak &Weaver[73]

for various pitch ratios and Reynolds numbers. In a comprehensive work by Ziada[74] the vortex shed­
ding is shown to be generated by either jet, wake or shear layer instabilities, depending on the tube
spacing, upstream turbulence, Reynolds number and the array configuration. Figure 2.13 shows the
vortex shedding patterns in a staggered and in­line tube array. The sub­figures of Figure 2.13a show
the influence of increasing 𝑅𝑒 on the flow vorticity. The closely spaced in­line configuration shown in
Figure 2.13b shows the shear layer instabilities as the source of Strouhal periodicities.

(a) Staggered Array (b) In­Line Array

Figure 2.13: Vortex Shedding in Tube Arrays[74]

2.3.1. Two­Cylinder Configurations

Pioneering work for two­cylinder configurations is done by Zdravkovich. He was able to identify a
coupled region (proximity interference), a region of wake interference and a region of no interference.
Besides classifying the regions, in his work[33], he was able to observe different types of vortex shed­
ding behaviour depending on the cylinder spacing in tandem (as 𝑃/𝐷) and side­by­side (as 𝑇/𝐷). This
is shown in Figure 2.14.

For in­line configurations, the measured Strouhal frequency with varying 𝑃/𝐷 is provided in Figure 2.15.
In general, the vortex shedding frequencies behind the two cylinders are different. No distinct vortex
shedding is found behind the upstream cylinders up to 𝑃/𝐷 = 3.8. For 𝑃/𝐷 > 3.8, the vortex shedding
frequency reaches the value for an isolated cylinder. The vortex shedding exist in the whole range
of spacing behind the downstream cylinder. It decreases with 𝑃/𝐷 for 1 < 𝑃/𝐷 < 3.8, then jumps to
higher values at 𝑃/𝐷 ∼ 3.8, which is the same spacing at which the vortex shedding appears behind
the upstream cylinder.
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Figure 2.14: Vortex Shedding Dependency on Cylinder
Configuration[33]

Figure 2.15: Variation of 𝑆𝑡 with 𝑃/𝐷[75]

A detailed study of two cylinders in tandem immersed in a water flow and spaced between 0.2 and
4.0 diameters was made by King & Johns[76]. They found that complex mutual interactions can arise
between the flow, vortex shedding, and the motion of the cylinders. The dynamic response of the
cylinders is a function of pitch ratio, reduced flow velocity, mass ratio, and damping value. Reynolds
number was also found to be of key importance: 𝑅𝑒 must exceed 1200­1500 for in­line oscillation to
occur and must exceed 100 for cross flow oscillation to occur. The responses, which depend strongly
on P/D, have been summarized by Chen[77] as follows:

• 𝑃/𝐷 < 2.75: Symmetric vortices are shed from both cylinders in the range 1.25 < 𝑈𝑅 < 2.5 and
both cylinders oscillate in the in­line direction provided the mass­damping parameter is less than
2.4.

• 𝑃/𝐷 > 2.75: For 1.25 < 𝑈𝑅 < 2.5, the upstream cylinder oscillates inline and sheds symmetric
vortices but the downstream cylinders do not oscillate and a wide turbulent wake is formed.

• 1.5 < 𝑃/𝐷 < 7: For 2.7 < 𝑈𝑅 < 3.8, the alternate wake from the upstream cylinder generally
reinforces that from the downstream cylinder.

• 1.25 < 𝑃/𝐷 < 7: The alternate vortex shedding associated with the oscillating upstream cylinder
generally reinforces that from the downstream cylinder.

Subsequent experimental work after King & Johns[76] was done by Jendrzejczyk et. al.[78] who carried
out tests for 𝑃/𝐷 = 1.75. The results for response and orbital paths are given in Figure 2.16 and
Figure 2.17. There are two peaks in the response curves in the drag direction. The peaks correspond
to the reduced flow velocities equal to 1.7 𝑚/𝑠 and 3.0 𝑚/𝑠, respectively. This is consistent with the
experimental results by King & Johns[76].

Figure 2.16: Tube Displacement Components for Two Tubes in Tandem[78]
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Figure 2.17: Tube Orbital Paths for Two Tubes in Tandem[78]

As the flow velocity increases, predominant cylinder motion changes from the drag direction to the lift
direction. At large oscillations, the upstream cylinder vibrates more severely than the downstream one.
The two cylinders vibrate out of phase when they execute large oscillations. The orbital paths bend in
the downstream direction. This can be attributed to the drag variation—that is, when the cylinders are
farthest from the equilibrium position, the drag force acting on the cylinders becomes larger.

2.4. Conclusion
In this chapter, the most relevant mechanism of FIV for the thesis work is reviewed. This mechanism
comes in to play in a range of flow velocities where the vortex shedding frequency latches onto the
vibrational frequency of the object. The Reynolds number, Strouhal number and the mass­damping
of the system greatly influence the response. Furthermore, for tube arrays, the array geometry and
configuration has an equally important role to play. For in­line two cylinder arrays, the importance of
𝑃/𝐷 is highlighted along with the change from a low amplitude in­line vibration to a high amplitude
transverse vibration with increasing flow velocity. With this review, a basic qualitative guess on the
behaviour of the in­line two cylinder configuration chosen for the thesis are made in chapter 5. The
numerical aspects of approaching the problem are discussed in the following chapter of this report.





3
Numerical Methods

Every numerical simulation is based on a mathematical model that tries to describe the physics of the
phenomenon being studied. When considering Fluid Structure Interaction, this involves the equations
governing the fluid domain, the structural domain and the ways to couple them both. This chapter pro­
vides a brief overview of the equations governing fluid dynamics, its associated turbulence modelling,
structural dynamics and the Gauss­Seidel technique available in STAR­CCM+ to couple the two sepa­
rate domains. Before diving into the above topics, a brief note on the frames of reference is provided.

3.1. Frames of Reference
While observing any physical phenomenon, choosing an appropriate frame of reference can simplify
the numerical analysis, making it easier to interpret. An example of this would be the choice made
by the astronomer Copernicus to analyze the trajectories of the planets keeping the sun as the center
instead of earth. This small change in frame of reference simplified the complicated motion of the
planets to just ellipses. The two basic frames of reference typically used in continuum mechanics are
the Lagrangian and the Eulerian approach. The point of view particularly suitable for FSI is the Arbitrary
Lagrangian­Eulerian (ALE) approach. The three approaches are qualitatively illustrated in Figure 3.1.

Figure 3.1: Working of Different Frames of Reference on a Fluid Domain (Amended from [79])

3.1.1. Lagrangian Approach
The frame of reference is fixed to the material domain in this approach. The frame of reference moves
according to the movement or deformation of the domain as shown in Figure 6.1. As can be seen in
Figure 6.1a, the mesh points (dashed circles) move according to the movement of the material points
(filled circles). This approach is often used in structural mechanics as it allows implicit treatment of
moving boundaries and defines a property history to each material point.

21
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3.1.2. Eulerian Approach
In the Eulerian approach, the frame of reference is fixed to a particular spatial location regardless of
the movement of the material being observed as shown in Figure 6.1b. Thus to measure the change
in any given property 𝑓 over time at a given location 𝑥, one must add the change of the property at that
location with time and the convective transport of neighboring material to that location with a material
velocity 𝑈. This change is often taken care by the material derivative,

D𝑓
D𝑡 =

𝜕𝑓
𝜕𝑡 + (𝑈 ⋅ ∇)𝑓 (3.1)

Given that it can handle any arbitrary deformation, it is quite popularly used in fluid dynamics.

3.1.3. Arbitrary Lagrangian­Eulerian Approach
The Arbitrary Lagrangian­Eulerian (ALE) approach allows to move the frame of reference independent
of the material motion. Figure 6.1c depicts the motion of the frame of reference with this approach.
This method brings together the best of both the aforementioned approaches by following the motion
of the material at the fluid­structure interface in a Lagrangian way, while the computational mesh in the
interior can be moved arbitrarily to optimize the shape of the elements. In this frame of reference, the
velocity in the governing equations becomes relative to the deforming mesh.

Figure 3.2: Lagrangian, Eulerian and ALE Frames of Reference shown with 1­D Computation Grid (dashed circles), Material
Points (filled circles) and Material Domain (grey lines)[80]

3.2. Solid Mechanics
Solid Mechanics describes the behavior of a solid continuum in response to applied loads. Applied
loads include body forces, surface loads, point forces, or thermal loads that result from changes in the
solid temperature. Applied loads induce a stress field in the structure and can cause displacement of
the structure, a quantity we would like to solve. A few key terms are now described before presenting
the governing equation.

3.2.1. Displacement
As mentioned above, applied loads can result in a displacement of the solid structure from an initial
configuration to a deformed configuration. The total displacement is a combination of rigid body motion
and the relative displacements of the points in the body, which determine the deformation of the solid
structure.
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If the position of a material point in the undeformed configuration is X, and the displacement of this
point to the deformed configuration is u(X, 𝑡) , the position of the material point in the deformed config­
uration is:

x(X, 𝑡) = X+ u(X, 𝑡) (3.2)

In component form, the displacement can be expressed as:

u = [𝑢𝑥 𝑢𝑦 𝑢𝑧]
𝑇

(3.3)

The displacement field of a rigid body is completely defined by a single displacement vector while that
of a deformable body is defined by the set of displacement vectors of its material points.

3.2.2. Deformation Gradient
The deformation gradient tensor F measures how the deformation changes from point to point:

F = 𝜕x
𝜕X = I+ 𝜕u𝜕X = I+

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑢𝑥
𝜕𝑋

𝜕𝑢𝑥
𝜕𝑌

𝜕𝑢𝑥
𝜕𝑍

𝜕𝑢𝑦
𝜕𝑋

𝜕𝑢𝑦
𝜕𝑌

𝜕𝑢𝑦
𝜕𝑍

𝜕𝑢𝑧
𝜕𝑋

𝜕𝑢𝑧
𝜕𝑌

𝜕𝑢𝑧
𝜕𝑍

⎤
⎥
⎥
⎥
⎥
⎦

(3.4)

where I is the identity matrix and 𝑋, 𝑌, and 𝑍 are the Cartesian components of the material point position
vector X.

3.2.3. Stress
Stress is a measure of the force per unit area acting on a surface. In a solid structure, external forces
or temperature changes induce a stress field, which can lead to motion and deformation of the solid
structure. Internal forces that oppose the deformation of the structure also induce an internal elastic
stress that tends to restore the structure to the original undeformed state. Some materials also present
built­in stress, that exists in absence of applied forces and deformations.

In general, the stress acting on a plane section of a body is defined by a vector ⃗⃗𝜏, which is known
as stress vector, or traction, as:

⃗⃗𝜏 = [
𝜏𝑥
𝜏𝑦
𝜏𝑧
] = [

𝐹𝑥/𝐴
𝐹𝑦/𝐴
𝐹𝑧/𝐴

] (3.5)

where F is the force acting on the plane and 𝐴 is the area of the plane.

The stress at a point is the force per unit area, as the area over which the force is applied approaches
zero. At a point, there is an infinite number of plane sections of the body. However, the state of stress
at the point is completely defined by the stress vectors that are associated with three mutually perpen­
dicular planes passing through the point. Therefore, the state of stress at any point, on any plane, is
defined by a second­order tensor of the following form:

𝜎 = [
𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] (3.6)

Since the sum of moments must go to zero as the body volume shrinks to zero, the stress tensor is
symmetric. The off­diagonal terms are called shear stresses, since they act tangentially to a face. The
diagonal terms are referred to as normal stresses, since they act normal to a face.
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The stress vector on a plane can be written as the matrix product:

𝜏 = 𝜎 ⋅ n = [
𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] [
𝑛𝑥
𝑛𝑦
𝑛𝑧
] (3.7)

where n is the unit vector normal to the plane.

Stress Definitions
Stress can be defined in various ways. For example, you can define it in either the undeformed config­
uration or in the deformed configuration. For infinitesimal strains (see Equation 3.11), the undeformed
and deformed configurations are equivalent. While there are many ways to represent the stress, only
two relevant types are discussed below:

• Cauchy Stress: The stress tensor in Equation 3.6 is defined in the deformed configuration and
is more formally called Cauchy stress, or true stress. Cauchy stress is a direct measure of the
traction acting on any surface of the body, in the current configuration. For output, STAR­CCM+
uses the Cauchy stress.

• Second Piola­Kirchhoff Stress: The second Piola­Kirchhoff stress tensor S is defined as:

S = det{F}F−1𝜎F−𝑇 (3.8)

where 𝜎 is the Cauchy stress and F is the deformation gradient tensor. This definition is also
attractive as it relates the forces in the undeformed configuration to areas in the undeformed
configuration.

3.2.4. Strain
Strain is a measure of the deformation of a body in terms of the relative displacement of its material
points. Consider two material points in a body that deforms from an initial configuration to some de­
formed configuration. In 1D, the strain 𝜖 can be defined in terms of the distance between the points in
either the initial or the current configuration, as a scalar:

𝜖𝐺 =
d𝑢
d𝑋 or 𝜖𝐴 =

d𝑢
d𝑥 (3.9)

where 𝜖𝐺 is known as Green strain, 𝜖𝐴 is known as Almansi strain, d𝑋 and d𝑥 are the distances between
the points in the initial and current configuration, respectively, and d𝑢 =d𝑥−d𝑋 is the displacement.

In 3D, the state of strain at any point in a body is fully described by a second­order symmetric ten­
sor:

𝜖 = [
𝜖𝑥𝑥 𝜖𝑥𝑦 𝜖𝑥𝑧
𝜖𝑦𝑥 𝜖𝑦𝑦 𝜖𝑦𝑧
𝜖𝑧𝑥 𝜖𝑧𝑦 𝜖𝑧𝑧

] (3.10)

The diagonal terms are called normal or extensional strains and the off­diagonal terms are called shear
strains.

Strain Definitions
STAR­CCM+ allows the user to model linear geometry applications, where both displacements and
strains are small, and nonlinear geometry applications with large displacements but small strains. In
linear geometry applications, the strain can be described using the infinitesimal strain approximation,
whereas nonlinear geometry applications require a finite strain (nonlinear) approximation to describe
the state of strain.

The infinitesimal strain assumption is often used in structural engineering to describe the elastic be­
havior of materials such as steel or concrete, for which the deformations are usually small. The large­
displacement, small­strain assumption is useful to describe the deformation of thin structures, that are
often subject to large rotations with relatively small strains.
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• Infinitesimal Strain: The infinitesimal strain is defined as:

𝜖 = 1
2 (

𝜕u
𝜕X + [

𝜕u
𝜕X ]

𝑇
) (3.11)

The infinitesimal strain is also called linear strain, since the strain depends linearly on the dis­
placement.

• Green­Lagrange Finite Strain: The Green­Lagrange strain tensor defines the strain in the un­
deformed configuration as:

E = 1
2(F

𝑇F− I) (3.12)

where F is the deformation gradient and I is the 3 × 3 identity matrix.

• Euler­Almansi Finite Strain: The Euler­Almansi strain tensor defines the strain in the deformed
configuration as:

e = 1
2(I− F−𝑇F−1) (3.13)

where F is the deformation gradient and I is the 3×3 identity matrix. For infinitesimal strains, the
Green­Lagrange strain and Euler­Almansi strain tensors are equivalent.

• Thermal Strain: Thermal strain is a measure of the deformation of a body due to changes in the
body temperature. If the solid is in an unconstrained state, a change in the temperature does not
induce internal stresses and the material is free to expand due to a temperature increase, or to
shrink due to a temperature decrease. If a solid body is constrained, a change in the temperature
induces thermal stresses in the body. The thermal strain 𝜖𝑇 is defined as:

𝜖𝑇 = 𝛼(𝑇 − 𝑇𝑟𝑒𝑓) (3.14)

where the reference temperature 𝑇𝑟𝑒𝑓 is the temperature at which the thermal strain is assumed
to be zero and 𝛼 is the vector of thermal expansion coefficients 𝛼𝑖.

3.2.5. Energy­Conjugate Stress­Strain Pairs
The variation of the strain energy per unit volume, due to stress, can be expressed in either the initial
or current configuration, by using the correct pairing of stress and strain definitions:

𝛿𝑊 = 𝛿e ∶ 𝜎 = 𝛿E ∶ S (3.15)

where 𝜎 is the Cauchy stress, 𝛿e is the variation of the Euler­Almansi strain, 𝛿E is the variation of the
Green­Lagrange strain, and S is the 2nd Piola­Kirchhoff stress tensor. 𝜎 and 𝛿e are called a conjugate
stress­strain pair, and so are called S and 𝛿E.

𝛿e and 𝛿E can be written as:

𝛿e = 1
2 [
𝜕𝛿u
𝜕x + (𝜕𝛿u𝜕x )

𝑇
]

𝛿E = 1
2(𝛿F

𝑇F+ F𝑇𝛿F) = 1
2 [(

𝜕𝛿u
𝜕x )

𝑇
F+ F𝑇

𝜕𝛿u
𝜕x ]

(3.16)

3.2.6. Governing Equations
Solid Mechanics studies the motion and deformation of a solid continuum under prescribed loads and
constraints. The fundamental laws that govern the mechanics of solids are the same laws that describe
the mechanics of fluids, namely, the conservation of mass, linear momentum, angular momentum, and
energy. Unlike Fluid Mechanics which uses an Eulerian approach, here it is more natural to express
the conservation laws using a Lagrangian approach, where the observer follows the solid material as
it moves through space and time.
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Conservation of Mass
In the Lagrangian approach, mass is always conserved within the control volume. The mass that is
contained in any deformed volume is the same mass that was originally contained in the undeformed
volume:

𝑀 = ∫
𝑉(𝑡)

𝜌(𝑡) d𝑉 = ∫
𝑉0
𝜌0 d𝑉 (3.17)

Since the mass within the volume is conserved, volume changes result in density changes. In fact,
this leads to a slightly different interpretation of the material density specified by the user in STAR­
CCM+. The specified density is the material density in the undeformed configuration, at a reference
temperature.

Conservation of Momentum: Equation of Motion
The motion of a solid body is governed by Cauchy’s equilibrium equation, which expresses the conser­
vation of linear momentum for a continuum as given by:

𝜌ü− ∇ ⋅ 𝜎 − b = 0 (3.18)

where u is the displacement of the solid body, b is the total body force per unit volume and 𝜎 is the sym­
metric Cauchy stress tensor. The above equation is usually accompanied with Dirichlet and Neumann
boundary conditions, which in Solid Mechanics jargon are called constraints and loads respectively.

The above equation holds for deformable solids. On the other hand, the governing equation for the
motion of the center of mass of an elastically mounted rigid translating body is given by:

𝑚ẍ+ 𝑘𝑑ẋ+ 𝑘𝑒𝑓𝑓(x− x𝑙) = f (3.19)

where 𝑚 is the mass of the body, 𝑘𝑑 is the damping coefficient, 𝑘𝑒𝑓𝑓 is the effective spring stiffness,
f is the resultant force acting on the body, x is the body displacement and x𝑙 is the free length of the
spring.

3.2.7. Constitutive Relations: Material Models
The strain tensor is directly related to the gradient of the displacement, whereas the stress tensor is
related to the displacement through the strain tensor. Constitutive relations complete the formulation
by describing the relationship between stress and strain. In STAR­CCM+, models are available for
approximating the stress­strain curves of linear elastic solids (isotropic, orthotropic, and anisotropic),
elastoplastic solids, hyperelastic solids and nearly incompressible solids. All the problems dealt in the
current study make use of isotropic linear elastic structures. Thus only this model is briefly discussed.

Linear Elastic Materials
Linear elastic materials extend proportionally to the applied load and return to the original configuration
when the load is removed. The stress­strain relationship for linear elastic materials is linear and is given
by Hooke’s law. The linear elastic assumption, which is valid for small strains, assumes a stress­strain
relationship of the form:

𝜎 = D( 𝜖 − 𝜖𝑇) (3.20)
where D is called the material tangent, 𝜖𝑇 is the thermal strain, and 𝜎 and 𝜖 are an energy conjugate
stress­strain pair (either Cauchy stress and Euler­Almansi strain, or 2nd Piola­Kirchhoff stress and
Green­Lagrange strain). The formulation is valid for elastic materials with Poisson’s ratio 𝜈 ≤ 0.45. For
𝜈 > 0.5, materials are considered incompressible and require a two­field formulation, a topic that lies
out of the scope of the current study.

3.2.8. Finite Element Discretization
STAR­CCM+ calculates the displacement of a solid based on the principle of virtual work, which is
discretized using the Finite Element Method. The principle of virtual work involves creating the weak
form of Equation 3.18 by multiplying it with a test function 𝛿u and integrating over the structural domain.
Converting the frame of reference of this weak form to that based on the initial configuration gives:

𝛿Π = ∫
𝑉0
𝛿u ⋅ 𝜌ü d𝑉 −∫

𝑉0
𝛿u ⋅ b d𝑉 +∫

𝑉0
𝛿E ∶ S d𝑉 −∫

Γ𝜏
𝛿u ⋅ 𝜏 dΓ = 0 (3.21)
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This approach employed by STAR­CCM+ follows the total Lagrangian displacement Finite Element
formulation by Zienkiewicz & Taylor[81]. The continuous space domain is discretized into a finite num­
ber of elements, which are interconnected at the vertices. In each element, the nodal positions and
displacements are interpolated with nodal shape functions𝒩𝑀:

x = X+ u
X = 𝒩𝑀X𝑀
u = 𝒩𝑀u𝑀

(3.22)

where x and X denotes the position vectors in the current and initial configuration, respectively. X𝑀
and u𝑀 are the position and displacement at the node 𝑀, and𝒩𝑀 is a node­oriented Lagrange shape
function.

The discretized form of the variation of the Green­Lagrange strain is:

𝛿E = B̂𝑀𝛿u𝑀 (3.23)

where B̂𝑀 is the strain­displacement matrix that involves the dicretized deformation gradient given by:

𝐹𝑖𝐽 = 𝛿𝑖𝐽 + 𝑢𝑀𝑖
𝜕𝒩𝑀(X)
𝜕𝑋𝐽

(3.24)

Substituting the discretized displacements and the discretized form of 𝛿E in the weak form gives the
following compact discrete equilibrium equations:

f𝑖𝑛𝑡𝑀 +M𝑀𝑁ü𝑁 = f𝑒𝑥𝑡𝑀 (3.25)

where f𝑖𝑛𝑡𝑀 is the internal force at node 𝑀, M𝑀𝑁ü𝑁 is the inertial term, and f𝑒𝑥𝑡𝑀 is the external force
applied at node𝑀 which includes nodal forces resulting from prescribed body forces, surface tractions,
line loads, and point forces. The internal force can also be represented as a stiffness matrix times the
displacement at node𝑀. This stiffness matrix is actually the sum of two terms, the material stiffness and
the geometric stiffness. For linear geometry (infinitesimal strain assumption), the geometric stiffness
is neglected. If the stress­strain relationship is also linear, the internal nodal forces become linear
functions of the nodal displacements:

f𝑖𝑛𝑡𝑀 = K𝑚𝑎𝑡𝑀𝑁 u𝑁 (3.26)

3.2.9. Modelling Structural Damping: Rayleigh Damping Model
The formulation presented in Equation 3.18 does not take into account the damping mechanisms that
arise in time­dependent systems. Damping is the dissipation of energy in the solid structure due to a
combination of different phenomena, including molecular interaction within the material.

In dynamic problems, the contribution of damping forces can be taken into account by including a
velocity dependent damping term, 𝑐u̇, in the equation of motion:

𝜌ü+ 𝑐u̇− ∇ ⋅ 𝜎 − b = 0 (3.27)

which assumes a linear relationship between the damping force and velocity. The weak form of Equa­
tion 3.27 can be constructed and discretized as described in the previous sub­section, leading to the
general discretized equation for a linear elastic damped system:

Mü(𝑡) + Cu̇(𝑡) + Ku(𝑡) = f𝑒𝑥𝑡 (3.28)

As damping is a complex combination of different phenomena, the damping matrix is often approxi­
mated using Rayleigh damping, which models the damping matrix as a linear combination of the stiff­
ness and mass matrices:

C = 𝜏𝐾K+ 𝑓𝑀M (3.29)
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The scalar coefficients 𝜏𝐾 and 𝑓𝑀 can be determined from a desired modal damping factor and the
knowledge of the first two eigenfrequencies of the undamped system. With an additional assumption
of uniform modal damping factor 𝜁 for both frequencies, 𝜏𝐾 and 𝑓𝑀 become:

𝜏𝐾 =
2𝜁

𝜔1 + 𝜔2
, 𝑓𝑀 =

2𝜁𝜔1𝜔2
𝜔1 + 𝜔2

(3.30)

An even simpler choice, as used in the current study, is to restrict the Rayleigh damping to stiffness
proportional damping, by assuming 𝑓𝑀 = 0 and 𝜏𝐾 > 0, and tune the parameter with the fundamental
eigenfrequency:

𝜏𝐾 =
2𝜁
𝜔 (3.31)

3.2.10. Displacement Field Solution
For infinitesimal strain (linear geometry), the internal forces are linear functions of the nodal displace­
ments (see Equation 3.26). For large deformations, the internal forces are nonlinear in the displace­
ments and STAR­CCM+ solves the governing equations with Newton iterations:

K𝑖𝑀𝑁Δu𝑖𝑁 = r𝑖𝑀 (3.32)

where r𝑖𝑀 are the residual forces at node 𝑀.

Statics
The static solution seeks the displacement field u𝑀 such that the internal forces are in equilibrium with
the external forces. In static problems, the inertial terms are neglected and Equation 3.25 reads:

f𝑖𝑛𝑡𝑀 = f𝑒𝑥𝑡𝑀 ∀𝑀 ∈ 𝒩 (3.33)

where𝒩 is the set of nodes of an element. The residual forces are then:

r𝑖𝑀 = f𝑒𝑥𝑡𝑀 − f𝑖𝑛𝑡𝑀 (3.34)

STAR­CCM+ solves Equation 3.32 for the displacement increments 𝛿u𝑖𝑁 and updates the displace­
ments as:

u𝑖+1𝑁 = u𝑖𝑁 + 𝛿u𝑖𝑁 (3.35)

The iteration starts with a given initial condition u0𝑁. For a linear problem, the solution is independent
of the initial conditions. In addition, a direct solver can compute the solution in one iteration.

Dynamics
The dynamic solution seeks the displacement field u𝑀 that satisfies the equation:

M𝑀𝑁ü𝑁 + C𝑀𝑁u̇𝑁 = f𝑒𝑥𝑡𝑀 − f𝑖𝑛𝑡𝑀 (3.36)

where M𝑀𝑁 and C𝑀𝑁 are the mass and damping matrices. The residual forces are then:

r𝑀 = −M𝑀𝑁ü𝑁 − C𝑀𝑁u̇𝑁 − f𝑖𝑛𝑡𝑀 + f𝑒𝑥𝑡𝑀 (3.37)

STAR­CCM+ provides two different approximations of the accelerations and velocities:

• 1𝑠𝑡 Order Backward Euler Method: This method approximates the acceleration and velocity at
time step 𝑛 as:

ü𝑛𝑁 =
u̇𝑛𝑁 − u̇𝑛−1𝑁

Δ𝑡

u̇𝑛𝑁 =
u𝑛𝑁 − u𝑛−1𝑁

Δ𝑡

(3.38)

This first order approximation is not recommended for high­resolution structural dynamics, as it
can introduce a large amount of numerical damping. However, the numerical damping can be
used to remove unwanted initial transients, or when the goal is to reach a quasi­static solution.
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• 2𝑛𝑑 Order Newmark Method: This method approximates the velocity and position at the time
step 𝑛 as:

u̇𝑛𝑁 = u̇𝑛−1𝑁 + (𝛾ü𝑛𝑁 + (1 − 𝛾)ü𝑛−1𝑁 )Δ𝑡
u𝑛𝑁 = u𝑛−1𝑁 + u̇𝑛−1𝑁 Δ𝑡 + (𝛽ü𝑛𝑁 + (0.5 − 𝛽)ü𝑛−1𝑁 )Δ𝑡2

(3.39)

In general, on the initial time step the acceleration ü0𝑁 is assumed to be zero. The method is
2𝑛𝑑 order accurate when 𝛾 = 0.5 and 𝛽 = 0.25. The method is absolutely stable when 𝛾 ≥ 0.5
and 𝛽 = 0.25(0.5 + 𝛾)2. However, values of 𝛾 > 0.5 introduce numerical damping. The effective
stiffness matrix for the Newmark method is:

K̃𝑀𝑁 = −
𝜕r𝑀
𝜕u𝑁

= K𝑀𝑁 +
M𝑀𝑁
𝛽Δ𝑡2 +

𝛾C𝑀𝑁
𝛽Δ𝑡 (3.40)

3.3. Fluid Mechanics
In this section, the key equations governing fluid flow are introduced along with the associated turbu­
lence and transition modelling.

3.3.1. Governing Equations
The governing equations of fluid flow, also called the Navier­Stokes Equations, over a finite control
volume can be written in an integral sense (conservation form) as:

Conservation of Mass: Continuity Equation
𝜕
𝜕𝑡 ∫𝑉

𝜌 d𝑉 +∮
𝐴
𝜌v ⋅ da = ∫

𝑉
𝑆𝑢 d𝑉 (3.41)

where 𝑡 is time, 𝑉 is the control volume, da is the area vector, 𝜌 is the fluid density, v is the flow velocity
vector and 𝑆𝑢 is a source term. In the current study, the right hand side term is zero.

Conservation of Momentum: Momentum Equation
𝜕
𝜕𝑡 ∫𝑉

𝜌v d𝑉 +∮
𝐴
𝜌v × v ⋅ da = −∮

𝐴
𝑝I ⋅ da+∮

𝐴
T ⋅ da+∫

𝑉
f𝑏 d𝑉 +∫

𝑉
s𝑢 d𝑉 (3.42)

where 𝑝 is the pressure, T is the viscous stress tensor, f𝑏 is the resultant of body forces and s𝑢 is the
source term.

Conservation of Energy: Energy Equation
𝜕
𝜕𝑡 ∫𝑉

𝜌𝐸 d𝑉 +∮
𝐴
𝜌𝐻v ⋅ da = −∮

𝐴
q ⋅ da+∮

𝐴
T ⋅ v da+∫

𝑉
f𝑏 ⋅ v d𝑉 +∫

𝑉
𝑆𝑒 d𝑉 (3.43)

where 𝐸 is the total energy, 𝐻 is the total enthalpy, q is the heat flux and 𝑆𝑒 is the source term. For
incompressible flows, this equation is automatically satisfied.

3.3.2. Constitutive Relations
In order to solve the momentum equations for the velocity field, closure must be provided between
the stress tensor and the velocity field of the fluid. A large number of constitutive equations exist that
incorporate different material properties of the fluid such as viscosity, first and second normal stress
coefficient. In addition, the equations of state, which are also constitutive relations, are required for the
closure of the system of equations that is described above.

Equation of State
The equations of state are constitutive relations that describe the relation between the density and the
internal energy to the two basic thermodynamic variables pressure and temperature.

STAR­CCM+ allows for selecting among the following relations:

• Constant Density: 𝜌 = 𝜌0
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• Polynomial Density: 𝜌 = ∑𝑛𝑖=0 𝑎𝑖 ⋅ 𝑇𝑖−1

• Ideal Gas: 𝑝 = 𝜌𝑅𝑇
• Real Gas: Van der Waals, Peng Robinson, Redlich­Kwong, Soave­Redlich­Kwong

In the current study, since the working fluid is water at near room temperature flowing at a low flow rate
(ensuring Mach Number 𝑀 << 0.33), only the Constant Density option is made use of.

Newtonian Fluids
A Newtonian fluid is described by an explicit constitutive equation that relates the viscous stress tensor
T to the velocity field through a constant viscosity. The relation between the shear stress and the shear
rate is linear.

The viscous stress tensor in Equation 3.42 is not constant, but a variable function of the velocity field
for a particular fluid. Typically, in a constitutive relation, the velocity field is expressed in the form of the
rate of deformation tensor:

D = 1
2(∇v+ (∇v)

𝑇) (3.44)

Newtonian fluid uses the simplest mathematical model to describe the viscous behavior of many liquids
and gases such as water and air. The stress tensor is given by:

T = 2𝜇D− 23𝜇(∇ ⋅ v)I (3.45)

where 𝜇 is the constant dynamic viscosity of the fluid and D is the rate of deformation (strain) tensor
given by Equation 3.44. For incompressible flows, the second term in Equation 3.45 is zero due to the
continuity equation.

3.3.3. Finite Volume Discretization
Generally, numerical methods, and this includes the finite­volume method, transform the mathematical
model into a system of algebraic equations. This transformation involves discretizing the governing
equations in space and time. The resulting linear equations are then solved with an algebraic multigrid
solver.

General Transport Equation
When the appropriate constitutive relations are introduced into the conservation equations a closed
set of equations is obtained. All conservation equations can be written in terms of a generic transport
equation. By integrating the generic transport equation over a control volume V and applying Gauss’s
divergence theorem, the following integral form of the transport equation is obtained:

d
d𝑡 ∫𝑉

𝜌𝜙 d𝑉 +∮
𝐴
𝜌v𝜙 ⋅ da = ∮

𝐴
Γ∇𝜙 da+∫

𝑉
𝑆𝜙 d𝑉 (3.46)

where 𝜙 represents the transport of a scalar property, 𝐴 is the surface area of the control volume and
da denotes the surface vector. By setting 𝜙, for example, equal to 1, 𝑢, 𝑣, 𝑤, or 𝐸 and selecting ap­
propriate values for the diffusion coefficient Γ and source terms, special forms of the partial differential
equations for mass, momentum and energy conservation can be obtained.

Equation 3.46 has four distinct terms:

• The transient term, which signifies the time rate of change of fluid property 𝜙 inside the control
volume.

• The convective flux, which expresses the net rate of decrease of fluid property 𝜙 across the
control volume boundaries due to convection.

• The diffusive flux, which corresponds to the net rate of increase of fluid property 𝜙 across the
control volume boundaries due to diffusion.

• The source term, which expresses the generation/destruction of fluid property 𝜙 inside the control
volume.
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The integrals are approximated using second order quadrature rules that use cell face center for surface
integrals and cell center for volume integrals. The values at the cell face center are not known and are
approximated through interpolation in terms of the values at the cell centers. Applying the integration
approximations to Equation 3.46 yields the following semi­discrete transport equation:

d
d𝑡 (𝜌𝜙𝑉)0 +∑

𝑓
[𝜌𝜙(v ⋅ a)]𝑓 =∑

𝑓
(Γ∇𝜙 ⋅ a)𝑓 + (𝑆𝜙𝑉)0 (3.47)

Convective Term
The discretized convective term at a face can be rearranged as follows:

(𝜌𝜙v ⋅ a)𝑓 = (�̇�𝜙)𝑓 = �̇�𝑓𝜙𝑓 (3.48)

where �̇�𝑓 is the mass flow rate at the face. The above equation requires the values of fluid property 𝜙𝑓
at the face. The manner in which the fluid property face value 𝜙𝑓 is computed from the cell values has
a profound effect on the stability and accuracy of the numerical scheme. For a second­order upwind
(SOU) scheme, the convective flux is computed as:

(�̇�𝜙)𝑓 = {
�̇�𝑓𝜙𝑓,0 �̇�𝑓 ≥ 0
�̇�𝑓𝜙𝑓,1 �̇�𝑓 < 0

(3.49)

where the face values 𝜙𝑓,0 and 𝜙𝑓,1, are linearly interpolated from the cell center values on either side
of the face:

𝜙𝑓,0 = 𝜙0 + (x𝑓 − x0) ⋅ (∇𝜙)𝑟,0
𝜙𝑓,1 = 𝜙1 + (x𝑓 − x1) ⋅ (∇𝜙)𝑟,1

(3.50)

The gradients in the above equation require special limiting treatments. These, however, are left at
their default choices in STAR­CCM+ and are not discussed here. Interested readers are directed to
the User Manual[82] for further reading.

Diffusive Term
The diffusive flux in Equation 3.46 through internal cell faces of a cell is discretized as:

𝐷𝑓 = (Γ∇𝜙 ⋅ a)𝑓 (3.51)

where Γ is the face diffusivity, ∇𝜙 is the gradient of fluid property 𝜙, and a is the surface area vector.
To obtain an accurate second­order expression for an interior face gradient that implicitly involves the
cell values 𝜙0 and 𝜙1, the following decomposition is used:

∇𝜙𝑓 = (𝜙1 − 𝜙0)
a

a ⋅ (x1 − x0)
+ ∇𝜙0 + ∇𝜙12 − (∇𝜙0 + ∇𝜙12 ⋅ (x1 − x0))

a
a ⋅ (x1 − x0)

(3.52)

The formulation that is presented above assumes that the centroids of cells 0 and 1 lie on opposing
sides of the face. It is further assumed that their location is consistent with the convention that the face
area vector points out of cell 0.

Transient Term
A basic second­order temporal discretization of the unsteady/transient term uses the solution at the
current time level, 𝑛 + 1, as well as the solutions from the previous two time levels, 𝑛 and 𝑛 − 1, in a
Backward Differentiation Formula, BDF2 as given by:

d
d𝑡 (𝜌𝜙𝑉) = (

3
2(𝜌𝜙𝑉)𝑛+1 − 2(𝜌𝜙𝑉)𝑛 +

1
2(𝜌𝜙𝑉)𝑛−1)

1
Δ𝑡 (3.53)

On the first time step of a second­order temporal simulation, a first­order discretization is used since
only two time levels are available.
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3.3.4. Segregated Flow Solver
The segregated flow solver of STAR­CCM+ solves the integral conservation equations of mass and
momentum in a sequential manner. The nonlinear governing equations are solved iteratively one after
the other for the solution variables such as 𝑢, 𝑣, 𝑤, 𝑝.

The solver employs a pressure­velocity coupling algorithm where the mass conservation constraint on
the velocity field is fulfilled by solving a pressure­correction equation. The pressure­correction equa­
tion is constructed from the continuity equation and the momentum equations such that a predicted
velocity field is sought that fulfills the continuity equation, which is achieved by correcting the pressure.
This method is also called a predictor­corrector approach. Pressure as a variable is obtained from the
pressure­correction equation.

STAR­CCM+ implements two pressure­velocity coupling algorithms, namely the SIMPLE scheme and
the PISO scheme. Comparing PISO with SIMPLE:

• PISO is faster than SIMPLE at short time steps, though both algorithms have the same level of
temporal accuracy.[83]

• PISO becomes unstable at long time steps, when the combined CFL rises much above 10, while
SIMPLE remains stable.

• As time step size increases, SIMPLE loses temporal accuracy of transient solutions. However
SIMPLE can still obtain accurate steady state solutions, if they exist, by using large time step
size.

Given that it is not guaranteed to have a very low CFL in the current study, only the SIMPLE scheme
is employed. The exact details of the algorithms can be found in User Manual[82].

3.3.5. Turbulence Modelling
Most fluid flows of engineering interest are characterized by irregularly fluctuating flow quantities. Often
these fluctuations are at such small scales and high frequencies that resolving them in time and space
comes at excessive computational costs. Instead of solving for the exact governing equations of turbu­
lent flows (Direct Numerical Simulation), it is less expensive to solve for averaged (URANS) or filtered
(Large Eddy Simulation) quantities and approximate the impact of the small fluctuating structures. In
the current study, the Unsteady Reynolds­Averaged Navier­Stokes (URANS) turbulence models are
employed.

Unsteady Reynolds­Averaged Navier­Stokes Turbulence Models
URANS turbulence models provide closure relations for the Reynolds­Averaged Navier­Stokes equa­
tions, that govern the transport of the mean flow quantities. To obtain the Reynolds­Averaged Navier­
Stokes equations, each solution variable 𝜙 in the instantaneous Navier­Stokes equations is decom­
posed into its mean, or averaged, value 𝜙 and its fluctuating component 𝜙′:

𝜙 = 𝜙 + 𝜙′ (3.54)

where 𝜙 represents velocity components, pressure or energy. The averaging process may be thought
of as time­averaging for steady­state situations and ensemble averaging for repeatable transient situ­
ations. Inserting the decomposed solution variables into the Navier­Stokes equations results in equa­
tions for the mean quantities as given by:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌v) = 0

𝜕
𝜕𝑡 (𝜌v) + ∇ ⋅ (𝜌v × v) = −∇ ⋅ 𝑝I+ ∇ ⋅ (T+ T𝑅𝐴𝑁𝑆) + f𝑏

𝜕
𝜕𝑡 (𝜌𝐸) + ∇ ⋅ (𝜌𝐸v) = −∇⋅𝑝 v+ ∇ ⋅ (T+ T𝑅𝐴𝑁𝑆)v− ∇ ⋅ q+ f𝑏 ⋅ v

(3.55)
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where the terms are as described in earlier sub­sections with the exception of a new term: the stress
tensor T𝑅𝐴𝑁𝑆 which is given by

T𝑅𝐴𝑁𝑆 = 𝜌 [
𝑢′𝑢′ 𝑢′𝑣′ 𝑢′𝑤′
𝑣′𝑢′ 𝑣′𝑣′ 𝑣′𝑤′
𝑤′𝑢′ 𝑤′𝑣′ 𝑤′𝑤′

] + 23𝜌𝑘I (3.56)

where 𝑘 is the turbulent kinetic energy.

The challenge is thus to model T𝑅𝐴𝑁𝑆 in terms of the mean flow quantities, and hence provide closure
of the governing equations. In the URANS or RANS framework, this can be done via Eddy viscosity
models and the Reynolds stress transport models. In the current study, the less expensive Eddy vis­
cosity models are employed.

Eddy viscosity models are based on the analogy between the molecular gradient­diffusion process and
turbulent motion. The concept of a turbulent eddy viscosity 𝜇𝑡 makes it possible to model the stress
tensor as a function of mean flow quantities. The most common model is known as the Boussinesq
approximation:

T𝑅𝐴𝑁𝑆,𝐿 = 2𝜇𝑡S−
2
3(𝜇𝑡∇ ⋅ v)I (3.57)

where S is the mean strain rate tensor which has the same expression as Equation 3.44 but using the
mean velocity, v. Another important term that is later used is the mean vorticity tensorW = 1

2(∇v−∇v
𝑇).

The popular 𝑘­𝜖 and 𝑘­𝜔 𝑆𝑆𝑇 models are employed in the current study that solve additional transport
equations for scalar quantities that enable the derivation of 𝜇𝑡. Note that the stress tensor 𝑇𝑅𝐴𝑁𝑆 finally
used in the momentum equation will be the sum of 𝑇𝑅𝐴𝑁𝑆,𝐿, defined above and 𝑇𝑅𝐴𝑁𝑆,𝑁𝐿 defined based
on the constitutive relationship chosen for a given model.

K­Epsilon Model
The K­Epsilon turbulence model is a two­equation model that solves transport equations for the tur­
bulent kinetic energy 𝑘 and the turbulent dissipation rate 𝜖 in order to determine the turbulent eddy
viscosity. In particular, the Low­Reynolds Number variation of the model by Lien et. al.[84] is made
use of. This is done in STAR­CCM+ by applying damping functions to some of the coefficients (𝐶𝜇, 𝐶𝜖2)
in the model. These damping functions modulate the coefficients as functions of a turbulence Reynolds
number, often also incorporating the wall distance.

The turbulent eddy viscosity 𝜇𝑡 is calculated as:
𝜇𝑡 = 𝜌𝐶𝜇𝑓𝜇𝑘𝑇 (3.58)

where 𝑇 is the turbulent time scale which, for the ‘Realizable’ option, is given by:

𝑇 =max(min(𝑘𝜖 ,
𝐶𝑇
𝐶𝜇𝑓𝜇𝑆

) , 𝐶𝑡√
𝜈
𝜖 ) (3.59)

where 𝜈 is the kinematic viscosity, 𝑆 is themodulus of themean strain rate tensor (𝑆 = |S| = √2S ∶ S).The
transport equations for the kinetic energy 𝑘 and the turbulent dissipation rate 𝜖 are:

𝜕
𝜕𝑡 (𝜌𝑘) + ∇ ⋅ (𝜌𝑘v) = ∇ ⋅ [(𝜇 +

𝜇𝑡
𝜎𝑘
)∇𝑘] + 𝑃𝑘 − 𝜌𝜖 + 𝑆𝑘

𝜕
𝜕𝑡 (𝜌𝜖) + ∇ ⋅ (𝜌𝜖v) = ∇⋅ [(𝜇 +

𝜇𝑡
𝜎𝜖
)∇𝜖] + 𝜖

𝑘𝐶𝜖1𝑃𝜖 − 𝐶𝜖2𝑓2𝜌
𝜖2
𝑘 + 𝑆𝜖

(3.60)

For the chosen ‘Standard K­Epsilon Low Re’ model of STAR­CCM+ with the Yap correction[85] but
without buoyancy and compressibility effects, the production terms are given by

𝑃𝑘 = 𝐺𝑘
𝑃𝜖 = 𝐺𝑘 + 𝐺𝑛𝑙 + 𝐺′ +

𝜌
𝐶𝜖1

𝑌′𝑦
(3.61)
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The new terms introduced are defined in Table 3.1. The damping functions 𝑓𝜇 and 𝑓2 are given by:

𝑓2 = 1 − 𝐶 exp(−𝑅𝑒2𝑡 )
𝑓𝜇 = 1 − exp[−(𝐶𝑑0√𝑅𝑒𝑑 + 𝐶𝑑1𝑅𝑒𝑑 + 𝐶𝑑2𝑅𝑒2𝑑)]

(3.62)

where 𝑅𝑒𝑑 = √𝑘𝑑
𝜇 is the wall distance Reynolds number and 𝑅𝑒𝑡 =

𝑘2
𝜈𝜖 is the turbulent Reynolds number.

All model coefficients are tabulated in Table 3.2.

Table 3.1: Description of Terms

Symbol Description Formulation Where:

𝐺𝑘
Turbulent
production 𝜇𝑡𝑆2 −

2
3𝜌𝑘∇ ⋅ v−

2
3𝜇𝑡(∇ ⋅ v)

2 ­

𝐺𝑛𝑙
“Nonlinear”
production (T𝑅𝐴𝑁𝑆,𝑁𝐿) ∶ ∇v

T𝑅𝐴𝑁𝑆,𝑁𝐿 is the nonlinear
contribution to the Constitutive

Relationship.

𝐺′ Additional
production 𝐷𝑓2 (𝐺𝑘 + 2𝜇

𝑘
𝑑2 ) exp(−𝐸𝑅𝑒

2
𝑑) 𝑑 is the distance to the wall

𝑌′𝑦
Yap

correction[85] 𝐶𝑊
𝜖2
𝑘 max [( 𝑙𝑙𝜖 − 1) (

𝑙
𝑙𝜖
)
2
, 0]

𝑙 and 𝑙𝜖 are length scales defined as

𝑙 = 𝑘
3
2

𝜖 and 𝑙𝜖 = 𝐶𝑙𝑑

Table 3.2: Model Coefficients

Coefficient 𝐶 𝐶𝑑0 𝐶𝑑1 𝐶𝑑2 𝐶𝑙 𝐶𝑡 𝐶𝑇 𝐶𝑊
Value 0.3 0.091 0.0042 0.00011 2.55 1 0.6 0.83

Coefficient 𝐶𝜖1 𝐶𝜖2 𝐶𝜇 𝐷 𝐸 𝜎𝜖 𝜎𝑘 ­
Value 1.44 1.92 0.09 1 0.00375 1.3 1 ­

Constitutive Relations
Constitutive relations describe the relation between the stress tensor and the mean strain rate used in
the Boussinesq approximation. By default, the Boussinesq approximation implies a linear constitutive
relation. Nonlinear constitutive relations[84] account for anisotropy of turbulence by adding nonlinear
functions of the strain and rotation tensors. The available relations are tabulated in Table 3.3.

Table 3.3: Constitutive Relations

Constitutive
Relation Formulation Where:

Quadratic (QCR)
T𝑅𝐴𝑁𝑆,𝑁𝐿 = −4𝜇𝑡

𝑘
𝜖 {𝐶1 [S ⋅ S−

1
3 I(S ∶ S)]

+𝐶2(W ⋅ S+ S ⋅W𝑇)
+𝐶3 [W ⋅W𝑇 − 1

3 I(W ∶W𝑇)]}

𝐶1 =
𝐶𝑁𝐿1

(𝐶𝑁𝐿6+𝐶𝑁𝐿7𝑆
3
)𝐶𝜇

𝐶2 =
𝐶𝑁𝐿2

(𝐶𝑁𝐿6+𝐶𝑁𝐿7𝑆
3
)𝐶𝜇

𝐶3 =
𝐶𝑁𝐿3

(𝐶𝑁𝐿6+𝐶𝑁𝐿7𝑆
3
)𝐶𝜇

Cubic
T𝑅𝐴𝑁𝑆,𝑁𝐿 = T𝑅𝐴𝑁𝑆,𝑞𝑢𝑎𝑑 − 8𝜇𝑡

𝑘2
𝜖2

{𝐶4[(S ⋅ S) ⋅W+W𝑇 ⋅ (S ⋅ S)]
+𝐶5(S ∶ S−W ∶W𝑇) [S− 1

3 Tr(S)I]}

T𝑅𝐴𝑁𝑆,𝑞𝑢𝑎𝑑 is the QCR
formulation of T𝑅𝐴𝑁𝑆,𝑁𝐿,

𝐶4 = 𝐶𝑁𝐿4𝐶2𝜇
𝐶5 = 𝐶𝑁𝐿5𝐶2𝜇

The coefficient Cμ is given by:

𝐶𝜇 =
𝐶𝑎0

𝐶𝑎1 + 𝐶𝑎2𝑆 + 𝐶𝑎3𝑊
(3.63)

where 𝑆 = 𝑘
𝜖√2S ∶ S and𝑊 = 𝑘

𝜖√2W ∶W. When nonlinear constitutive relations are used, the variable
coefficient 𝐶𝜇 given by Equation 3.63 replaces the constant value of 𝐶𝜇 in the relation for the turbulent
viscosity 𝜇𝑡 given in Equation 3.58. The model coefficients are tabulated in Table 3.4.
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Table 3.4: Model Coefficients

Coefficient 𝐶𝑁𝐿1 𝐶𝑁𝐿2 𝐶𝑁𝐿3 𝐶𝑁𝐿4 𝐶𝑁𝐿5 𝐶𝑁𝐿6
Value 0.75 3.75 4.75 ­10 ­2 1000

Coefficient 𝐶𝑁𝐿7 𝐶𝑎0 𝐶𝑎1 𝐶𝑎2 𝐶𝑎3 ­
Value 1 0.667 1.25 1 0.9 ­

K­Omega SST Model
The K­Omega turbulence model is a two­equation model that solves transport equations for the turbu­
lent kinetic energy 𝑘 and the specific dissipation rate 𝜔, the dissipation rate per unit turbulent kinetic
energy (𝜔 ∝ 𝜖

𝑘 ), in order to determine the turbulent eddy viscosity.

One reported advantage of the K­Omega model over the K­Epsilon model is its improved performance
for boundary layers under adverse pressure gradients. Perhaps the most significant advantage, how­
ever, is that it may be applied throughout the boundary layer, including the viscous­dominated region,
without further modification. On the other hand, the biggest disadvantage of the K­Omega model, in its
original form, is that boundary layer computations are sensitive to the values of 𝜔 in the free­stream.
This translates into extreme sensitivity to inlet boundary conditions for internal flows, a problem that
does not exist for the K­Epsilon models.

The problem of sensitivity to free­stream/inlet conditions was addressed by Menter[86], who recog­
nized that the 𝜖 transport equation from the standard K­Epsilon model could be transformed into an 𝜔
transport equation by variable substitution. The transformed equation looks similar to the one in the
standard K­Omega model, but adds an additional non­conservative cross­diffusion term containing the
dot product ∇𝑘 ⋅ ∇𝜔. Inclusion of this term in the 𝜔 transport equation potentially makes the K­Omega
model give identical results to the K­Epsilon model.

Menter suggested using a blending function (which includes functions of wall distance) that would
include the cross­diffusion term far from walls, but not near the wall. This approach effectively blends
a K­Epsilon model in the far­field with a K­Omega model near the wall. Menter also introduced a mod­
ification to the linear constitutive equation and named the model containing this modification the SST
(shear­stress transport) K­Omega model.

In this model, the turbulent eddy viscosity 𝜇𝑡 is calculated as:

𝜇𝑡 = 𝜌𝑘𝑇 (3.64)

where 𝑇 is the turbulent time scale which when calculated using the Durbin’s realizability constraint[87]
is given by:

𝑇 =min( 1
max(𝜔/𝛼∗, (𝑆𝐹2)/𝑎1)

, 𝐶𝑇
√3𝑆

) (3.65)

where 𝐹2 is a blending function given by:

𝐹2 = tanh((max( 2√𝑘𝛽∗𝜔𝑑 ,
500𝜈
𝑑2𝜔 ))

2

) (3.66)

The transport equations for the kinetic energy 𝑘 and the specific dissipation rate 𝜔 are:

𝜕
𝜕𝑡 (𝜌𝑘) + ∇ ⋅ (𝜌𝑘v) = ∇ ⋅ [(𝜇 + 𝜇𝑡𝜎𝑘) ∇𝑘] + 𝑃𝑘 − 𝜌𝛽

∗𝜔𝑘 + 𝑆𝑘
𝜕
𝜕𝑡 (𝜌𝜔) + ∇ ⋅ (𝜌𝜔v) = ∇ ⋅ [(𝜇 + 𝜇𝑡𝜎𝜔) ∇𝜔] + 𝑃𝜔 − 𝜌𝛽𝜔

2 + 𝑆𝜔
(3.67)

For the chosen K­Omega SST Model without buoyancy effects, the production terms are given by:

𝑃𝑘 = 𝐺𝑘 + 𝐺𝑛𝑙
𝑃𝜔 = 𝐺𝜔 + 𝐷𝜔

(3.68)
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The contributing terms to the production terms are given in Table 3.5 with model constants tabulated in
Table 3.6. The blending function 𝐹1 used in the cross­diffusion term combines the near­wall contribution
of a coefficient with its value far away from the wall and is defined as:

𝐹1 = tanh([min(max( √𝑘
0.09𝜔𝑑 ,

500𝜈
𝑑2𝜔 ) ,

2𝑘
𝑑2𝐶𝐷𝑘𝜔

)]
4

) (3.69)

where 𝐶𝐷𝑘𝜔 =max ( 1𝜔∇𝑘 ⋅ ∇𝜔, 10
−20) is the cross­diffusion coefficient.

Table 3.5: Description of Terms

Symbol Description Formulation Where:

𝐺𝑘
Turbulent
production 𝜇𝑡𝑓𝑐𝑆2 −

2
3𝜌𝑘∇ ⋅ v−

2
3𝜇𝑡(∇ ⋅ v)

2 𝑓𝑐 is the curvature
correction factor

𝐺𝑛𝑙
“Nonlinear”
production (T𝑅𝐴𝑁𝑆,𝑁𝐿) ∶ ∇v

T𝑅𝐴𝑁𝑆,𝑁𝐿 is a nonlinear
Constitutive Relationship

𝐺𝜔
Specific

dissipation
production

𝜌𝛾 [(𝑆2 − 2
3(∇ ⋅ v)

2) − 2
3𝜔∇ ⋅ v] ­

𝐷𝜔
Cross­diffusion

term 2𝜌(1 − 𝐹1)𝜎𝜔2
1
𝜔∇𝑘 ⋅ ∇𝜔 𝐹1 is a blending function

Table 3.6: Model Coefficients

Coefficient 𝛽 𝛽1 𝛽2 𝛼∗
Value 𝐹1𝛽1 + (1 − 𝐹1)𝛽2 0.075 0.0828 1

Coefficient 𝜎𝑘 𝜎𝑘1 𝜎𝑘2 𝛽∗
Value 𝐹1𝜎𝑘1 + (1 − 𝐹1)𝜎𝑘2 0.85 1 0.09

Coefficient 𝜎𝜔 𝜎𝜔1 𝜎𝜔2 𝐶𝑇
Value 𝐹1𝜎𝜔1 + (1 − 𝐹1)𝜎𝜔2 0.5 0.856 0.6

Coefficient 𝛾 𝛾1 𝛾2 𝑎1
Value 𝐹1𝛾1 + (1 − 𝐹1)𝛾2 0.5532 0.4404 0.31

The transport equation for the turbulent kinetic energy is insensitive, by construction, to stabilizing and
destabilizing effects usually associated with strong (streamline) curvature and frame­rotation. These
effects are incorporated by using a curvature correction factor, 𝑓𝑐, which alters the turbulent kinetic
energy production term according to the local rotation and vorticity rates as given by[88]:

𝑓𝑐 =min(𝐶𝑚𝑎𝑥 ,
1

𝐶𝑟1(|𝜂| − 𝜂) + √1 −min(𝐶𝑟2, 0.99)
) (3.70)

where 𝐶𝑚𝑎𝑥 = 1.25, 𝐶𝑟1 = 0.04645 and 𝐶𝑟2 = 0.25 are model coefficients and the term 𝜂 is given by

𝜂 = 𝑇2(S ∶ S−W ∶W) (3.71)

where the time­scale 𝑇 is limited in order to have the correct near­wall asymptotic behavior:

𝑇 =max( 1
𝛽∗𝜔 , (6 [

1
𝛽∗𝜔]

2.125
√𝜈𝑘)

1
2.625

) (3.72)

If the curvature correction is not activated, the correction factor takes the value 𝑓𝑐 = 1.
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Low Reynolds Number Modification
The low Reynolds number modification can be used to account for low Reynolds number and transi­
tional effects. When chosen, the following model coefficients are replaced:

Table 3.7: Modified Model Coefficients

Model Coefficients Replaced By: Where:

𝛼 𝐹1 ⋅
𝛽/3+𝑅𝑒𝑡/𝑅𝑒𝑘
1+𝑅𝑒𝑡/𝑅𝑒𝑘

+ (1 − 𝐹1)
𝑅𝑒𝑘 = 6 is a

model constant

𝛽 𝐹1 ⋅ 0.09 ⋅
4/15+(𝑅𝑒𝑡/𝑅𝑒𝛽)4

1+(𝑅𝑒𝑡/𝑅𝑒𝛽)4
+ (1 − 𝐹1)0.09

𝑅𝑒𝛽 = 8 is a
model constant

𝛾1
𝛾1
𝛼∗ ⋅

1/9+𝑅𝑒𝑡/𝑅𝑒𝜔
1+𝑅𝑒𝑡/𝑅𝑒𝜔

𝑅𝑒𝜔 = 2.95 is a
model constant

Constitutive Relations
Constitutive relations describe the relation between the stress tensor and the mean strain rate that
is used in the Boussinesq approximation. By default, the Boussinesq approximation implies a linear
constitutive relation. Nonlinear constitutive relations account for anisotropy of turbulence by adding
nonlinear functions of the strain and vorticity tensors.

Like the K­Epsilon Model, STAR­CCM+ offers implementations of the quadratic (QCR) and cubic re­
lations. However, through past experience at NRG and testing by the author, the cubic relation im­
plementation has failed to pass applicability tests. In particular, using the implementation of the cubic
constitutive relation lead to an eventual blow­up of the turbulent kinetic energy during the transient
simulation. Thus, only the QCR relation[89] is given below and used in the current study.

𝑇𝑅𝐴𝑁𝑆,𝑁𝐿 = −2𝜇𝑡0.04645(O ⋅ S− S ⋅O)

O = W
√(S−W)(S−W)

(3.73)

3.3.6. Transition Modelling
The term transition refers to the phenomenon of laminar to turbulence transition in boundary layers. A
transition model in combination with a turbulence model could help predict the onset of transition in a
turbulent boundary layer. Three primary modes of transition are typically involved:[90]

1. Natural transition, in which a laminar boundary layer subjected to weak disturbances becomes
linearly unstable beyond a critical Reynolds number at which point so­called Tollmien­Schlichting
waves start to grow.

2. Bypass transition, the process of transition in response to large disturbances outside the boundary
layer, typically free­stream turbulence levels in excess of 1%.

3. Separation­induced transition, in which separation of the laminar boundary layer gives rise to
transition. The laminar boundary layer often reattaches in response to the enhanced mixing
caused by the turbulent flow, forming a laminar separation bubble upstream of the transition
location.

Examples of other important transition mechanism are: roughness­induced transition, which is often
used in experiments to “trip” boundary layers towards a fully turbulent state, or cross flow induced tran­
sition.

There are two approaches available in STAR­CCM+ to account for transition:

1. Turbulence Suppression model­this model mimics the effect of transition simply by suppressing
the turbulence in a certain pre­defined region and can be combined with any turbulence model.

2. Gamma ReTheta Transition model and Gamma Transition model­these models are based on
correlations and solve additional transport equations that are coupled with the K­Omega SST
turbulence model.
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The Turbulence Suppression model is a zero­equation model and is thus the fastest and least ex­
pensive one, but it requires that you already know the location of transition. The Gamma ReTheta
Transition model and the Gamma Transition model are more expensive, but provide a true predictive
capability. The Gamma Transition model only solves for one equation­it is therefore faster and less
computationally expensive than the Gamma ReTheta Transition model which solves for two additional
transport equations in addition to the two­equation K­Omega SST model. The Gamma ReTheta Tran­
sition model is chosen for the current study and is described below.

Gamma ReTheta Transition Model
The Gamma ReTheta Transition model is based on the concept of intermittency­a measure of the
amount of time during which the flow is turbulent. An intermittency value of 1 corresponds to a fully
turbulent flow (100% percent of the time) and an intermittency value of 0 corresponds to a fully laminar
flow.

The Gamma ReTheta transition model[91],[92] is a correlation­based transition model that has been
specifically formulated for unstructured CFD codes. An intermittency transport equation is used in
such a way that the source terms attempt to mimic the behavior of the algebraic engineering correla­
tions. The evaluation of momentum thickness Reynolds number is avoided by relating this quantity to
a vorticity­based Reynolds number. In addition, a correlation for transition onset momentum thickness
Reynolds number defined in the free­stream is transported (by solving a separate transport equation)
into the boundary layer.

The Gamma ReTheta transition model was incomplete, as published, since two critical correlations
were proprietary and hence omitted. A justification for such an omission is that the model provides a
framework for users to implement their own correlations. In the current study, the default correlations
implemented by STAR­CCM+ are used. These correlations can be found in the User Manual[82].

Without providing intricate details of the involved terms, the intermittency, 𝛾, and transition momen­
tum thickness Reynolds number, 𝑅𝑒𝜃𝑡, transport equations are given below:

d
d𝑡 (𝜌𝛾) + ∇ ⋅ 𝜌𝛾v = ∇ ⋅ [(𝜇 +

𝜇𝑡
𝜎𝑓
)∇𝛾] + 𝑃𝛾 − 𝐸𝛾

d
d𝑡 (𝜌𝑅𝑒𝜃𝑡) + ∇ ⋅ (𝜌𝑅𝑒𝜃𝑡v) = ∇ ⋅ [𝜎𝜃𝑡(𝜇 + 𝜇𝑡)∇𝑅𝑒𝜃𝑡] + 𝑃𝜃𝑡 + 𝐷𝑆𝐶𝐹

(3.74)

where 𝜎𝑓 = 1 and 𝜎𝜃𝑡 = 2 are model constants, 𝑃𝛾 and 𝑃𝜃𝑡 are production terms, 𝐸𝛾 is the destruction
term and 𝐷𝑆𝐶𝐹 is the cross flow term.

3.4. Coupling of Fluid and Structure Governing Equations
In nuclear reactors, the coupling between the structures and the fluid is usually strong. One of the
parameters to quantify the strength of coupling is the density ratio of the solid to the fluid (𝜌𝑠/𝜌𝑓). The
value of density ratio can vary from 8.24 (steel­water) to 0.82 (Steel­Lead Bismuth Eutectic). These
values of density ratios correspond to strongly coupled systems and hence need a robust and efficient
coupling algorithm to be able to handle higher amount of coupling instabilities.

There are broadly two approaches to couple the fluid and structure governing equations: themonolithic
approach and the partitioned approach. In the monolithic approach, the full set of equations (for the
fluid, the structure and the interface) is built and solved for simultaneously. In the partitioned approach,
the system is set up individually for the fluid and the structure domain, while the coupling is established
externally which involves mapping and exchange of data from domain to the other.

In the partitioned approach, different ways of discretization both for space and time can be used for the
fluid and structure domains, thus making it more suitable for coupling pre­existing CFD and CSM codes.
Usually, the monolithic approach is able to handle greater coupling instabilities.[94] However, new par­
titioned coupling approaches have been developed recently which extend the range of applicability of
the partitioned coupling approach to cases with stronger coupling.[94],[95]
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The current study uses the partitioned approach of coupling in STAR­CCM+. In this approach, the
domains are coupled at the interface by the kinematic boundary conditions (displacement and velocity
of both materials are equal at the interface) and dynamic boundary conditions (traction at the interface
of the structure is in equilibrium with that on the fluid side).

In this section, the fluid and the structural solvers are represented as operators F and S respectively.
The input­output variables for these operators are the kinematic values ‘s’ which comprise of displace­
ment and velocities, and the dynamic values ‘f’ comprising of forces and stresses. Using a Dirichlet­
Neumann decomposition, the flow equations are solved for a given displacement of the fluid­structure
interface (Dirichlet boundary condition) and the structural equations are solved for a given traction dis­
tribution on the interface (Neumann boundary condition).

The solvers can be written as

s = S(f)
f = F(s) (3.75)

There exist different schemes to couple these solvers. In STAR­CCM+, a serial scheme called Block
Gauss­Seidel is implemented. This scheme is further discussed below.

3.4.1. Block Gauss­Seidel
This is one of the most commonly used explicit coupling schemes. Explicit schemes are the ones where
Equation 3.75 is solved a fixed number of times per time step. Hence the kinematic and dynamic bound­
ary conditions are not strictly enforced. The steps involved in Block Gauss­Seidel coupling are shown
in algorithm 1 and also graphically in Figure 3.3. In this algorithm, the domain which is executed first
works in an explicit manner. For example, in the shown algorithm, the fluid solver is executed first
taking the structural input from the last time step, whereas the structural solver uses the updated value
of the fluid solver in an implicit way.

Algorithm 1: Block Gauss­Seidel Algorithm
1 for 𝑛 = 0 to 𝑛𝑒𝑛𝑑 do
2 solve F𝑛(s𝑛) = f𝑛+1;
3 map f𝑛+1 to structure domain;
4 Solve S𝑛(f𝑛+1) = s𝑛+1;
5 map s𝑛+1 to fluid domain;
6 end

Figure 3.3: Block Gauss­Seidel Coupling Algorithm[80]
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This coupling algorithm is first order accurate in time regardless of the order of time integration in the
individual fluid and structural solvers. In this type of coupling, both the fluid and structural solver cannot
run in parallel (inter­field parallelism) as one is called after the other and depends on the input of the
other. Although intra­field parallelism, which means solving the equations of the solver in a parallel
way, can be applied to this case. For a total amount of 𝑘 computational resources distributed among
the fluid (𝑘𝐹) and the structural solver (𝑘𝑆) such that 𝑘 = 𝑘𝐹 + 𝑘𝑆, the computational time for each FSI
time step (𝑐) is given by[80]

𝑐 =
𝑚𝑓𝑐𝑓
𝑘𝑓

+ 𝑚𝑠𝑐𝑠𝑘𝑠
(3.76)

where 𝑚𝑓 and 𝑚𝑠 are the number of sub­cycling steps for both the fluid and the structural solver,
whereas 𝑐𝑓 and 𝑐𝑠 refer to computational time taken for each time step of the fluid and the structural
solver individually. Sub­cycling allows to decouple the time step sizes required in the fluid and structural
solver. However, this feature is not available in the current implementation of STAR­CCM+ and is thus
not discussed further.

3.5. Mapping of Data
In FSI problems, it is often the case that the fluid mesh is considerably more refined than the structural
mesh. The cells at the interface of the two domains are thus non­conformal and there is a need to
map the data from one mesh to the other, such as the displacement from the structural domain to the
fluid domain and the forces from the fluid domain onto the structural domain. This mapping could be
consistent or conservative. In the consistent approach, a constant displacement or force is interpolated
in such a way that it remains constant over the other domain too, whereas the conservative approach
is based on the principle of conservation of energy at the interface.

STAR­CCM+ offers the following methods of mapping: Nearest Neighbor, Least Squares, Exact Im­
printing and Approximate Imprinting. The last two methods are preferred when a flux­preserving map­
ping is desired, the source mesh is finer than the target mesh and the surface curvature is adequately
resolved. These methods are thus more suitable when remeshing is required which is not the case
for the current study. The mesh element count for both domains at the interface is kept similar in the
current study. For such a scenario, the first two methods have similar accuracy. However, owing to its
low computational cost, only the first method is used in the current study and is briefly described below.

3.5.1. Nearest Neighbor Mapping
This is the simplest way of mapping data from onemesh to the other. Assuming data is to be transferred
from mesh A to mesh B, this approach finds the closest point in mesh A (𝑥𝐴) for every point of mesh B
(𝑥𝐵) and assigns the value at 𝑥𝐴 to 𝑥𝐵. A graphical depiction of this method is shown in Figure 3.4.

Figure 3.4: Nearest Neighbor Data Mapping Algorithm[80]

3.6. Overset Mesh Technique
Overset meshes are used to discretize a computational domain with several different meshes that over­
lap each other in an arbitrary manner. They are most useful in problems dealing with large motions, as
in the current study for the Khalak & Williamson[27] test case, as well as optimization studies where a
geometry can be enclosed in an overset region and set to different positions.
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The overset mesh approach couples regions through data exchange between acceptor cells of one
region and donor cells (specially marked active cells) in another region. A typical overset simulation
has a background region enclosing the entire solution domain and one overset region that surrounds
a body such as a cylinder or an airfoil.

To couple these two regions, STAR­CCM+ applies a hole­cutting process in which cells whose solution
is obtained wholly from the overset region are marked as inactive in the background region. Within
both the overset and background regions there are several layers of overlapping cells that participate
in the data exchange procedure. Further details about the hole­cutting process and the data exchange
procedure can be found in the User Manual[82].

The solution is computed for all active cells in all regions simultaneously, that is, the meshes are im­
plicitly coupled. Within the discretized system of equations, when a reference is made to the variable
value in an acceptor cell of one region, a blend of variable values at donor cells from another region
is used to supply the value. This value is reflected directly in the coefficient matrix of the algebraic
equation system. This tight coupling of the overset and background regions allows for a solution that is
within an arbitrary low level of iteration errors. The rate of convergence of the iterative solution method
is therefore expected to be similar to that of a single mesh of the same resolution.

3.7. Mesh Morphing
When conducting an FSI simulation of a deformable structure, as is done in the current study, the
fluid mesh is morphed based on the structural response for each time step. This formally involves
redistributing mesh vertices in response to the movement of a set of control points, which one can
consider as being a cloud of points overlaid onto the mesh domain. Control points, and their associated
displacements, form the underlying framework that the morpher requires to generate an interpolation
field. STAR­CCM+ has two morphing methods available to interpolate the displaced surfaces:

1. Radial Basis Functions (RBF): This is undertaken using multiquadratic radial basis splines. The
RBF morpher utilizes a thin­out procedure to optimise the number of control points used.

2. B­Spline: This is undertaken using a fast, adaptive interpolation algorithm incorporating mul­
tilevel, cubic B­Splines. On multiple processors, this method scales better than RBF in many
circumstances. It can also better preserve meshes that contain prism layers.

Based on the above reason, the B­Spline morphing method is made use of in the current study. The
B­Spline algorithm starts from a coarse grid and propagates down to progressively finer levels until
no further correction is necessary. The B­Spline algorithm is largely automated in STAR­CCM+ and
requires less user intervention (requiring only a morpher tolerance input) than the RBF morpher. Read­
ers interested in the exact algorithm are referred to the work of Lee et. al.[93] which has inspired the
current implementation in STAR­CCM+ as given in the User Manual[82].

3.8. Conclusion
In this chapter, the most important numerical concepts concerning FSI problems, in particular the cur­
rent study, have been reviewed and summarized. This includes the frame of reference that is most
beneficial for FSI problems, the differential equations governing the phenomena being studied, turbu­
lence and transition modelling, the discretization methods for both domains, the mapping technique at
the interface of two domains and a short note on the overset mesh technique and the mesh morphing
method employed.

This chapter thus brings a reader abreast in terms of the technical aspects that go on under­the­hood
when specific STAR­CCM+ options are selected at the click of a few buttons. This also lays the foun­
dation for further insightful discussions for the results of the current study. The following chapters
concerns itself with the validation of the simulation code, turbulence modelling testing and its eventual
application to the OECD Benchmark.
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Validation Study

In this chapter, the CFD (‘Segregated Flow’) and CSM (‘Solid Stress’) solver implementations of STAR­
CCM+ are first validated against the flexible beam FSI benchmark of Turek & Hron[26] for stand­alone
and coupled calculations. Post validation, the turbulence models available are tested against the VIV
study of Khalak & Williamson[27] for selecting/shortlisting models for the OECD Benchmark.

4.1. Flexible Beam FSI Benchmark
The problem at hand is that of an incompressible Newtonian fluid interacting with a flexible beam trailing
a fixed cylinder subjected to laminar channel flow as shown in Figure 4.1. This problem was proposed
by Turek & Hron[26] in 2006 to assess different FSI coupling schemes for partitioned solvers like the
one used in the current study. This numerical benchmark makes its appearance often within the FSI
research community[96]−[100] on account of the problem simultaneously including vortex shedding,
self­excited oscillations and added mass effects.

Figure 4.1: Geometry of the Cylinder with Attached Beam of the Turek & Hron Benchmark Case. A is the Reference Point for
the Measured Displacement. Amended from [26]

While the benchmark comes with 9 test cases, the following cases are selected for the current study:
CFD3, CSM2 and FSI3. CFD3 validates the flow solver by fixing the beam and computing only the flow
oscillations. CSM2 considers only the bending of the structure under gravity and is used to validate the
structural solver. FSI3 allows for validation of the Gauss­Seidel coupling employed to couple the two
solvers. The key parameters for the 3 cases are provided in Table 4.1.

The problem is set up in STAR­CCM+ as follows: For the incompressible fluid, the ‘Implicit Unsteady’
SIMPLE scheme ‘Segregated Flow’ solver is selected with a 2𝑛𝑑 order upwind convection scheme. The
pressure and velocity equations are given Under­Relaxation (UR) factors of 0.2 and 0.6 respectively.
Although the benchmark is a 2D problem, the results presented here are for a quasi­2D setup with the
geometry extruded 1 𝑚 in the 𝑧­normal direction. This is done because STAR­CCM+ requires a 3D
domain for FSI calculations. A slip wall is prescribed for the 𝑧­normal faces of the channel while the
other walls are given a no­slip boundary condition. A constant static pressure of 0 𝑃𝑎 is prescribed for
the outlet while a time­varying parabolic velocity is prescribed at the inlet given by the equation:

43
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𝑢(0, 𝑦, 𝑡) = {𝑢(0, 𝑦)
1−cos (𝜋2 𝑡)

2 , if 𝑡 < 2.0 𝑠
𝑢(0, 𝑦), otherwise

𝑢(0, 𝑦) = 1.5𝑈 4
0.1681𝑦(0.41 − 𝑦)

(4.1)

For the solid (also quasi­2D), the ‘Solid Stress’ solver is selected along with a 2𝑛𝑑 order Newmark
implicit integration scheme (Newmark parameter, 𝛾=0.5). At this point, a choice is to be made between
the infinitesimal strain and finite strain approximation. This is done after testing the associated ‘Linear
Geometry’ and ‘Nonlinear Geometry’ models with the CSM2 test case. For the boundary condition,
the curved edge connected to the cylinder is grounded while the other faces are declared as an FSI
interface. For the FSI coupling, UR factors are prescribed based on the given mesh level.

Table 4.1: Parameter Settings for the Benchmark

Geometry Position C (0.2, 0.2) (𝑥, 𝑦)𝑚
Position A (0.6, 0.2) (𝑥, 𝑦)𝑚

Fluid Properties
(CFD3, FSI3)

Density, 𝜌𝑓 1000 𝑘𝑔/𝑚3
Dynamic Viscosity, 𝜇𝑓 1 𝑃𝑎 ⋅ 𝑠

Characteristic Velocity, 𝑈 2 𝑚/𝑠
Reynolds Number, 𝑅𝑒 200 ­

Solid Properties
(CSM2, FSI3)

Density, 𝜌𝑠 1000 𝑘𝑔/𝑚3
Poisson Ratio, 𝜈 0.4 ­

Young’s Modulus, 𝐸 5.6 𝑀𝑃𝑎

The fluid mesh is created using the ‘Automatic Mesh’ functionality of STAR­CCM+. For the fluid, an
unstructured triangle mesh is created with two volume refinements. Approaching the cylinder+beam
from the outlet by crossing each refinement region reduces the target base size (𝑏𝑠) by half sequentially.
To ensure good transition between the refinement regions, a growth rate of 1.1 is selected. Simulations
are conducted for three mesh levels of 𝑏𝑠 = 20, 10 and 5 𝑚𝑚 in order to observe mesh convergence.
The solid mesh on the other hand is structured with mesh levels: 20 × 1, 40 × 2, 80 × 4, 160 × 8,
320 × 16 and 640 × 32 where entries of a given pair are the number of elements along the length and
thickness, respectively. Special cases with a single element along the thickness are also considered
for the CSM2 and FSI3 test cases. For increased accuracy, quadratic finite elements are employed by
enabling the ‘Mid­side Vertex’ option. The meshes for the fluid and solid are shown in Figure 4.2. Both
the solid and fluid mesh are quasi­2D with only 1 element along the 𝑧­normal direction.

(a) Fluid Mesh Level 3 (𝑏𝑠 = 20 𝑚𝑚)

(b) Solid Mesh Level 4 (80 × 4)

Figure 4.2: Unstructured Fluid Mesh with Refinement Regions and Structured Solid Mesh

4.1.1. CFD3 Benchmark
This case tests the fluid solution alone based on the lift and drag computed for the cylinder+beam. A
2𝑛𝑑 order temporal discretization scheme is selected and a time step of Δ𝑡 = 5 𝑚𝑠 is applied with 50
inner iterations per time step. Given the transient nature of the problem, a total of 10 𝑠 of simulation
time is required to establish a fully developed flow solution with periodic vortex shedding.
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Figure 4.3 shows velocity magnitude at the end of the simulation, revealing fluid oscillation or vortex
shedding aft of the structure.

Figure 4.3: Velocity Magnitude at 𝑡 = 10 𝑠

The results are presented in the same fashion as the benchmark as mean ± amplitude [frequency].
To obtain this, the maxima and minima have to be selected. This is done by averaging the extrema
for the final 3 oscillations. The average time between the maxima of the 3 oscillations is considered
to compute the frequency. In the actual benchmark, these quantities were obtained for a single final
interval of the simulation. Since the actual time period used was not clearly indicated, this averaging
technique is employed to quote the values.

The results so obtained are tabulated in Table 4.2. For a time step of Δ𝑡 = 5 𝑚𝑠, the drag result
for the finest mesh matches well with the reference solution. The mean, amplitude and frequency differ
in relative percentages of 0.52%, 24.89% and 1.11% respectively. Mesh convergence is observed for
the mean value but not for the amplitude. The lift result at the finest mesh is even further away from the
reference solution. The mean value seems to be converging to a neutral value while the amplitude is at
an error of 6.74% at the finest mesh level. These results are not alarming, given that other researchers
have shown similar relative errors for this time step. Giannelis & Vio[98], for example, quoted errors
in amplitude for lift and drag as 3.3% and 13.3% respectively using ANSYS Fluent. Cole & Neu[100],
using an older version of STAR­CCM+ (v2017.04), quoted corresponding errors of 5.7% and 16.7%
respectively. However, it is suspected that these errors are due the current time step being large.

Table 4.2: CFD3 Results

Δ𝑡 = 5 𝑚𝑠
Mesh
Level

Base Size
(𝑚𝑚)

Fluid
Elements Drag (𝑁 [𝐻𝑧]) Lift (𝑁 [𝐻𝑧])

3 20 24695 466.450 ± 6.950 [4.440] ­22.483 ± 455.112 [4.440]
2 10 90274 445.450 ± 5.150 [4.440] ­06.850 ± 420.383 [4.440]
1 5 358601 441.717 ± 7.017 [4.347] ­01.633 ± 467.333 [4.347]

Reference
Solution 439.450 ± 5.618 [4.396] ­11.893 ± 437.810 [4.396]

Δ𝑡 = 2.275 𝑚𝑠
Mesh
Level

Base Size
(𝑚𝑚)

Fluid
Elements Drag (𝑁 [𝐻𝑧]) Lift (𝑁 [𝐻𝑧])

3 20 24695 466.900 ± 7.100 [4.440] ­24.350 ± 456.350 [4.440]
2 10 90274 445.450 ± 5.250 [4.440] ­08.250 ± 421.850 [4.440]
1 5 358601 441.500 ± 5.600 [4.440] ­12.100 ± 436.300 [4.440]

Reference
Solution 439.450 ± 5.618 [4.396] ­11.893 ± 437.810 [4.396]

To gauge the temporal convergence, the simulations are re­run with a reduced time step. A thumb rule
for selecting a time step is to select one that ensures at least 100 sampling points per fundamental
period. In this context, a time step of Δ𝑡 = 2.275 𝑚𝑠 is selected. The results for this time step show
improvements on all fronts revealing the importance of this parameter for highly transient problems.
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For the finest mesh, the drag mean and amplitude vary only by 0.47% and 0.32% respectively. Drastic
improvements are seen for the lift results where the corresponding mean and amplitudes differ only
by 1.7% and 0.34% respectively. The lift and drag profiles for this time step are shown in Figure 4.4
after removing the phase difference between results at different mesh levels. The flow solver is thus
deemed to be validated based on spatial and temporal convergence.

(a) Lift History (b) Drag History

Figure 4.4: Lift and Drag Profiles Compared to the Benchmark for Δ𝑡 = 2.275 𝑚𝑠

4.1.2. CSM2 Benchmark
This benchmark tests only the structural response using the parameters listed in Table 4.1. These
parameters are set using the ‘Linear Elastic Material ­ Isotropic’ model of STAR­CCM+. The flexible
beam remains cantilevered to the cylinder and is subjected to a gravitational force (𝑔 = −2 𝑚/𝑠2). For
this simulation, the fluid is removed and no numerical damping is applied. In particular, this is a static
analysis with the steady state tip displacement computed and compared with the reference result. For
each mesh level, 10 iterations are provided to achieve convergence of the Newton iterations. Besides
validating the CSM solver, this test case is also used to choose between the infinitesimal strain approxi­
mation given by the ‘Linear Geometry’ model and the finite strain approximation given by the ‘Nonlinear
Geometry’ model. Furthermore, besides the 6 mesh levels listed in section 4.1, a mesh level with just
1 element in the thickness discretization is also considered for the finest mesh level 1𝑏 = 640 × 1.

The results so obtained with the current STAR­CCM+ implementation are presented in Table 4.3.
There is a distinct difference in the solution of the two models. For the ‘Linear Geometry’ model,
the 𝑥­displacement predicted is a numerical zero (machine precision) at all mesh levels while the 𝑦­
displacement appears to converge with mesh refinement albeit to a value slightly over the reference
solution. The predicted 𝑦­displacement value at mesh level 1 has a relative error of 0.181% which is
quite a good prediction.

The infinitesimal strain approximation is expected to work well for predicting dominant displacements
that are within 10% of the length of the structure perpendicular to the displacement. This is satisfied
for the 𝑦­displacement as the reference solution is 4.845% of the beam length. Since the infinitesimal
strain approximation does not include the deformation gradient in its formulation, no significant change
in the 𝑥­displacement was predicted.

The ‘Nonlinear Geometry’ model, on the other hand, shows promising results for both the 𝑥­ and 𝑦­
displacements with predictions converging to the reference solution with mesh refinement. At mesh
level 1, the relative errors for the 𝑥­ and 𝑦­displacements are 6.397E­3% and 3.947E­3% respectively.
Given that the current test case and the following FSI3 test case require good predictions for both
directions of displacement, the ‘Nonlinear Geometry’ model is selected for the successive validation
study.
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Table 4.3: CSM2 Results

Mesh
Level 𝑁𝐿𝑒𝑛𝑔𝑡ℎ 𝑁𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

Solid
Elements

X­disp. of A (𝑚𝑚) Y­disp. of A (𝑚𝑚)
Linear Nonlinear Linear Nonlinear

6 20 1 20 6.80702E­15 ­0.45368 ­16.68158 ­16.65154
5 40 2 80 1.42124E­14 ­0.46608 ­16.94415 ­16.91298
4 80 4 320 6.56936E­15 ­0.46830 ­16.99073 ­16.95935
3 160 8 1280 4.37086E­15 ­0.46875 ­17.00012 ­16.96869
2 320 16 5120 7.79833E­15 ­0.46891 ­17.00334 ­16.97190
1 640 32 20480 2.99491E­15 ­0.46897 ­17.00467 ­16.97323
1b 640 1 640 1.79593E­13 ­0.46974 ­17.01728 ­16.98577

Reference
Solution ­0.46900 ­16.97390

It is also observed from the ‘Nonlinear Geometry’ model results of Table 4.3 that the thickness dis­
cretization is not as important as the length discretization by comparing the relative errors of mesh
level 6 vs 1b and that of mesh level 1b vs 1 with both of the scenarios having a constant multiplication
factor of 32. It is thus shown that the increased accuracy in bending brought about by quadratic ele­
ments suppresses the improvements due to increased thickness discretization. The efficacy of the ‘b’
mesh levels is further investigated in the FSI3 test case.

4.1.3. FSI3 Benchmark
With the CFD and CSM solvers validated, this benchmark is used to validate the Gauss­Seidel cou­
pling implementation of STAR­CCM+. The prescribed parameters in Table 4.1 for FSI3 result in large
beam deflections and strong artificial added mass effects given 𝜌𝑓/𝜌𝑠 = 1 and 𝑅𝑒 = 200. During the
FSI simulations, the fluid mesh is moved using the B­Spline mesh morphing method. The simulation is
attempted for 12 cases: 6 cases each for time steps of Δ𝑡 = 1 𝑚𝑠 which falls short of the 100 sampling
point rule (requiring Δ𝑡 = 0.92 𝑚𝑠) and Δ𝑡 = 0.5 𝑚𝑠.

The results obtained for the cases are tabulated in Table 4.4. The mesh levels are provided as 𝐹 + 𝑆
where 𝐹 is the fluid mesh level and 𝑆 is the solid mesh level as per Table 4.2 and Table 4.3. Associated
𝑆b levels correspond to 1 thickness element cases. The combinations of 𝐹 + 𝑆 mesh levels ensure
similar number of solid and fluid elements over the FSI interface. Each case required a certain FSI UR
to keep the coupling iterations stable. Mesh levels 3+4(b), 2+3(b) and 1+2(b) were given FSI UR’s of
0.50, 0.30 and 0.15 respectively, where the notation 𝐹 + 𝑆(b) denotes the pair of mesh levels 𝐹 + 𝑆
and 𝐹 + 𝑆b. In order to have all the cases sufficiently converged, especially the low FSI UR cases, a
rather conservative number of 100 inner iterations per time step is provided for the coupled solvers. A
total simulation time of 20 𝑠 allows for the fully developed flow solution with periodic flapping to establish.

The results from Table 4.4 reveal a mixed performance for spatial refinement on different parame­
ters. Two key observations are common over the results with the exception of the mean lift for mesh
levels 3+4(b): 1) There is little to no difference in a given result for a mesh level when comparing the
effect of the time step and 2) Comparing the result of any pair of mesh levels 𝐹+𝑆(b) also reveals very
minimal difference for a given time step. This implies temporal convergence for all mesh levels and
confirms the minimal effect of thickness discretization on the solution when using quadratic elements.

Coming to the individual results, consider those for the time step of 0.5 𝑚𝑠. For the drag, the mean
values monotonically converge towards the reference with the solution at the finest mesh level 1+2
differing only by 1.10% while the frequency remains unchanged at an error of 0.28%. The mean lift
also appears to converge, although not monotonically, to the reference value with a higher final error of
53% owing to the low reference value. The corresponding frequency converges to an error of 3.02%.
The 𝑥­displacement mean and amplitude results at the finest mesh level 1+2 differ from the reference
solution by 10.03% and 10.67% respectively. Spatial convergence for this parameter could not be
confirmed with the current set of mesh levels. This is also the case for the 𝑦­displacement amplitude
with the error at the finest mesh level 1+2 at 3.17%. The 𝑦­displacement mean, however, appears to
converge with the error at the finest mesh level 1+2 at 4.73%.
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Table 4.4: FSI3 Results

Δ𝑡 = 1 𝑚𝑠
Mesh
Level Drag (𝑁 [𝐻𝑧]) Lift (𝑁 [𝐻𝑧]) X­disp. (𝑚𝑚 [𝐻𝑧]) Y­disp. (𝑚𝑚 [𝐻𝑧])
3+4b 485.90 ± 27.90 [10.93] 0.85 ± 155.85 [5.48] ­3.09 ± 2.93 [10.93] 2.09 ± 35.93 [5.48]
2+3b 465.18 ± 27.58 [10.93] 5.45 ± 159.30 [5.46] ­2.86 ± 2.70 [10.93] 1.37 ± 34.96 [5.46]
1+2b 462.10 ± 28.50 [10.93] 3.50 ± 160.80 [5.46] ­2.94 ± 2.77 [10.93] 1.53 ± 35.29 [5.46]
3+4 485.90 ± 27.70 [10.99] 3.00 ± 157.00 [5.46] ­3.11 ± 2.95 [10.99] 2.10 ± 36.06 [5.46]
2+3 465.25 ± 27.15 [10.93] 5.75 ± 158.05 [5.43] ­2.87 ± 2.71 [10.93] 1.37 ± 35.05 [5.43]
1+2 462.30 ± 28.10 [10.93] 3.40 ± 159.10 [5.43] ­2.95 ± 2.79 [10.93] 1.54 ± 35.37 [5.43]
Ref.
Soln. 457.30 ± 22.66 [10.90] 2.22 ± 149.78 [5.30] ­2.69 ± 2.53 [10.90] 1.48 ± 34.38 [5.30]

Δ𝑡 = 0.5 𝑚𝑠
Mesh
Level Drag (𝑁 [𝐻𝑧]) Lift (𝑁 [𝐻𝑧]) X­disp. (𝑚𝑚 [𝐻𝑧]) Y­disp. (𝑚𝑚 [𝐻𝑧])
3+4b 486.35 ± 28.15 [10.93] 1.25 ± 156.75 [5.49] ­3.11 ± 2.95 [10.93] 2.19 ± 35.99 [5.49]
2+3b 465.20 ± 27.80 [10.93] 5.25 ± 159.25 [5.49] ­2.87 ± 2.71 [10.93] 1.36 ± 35.00 [5.49]
1+2b 462.25 ± 28.70 [10.93] 3.55 ± 160.95 [5.49] ­2.95 ± 2.78 [10.93] 1.54 ± 35.36 [5.49]
3+4 486.80 ± 28.10 [10.93] 0.30 ± 156.70 [5.56] ­3.13 ± 2.97 [10.93] 2.20 ± 36.12 [5.46]
2+3 465.35 ± 27.45 [10.93] 5.70 ± 158.00 [5.46] ­2.88 ± 2.72 [10.93] 1.37 ± 35.10 [5.46]
1+2 462.35 ± 28.35 [10.93] 3.40 ± 159.60 [5.46] ­2.96 ± 2.80 [10.93] 1.55 ± 35.47 [5.46]
Ref.
Soln. 457.30 ± 22.66 [10.90] 2.22 ± 149.78 [5.30] ­2.69 ± 2.53 [10.90] 1.48 ± 34.38 [5.30]

The profiles for drag, lift, 𝑥­ and 𝑦­displacement are shown in Figure 4.5. It is clearly seen for all plots
that the difference between the solution profiles 𝐹 + 𝑆(b) is hardly visible. The relative errors in the
amplitude of drag and lift profiles are large (25.11% and 9.82% respectively) owing to the noisy nature
of the obtained results. These “beatings” in drag and lift are most pronounced at time instants of max­
imum beam acceleration which are the extremums of the plots, thereby corrupting the estimate for the
amplitudes. The effect of these beatings on the mean value is suspected to be minimal.

The maximum acceleration instants are also where the greatest effect of added mass instability is felt.
This is an ‘artificial’ effect given the beatings are a numerical pressure result only. The corresponding
displacements are stable throughout the simulation. This behavior was also observed in the results
of Cole & Neu[100]. It is also observed that refining the mesh results in smaller beatings in the force
plots. This appears to be a combined effect of spatial refinement and reducing the FSI UR.

Although the effect of inner iterations on the beatings in the force plots is not investigated in the current
study, it is known that increasing this parameter leads to better predictions of displacement but with
greater beatings in the lift.[100] As for the differences between the current solutions and the reference,
the averaging technique employed to report the solution as in subsection 4.1.1 could account for a
fraction of the relative percentage errors. Further improvements in results require subsequent mesh
refinement.

The current study shows that time­accurate results for unsteady FSI problems call for careful selec­
tion of time step, FSI UR, and sufficient convergence even for a finely resolved mesh. In summary,
the current study using the STAR­CCM+ (v2020.3.1) implementation for this benchmark verifies and
validates the associated solvers and the coupling for its use to compute strongly coupled, two­way FSI
problems. Additional FSI benchmarks are not tested here, as further verifications can be found in the
extensive STAR­CCM+ Verification Suite[101]. The code is thus applied to the following cross flow
cylinder vibration problem.
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(a) Drag History (b) Lift History

(c) X­displacement History (d) Y­displacement History

Figure 4.5: Drag, Lift, 𝑥­displacement and 𝑦­displacement Profiles Compared to the Benchmark for Δ𝑡 = 0.5 𝑚𝑠

4.2. Cross Flow VIV Benchmark
The study of Khalak & Williamson[27] is a pioneering work from 1996 that established the influence of
the mass ratio (𝑚∗) at a given mass­damping parameter (𝑚∗𝜁) for VIV of a 1­Dof elastically mounted
rigid cylinder. It was shown that a low 𝑚∗ leads to a larger and wider 3­branch vibrational amplitude
response of a structure and the departure of the frequency ratio (𝑓∗ = 𝑓𝑜𝑠𝑐/𝑓𝑛,𝑎𝑖𝑟) from 1. In this sec­
tion, the efficacy of the URANS turbulence models of the current STAR­CCM+ implementation is tested
against this study.

Quite some work has been done on this test case using the popular K­Omega SST model. Guilmineau
& Queutey[102] and Dobrucali & Kinaci[103] have used the implementation of this model in ANSYS
to make their calculations. However, a recent study by Liparoti[104] shows the possibility of using the
‘Standard K­Epsilon Low Re’ model in STAR­CCM+ for FSI calculations of rigid cylinders. Given the
tested range of 𝑅𝑒 ∈ [1700, 10800] being in the subcritical range[35], or to be more precise in the TrSL2
regime[37], the wake of the cylinder is fully turbulent with most of the boundary layer still laminar. For
such a situation, it is also interesting to see if using the ‘Gamma ReTheta’ (GRT) transition model avail­
able for the ‘K­Omega SST’ model in STAR­CCM+ helps make a better prediction than using the base
model as a standalone. Furthermore, to better account for the anisotropy of turbulence, constitutive
relationship settings of linear, quadratic (QCR) and cubic are available for both ‘K­Omega SST’ and
‘Standard K­Epsilon Low Re’ models. Thus, the following 7 models with associated settings are tested:
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• K­Omega SST: Linear
• K­Omega SST: Linear + Low Re modification
• K­Omega SST: Linear + GRT transition

• K­Omega SST: QCR
• K­Omega SST: QCR + Low Re modification
• K­Omega SST: QCR + GRT transition

• Standard K­Epsilon Low Re: Cubic (selected based on the work of Liparoti[104])

In particular, for the K­Omega SST model, the curvature correction and the realizability options are
enabled. The curvature correction helps in accounting for strong streamline curvature, as is the case in
the flow aft of the cylinder, by altering the turbulent kinetic energy production term. Using the realizability
constraint, on the other hand, helps to overcome an unexpectedly large growth of turbulent kinetic
energy in stagnation point flows which is a common problem for two­equation models.[87] For the
Standard K­Epsilon Low Re model, the Yap correction and the realizability options are enabled based
on the recommendation by Liparoti[104]. The under­the­hood workings of these options have been
explained in chapter 3.

4.2.1. Simulation Setup
Based on the values of mass ratio and mass­damping parameter, an infinite set of cylinder mass, spring
stiffness and damping can be chosen. To make a unique selection, information about the Reynolds
number is also required. However, the original work[27] does not give a clear indication of this pa­
rameter but hints to the tested range of 𝑅𝑒 ∈ [1500, 13000]. To make a unique selection, the work of
Guilmineau & Queutey[102] is referred where pairs of non­dimensional velocity 𝑈∗ = 𝑈/𝑓𝑛,𝑎𝑖𝑟𝐷 and
Reynolds number 𝑅𝑒 are explicitly mentioned. This helps in pinning down the natural frequency of the
cylinder in air which allows for the selection of a unique set of cylinder mass, spring stiffness and damp­
ing. The key simulation parameters are tabulated in Table 4.5. Note that additional tests for 𝑈∗ = 4.50,
7.00, 9.00 and 10.75 were also carried out by the author as part of an internship, the results of which
are also shown and discussed here for completeness.

Table 4.5: Parameter Settings for the Study

Structure Parameters Flow Parameters
Cylinder Diameter, 𝐷 3.810 𝑐𝑚 Fluid Density, 𝜌𝑓 997.561 𝑘𝑔/𝑚3

Mass Ratio, 𝑚∗ 2.400 ­ Dynamic Viscosity, 𝜇𝑓 8.8871E­4 𝑃𝑎 ⋅ 𝑠
Mass­Damping, 𝑚∗𝜁 0.013 ­

Tested 𝑈∗ values
2.00,

3.30, 5.73,
12.50

­Cylinder Natural
Frequency, 𝑓𝑛,𝑎𝑖𝑟 0.532 𝐻𝑧

For the simulation domain, a 2D channel setup of 35𝐷×14𝐷 is created in STAR­CCM+. The cylinder is
placed 10𝐷 from the inlet. The channel walls and cylinder surface are given a no­slip boundary condi­
tion. The inlet is prescribed with a constant velocity inflow while the outlet is prescribed a static pressure
of 0 𝑃𝑎. Due to relatively large expected cylinder displacements (maximum 𝐴∗ = 𝑦/𝐷 of 0.95[27]), the
overset mesh technique is used instead of the standard mesh morphing used in section 4.1. This tech­
nique involves a background mesh with 44184 fluid elements for the channel and a movable overset
mesh with 12400 fluid elements for a patch of size 6𝐷 × 6𝐷 containing the cylinder. A 𝑌+ value of 1 is
targeted at the cylinder wall and channel walls based on a 𝑈∗ value of 16. For the tested 𝑈∗ values,
this ensures a 𝑌+ < 1 at all times for all of the test cases. The overset and background meshes are
shown in Figure 4.6.

The 6­Dof ‘Dynamic Fluid Body Interaction’ (DFBI) rigid body motion solver is used to solve for the
cylinder displacement which is implicitly coupled with the ‘Segregated Flow’ solver of STAR­CCM+.
For the flow solver, a 2𝑛𝑑 order upwind convection scheme is selected. Furthermore, a 2𝑛𝑑 order
temporal discretization scheme is selected. For the cases of 𝑈∗ = 2, 3.3, 4.5 and 5.73, a time step of
Δ𝑡 = 15 𝑚𝑠 is selected while for 𝑈∗ = 7, 9, 10.75 and 12.5, a time step of Δ𝑡 = 7.5 𝑚𝑠 is selected to
satisfy the 100 sampling point thumb rule and 𝐶𝐹𝐿 ≤ 1 criteria. A total of 80 inner iterations per time
step are provided with the first 30 inner iterations for the coupled solvers and the remaining with only
the flow solver.
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(a) Overset Mesh (b) Background Mesh

Figure 4.6: Structured Fluid Overset and Background Mesh

From the work of Guilmineau & Queutey[102], it is known that the initial condition greatly influences the
obtained result. For the current study, the “rest” initial condi­
tion is used. This means that for a given 𝑈∗, the flow velocity is
prescribed for a fixed cylinder until vortex shedding is fully es­
tablished. When the lift becomes fully periodic, the elastically
mounted cylinder is allowed to oscillate. The total simulation
time given is at least 100 𝑠 beyond the time instant when the lift
becomes periodic. The release time of the cylinder appears
to decrease in an asymptotic fashion with increasing 𝑈∗, as
can be seen in Figure 4.7. This conforms to the idea that the
transient phase of the simulation lasts for a specific number of
‘flow passes’ (𝐹𝑃 = 𝑈∗ ⋅ 𝑓𝑛,𝑎𝑖𝑟 ⋅

𝐷
35𝐷 ⋅ 𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒 ≈ 4.5 ∀𝑈

∗). The
‘flow pass’ is a non­dimensional way of looking at simulation
time and is more formally introduced and used in chapter 5. Figure 4.7: Cylinder Release Time vs 𝑈∗

4.2.2. Simulation Results

The primary results of this study are amplitude response and the frequency response which are shown
in Figure 4.8. The plots also show the 2D numerical results of Dobrucali & Kinaci[103] (D&K), and
Guilmineau & Queutey[102] (G&Q) along with the experimental results of Khalak & Williamson[27]
(K&W). A mixed performance of models is observed in different branches of the amplitude response
curve. There is close agreement between the numerical predictions and the experimental results in
the initial branch (𝑈∗ = 2), the start of the upper branch (𝑈∗ = 4.5) and the end of the lower branch
(𝑈∗ = 12.5) while the prediction is off in the transition from initial to upper branch (𝑈∗ = 3.3), the upper
branch itself (𝑈∗ = 5.73 and 7), and in the transition from the upper to lower branch or the start of the
desynchronization regime (𝑈∗ = 9 and 10.75). The underprediction of peak resonance amplitude is
expected for URANS models as can be seen from the other reference curves.

In terms of the amplitude response curve, the “best” performing models for each case along with the
relative error are tabulated in Table 4.6. For the initial branch and its transition to the upper branch,
using the GRT transition model appears to be beneficial. However, using the transition model beyond
this branch leads to underpredicted amplitude predictions. The low Re modification also seems to work
well for the initial branch and its transition to the upper branch. The constitutive relationship setting also
significantly influences the result as is noticed by the gap in the results of same symbol data points.
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(a) Amplitude Response (b) Frequency Response

Figure 4.8: Obtained Results using the URANS Framework

Table 4.6: Closest Predicting URANS Turbulence Models to the Experimental Results for Different Test Cases

𝑈∗ Value “Best” Model Relative Error
2.00 K­Omega SST: Linear + GRT 59.30%
3.30 K­Omega SST: QCR + Low Re 387.40%
4.50 K­Omega SST: QCR 2.07%
5.73 Std. K­Epsilon Low Re: Cubic 40.28%
7.00 Std. K­Epsilon Low Re: Cubic 1.03%
9.00 K­Omega SST: Linear + Low Re 60.51%
10.75 K­Omega SST: Linear + Low Re 37.01%
12.50 K­Omega SST: Linear 6.20%

For the upper branch, the basic K­Omega SST models (Linear and QCR) and the Standard K­Epsilon
Low Re model provide good amplitude predictions. For the test case 𝑈∗ = 4.5, both model implementa­
tions in STAR­CCM+ predict a response in the upper branch which does not seem to be observed from
the other reference URANS curves. However, it is to be noted that Guilmineau & Queutey[102] were
also able to predict a similar large amplitude response for this test case, although for an “increasing
velocity” initial condition. The test case 𝑈∗ = 7, on the other hand, reveals the largest range of pre­
dictions for the tested models. This is quite understandable given the tricky location in the amplitude
response where the experiment itself reveals multi­valued results in the vicinity of this location. For the
desynchronization regime, all models predict low amplitude responses, even for the transition from the
upper to lower branch. The K­Omega SST model with and without the low Re modification appears to
suffice in the lower branch.

The relative accuracy for the prediction of the frequency response, however, does not follow the same
ranking order for the models as the amplitude response. Due to the absence of experimental frequency
data in the original work of Khalak & Williamson[27] and the fact that the available experimental fre­
quency data published later by Khalak & Williamson[48] (see Figure 2.8b) is non­dimensionalized with
the natural frequency in water (which adds the uncertainty in predicting the required added mass), the
frequency response results are viewed in a qualitative manner. For 𝑈∗ = 2, 3.3 and 12.5, the expecta­
tion is for the response to be close to that of a fixed cylinder (based on a Strouhal number of 0.21). For
𝑈∗ = 2 and 3.3, the transition model still remains important and has the closest prediction to the fixed
cylinder albeit now with the QCR constitutive relationship. For 𝑈∗ = 3.3, the “best” model deviates from
the Strouhal relation the most with the closest prediction now given by the Standard K­Epsilon Low Re:
Cubic model and K­Omega SST: QCR + GRT model.
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At 𝑈∗ = 4.5, the same models that predicted an amplitude response in the upper branch deviate from
the fixed cylinder curve. At 𝑈∗ = 5.73, all models correctly deviate from the fixed cylinder curve and
predict a value slightly above 1 in the lock­in regime. At 𝑈∗ = 7, only the Standard K­Epsilon Low Re:
Cubic model and K­Omega SST: QCR + GRT model predict the lock­in effect while the other models
already show signs of desynchronization. For the following two test cases of 𝑈∗ = 9 and 10.75, all
models predict a desynchronized frequency back near a fixed cylinder response against expectations.
The predictions for the last test case of 𝑈∗ = 12.5 comes with no surprise as this value is already to­
wards the end of the lower branch where the desynchronization is complete.

Another way of interpreting the amplitude and frequency response curves is by looking at the curves
as a whole rather than making one­to­one test case comparisons. With such a viewpoint, it can be said
that overall with the URANS turbulence models, the three basic branches of a VIV response can be
observed. However, the current approach predicts a smaller lock­in range and an earlier and slightly
smaller peak amplitude response than expected from the experiments. In particular, this comment
about the peak amplitude response can also bemade for the reference curve of Dobrucali & Kinaci[103].

With the discussion of the primary results now complete, the focus is brought to the time series of the
lift coefficient (𝐶𝑙 = 𝐹𝐿/(

1
2𝜌𝑈

2𝐷)) and the amplitude response for the set of tested models at 𝑈∗ = 5.73.
These are shown along with the experimental amplitude response in Figure 4.9. From the time series,
the amplitude for a given model is given by 𝑦 = 0.5(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) which is then divided by the diame­
ter to give the non­dimensional 𝐴∗. In the experiment, this is reported by simply taking the maximum
amplitude. Observing Figure 4.9a, we expect a quasi­periodic response from our models. This is ob­
served in the results for all the models except the K­Omega SST models that also employ the GRT
transition model. In fact, the results of Guilmineau & Queutey[102] were also perfectly periodic with a
single frequency so it is encouraging to see this quasi­periodicity being captured in the current study.

An interesting observation is the apparent shift in the mean position of the cylinder from its neutral
value during motion as predicted by the K­Omega SST: Linear model in Figure 4.9c. This was not ob­
served in the original work[27] and is thus purely a numerical artifact and should be preferably removed
before quoting an 𝐴∗ value. It is for this specific reason of removing the influence of themean position on
the quoted amplitude response that the aforementioned formulation of 𝑦 is adopted in the current study.

The different amplitude response time series for different models are a direct consequence of the com­
puted lift force acting on the cylinder. This lift force pattern is further a consequence of the associated
vortex shedding pattern predicted by the model. Such a difference is already seen in the first 56 𝑠 of
the time series where the response for a fixed cylinder is computed. The 𝐶𝑙,𝑚𝑎𝑥 predicted by the mod­
els, in the order as they are presented in Figure 4.9, are 1.785, 1.987, 1.998, 1.501, 1.516, 1.774 and
1.818 respectively. For the K­Omega SST models, the effect of the constitutive relationship appears
to be minimal for the fixed cylinder response. However, this clearly changes when the cylinder starts
oscillating as is seen in Figure 4.9 with a different pattern in lift. Once the cylinder starts oscillating,
there exists a transient phase at the end of which the lift and amplitude settle on a single frequency
(equal to the vortex shedding frequency in the lock­in regime) and have a fixed phase difference of
about 180∘ between them. To avoid this transient phase in quoting the results, only the last 4 flow
passes (corresponding to 46 𝑠) of the simulation are made use of.

With the discussion on the effect of the selected model now complete, the focus is brought to the
effect of 𝑈∗ on the time series for a single model, in particular, the K­Omega: QCR model. These are
shown in Figure 4.10. It is observed that the fixed cylinder solution shows an increase in 𝐶𝑙,𝑚𝑎𝑥 at first
with increasing 𝑈∗ value with no visible increase after it settles at a value of approximately 2. However,
the change in the lift coefficient post the release of the cylinder follows an interesting trend. For the
initial branch, releasing the cylinder leads to a slight increase in the lift coefficient. The amplification
of the lift is further pronounced in the predicted upper branch (𝑈∗ = 3.3 and 4.5 for this model). From
the beginning of the desynchronization to the end of the lower branch, the lift coefficient falls below the
value for a fixed cylinder and is observed to settle roughly at half the value of the fixed cylinder. This
observation also conforms with the one made by Guilmineau & Queutey[102].
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(a) Experimental Result (b) Standard K­Epsilon Low Re: Cubic

(c) K­Omega SST: Linear (d) K­Omega SST: QCR

(e) K­Omega SST: Linear + GRT (f) K­Omega SST: QCR + GRT

(g) K­Omega SST: Linear + Low Re (h) K­Omega SST: QCR + Low Re

Figure 4.9: Obtained Amplitude and Associated Lift Coefficient Time Series for 𝑈∗ = 5.73 (𝑅𝑒 = 4968.43)
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(a) 𝑈∗ = 2.00 (𝑅𝑒 = 1734.18) (b) 𝑈∗ = 3.30 (𝑅𝑒 = 2861.40)

(c) 𝑈∗ = 4.50 (𝑅𝑒 = 3901.91) (d) 𝑈∗ = 5.73 (𝑅𝑒 = 4968.43)

(e) 𝑈∗ = 7.00 (𝑅𝑒 = 6069.64) (f) 𝑈∗ = 9.00 (𝑅𝑒 = 7803.82)

(g) 𝑈∗ = 10.75 (𝑅𝑒 = 9321.23) (h) 𝑈∗ = 12.50 (𝑅𝑒 = 10838.64)

Figure 4.10: Obtained Amplitude and Associated Lift Coefficient Time Series for K­Omega SST: QCR model
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The last item for discussion is the vortex shedding phenomena itself that causes a certain lift pattern
which in turn results in a peculiar amplitude response of the cylinder. The expectation here is to observe
a switch in vortex shedding mode from ‘2S’ to ‘2P’ as discussed in chapter 2. For this, the vorticity
magnitude scaled by the cylinder vibration frequency was tracked for all the test models at 𝑈∗ = 2.00
and 𝑈∗ = 5.73. At 𝑈∗ = 2.00, all models correctly predicted the ‘2S’ vortex shedding mode. However,
at 𝑈∗ = 5.73, the behaviour of the models were starkly different. The K­Omega SST models that
employed the GRT transition still predicted a ‘2S’ vortex shedding mode. All the other K­Omega SST
model variants did show a departure from the ‘2S’ vortex shedding mode but the resulting pattern was
quite chaotic with no direct sign of the ‘2P’ vortex shedding mode owing to the vortex­vortex interaction
in the wake. Only the Standard K­Epsilon Low Re: Cubic model was able to show a clear ‘2P’ vortex
shedding mode before the vortices departed from the pattern under the influence of other vortices. The
vorticity plots are shown in Figure 4.11.

Figure 4.11: Non­dimensional Vorticity Contour Plots as Predicted by the Standard K­Epsilon Low Re: Cubic Model at (a)
𝑈∗ = 2.00 and (b) 𝑈∗ = 5.73

The results discussed so far show qualitative and quantitative differences between the URANS turbu­
lence models and the efficacy of such a scheme in tackling a cross flow VIV problem. A part of the rea­
son for the shortcoming of the results of the current study and the other numerical references[102],[103]
is owed to the fact that these are 2D results. In reality, vortex shedding is a 3D phenomenon with the
possibility of coalescence and breakdown of vortices, the existence of correlated vortex­cells over the
length of the cylinder and the so­called “end effects” which are a consequence of the fact that the cylin­
der has a finite length. Looking at the drawback of the 2D approach from a theoretical perspective, the
2D vorticity equation, which is obtained by taking the curl of the Navier­Stokes momentum equation, is
missing the ‘vortex­stretching’ term (∇ × �⃗�) which accounts for why there is no breakdown of vorticity
observed here. Subsequent improvements are expected for a 3D simulation but not enough to com­
pete with higher fidelity methods such as LES or DES.

The current test case thus gives an expectation for the URANS scheme to work well in the initial branch
and a possible underprediction in the upper branch. Only these two branches are of interest for the
OECD benchmark cases. While the current study does not already give a perfect indication of the “best”
model that is to be used for the benchmark, the following model implementations of STAR­CCM+ are
shortlisted for the open phase of the benchmark:

• K­Omega SST: QCR
• K­Omega SST: QCR + GRT
• Standard K­Epsilon Low Re: Cubic
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The above shortlist is made based on the results of the initial and upper branches. While the 2D results
indicate minimal difference between the Linear and QCR constitutive relationships, it is expected that
QCR would provide superior results in a 3D setting, especially because it is formulated to capture the
anisotropy of turbulence better. With the URANS turbulence models now tested and shortlisted, the
open phase study of the OECD benchmark will help single out a choice as is discussed in the following
chapter.

4.3. Conclusion
In this chapter, the STAR­CCM+ implementation of the flow and structural solvers and their coupling
were tested against the numerical benchmark of Turek & Hron[26] for standalone CFD, standalone
CSM and coupled CFD­CSM calculations. Along with a successful validation, the 100 sampling points
thumb rule for selecting a time step was tested with the CFD3 test case which supports its use for
the OECD benchmark. For the structure, the importance of selecting an appropriate approximation for
the strain was realized when dealing with displacements comparable to the characteristic length of the
structure.

To test the URANS eddy viscosity turbulence model implementations available in STAR­CCM+, the
experimental results of the cross flow VIV problem of Khalak & Williamson[27] are made use of. The
primary results of the amplitude and frequency response reveal the possibility of capturing the 3­branch
VIV response with the URANS framework. However, the current results predict a shorter lock­in regime
with an earlier and shorter peak response. Based on the current results and branches of interest for
the OECD benchmark, the K­Omega SST: QCR, K­Omega SST: QCR + GRT and Standard K­Epsilon
Low Re: Cubic models are shortlisted for testing in the open phase. This is further discussed in the
following chapter.





5
OECD Benchmark: Open Phase

With the STAR­CCM+ code validated and the turbulence models shortlisted, the open phase of the
OECD benchmark is formally introduced and tackled. This phase of the benchmark comes with the
experimental results available and, in the current study, is mainly used to select one of the shortlisted
turbulence models to be employed in the blind phase of this benchmark. This is also a platform to
test the URANS framework and based on any shortcomings in the current study, hypothesise possible
reasons for the same.

The experimental setup and parameters of interest are given in section 5.1. Based on the available
resources and time, different fluid meshes are proposed and tested in a standalone CFD study to make
a suitable selection for the FSI study and is provided in subsection 5.2.1. The experimentalists also
provide CAD drawings to the participants for the numerical study. In particular, the two cylinders house
brass accelerometer mountings of different density which affect the natural frequency of the structure.
This is investigated for fine tuning in a pure structural analysis and is discussed in subsection 5.2.2.
Once the models and the meshes are selected, the shortlisted turbulence models are put the test
against the FSI problem in section 5.3.

5.1. Experimental Setup
The experimental setup consists of two in­line cantilevered cylinders subjected to cross flow in a rectan­
gular channel test section as can be seen in Figure 5.1a. The test facility is located at the JSC “Afrikan­
tov OKBM” in Russia. For the simplicity of the numerical setup, only the channel and its contents are set
up for the simulation based on the dimensions prescribed in the CAD drawings made available to the
participants of the benchmark. The CAD model so created using STAR­CCM+ is shown in Figure 5.1b.

(a) Experimental Setup (b) CAD Model for the Simulations

Figure 5.1: Experimental Setup and the Corresponding Domain Setup for Phase 3 Simulations

59
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The experimental study made use of hollow stainless steel cylinders of diameter 𝐷=7 𝑚𝑚, wall thick­
ness 0.3 𝑚𝑚 and length 198 𝑚𝑚 placed 45 𝑚𝑚 apart with the first cylinder placed at a distance of
350 𝑚𝑚 from the inlet. For the experiment, each cylinder had two brass accelerometer mountings of
diameter 6.4 𝑚𝑚 and length 12𝑚𝑚 soldered (the length includes the solder deposit) internally at the tip
of the cylinder and at near halfway length of the cylinder. These brass bobs for the two cylinders were
slightly different in density leading to different natural frequencies of the structures in air and water.
The material properties of the structure are provided in Table 5.1. The working fluid was water at 10∘ 𝐶
and was tested for flow rates of 10 𝑚3/ℎ (off­resonance) and 16 𝑚3/ℎ (peak resonance) through the
aforementioned channel of dimensions 550 × 200 × 30 𝑚𝑚3 that houses the cylinders. The reference
static pressure was 1 𝑘𝑔𝑓/𝑐𝑚2 (98.07 𝑘𝑃𝑎). In the current study, only the peak resonance case, which
translates to 𝑅𝑒=3964.23, is simulated and compared against the experimental results.

Table 5.1: Structural Properties

Structure Material Density,
𝜌𝑠 (𝑘𝑔/𝑚3)

Young’s Modulus,
𝐸 (𝐺𝑃𝑎)

Poisson’s
Ratio, 𝜈

Hollow Cylinders 1 & 2 Stainless Steel 7850 180 0.30
Bobs for Cylinder1 Brass 9450 200 0.33
Bobs for Cylinder2 Brass 12450 200 0.33

In the experiment, the natural frequency and structural damping of the cylinders in the channel were
analyzed by measuring the vibrations under the impact excitations of the channel and producing a
Frequency Response Function (FRF) plot. Based on the test of the channel without water, the natural
frequencies of the cylinders were found to be 𝑓𝑛1,𝑎𝑖𝑟 = 107 𝐻𝑧 and 𝑓𝑛2,𝑎𝑖𝑟 = 98 𝐻𝑧 respectively. Based
on a similar test of the channel with water, the natural frequencies of the cylinders were found to be
𝑓𝑛1,𝑤𝑎𝑡𝑒𝑟 = 98 𝐻𝑧 and 𝑓𝑛2,𝑤𝑎𝑡𝑒𝑟 = 90 𝐻𝑧 respectively. The FRF plot created based on the experimental
results provided for the test of the channel with water is provided in Figure 5.2.

Figure 5.2: FRF Curves for the Two Cylinders under Impact Excitation of the Channel with Water

Using the above plot, the damping ratio (𝜁) or its related parameters like the loss factor (𝜂) and quality
factor (𝑄) is found using the ‘half­power’ or ‘3 𝑑𝐵’ rule. These damping parameters are calculated using

Δ𝑓
𝑓 = 𝜂 = 1

𝑄 = 2𝜁√1 − 𝜁
2 ≈ 2𝜁 (5.1)

where Δ𝑓 is the width of the FRF curve 3 𝑑𝐵 below the peak at frequency 𝑓. The loss factor for
both cylinders vibrating in water comes out to 𝜂 = 0.016. The approximation 𝜁 = 0.5𝜂 is accurate
within 5E­3% for 𝜂 ∈ [0, 0.02] and is thus made use of giving 𝜁 = 0.008. This value is later used in
conjunction with the value from the numerical structural tests to provide structural damping for the FSI
tests using the ‘Rayleigh Damping’ model available in STAR­CCM+. For the cylinders, the Rayleigh
damping is restricted to stiffness proportional damping with the corresponding constant calculated as
per Equation 3.31 with 𝜔 = 2𝜋𝑓𝑛,𝑤𝑎𝑡𝑒𝑟.
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5.1.1. Measurement Systems
To make measurements, various technical instruments were made use of which may have added to the
cumulative errors made in the experiment. The test facility allowed static measurement of pressure and
temperature with errors of ±0.006 𝑘𝑔𝑓/𝑐𝑚2 and ±1∘ respectively. The flow rate was measured by an
electromagnetic flow meter with an accuracy of ±0.5%. Systems based on Particle Image Velocimetry
(pulsed and continuous wave lasers) and Laser Doppler Velocimetry (one component) were used to
study the hydrodynamics of the flow. As the tracer particles, 10 𝜇𝑚 polyamide particles were used.
The relative error of the LDV measurement system was estimated to be 1%. The relative error of the
velocity measurements by PIV system with pulsed wave laser was accurate to within 3% while those
by PIV system with continuous wave laser was accurate to within 4%. General views of the model with
PIV and LDV systems installed on the test facility are shown in Figure 5.3.

The pressure pulsations were measured by sensitive dynamic sensors located on the channel wall.
The measurement error of pressure pulsations did not exceed 26% with a confidence probability of
0.95. Accelerometers were installed at the top of the cylinders in two mutually perpendicular directions.
The measurement error of vibration acceleration did not exceed 28% with a confidence probability of
0.95. Measurements of vibrations, pressure pulsations, as well as velocity pulsations were carried out
synchronously. The operability of the accelerometers and pressure pulsation sensors was provided by
duplication of measurements using a laser vibrometer and hydrophones, respectively. The synchro­
nization of vibration measurements using accelerometers and a laser vibrometer were carried out by
an external trigger.

Figure 5.3: General Views of the Measurement Systems: (a) PIV with Pulsed Wave Laser, (b) PIV with Continuous Wave
Laser, (c) LDV System

5.1.2. Open Phase Test Parameters
Calculation of FSI can be performed using one­way and two­way methods. The one­way method im­
plies the absence of the influence of structural vibrations on the flow and can be used for relatively
small displacements of the structure. The two­way calculation takes into account the feedback of the
oscillations of the structure to the flow and can be used for substantial displacements of the structure.
In particular, the two­way method is used to describe the lock­in mode with resonance of the structure
natural frequency and the vortex shedding frequency (or in this case, its 4𝑡ℎ harmonic).

Taking into account the complexity of FSI calculations, NRG and the other participants of the bench­
mark were provided with experimental data from an open test for the possibility to validate both one­way
and two­way methods of vibration calculation. In addition, experimental data allow participants to take
part only in the validation of a CFD solution, which affects the accuracy of the hydrodynamic force
estimation. Participants were invited to independently determine the scope of validation: one­way cal­
culation of vibration / two­way calculation of vibration / CFD calculation in the mode before the lock­in /
CFD calculation in the lock­in mode. In the current study, the CFD calculation in the lock­in mode and
two­way calculation of vibration are carried out.

During testing, dynamic parameters were measured correspondingly by different systems. The ex­
perimental data were registered as a function of time. The following measurements were performed:
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• 𝑣(𝑡) – time oscillation of velocity pulsations
• 𝑝(𝑡) – time oscillation of pressure pulsations on the channel wall
• 𝑎(𝑡) – time oscillation of cylinders’ vibration acceleration

Figure 5.4 shows the locations of the measurement points. A coordinate system is used where X­axis
is directed along the channel, Y­axis is directed across the channel in the horizontal plane, and Z­axis
is directed along the cylinders in the vertical plane. Given that the numerical model constraints the
ends of the cylinders to the channel wall perfectly, the accelerometer readings of 𝑎𝑥𝑦𝑧3 and 𝑎𝑥𝑦𝑧4 (see
Figure 5.4b) are not made use of. The Power Spectral Density (hereinafter ­ spectrum) of velocity and
pressure pulsations, as well as vibration accelerations are later calculated based on the time series.

(a) Locations of Velocity Pulsations Measurements in the 𝑖𝑡ℎ Plane (b) Locations of Cylinders’ Vibration Acceleration Measurement

(c) Locations of Pressure Pulsations Measurements

Figure 5.4: Location of Measurement Points for Different Parameters

Besides measurements at the above locations, horizontal velocity profile measurements were made 10
𝑚𝑚 and 20𝑚𝑚 behind the cylinders as shown in Figure 5.5b. Furthermore, to aid in selecting inlet flow
conditions, additional velocity profile measurements are made. These measurements are performed
in the following sections and are shown in Figure 5.5:

• Average and Root Mean Squared (RMS) profile in the vertical plane of longitudinal velocity 𝑉𝑥(𝑧)
in front of the 1𝑠𝑡 cylinder at a distance of 140 𝑚𝑚

• Average and RMS profile in four horizontal planes (40, 80, 120 and 160 𝑚𝑚) of longitudinal
velocity 𝑉𝑥(𝑦) in front of the 1𝑠𝑡 cylinder at a distance of 200 𝑚𝑚

• Average and RMS profile in three horizontal planes (25, 100 and 175𝑚𝑚) of longitudinal velocity
𝑉𝑥(𝑦) in front of the 1𝑠𝑡 cylinder at a distance of 50 𝑚𝑚
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(a) Vertical Plane

(b) Horizontal Planes

Figure 5.5: Locations of Velocity Profiles Measurement in the Vertical and Horizontal Planes

5.2. Numerical Setup
As mentioned earlier, based on the CAD drawings for the test section (and its contents) of the ex­
perimental setup, the simulation domain is set up in STAR­CCM+ and is shown in Figure 5.1b. The
problem is set up in STAR­CCM+ as follows: For the incompressible fluid, the ‘Implicit Unsteady’ SIM­
PLE scheme ‘Segregated Flow’ solver is selected with a 2𝑛𝑑 order upwind convection scheme. The
pressure and velocity equations are given UR factors of 0.2 and 0.6 respectively. The four channel
walls and the exposed cylinder surfaces are prescribed a no­slip boundary condition. A constant static
pressure of 0 𝑃𝑎 is prescribed for the outlet. For the inlet, a constant uniform velocity of 0.74 𝑚/𝑠 (as
per a flow rate of 16𝑚3/ℎ) is used for the CFD study while a time­varying uniform velocity is prescribed
for (numerical stability of) the FSI study as given by the equation:

𝑢(0, 𝑦, 𝑧, 𝑡) = {𝑢(0, 𝑦, 𝑧)
1−cos (𝜋𝑇 𝑡)

2 , if 𝑡 < 𝑇
𝑢(0, 𝑦, 𝑧), otherwise

𝑢(0, 𝑦, 𝑧) = 0.74𝑚/𝑠, 𝑇 = 1.0 𝑠

(5.2)

For the solid, the ‘Solid Stress’ solver is selected along with a 2𝑛𝑑 order Newmark implicit integration
scheme (Newmark parameter, 𝛾=0.5). At this point, a choice is to be made between the infinitesimal
strain and finite strain approximation. The expected displacements in both streamwise (𝑥) and cross
flow (𝑦) directions are less than 1𝑚𝑚 which, relative to the 198𝑚𝑚 length of the cylinders, is less than
0.51% of the cylinder length. From the validation work of the current study, it seems suitable to go for
the infinitesimal strain approximation given by the ‘Linear Geometry’ model. This is tested in subsec­
tion 5.2.2. For the boundary condition, the annular surfaces at the bottom of the cylinders are grounded
while the outer wetted surfaces are declared as an FSI interface. Internally, the brass bobs are fixed
in their relative positions using the ‘bonded’ boundary condition between the bob curved surface and
the cylinder inner curved surface. For the FSI coupling, a UR factor of 0.5 is prescribed.

The fluid mesh is created using the ‘Automatic Mesh’ functionality of STAR­CCM+. For the fluid, a
structured hexahedral mesh is created with three volume refinements. Approaching the cylinder from
the inlet by crossing each refinement region reduces the target base size (𝑏𝑠) of 2.5 𝑚𝑚 by half se­
quentially. To ensure good transition between the refinement regions, a growth rate of 1.1 is selected.
Given a budget of 128 allocated cores, 2 months of physical time for this phase of the current study
and past experience in CFD simulations, a maximum allowable number of fluid elements is capped at
8 million (M). To select a suitable mesh in this budget, a CFD study is carried out. Further details are
provided in subsection 5.2.1.
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For the experimental study, it was mentioned that the brass bobs were 12 𝑚𝑚 in length including the
solder. Furthermore, the cylinders had additional length that ran into the wall of the channel which was
then fixed by a tightening nut arrangement. This and the fact that there was additional mass due to the
soldering process and the accelerometer itself, there is a need to fine tune the structural model to have
the same natural frequency as the experiment. This is done by altering the length of the bobs and is
discussed further in subsection 5.2.2.

For the solid, unstructured meshes are set up for the cylinders and their internal bobs. The solid
mesh for the cylinders is also created using the ‘Automatic Mesh’ functionality of STAR­CCM+. The
‘Thin Mesher’ and ‘Tetrahedral Mesher’ are selected with one thin layer, the ‘Quad Dominant’ meshing
method and a target 𝑏𝑠 of 0.7 𝑚𝑚 which, in this case, leads to a mesh with 68842 elements for each
cylinder. For the bobs, the ‘Directed Mesh’ functionality is used which creates a given number of layers
of the same planar or ‘Patch Mesh’. For the ‘Patch Mesh’, the ‘Automatic Mesh’ functionality is selected
along with the ‘Quadrilateral Mesher’. The mesh is given 30 layers and a target 𝑏𝑠 of 0.35 𝑚𝑚 which
leads to 12030 elements for each one of the four bobs. Sectional views of the solid mesh are shown in
Figure 5.6. For low computational effort, linear finite elements are employed by disabling the ‘Mid­side
Vertex’ option.

Figure 5.6: Sectional Views of the Structural Mesh

5.2.1. CFD Study
As mentioned earlier, given a budget of 8M fluid elements, a choice has to be made with regard to
the 3 refinement regions labelled ‘Refine1’, ‘Refine2’ and ‘Refine3’ respectively. By making different
choices, three different meshes labelled CFD1, CFD2 and CFD3 are set up with element counts of
4.89M, 5.44M and 7.05M respectively. Sectional views of these meshes are shown in Figure 5.7. For
all the meshes, care is also taken to ensure a 𝑌+ value of 1 over all surfaces of the domain.

The basic setup of the simulation is as described earlier. Following those settings, the K­Omega SST:
QCR turbulence model is selected for all test cases in this CFD study. Additionally, the curvature
correction and the realizability options are enabled to reap the aforementioned benefits. As per the
experimental results, the average vortex shedding frequency over the length of the cylinder is 25 𝐻𝑧.
Using this knowledge for the 100 sampling point thumb rule estimate of the time step gives a time step
size of 0.4 𝑚𝑠. For the flow solver, 50 inner iterations per time step are provided. The simulation uses
an initial condition of 0.74 𝑚/𝑠 uniform velocity throughout the domain. To accommodate the transient
phase and have sufficient usable data, a total simulation time of 4 𝑠 is given.
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(a) CFD1 (b) CFD2 (c) CFD3

Figure 5.7: Proposed Fluid Meshes for Testing

An inlet turbulence is provided by prescribing a turbulence intensity of 2% and a turbulent length scale of
0.07𝐷 which floods in “turbulence” in the form of turbulent kinetic energy. However, given the relatively
large length of channel before the cylinder, it was observed in the simulation that the turbulent kinetic
energy was already dissipated before it reached the cylinder. Based on this observation, a higher value
is motivated and prescribed for the FSI study as will be discussed in section 5.3.

Coming back to the aforementioned simulation time, the term ‘flow passes’, 𝐹𝑃 is mathematically de­
fined here as

𝐹𝑃 = 𝑈∞𝑇
𝐿 (5.3)

where 𝑈∞ = 𝑢(0, 𝑦, 𝑧) is the uniform inlet velocity, 𝑇 is the simulation time and 𝐿=0.55 𝑚 is the length
of the channel. One 𝐹𝑃 can thus be defined as the time needed for the fluid to travel from the inlet to
the outlet assuming a constant velocity from the inlet. Here, this translates the total simulation time of
4 𝑠 to 5.387 𝐹𝑃. As mentioned earlier, all results in the experiment and the current numerical study are
first obtained as a time series and then presented as a spectra plots by computing the Power Spectral
Density (PSD). From the time series plots, using a back­windowing approach, it was found that the first
flow pass showed transient results and is thus removed before calculating the spectra. To remedy the
fact that the time series used for creating the spectra doesn’t start and end with the mean of the signal,
the Hann window is applied. The results so obtained are discussed below.

Obtained Results
The results of interest for the CFD study are the velocity and pressure spectra for the points as per Fig­
ure 5.4a and Figure 5.4c respectively. The pressure spectra plots for the different meshes are shown
along with the FSI experimental results in Figure 5.8. To obtain clean spectra plots, linear averaging is
applied with a window size of 30 and 4 for the experimental results and numerical results respectively.
The experimental results show several peaks in the plots. These correspond to the vortex shedding
frequency (𝑓𝑠=24.4 𝐻𝑧) and its multiples as well as the natural frequencies of the cylinders (𝑓𝑛1=98 𝐻𝑧
and 𝑓𝑛2=90 𝐻𝑧) and its multiples. Additional peaks labelled by 𝑓∗ and its multiples are linked with the
frequency of the pump. It is observed that the largest peak corresponds to the natural frequency of
Cylinder1 which coincides with the 4𝑡ℎ harmonic of the vortex shedding frequency. Furthermore, this
also coincides with the 3𝑟𝑑 harmonic of pump frequency. This is not good as the synergy with the pump
would lead to an overestimated PSD for 𝑓𝑛1, something that would not be expected from an ideal inlet
used in the simulation.

In this CFD study, however, the concern here is to correctly capture the vortex shedding frequency
and its multiples as the natural frequency only comes to play for the FSI study. In that regard, the
pressure spectra plots do not reveal a clear superior mesh given the near identical predictions. From
Figure 5.8, it is observed that the CFD results predict an overestimated vortex shedding frequency of 27
𝐻𝑧 as compared to the ∼24.4 𝐻𝑧 captured by the experiment. In particular, the predicted 4𝑡ℎ harmonic
of the predicted frequency is 10 𝐻𝑧 higher than the natural frequency of Cylinder1. This means that
already for the FSI results with this turbulence model, capturing resonance seems unlikely.
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(a) 𝑃1 (b) 𝑃2

(c) 𝑃3 (d) 𝑃4

Figure 5.8: Pressure Spectra Plots

The overall trend of decreasing spectral density with increasing frequency is captured well by the CFD
results. However, not all peaks are clearly identified. For 𝑃1, which lies upstream of Cylinder1, only
the even harmonics of 𝑓𝑠 are distinct. For 𝑃2 and 𝑃3, which lie in between the cylinders, only the first
harmonic and even harmonics of 𝑓𝑠 are distinct. For 𝑃4, which lies downstream of Cylinder2, only the
first harmonic of 𝑓𝑠 is distinct. These observations imply easier propagation of the frequency pertinent
to the streamwise direction (even harmonics) than it is for the cross flow (odd harmonics) and that the
first harmonic is more easily captured downstream of the source (the cylinders) rather than upstream.

The velocity spectra plots for the different meshes are shown along with the FSI experimental results
in Figure 5.9 through Figure 5.11. The spectra, in principle, captures the turbulence present in the flow
from the inlet (relevant for all planes) as well as that generated at the channel walls (relevant for planes
𝑍1 and 𝑍3), the cylinder curved surface (relevant for all planes) and the 2 𝑚𝑚 gap at the free end of
the cylinder (relevant for plane 𝑍1). To obtain clean spectra plots, linear averaging is applied with a
window size of 30, 5 and 3 for the LDV and PIV experimental results and numerical results respec­
tively. The experimental results show peaks for vortex shedding frequency and different harmonics.
Not all peaks are distinct with some expected peaks being at the same level as the background spectra.

Similar trends are also seen for the CFD results with the spectra towards higher frequencies (> 100 𝐻𝑧)
showing underpredicted results especially for plane 𝑍1 as can be seen in Figure 5.9. This is expected
since higher frequencies imply smaller time scales and thereby smaller turbulent structures which can­
not be accurately resolved with the current choice of time step, meshes and the URANS scheme.
However, even with such a choice of time step, it is seen from Figure 5.9 that the CFD3 mesh has the
least underprediction at higher frequencies at plane 𝑍1. This is also a critical zone given the influence
of the turbulence generated at the free end of the cylinder in the 2 𝑚𝑚 gap between the channel wall.
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(a) 𝑉11 : 𝑥­direction (b) 𝑉11 : 𝑦­direction

(c) 𝑉12 : 𝑥­direction (d) 𝑉12 : 𝑦­direction

(e) 𝑉13 : 𝑥­direction (f) 𝑉13 : 𝑦­direction

(g) 𝑉14 : 𝑥­direction (h) 𝑉14 : 𝑦­direction

Figure 5.9: Velocity Spectra Plots: 𝑉1𝑖 , (𝑖 = 1, 2, 3)
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(a) 𝑉21 : 𝑥­direction (b) 𝑉21 : 𝑦­direction

(c) 𝑉22 : 𝑥­direction (d) 𝑉22 : 𝑦­direction

(e) 𝑉23 : 𝑥­direction (f) 𝑉23 : 𝑦­direction

(g) 𝑉24 : 𝑥­direction (h) 𝑉24 : 𝑦­direction

Figure 5.10: Velocity Spectra Plots: 𝑉2𝑖 , (𝑖 = 1, 2, 3)
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(a) 𝑉31 : 𝑥­direction (b) 𝑉31 : 𝑦­direction

(c) 𝑉32 : 𝑥­direction (d) 𝑉32 : 𝑦­direction

(e) 𝑉33 : 𝑥­direction (f) 𝑉33 : 𝑦­direction

(g) 𝑉34 : 𝑥­direction (h) 𝑉34 : 𝑦­direction

Figure 5.11: Velocity Spectra Plots: 𝑉3𝑖 , (𝑖 = 1, 2, 3)
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A general observation from the trends is that the peaks are more distinct 10 𝑚𝑚 behind the cylinders
(𝑉𝑖1 and 𝑉𝑖3 ) rather than 20 𝑚𝑚 behind the cylinders (𝑉𝑖2 and 𝑉𝑖4 ). Another observation is that the peaks
are more distinct for 𝑉𝑖1 as compared to 𝑉𝑖3 . These observations are linked to the turbulent dissipation
as the vortical structures travel downstream as well as the fact that with respect to Cylinder2, there
exists a source of turbulence (Cylinder1) upstream which interacts with the cylinder and its generated
wake to redistribute peak energies to smaller scales where they eventually get dissipated as it travels
downstream. This is hinted by the vorticity plots (overlayed with the CFD meshes) created at plane 𝑍2
as shown in Figure 5.12.

Figure 5.12: Vorticity Plots for (a) CFD1, (b) CFD2 and (c) CFD3 Test Cases

The above plot shows that the vortical structures are more well defined in the wake for the CFD3 mesh,
which is expected given the longer Refine1 and Refine2 regions. The vortical structures appear to
diffuse as they pass from a fine to coarse region as the vorticity is recomputed with new (and less ac­
curate) approximations to the derivatives of the velocity for the coarse region. However, this is tolerable
as it occurs more than 10𝐷 downstream of Cylinder2 where the strength of the wake is small.

Another observation is the mismatch in predictions of the vortex shedding frequency by the CFD results
and the experimental results. It is also observed that the vortex shedding frequency captured by the
experiment as well as the CFD results vary along the length of the cylinders. In particular, the prediction
by 𝑉𝑖1 and 𝑉𝑖3 were found to be the same as 𝑉𝑖2 and 𝑉𝑖4 respectively. The experimental as well as CFD
predictions for 𝑓𝑠 are tabulated in Table 5.2 for 𝑉𝑖1 and 𝑉𝑖3 . It is observed that the CFD results slightly
overpredict the vortex shedding frequency at planes 𝑍2 and 𝑍3 while it underpredicts at plane 𝑍1.

Table 5.2: Vortex Shedding Frequency Predictions by the Experiment and CFD Test Cases

𝑓𝑠 at 𝑉11 (𝐻𝑧) 𝑓𝑠 at 𝑉21 (𝐻𝑧) 𝑓𝑠 at 𝑉31 (𝐻𝑧)
Exp. CFD1 CFD2 CFD3 Exp. CFD1 CFD2 CFD3 Exp. CFD1 CFD2 CFD3

𝑥 25.1 20.5 20.5 23.0 24.3 26.7 27.0 27.0 25.1 25.3 25.3 25.3
𝑦 24.7 21.4 20.4 22.5 24.3 26.7 27.0 27.0 25.1 25.3 25.3 25.3

𝑓𝑠 at 𝑉13 (𝐻𝑧) 𝑓𝑠 at 𝑉23 (𝐻𝑧) 𝑓𝑠 at 𝑉33 (𝐻𝑧)
Exp. CFD1 CFD2 CFD3 Exp. CFD1 CFD2 CFD3 Exp. CFD1 CFD2 CFD3

𝑥 24.6 20.5 20.5 22.5 24.7 26.7 27.0 27.0 26.6 26.7 27.0 27.0
𝑦 24.9 21.4 20.4 22.5 24.5 26.7 27.0 27.0 26.8 26.7 27.0 27.0

Near identical predictions are seen for all CFD test cases at plane 𝑍2 for both 𝑉21 and 𝑉23 which is
about 10.2% higher than the experimental results. Near identical predictions are also seen for plane
𝑍3 with a good match with the experimental results with only about 0.8% and 1.1% error for 𝑉31 and
𝑉33 respectively. A clear difference between the CFD predictions is seen at plane 𝑍1. The results are
underpredicted with the least error offered by the CFD3 test case.

Considering all the qualitative and quantitative results discussed so far, the choice is made to use
the CFD3 mesh for the FSI study. The next item for discussion is the fine tuning of the structural
model.
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5.2.2. CSM Study
As mentioned earlier, the cylinders in the experiment are slightly longer with the extra length running
into the channel wall where they are constrained by a tightening nut. The schematic of the same is
shown in Figure 5.13. Furthermore, the brass accelerometer mountings were mentioned to be 12 𝑚𝑚
in length including the solder which is lesser in density compared to brass. This and the fact that there
is no accelerometer equipment (which has its own mass) in the numerical setup calls for fine tuning the
structural model.

Figure 5.13: Schematic of the Cylinder used in the Experiment

In the current numerical setup, the brass mountings, the solder and the accelerometer mass is to be
represented by the brass bobs alone. The fine tuning is thus aimed by modifying the bob lengths.
Testing is carried out both in vacuum and in water. The results of interest are the natural frequencies
in vacuum and water and the added damping for the test in water. No additional damping is made use
of for these tests.

The tests are carried out as follows: For both the tests in vacuum and in water, a numerical gravity
of 5𝑔 is applied to the cantilevered cylinders in the 𝑦­direction which would result in tip displacements
comparable in magnitude to the FSI test. When the cylinders come to the position of maximum tip dis­
placement, the gravity is switched off and free oscillations of the cylinders are captured. To calculate
the natural frequencies, the time interval between successive oscillations is used. As for the damping
in water, the following expression is used:

𝜁 = 1

√1 + (2𝜋𝛿 )
2

(5.4)

where 𝛿 is the logarithmic decrement of the structural response (tip displacement) in water.

In STAR­CCM+, the ‘Solid Stress’ solver is selected along with a 2𝑛𝑑 order Newmark implicit inte­
gration scheme (Newmark parameter, 𝛾=0.5). A time step satisfying the 100 sampling point rule is
selected based on the natural frequency of Cylinder1 in air (107 𝐻𝑧) for the vacuum tests (Δ𝑡=0.09𝑚𝑠)
and based on the natural frequency of Cylinder1 in water (98 𝐻𝑧) for the water tests (Δ𝑡=0.1 𝑚𝑠). For
the test in water, the fluid domain consists of still water in the channel which is obtained by setting the
inlet velocity to 0 𝑚/𝑠. For the fluid, the ‘Implicit Unsteady’ SIMPLE scheme ‘Segregated Flow’ solver
is selected with a 2𝑛𝑑 order upwind convection scheme. The pressure and velocity equations are given
UR factors of 0.2 and 0.6 respectively. For the FSI coupling, a UR factor of 0.5 is used.

Before moving on to the tests with different bob lengths, two additional tests are carried out. Ear­
lier, it was asserted that the infinitesimal strain approximation is expected to work well for the FSI study
given the low amplitude oscillations of the structure. The first additional test thus verifies this asser­
tion by carrying out a vibration test of Cylinder1 in vacuum using the ‘Nonlinear Geometry’ and ‘Linear
Geometry’ models in STAR­CCM+. For the vibration tests in water, the Reynolds number is expected
to be less than 200 making it possible to use the cheaper ‘Laminar Flow’ model rather than a URANS
turbulence model. The second additional test thus compares the results of the vibration study of the
cylinders in water using the ‘Laminar Flow’ model and the ‘K­Omega SST: QCR’ turbulence model. For
both the additional tests, the bobs have a length of 12 𝑚𝑚.
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Obtained Results
The time series of the tip displacement of Cylinder1 for the first additional vacuum test comparing the
‘Linear Geometry’ and ‘Nonlinear Geometry’ models are shown in Figure 5.14. The time history for
the primary motion of interest in the 𝑦­direction reveals overlapping responses for the two models as
can be seen in Figure 5.14a. Both models predict exactly the same natural frequency of 104.27 𝐻𝑧
which translates to an error of 2.55%. Improvements in prediction are expected with change in bob
lengths. The difference in the models comes in the prediction of the time history of the motion in the
𝑧­direction. The ‘Linear Geometry’ model predicts zero displacements with round­off errors of the order
of machine precision while the ‘Nonlinear Geometry’ model correctly predicts non­zero displacements
at double frequency. However, the 𝑧­displacement is observed to be 3 orders of magnitude lower than
the 𝑦­displacement as is also expected for the experimental FSI test. The 𝑧­direction acceleration
is also not measured for the experimental FSI test. Based on this fact and the obtained results, the
computationally cheaper ‘Linear Geometry’ model is made use of herewith for all following tests.

(a) Y­displacement Time History (b) Z­displacement Time History

Figure 5.14: Time History Plots for the Tip Displacement of Cylinder1 in Vacuum

With the chosen ‘Linear Geometry’ model, the second additional test in water is carried out to compare
the ‘Laminar Flow’ model and ‘K­Omega SST: QCR’ model. The time series of the tip displacements
of both cylinders are shown in Figure 5.15. Both solutions show near overlapping results with the
same prediction of natural frequency for Cylinder1 and Cylinder2 as 90.09 𝐻𝑧 and 84.03 𝐻𝑧 which
translates to errors of 8.07% and 6.63% respectively. There is, however, a small difference in prediction
of the damping ratio (𝜁). For Cylinder1, the ‘Laminar Flow’ and ‘K­Omega SST: QCR’ models predict a
damping ratio of 0.00564 and 0.00555 respectively, while for Cylinder2, the corresponding predictions
are 0.00438 and 0.00441 respectively which are all considerably lower than the damping ratio of 0.008
in the experimental FSI test. This is later remedied after conducting the vibration study for the different
bob lengths. Thus, given the near matching predictions with only minor differences in the damping, the
‘Laminar Flow’ model is made use of for the vibration tests in water for different bob lengths.

(a) Cylinder1 (b) Cylinder2

Figure 5.15: Y­displacement Time History Plots for the Tip Displacement of Cylinder1 and Cylinder2 in Water
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With the preliminary tests complete, the focus is brought to the vibration tests in vacuum and in water
for cylinders housing bobs of different lengths. As hinted for the results with a bob length of 12 𝑚𝑚,
in order to improve the structural response, the bob length has to be reduced. The tests are carried
out for bob lengths 12 𝑚𝑚, 11 𝑚𝑚, 10.5 𝑚𝑚 and 10 𝑚𝑚. The predictions for the natural frequency of
the cylinders in vacuum are tabulated in Table 5.3. Based on the tests in vacuum, a bob length of 11
𝑚𝑚 appears to be the best choice with relative errors in natural frequency at 0.047% and 0.041% for
Cylinder1 and Cylinder2 respectively.

Table 5.3: Results for Vibration Tests in Vacuum

Bob
Length (𝑚𝑚)

Natural Frequency (𝐻𝑧)
Cylinder1 Cylinder2

12.0 104.28 96.06
11.0 106.95 98.04
10.5 107.82 99.50
10.0 108.69 100.33

Exp. Soln. 107.00 98.00

The vibration tests are also conducted in water using the ‘Laminar Flow’ model. The results for the
natural frequencies and the damping ratio are tabulated in Table 5.4 based on the time series shown in
Figure 5.16. Based on these results, a bob length of 10 𝑚𝑚 appears to be the best choice with regard
to the natural frequency with relative errors of 1.4% and 0.1% for Cylinder1 and Cylinder2 respectively.

Table 5.4: Results for Vibration Tests in Water

Bob
Length (𝑚𝑚)

Natural Frequency (𝐻𝑧) Damping Ratio
Cylinder1 Cylinder2 Cylinder1 Cylinder2

12.0 90.09 84.33 0.0056 0.0041
11.0 94.34 88.49 0.0064 0.0048
10.5 95.69 88.88 0.0065 0.0048
10.0 96.62 90.09 0.0065 0.0049

Exp. Soln. 98.00 90.00 0.0080 0.0080

(a) Cylinder1 (b) Cylinder2

Figure 5.16: Y­displacement Time History Plots for the Tip Displacement of Cylinder1 and Cylinder2 in Water with Different Bob
Lengths

The mismatch in the optimal bob length arises mainly from the overestimation of the added mass in
the vibration tests in water. To calculate the added mass, STAR­CCM+ uses the volume of displaced
fluid per unit area. This parameter is left to be auto­calculated rather than feeding a manual input. To
accommodate such an overestimation even for the FSI test that follows this section, the final choice is
made to go ahead with a bob length of 10 𝑚𝑚. For this selection of bob length, the mass ratio of the
structures come out to 𝑚∗=2.097 and 2.350 for Cylinder1 and Cylinder2 respectively.
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The last item for the FSI setup is the mismatch in structural damping. There appears to be a significant
gap in the prediction of the damping ratio in the above vibration test in water even for the optimal bob
length of 10 𝑚𝑚. This is remedied by adding structural damping via the aforementioned ‘Rayleigh
Damping’ model. The difference between the damping calculated here and the expected value is used
for calculating the stiffness constant as per Equation 3.31. With this, all relevant parameters for the FSI
study are finalized and the results obtained for the same are discussed in the following section.

5.3. FSI Study
With the selected CFD3mesh and the fine tuned structural model, the FSI test is attempted for the peak
resonance case of 0.74 𝑚/𝑠 inflow using the shortlisted turbulence models. To keep the FSI coupling
stable during the start up of the simulation, a cosine ramping of the inflow velocity is given for 1 𝑠 (1.347
𝐹𝑃) as per Equation 5.2. A total simulation time of 7 𝑠 (9.428 𝐹𝑃) is provided. From the CFD study, it
was observed that the numerical prediction of the vortex shedding frequency came out to be 27 𝐻𝑧. To
adhere to the 100 sampling point thumb rule, a time step of 0.4 𝑚𝑠 is used during the cosine ramping
and is reduced to 0.36 𝑚𝑠 for the remainder of the simulation. Using the back­windowing approach on
the created spectra plots, it was found that transient results lasted roughly a flow pass after the end of
the cosine ramping period. Thus, only the results from 1.75 𝑠 to 7 𝑠, or the last 7.071 𝐹𝑃, are used for
creating the spectra. Before presenting the main results, the issue of inflow turbulence is addressed.

5.3.1. Inflow Turbulence
As mentioned in subsection 5.2.1, when using an inflow turbulence intensity of 2%, it was observed that
the turbulent kinetic energy was quickly dissipated well before it made it to the cylinders. The choice of
2% came from the mean and RMS fluctuation velocity profiles of the streamwise component 140 𝑚𝑚
ahead of Cylinder1. Based on the experimental data shown in Figure 5.17, a turbulence intensity of
4.95% was predicted by the PIV measurements while a value of 1.71% was predicted by LDV. Trusting
the value predicted by LDV, the aim is to obtain good agreements with the LDV results at this location.
To do so, the ratio of turbulent kinetic energy at the inlet to that at this location was estimated from the
CFD study. Assuming similar dissipation for the FSI study for all 3 tested turbulence models and the
following relation between turbulent kinetic energy and turbulence intensity, a value of 5% was selected
for the inlet:

𝑘 = 3
2(𝑈𝑥𝐼)

2 (5.5)

where 𝑘 is the turbulent kinetic energy, 𝑈𝑥 is the flow velocity at the location of interest and 𝐼 is the
turbulence intensity at the location of interest. Based on this choice of turbulence intensity, the results
so obtained by the turbulence models are also plotted in Figure 5.17. For the mean velocity shown in
Figure 5.17a, the simulation results are near overlapping with good agreement (within 5%) with the PIV
profile for a large part of the profile away from the walls. The PIV measurements near the walls possibly
suffer from laser reflections. The simulation results match well with those of LDV near the walls.

(a) Mean Velocity (b) RMS Velocity Fluctuation

Figure 5.17: Mean and RMS Fluctuation Streamwise Velocity Profiles at a Vertical Section 140 𝑚𝑚 ahead of Cylinder1
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For the RMS fluctuations shown in Figure 5.17b, the simulation results are presented as a quantity
resolved by the mesh which captures actual velocity fluctuations and as a quantity modelled through
the turbulent kinetic energy as per Equation 5.5. Since there are no real turbulent structures introduced
at the inlet and the distance from Cylinder1 is rather large, the resolved fluctuations are quite small,
ranging from 1.2E­5 𝑚/𝑠 at the channel center to 1E­4 𝑚/𝑠 in the boundary layer of the channel walls.
The modelled fluctuations, however, are of the same order of magnitude of the experimental data with
a better match (within 10%) with the LDV results as intended. While the three models agree well with
each other over the majority of the domain, a difference is noted at the peaks near the channel walls.

As per Figure 5.5, velocity profiles are also available at horizontal sections 50 𝑚𝑚 and 200 𝑚𝑚 ahead
of Cylinder1. These are shown in Figure 5.18 and Figure 5.19 respectively.

(a) Mean Velocity at Plane 𝑍1 (b) RMS Velocity Fluctuation at Plane 𝑍1

(c) Mean Velocity at Plane 𝑍2 (d) RMS Velocity Fluctuation at Plane 𝑍2

(e) Mean Velocity at Plane 𝑍3 (f) RMS Velocity Fluctuation at Plane 𝑍3

Figure 5.18: Mean and RMS Fluctuation Streamwise Velocity Profiles at a Horizontal Section 50 𝑚𝑚 ahead of Cylinder1
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(a) Mean Velocity at Plane 𝑍1 (b) RMS Velocity Fluctuation at Plane 𝑍1

(c) Mean Velocity at Plane 𝑍2 (d) RMS Velocity Fluctuation at Plane 𝑍2

(e) Mean Velocity at Plane 𝑍3 (f) RMS Velocity Fluctuation at Plane 𝑍3

(g) Mean Velocity at Plane 𝑍4 (h) RMS Velocity Fluctuation at Plane 𝑍4

Figure 5.19: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections 200 𝑚𝑚 ahead of Cylinder1
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Observing the mean velocity profiles of Figure 5.19 at different planes reveals near overlapping results
for different turbulence models and good agreement (within 3% at the channel width center) between
the simulation and the PIV results at horizontal sections 200 𝑚𝑚 ahead of Cylinder1. This is expected
given the very low influence of Cylinder1 at this distance. Although the numerical results show the
same symmetric profile for all 4 planes, the PIV results show mildly varying (within 2% at the channel
width center) and asymmetric profiles at different planes of measurement with the largest deviation at
plane 𝑍2. One possible reason could be the asymmetry of the inflow turbulence at this plane. This
reason stems from the corresponding asymmetry of the fluctuation profile in Figure 5.19d.

As for the RMS fluctuations, the observations for the resolved fluctuations are similar to the vertical
section velocity profile with very low fluctuations detected as per expectations. The observations are
also similar for the modelled fluctuations with agreement towards the center of the channel width and
disagreement in the fluctuations of the channel wall boundary layer. These profiles also do not show
significant difference (within 1% at the channel width center) across different planes. An exception,
however, is observed with the curve for the K­Omega SST: QCR + GRT model at plane 𝑍3 which
shows slight disagreement even at the center of the channel.

Coming closer to Cylinder1, at a distance of 50 𝑚𝑚, observing the mean profiles of Figure 5.18, the
experimental results again show mildly varying (within 1% at the channel width center) and asymmetric
profiles at different planes of measurement with the largest deviation at plane 𝑍2. The boundary layer at
the channel wall also appears to have grown from what it was at a distance of 200 𝑚𝑚, as the velocity
profile has become more parabolic in nature. The profiles for the K­Omega SST models show slightly
more curvature with a more bulged channel center velocity than the K­Epsilon model. Correspondingly,
for the RMS fluctuations, the modelled fluctuations also show a lesser range of agreement between the
profiles of K­Omega SST models and that of the K­Epsilon model. Regardless, the overall match of the
fluctuation profiles between the experimental and the modelled numerical predictions is still considered
good (within 10% at the channel width center).

Based on the results discussed so far, the setting for the inlet turbulence is validated. The follow­
ing section reveals the primary results of this study which are the pressure, acceleration and velocity
spectra followed by the secondary results which include the vorticity plots and the velocity profiles aft
of the cylinders.

5.3.2. Obtained Results

The primary results of interest for the FSI study are the velocity, acceleration and pressure spectra for
the points as per Figure 5.4. The pressure spectra plots for the different turbulence models are shown
along with the experimental results in Figure 5.20. As was done in the CFD study, to obtain clean
spectra plots, linear averaging is applied with a window size of 30 and 5 for the experimental results
and numerical results respectively. The experimental results show several peaks in the plots which
have been discussed in subsection 5.2.1. The numerical predictions differ appreciably based on the
turbulence model selected.

In general, the same peaks that were captured by the K­Omega SST: QCR model in the CFD study
are also captured here with the addition of a peak corresponding to the natural frequency of Cylinder2
(𝑓𝑛2) predicted at 88 𝐻𝑧. Surprisingly, the peak corresponding to the natural frequency of Cylinder1 is
not distinctly captured. As mentioned earlier, the pump frequency (𝑓∗) has its third harmonic coinciding
with the natural frequency of Cylinder1 (𝑓𝑛1) and the fourth harmonic of the vortex shedding frequency
(𝑓𝑠), thereby corrupting the estimate of the spectral density at this frequency.

Although this accounts for part of the gap in expectations, the main reason is suspected to be the
fact that there is a mismatch in the predicted fourth harmonic of the vortex shedding frequency and
the natural frequency of Cylinder1 which is needed for resonance. The values for 𝑓𝑠 predicted by the
turbulence models are 27.04 𝐻𝑧, 27.43 𝐻𝑧 and 27.81 𝐻𝑧 respectively, in the order as they appear in
the plots, which translate to significant errors of 10.81%, 12.42% and 13.98% respectively.
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(a) 𝑃1 (b) 𝑃2

(c) 𝑃3 (d) 𝑃4

Figure 5.20: Pressure Spectra Plots

The second reason is the fact that the problem at hand is that of vibrations that are partly Vortex­Induced
and partly Turbulence­Induced. Even if resonance is not captured, the presence of physical turbulence
upstream of Cylinder1 would have caused a peak similar in magnitude to that of Cylinder2 which faces
turbulence generated by Cylinder1. The fact that this is absent in the numerical simulation has led to a
prediction of spectral density at 𝑓𝑛1 at the level of the background spectra of frequencies.

Coming to the turbulence models, it is observed that the spectral densities at the peaks are similar
for the two K­Omega SST models. However, it is observed that the background spectra for the other
frequencies are severely underpredicted for the K­Omega SST: QCR + GRT model although it helps
identifying the peaks easily. As for the Standard K­Epsilon Low Re: Cubic model, the spectra obtained
for 𝑃1 and 𝑃2 matches closely with the K­Omega SST: QCR model. For 𝑃3 and 𝑃4, however, the spectra
predicted by the Standard K­Epsilon Low Re: Cubic model has a higher spectral density background
spectra which makes it a better fit for 𝑃3 in the higher frequency range while it leads to an overprediction
for 𝑃4. In fact for 𝑃4, no expected peak is clearly distinct from the background spectra for this model.
This implies that by the time the turbulence generated at the cylinders arrives at the location of 𝑃4 which
is 50𝑚𝑚 aft of Cylinder2, the vortical structures have broken down to structures of several time scales
and thereby frequencies with similar contributions of spectral density that appear in the above plot.

The acceleration spectra of the cylinders obtained from the experiment and numerical simulations are
shown in Figure 5.21. The experimental results for Cylinder1 and Cylinder2 reveal distinct peaks at the
vortex shedding frequency (𝑓𝑠) and its multiples as well as the natural frequencies 𝑓𝑛1 and 𝑓𝑛2 in both
streamwise (𝑥) and cross flow (𝑦) directions. The numerical results show distinct peaks correspond­
ing to the even harmonics of 𝑓𝑠 in the 𝑥­direction and the odd harmonics of 𝑓𝑠 in the 𝑦­direction. The
numerical results also show peaks for 𝑓𝑛1 and 𝑓𝑛2 in both directions.
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(a) Cylinder1: 𝑥­direction (b) Cylinder1: 𝑦­direction

(c) Cylinder2: 𝑥­direction (d) Cylinder2: 𝑦­direction

Figure 5.21: Acceleration Spectra Plots for the Cylinders

Overall, for the spectra of Cylinder1, the numerical results are severely underpredicted especially at
𝑓𝑛1 which is expected to have a high value owing to resonance. As was reasoned with the pressure
plots, the mismatch in peak spectral density of 𝑓𝑛1 is suspected to be due to the mismatch in the fourth
harmonic of 𝑓𝑠 and 𝑓𝑛1 while the background spectra mismatch is owed to the absence of physical
turbulence upstream of Cylinder1. For Cylinder2, on the other hand, the obtained results match well
in terms of the spectral density at the peaks, especially 𝑓𝑛2, as well as the background spectra. This is
owing to Cylinder2 being in an off­resonant condition and due to the presence of turbulence generated
by Cylinder1.

Coming to the individual turbulence models, the K­Omega SST: QCR + GRT model agrees well with
its K­Omega SST: QCR counterpart in terms of the peaks but underpredicts the background spectra
as was earlier seen in the pressure spectra plots. This could be attributed to less breakdown of vortical
structures and thereby a more 2D vortex shedding behaviour. This assertion will be addressed later
when discussing the vorticity plots. The other two models provide similar spectra with the Standard
K­Epsilon Low Re: Cubic model offering a slightly higher background spectra in comparison.

The predictions of the vortex shedding frequency by the turbulence models are confirmed to be the
same values quoted from the pressure spectra plots. The natural frequency of Cylinder1 is predicted
to be 96 𝐻𝑧 from the 𝑦­direction spectra while it is predicted to be 95 𝐻𝑧 in the 𝑥­direction which
translates to errors of 2.04% and 3.06% respectively. Similarly, the natural frequency of Cylinder2 is
predicted to be 90 𝐻𝑧 from the 𝑦­direction spectra while it is predicted to be 89 𝐻𝑧 in the 𝑥­direction
which translates to errors of 0.12% and 1.14% respectively. Further improvements can be made in the
prediction of 𝑓𝑛1 at the cost of 𝑓𝑛2 by reducing the lengths of the bobs further. Another way would be to
reduce the lengths of the bobs in Cylinder1 alone which would result in non­identical structures for the
cylinders. These suggested modifications, however, are not made in the current study.
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(a) 𝑉11 : 𝑥­direction (b) 𝑉11 : 𝑦­direction

(c) 𝑉12 : 𝑥­direction (d) 𝑉12 : 𝑦­direction

(e) 𝑉13 : 𝑥­direction (f) 𝑉13 : 𝑦­direction

(g) 𝑉14 : 𝑥­direction (h) 𝑉14 : 𝑦­direction

Figure 5.22: Velocity Spectra Plots: 𝑉1𝑖 , (𝑖 = 1, 2, 3)
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(a) 𝑉21 : 𝑥­direction (b) 𝑉21 : 𝑦­direction

(c) 𝑉22 : 𝑥­direction (d) 𝑉22 : 𝑦­direction

(e) 𝑉23 : 𝑥­direction (f) 𝑉23 : 𝑦­direction

(g) 𝑉24 : 𝑥­direction (h) 𝑉24 : 𝑦­direction

Figure 5.23: Velocity Spectra Plots: 𝑉2𝑖 , (𝑖 = 1, 2, 3)
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(a) 𝑉31 : 𝑥­direction (b) 𝑉31 : 𝑦­direction

(c) 𝑉32 : 𝑥­direction (d) 𝑉32 : 𝑦­direction

(e) 𝑉33 : 𝑥­direction (f) 𝑉33 : 𝑦­direction

(g) 𝑉34 : 𝑥­direction (h) 𝑉34 : 𝑦­direction

Figure 5.24: Velocity Spectra Plots: 𝑉3𝑖 , (𝑖 = 1, 2, 3)
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The velocity spectra plots for different turbulence models are shown along with the experimental results
in Figure 5.22 through Figure 5.24. To obtain clean spectra plots, linear averaging is applied with a win­
dow size of 30, 5 and 3 for the LDV and PIV experimental results and numerical results respectively. Key
observations about the experimental results have already been discussed in subsection 5.2.1. Similar
trends are observed for the numerical results with the spectra towards higher frequencies showing un­
derpredicted results. It was earlier reasoned in subsection 5.2.1 that to improve upon the prediction in
the high frequency range, a smaller time step, mesh size and a higher fidelity method may be required
as a means to resolve small scale turbulence better. However, for the current choice of parameters, the
Standard K­Epsilon Low Re: Cubic model shows the best agreement in the high frequency range at all
locations, especially at plane 𝑍1 which is a critical zone given the influence of the turbulence generated
at the free end of the cylinder in the 2 𝑚𝑚 gap between the channel wall.

Another observation is the mismatch in predictions of the vortex shedding frequency by the numerical
results and the experimental results. It is also observed that the vortex shedding frequency captured
by the experiment as well as the numerical results vary along the length of the cylinders. In particular,
the prediction by 𝑉𝑖1 and 𝑉𝑖3 were found to be the same as 𝑉𝑖2 and 𝑉𝑖4 respectively. The experimental as
well as numerical predictions for 𝑓𝑠 are tabulated in Table 5.5 for 𝑉𝑖1 and 𝑉𝑖3 . In Table 5.5, shorthands of
QCR, QCRT and CKE are used for K­Omega SST: QCR, K­Omega SST: QCR + GRT and Standard
K­Epsilon Low Re: Cubic models respectively.

Table 5.5: Vortex Shedding Frequency Predictions by the Experiment and FSI Test Cases

𝑓𝑠 at 𝑉11 (𝐻𝑧) 𝑓𝑠 at 𝑉21 (𝐻𝑧) 𝑓𝑠 at 𝑉31 (𝐻𝑧)
Exp. QCR QCRT CKE Exp. QCR QCRT CKE Exp. QCR QCRT CKE

𝑥 25.1 24.5 24.5 24.7 24.3 24.4 24.4 24.5 25.1 23.8 23.8 25.0
𝑦 24.7 24.3 24.7 24.7 24.3 24.4 24.4 24.5 25.1 23.8 23.8 25.0

𝑓𝑠 at 𝑉13 (𝐻𝑧) 𝑓𝑠 at 𝑉23 (𝐻𝑧) 𝑓𝑠 at 𝑉33 (𝐻𝑧)
Exp. QCR QCRT CKE Exp. QCR QCRT CKE Exp. QCR QCRT CKE

𝑥 24.6 21.4 21.4 23.5 24.7 24.3 24.5 24.5 26.6 24.7 25.0 25.0
𝑦 24.9 21.3 21.1 23.1 24.5 24.3 24.5 24.5 26.8 24.7 25.0 25.0

The numerical results are in close agreement with the experimental results. The largest difference be­
tween the predictions of the turbulence models are observed at plane 𝑍1 with the least error offered by
the Standard K­Epsilon Low Re: Cubic model. The tabulated numerical results, although encouraging,
go against the expectation of observing an overestimation of 𝑓𝑠 as was observed in the pressure and
acceleration plots. One possible reason is the error in picking the peak as caused by the applied linear
averaging process to make a cleaner spectra plot. Using the averaging process does make the signal
less noisy but it also flattens out the tips of the peaks. Thus, the “peaks” actually span as wide as 1.5
𝐻𝑧 for some curves inducing significant error in picking out the true frequency.

As was brought up earlier when discussing the spectra prediction for the high frequency range, it was
asserted that the accuracy is linked to better resolving small scale turbulent structures. Thus the ex­
pectation is to have a well captured turbulent wake for the Standard K­Epsilon Low Re: Cubic model as
well as the K­Omega SST: QCR model with perhaps a near 2D vortex shedding for the K­Omega SST:
QCR + GRTmodel. The expectation is checked against the vorticity plots created at the end of the sim­
ulation as shown in Figure 5.25 and Figure 5.26 (shorthand for turbulencemodels is same as Table 5.5).

As can be observed from Figure 5.25, the expectation is met perfectly with respect to the type of wake
captured by the turbulence models. The Standard K­Epsilon Low Re: Cubic model and the K­Omega
SST: QCR model predict 3D vortex tubes being shed from Cylinder1 with these regular structures start­
ing to break down into smaller ones as they travel towards Cylinder2. As they interact with Cylinder2
and its generated wake, the regular structures are nearly lost as per the K­Omega SST: QCR model
and completely lost as per the Standard K­Epsilon Low Re: Cubic model. The K­Omega SST: QCR+
GRT model, on the other hand, predicts near regular structures even aft of Cylinder2.



84 5. OECD Benchmark: Open Phase

Figure 5.25: Vertical Section Vorticity Plots for (a) QCR (b) QCRT and (c) CKE

Figure 5.26: Horizontal Section Vorticity Plots for (a) QCR (b) QCRT and (c) CKE at Plane 𝑍2

It is also to be noted that part of the wake aft Cylinder2 appears to be subject to numerical dissipation as
the vortical structures pass over from Refine2 to Refine1 refinement regions of the mesh about 10𝐷 aft
of Cylinder2. This can be observed as a drop in the strength of vorticity as it passes over the interface
of the refinement regions and is more clearly noticed in Figure 5.25c. This is linked to the recalculation
of the vorticity vector as was reasoned earlier in subsection 5.2.1. This adversely affects the results
but is expected to be at a low degree given the location of this issue. Improvements in the results can
be expected for having a longer Refine2 refinement region but is not carried out in the current study.

The last set of results are the mean and RMS fluctuation velocity profiles at horizontal sections 10
𝑚𝑚 and 20 𝑚𝑚 behind each of the cylinders which are shown in Figure 5.27 through Figure 5.29.
The mean velocity profiles show a low velocity in the center of the channel width and a higher velocity
away from the channel center and channel walls. This makes sense as the cylinder obstructs the flow
at the center of the channel width with the fluid squeezing through the remaining width of the channel
at a higher than inlet velocity as a consequence of the continuity equation. For all planes, the veloc­
ity profile tends to flatten out as it gets away from the cylinders. This is owed to the internal viscous
forces between fluid layers of different velocity as they try to reorient the profile back to the shape that
existed ahead of the cylinders. Finally, differences are also noted in the profiles for different planes
at a given location. This is owed to the fact that the problem is 3D with the cylinders having a finite
length, the presence of channel walls and the 2𝑚𝑚 gap between the cylinder tips and the channel wall.

All simulation results also show the same trend in profiles as the experimental results at all locations
and planes with the exception of the K­Omega SST: QCR profile 20 𝑚𝑚 behind Cylinder1 at plane 𝑍1
(see Figure 5.27b) and the Standard K­Epsilon Low Re: Cubic profile 10𝑚𝑚 behind Cylinder1 at plane
𝑍2 (see Figure 5.28a) as they predict a larger dip in mean velocity at the center of the channel width.
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(a) Mean Velocity 10𝑚𝑚 behind Cylinder1 (b) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder1

(c) Mean Velocity 20𝑚𝑚 behind Cylinder1 (d) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder1

(e) Mean Velocity 10𝑚𝑚 behind Cylinder2 (f) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder2

(g) Mean Velocity 20𝑚𝑚 behind Cylinder2 (h) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder2

Figure 5.27: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections in Plane 𝑍1
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(a) Mean Velocity 10𝑚𝑚 behind Cylinder1 (b) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder1

(c) Mean Velocity 20𝑚𝑚 behind Cylinder1 (d) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder1

(e) Mean Velocity 10𝑚𝑚 behind Cylinder2 (f) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder2

(g) Mean Velocity 20𝑚𝑚 behind Cylinder2 (h) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder2

Figure 5.28: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections in Plane 𝑍2
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(a) Mean Velocity 10𝑚𝑚 behind Cylinder1 (b) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder1

(c) Mean Velocity 20𝑚𝑚 behind Cylinder1 (d) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder1

(e) Mean Velocity 10𝑚𝑚 behind Cylinder2 (f) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder2

(g) Mean Velocity 20𝑚𝑚 behind Cylinder2 (h) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder2

Figure 5.29: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections in Plane 𝑍3
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Unlike for the mean velocity profile plots, the PIV and LDV experimental results are not as well in agree­
ment with each other for the fluctuation plots. This is especially true for planes 𝑍2 and 𝑍3. The LDV
results are selected for asserting the trends and for comparison against the simulation results.

The fluctuation profiles reveal significant resolved fluctuations near the center of the channel width
with the fluctuations gradually decreasing towards the channel walls and it slightly increasing again in
the near vicinity of the channel walls. These fluctuations in velocity are owed to the vorticity in the flow.
The center of the channel width is subject to the turbulent wake of the cylinders while in the near vicinity
of the wall, there exists the boundary layer which, in this case, is also interacting with the wake of the
cylinders. In particular, there are two peaks observed at an offset from the center of the channel width
which is a consequence of the geometry of the vortex shedding process from the cylinder at this flow
rate. The vortices shed from the top half and bottom half of the cylinders do not appear exactly in the
center but at an offset which can be observed from Figure 5.26. The peak fluctuations near the center
of the channel width also appear to reduce with distance away from the cylinders. This is owed to the
dissipation of vorticity and thereby a decrease in the strength of vorticity as it travels downstream from
the cylinders. As the strength of the wake reduces, so do the fluctuations.

The numerical results also show profile shapes similar to the experimental results with significant dif­
ferences in the exact trends of the profiles. Unlike the mean profiles, the fluctuation profiles are visibly
asymmetric which is not expected for this symmetric problem. Perhaps, with a longer simulation time,
the solution gets more symmetric as a larger number of fluctuation cycles will be included in the calcu­
lations. Withstanding this slight asymmetry, the Standard K­Epsilon Low Re: Cubic model is observed
to provide the best fit with the experimental results at all locations and planes.

Considering all qualitative and quantitative results, the Standard K­Epsilon Low Re: Cubic model is
selected for the blind phase of the study on account of better modelling the wake of the cylinders which
leads to more accurate spectra plots and velocity profile plots, especially the fluctuation profiles.

The current study has revealed certain shortcomings of the URANS scheme for predicting VIV, or as
was reasoned in this case, a combination of VIV and TIV. While this scheme works well for off­resonant
systems (in this case Cylinder2), it doesn’t work well to capture resonance particularly for FSI problems
that have resonance of the structural natural frequency with higher harmonics of the vortex shedding
frequency (in this case Cylinder1). This is owing to the error of the URANS scheme in predicting the
vortex shedding frequency which gets amplified for higher harmonics leading to a mismatch in predict­
ing resonance. As a consequence, one would only capture resonance in the current study at a lower
flow rate where the corresponding overpredicted vortex shedding frequency would be lower. Even so,
that would only solve half the problem as the TIV part of the spectra would still require actual turbu­
lent fluctuations in velocity and pressure present from the inlet and that is something that the current
scheme cannot provide as is.

The above hypothesis of cause can be tested with the blind phase of the study. If the above reasoning
is true, similar behaviour is expected from the blind phase solution where:

• The peaks in the spectra for the natural frequency of Cylinder1 are not well identified on account
of an off­resonant condition when facing a flow that is predicted to cause resonance as per the
experiment.

• This is to be accompanied with an overprediction of vortex shedding frequency and low back­
ground spectra level for Cylinder1.

• The results for Cylinder2 should be well in agreement with the experimental results given that it
is confirmed to be in an off­resonant condition and that it faces actual turbulence generated by
Cylinder1.

• All spectra plots will show underpredicted values in the high frequency range.

With the above expectations, the blind phase study is carried out for both off­resonant and resonant
flow conditions. The associated experimental setup and the numerical results are discussed in the
following chapter.
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5.4. Conclusion
In this chapter, the OECD Benchmark was introduced with the open phase study. The experimental
setup, including the associated measurement systems and the open phase test parameters, was briefly
discussed. The primary intention with the current study was to select one out of the three shortlisted
turbulence models that will be used for the blind phase study of this benchmark.

To achieve this agenda, numerical simulations are to be set up. Two challenges were identified: Se­
lecting a fluid mesh that fits in the current timeframe and resource budget of the current study and fine
tuning the structural model to the required natural frequencies in air and water. To deal with the first
problem, different meshes were proposed with different sizes of refinement regions and were tested in
a pure CFD study using a single (K­Omega SST: QCR) turbulence model against the FSI experimental
results to select the best performing mesh. The ‘CFD3’ mesh with 7.05M cells was selected which had
the longest Refine2 region consisting of elements of size 0.089𝐷 in the wake of the cylinders. To fine
tune the structural model, CSM vibration studies were carried out in vacuum and water for structures
with different bob lengths. A bob length of 10 𝑚𝑚 was finalized for the FSI study.

With the selected fluid mesh, structural model and associated settings, the FSI study was carried out
with the shortlisted turbulence models. Before getting into the results, the modelled inflow turbulence
condition was tested by plotting the streamwise velocity mean and RMS fluctuation profiles at sections
140 𝑚𝑚, 200 𝑚𝑚 and 50 𝑚𝑚 ahead of Cylinder1. For comparing with the experimental fluctuation
profiles, resolved and modelled turbulence profiles were used from the numerical simulations. Based
on the plots, the selected inlet turbulence settings were considered validated.

Considering the spectra plots for pressure and acceleration, resonance was not able to be predicted
for Cylinder1 by any of the URANS turbulence models. The key reason for the same is suspected to
be the overprediction of the vortex shedding frequency (𝑓𝑠) by 11%­14% (depending on the turbulence
model) which led to a mismatch in the fourth harmonic of 𝑓𝑠 and the natural frequency of Cylinder1
(𝑓𝑛1). It was also noted that for the experiment, due to the presence of a non­ideal pump, the spectral
density in the fluid pressure spectra at 𝑓𝑛1 was possibly overestimated due to it coinciding with the third
harmonic of the pumping frequency. The prediction by the URANS scheme for the acceleration spec­
tra for Cylinder2 was much better than Cylinder1 although the error in spectral density at the natural
frequency of Cylinder2 (𝑓𝑛2) was still significant with the closest prediction giving an error of 85.11% for
the K­Omega SST: QCR model.

Coming to the individual turbulence models, it was found that the K­Omega SST: QCR + GRT model
had the least fit with the velocity spectra results on account of predicting a poor background spectra.
This was followed by a better fit by the K­Omega SST: QCR model and the best fit provided by the
Standard K­Epsilon Low Re: Cubic model. The differences in results were reasoned to stem from the
type of wake predicted and was confirmed with the vorticity plots that revealed the best fitting model to
predict a really turbulent wake with small scale structures. The last set of results were the streamwise
velocity mean and RMS fluctuation profiles 10 𝑚𝑚 and 20 𝑚𝑚 behind the cylinders. While the mean
velocity profiles were nearly the same for all turbulence models, the Standard K­Epsilon Low Re: Cubic
model predicted the qualitatively best fitting profiles for the fluctuations. Based on all the results, this
model is selected for the blind phase study.

Based on the shortcomings of the URANS scheme observed in the current study, in particular the
overprediction of 𝑓𝑠 and the absence of physical turbulence at the inlet, expectations are listed for the
blind phase study which if met bring weight to the above reasonings of failure and thereby a scope
for improvements in this scheme. The blind phase study is formally introduced and discussed in the
following chapter.
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OECD Benchmark: Blind Phase

With the best suited turbulence model (Standard K­Epsilon Low Re: Cubic) selected and the expec­
tations for the results established, the blind phase of the OECD benchmark is formally introduced and
tackled. The experimental results of this phase of the benchmark were disclosed to the participants
much after all the obtained results were handed in. The current study is mainly used to confirm the
expectations drafted at the end of the previous chapter. Given that in this phase, both off­resonant and
resonant inflow rates will be tested, this is also a platform to further test the URANS framework and
discuss the difference in responses for the two inflow rates.

The experimental setup and parameters of interest are given in section 6.1. In particular, the two
cylinders house brass accelerometer mountings of different density and length which affect the natural
frequency of the structure. This is investigated for fine tuning in a pure structural analysis and is dis­
cussed as part of the numerical setup in section 6.2. Once the setup parameters and the meshes are
selected, the finalized turbulence model is put the test against the FSI problem in section 6.3.

6.1. Experimental Setup
The experimental setup again consists of two in­line cantilevered cylinders subjected to cross flow in a
rectangular channel test section as per the earlier setup shown in Figure 5.1a. The same test facility
located at the JSC “Afrikantov OKBM” in Russia is made use of. As was done for the open phase, only
the channel and its contents are set up for the simulation based on the dimensions prescribed in the
CAD drawings made available to the participants of the benchmark. The CAD model so created using
STAR­CCM+ is akin to that earlier shown in Figure 5.1b.

The experimental study made use of hollow stainless steel cylinders of diameter 𝐷=10 𝑚𝑚, wall thick­
ness 1 𝑚𝑚 and length 198 𝑚𝑚 placed 45 𝑚𝑚 apart with the first cylinder placed at a distance of 350
𝑚𝑚 from the inlet. For the experiment, each cylinder had different singular brass accelerometer mount­
ing of diameter 8 𝑚𝑚 and lengths 14 𝑚𝑚 and 29 𝑚𝑚, respectively, soldered internally at the tip of the
cylinder (the length does not include the solder deposit). These brass bobs for the two cylinders were
also slightly different in density leading to different natural frequencies of the structures in air and water.
The material properties of the structure are provided in Table 6.1. The working fluid was water at 19∘ 𝐶
and was tested for flow rates of 16 𝑚3/ℎ (off­resonance, 𝑅𝑒=7210.96) and 35 𝑚3/ℎ (peak resonance,
𝑅𝑒=15773.96) through the aforementioned channel that houses the cylinders. The reference static
pressure was 1 𝑘𝑔𝑓/𝑐𝑚2. In the current study, both cases are simulated and presented here.

As with the open phase, the natural frequency and structural damping of the cylinders in the channel
were analyzed by measuring the vibrations under the impact excitations of the channel and producing
a Frequency Response Function (FRF) plot. Based on the test of the channel without water, the natural
frequencies of the cylinders were found to be 𝑓𝑛1,𝑎𝑖𝑟 = 183.9 𝐻𝑧 and 𝑓𝑛2,𝑎𝑖𝑟 = 168.8 𝐻𝑧 respectively.
Based on a similar test of the channel with water, the natural frequencies of the cylinders were found
to be 𝑓𝑛1,𝑤𝑎𝑡𝑒𝑟 = 164.9 𝐻𝑧 and 𝑓𝑛2,𝑤𝑎𝑡𝑒𝑟 = 153.0 𝐻𝑧 respectively.
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Table 6.1: Structural Properties

Structure Material Density,
𝜌𝑠 (𝑘𝑔/𝑚3)

Young’s Modulus,
𝐸 (𝐺𝑃𝑎)

Poisson’s
Ratio, 𝜈

Hollow Cylinders 1 & 2 Stainless Steel 7850 200 0.30
Bob for Cylinder1 Brass 8700 200 0.33
Bob for Cylinder2 Brass 7500 200 0.33

The FRF plot created based on the experimental results provided for the test of the channel with water
is provided in Figure 6.1.

Figure 6.1: FRF Curves for the Two Cylinders under Impact Excitation of the Channel with Water

Using the above plot, the damping ratio (𝜁) or its related parameters like the loss factor (𝜂) and quality
factor (𝑄) is found using the ‘half­power’ or ‘3 𝑑𝐵’ rule. These damping parameters are calculated using

Δ𝑓
𝑓 = 𝜂 = 1

𝑄 = 2𝜁√1 − 𝜁
2 ≈ 2𝜁 (6.1)

where Δ𝑓 is the width of the FRF curve 3 𝑑𝐵 below the peak at frequency 𝑓. The loss factor for both
cylinders vibrating in water comes out to be 𝜂 = 0.007. The approximation 𝜁 = 0.5𝜂 is accurate within
1.25E­3% for 𝜂 ∈ [0, 0.01] and is thus made use of giving 𝜁 = 0.0035. This value is later used in
conjunction with the value from the numerical structural tests to provide structural damping for the FSI
tests using the ‘Rayleigh Damping’ model available in STAR­CCM+. For the cylinders, the Rayleigh
damping is restricted to stiffness proportional damping with the corresponding constant calculated as
per Equation 3.31 with 𝜔 = 2𝜋𝑓𝑛,𝑤𝑎𝑡𝑒𝑟.

6.1.1. Measurement Systems
The same equipment used for the open phase is also used for the blind phase. This includes the static
pressure probes, thermocouples and electromagnetic flow meter for measuring the static pressure,
temperature and flow rate. To study the hydrodynamics of the flow, systems based on PIV (pulsed
lasers) were used. As the tracer particles, 10 𝜇𝑚 polyamide particles were used. To study the vibra­
tional response of the structure, accelerometers are mounted at the top of the cylinders in two mutually
perpendicular directions. Measurements of vibrations, pressure pulsations, as well as velocity pulsa­
tions were carried out synchronously. The operability of the accelerometers and pressure pulsation
sensors was provided by duplication of measurements using a laser vibrometer and hydrophones,
respectively. The synchronization of vibration measurements using accelerometers and a laser vi­
brometer were carried out by an external trigger. Further specifications of these systems have been
provided in section 5.1.
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6.1.2. Blind Phase Test Parameters
As with the open phase, the participants of the benchmark are free to perform one­way or two­way
method of FSI calculations as well as pure CFD calculations. In the current study, the two­way coupled
FSI calculations are performed for both the off­resonance and peak resonance cases.

During testing, dynamic parameters were measured correspondingly by different systems. The ex­
perimental data were registered as a function of time. The following measurements were performed:

• 𝑣(𝑡) – time oscillation of velocity pulsations
• 𝑝(𝑡) – time oscillation of pressure pulsations on the channel wall
• 𝑎(𝑡) – time oscillation of cylinders’ vibration acceleration

Figure 6.2 shows the locations of the measurement points. The same coordinate system for the open
phase is used here as well. As with the open phase, the accelerometer readings of 𝑎𝑥𝑦𝑧3 and 𝑎𝑥𝑦𝑧4 (see
Figure 6.2b) are not made use of. The PSD (spectrum) of velocity and pressure pulsations, vibration
accelerations are later calculated based on the time series.

(a) Locations of Velocity Pulsations Measurements in the 𝑖𝑡ℎ Plane (b) Locations of Cylinders’ Vibration Acceleration Measurement

(c) Locations of Pressure Pulsations Measurements

Figure 6.2: Location of Measurement Points for Different Parameters

Besides measurements at the above locations, horizontal velocity profile measurements were made 10
𝑚𝑚 and 20𝑚𝑚 behind the cylinders as shown in Figure 6.3b. Furthermore, to aid in selecting inlet flow
conditions, additional velocity profile measurements are made. These measurements are performed
in the following sections and are shown in Figure 6.3:
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• Average and Root Mean Squared (RMS) profile in the vertical plane of longitudinal velocity 𝑉𝑥(𝑧)
in front of the 1𝑠𝑡 cylinder at a distance of 140 𝑚𝑚

• Average and RMS profile in four horizontal planes (40, 80, 120 and 160 𝑚𝑚) of longitudinal
velocity 𝑉𝑥(𝑦) in front of the 1𝑠𝑡 cylinder at a distance of 200 𝑚𝑚

• Average and RMS profile in three horizontal planes (25, 100 and 175𝑚𝑚) of longitudinal velocity
𝑉𝑥(𝑦) in front of the 1𝑠𝑡 cylinder at a distance of 50 𝑚𝑚

(a) Vertical Plane

(b) Horizontal Planes

Figure 6.3: Locations of Velocity Profiles Measurement in the Vertical and Horizontal Planes

6.2. Numerical Setup
Based on the CAD drawings for the test section (and its contents) of the experimental setup, the sim­
ulation domain is set up in STAR­CCM+. The problem is set up in STAR­CCM+ as follows: For the
incompressible fluid, the ‘Implicit Unsteady’ SIMPLE scheme ‘Segregated Flow’ solver is selected with
a 2𝑛𝑑 order upwind convection scheme. The pressure and velocity equations are given UR factors of
0.2 and 0.6 respectively. The four channel walls and the exposed cylinder surfaces are prescribed a
no­slip boundary condition. A constant static pressure of 0 𝑃𝑎 is prescribed for the outlet. For the inlet,
a time­varying uniform velocity is prescribed for (numerical stability of) the current FSI study as given
by the equation:

𝑢(0, 𝑦, 𝑧, 𝑡) = {𝑢(0, 𝑦, 𝑧)
1−cos (𝜋𝑇 𝑡)

2 , if 𝑡 < 𝑇
𝑢(0, 𝑦, 𝑧), otherwise

𝑢(0, 𝑦, 𝑧) = {0.74𝑚/𝑠, Off­Resonance
1.62𝑚/𝑠, Resonance

𝑇 = {0.75 𝑠 (1.01𝐹𝑃), Off­Resonance
0.7 𝑠 (2.06𝐹𝑃), Resonance

(6.2)

For the solid, the ‘Solid Stress’ solver is selected along with a 2𝑛𝑑 order Newmark implicit integration
scheme (Newmark parameter, 𝛾=0.5). At this point, a choice is to be made between the infinitesimal
strain and finite strain approximation. The expected displacements in both streamwise (𝑥) and cross
flow (𝑦) directions are less than 0.5 𝑚𝑚 which, relative to the 198 𝑚𝑚 length of the cylinders, is less
than 0.25% of the cylinder length. From the validation work as well as the experience from the open
phase study, the infinitesimal strain approximation given by the ‘Linear Geometry’ model is selected.
For the boundary condition, the annular surfaces at the bottom of the cylinders are grounded while the
outer wetted surfaces are declared as an FSI interface. Internally, the brass bobs are fixed in their rel­
ative positions using the ‘bonded’ boundary condition between the bob curved surface and the cylinder
inner curved surface. For the FSI coupling, a UR factor of 0.5 is prescribed.
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The fluid mesh is created using the ‘Automatic Mesh’ functionality of STAR­CCM+. For the fluid, a
structured hexahedral mesh is created with three volume refinements. Approaching the cylinder from
the inlet by crossing each refinement region reduces the target base size (𝑏𝑠) of 3 𝑚𝑚 by half se­
quentially. To ensure good transition between the refinement regions, a growth rate of 1.1 is selected.
Given a budget of 128 allocated cores, 1 month of physical time for this phase of the current study
and past experience with the open phase simulations, a maximum allowable number of fluid elements
is again capped at 8M. The mesh is akin in placements of refinement regions as the mesh used for
the open phase FSI study with care taken to ensure a 𝑌+ value of 1 on all walls as per the resonant
inflow velocity. The mesh so created has 7.78M elements whose sectional views are shown below in
Figure 6.4a.

(a) Fluid Mesh (b) Solid Mesh

Figure 6.4: Sectional Views of the Fluid and Solid Mesh

For the solid, unstructured meshes are set up for the cylinders and their internal bobs. The solid mesh
for the cylinders is also created using the ‘Automatic Mesh’ functionality of STAR­CCM+. The ‘Thin
Mesher’ and ‘Tetrahedral Mesher’ are selected with 3 thin layers, the ‘Quad Dominant’ meshing method
and a target 𝑏𝑠 of 0.375𝑚𝑚 which leads to a mesh with 276205 elements for each of the cylinders. For
the bobs, the ‘Directed Mesh’ functionality is used which creates a given number of layers of the same
planar or ‘Patch Mesh’. For the ‘Patch Mesh’, the ‘Automatic Mesh’ functionality is selected along with
the ‘Quadrilateral Mesher’. The mesh is given 40 layers for the bob in Cylinder1, 80 layers for the bob in
Cylinder2 and a target 𝑏𝑠 of 0.37 𝑚𝑚 which leads to element counts of 20992 and 43824 respectively.
Sectional views of the solid mesh are shown in Figure 6.4b. For low computational effort, linear finite
elements are employed by disabling the ‘Mid­side Vertex’ option.

For the experimental study, it was mentioned that the brass bobs were 14 𝑚𝑚 and 29 𝑚𝑚 in length
excluding the solder. Furthermore, the cylinders had additional length that ran into the wall of the
channel which was then fixed by a tightening nut arrangement. This and the fact that the mass due to
the soldering process and the accelerometer itself is unaccounted for, there is a need to fine tune the
structural model to have the same natural frequency as the experiment. This is done by altering the
length of the bobs and is discussed further in the following subsection.
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6.2.1. CSM Study
As mentioned earlier, the cylinders in the experiment are slightly longer with the extra length running
into the channel wall where they are constrained by a tightening nut. The schematic of the same is
shown in Figure 6.5. Furthermore, the brass accelerometer mountings were mentioned to be 14 𝑚𝑚
and 29 𝑚𝑚 in length excluding the solder. This and the fact that there is no accelerometer equipment
(which has its own mass) in the numerical setup calls for fine tuning the structural model.

Figure 6.5: Schematic of the Cylinders used in the Experiment

In the current numerical setup, the brass mountings, the solder and the accelerometer mass is to be
represented by the brass bobs alone. The fine tuning is thus aimed by modifying the bob lengths.
Testing is carried out in both in vacuum and in water. The results of interest are the natural frequencies
in vacuum and water and the added damping for the test in water. No additional damping is made use
of for these tests.

The tests are carried out as follows: For the both the tests in vacuum and in water, a numerical gravity
of 10𝑔 is applied to the cantilevered cylinders in the 𝑦­direction which would result in tip displacements
comparable in magnitude to the FSI test. When the cylinders come to the position of maximum tip dis­
placement, the gravity is switched off and free oscillations of the cylinders are captured. To calculate
the natural frequencies, the time interval between successive oscillations are used. As for the damping
in water, the same expression introduced in the open phase is used:

𝜁 = 1

√1 + (2𝜋𝛿 )
2

(6.3)

where 𝛿 is the logarithmic decrement of the structural response (tip displacement) in water.

In STAR­CCM+, the ‘Solid Stress’ solver is selected along with a 2𝑛𝑑 order Newmark implicit integration
scheme (Newmark parameter, 𝛾=0.5). The infinitesimal strain approximation given by the ‘Linear Ge­
ometry’ model is also selected. A time step satisfying the 100 sampling point rule is selected based on
the natural frequency of Cylinder1 in air (183.9 𝐻𝑧) for the tests in vacuum and water (Δ𝑡=0.05𝑚𝑠). For
the test in water, the fluid domain consists of still water in the channel which is obtained by setting the
inlet velocity to 0 𝑚/𝑠. For the fluid, the ‘Implicit Unsteady’ SIMPLE scheme ‘Segregated Flow’ solver
is selected with a 2𝑛𝑑 order upwind convection scheme and the ‘Laminar Flow’ model. The pressure
and velocity equations are given UR factors of 0.2 and 0.6 respectively. For the FSI coupling, a UR
factor of 0.5 is used.
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Obtained Results
The current bob lengths of 14 𝑚𝑚 and 29 𝑚𝑚 do not account for the mass of the solder and the
accelerometer itself. The vacuum andwater tests are conducted for these bob lengths as well as slightly
increased bob lengths of 15 𝑚𝑚 and 30 𝑚𝑚 respectively. The predictions for the natural frequency of
the cylinders in vacuum are tabulated in Table 6.2. Based on the tests in vacuum, a bob length pair of
15 𝑚𝑚 and 30 𝑚𝑚 appears to be the best choice with relative errors in natural frequency at 0.699%
and 0.018% for Cylinder1 and Cylinder2 respectively.

Table 6.2: Results for Vibration Tests in Vacuum

Pairs of Bob
Lengths (𝑚𝑚)

Natural Frequency (𝐻𝑧)
Cylinder1 Cylinder2

14.0, 29.0 186.34 169.97
15.0, 30.0 185.19 168.77
Exp. Soln. 183.90 168.80

The vibration tests are also conducted in water using the ‘Laminar Flow’ model. The results for the
natural frequencies and the damping ratio are tabulated in Table 6.3 based on the time series shown in
Figure 6.6. Based on these results as well, a bob length pair of 15 𝑚𝑚 and 30 𝑚𝑚 appears to be the
best choice with regard to the natural frequency with relative errors of 0.236% and 0.941% for Cylinder1
and Cylinder2 respectively.

Table 6.3: Results for Vibration Tests in Water

Pairs of Bob
Lengths (𝑚𝑚)

Natural Frequency (𝐻𝑧) Damping Ratio
Cylinder1 Cylinder2 Cylinder1 Cylinder2

14.0, 29.0 166.67 155.04 0.0023 0.0012
15.0, 30.0 165.29 154.44 0.0031 0.0012
Exp. Soln. 164.90 153.00 0.0035 0.0035

(a) Cylinder1 (b) Cylinder2

Figure 6.6: Y­displacement Time History Plots for the Tip Displacement of Cylinder1 and Cylinder2 in Water with Different Bob
Lengths

Based on these results, the bob length pair of 15𝑚𝑚 and 30𝑚𝑚 is used for the FSI study which results
in a mass ratio of 𝑚∗=3.278 and 3.584 for Cylinder1 and Cylinder2 respectively. The last item for the
FSI setup is the mismatch in structural damping. There appears to be a significant gap in the prediction
of the damping ratio in the above vibration test in water even for the optimal bob length pair especially
for Cylinder2. This is remedied by adding structural damping via the aforementioned ‘Rayleigh Damp­
ing’ model. The difference between the damping calculated here and the expected value is used for
calculating the stiffness constant as per Equation 3.31. With this, all relevant parameters for the FSI
study are finalized and the results obtained for the same are discussed in the following section.
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6.3. FSI Study
With the selected mesh and the fine tuned structural model, the FSI test is attempted for the off­
resonance case of 0.74𝑚/𝑠 inflow and the peak resonance case of 1.62𝑚/𝑠 inflow using the shortlisted
Standard K­Epsilon Low Re: Cubic turbulence model. To keep the FSI coupling stable during the start
up of the simulation, a cosine ramping of the inflow velocity is given for 0.75 𝑠 (1.01 𝐹𝑃) for the off­
resonance case and for 0.7 𝑠 (2.06 𝐹𝑃) for the peak resonance case as per Equation 6.2. A total
simulation time of 11.3855 𝑠 (15.334 𝐹𝑃) is provided for the off­resonance case while 5.5 𝑠 (16.204 𝐹𝑃)
is provided for the peak resonance case.

Since the experimental vortex shedding frequency (𝑓𝑠) is unknown for the blind phase, Strouhal esti­
mates of the same are made as per Equation 2.2 using an assumed 𝑆𝑡 = 0.21. These lead to expected
vortex shedding frequencies of 15.6 𝐻𝑧 and 34.0 𝐻𝑧 for the off­resonance case and peak­resonance
case respectively. To adhere to the 100 sampling point thumb rule, a time step size of 0.75 𝑚𝑠 is used
during the cosine ramping and is reduced to 0.5 𝑚𝑠 for the remainder of the simulation for the off­
resonance case while corresponding values of 0.35 𝑚𝑠 and 0.24 𝑚𝑠 are used for the peak resonance
case. Using the back­windowing approach on the created spectra plots, it was found that transient re­
sults lasted 2 𝐹𝑃 after the end of the cosine ramping period. Thus results corresponding to the last 14
𝐹𝑃 for both cases are used for creating the spectra. Before presenting the main results, the selection
of the inflow turbulence setting is addressed.

6.3.1. Inflow Turbulence
As was done for the open phase study, a choice for the turbulence intensity at the inlet is to be made.
Based on the experimental data shown in Figure 6.7, a turbulence intensity of 2.21% and 2.12% were
predicted by the PIV measurements for the off­resonance (‘OR’) case and the peak resonance (‘R’)
case respectively. Assuming the same amount of decay of turbulent kinetic energy with distance as
for the open phase and using Equation 5.5, a value of about 6% should suffice for the inlet turbulence
intensity. However, rather than satisfying this parameter at a distance of 140 𝑚𝑚 ahead of Cylinder1,
as was done for the open phase, it is intended here to give a sufficiently high inlet turbulence intensity
such that the final value at the location of Cylinder1 matches the experimental conditions. In this re­
gard, a value of 10% is chosen for the inlet turbulence intensity.

Based on this choice of turbulence intensity, the numerical results (‘Sim’) are also plotted in Figure 6.7.
For the mean velocity shown in Figure 6.7a, the simulation results show underpredicted velocities at
the center of the domain with better agreement close to the channel walls. The relative errors of under­
prediction of the mean velocity is found to be 4.19% and 3.63% at the center of the channel width for
the off­resonance and the peak resonance cases respectively. For the same flow rate, this implies that
the predicted boundary layer thickness at this location is much thinner than it should be as is confirmed
by the early flattening out of the velocity profile.

(a) Mean Velocity (b) RMS Velocity Fluctuation

Figure 6.7: Mean and RMS Fluctuation Streamwise Velocity Profiles at a Vertical Section 140 𝑚𝑚 ahead of Cylinder1
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For the RMS fluctuations shown in Figure 6.7b, the simulation results are presented as a quantity re­
solved by the mesh and as one modelled through the turbulent kinetic energy as was done for the open
phase study. Due to the absence of actual turbulent structures, the resolved fluctuations are small be­
ing of the order of 1E­4𝑚/𝑠 at the channel center to 1E­3𝑚/𝑠 close to the channel wall. The modelled
fluctuations, however, are of the same order of magnitude as the experimental data and are observed
to be overpredicted at the channel center by 46.83% and 53.62% respectively for the off­resonance
and the peak resonance cases. This is expected as a higher turbulence intensity was set for the inlet
than estimated. It is expected that the modelled fluctuation results would be in much better agreement
with those 50 𝑚𝑚 ahead of Cylinder1 on account of the dissipation of turbulent kinetic energy.

As per Figure 6.3, velocity profiles are also available at horizontal sections 50 𝑚𝑚 and 200 𝑚𝑚 ahead
of Cylinder1. These are shown in Figure 6.8 and Figure 6.9 respectively.

(a) Mean Velocity at Plane 𝑍1 (b) RMS Velocity Fluctuation at Plane 𝑍1

(c) Mean Velocity at Plane 𝑍2 (d) RMS Velocity Fluctuation at Plane 𝑍2

(e) Mean Velocity at Plane 𝑍3 (f) RMS Velocity Fluctuation at Plane 𝑍3

Figure 6.8: Mean and RMS Fluctuation Streamwise Velocity Profiles at a Horizontal Section 50 𝑚𝑚 ahead of Cylinder1
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(a) Mean Velocity at Plane 𝑍1 (b) RMS Velocity Fluctuation at Plane 𝑍1

(c) Mean Velocity at Plane 𝑍2 (d) RMS Velocity Fluctuation at Plane 𝑍2

(e) Mean Velocity at Plane 𝑍3 (f) RMS Velocity Fluctuation at Plane 𝑍3

(g) Mean Velocity at Plane 𝑍4 (h) RMS Velocity Fluctuation at Plane 𝑍4

Figure 6.9: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections 200 𝑚𝑚 ahead of Cylinder1



6.3. FSI Study 101

The mean velocity profiles of Figure 6.9 at different planes 200 𝑚𝑚 ahead of Cylinder1 reveal slightly
underpredicted channel center velocities by the simulation as was seen for Figure 6.7 with average
relative errors of 2.13% and 3.42% over the 4 planes for the off­resonance and peak resonance cases
respectively. The numerical and experimental results show symmetric profiles with slight variations
across different planes of measurement. This variation across planes is minimal (within 1% at the
channel width center) owing to the large distance from Cylinder1.

For the RMS fluctuations of Figure 6.9, the observations for the resolved fluctuations are similar to
the vertical section velocity profile with very low fluctuations detected as per expectations. The ob­
servations are also similar for the modelled fluctuations with overpredictions towards the center of the
channel width as well as disagreement in the fluctuations of the channel wall boundary layer. The av­
erage relative errors of the modelled fluctuations at the center of the channel width are 91.38% and
84.99% for the off­resonance and peak resonance cases respectively. Unlike the simulation curves,
the experimental curves also show slight asymmetry and significant variation (within 20% at the chan­
nel width center) across the planes of measurement.

Coming closer to Cylinder1, at a distance of 50 𝑚𝑚, observing the mean profiles of Figure 6.8, the
experimental results show asymmetric profiles that vary slightly (within 1% at the channel width center)
across different planes of measurement with the largest visible deviation at plane 𝑍2. The boundary
layer at the channel wall also appears to have grown from what it was at a distance of 200 𝑚𝑚, as the
velocity profile has become more parabolic in nature. The simulation results are still underpredicted at
the center of the channel width with average relative errors of 2.48% and 3.31% for the off­resonance
and peak resonance cases respectively which is comparable to the errors observed 140 𝑚𝑚 and 200
𝑚𝑚 ahead of Cylinder1.

For the RMS fluctuations of Figure 6.8, however, there is better agreement between the modelled
fluctuations and experimental results especially for the off­resonance case. Unlike the results at 140
𝑚𝑚 and 200 𝑚𝑚 ahead of Cylinder1, however, the modelled fluctuations are underpredicted at the
center of the channel width for the off­resonance case and for planes 𝑍1 and 𝑍2 for the peak resonance
case. The average relative errors at the center of the channel width are 11.83% and 10.16% for the
off­resonance and peak resonance cases respectively. Comparing the errors to those at 140 𝑚𝑚 and
200 𝑚𝑚 ahead of Cylinder1, it appears that the errors go down as Cylinder1 is approached. This im­
plies that the dissipation of turbulent kinetic energy by the Standard K­Epsilon Low Re: Cubic model is
much larger than that in the experiment. The experimental curves are observed to be asymmetric and
significantly varying (within 30% at the channel width center) across the planes of measurement.

Based on the results discussed so far, the setting for the inlet turbulence is considered acceptable.
The following section shows the pressure, acceleration and velocity spectra followed by the the vortic­
ity plots and the velocity profiles aft of the cylinders.

6.3.2. Obtained Results
The primary results of interest for the FSI study are the velocity, acceleration and pressure spectra
for the points as per Figure 6.2. The pressure spectra plots for the the off­resonance (‘OR’) case and
the peak resonance (‘R’) case are shown along with the experimental results in Figure 6.10. To obtain
clean spectra plots, linear averaging is applied with a window size of 30, 15 and 10 for the experi­
mental results and numerical results for the OR and R cases respectively. The experimental results
show several peaks that correspond to multiples of the vortex shedding frequency (𝑓𝑠 = 21.81 𝐻𝑧 [OR],
39.89 𝐻𝑧 [R]) and the natural frequency of Cylinder1 (𝑓𝑛1 = 160.4 𝐻𝑧) and Cylinder2 (𝑓𝑛2 = 152.4 𝐻𝑧).
The other distinct peaks in the experimental results are suspected to be linked with the pump frequency.

As the flow rate is increased, the PSD levels increase for both the experimental and numerical re­
sults. However, the numerical results show overpredicted background spectra levels by an order of
magnitude. This was also observed to a lesser extent for the prediction of 𝑃4 in the open phase FSI test
(see Figure 5.20d). The reasoning given in the open phase about the cause being the redistribution of
peak spectral densities to higher frequencies with the breakdown of turbulence to smaller scales does
not seem as plausible here.
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(a) 𝑃1 (b) 𝑃2

(c) 𝑃3 (d) 𝑃4

Figure 6.10: Pressure Spectra Plots

For the natural frequency of the cylinders, only that of Cylinder2 is distinct as was the case in the open
phase FSI study. The absence of actual turbulence from the inlet in the simulation for both flow rates
is suspected to be the reason why Cylinder1 is not excited for the off­resonance case. For the peak
resonance case, this reason along with the fact that the vortex shedding frequency is overpredicted, is
suspected to have caused an even larger gap between the experimental and numerical results. The
vortex shedding frequencies predicted here are 22.93 𝐻𝑧 and 48.76 𝐻𝑧 which translates to relative
errors of 5.13% and 22.24% for the off­resonance and peak resonance cases respectively.

Not all harmonics of 𝑓𝑠 are distinct for the numerical solution. For 𝑃1, only the first even harmonic
is distinct while for 𝑃2 and 𝑃3, only the first harmonic is distinct for the peak resonance case while the
first three harmonics are distinct for the off­resonance case. For 𝑃4, no harmonic of the vortex shedding
frequency is captured for either of the two cases. These observations are in line with those for the open
phase FSI study where it was reasoned to imply an easier propagation of the frequency pertinent to
the streamwise direction (even harmonics) than it is for the cross flow (odd harmonics) and that the first
harmonic is more easily captured immediately downstream of the source (the cylinders) rather than
upstream.

The acceleration spectra of the cylinders obtained from the experiment and numerical simulations are
shown in Figure 6.11. The same linear averaging is applied here as the pressure spectra plots. The
experimental results for Cylinder1 and Cylinder2 reveal distinct peaks at the vortex shedding frequency
(𝑓𝑠) and its multiples as well as the natural frequencies 𝑓𝑛1 and 𝑓𝑛2 in both streamwise (𝑥) and cross
flow (𝑦) directions. The numerical results show distinct peaks corresponding to the even harmonics of
𝑓𝑠 in the 𝑥­direction and the odd harmonics of 𝑓𝑠 in the 𝑦­direction. The numerical results also show
peaks for 𝑓𝑛1 and 𝑓𝑛2 in both directions.
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(a) Cylinder1: 𝑥­direction (b) Cylinder1: 𝑦­direction

(c) Cylinder2: 𝑥­direction (d) Cylinder2: 𝑦­direction

Figure 6.11: Acceleration Spectra Plots for the Cylinders

For the spectra of Cylinder1, the numerical results are underpredicted for both the off­resonance and
peak resonance conditions. At 𝑓𝑛1, the error is of 2 orders of magnitude in the 𝑥­direction while it is of 3
orders of magnitude in the 𝑦­direction for the off­resonance case. The error is even more severe for the
peak resonance case with corresponding errors of 5 orders of magnitude in the 𝑥­direction and 4 orders
of magnitude in the 𝑦­direction. For the peak resonance case, the mismatch of the fourth harmonic of 𝑓𝑠
with 𝑓𝑛1 is suspected to be the main reason as was stated while reasoning the open phase FSI results.
Even so, the other reason was reasoned to be the absence of inlet turbulence that could explain the gap
in the results of the off­resonance case and that of the background spectra of the peak resonance case.

For Cylinder2, the match in the background spectra is much better for both the cases with underpre­
dictions in the higher frequency range. The match is much better for Cylinder2 owing to the presence
of actual turbulence generated from Cylinder1. As was reasoned for the open phase FSI study, having
better predictions in the high frequency range requires a smaller time step, grid size and even a higher
fidelity method such as LES instead of URANS. Even though the background spectra overlaps with the
experimental curve in the low frequency range, the peak spectral density at 𝑓𝑛2 is still underpredicted.
At 𝑓𝑛2, the error is of 1 order of magnitude in the 𝑥­direction while it is of 2 orders of magnitude in the
𝑦­direction for the off­resonance case. The error is about the same for the peak resonance case with
corresponding errors of 1 order of magnitude in the 𝑥­ and 𝑦­direction. The error is comparatively less
compared to Cylinder1 on account of the fact that Cylinder2 is always in an off­resonance condition for
both cases.
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The predictions of the numerical vortex shedding frequency are confirmed to be the same values quoted
from the pressure spectra plots. The natural frequency of Cylinder1 is predicted to be 164.6 𝐻𝑧 from
the 𝑦­direction spectra while it is predicted to be 160.5 𝐻𝑧 in the 𝑥­direction which translates to errors of
2.61% and 6.23E­2% respectively. Similarly, the natural frequency of Cylinder2 is predicted to be 151.4
𝐻𝑧 from the 𝑦­direction spectra while it is predicted to be 152.1 𝐻𝑧 in the 𝑥­direction which translates to
errors of 0.66% and 0.20% respectively. The fine tuned structural model is thus confirmed to give the
correct value for the natural frequency of the cylinders. Improving the prediction of the same warrants
for the further modification of the pairs of bob lengths which is not carried out in this study.

The velocity spectra plots for the two cases are shown along with the experimental results (available
only in the 𝑥­direction) in Figure 6.12 through Figure 6.14. To obtain clean spectra plots, the same
linear averaging is applied as the pressure and acceleration spectra plots. These spectra, in principle,
captures the turbulence present in the flow from the inlet (relevant for all planes) as well as that gen­
erated at the channel walls (relevant for planes 𝑍1 and 𝑍3), the cylinder curved surface (relevant for
all planes) and the 2 𝑚𝑚 gap at the free end of the cylinder (relevant for plane 𝑍1). The experimental
results show peaks for the vortex shedding frequency and its harmonics. Not all peaks are distinct,
however, with some expected peaks being at the same level as the background spectra.

Similar trends are observed for the numerical results with the spectra towards higher frequencies show­
ing underpredicted results. It appears that the underprediction of the background spectra begins earlier
for the off­resonance case (at 105 𝐻𝑧 on average) than it does for the peak resonance case (at 220
𝐻𝑧 on average). However, looking at these numbers as multiples of the vortex shedding frequency for
the corresponding case reveals that the match in the background spectra is till about the fifth harmonic
of the vortex shedding frequency. As reasoned earlier for the acceleration spectra as well as the cor­
responding plots for the open phase FSI study, a higher fidelity method along with smaller mesh size
and time step is warranted for seeing improvements in the prediction as the small scale turbulence gets
resolved better.

As was observed for the acceleration and pressure spectra plots, the vortex shedding frequency is
overpredicted for both the off­resonance and peak resonance cases. Comparing the spectral density
at the vortex shedding frequency shows predictions of the same order of magnitude as the experimental
results at all planes for the off­resonance case and plane 𝑍3 for the peak resonance case while there is
an order of magnitude difference for planes 𝑍1 and 𝑍2 for the peak resonance case. It is also observed
that the vortex shedding frequency captured by the experiment as well as the numerical results vary
slightly along the length of the cylinders. In particular, the prediction by 𝑉𝑖1 and 𝑉𝑖3 were found to be the
same as 𝑉𝑖2 and 𝑉𝑖4 respectively. The experimental as well as numerical predictions for 𝑓𝑠 are tabulated
in Table 6.4 for 𝑉𝑖1 and 𝑉𝑖3 with corresponding (𝑥­direction) relative errors tabulated in Table 6.5.

Table 6.4: Vortex Shedding Frequency Predictions by the Experiment and the Simulation

O
R

𝑓𝑠 at 𝑉11 (𝐻𝑧) 𝑓𝑠 at 𝑉21 (𝐻𝑧) 𝑓𝑠 at 𝑉31 (𝐻𝑧) 𝑓𝑠 at 𝑉13 (𝐻𝑧) 𝑓𝑠 at 𝑉23 (𝐻𝑧) 𝑓𝑠 at 𝑉33 (𝐻𝑧)
Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim.

𝑥 21.5 21.2 21.5 22.6 19.0 22.1 21.3 20.6 21.6 22.8 19.7 22.3
𝑦 ­ 21.7 ­ 22.6 ­ 22.0 ­ 21.4 ­ 22.7 ­ 22.2

R 𝑓𝑠 at 𝑉11 (𝐻𝑧) 𝑓𝑠 at 𝑉21 (𝐻𝑧) 𝑓𝑠 at 𝑉31 (𝐻𝑧) 𝑓𝑠 at 𝑉13 (𝐻𝑧) 𝑓𝑠 at 𝑉23 (𝐻𝑧) 𝑓𝑠 at 𝑉33 (𝐻𝑧)
Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim.

𝑥 39.9 46.4 40.0 47.1 40.7 44.7 40.1 42.7 40.0 44.4 40.0 44.2
𝑦 ­ 46.4 ­ 47.1 ­ 44.7 ­ 45.1 ­ 47.3 ­ 44.4

Table 6.5: Relative Errors in Predicting the Vortex Shedding Frequency by the Simulation

Test
Case

𝑉11
(%)

𝑉21
(%)

𝑉31
(%)

𝑉13
(%)

𝑉23
(%)

𝑉33
(%)

OR 1.395 5.116 16.316 3.286 5.556 13.197
R 16.291 17.750 9.828 6.484 11.000 10.500
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(a) 𝑉11 : 𝑥­direction (b) 𝑉11 : 𝑦­direction

(c) 𝑉12 : 𝑥­direction (d) 𝑉12 : 𝑦­direction

(e) 𝑉13 : 𝑥­direction (f) 𝑉13 : 𝑦­direction

(g) 𝑉14 : 𝑥­direction (h) 𝑉14 : 𝑦­direction

Figure 6.12: Velocity Spectra Plots: 𝑉1𝑖 , (𝑖 = 1, 2, 3)
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(a) 𝑉21 : 𝑥­direction (b) 𝑉21 : 𝑦­direction

(c) 𝑉22 : 𝑥­direction (d) 𝑉22 : 𝑦­direction

(e) 𝑉23 : 𝑥­direction (f) 𝑉23 : 𝑦­direction

(g) 𝑉24 : 𝑥­direction (h) 𝑉24 : 𝑦­direction

Figure 6.13: Velocity Spectra Plots: 𝑉2𝑖 , (𝑖 = 1, 2, 3)
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(a) 𝑉31 : 𝑥­direction (b) 𝑉31 : 𝑦­direction

(c) 𝑉32 : 𝑥­direction (d) 𝑉32 : 𝑦­direction

(e) 𝑉33 : 𝑥­direction (f) 𝑉33 : 𝑦­direction

(g) 𝑉34 : 𝑥­direction (h) 𝑉34 : 𝑦­direction

Figure 6.14: Velocity Spectra Plots: 𝑉3𝑖 , (𝑖 = 1, 2, 3)
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The experimental results show the same value for the vortex shedding frequency at all locations for
the peak resonance case. For the off­resonance case, the results are similar for plane 𝑍1 and 𝑍2 while
there is a drop in the value at plane 𝑍3. The numerical results, on the other hand, predict a higher
value at plane 𝑍2 compared to planes 𝑍1 and 𝑍3 at all locations. From Table 6.5, the largest errors are
observed to be at plane 𝑍3 for the off­resonance case and at plane 𝑍2 for peak resonance case. In
general, the errors are found to be higher for the peak resonance case than the off­resonance case.

Although experimental results are not available for the 𝑦­direction, the simulation results are tabu­
lated in Table 6.4. The prediction of 𝑓𝑠 is observed to be the same as that obtained from the 𝑥­direction
velocity spectra for all locations except 𝑉13 for both cases and at 𝑉23 for the peak resonance case where
the 𝑦­direction prediction is higher than that of the 𝑥­direction. It is to be noted that all the values quoted
from the simulation have an uncertainty of about ±1.5 𝐻𝑧 in selecting the vortex shedding frequency
owing to the flattening of the peak tips by the linear averaging process as was mentioned in the open
phase FSI study. Withstanding this, the expectation drafted from the open phase study of overpredict­
ing 𝑓𝑠 for the peak resonance case is considered to be met.

A final observation from the velocity spectra trends is that the peaks are more distinct 10 𝑚𝑚 be­
hind the cylinders (𝑉𝑖1 and 𝑉𝑖3 ) rather than 20 𝑚𝑚 behind the cylinders (𝑉𝑖2 and 𝑉𝑖4 ) with peaks being
more distinct for 𝑉𝑖1 as compared to 𝑉𝑖3 . As was reasoned in the open phase CFD and FSI study, this is
linked to the dissipation of vortical structures as they travel downstream and the presence of a source of
turbulence (Cylinder1) upstream of Cylinder2. This is hinted by the vorticity plots shown in Figure 6.15
and Figure 6.16.

As was also observed from the open phase FSI study, 3D vortex tubes are shed from Cylinder1 with
these regular structures breaking down into smaller ones as they travel towards Cylinder2. As they in­
teract with Cylinder2 and its generated wake, the regular structures are completely lost for both the off­
resonance and peak resonance cases. The turbulent structures are observed to have higher strength
for the peak resonance case than the off­resonance case. This is expected since vorticity (�⃗� = ∇ × �⃗�)
scales with direction­derivatives of velocity which increase with increasing flow rate aft of the cylinders.

Figure 6.15: Vertical Section Vorticity Plots for (a) OR and (b) R Test Cases

Figure 6.16: Horizontal Section Vorticity Plots for (a) OR and (b) R Test Cases at Plane 𝑍2
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To confirm the similarity of the wake of the two cases, the vorticity is non­dimensionalized by the vortex
shedding frequency which incorporates the influence of the flow rate via the Strouhal number. The
non­dimensional vorticity plots so created are shown in Figure 6.17 and Figure 6.18. The near similar
non­dimensional strength of the wake thus confirms the similarity of the wake for the off­resonance and
peak resonance cases.

Figure 6.17: Vertical Section Non­dimensional Vorticity Plots for (a) OR and (b) R Test Cases

Figure 6.18: Horizontal Section Non­dimensional Vorticity Plots for (a) OR and (b) R Test Cases at Plane 𝑍2

The last set of results are the mean and RMS fluctuation velocity profiles at horizontal sections 10 𝑚𝑚
and 20 𝑚𝑚 behind each of the cylinders which are shown in Figure 6.19 through Figure 6.21. The
explanation for the shape of these plots has already been discussed for the open phase FSI study.
The PIV and LDV curves for the mean and RMS fluctuation velocity profiles are observed to agree with
each other at all planes and locations of measurement.

The mean velocity profiles predicted for the off­resonance case qualitatively appears to match the
experimental results well with the largest deviation observed for the profile 10 𝑚𝑚 behind Cylinder1
at plane 𝑍2 (see Figure 6.20a) as a larger dip in mean velocity at the center of the channel width is
predicted. On the other hand, the profiles for the peak resonance case have more deviations from
the experimental profiles. In general, it is observed that the agreement between the numerical pre­
diction and experimental results improves as the distance from the source of turbulence (cylinders) is
increased. This observation holds for both the off­resonance and peak resonance cases.

The observations for the RMS fluctuation profiles are observed to be similar to those of the mean
profiles with a better match for the off­resonance case predictions than the peak resonance case pre­
dictions with the corresponding experimental curves. The other observation of improving results with
increasing distance from the cylinders seems to hold for the off­resonance case but not so for all solu­
tions of the peak resonance case (see Figure 6.20b and Figure 6.20d for example).
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(a) Mean Velocity 10𝑚𝑚 behind Cylinder1 (b) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder1

(c) Mean Velocity 20𝑚𝑚 behind Cylinder1 (d) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder1

(e) Mean Velocity 10𝑚𝑚 behind Cylinder2 (f) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder2

(g) Mean Velocity 20𝑚𝑚 behind Cylinder2 (h) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder2

Figure 6.19: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections in Plane 𝑍1
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(a) Mean Velocity 10𝑚𝑚 behind Cylinder1 (b) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder1

(c) Mean Velocity 20𝑚𝑚 behind Cylinder1 (d) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder1

(e) Mean Velocity 10𝑚𝑚 behind Cylinder2 (f) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder2

(g) Mean Velocity 20𝑚𝑚 behind Cylinder2 (h) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder2

Figure 6.20: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections in Plane 𝑍2



112 6. OECD Benchmark: Blind Phase

(a) Mean Velocity 10𝑚𝑚 behind Cylinder1 (b) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder1

(c) Mean Velocity 20𝑚𝑚 behind Cylinder1 (d) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder1

(e) Mean Velocity 10𝑚𝑚 behind Cylinder2 (f) RMS Velocity Fluctuation 10𝑚𝑚 behind Cylinder2

(g) Mean Velocity 20𝑚𝑚 behind Cylinder2 (h) RMS Velocity Fluctuation 20𝑚𝑚 behind Cylinder2

Figure 6.21: Mean and RMS Fluctuation Streamwise Velocity Profiles at Horizontal Sections in Plane 𝑍3
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The current study attests to the shortcomings of the URANS scheme for predicting VIV, or as was rea­
soned earlier, a combination of VIV and TIV. The expectations drafted from the open phase FSI study
have all been met from the blind phase results. The current scheme showed underpredicted spectra
results for Cylinder1 in both the off­resonance and peak resonance cases. This was accompanied with
an overprediction of the vortex shedding frequency. The results were better for Cylinder2 spectra plots,
although the peak at its natural frequency was still underpredicted as was the spectral density for the
higher frequency range.

With the observations of the current study corroborating those of the open phase study, the follow­
ing gaps for the URANS scheme in predicting a combination of VIV and TIV still stand:

• Prediction of the vortex shedding frequency: For systems that suffer from the lock­in effect be­
tween the structural natural frequency and higher harmonics of the vortex shedding frequency,
accurate prediction of the vortex shedding frequency appears to be an important criteria.

• Inflow turbulence: For systems that suffer from significant TIV contributions, it appears important
to incorporate actual or modelled fluctuations of velocity and pressure (in essence turbulence) to
capture accurate background spectra levels.

• Predicting high frequency range spectra: To capture the high frequency range correctly, it is
requisite to capture the small scale turbulence in the flow.

The above gaps still serve as a hypothesis for the cause of the difference between the experimental and
numerical FSI results for the open and blind phase. Additional tests are to be conducted to confirm this
hypothesis. These future tests are recommended along with key conclusions from the current thesis
work in the following chapter.

6.4. Conclusion
In this chapter, the blind phase study of the OECDBenchmark was introduced. The experimental setup,
including the associated measurement systems and the blind phase test parameters, was briefly dis­
cussed. The primary intention with the current study was to confirm the expectations made from the
open phase study using the shortlisted Standard K­Epsilon Low Re: Cubic turbulence model of the
URANS scheme.

To schieve this agenda, numerical simulations were set up for two flow rates corresponding to the
off­resonance case and the peak resonance case with respect to Cylinder1. This included fine tun­
ing the structural model to the required natural frequencies in air and water. To do so, CSM vibration
studies were carried out in vacuum and water for structures with different pairs of bob lengths. A bob
length pair of 15 𝑚𝑚 and 30 𝑚𝑚 was finalized for the FSI study. For the FSI test, a fluid mesh similar
in topology to the ‘CFD3’ mesh from the open phase study was set up with 7.78M cells consisting of
elements of size 0.075𝐷 in the wake of the cylinders. This selection was constrained by the timeframe
and resource budget of the current study.

With the selected numerical set up, the FSI study was carried out with the aforementioned shortlisted
turbulence model. Before getting into the results, the modelled inflow turbulence condition was tested
by plotting the streamwise velocity mean and RMS fluctuation profiles at sections 140 𝑚𝑚, 200 𝑚𝑚
and 50 𝑚𝑚 ahead of Cylinder1. For comparing with the experimental fluctuation profiles, resolved
and modelled turbulence profiles were used from the numerical simulations. The chosen turbulence
model showed quicker dissipation of the inlet turbulent kinetic energy as the flow moved downstream
approaching the cylinders. The chosen turbulence model is also suspected to predict a smaller channel
wall boundary layer height which was accompanied by a lower than expected velocity (within 5% for
both flow rates) away from the channel walls as pointed out from the mean velocity profiles. All results
considered, the selected overestimated inflow turbulence setting was considered satisfactory.

Considering the spectra plots for pressure, the background spectra for both flow rates were observed
to be overpredicted. The reason for the same is unclear at this point.
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Considering the spectra plots for acceleration, resonance was not able to be predicted for Cylinder1 as
expected from the open phase study. The key reason for the same is again suspected to be the overpre­
diction of the vortex shedding frequency (𝑓𝑠) by 22.24% which led to a mismatch in the fourth harmonic
of 𝑓𝑠 and the natural frequency of Cylinder1 (𝑓𝑛1). The results for Cylinder1 for the off­resonance case
were also underpredicted. The contribution of TIV that was not captured here is suspected to be the
primary reason. The match in the spectra results was much better for Cylinder2 on the other hand
for both flow rates. However, the spectral density at the natural frequency of Cylinder2 (𝑓𝑛2) was still
underpredicted by an order of magnitude. An underprediction was also observed for the background
spectra in the higher frequency range as was expected from the open phase study.

Coming to the velocity spectra results, the overprediction of the vortex shedding frequency was re­
confirmed. Furthermore, the variation of this parameter across different measurement planes was also
noted with largest error being 16.3% for the off­resonance case and 17.8% for the peak resonance
case. The error in predicting the spectral density at the vortex shedding frequency was also noted to
be significant (of an order of magnitude) for the peak resonance case at planes 𝑍1 and 𝑍2. The differ­
ences in results were reasoned to stem from the type of wake predicted. The vorticity plots revealed
a strength difference between the off­resonance and peak resonance case. This effect was confirmed
to be due to the inflow velocity magnitude by showing similar non­dimensional strengths of the wake.

The last set of results were the streamwise velocity mean and RMS fluctuation profiles 10 𝑚𝑚 and
20 𝑚𝑚 behind the cylinders. In general, the predicted profiles for the off­resonance case had a better
qualitative fit with the experimental results than the peak resonance case with its corresponding exper­
imental results. The mean profile curves showed improvements in prediction with increasing distance
from the cylinders for both flow rates. This was also observed for the RMS fluctuation profiles although
only for the off­resonance case.

Based on the shortcomings of the URANS scheme observed in the current study and the open phase,
3 reasons of gap between the current URANS results and the experimental results are formally drafted
as a base for future testing. The following chapter brings forward the key conclusions of the thesis work
and provides recommendations for further study.
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Conclusions

This thesis work was set to tackle the Vortex­Induced Vibration (VIV) problem of in­line cantilevered
cylinders subjected to cross flow as was proposed in the form of a benchmark by the Organization for
Economic Co­operation and Development (OECD). To carry out this FSI study, one may have chosen
a higher fidelity method for the CFD side such as Direct Numerical Simulations (DNS) or Large Eddy
Simulations (LES) but for the current timeframe and available resources for the project, the computa­
tionally cheaper Unsteady Reynolds­Averaged Navier­Stokes (URANS) framework was selected. In
doing so, the following objective was laid out for the thesis work:

“To test the efficacy of URANS models in the prediction of VIV by selecting the best suited
URANSmodel (and associated settings) for theOECDbenchmark and establishing the gap
between this model and the available experimental data”.

To work towards this objective, a 3­phase plan of action was set up for using the commercial code
Simcenter STAR­CCM+ (v2020.3.1). Before carrying out this plan, an extensive literature review was
conducted on VIV and the under­the­hood working of the STAR­CCM+ solvers and turbulence models.
From the review, key parameters influencing VIV was realized. These included the Reynolds number,
the Strouhal number and the mass­damping of the system. For a multi­cylinder configuration such as
the one in the OECD benchmark, the influence of the pitch spacing between cylinders on the wake and
thereby corresponding VIV was realized. From the review of the STAR­CCM+ turbulence model imple­
mentations, the formulations of the constitutive relationship options for the Reynolds stress tensor are
realized. These options help in modelling the anisotropy of turbulence better, especially the quadratic
(QCR) and cubic options.

The first phase of the current study dealt with the validation of the flow and structural solvers as a
standalone as well as fully coupled calculations against the flexible beam FSI benchmark of Turek &
Hron[26]. The test cases CFD3, CSM2 and FSI3, in particular, are carried out. From the CFD3 test
case, a rule of thumb for selecting a time step size was established. The rule was to select time step
size that places 100 sampling points over a fundamental cycle of interest. From the CSM2 test case,
the importance of choosing the appropriate approximation for the strain is realized. The rule of thumb
asserted was to apply the infinitesimal strain approximation for predicting dominant displacements that
are within 10% of the length of the structure perpendicular to the displacement. Although this ap­
proximation compromised predictions of the displacement in the other direction which was predicted
accurately by the finite approximation. It is to be noted, however, that the finite strain approximation
is more expensive to employ. Finally, the FSI3 test case confirmed the working of the Gauss­Seidel
coupling implementation of STAR­CCM+. An interesting observation was the presence of “beatings” in
the force time history plots but not in the displacement time history plots. This was reasoned to be due
the added mass calculations.
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The second phase of the study dealt with testing 7 proposed URANS eddy viscosity turbulence model
implementations available in STAR­CCM+ against the cross flow VIV study of Khalak & Williamson[27]
in a 2D set up. Although the norm for such separated flows is to go for the K­Omega SST model,
as a special consideration from the recent work of Liparoti[104], the testing list also includes the low
Reynolds number variation of the K­Epsilon model with a cubic constitutive relationship. The ampli­
tude and frequency responses showed the possibility of URANS capturing the 3­branch VIV response.
However, shortcomings were noted in the form of a shorter lock­in regime with an earlier and shorter
peak response. Judging all the results based on the performance in the initial and upper branch, the
K­Omega SST: QCR, K­Omega SST: QCR + GRT and Standard K­Epsilon Low Re: Cubic models
were shortlisted for the next phase of the study.

The third and final phase of the study involved the the OECD benchmark. This benchmark came
in 2 phases: the open phase where experimental results were available from the beginning and the
blind phasewhere the experimental results were only released after all participants handed in their work.

The open phase of the study was used to select the most appropriate turbulence model for the blind
phase. Key observations for the open phase were 1) The overprediction of the vortex shedding fre­
quency, 2) Severely underpredicted spectral density at the natural frequency of Cylinder1 where reso­
nance is expected as well as low background spectra levels, 3) Better fit for the Cylinder2 spectra and
4) Underprediction for all spectra plots in the higher frequency range. Based on these observations, it
was hypothesised that a major cause for the difference in numerical and experimental predictions of
Cylinder1 is a combined effect of the mismatch in the fourth harmonic of vortex shedding frequency
and its natural frequency as well as the absence of actual turbulence (in terms of velocity and pressure
fluctuations) from the inlet. To improve upon the prediction of the higher frequency range of the spectra,
a higher fidelity method accompanied with a smaller grid and time step size is suggested. From the
results obtained in this phase of the study, the Standard K­Epsilon Low Re: Cubic model is finalized
and similar observations are drafted as expectations for the blind phase.

The blind phase results matched all the expectations set out from the open phase study. Addition­
ally, the off­resonance results corroborated the aforementioned cause with underpredicted results for
Cylinder1 and better fitting results for Cylinder2. In doing so, the research objective is satisfied in terms
of selecting the best model for the current application (Standard K­Epsilon Low Re: Cubic) as well as
identifying gaps in the capability of URANS in capturing VIV or as was reasoned for the OECD bench­
mark, a combination of TIV and VIV where the lock­in effect is dependent on a higher harmonic of the
vortex shedding frequency. These are in short:
1. Predicting the vortex shedding frequency accurately.
2. Providing actual inflow turbulence.
3. Predicting high frequency range spectra accurately.

7.1. Recommendations for Future Work
With the current gaps identified, the pathway for future work can be set in different directions. These
are provided below:
1. In the open and blind phase of the OECD benchmark, the infinitesimal strain approximation was

used which neglected the displacements of the cylinders in the direction along the length of the
cylinders. Such a displacement, although deemed insignificant compared to the other displace­
ments, does in fact affect the wake of the cylinders especially from the free end. The simulations
can be reconducted with the finite strain approximation to quantify the significance of this dis­
placement in the obtained results.

2. It was hypothesised that the missed lock­in of Cylinder1 was partly due to the mismatch in the
fourth harmonic of the vortex shedding frequency and its natural frequency. To confirm and quan­
tify this reason, it is suggested to either increase the natural frequency (by virtue of the bob length,
for instance) or decrease the flow velocity such that the desired lock­in effect occurs. The gap
between the spectral density at the new peak and the experimental results will help validate the
hypothesis.
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3. The second part of the hypothesis involved obtaining the TIV contribution as turbulence from the
inlet. While URANS as is cannot provide actual fluctuations in pressure and velocity to partly
excite Cylinder1, there do exist models that can provide artificial fluctuations to a flow. One such
example is the Pressure Fluctuation Model (PFM) that was proposed in the works of Kottapalli[24]

and Sharma[25] which were developed for pure TIV faced by fuel rods in axial flows. This model
could be modified to flood in fluctuations for the cross flow OECD benchmark problem. By incor­
porating such artificial fluctuations, the second part of the hypothesis may be considered validated
if the background spectra is noticed to match with the experimental results.

4. Another path of testing is to choose higher fidelity methods instead of URANS. These could be
LES or hybrid models such as DES. Another recently developed hybrid model is the Scale Re­
solving Hybrid (SRH) model given by Duffal et. al.[105] which is also available in STAR­CCM+
from v2020 onwards. Preliminary tests at NRG show promising results with improved accuracy
at a slightly higher computational cost. Using LES or its hybrid models are particularly expected
to improve the high frequency range prediction of all spectra plots. Another expectation is to also
perhaps show improved vortex shedding frequency predictions as the wake is better resolved.
Using LES, in particular, also allows for providing actual turbulence from the inlet which could
also be tested to validate the second part of the hypothesis. However, it is to be beared in mind
that this venture would be computationally expensive to carry out.
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