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Summary

In this study, the seasonal variation of atmospheric muons detected by the KM3NeT ORCA and ARCA
detectors is investigated. Both detectors are still under construction; therefore, only specific config-
urations of the detects are available for analysis. The main focus is on the impact of atmospheric
temperatures on the detected muon rate. The muon rates are correlated with the effective atmospheric
temperature above the KM3NeT detectors to calculate an effective temperature coefficient (α). The
effective temperature is a weighted average over all pressure levels in the raw temperature data sets.
In this study, the AIRS and ERA5 temperature datasets are used to calculate two effective tempera-
tures over time. An effective temperature analysis is needed to account for the fact that most muons
are produced in the upper parts of the atmosphere. The KM3NeT detectors experience a high degree
of background rate. Therefore, not the muon rate gets correlated with the effective temperature but
the ratio of the muon rate with the muon rate out of run-by-run Monte Carlo simulation. This simulation
should account for all the factors that impact the true muon rate, except for the temperature variation.
Multiply approaches are taken to the calculation of the effective temperature coefficient to see the im-
pacts of it. A positive correlation between muon rate and atmospheric temperature has been found for
all approaches, but for most detector configurations studied, the correlation is stronger than expected.
The analysis remains difficult because of the lack of a multi-year stable dataset. The data set show a
decrease in the mean ratio, pointing to some problems with the Monte Carlo simulations. The Monte
Carlo simulations probably do not accurately account for all influences on the detected rate such as
efficiency losses of the detector and other periodic variations in the rata. In all data sets used in this
study, a linear downward trend was found in the ratio data. This trend can be removed, and the effective
temperature coefficient can then be recalculated. After detrending, the correlation between the muon
rate and atmospheric temperature moves closer to the expected value for most detector configurations,
but it still deviates significantly. The linear downward trend can be caused by an overestimation of de-
tector efficiency in the upward direction by the Monte Carlo simulations. In addition to this, in one of the
analyses, it is found that the Monte Carlo simulation underestimates the rates for smaller zenith angles
and overestimates the rates for larger zenith angles.
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1
Introduction

The atmosphere of the Earth has been studied since ancient times, with one of the first meteorolog-
ical descriptions dating back to Aristotle, who wrote the book Meteorologica. Since then, a lot has
changed in the research on the atmosphere. With inventions such as thermometers, barometers, and
weather balloons, our understanding of the atmosphere has greatly increased. Nowadays, these tools
together with the computer, radar, and satellites are used to give us an even better understanding of
our atmosphere. By combining measurements from all of these instruments, complex models of the
atmosphere can be made. These include atmospheric density profiles, which relate temperature to
atmospheric densities.
The field of Cosmic Ray Physics started up a bit later. In the early 20th century scientists believed that
a constant, low-level radiation, which could be detected at ground level, originated from radioactive ma-
terials in the Earth. However, this started to change whenWulf did a series of measurements on the top
of the Eiffel Tower in 1909. Wulf expected that the radiation on top of the Eiffel Tower would decrease
significantly with the levels found on the ground. However, the decrease was much smaller than ex-
pected. In 1912 Victor Hess was inspired by these results and decided to use balloons to measure the
radiation at much higher levels. His results clearly showed that radiation increased with altitude, which
led him to conclude that the increase in radiation with altitude must come from extraterrestrial sources.
He also concluded that the Sun was not a direct source because he found no difference between day-
and night-time observations. In 1913 Kolhöster verified and improved Hess’ findings [2, 3]. In the figure
below, the results of the measurements of Hess and Kolhöster are shown.

1



1.1. Relevance to society 2

Figure 1.1: Radiation measurements by Hess and Kolhöster using weather balloons [2].

A bit later in 1939, Pierre Auger found that air showers created by primary cosmic rays are extensive,
which means that they cover a large area up to hundreds of metres in diameter [4]. Primary cosmic
rays are high-energy particles that travel through space. If a primary cosmic-ray particle collides with
an atmospheric particle it creates a cascade of reactions creating secondary particles. This process is
called an air shower.
In 1952 Barrett et al. did research into the nature and origin of secondary cosmic rays detected far un-
derground. They found that at these depths the predominantly detected particle was the muon, which
is a type of meson. The muon has a long lifetime and a low chance of interacting. This causes muons
to reach much farther than other components of the air showers. In addition to this, they also found the
first clue that the muon intensity varied with atmospheric temperature [5].
Since this first hint of variation of muon intensity with atmospheric temperature, a lot of research has
been done on it. The development of more sophisticated detectors and better atmospheric data and
models has helped to better investigate the muon intensity variation. Experiments such as IceCube,
MINOS, MACRO, NOvA, and Daya Bay have all investigated this phenomenon and helped to better
understand cosmic rays and their interaction with the atmosphere [6, 7, 8, 9, 10].

This study will look at the two detectors, ORCA and ARCA, currently under construction by the Cubic
Kilometres Neutrino Telescope (KM3NeT) project. The goal of these detectors is to detect neutrinos.
Because neutrinos are much harder to detect than muons, the detectors are built at the bottom of
the Mediterranean Sea at a depth of around 3 kilometres. The water above the detector will stop the
low-energy muons, but the high-energy muons are still able to pass through the water layer and be
detected. The goal is to better understand how variations in atmospheric temperature influence high-
energy muons detected by the KM3NeT detectors. This is important because these muons are the
main background signal for neutrino measurements [11]. The main question of this study is then as fol-
lows: How does the muon rate at the KM3NeT ORCA and ARCA detectors correlate with atmospheric
temperature?

1.1. Relevance to society
Both neutrino andmuon researchmay seem a bit abstract at first glance, but they do hold a relevance for
society. Muon tomography, for example, can be used to inspect cargo for smuggled nuclear materials
in a non-invasive way. It can also be used to explore the internal structure of large historical structures
such as ancient burial chambers or pyramids. A good example of this was when researchers used
muon tomography to discover a large space in the Great Pyramid of Giza and a hidden chamber in the
underground Hellenistic necropolis of Neapolis [12, 13]. Cosmic muons can also be used for geology
and volcano monitoring. By mapping the variations in volcano density, scientists can get a better idea
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of the movement of the magma and identify potential hazards. In general, better understanding of how
volcanoes work and monitoring are crucial factors in predicting eruptions. Muons also have industrial
applications; for example, they can be used to inspect blast furnaces to improve safety and efficiency.
It can also be used in the mining industry to better map mineral deposits and identify hazards [14]. In
addition to this, another benefit of KM3NeT research is that many innovations that are made in the
development of detectors can later be implemented in other fields that may have a more direct link to
society.

Chapter 2 introduces the physical concepts needed to understand cosmic rays and the detection of
muons. Chapter 3 focusses on how the atmosphere affects muon production. Chapter 4 presents and
explains the temperature data used in the analysis. Chapter 5 gives a detailed overview of the KM3NeT
experiment along with its various detector configurations. Chapter 6 describes the experimental meth-
ods used to analyse the effect of atmospheric temperature on the muon rate. Chapter 7 presents the
results of the analysis. Finally, Chapter 8 discusses the findings, draws a conclusion on the findings,
and makes recommendations for future research.



2
From Cosmic Rays to Muon Detection

In this chapter, the theoretical background knowledge needed to understand the expected seasonal
variation of the atmospheric muon flux is introduced. The creation of muons is explained by starting
with primary cosmic rays. The composition, acceleration, and propagation of the primary cosmic rays
are discussed, followed by a discussion of how muons come into existence and how they travel through
matter.

2.1. Cosmic ray composition
First shown by Hess in the early 20th century, there is constant radiation coming from extraterrestrial
sources hitting Earth’s atmosphere, which increases with altitude. The atmosphere forms a protective
layer that absorbs most of the energy of the cosmic rays before hitting the Earth’s surface. However, if
the energy of the primary cosmic ray is high enough, some secondary particles can hit the surface or
even go underground [15].
Most of the primary cosmic rays are protons, but they can also be other heavier atoms such as he-
lium, oxygen, or iron. When primary cosmic rays hit the Earth atmosphere, they initiate a particle
cascade [16]. Most of the primary high-energy cosmic rays are believed to be created by supernovae,
active galactic nuclei, or gamma-ray bursts. For the detection of cosmic rays, different instruments can
be used, for example, satellites, balloon experiments, ground-based detectors, or underwater detec-
tors such as ORCA and ARCA. For the ground and underwater detectors, the secondary particles have
already travelled through the atmosphere and soil or water, which has to be taken into account in the
measurements.
The energy of the primary cosmic rays ranges from a couple of GeV to even more than 1020eV. The
higher the energy, the lower the flux (φ). The Earth is constantly being hit by cosmic rays at a rate of
about 1000 per square metre per second. In Figure 2.1 the flux of cosmic rays is shown per energy of
the primary cosmic ray particle [17].

4
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Figure 2.1: Flux of cosmic rays per energy of the primary cosmic ray particle. Different primary particles and
experiments are highlighted [17].

The differential flux of cosmic rays can be described by an inverse power law as a function of energy:
dN

dE
≈ Eγ (2.1)

It should be noted that this is the flux at the top of the atmosphere of the primary cosmic ray. γ is around
−2.7 for energies from 10 GeV to around 106.5 GeV. Above this energy γ is around −3.1. Above 109

GeV, γ becomes again around −2.7 [17].

Some of the fluxes shown in Figure 2.1 only represent specific particles, such as protons and electrons.
These experiments must be conducted outside of the atmosphere of the Earth to capture particles be-
fore they interact with the atmosphere. Detectors mounted on balloons or satellites measure both the
overall cosmic ray composition and the flux of individual primary particles. For cosmic rays above 105

GeV, the flux is too low for direct measurement of individual particles with such detectors. Instead,
ground-based air shower experiments measure the combined flux of all particles. These ground-based
detectors capture secondary particles from air showers. Ground-based detectors can distinguish be-
tween two main types of air showers: those triggered by photons, electrons, or positrons, and those
triggered by heavier particles, such as protons [17].
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2.2. Acceleration and propagation of cosmic rays
So far it is not fully understood how the acceleration processes work that give the primary cosmic rays
such high energies. It is even not known where the acceleration takes place precisely. However, two
possibilities can be considered. The main acceleration of particles occurs either close to the moment
of their creation, where they reach maximum energy, or over larger time scales when the particle is
travelling through the Galaxy. Solar flares can accelerate particles up to GeV energies, demonstrating
acceleration at the point of creation. Planetary shock waves, such as the bow shock of the Earth or
the shocks in the solar wind, can also increase the energy of a particle. However, these examples do
not explain the higher energies seen in Figure 2.1, suggesting that other sources and mechanisms to
accelerate particles also must play a role.
Since local sources, such as the Sun, cannot generate these high energies, higher-energy cosmic rays
are thought to come from galactic sources. Cosmic rays with very high energies (above 109 Gev) might
even be accelerated by active galactic nuclei, gamma-ray bursts, or other powerful astrophysical phe-
nomena [18]. The process that is most likely responsible for the acceleration is the first-order Fermi
mechanism. According to this mechanism, strong shock waves, produced by, for example, supernova
and active galactic nuclei, create strong magnetic fields. Due to the magnetic field, the particle can be
reflected back and forth across the shock front multiple times. In this process, the particle gains a great
amount of energy, until it reaches enough energy to escape the shock region [17].

So cosmic rays can be accelerated by a variety of different sources. For particles with energy around
MeV and GeV, these sources are relatively nearby, but for higher energy particles (above 109 Gev)
the sources are believed to be on the scale of the galaxy or an even larger scale. When cosmic rays
are detected on Earth the particles have travelled great distances from where they are created and/or
accelerated. The direction information we get from the detection on Earth can be used to resolve the
processes of the creation and acceleration of the particles. However, this can be difficult if there are
material clouds, interstellar magnetic fields, and other obstacles in the path of the cosmic ray that have
to be taken into account. When charged particles such as protons and electrons travel through such
objects, their path can be altered. The higher the energy, the larger this effect. Neutrinos are created
at the same places where cosmic-ray particles are created and/or accelerated. The neutrino, on the
other hand, is not affected by such obstacles because it barely interacts with other matter or magnetic
fields. However, this makes neutrinos extremely difficult to detect. That is why detectors such as the
KM3NeT detectors are built [17].

2.3. Air showers
When cosmic rays hit particles in the atmosphere of the Earth they create air showers. The particles
that are created in the air shower can be detected by experiments on Earth. In an air shower, lots of
different particles can be created; therefore, detectors need to be specialised for the type of particles
they want to detect.

If a primary cosmic-ray particle collides with an atmospheric particle, it creates a cascade of reactions
creating secondary particles. This process is called an air shower. There are two different types of air
showers. Type one is when a primary cosmic ray particle is a photon, electron, or positron. Type two is
when the cosmic ray particle is a proton or a heavier nuclei. If a primary cosmic ray is of type one, the
air shower that follows will mainly have an electromagnetic component, electromagnetic showers. If it
is a type two primary cosmic ray, the air shower will have three components, electromagnetic, hadronic,
and muonic, hadronic showers [18].
The particles that are created in air showers are called secondary particles. These particles can again
interact with other particles in the atmosphere or decay. Whether a particle will interact or decay de-
pends on the energy of the particle and the density of the atmosphere. The more interactions away
from the initial collision with the cosmic ray, the lower the energy of the particles in the air shower.
So, the air shower starts with one cosmic ray particle, then the number of particles quickly increases,
and eventually, it will reach a maximum. Then, the number of particles decreases again because the
secondary particles have too little energy for further production of particles. The particles then decay
further and lose their energy due to radiative and ionisation losses [17]. Figure 2.2 shows how an air
shower develops over the depth of the atmosphere. It is clearly shown that first the number of particles
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increases and then starts decreasing at some point.

Figure 2.2: Diagram showing the development of air showers [17].

In this study data of the KM3NeT detectors are used which are located at the bottom of the Mediter-
ranean Sea. The muons detected need to travel not only in the atmosphere but also a layer of water
and still have enough energy to be detected. Therefore, only high-energy muons can penetrate deep
into the water. A consequence of this is that the intensity of the muons decreases the deeper the
detector is. This fact is clearly shown in Figure 2.3
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Figure 2.3: Muon intensity vs depth traveled in water for various experiments. [17].

2.3.1. Electromagnetic component
If a high-energy photon interacts with matter in the atmosphere it will create electron and positron pairs,
this is called pair production. By a process called Bremsstrahlung, new photons can be created out
of these electrons. If these new photons have high enough energy a new pair production will occur.
As long as the energy is high enough the number of particles in the electromagnetic component will
rapidly grow by the alternating of pair production and bremsstrahlung. If the energies of the electron
and positrons fall below the critical energy, they will mainly lose energy through excitation and ionization.
At this moment the number of particles will stop growing. When the primary particle of a cosmic ray
is a photon, electron, or positron, the electromagnetic is the main component. Air showers from other
cosmic ray particles also have this electromagnetic part, however, it is mainly created by high energy
hadrons. These hadrons contribute primarily through photons released from the decay of neutral pions
(denoted by π). Pions are part of the meson group, which is in itself part of the hadron group. Mesons
only consist of one quark and one anti-quark. The neutral pion consist of uu or dd quarks. This part of
the shower ends up holding the largest number of particles overall [18, 17].

2.3.2. Hadronic component
When hadrons such as protons or neutrons interact with molecules in the atmosphere the hadronic
component of an air shower is produced. The hadrons produced consist primarily of pions (π±, π0)
and kaons (K±,K0), but also protons, neutrons, and other heavier particles. Kaons are also part of
the meson group. The charged kaons consist of us quark pair (or us for the anti-kaon). The neutral
kaon is made up of either ds or ds. The charged pions consist of ud quark pair (or ud for the anti-pion).
The neutral pions that are formed in the air shower decay again into two photons which will further
contribute to the electromagnetic component of the air shower. If the charged pions and kaons decay
they will produce muons and neutrinos but they can also interact with other particles in the atmosphere.
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The lifetime of a kaon is about 1.238 · 108s and the lifetime of a pion is 2.6 · 108s [15]. The particles
experience time dilation because they travel with high speeds due to their energies. The probability
for either interaction or decay depends on the density of the atmosphere and the energy of the pion or
kaon. If the density of the atmosphere is higher the particles will encounter more atmospheric particles,
thus increasing the change of interaction. If the energy of the particle is lower, they experience less time
dilation and thus decay is more probable. If the energy is higher the probability of interaction increases.
Because the density of the atmosphere is lower for higher altitudes, more pions, and koans will decay
at higher altitudes. At lower altitudes, they are more likely to interact due the the increased density [18,
17]. In Chapter 3 the decay and interaction will be explained in more detail.

2.3.3. Muonic component
When the pions and kaons of the hadronic component decay they will create muons (denoted by µ)
which form the muonic component of the air shower. The decay modes of the pions and kaons are
shown in Formula 2.2.

K± → µ± + νµ

K± → π± + π0

K0 → π+ + π−

K0 → π0 + π0

π± → µ± + νµ

π0 → γγ

(2.2)

Muons experience less scattering and energy loss than electrons in the atmosphere because they are
heavier, this allows them to penetrate deeper than other components of the air shower and even reach
underground detectors [18, 17]. The lifetime of a muon is 2.198 · 106s, which is significantly longer than
both the lifetime of a pion and a koan [15].

2.3.4. Slant depth
The slant depth is an important parameter to understand the air showers in the atmosphere. Slant
depth is a measure of the amount of material traversed by a particle along its path. It is such an
important parameter because the decay and interaction of particles depend on the amount of material
they encounter and not only the distance travelled. In Figure 2.4 a schematic drawing is shown which
will be used to explain some definitions related to the slant depth.
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Figure 2.4: Schematic drawing of definitions of slant depth, angles, and distances. θ ≈ θ∗ because the
scattering of the water is assumed to be negligible. Slant depth is plotted on the left axis and altitude or depth on

the right axis [19].

θ is the zenith angle in the sea. In this study, θ will be defined so that θ = 0 (θ = 0°) is straight up
and θ = π (θ = 180°) is straight down. θ ≈ θ∗ because the scattering of the water is assumed to
be negligible. Another assumption that will be made is the flat Earth approximation. This means that
0.64π ≤ θ < π (115°≤ θ < 180°) [15]. By doing this we can rewrite the general relation between vertical
altitude h as follows:

h = −l cos(θ) +
1

2

l2

R⊕
sin2(θ) ≈ −l cos(θ) (2.3)

In Equation 2.3 l is the path length and R⊕ the radius of the Earth. The slant depth for any material
can then be written as:

X =

∫ ∞

l

ρ

[
h = −l cos(θ) +

1

2

l2

R⊕
sin2(θ)

]
dl (2.4)

Using again the flat Earth approximation this can be written as:

ρ =
−χ cos(θ)

h0
(2.5)

h0 is the scale height defined as h0 = RT
Mg = 29.62m/K ∗ T , where R is the universal gas constant, M

is the molar mass and g is the gravitational constant.
The pressure at vertical depth χv is P = gχv, so at the top of the atmosphere both the pressure and
the vertical depth are zero [15].

2.4. Muon production spectrum
The muon production spectrum Pµ(Eµ, θ, χ) describes the number of muons created per unit of energy
Eµ, per zenith angle θ, and per slant depth χ. The muon production spectrum consists of two com-
ponents, because pions and kaons both have decay modes leading to muons. This is an analytical
approximation where the assumed is that only pion and kaon decay leads to muons; in reality there
may be other decay modes leading to muons. The total spectrum can be given as:

Pµ(Eµ, θ, χ) = Pπ
µ (Eµ, θ, χ) + PK

µ (Eµ, θ, χ) (2.6)
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The high energy approximation can be written as [15]:

Pµ(Eµ, θ, χ) ≈ N0(Eµ)
ϵπ

−χ cos θ Eµ

1− rγ+2
π

(1− rπ)(γ + 2)

ZNπ

1− ZNN

Λπ

Λπ − ΛN

(
e−χ/Λπ − e−χ/ΛN

)
+ 0.635

ϵK
−χ cos θ Eµ

1− rγ+2
K

(1− rK)(γ + 2)

ZNK

1− ZNN

ΛK

ΛK − ΛN

(
e−χ/ΛK − e−χ/ΛN

)
.

(2.7)

Equation 2.7 consists of the following components:

1. N0(Eµ): the initial flux of cosmic rays at slant depth χ = 0.
2. ϵi

−χ cos θEµ
with i = π,K: this term represents one over the decay length, or 1

di
.

3. 1−rγ+2
i

(1−ri)(γ+2) with i = π,K; where ri =
m2

µ

m2
i
denotes the mass ratios and γ is the spectral index, with

γ = 1.7. This term summarises the meson decay kinematics.
4. ZN,i

1−ZN,N
with i = π,K: describes the probability of creating a particle i when a nucleon N collides

with the air. The spectral weighted moments ZN,i and ZN,N , describingN+air → i andN+air →
N , respectively, depend on the simulated hadronic interaction models.

5. Λi

Λi−ΛN
with i = π,K: similar to (4), but this term applies to the decay of pions and kaons. The

attenuation length Λi depends on the energy and the specific interaction models.
6.
(
e−χ/Λi − e−χ/ΛN

)
with i = π,K: describes the exponential decrease in production as a function

of χ, since most muons are generated in the upper atmosphere.

This high-energy approximation holds whenE cos θ > ϵπ andE cos θ > ϵK , where ϵ is the critical energy
at which the decay and interaction probabilities are equal. For pions, ϵπ± = 115GeV, and for charged
kaons, ϵK± = 850GeV. Later, it will become evident that muons reaching the detectors (and passing
selection criteria) require a higher minimum energy than the critical energy of both pions and kaons at
sea level. Therefore, the high-energy approximation is allowed [15].
The high-energy approximation of the total spectrum only gives the number of muons produced. To
obtain the flux at sea level, the energy loss, decay, and interaction probabilities need to be taken into
account. Using the high energy approximation, it’s possible to estimate the flux at sea level for muon
energies above 200 GeV [15]:

dNµ

dEµ
=

∫ ∞

0

Pµ(Eµ, θ, χ)dχ ≈ 0.14E−2.7
µ

(
1

1 +
1.11Eµ cos(θ)

ϵπ

+
0.054

1 +
1.11Eµ cos(θ)

ϵK

)
(2.8)

The muon intensity can then be written as the integral of the flux [15]:

Iµ =

∫ ∞

mµc2

dNµ

dEµ
dEµ (2.9)

2.5. The passage of muons through matter
When particles move through matter such as water or air, they lose energy through different mech-
anises. For muons, this is not different. However, muons lose relatively small amounts of energy
when travelling through matter. This has a couple reasons, but the main two reasons are that muons
are leptons, which means they do not interact via strong interactions, which limits their energy loss.
The second reason is that the muon has a relatively high mass, which limits radiative losses due to
bremsstrahlung. Due to relatively small energy losses, muons can penetrate deep underground and
thus reach underground detectors [15].

Muons lose energy through ionisation and radiative processes. The ionisation loss rate is nearly con-
stant. The radiative process can be separated into three parts, bremsstrahlung, pair production, and
hadronic interactions. The energy loss for high energy muons can be approximated by [15]:

dE

dχ
= −a(E)− E × {bbrem(E) + bpair(E) + bhadr(E)} (2.10)
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In Equation 2.10, a [GeV ·cm2/g] is the ionisation energy loss parameter, and the parameters b [cm2/g]
are radiative energy loss parameters for bremsstrahlung, pair production and hadronic interactions,
respectively. In Figure 2.5 the change in the loss parameters in fresh water and in dry air at 1 atm is
shown against the muon energy [20].

Figure 2.5: Energy loss of a muon in liquid water and dry air due to ionization (left) and radiative processes
(right). Values taken from [20].

Equation 2.10 can be solved numerically using the varying loss parameters or analytically if a constant
approximation is done for the loss parameters. The analytical solution for constant loss parameters is:

⟨E(χ)⟩ =
(
E0 +

a

b

)
e−χ·b − a

b
(2.11)

E0 is the initial energy of the muon before traversing through the medium so at χ = 0. The minimal
energy of a muon in order to reach a slant depth χ can be calculated as followed:

⟨E(χ)⟩ =
(
Emin

0 +
a

b

)
e−χ·b − a

b
= 0

Emin
0 =

a

b

(
eχ·b − 1

) (2.12)

rewriting Equation 2.12 gives the penetrating range equation

χ =
1

b
· ln

(
1 +

Emin
0

a/b

)
(2.13)

In order for muons to reach the KM3NeT detectors, they first need to travel through the atmosphere and
then the water of the Mediterranean Sea. In Figure 2.6 the maximum reach χ of a muon with energy
E0(χ = 0) in the air is shown. In Figure 2.7 the same is shown, but now for muons in water. The solid
grey line is the numerical solution of Equation 2.10. The dashed lines are the analytical solutions with
constant loss parameters (Equation 2.13). On the right y-axis, the average geometric depth is shown.
Although the ionisation and radiative loss parameters for water and air are very similar, muons travel
much further in the atmosphere than in water for the same slant depth χ. This is because the density of
the atmosphere is much lower than the density of water. The conversion from slant depth to average
depth is not constant. This is due to changes in the density of the material, for example, caused by
changes in temperature or salinity.
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Figure 2.6: Maximum slant depth reach in air by muons with starting energy E0. The solid grey line is the
numerical solution of Equation 2.10. The dashed lines are the analytical solutions with constant loss parameters

(Equation 2.13). Changes in density due to temperature changes make the conversion from slant depth to
average depth not constant.
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Figure 2.7: Maximum slant depth reach in water by muons with starting energy E0. The solid grey line is the
numerical solution of Equation 2.10. The dashed lines are the analytical solutions with constant loss parameters
(Equation 2.13). Changes in density due to temperature and salinity changes make the conversion from slant

depth to average depth not constant.



3
Atmospheric effects on the muon rate

As described in the previous chapter, muons are formed when secondary particles from a cosmic ray
particle decay. The density of the atmosphere has a large impact on the production, interaction, and
decay of secondary particles. The production of muons depends on the energy of the parent particles
and the density of the atmosphere. When the energy of a parent particle is higher than the critical energy,
it makes it more likely to interact rather than decay. The density and temperature of the atmosphere
alter the length of the interaction and the decay length of particles. These are parameters to measure
how long a particle travels before it interacts or decays [21].

3.1. Impact of atmospheric temperature on muon production
The interaction length λj [g/cm

2] of a particle j, can be written as:

λj = ljρ =
ρ

nAσair
j

=
Amp

σair
j

(3.1)

Where ρ is the density of the atmosphere, nA is the local number density of atoms with an average
atomic mass A, and σair

j is the interaction cross-section of particle j with air. As can be seen in this
equation, the interaction length does not depend on the air density. However, the decay length does
depend on the air density:

dj = ργcτj (3.2)
Where γ is the Lorentz factor of particle j which has a rest lifetime of τj and c is the speed of light in
vacuum. As can be seen, the decay length increases when a particle has a greater energy because of
the Lorentz factor. Higher energy means lower changes of decay. This is also true for the density. A
higher density means a longer decay length, and therefore fewer decay changes [15].
If the decay length is smaller than the interaction length, the changes in decay are larger than the
changes in interaction.

Using Equation 2.5 and some rewriting, the decay length can be written as:

dj =
−χEcosθ

ϵj
(3.3)

Where ϵj is the critical energy of a particle j. ϵj is defined as:

ϵj =
mjc

2

cτj

RT

Mg
= ϵ(T0)

T

T0
(3.4)

Here R is the universal gas constant, M is the molar mass, g is the acceleration due to gravity, T is
the atmospheric temperature, and T0 is a reference temperature.
When atmospheric temperature increases, so will the critical energy of a particle. The increase in crit-
ical energy will result in a shorter decay length, which will cause more particles to decay. Which will

15
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result into more decay to muons [15, 17].

For high-energy muons, this temperature effect dominates. However, when the energy of the muons
is small, they will experience this effect themselves. So, if the energy of muons is small, an increase in
temperature will cause more muons to decay. This effect is important for muons around its critical en-
ergy. Later, it is shown that the muons that reach the KM3NeT detectors are in the high-energy regime,
and thus only a positive relation between the temperature and the muon rate is expected. However,
for detectors with a lower energy required to reach them, such as the MINOS Near detector [22] and
DANSS [23] detectors, a less positive relation is expected.

Looking at Equation 2.8 the temperature dependence comes from the production spectrum Pµ(Eµ, θ, χ),
which can be written as:

Pµ(Eµ, θ, χ, T0 +∆T ) = Pµ(Eµ, θ, χ, T0) +

(
∂Pµ

∂T

)
T0

∆T (χ)

= P 0
µ(Eµ, θ, χ) + η0(Eµ, θ, χ)∆T (χ)

(3.5)

The parts with a superscript 0 represent the evaluation of the temperature-sensitive functions at T = T0.
Using this result and the intensity equation 2.9, the temperature-dependent intensity can be written as:

Iµ(T0 +∆T ) =

∫ ∞

0

dEµ

∫ ∞

0

dχ
(
P 0
µ(Eµ, θ, χ) + η0(Eµ, θ, χ)∆T (χ)

)
= I0µ +

∫ ∞

0

dχ∆T (χ)

∫ ∞

0

dEµη
0(Eµ, θ, χ)

(3.6)

Writing Iµ(T0 +∆T )− I0µ = ∆Iµ, the temperature dependent muon intensity variations can be written
as [17]:

∆Iµ
I0µ

=

∫ ∞

0

dχα(χ)
∆T (χ)

T (χ)
(3.7)

α(χ) is the temperature coefficient defined as:

α(χ) =
T (χ)

I0µ

∫ ∞

0

dEµη
0(Eµ, θ, χ) =

T (χ)

I0µ
W (χ) (3.8)

Because the variations of the temperature at different slant depths are unknown, the temperature co-
efficient is hard to determine experimentally. This is because it is not possible to know at what height
a muon is produced. However, by defining an effective temperature Teff the integral can be simpli-
fied [17]:

Teff =

∫∞
0

dχT (χ)
∫∞
0

dEµη
0(Eµ, θ, χ)∫∞

0
dχ
∫∞
0

dEµη0(Eµ, θ, χ)
(3.9)

The effective temperature coefficient is then defined as follows:

αT =
Teff

I0µ

∫ ∞

0

dχ

∫ ∞

0

dEµη
0(Eµ, θ, χ) (3.10)

Using Equation 3.8 and defining ∆Teff in the same way as Teff , the integral in Equation 3.7 can be
rewritten as: ∫ ∞

0

dχα(χ)
∆T (χ)

T (χ)
= αT

∆Teff

Teff
(3.11)

This results in the function to describe the dependence of the muon intensity variations on the variations
in the effective temperature:

∆Iµ
I0µ

= αT
∆Teff

Teff
(3.12)

The muon intensity can be written as [17]:

Iµ =
Ni

ti

ϵ ·Aeff · Ω
(3.13)
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whereNi is the number of muons counted in a time ti, ϵ the efficiency of the detector, Aeff the effective
area of the detector and Ω the total solid angle of the detector. From now on it will be assumed that the
effective area, the efficiency, and the solid angle are all constant. Equation 3.12 can then be rewritten
as follows:

∆Iµ
I0µ

=

(
∆Ni/ti
ϵ·Aeff ·Ω

)
(

Ni/ti
ϵ·Aeff ·Ω

) =
∆Ni/ti
Ni/ti

=
∆Rµ

Rµ(t)
≈ Rµ(t)− ⟨Rµ⟩

⟨Rµ⟩
(3.14)

Where Rµ(t) = Ni/ti is the muon rate over a time ti, ⟨Rµ⟩ is the average muon rate over a longer
time-taking period.
This gives the final equation that will be used to study the variations in the muon rate due to temperature
changes in the atmosphere:

∆Rµ

⟨Rµ⟩
= αT

∆Teff

⟨Teff ⟩
(3.15)

3.2. Effective temperature of the atmosphere
It is not possible to know the exact altitude at which a muon has been produced. That is why the
effective temperature is used to approximate the atmospheric temperature.
The pressure and temperature in the atmosphere vary with the altitude. Muon production with energies
above the critical energy (ϵπ, ϵK) depends on atmospheric temperature. The production of thesemuons
usually occurs at high altitudes. The effective temperature defined in Equation 3.9 takes into account
that muons are more likely to be produced at higher altitudes by the weights defined in Equation 3.8.
The weights consist of two parts, one for the pion decay in the air shower and one for the kaon decay.
The weights can thus be written as: W (χ) = Wπ + WK . A discreet approximation of the effective
temperature will be used because the temperature is only known at discreet points [10]:

Teff =

∫∞
0

dχT (χ)W (χ)∫∞
0

dχW (χ)
≈
∑

i ∆χiT (χi)W (χi)∑
i ∆χiW (χi)

(3.16)

The weights can now be defined as:

Wπ,K(χ) =

(
1− χ

λπ,K

)2
e
− χ

Λπ,K Aπ,K

γ + (γ + 1)Bπ,KK(χ)
(

⟨Ethr cos θ⟩
ϵπ,K

)2 (3.17)

K(χ) ≡
χ
(
1− χ

λπ,K

)2
(
1− e

− χ
λπ,K

)
λπ,K

(3.18)

1

λπ,K
=

1

ΛN
− 1

Λπ,K
(3.19)

The constantAπ,K comprises the amount of inclusive meson production in the forward fragmentation re-
gion, the masses of mesons and muons, and the muon spectral index. The parameter Bπ,K accounts
for the relative atmospheric attenuation of the mesons. The parameter ΛN,π,K represents the atmo-
spheric attenuation length of cosmic ray particles, pions, and kaons, respectively. The critical energy,
ϵπ,K , is the energy at which the decay and interaction probabilities are equal. Finally, the parameter
γ is the muon spectral index [10]. The values used for these parameters can be seen in Table 3.1.
⟨Ethr cos θ⟩ describes the average energy that a muon needs at the Earth’s surface to reach an under-
ground detector and be detected, and the angle at which it enters the Earth is taken into account for
this. The calculation for ⟨Ethr cos θ⟩ will be explained in more detail in Chapter 6.
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Parameter Value
Aπ 1
AK 0.38 · rK/π

rK/π 0.149± 0.06
Bπ 1.460± 0.007
BK 1.740± 0.028
ΛN 120 g/cm2

Λπ 180 g/cm2

ΛK 160 g/cm2

γ 1.7± 0.1
ϵπ 114± 3GeV
ϵK 851± 14GeV

Table 3.1: Values and uncertainties of the parameters needed for the weight calculation of the effective temperature. Values
from [10].

3.3. Prediction of temperature coefficient
The theoretical temperature coefficient can be calculated using methods described in [5, 24]:

αth =
1

Dπ

1/ϵK +A1
K

(
Dπ

DK

)2
/ϵπ

1/ϵK +A1
K

(
Dπ

DK

)
/ϵπ

(3.20)

where
Dπ,K =

γ

γ + 1

ϵπ,K
1.1 ⟨Ethr cos θ⟩

+ 1 (3.21)

The values used for these parameters can again be found in Table 3.1. The calculation for ⟨Ethr cos θ⟩will
be explained in more detail in Chapter 6. The theoretical temperature coefficients are shown in Chapter
7. The theoretical temperature coefficient for only the muon or pion contribution is as follows [24]:

αth
π,K =

[
γ

γ + 1

ϵπ,K
1.1 ⟨Ethr cos θ⟩

+ 1

]−1

(3.22)



4
The KM3NeT experiment

The Cubic Kilometre Neutrino Telescope, KM3NeT, is a research infrastructure project currently be-
ing built on the bottom of the Mediterranean Sea. KM3NeT will consist of a network of neutrino tele-
scopes with two main scientific goals: Discovering and observing high-energy neutrino sources in the
universe and determining the neutrino mass hierarchy. The KM3NeT detectors are two large-volume
water Cherenkov detectors that can detect cosmic and atmospheric neutrinos and atmospheric muons.
KM3NeT uses the water of the Mediterranean Sea as its detection medium, which differs from, for
example, IceCube which uses the Antarctic ice sheet as its detection medium [25]. This comes with
certain advantages and disadvantages. The two detectors are called ORCA (Oscillations Research
with Cosmics in the Abyss) and ARCA (Astroparticle Research with Cosmics in the Abyss). The de-
tectors work according to the same principles but differ in location and size. ORCA has a smaller and
denser configuration, which is optimal for detecting atmospheric neutrinos in the GeV range. Therefore,
ORCA will be used to study neutrino properties, such as neutrino oscillations. ARCA has a larger and
less dense configuration and will therefore be used to study high-energy cosmic neutrinos in the PeV
range [26].

4.1. Detector layouts
The two detectors work according to the same principle, but differ in size and location. In addition to
this, the detectors are still in construction, so the configuration of the detectors itself is also constantly
changing. These changes have to be taken into account for further analysis. Both detectors are built
out of several detection units (DU). The DU is a long vertical structure that is built up out of 18 digital
optical modules (DOM). The horizontal spacing between the DUs and the vertical spacing of the DOMs
on the DU is detector-specific. DOMs are essential for detecting Cherenkov radiation. A DOM is
a 17-inch diameter glass sphere that houses 31 photomultiplier tubes (PMTs). When a photon hits
a photocathode in a PMT, it releases an electron through the photoelectric effect. The electron is
then accelerated towards a series of dynodes, and at each dynode, the number of electros increases.
This causes an amplification of the electron current that can eventually create a measurable electrical
pulse at the anode in the PMT. The amplitude of the electrical pulse is proportional to the number of
photons that hit the photocathode. The PMTs are sensitive enough to detect a single photon. The DOM
also contains the necessary equipment needed for timing, calibration, positioning, orientation, and, of
course, data readout. The DOMs in an DU are attached to two thin parallel Dyneema ropes with a
titanium collar. Along the DU runs an optical cable to the base of the DU providing data transmission
and power. The base container functions as an anchor to the seabed and houses power and data
components. From the base container, the data will go through some intermediate steps to the shore
for further processing. The first DU for ARCA was deployed in December 2015 and for ORCA in
September 2017. Every couple of months, sea operations add new DUs or try to recover broken DUs
for debugging [25].

19
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Figure 4.1: The detection unit (DU) left and the digital optical module (DOM) on the two thin parallel Dyneema
ropes right [25].

4.1.1. ORCA
ORCA is located about 40 kilometres offshore from Toulon, France, at coordinates 42°48’N 06°02’E.
The sea has a depth of 2450 metres there. The DUs are 20 metres apart from each other. On each DU
there are 18 DOMs with 9 metres spacing between them vertically. The first DOM is around 40 metres
above the seafloor, making the total DU 200 metres in height. Because ORCA is relatively dense, it
is possible to detect at a lower energy threshold compared to ARCA. When ORCA is completed, it
will have 115 DUs in total. The total instrumented volume will be about 7 Mton of sea water when
completed. However, ORCA is currently under construction, but is already producing data [25]. Thus,
different datasets are available for the constantly growing detector; these datasets are referred to as
ORCA-X. The X in this naming scheme stands for the number of DUs in the detector configuration.
As of writing this paper, ORCA is currently operating with 24 DUs (ORCA-24). However, as indicated
above, the number of DUs is constantly changing and can be found on the website of the KM3NeT
organization [27]. It takes some time to process the raw data from a detector before it is available for
further analysis. In this study, the detector configurations ORCA-6, ORCA-10, ORCA-11, ORCA-15,
and ORCA-18 are studied. The detector configurations have different properties. This makes their
average threshold energy, predicted temperature coefficient, and the amount of particles detected per
unit of time slightly different. This is because a larger detector can detect more particles in the same
amount of time.

4.1.2. ARCA
ARCA is located about 100 kilometres offshore from Porto Palo di Capo Passero, Sicily, Italy at the
coordinates 36°16’N 16°06’E. The sea has a depth of 3500 metres there. The DUs are spaced 95
metres apart from each other. On each DU there are 18 DOMs with 36 metres spacing between them
vertically. The first DOM is around 80 metres above the seafloor, making the total DU 700 metres
in height. Because ARCA is not as dense as ORCA, it has a higher energy threshold compared to
ORCA. When ARCA is completed, it will have 230 DUs in total. The total instrumented volume will be
about 1045 Mton of sea water when completed, significantly larger than that of ORCA due to the larger
distances in the configuration. ARCA is also still under construction, but is also producing data [25].
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Thus, different datasets are available for the constantly growing detector; these datasets are referred
to as ARCA-X. The X in this naming scheme stands for the number of DUs in the detector configuration.
As of writing this paper, ARCA is currently operating with 33 DUs (ARCA-33). Again, the number of
DUs is constantly changing and can be found on the website of the KM3NeT organization [28]. In this
study, the detector configuration ARCA-21 is studied.

4.2. Detector principle
KM3NeT works, as other neutrino detectors such as ANTARES and IceCube, by detecting Cherenkov
radiation. Cherenkov radiation is emitted when a charged particle, like a muon, travels faster than
the local speed of light through a medium, such as water or ice. The blue light emitted by a particle
in a cone-shaped shape is called Cherenkov radiation. Tamm and Frank calculated the Cherenkov
radiation intensity I(ω), which describes the energy emitted by a particle at a frequency ω per unit of
time and per unit frequency interval dω [29]:

I(ω)dω = v
e2

c2

(
1− c2

v2n2(ω)

)
ωdω (4.1)

Where e is the charge of the particle, n(ω) the refractive index of the medium at frequency ω, and
v the speed of the particle. As can be seen the intensity of the Cherenkov radiation increases for
higher frequencies of light such as blue light. A particle, like a muon, also losses energy through
radiative processes such as bremsstrahlung, pair-production and hadronic interactions as indicated in
Equation 2.10. The particles created in these processes can produce additional Cherenkov radiation.
So light can be produced directly by Cherenkov radiation of the main particle but additional light can
be produced through secondary radiative processes [25].
Atmospheric muons can be detected directly using Cherenkov radiation and light emitted by secondary
processes. For neutrinos to be detected they first need to interact with other particles. This interaction
will then create charged particles that, if they have enough energy, can be detected using Cherenkov
radiation. The more energy a particle has, the more radiation it emits. Thus, it is also possible that
a particle does not travel directly through the detector but still emits enough radiation to be detected.
The PMTs detect radiation from all processes and digitises the signal if it exceeds a certain threshold.
Each photon that exceeds the threshold is a hit. These data, combined with timing information, are
sent to shore for processing. The clocks of the DOMs are synchronised to an order of nanoseconds.
The DOMs order the data into 100 ms time slices. In the processing step, an onshore CPU farm looks
for correlations between all the hits in the detector within every time slice to see if there are possible
particle events. In order to get a time slice of the whole detector, the time slices of the individual DOMs
need to be combined. This is only possible if the clocks of the DOMs are running synchronously and
aligned to a shared reference time. Multiple trigger algorithms analyse the same data to identify specific
types of events, such as muon-like or shower-like events. The requirements for a muon trigger are [25,
30]:

• Level 0 (L0) Filter: The pulse of a single photon hit on a PMT has to exceed a certain threshold
to be considered an L0 hit. This initial filtering step occurs offshore.

• Level 1 (L1) Filter: Two or more L0 hits on the same DOM within 10 nanoseconds. This is an L1
hit.

• Level 2 (L2) Filter: The angle between triggered PMTs on the same DOM has to be smaller than
90°, level 2 (L2) filter

• Directional Filter: A directional filter scans the entire sky for possible muon tracks by assuming
different direction of the muon. The filter considers the intersection of a cylinder with the detector.
The centre of the cylinder is the assumed muon track and the radius corresponds to the maximum
distance light can travel in water. This limits the number of PMTs to be analysed, thus improving
the signal-to-noise ratio.

• Causality Condition: A causality condition is applied to every pair of L1 hits. This condition
ensures that hits coming from a muon track must happen within a specific time window, which
depends on the speed of light in water and the direction of the muon. Every hit must be causal
with every other hit.
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• Hit Selection: A minimum number of L1 hits (typically four or five) is required within the cylinder.

When these requirements are satisfied, the muon trigger is activated. All hits that occur around a
specific time window surrounding the trigger are saved as events for further analysis. The muon trigger
runs in parallel with other trigger algorithms, such as the shower trigger. A track of a single muon is
assumed and fitted to all the hits in an event. The fitting algorithm searches for the track parameters
that maximise the likelihood of actually seeing the recorded hits in the event. The track parameters
describe characteristics of the particle and the path the particle travelled through the detector. The
track parameters are location, direction, velocity, time, energy, and track length. The fit with the highest
likelihood is saved along with the track parameters. Now, selections can be made to increase the
quality of the data set [25]. Some events could still be badly reconstructed, so it is desirable to remove
these from the dataset to obtain a higher purity of the data.
The detector collects data in specific periods, called runs. These runs typically have a lifetime of around
6 hours. These runs are also used for calibration and stability checks to monitor efficiency losses and
compensate for them [25].

4.3. Background sources
ORCA’s main goal is to study neutrino properties such as neutrino oscillations. To do this, it will look
at atmospheric neutrinos that are created in cosmic-rays showers on the opposite side of the Earth.
These neutrinos will travel through Earth, enter the detector from below, and travel upward. However,
downward neutrinos will also be created in the atmosphere directly above the detector. The problem
with the signal from these atmospheric neutrinos is that the neutrinos are accompanied by many atmo-
spheric muons that are created in the same shower. Therefore, the Earth is used as a sort of shield
to block unwanted muons. ARCA’s main goal is to study higher-energy cosmic neutrinos. However,
ARCA also has the same problem with unwanted atmospheric muons. That is why both ORCA and
ARCA will use the Earth as a shield for unwanted atmospheric muons. Nevertheless, some downward
atmospheric muons are misreconstructed as upward-going events. Since the muon rate will always
be significantly higher than the neutrino rate, this is a problem. The atmospheric muons will always be
a major source of background signal for neutrino detection at the KM3NeT detectors. Therefore, it is
important to understand the atmospheric muon rate and its seasonal variations as well as possible.

Both detectors have several other background sources that are more related to the direct environment
of the detectors. It is impossible to perfectly control the environment in which the detectors operate
because they are located in the Mediterranean Sea. Several factors could be background sources
here, but the main two are Potassium-40 (40K) decay and bioluminescence. Potassium-40, which is
naturally present in seawater, decays and causes uncorrelated hits on PMTs. The decay is stable over
time and is therefore used for calibrations of the detector. Another factor is bioluminescence, the light
produced by living organisms. However, this is not constant over time [31, 32]. When a PMT displays
a high rate of activity, the data can be excluded from the analysis. This is called the high-rate veto
(HRV). It helps protect DOMs and PMTs against overexposure. When the rate of activity exceeds 20
kHz, the data acquisition will stop for the remainder of the 100 ms time slice. The fraction of time that
the DOMs operate in HRV mode is saved per run along with the PMT rates measured in the 100 ms
time slices [33].

4.4. Run-By-Run Monte Carlo simulations
The KM3NeT detectors use water as their detection medium. This causes several background sources.
Detectors such as IceCube use a more static detection medium which eliminates many of these back-
ground sources. For these close-to-ideal detectors, the muon rate in the data is a good approximation
of the real muon rate:

Rdata(t) = N(t)/∆t ≈ Rtrue(t) (4.2)

Because of the background sources and the changes in detector efficiency due to the dynamic detection
medium in KM3NeT’s detectors, the muon rate in the data is better approximated by:

Rdata(t) ≈ Rtrue(t)× Cdata(t) (4.3)
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The factor Cdata(t) accounts here for the changes in efficiency and the background sources.
A run-by-run Monte Carlo simulation simulated a full run of data using the Monte Carlo technique using
the same duration and the same mean count rate per PMT. However, due to computer limitations, the
amount of simulated muons may differ from the true muon count. To compensate for this, the simulation
is scaled with a weight w to match the count rates of the actual data run. Using this technique ensures
that the detector response and background sources are taken into account. The simulation assumes
a constant muon rate. The Monte Carlo rate should be:

RMC(t) = Rconst × CMC(t) (4.4)

The only thing the Monte Carlo simulation does not account for should be the variation of the muon
rate due to atmospheric temperature changes.
Simulations for each neutrino flavour and atmospheric muons are done separately. For atmospheric
muons, MUPAGE is used. For these simulations, distributions of parameters of the muon tracks, such
as direction, energy, and flux, are known. The track is then simulated to predict the hits on the PMTs
they would produce. Using these hits, the track is reconstructed. This is helpful to see how well the
reconstruction algorithm performs. In the simulation data, both the ”true” parameters of the simulated
track and the reconstructed parameters are available. In the real data only the reconstructed parame-
ters are known.
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Temperature data

In this chapter, the temperature dataset that will be used for the effective temperature calculation will
be introduced and explained. Two datasets will be used, the AIRS data and the ERA5 data. The data
sets differ from each other in several ways, and different processing steps are needed to use the data
from each of them. Temperature data from 2020, 2021, 2022, and 2023 will be used, since this covers
all the live time of the different detector configurations.

5.1. AIRS
The first temperature data set was acquired from NASA’s AIRS instrument on board the Aqua satellite.
Aqua orbits Earth at an altitude of 705 kilometres in a sun-synchronous polar orbit. The orbit period
is about 100 minutes. It takes 2 daily measurements of the atmospheric temperature with an error
at 24 pressure levels between 1 hPa and 1000 hPa and has a swath width of 1650 kilometres. The
swath width is the width of the Earth’s surface measured by the satellite in one pass. The data prod-
uct is called Aqua/AIRS L3 Daily Standard Physical Retrieval (AIRS-only) 1 degree x 1 degree V7.0
(AIRS3STD) and contains temperature measurements of the whole Earth. It divides the Earth into bins
of 1°x 1°latitude and longitude [34, 35].
The exact overpass times have to be calculated because the only known information is that the satellite
passes the equator twice a day. Once from the south pole to the north pole (ascending pass) at 1:30
pm local time, and once from the north pole to the south pole (descending pass) at 1:30 am local time.
The measurements in one pass are all labelled with this general time. So, one pass is during the day
and one during the night [34, 35]. To determine a more exact measurement moment, more information
is needed about the orbit. This data can be acquired from Two-line element (TLE) data from databases
such as CelesTrak [36]. With this data, the position of the satellite can be calculated at every moment.
This is done every 30 seconds to get a high resolution. Then, the slant range between the satellite
and the detector is calculated. The slant range is the distance in a straight line between the detector
and the satellite, taking into account both the vertical and the horizontal distance. Then the passes are
determined when the detector is within the visible range of the satellite and if the pass is ascending or
descending. Finally, only the overpass time when the slant range was minimised is saved in UTC. In
Figure 5.1 the overpass times above the ORCA detector are shown. In orange is the descending over-
pass time that occurs during the night. In blue are the ascending overpass times that happen during
the day. So, the exact moment of measurement is not constant and varies from day to day.

24
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Figure 5.1: Overpass times in UTC of the Aqua satellite above KM3NeT’s detector ORCA. In orange is the
descending overpass time which happens during nighttime. In blue are the ascending overpass times which

happen during the daytime.

5.2. ERA5
The second temperature data set is the ERA5 atmospheric reanalysis acquired from the Copernicus
Climate Change Service [37]. ERA5 is a fifth generation of atmospheric reanalysis performed by the
European Center for Medium-Range Weather Forecasts (ECMWF) [38]. It covers a period from 1950
to the present day and is updated daily. ERA5 is a reanalysis data set that combines current weather
models and historical and current weather observations. This is different from the AIRS data because
AIRS uses direct atmospheric measurements.
ERA5 data has a high resolution of 0.25° x 0.25° latitude and longitude bins. For its reanalysis, it uses
data from more than 200 satellites and many other metrological measurements, such as radiosondes,
drop sondes, and aircraft measurements. AIRS data is also used for the ERA5 reanalysis. The atmo-
spheric temperature data are again given in pressure layers ranging from 1 hPa and 1000 hPa, but now
in 37 pressure levels. This gives the possibility to select a temperature profile that better matches the
direction of the incoming muons, more about this later in Chapter 6. The other main difference between
the ERA5 data and the AIRS data is that ERA5 data is available every hour.
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Method

6.1. Selection of muon data
In order to get a better purity of the data, it is necessary to apply selections to the data. The purpose of
these selections or cuts on the data is to improve the quality of the data for further analysis. The goal
is to suppress background noise and remove poorly or incorrect reconstructed events without losing
much data. For neutrinos, the count rate is really low, so it is important not to make strict cuts when
working with neutrinos. In this case, muons have a much higher count rate, so it is acceptable to have
some stronger cuts to reduce the background noise a bit more without losing to much good events.
Each detector and detector configuration are different in sensitivity and build. That is why the cuts on
the data for the different detectors and configurations differ from each other. In this section, the process
of making the cuts will be explained, and the ORCA-6 detector will be used as an example. The method
developed here is applied to all detectors and configurations in the same way.
There are two different types of cuts that can be applied to the data, run cuts and event cuts. Run cuts
apply cuts on parameters that are the same for a whole data run, such as the livetime of a run or the
time a run spends in HRV mode. These cuts remove a lot of data in one go, so a small change can
have a large impact on the final data. Event cuts apply cuts on parameters that differ for each event,
such as direction and energy.
Before real cuts are applied, some precuts will filter out some data that are not physical. The precuts
make sure that the energy and length of the events are positive, that only events where the muon trigger
is activated are included, that the muon is moving downward, and that the likelihood, a parameter
reflecting the correctness of the event reconstruction, is positive.

6.1.1. Run cuts
Run cuts will be made to the data because there might be problems with data from a whole run. The
run cuts will be the same for both detectors and all of its configurations. One cause of this is that
the runs can be cut short for different reasons. For example, runs that follow calibrations run that are
needed to calibrate the detector can be cut short to keep up with the schedule of the detector. Other
interruptions or disturbances, such as a required restart, can also lead to short runs. These short runs
have significantly lower statistics. To have only runs with high enough statistics, the first run cut that is
applied is that the livetime of a run needs to be longer than 1200 seconds. An other cause for problems
in a whole data run is the amount of time spent in the HRV mode. The longer a run spends in HRV, the
less time the detector is actually taking data. This also causes runs with lower statistics. Therefore, a
run cut is applied that the time spent in the HRV needs to be lower than 20 % of the total livetime of
a run. In Figure 6.1 the livetimes of the runs are shown for ORCA-6. The runs with a livetime shorter
than the cut are highlighted in red, the runs that were longer in HRV mode than the cut are highlighted
in blue, and the selected runs are highlighted in green. For all other detector configurations the same
run cuts are applied of livetime > 1200 seconds and time spend in HRV < 20 % of the total run livetime.
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Figure 6.1: Livetimes of the runs for ORCA-6. The runs with a livetime shorter than the cut are highlighted in red,
the runs that where longer in HRV mode than the cut are highlighted in blue and the selected runs are highlighted

in green.

6.1.2. Event cuts
In order to determine the best cutoff value for a detector, Monte Carlo simulations are used. For the
Monte Carlo data, both the ”true” predefined parameters and the reconstructed parameters of the muon
tracks are available. Using true and reconstructed muon directions, the opening angle between the
directions can be determined. The opening angle is thus the difference between the true and recon-
structed direction. In Figure 6.2 the distribution of the opening angle for ORCA-6 is shown before any
cuts are applied to the data. As can be seen, the distribution reaches a maximum when the opening
angle is 1 degree. Each event is classified as either a good reconstruction when the opening angle is
less than 1 degree or as a bad reconstruction when the opening angle is more than 1 degree.

Figure 6.2: Distribution of the opening angle for ORCA-6 before any cuts are applied to the data
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Now the goal is to remove as much of the bad reconstructed event without losing too much of the
good reconstructed events. In order to do this, a range of cut values for every cut parameter will be
tested to see what portion of bad events is removed and what fraction of good events are retained after
applying a specific cut. The fraction of good events retained will be called the efficiency. Thus, it is
desirable to maximise the removal of bad events while maintaining high efficiency. In order not to lose
too much efficiency, a threshold is placed so that the efficiency needs to be at least 97.5%. Having a
lower efficiency than this value does not greatly improve the bad removal, so therefore this threshold
gives an optimal ratio between efficiency and bad removal. All this is done in a Python script, it loops
over a range of cut values for all the cut parameters and outputs the optimal cut values. In Table 6.1
an overview of the cuts can be found with their efficiency and bad removal fraction if they were applied
independently on the data set for ORCA-6.

Table 6.1: Cut variable with their efficiency and bad removal fraction if they where applied independent on the dataset for
ORCA-6.

Cut variable Cut value Efficiency Bad Removal
Zenith angle (cos(θ)) < −0.447 0.976 0.078
Energy [GeV] > 11.323 0.978 0.121
Length [m] > 37.996 0.976 0.165
Likelihood > 74.298 0.976 0.217
Number of hits > 41 0.976 0.166
Likelihood / hits > 1.144 0.977 0.150
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Zenith angle cut
The first cut parameter that is chosen is the reconstructed zenith angle. This is done to improve the
angular resolution because events reconstructed near the horizontal plane are more prone to recon-
struction problems. Using the optimal cut algorithm, a cut value of cos(θ) < −0.447 is determined. In
Figure 6.3 the distribution of the real and simulated zenith angles of ORCA-6 is shown before and after
the event cuts. In the lower part of the figure the ratio between the real data and the simulated data
can be seen before and after the event cuts. If the simulation worked perfectly, the ratio would always
be 1; however, for larger zenith angles the ratio seems to decrease.

Figure 6.3: Distribution of the real and simulated zenith angles of ORCA-6 before and after the event cuts. In the
lower part the ratio between the real data and the simulated data is depicted before and after the event cuts.
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Energy cut
The second cut is made on the reconstructed energy of the events. In Figure 6.4 the distribution of
the real and simulated reconstructed energies of ORCA-6 is shown before and after the event cuts. In
the lower part of the figure the ratio between the real data and the simulated data can be seen before
and after the event cuts. For larger energies, it can be seen that the simulation overestimates the
number of events detected, both before and after the cuts. Using the optimal cut algorithm, a cut value
of the reconstructed energy > 11.323 GeV is determined. The double peak seen in the figure might
be caused by the geometrical configuration of the detector. The detector is namely quite tall but also
rather narrow. Particles that cross horizontally through the narrow axis might be reconstructed with
lower energies than particles that cross the detector vertically through the tall axis. However, this is
not yet fully understood. If this is the case, the double peak should disappear as the detector becomes
bigger. Another reason to cut lower energies out is that these lower energies are often dominated by
background noise. So, by removing, the purity of the data can be improved [10].

Figure 6.4: Distribution of the real and simulated reconstructed energy’s of ORCA-6 before and after the event
cuts. In the lower part the ratio between the real data and the simulated data is depicted before and after the

event cuts.
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Track length cut
The third cut is made on the track length of the events. This is closely related to the reconstructed
energy, because more energetic particles produce longer tracks. Cuts on the track length are made
because the reliability of track reconstruction algorithms often improves with longer track lengths. This
is because longer tracks provide more hit information, which algorithms can use to determine the tra-
jectory and properties of the muon more accurately [23]. In Figure 6.5 the distribution of the real and
simulated reconstructed track lengths of ORCA-6 is shown before and after the event cuts. In the lower
part of the figure the ratio between the real data and the simulated data can be seen before and after
the event cuts. The distribution of the real track lengths closely aligns with the simulations and gets
even better after the cuts are applied. Using the optimal cut algorithm, a cut value of the reconstructed
track length > 37.996 meter is determined.

Figure 6.5: Distribution of the real and simulated track lengths of ORCA-6 before and after the event cuts. In the
lower part the ratio between the real data and the simulated data is depicted before and after the event cuts.
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Likelihood cut
The fourth cut is made on the likelihood of the reconstructed events. The likelihood is a measure of
how good the fit of the muon reconstruction is. In Figure 6.6 the distribution of the likelihood of the
reconstructed events of the real and simulated ORCA-6 data is shown before and after the event cuts.
In the lower part of the figure the ratio between the real data and the simulated data can be seen before
and after the event cuts. Using the optimal cut algorithm, a cut value of the likelihood > 74.298 meter
is determined.

Figure 6.6: Distribution of the likelihood of the reconstructed events of the real and simulated ORCA-6 data
before and after the event cuts. In the lower part the ratio between the real data and the simulated data is

depicted before and after the event cuts.
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Number of hits cut
The fifth cut is made on the number of hits (Nhits) used in the reconstruction of the event. In order to
trigger the muon trigger, already 4 hits are necessary. However, it is desirable to have a higher minimum
of hits required to reduce noise. Events with a lower number of hits are more likely to have a larger
fraction of background sources in the data, making reconstruction more difficult. So, by selecting only
events with a higher minimum number of hits, the overall quality of reconstruction of the events can
improve. Using the optimal cut algorithm, a cut value of the number of hits (Nhits) > 41 is determined.
In Figure 6.7 the distribution of the number of hits of the reconstructed events of the real and simulated
ORCA-6 data is shown before and after the event cuts. In the lower part of the figure the ratio between
the real data and the simulated data can be seen before and after the event cuts.

Figure 6.7: Distribution of the number of hits of the reconstructed events of the real and simulated ORCA-6 data
before and after the event cuts. In the lower part the ratio between the real data and the simulated data is

depicted before and after the event cuts.
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Likelihood/Nhits cut
The sixth and final cut is made on the likelihood divided by the number of hits (likelihood/Nhits). Thismay
seem a strange cut. However, events with more hits tend to have a more accurate reconstruction and
thus a higher likelihood. On the other hand, events with not that many hits tend to have a lower likelihood.
However, a larger likelihood does not necessarily mean a better reconstructed event. Therefore, this
new cut parameter is a good measure to quantify the quality of reconstruction per hit. Using the optimal
cut algorithm, a cut value of the likelihood/Nhits > 1.144 is determined. In Figure 6.8 the distribution
of the likelihood divided by the number of hits of the reconstructed events of the real and simulated
ORCA-6 data is shown before and after the event cuts. In the lower part of the figure the ratio between
the real data and the simulated data can be seen before and after the event cuts.

Figure 6.8: Distribution of the likelihood divided by the number of hits of the reconstructed events of the real and
simulated ORCA-6 data before and after the event cuts. In the lower part the ratio between the real data and the

simulated data is depicted before and after the event cuts.

Opening angle
As discussed above, the optimal cut algorithm calculates the opening angle between the reconstructed
direction and the true direction of the simulated data. In Figure 6.9 the three-dimensional opening angle
distribution can be seen for the data without cuts, the data with the pre- and the run cuts, and finally
for the optimal cuts. Runs with an opening angle larger than 1°are labelled bad reconstructions. As
can be seen, the pre- and run cuts already remove some badly reconstructed events. But the final
optimal cuts remove even more badly reconstructed events. The median of the final data set is 0.83°.
In Figure 6.9 a small increase in events around the opening angle of 90°can be seen; this is likely due
to events being reconstructed with the correct zenith angle, but mirrored in the x,y plane.
In Figure 6.10 the distribution of the absolute value of the opening angle of the zenith can be seen
for the data without cuts, the data with precuts and run cuts, and finally for the optimal cuts. The final
optimal cuts again remove the most badly reconstructed events. The median of the final data set is
0.43°.
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Figure 6.9: Three-dimensional opening angle distribution for the data without cuts in blue, the data with the
pre-cuts and the run cuts in orange, and finally for the optimal cuts in green. The median of the data with the

optimal cuts is plotted as a vertical line.

Figure 6.10: Distribution of the absolute value of the opening angle of the zenith for the data without cuts in blue,
the data with the pre-cuts and the run cuts in orange, and finally for the optimal cuts in green. The median of the

data with the optimal cuts is plotted as a vertical line

Final Cut
For all the different detectors and configurations, the same procedure described above was followed.
The cut values found for the detectors are presented in Table 6.2. The cut values for ORCA lie all
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relatively close to each other, which makes sense since the detector configuration is similar. The
ARCA values are different due to the different configuration and geometry of the detector. For all
selected events, the muon trigger must be triggered.

Table 6.2: Data cuts for the different detectors and configurations.

Cut parameter ORCA-6 ORCA-10 ORCA-11 ORCA-11.1 ORCA-15 ORCA-15.1 ORCA-18 ARCA-21
>Livetime [s] 1200 1200 1200 1200 1200 1200 1200 1200
<HRV 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
<Zenith angle (cos(θ)) −0.447 −0.434 −0.434 −0.439 −0.430 −0.432 −0.446 −0.504
>Energy [GeV] 11.323 12.732 12.817 13.603 14.879 14.587 14.960 5.450
>Length [m] 37.996 43.006 43.257 46.080 49.279 48.291 49.132 197.554
>Likelihood 74.298 78.301 76.274 79.029 83.165 83.786 79.840 47.104
>Number of hits 41 41 37 41 47 48 44 30
>Hits / Likelihood 1.144 1.095 1.104 1.022 0.984 0.965 0.917 0.835

In Table 6.3 the statistics of the data sets are shown for the raw data, the data with pre- and run cuts,
and the data with the final event cuts applied. As can be seen, the pre- and run cuts remove the
biggest part of faulty data, and the event cuts fine-tune it more. The start and end dates of the detector
configurations data taking period are also shown in the table. The total amount of days in between de
start and end date does not have to be the same as the livetime of the raw data. This is because there
can be missing of faulty data already removed from the raw dataset.

Table 6.3: Statistics of the data sets for the raw data, the data with pre- and run cuts, and the data with the final event cuts
applied..

Statistic ORCA-6 ORCA-10 ORCA-11 ORCA-11.1 ORCA-15 ORCA-15.1 ORCA-18 ARCA-21
Start data 26-1-2020 24-11-2021 26-07-2022 14-09-2022 16-12-2022 05-04-2023 01-05-2023 22-09-2022
End data 18-11-2021 10-05-2022 05-09-2022 06-12-2022 05-04-2023 26-04-2023 09-01-2024 11-09-2023

Data without cuts
Livetime [days] 402.19 105.65 32.79 12.36 62.87 7.50 70.43 98.62
Data events 3.224× 108 1.112× 108 3.161× 107 1.265× 107 9.104× 107 1.170× 107 1.145× 108 4.287× 107

MC events 2.904× 108 8.996× 107 3.024× 107 1.186× 107 6.797× 107 8.172× 106 8.560× 107 4.271× 107

⟨Rdata⟩ [Hz] 9.231 12.221 11.147 11.848 16.634 18.063 18.831 5.032
⟨RMC⟩ [Hz] 8.075 9.617 10.273 10.807 12.133 12.120 13.010 4.875
Median HRV 0.044 0.073 0.038 0.025 0.052 0.078 0.064 0.001

Pre and run cuts
Livetime [days] 367.87 94.62 28.019 12.36 57.56 5.75 66.19 98.50
Data events 1.810× 108 5.961× 107 1.947× 107 8.604× 106 4.605× 107 4.689× 106 6.195× 107 2.832× 107

MC events 1.951× 108 6.213× 107 2.059× 107 9.136× 106 4.906× 107 4.975× 106 6.427× 107 2.820× 107

⟨Rdata⟩ [Hz] 5.693 7.297 8.036 8.055 9.256 9.425 10.822 3.329
⟨RMC⟩ [Hz] 5.932 7.424 8.195 8.324 9.643 9.720 10.436 3.219
Median HRV 0.039 0.058 0.032 0.025 0.041 0.073 0.055 0.001

Event cuts
Livetime [days] 367.87 94.62 28.019 12.36 57.56 5.75 66.19 98.50
Data events 1.328× 108 4.416× 107 1.461× 107 6.581× 106 3.505× 107 3.553× 106 4.493× 107 2.121× 107

MC events 1.371× 108 4.540× 107 1.489× 107 6.644× 106 3.601× 107 3.651× 106 4.582× 107 2.116× 107

⟨Rdata⟩ [Hz] 4.176 5.408 6.030 6.161 7.043 7.137 7.848 2.493
⟨RMC⟩ [Hz] 4.167 5.426 5.926 6.054 7.077 7.126 7.440 2.415
Median HRV 0.039 0.057 0.032 0.025 0.041 0.073 0.055 0.001

6.2. Average threshold energy ⟨Ethr cos θ⟩
⟨Ethr cos θ⟩ is the average minimum energy, adjusted for the zenith angle, a muon needs at sea-level in
order to reach the detector and be detected. When the zenith angle is larger, the muons need to travel
a longer path through the water, and thus need higher energies to reach the detector and be detected.
In order to calculate the average threshold energy, the events will be binned based on the zenith angle.
The central value of the zenith angle in a bin will then be used to calculate the initial energy at sea
level needed for a muon to reach the detector and be detected. The average threshold energy can be
calculated as [10]:

⟨Ethr cos θ⟩ =
∑
i

Ethr(cos(θi)) · n(cos(θi)) · |cos(θi)| (6.1)
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The index i runs through zenith angle (cos(θ)) bins, ranging from −1 to the cutoff value with steps of
0.01. cos(θi) is the value at the centre of the bin, n(cos(θi)) is the muon flux normalised to unity in the
cos(θi)-th bin, and Ethr(cos(θi)) is the energy needed at sea level to be detected in the cos(θi)-th bin.
Ethr(cos(θi)) can be calculated analytically using Equation 2.11 and numerically using Equation 2.10.
For analytical calculations, constant approximations for the loss parameters have to be chosen. For the
numerical approach, the loss parameters acquired from the Particle Data Group [20] are interpolated
to get a more accurate result. In order to calculate the energy at sea level, the minimal detected muon
energy is needed. This minimal energy will be the minimal reconstructed energy found in the datasets
for the specific detectors after cutting. Because the minimal reconstructed energy is different for every
detector and configuration, due to different geometries, each detector and configuration will have its
own unique average threshold energy.
In order to obtain an error estimate for the average threshold energy, both dependencies of the cos(θ)
bin width (angular resolution) and the minimal reconstructed energy of the detected muon (energy
resolution) are taken into account. In order to estimate the uncertainty due to angular resolution, the
average threshold energy is calculated for different bin widths. Then the standard deviation of the
resulting energies is taken to be the uncertainty due to angular resolution. For the determination of
the uncertainty due to the energy resolution, a Gaussian distribution is assumed where the mean is
the minimal reconstructed energy and the spread is assumed to have an energy resolution of 10%.
The energy resolution is probably significantly larger, but due to the depth of the detector, this will not
have a large effect on the end result. A wide range of energies reaches approximately the same depth,
especially for the depths of the KM3NeT detectors; see Figure 2.7. Then 4000 Monte Carlo samples
are taken from this distribution, and the average threshold energy is calculated for each of them. The
standard deviation that follows from this distribution of average threshold energies is taken to be the
uncertainty due to the energy resolution. The total error is then the quadratic sum of the uncertainty
due to the angular and energy resolution.

6.3. Effective atmospheric temperature
6.3.1. AIRS
The effective atmospheric temperature above the detectors has to be calculated for a volume of atmo-
sphere in order to account for different zenith angles of the incoming muons. The zenith cutoff value for
the different detectors is used to determine the size of a cone-like shape in which all the muons travel.
For example, ORCA-6 has a cutoff value of the zenith of −0.447. At the highest pressure layer of AIRS
at 1 hPa or approximately 60 kilometres altitude, this translates to a radius of 120 kilometres of the
cone. To calculate the radius at any point in the altitude, the simple equation radius = height · tan(θ)
can be used. Now, because the AIRS temperature data are binned in 1°x 1°latitude and longitude bins,
only the bins where the centre fall in the top radius of the cone are selected. For the ORCA-6 example
this corresponds to 42.5 and 43.5°E latitude and 5.5 and 7.5°N longitude bins. For all of these bins,
the average temperature per pressure layer per measurement time is calculated to obtain an average
temperature profile above the detector. This temperature profile is then used to calculate the effec-
tive temperature above the detector at every measurement moment with Equation 3.16. So, at every
overpass time or measurement time, shown in Figure 5.1, which falls within the lifespan of a specific
detector, an efficient temperature will be calculated. Every detector configuration spans over a different
time period and has a slightly different average threshold energy. Therefore, an effective temperature
over time will be calculated specific to every detector.

6.3.2. ERA5
For ERA5 temperature data, the same approach described above for the AIRS data can and will be
used. The highest pressure layer measurements of ERA5 are the same as for AIRS but it has more
layers than AIRS. ERA5 also has hourly data points compared to the two measurements per day of
AIRS. So, it will be interesting to see what the effect is. ERA5 could give a more accurate representation
of the effective temperature coefficient because the muon events all have a temperature measurement
relatively close. However, the main difference between the ERA5 and AIRS data is that ERA5 has
0.25°x 0.25°latitude and longitude bins. This makes it possible to apply a different approach to the
calculation of the effective temperature. Now, no single effective temperature over time is used for all
muon tracks in a detector configuration, but multiple effective temperatures over time are calculated for
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muons with different directions. In order to do this, muons will be binned using their zenith and azimuth
angles, which will be determined later. The mean zenith and azimuth angle of each these bins will be
used to calculate a general path through the atmosphere. This general paths will be used to represent
the path of all the muon within a bin. The ranges for the bins are shown in Table 6.4. The bin names
are formatted as ’Bin_Z_A’. where Z stands for the bin number of the zenith angle, 0 are smaller angles,
and 1 are larger angles. A stands for the bin number of the azimuth angle, ranging from 0 to 3.

Table 6.4: Zenith and azimuth angles bins used for different temperature profiles and sorting muon events. The bin names are
formatted as ’Bin_Z_A’. where Z stands for the bin number of the zenith angle, 0 are smaller angles, and 1 are larger angles. A

stands for the bin number of the azimuth angle, ranging from 0 to 3.

Bin Zenith Angle Range (°) Central Zenith Angle (°) Azimuth Angle Range (°) Central Azimuth Angle (°)
Bin_0_0 0 – 32.5 16.25 −180 – −90 −135
Bin_0_1 0 – 32.5 16.25 −90 – 0 −45
Bin_0_2 0 – 32.5 16.25 0 – 90 45
Bin_0_3 0 – 32.5 16.25 90 – 180 135
Bin_1_0 32.5 – 65 48.75 −180 – −90 −135
Bin_1_1 32.5 – 65 48.75 −90 – 0 −45
Bin_1_2 32.5 – 65 48.75 0 – 90 45
Bin_1_3 32.5 – 65 48.75 90 – 180 135

In order to determine the eight general paths that the muons take for each of the bins, the height of
every pressure layer needs to be determined. This is done with the barometric formula. Then for
every height, using the central zenith and azimuth angle, the latitude and longitude are calculated with
respect to the detector position. First, the horizontal change due to the zenith angle is determined,
and then this is decomposed into x and y components using the azimuth angle. Then these x and
y change components are translated into the change of latitude and longitude. Now the latitude and
longitude coordinates at every height are known. However, the ERA5 data still has only temperature
measurements at every 0.25° latitude and longitude. Therefore, the calculated coordinates of the path
are matched to the closest grid points. In Figure 6.11 the eight general muon paths in the atmosphere
are shown schematically. All the paths start from the detector coordinates, which in this case is ORCA,
and then spread out in the atmosphere. With these general paths, it is possible to determine the
temperature at each pressure level closest to the true general muon path for every direction bin. At
every point in the atmospheric layer it is known to which grid point (latitude, longitude) a general muon
path is closest, so the temperature only at that grid point is added to the temperature profile. This
creates more accurate temperature profiles for the muons in each of the bins. These temperature
profiles are then used to calculate the effective temperature for each of the bins at every measurement
moment with Equation 3.16.
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Figure 6.11: General muon paths in the atmosphere for each of the eight bins. All the paths start from the
detector coordinates, which in this case is ORCA, and then spread out in the atmosphere.

6.3.3. Error effective temperature
In order to get an estimate of the error in the effective temperature, a toy Monte Carlo simulation is per-
formed. For 400 days, the effective temperature was calculated 3000 times by sampling from Gaussian
distributions based on AIRS and ERA5 data. Distributions are defined by the mean temperature and
standard deviation of each pressure layer over a detector configuration period. Similarly, the weights
for the calculation are sampled from a Gaussian, using the mean and standard deviation of the weights
in each pressure layer. For each day, a distribution of effective temperatures follows with a standard
deviation. The mean of all standard deviations for all days will be the error of the effective temperature.
This approach will be used for the AIRS data and for both ERA5 effective temperature calculations.

6.4. Ratio of data and simulation
In Section 4.4, the run-by-run Monte Carlo simulations were introduced and explained. The simulation
should follow the real detector conditions as closely as possible except for the seasonal variation of the
muon rate. It was also shown that the rate in the real data was affected by environmental conditions,
in particular bioluminescence, and detector conditions, such as changing PMT efficiencies. The ratio
of the real data rate and the Monte Carlo rate can now be given by:

R data
mc

(t) =
Rdata(t)

RMC(t)

=
Rtrue(t)× Cdata(t)

Rconst × CMC(t)

(6.2)

C represents here all the factors that have an influence on the detected muon rate expect the seasonal
variation. Now, the assumption that is made for the simulation is that it accurately models all influences
on the rate except the influence of the atmospheric temperature. So, Cdata(t) = CMC(t). The ratio will
then become:

R data
mc

(t) =
Rtrue(t)

Rconst
(6.3)
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In the ideal case R data
mc

= 1, all the influences are correctly simulated. So by studying this ratio as
defined in Equation 6.2, the changing behaviour of the true ratio Rtrue(t) due to the atmospheric tem-
perature changes can be probed. This approach will only work if the simulations are accurate. If some
factors are not (fully) taken into account, deviations from the expected correlation will occur when the
ratio is correlated with the effective temperature.
Substituting the newly defined ratio, which only describes the influence of atmosphere temperature on
the rate, into Equation 3.15 gives a more accurate representation of the true muon rate. Rewrite Equa-
tion 6.3 as Rµ(t) = Rtrue(t) = R data

mc
(t) ·Rconst, and substituting it into the left part of Equation 3.15, so

that:
Rµ(t)− ⟨Rµ⟩

⟨Rµ⟩
=

R data
mc

(t) ·Rconst − ⟨R data
mc

(t) ·Rconst⟩
⟨R data

mc
·Rconst⟩

=
R data

mc
(t) ·Rconst − ⟨R data

mc
(t)⟩ · ⟨Rconst⟩

⟨R data
mc

(t)⟩ · ⟨Rconst⟩

(6.4)

Since Rconst is constant over time (Rconst = ⟨Rconst⟩), it can be divided out. Giving the final relation
between the ratio of the real data and the Monte Carlo simulation and the effective temperature:

R data
mc

(t)− ⟨R data
mc

(t)⟩
⟨R data

mc
(t)⟩

= αT
Teff (t)− ⟨Teff ⟩

⟨Teff ⟩
∆R data

mc

⟨R data
mc

⟩
= αT

∆Teff

⟨Teff ⟩

(6.5)

It is important to note that for this derivation, Rconst is assumed to be constant for the whole data set
for which the ratio is computed. If this is not the case, for example, between different detectors and
configurations, the ratio and its mean value should be calculated separately for each data set. There-
fore, in this study, an effective temperature coefficient will be determined for all different detectors and
configurations.
In order to check this for every detector and configuration, the mean values of the ratio and the effec-
tive temperatures can be calculated for different timespans. In principle, one would expect the effective
temperature coefficient to be constant over time. However, if some factors are not correctly simulated,
the effective temperature coefficient might differ from what would be expected theoretically.

6.4.1. Ratio decrease over time
The assumption made for using the ratio to determine the effective temperature coefficient was that
the simulation accurately models all influences on the rate except the influence of the atmospheric
temperature. However, this might not be true. An effect that will be tested is a linear decrease in the
ratio over time. This could hint that the efficiency losses in the detector are not fully accounted for in the
simulation. In order to do this, a cosine model with a linear trend will be fitted through the temperature
data and the ratio data. The assumption here is that a sinusoidal function with a period of one year is the
dominant mode. First, a fit with a period of one year will be done through the four years of temperature
data. Using this fit, a new fit can be made through the ratio data. In order to line up the fits of the
temperature and the ratio, the same period of one year and the phase found in the temperature fit will
be used for the ratio fit. The following fit model will be used:

ratio = A× cos(
2π

period
× t+ phase) +B × t+ offset (6.6)

where A the amplitude of the oscillations is, t the time and B the linear trend coefficient. For the
temperature fit, phase, offset, and amplitude are free parameters, and the period will be set to one year
and the linear trend coefficient to 0. For the fit of the ratio, the linear trend coefficient, the offset, and
the amplitude are free parameters. The period is again fixed to one year and the phase is fixed on the
phase found for the temperature fit. For the fit of the ratio, a linear trend coefficient of 0 and an offset
of 1 would be expected if the simulations were perfect, assuming only the temperature behaves as a
sinusoidal function and the ratio is perfectly correlated with the temperature.
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6.4.2. Ratio calculation AIRS
The data rate, the number of muons per second (Rdata(t) = N(t)/∆t), can be calculated for different
times and time intervals. For AIRS temperature data, the temperature is known for two overpasses a
day. So, the rate will be calculated for a data run when one of these overpass times falls within the
duration of the run. However, the rate within a run or within any other time period could still vary, causing
some scattering. Therefore, the rate will also be calculated for events that occur ±30 minutes around
these overpass times to try tominimise this scattering. It could happen that a temperaturemeasurement
happens at the beginning or end of a run, so, for example, only 40 minutes of the 60 minute time window
falls within one run. Therefore, only events that occur in a run in which a temperature measurement
occurs can be selected in this way. Extra attention should be paid to the rate calculation because ∆t is
therefore not a constant, but should be calculated every time to obtain an accurate rate. If the overlap
time is shorter than 40 minutes, the rate will not be calculated due to a lack of statistics, and this data
point will no longer be used in future calculations.
The rate calculation for the Monte Carlo simulations is slightly different. The timestamps within a run
in the Monte Carlo simulation have no physical meaning, so they cannot be used to select only events
close to a temperature measurement. Therefore, the rate will always be constant in a run. Because
the number of events of a simulation run is not exactly the same as the number of events of a real run,
the Monte Carlo data needs to be scaled to be able to compare them to the real data. The rate of will
be calculated using a weight w that differs for every run but is close to 1. The Monte Carlo rate will be
calculated by counting the events in a run, scaling this by the weight w and dividing this by the livetime
of the real run.
The data rate can thus vary in the same run, but the Monte Carlo rate is always constant in a run. The
data rate will thus be calculated in two different ways, and the Monte Carlo rate will only be calculated
in this one way.
The ratio R data

mc
, can now simply be calculated by dividing the data rate by the Monte Carlo rate. Note

that the ratio can only be calculated when the data rate and the Monte Carlo rate are from the same
run.

6.4.3. Ratio calculation ERA5
For the second effective temperature calculation approach discussed for the ERA5 data, different tem-
perature profiles were calculated for the different bins presented in Table 6.4. Now, for each of the bins,
a muon rate and ratio need to be determined. In order to do this, the zenith and azimuth angles of
the muons need to be determined. For every muon event, a direction vector is known. However, this
direction vector is calculated using a UTM coordinate system that is slightly different from the coordi-
nate system that uses the geographical north used by ERA5. Therefore, the direction vector must be
rotated to align with the temperature data coordinate system according to:

xrot = x cos(γ)− y sin(γ),

yrot = x sin(γ) + y cos(γ),

zrot = z

(6.7)

As can be seen the z direction component is not affected by this rotation. The rotation angle γ for ORCA
is −2.02°and for ARCA 0.65°. Now the zenith and the azimuth angle can be calculated with:

zenith = arccos(z)

azimuth = arctan 2(xrot, yrot)
(6.8)

For reconstructed directions in both the real data and the Monte Carlo data the zenith and azimuth
will be calculated and used to bin the events into the bins presented in Table 6.4. Then the data rate
and the Monte Carlo rate can be calculated in the same way as described in Section 6.4.2. However,
because ERA5 data have hourly data points, the rate will only be calculated in 60 minute time windows.
Again, the same thing can happen that a time window is cut short by the start of end of a run, so extra
care is needed here. Also, when the time window is shorter than 40 minutes, the data will not be used
to have sufficient statistics. The Monte Carlo rate calculation will be exactly the same as described
before, which is a constant rate for a whole run.
Because there is more than one temperature measurement in one run for ERA5 data, there are more
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than one data rate for one run. However, there is still only one Monte Carlo rate for one run. So when
calculating the ratio, the data rate will change, but theMonte Carlo rate will remain the samewithin a run.

In order to compare the ERA5 data and the AIRS data more directly, the ratio will also be calculated
without the binning but with the 60 minute time windows.

6.4.4. Uncertainty of the ratio
The uncertainty of the ratio is made up of two parts, the statistical and the systematic error. The
statistical error of the ratio is a Poisson error due to the event counts in the real data Ndata and the
Monte Carlo data NMC , added quadratic [19]:σ

(
R data

mc

)
R data

mc

2

stat

=

(√
Ndata

Ndata

)2

+

(
w

√
NMC/w

NMC

)2

=
1

Ndata
+

w

NMC
(6.9)

where w is the weight used for scaling the Monte Carlo simulations.
The systematic uncertainty will be estimated using the standard deviation (std(∆Rdata)) of the change
in rate between consecutive rate calculations for a detector configuration. This is because the rate could
change during a time window corresponding to a temperature measurement. This could cause some
scattering of the effective temperature coefficient. To account for this account for this the systematic
uncertainty will be added in quadrature to the statistical uncertainty, resulting in the total uncertainty [19]:σ

(
R data

mc

)
R data

mc

2

tot

=
1

Ndata
+

w

NMC
+

(
std(∆Rdata)

⟨Rdata⟩

)2

(6.10)

6.5. Fit model
The ratio and effective temperature in Equation 6.5 are now known. To determine the effective tem-
perature coefficient, αT , a model must be fitted to the data. In this study the following model will be
used:

∆R data
mc

(t)

⟨R data
mc

⟩
× 100% = αT

∆Teff (t)

⟨Teff ⟩
× 100% + β (6.11)

where both αT and β are free parameters. β is added to account for possible systematic shifts in muon
rate or temperature. The addition of the percentages is not necessary but makes the interpretation
of the results easier. To utilise the errors in the ratio and effective temperature, the errors are scaled
by 100%/⟨R data

mc
⟩ and 100%/⟨Teff ⟩, respectively. In order to fit a line through the data and account

for the errors in both the x and y values, a regular least-square fitting cannot be used. Therefore, the
orthogonal distance regression fit is used, taking into account the errors in both dimensions [39].
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Results

7.1. Average threshold energy ⟨Ethr cos θ⟩
ORCA-6 will be used to illustrate a general result. The calculations for all detectors and configurations
are based on the same calculations and steps. In Figure 7.1 the results of the calculation forEthr(cos(θi))
are shown for both the analytical approach in blue using Equation 2.11 and the numerical approach
in orange using Equation 2.10. Because the numerical approach gives more accurate results, the
calculations proceed with these results.

Figure 7.1: Maximum slant depth reach in water by muons with starting energy E0. The solid grey line is the
numerical solution of Equation 2.10. The dashed lines are the analytical solutions with constant loss parameters
(Equation 2.13). Changes in density due to temperature and salinity changes make the conversion from slant
depth to average depth not constant. The blue data points are the result of calculating the energy needed for

different zenith angles to reach the detector with an analytical approach. The orange data points are the result of
calculating the energy needed for different zenith angles to reach the detector with an numerical approach.

The results of the uncertainty analysis due to the angular resolution for ORCA-6 are shown in Figure 7.2.
The standard deviation and thus the uncertainty due to the angular resolution is 3 GeV.

43
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Figure 7.2: Distribution of average threshold energy due to varying the bin width of the zenith angle bins. The
standard deviation of this distribution is assumed to be the uncertainty due to the angular resolution.

The results of the uncertainty analysis due to the energy resolution of ORCA-6 are shown in Figure 7.2.
The standard deviation and thus the uncertainty due to the energy resolution is 17 GeV. This is signifi-
cantly larger than the uncertainty because of the angular resolution. As mentioned above, the energy
resolution probably has been underestimated and could be significantly larger than 10%. However, the
impact of this is expected to be minimal because of the depth of the detector. If the detector was closer
to the surface, the impacts could have been greater.
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Figure 7.3: Distribution of average threshold energy due to random sampling of the minimal reconstructed muon
energy from a Gaussian distribution. The standard deviation of this distribution is assumed to be the uncertainty

due to the energy resolution.

In the table below the average threshold energies with uncertainties for all detectors and configurations
are show. ARCA-21 has a significantly higher average threshold energy than ORCA detectors because
the detector is much deeper in the water. Therefore, muons that reach the detector need to have more
energy to be able to penetrate the additional water layers compared to ORCA.

Table 7.1: Average threshold energies with uncertainties for all detectors and configurations.

Detector ⟨Ethr cos θ⟩ [GeV] σ [GeV]
ORCA-6 1128 17
ORCA-10 1134 17
ORCA-11 1132 17
ORCA-11.1 1136 17
ORCA-15 1136 17
ORCA-15.1 1136 18
ORCA-18 1135 17
ARCA-21 1933 35

7.2. Theoretical temperature coefficient
Using the average threshold energies, the theoretical temperature coefficients can be calculated using
Equations 3.20 and 3.22. In Figure 7.4 the theoretical values of the temperature coefficient are plotted
versus the average energy threshold. In yellow, green, and blue are the pion, kaon, and total contri-
butions, respectively. On the left side is a complete overview of the spectrum and on the right a more
zoomed-in picture. The detectors are highlighted by the coloured dots.
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Figure 7.4: Theoretical values of the temperature coefficient plotted versus the average energy threshold. In yellow, green,
and blue are the pion, kaon, and total contributions, respectively. On the left complete overview of the spectrum and on the

right a more zoomed-in picture. The detectors are highlighted by the coloured dots.

In Table 7.2 the theoretical values for the overall theoretical temperature coefficient as well as the
contributions of the pions and kaons can be seen for all detectors and configurations.

Table 7.2: The theoretical values for the overall temperature coefficient as well as the contributions of the pions and kaons can
be seen for all detectors and configurations.

Detector ⟨Ethr cos θ⟩ [GeV] αth αth
π αth

K

ORCA-6 1128 0.8865 0.9449 0.6984
ORCA-10 1134 0.8870 0.9451 0.6994
ORCA-11 1132 0.8870 0.9450 0.6992
ORCA-11.1 1136 0.8871 0.9452 0.6999
ORCA-15 1136 0.8872 0.9452 0.7000
ORCA-15.1 1136 0.8871 0.9452 0.6999
ORCA-18 1135 0.8870 0.9452 0.6996
ARCA-21 1932 0.9238 0.9671 0.7987

As can be seen from both the graph and the table, the temperature coefficient becomes higher as the
average energy threshold becomes larger. This makes sense because, as discussed before, high-
energy muons are mainly produced in the upper part of the atmosphere where their parent mesons
decay chances are directly impacted by the temperature variations. The lower-energy muons that are
formed in these upper parts of the atmosphere are more susceptible to decay themselves before they
can reach a detector and be detected, thus reducing the correlation seen between the muon rate and
atmospheric temperature at lower energies. In addition to this, lower-energy muons that are formed
by decay from mesons below their critical energy are less effective by temperature variations because
the lower-energy mesons have higher decay changes regardless of temperature variations.

7.3. Atmospheric temperature profile
The atmospheric profiles were acquired through two data sets, AIRS and ERA5, see Section 6.3.
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7.3.1. AIRS
In Figure 7.5 the atmospheric temperature profile above ORCA is shown for the AIRS data. The left
y-axis shows the pressure on a logarithmic scale and the right y-axis shows the average geometrical
height above sea level. Changes in density due to changes in temperature make the conversion from
pressure to geometric height not constant. During the summer, relatively smooth temperature changes
are observed. In winter, more sudden spikes in temperature occur. In Figure 7.6 the atmospheric
temperature profile above ARCA is shown in the same way.

Figure 7.5: Contour plot of the average atmospheric temperature over the selected region per pressure layer above the ORCA
detector for the AIRS data. The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the average
geometrical height above sea level. Changes in density due to changes in temperature make the conversion from pressure to

geometric height not constant.
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Figure 7.6: Contour plot of the average atmospheric temperature over the selected region per pressure layer above the ARCA
detector for the AIRS data. The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the average
geometrical height above sea level. Changes in density due to changes in temperature make the conversion from pressure to

average geometric height not constant.

The differences between two consecutive measurements,∆T , also called the rolling difference, provide
a measure of the short-term variations and their differences between the pressure layers. The density
of the distribution of∆T for every pressure layer has been plotted in a violin plot for ORCA in Figure 7.7
and for ARCA in Figure 7.8. The 1 hPa pressure layer for ORCA has two maximums at ±2.5 K. It can
also be seen that the distribution ∆T is more narrow for pressure layers between 10 and 100 hPa. For
ARCA, the pressure layers between 10 and 100 hPa are also the most narrow, but the clearly visible
dual peak of the 1 hPa pressure layer of ORCA is no longer visible. However, it can still be seen that
the 1 hPa distribution of ARCA is noticeably wider than that of other layers.
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Figure 7.7: Violin plot of the distribution densities of the difference between two consecutive measurements of AIRS, ∆T , for
the pressure layers above ORCA.

Figure 7.8: Violin plot of the distribution densities of the difference between two consecutive measurements of AIRS, ∆T , for
the pressure layers above ARCA.

7.3.2. ERA5
In Figure 7.9 the average atmospheric temperature profile above ORCA is shown for the ERA5 data.
The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the average geo-
metrical height above sea level. The temperature profile looks very similar to that acquired through the
AIRS data. During the summer, relatively smooth temperature changes are again observed. In winter,
sudden spikes in temperature also occur. In Figure 7.10 the average atmospheric temperature profile
above ARCA is shown in the same way.



7.3. Atmospheric temperature profile 50

Figure 7.9: Contour plot of the average atmospheric temperature per pressure layer above the ORCA detector for the ERA5
data. The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the average geometrical height

above sea level.

Figure 7.10: Contour plot of the average atmospheric temperature per pressure layer above the ARCA detector for the ERA5
data. The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the average geometrical height

above sea level.

The differences between two consecutive measurements, ∆T , is again calculated for ERA5 data. The
density of the distribution of ∆T for every pressure layer has been plotted in a violin plot for ORCA in
Figure 7.11 and for ARCA in Figure 7.12. ERA5 has hourly measurements making ∆T much smaller
than for the AIRS data. In addition, the increased number of pressure layers in the ERA5 data is visible
compared to the AIRS data.
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Figure 7.11: Violin plot of the distribution densities of the difference between two consecutive measurements of ERA5, ∆T , for
the pressure layers above ORCA.

Figure 7.12: Violin plot of the distribution densities of the difference between two consecutive measurements of ERA5, ∆T , for
the pressure layers above ARCA.

In Figures 7.13 and 7.14 the temperature difference between the AIRS data and the ERA5 data has
been plotted for the atmosphere above ORCA and ARCA, respectively. The temperature difference is
calculated by subtracting the ERA5 data from the AIRS data. Because not all pressure levels overlap
between the two datasets, the difference has been calculated only for the layers that match. The same
is done for the measuring times; only the measuring times that are within an hour of each other are
used to calculate the differences in temperature. The absolute mean temperature difference between
AIRS and ERA5 above ORCA is 0.643 K and above ARCA 0.563 K.
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Figure 7.13: Contour plot of the difference in average atmospheric temperature per pressure layer above the ORCA detector
between AIRS and ERA5 data. The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the

average geometrical height above sea level.

Figure 7.14: Contour plot of the difference in average atmospheric temperature per pressure layer above the ARCA detector
between AIRS and ERA5 data. The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the

average geometrical height above sea level.

For the ERA5 data analysis, temperature profiles for the direction binned muon events are used. The
atmospheric temperature per pressure layer for the average path a muon takes in each bin above
ORCA is shown in Figure 7.15. The differences in the pressure layers are subtle and most noticeable
in the lower pressure layers.
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Figure 7.15: Contour plot of the the atmospheric temperature per pressure layer for the average path a muon takes in each bin
above ORCA. The left y-axis shows the pressure on a logarithmic scale and the right y-axis shows the average geometrical

height above sea level.

7.3.3. Weights
To calculate the effective temperature, the weights defined in Equation 3.17 must be determined. The
weights differ slightly from detector configurations, because they are dependent on the average thresh-
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old energy. In Figure 7.16, the pion (Wπ), kaon (WK), and total (Wtot) weights as functions of atmo-
spheric pressure are shown. The primary x-axis shows the average temperature derived from the AIRS
and ERA5 datasets, plotted against pressure on a logarithmic scale. The secondary x-axis shows the
corresponding normalized weights of the pion, kaon, and total contributions. These weights are calcu-
lated for ORCA-6 but other detectors deviate only slightly and follow the same pattern. The average
temperature is calculated over 2020 but other years show similar profiles. As can be seen in the fig-
ure, pressure levels near the top of the atmosphere have weights higher than those at lower levels.
This is because the high-energy parent particles of the muon have a much higher chance to interact
instead of decay in the lower-altitude high-density layers due to the increased number of particles they
come across. Another reason is that only a small number of high-energy parent particles actually reach
lower altitudes because most of them have already decayed or interacted before, so particles at lower
altitudes have lower average energies [10].

Figure 7.16: Distribution of the pion (Wπ), kaon (WK ), and total (Wtot) weights as functions of atmospheric pressure. The
primary x-axis shows the average temperature derived from the AIRS and ERA5 datasets, plotted against pressure on a

logarithmic scale. The secondary x-axis shows the corresponding normalized weights of the pion, kaon, and total contributions.
These weights are calculated for ORCA-6 but other detectors deviate only slightly and follow the same pattern.

7.4. Effective temperature
7.4.1. AIRS
The effective temperature is calculated independently for every detector using Equation 3.16. In Fig-
ure 7.17 the effective temperature of AIRS for all ORCA-X detectors is shown together with its errors.
The maxima take place during the summer months, and the minima during the winter months. Through-
out the range, short-term fluctuations are visible, but the biggest spikes occur during the winter months.
This is because these spikes in winter were already present in the atmospheric temperature profile. In
Figure 7.18 the effective temperature of AIRS for ARCA-21 is shown together with its errors. Again, a
maximum can be seen in the summer and a minimum in the winter.
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Figure 7.17: Effective temperature over time calculated with AIRS data for all ORCA-X detectors together with the errors.

Figure 7.18: Effective temperature over time calculated with the AIRS data for ARCA-21 together with the errors.

The errors in the effective temperatures are determined with the help of the toy Monte Carlo introduced
in section 6.3.3. In Figure 7.19, the result of the toy Monte Carlo calculation for ORCA-6 is shown. As
can be seen, the distribution follows a normal distribution centred on a mean of 1.095. This mean will
be used for the error in the effective temperature for all ORCA-6 data.
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Figure 7.19: Normal distribution resulting from toy Monte Carlo calculation for the effective temperature error of ORCA-6 data.

In Table 7.3 the results of the toy Monte Carlo for the calculation of the errors of the effective tempera-
ture for all detector configurations are shown. The main cause of the difference is due to the sample
distribution of the temperature. Distributions are defined by the mean temperature and standard devi-
ation of each pressure layer over a detector configuration period. When the standard deviation of the
sample distribution increases, the error on the effective temperature increases.

Table 7.3: Errors in the effective temperature for the specific detectors. These results are acquired using a toy Monte Carlo
and the AIRS temperature data.

Detector Error in Teff [K]
ORCA-6 1.095
ORCA-10 0.803
ORCA-11 0.416
ORCA-11.1 0.698
ORCA-15 1.020
ORCA-15.1 0.627
ORCA-18 0.664
ARCA-21 0.687

7.4.2. ERA5
The effective temperature is calculated independently for every detector using Equation 3.16. For the
ERA5 data set, the effective temperature is first calculated for the approach without bins. This will
thus give a general effective temperature that will be used in all directions. In Figure 7.20 the general
effective temperature of ERA5 for all ORCA-X detectors is shown together with its errors. The same
general pattern as in Figure 7.17 is visible, but there are many more data points because ERA5 has
more measurement times. In Figure 7.21 the general effective temperature of ERA5 for ARCA-21 is
shown together with its errors.
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Figure 7.20: General effective temperature of ERA5 over time for all ORCA-X detectors together with its errors.

Figure 7.21: General effective temperature of ERA5 over time for ARCA-21 together with its errors.

The error in the effective temperature is calculated in the same way as before with the toy Monte Carlo.
In Table 7.4 the results of the calculation of the effective temperature errors are shown for all detector
configurations.

Table 7.4: Errors in the effective temperature for the specific detectors. These results are acquired using a toy Monte Carlo
and the ERA5 temperature data.

Detector Error in Teff [K]
ORCA-6 1.073
ORCA-10 1.030
ORCA-11 0.506
ORCA-11.1 0.933
ORCA-15 1.192
ORCA-15.1 0.665
ORCA-18 1.211
ARCA-21 1.004
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The effective temperatures of the specific bins for the ORCA-X detectors are plotted in Figure 7.22. The
errors are not plotted because this would create too much clutter; however, they only slightly deviate
from the errors indicated in Table 7.4. As can be seen, the effective temperature of each bin only slightly
deviates from the general effective temperature plotted in Figures 7.20. However, it should be noted
that there are small differences. The effective temperatures of the specific bins for ARCA-21 are plotted
in Figure 7.23. Again, the errors are not plotted to avoid too much clutter; however, they only slightly
deviate from the errors indicated in Table 7.4.

Figure 7.22: ERA5 effective temperature of each bin over time for all ORCA-X detectors. Each bins effective temperature is
highlighted with a different colour. Due to only slight changes form bin to bin, the profiles overlap.

Figure 7.23: ERA5 effective temperature of each bin over time for ARCA-21. Each bins effective temperature is highlighted
with a different colour. Due to only slight changes form bin to bin, the profiles overlap.
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7.5. Muon rate and ratio
In this section the results of the calculation of the rate and ratio of ORCA-6 will be presented. The
results of the other detectors can be found in the tables in this section. More detailed figures for the
other detectors will be given in the appendix.

7.5.1. AIRS
For the calculation of the AIRS rate and ratio, the rate was calculated in two ways. First, the rate
was calculated for the entire duration of a run. Secondly, the rate and the ratio are calculated for the
60-minute time window around a temperature measurement.

Full Run Analysis
In Figure 7.24 the rate and ratio of ORCA-6 can be seen before cuts, and in Figure 7.25 the rate and
ratio of ORCA-6 after cuts can be seen. In the rate plot, the errors are left out to avoid clutter.

Figure 7.24: Rate and ratio of data and the Monte Carlo simulation for ORCA-6 before cuts are applied. In the top part the
count rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown

with error.
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Figure 7.25: Rate and ratio of data and the Monte Carlo simulation for ORCA-6 after cuts are applied. In the top part the count
rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown with

error.

The cuts significantly reduce the mean rate of both the data and the Monte Carlo simulation. Before the
cuts a big peak in the data rate can be seen, which is likely due to a problem related to data acquisition.
The cuts remove this problem for a large part, but it can still be seen that data around and following this
peak are corrupted; therefore, data after this peak will not be used in analysis. The Monte Carlo rate fol-
lows the rate even on short time scales because of the run-by-run simulations. The rate decreases over
the whole period of the data taking; this could be due to efficiency losses in the detector. The Monte
Carlo simulation should account for these efficiencies losses completely. So in the ratio, there should
no longer be a downward trend. Looking at the ratio, the first signs of an oscillating pattern are revealed.
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In the left graph of Figure 7.26 the distribution of the data rate and the Monte Carlo simulation rate are
shown. On the right-hand side the distribution of the difference between consecutive runs is shown.
A Gaussian distribution is fitted to this with a standard deviation of 0.081 Hz. This means that most
runs differ with 0.081 Hz from the previous run. This will create a systematic uncertainty on the rate
because the runs are on average 6 hours long and there is only a temperature measurement every 12
hours. Therefore, the systematic uncertainty will be set to 0.08 1Hz/ ⟨Rate⟩ when calculating the rate
for a whole run. For the other cases, when the rate and ratio are calculated only over a maximum time
span of 60 minutes, this systematic uncertainty will be calculated using the standard deviation of the
distribution of the difference between two consecutive rate calculation periods.

Figure 7.26: Left graph shows the distribution of the data rate and the Monte Carlo simulation rate. Right plot shows the rate
distribution of the difference between consecutive runs with a Gaussian fit. The standard deviation of this Gaussian is used as

the systematic uncertainty.

The distribution of the ratio between the data and the Monte Carlo simulation is shown on the left side
of Figure 7.27. As can be seen, the cuts improve the ratio, they remove events that are not or not
correctly simulated. Before the cuts the distribution is not centred around 1 and has a long tail, after
cuts it is much more centred and the tail has disappeared. The plot on the right shows the difference
in the ratio between two consecutive runs.

Figure 7.27: Left graph shows the distribution of the ratio between the data rate and the Monte Carlo simulation rate. Right plot
shows the distribution of the ratio difference between consecutive runs with a Gaussian fit.

In Figure 7.25 the last section of the ratio data seems to deviate a bit from the pattern seen before. If
the ratio data are plotted on top of the effective temperature, as is done in Figure 7.28, the deviation
becomes even more visible. The deviations start at the third of May 2021; here, a dotted red line is
plotted. It is not fully understood why the ratio starts deviating at this date; however, it is known that
some detector changes are implemented at this date. This deviation is caused by the same problem
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that causes the peak in the rate before the cuts seen in Figure 7.24. In further analysis, the ORCA-6
data after this date will not be used.

Figure 7.28: ORCA-6 ratio data plotted on top of the effective temperature data. At the third of May 2021 some detector
changes are implemented which likely causes the deviation of the expected pattern of the ratio from this date onward.

To verify the presumption made for the use of the ratio to determine the effective temperature coefficient,
the model in Equation 6.11 was fitted to the data of the ratio. In Figure 7.29 the fit can be seen with
the linear trend. The results of the fit are an amplitude of A = 0.0187, an offset of 1.0423, and a linear
trend coefficient of B = −5.9520 × 10−5 [day−1]. By subtracting the linear part of the fit, a detrended
ratio can be determined which can be centred around 1, as shown in Figure 7.30. The time span of
other detector configurations is too short to determine an accurate amplitude of the ratio; therefore, the
amplitude found for ORCA-6 will be used for all detector configurations. Only for ARCA-21 an amplitude
will be determined because the detector is too different from ORCA-6 and data over a longer time span
are available. The other fit parameters will be determined for each detector independently. From now
on, both the trend ratio and the detrended ratio will be analysed.
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Figure 7.29: Fit of the model in Equation 6.11 to the ratio data of ORCA-6. The parameters fit are an amplitude of A = 0.0187,
an offset of 1.0423, and a linear trend coefficient of B = −5.9520× 10−5 [day−1].

Figure 7.30: Detrended ratio of ORCA-6 by subtracting the linear part of the fit from the ratio and centring it around 1.

The fit parameters for all detector configurations are shown in Table 7.5. These parameters will be
used to calculate the detrended ratio for each of the detector configurations.
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Table 7.5: Fit parameters found by fitting the model of Equation 6.11 to the ratio data of each detector.

Detector Amplitude Linear trend coefficient [day−1] Offset
ORCA-6 0.0187 −5.962× 10−5 1.042
ORCA-10 0.0187 −2.458× 10−4 1.288
ORCA-11 0.0187 −6.855× 10−5 1.095
ORCA-11.1 0.0187 −3.790× 10−6 1.017
ORCA-15 0.0187 −3.197× 10−5 1.489
ORCA-15.1 0.0187 −2.839× 10−6 1.002
ORCA-18 0.0187 −1.199× 10−4 1.238
ARCA-21 0.0191 −1.004× 10−4 1.188

Due to the detrending all the ratios of the ORCA detector are fitted to a cosine that is centred around 1
and has a fixed amplitude. This makes it possible to plot the ratios in the same figure to get a better idea
of how the ratio varies over time. If detrending is not done, the ratios are more difficult to compare with
each other. In Figure 7.31 the ratios of the different ORCA detectors are plotted without the detrending.
In Figure 7.32 the ratios of the different ORCA detectors are plotted with the detrending.

Figure 7.31: Ratios of the different ORCA detectors without the detrending
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Figure 7.32: Ratios of the different ORCA detectors with the detrending

60-Minute Window Around Temperature Measurements
In Figure 7.33 the rate and ratio of ORCA-6 in 60-minute window around a temperature measurement
can be seen after the cuts are applied to the data. Again, the errors are left out in the rate plot to avoid
clutter. The same pattern can be seen in the rate and ratio can be seen as before.
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Figure 7.33: Rate and ratio per 60-minute window around temperature measurements for ORCA-6 after cuts are applied. In the
top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown.

The fit parameters resulting from the fitting of the model of Equation 6.11 to the ratio around a temper-
ature measurement can be found in table 7.6.



7.5. Muon rate and ratio 67

Table 7.6: Fit parameters found by fitting the model of Equation 6.11 to the ratio calculated around a temperature
measurement of each detector.

Detector Amplitude Linear trend coefficient [day−1] Offset
ORCA-6 0.0187 −5.138× 10−5 1.037
ORCA-10 0.0187 −2.182× 10−4 1.258
ORCA-11 0.0187 −1.016× 10−5 1.021
ORCA-11.1 0.0187 −3.025× 10−4 1.447
ORCA-15 0.0187 −3.415× 10−5 1.523
ORCA-15.1 0.0187 −2.669× 10−6 1.002
ORCA-18 0.0187 −1.351× 10−4 1.264
ARCA-21 0.0191 −9.262× 10−5 1.177
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7.5.2. ERA5
For the calculation of the ERA5 rate and ratio, the rate was again calculated in two ways. First, the rate
and ratio were calculated in 60-minute windows around the temperature measurements. Secondly, the
rate and ratio per direction bin were calculated in 60-minute windows around the temperature measure-
ments.

60-Minute Window Around Temperature Measurement
In Figure 7.34 the rate and ratio of ORCA-6 after cuts can be seen. In the rate plot, the errors are left
out to avoid clutter. Compared to previous rate and ratio calculations, there are many more data points
available because the ERA5 data have hourly temperature measurements. This means that there will
be more than one temperature measurement within a data run, and thus more than one window for
calculating the rate within a data run.

Figure 7.34: Rate and ratio per 60-minute window around temperature measurements for ORCA-6 after cuts are applied. In the
top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown.
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Fitting the equation model 6.11 happens in the same way as before for all detectors. In Table 7.7 the
results can be found.

Table 7.7: Fit parameters found by fitting the model of Equation 6.11 to the ratio calculated around a temperature
measurement of each detector.

Detector Amplitude Linear trend coefficient [day−1] Offset
ORCA-6 0.0179 −6.086× 10−5 1.021
ORCA-10 0.0179 −2.326× 10−4 1.188
ORCA-11 0.0179 −2.552× 10−4 1.253
ORCA-11.1 0.0179 −6.549× 10−5 1.092
ORCA-15 0.0179 −3.450× 10−4 1.401
ORCA-15.1 0.0179 −6.182× 10−4 1.744
ORCA-18 0.0179 −1.171× 10−4 1.057
ARCA-21 0.0197 −9.588× 10−5 1.148

Binned analysis
In Figure 7.35 the rate and ratio of ORCA-6 after cuts can be seen for the binned analysis. In the rate
plot, the errors are left out to avoid clutter. Now there are even more data points available because not
only there is a temperature measurement every hour, but for every hour there are eight bins for which
the rate and ratio are calculated.
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Figure 7.35: Rate and ratio per bin per 60-minute window around temperature measurements for ORCA-6 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.

In the upper part of Figure 7.35 the rates are plotted. The rates of the bins with a smaller zenith angle
are lower than the rates of the bins with a larger zenith angle. In the lower part, the ratio of the data and
the Monte Carlo simulation is plotted. As can be seen, there is again a clear difference between bins
with a smaller zenith angle and bins with a larger zenith angle. This is an interesting result, because
all the ratios are expected to be centred around 1 regardless of the zenith angle. The simulations
underestimate the rates for bins with a smaller zenith angle and overestimate the bins with a larger
zenith angle. Other studies such as the one done by Aiello et al. have also found indications that the
rate is not correctly simulated [40].
The fitting of Model 6.11 now takes place in a slightly different way. To obtain an accurate fit, the fit is
done for every bin independently. The results of the fitting are not shown, but the fit of each bin only
slightly deviates from the fitting without the bins. By doing the fit and detrending the ratio for each bin,
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the ratio’s will all be centred around 1. In Figure 7.36 the detrended ratio for all bins is shown. As can
be seen, all of the bins follow the same pattern.

Figure 7.36: Detrended ratio without errors for each bin of ORCA-6 data.

7.6. Fitting the temperature coefficient
In this section the results of the fitting of the effective temperature coefficient of ORCA-6 will be shown.
In order to do the fit, the ratio and effective temperate must first be normalised, as shown in Equa-
tion 6.11. The normalised temperature is calculated as Teff (t)−⟨Teff ⟩

⟨Teff ⟩ × 100% =
∆Teff (t)
⟨Teff ⟩ × 100% and

the normalised ratio as
R data

mc
(t)−⟨R data

mc
⟩

⟨R data
mc

⟩ × 100% =
∆R data

mc
(t)

⟨R data
mc

⟩ × 100%. First, the results of the AIRS

calculations will be presented, followed by the results of the ERA5 calculations. This will be done for
the normal data and the detrended data. The results of the other detectors can be found in the tables
in this section. More detailed figures for the other detectors will be given in the appendix.

7.6.1. AIRS
For the calculation of the AIRS rate and ratio, the rate was calculated in two ways. First, the rate
was calculated for the entire duration of a run. Secondly, the rate and the ratio are calculated for the
60-minute time window around a temperature measurement.

Full Run Analysis
Before the effective temperature coefficient can be determined, the ratio and the effective temperature
must be normalised as shown in Equation 6.5. In Figure 7.37 the normalised effective temperature and
ratio without detrending are plotted. In Figure 7.38 the normalised effective temperature and ratio with
detrending are plotted. At dates closer to the end of the range, the effects of the detrending become
more visible. There should be a constant factor between the effective temperature and the ratio, the
effective temperature coefficient. Before detrending this factor seems to become bigger over time, after
detrending this becomes more constant. This could be because at the end of a detector configuration,
the efficiency losses of a detector could become more noticeable as they build up over time.
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Figure 7.37: Normalised effective temperature and ratio without detrending over time for ORCA-6

Figure 7.38: Normalised effective temperature and ratio with detrending over time for ORCA-6

In Figure 7.39 the normalised effective temperature and ratio without detrending are plotted in a scatter
plot with the errors. Through these data points, the model of Equation 6.11 is fitted, giving an effective
temperature coefficient of α = 1.25±0.04 and a goodness of fit χ2/dof = 0.39. In Figure 7.40 the same
is done but now with the detrended ratio, giving an effective temperature coefficient of α = 1.00± 0.03
and a goodness of fit χ2/dof = 0.25.
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Figure 7.39: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-6 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure 7.40: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-6 showing the relative variation
in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

In Figure 7.4 the theoretically expected total, pion, and kaon effective temperature coefficient (α) is
plotted over a range of average threshold energy. The theoretical expected α for ORCA-6 is highlighted
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by the red triangle. The experimentally determined α for ORCA-6 without detrending is plotted as a
black circle, and with detrending is plotted as a brown circle.

Figure 7.41: The theoretically expected total, pion, and kaon effective temperature coefficient (α) is plotted over a range of
average threshold energy. The theoretical expected α for ORCA-6 is highlighted by the red triangle. The experimentally
determined α for ORCA-6 without detrending is plotted as a black circle, and with detrending is plotted as a brown circle.

Full Run Time Analysis
Now, every temperature, regardless of when this temperature occurs over time, is expected to cause
the same ratio in the data. This is illustrated in Figure 7.42. The normalised ratio without detrending
is plotted over time; the colour of each ratio point shows what the effective temperature is at that ratio
point. In the ideal case, horizontal bands of points with the same ratio would have the same colour,
indicating that the ratio is caused by the same effective temperature. In general, this can be seen in
the figure but not perfectly. In the months leading up to the lowest ratio in 2021, ratios can be seen that
have a lower temperature than similar ratios.
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Figure 7.42: The normalised ratio without detrending is plotted over time; the colour of each ratio point shows what the
effective temperature is at that ratio point.

Until now, the effective temperate coefficient has been calculated over the whole range of time of a
detector configuration. However, it can also be calculated over shorter windows of time. This is done
by normalising the data in a specific window and then fitting the model of Equation 6.11 only through the
data points in this window. This, of course, can be done for a range of window sizes. In Figure 7.43 this
is done for the data without detrending and in Figure 7.44 for the data with detrending. On the y-axis the
effective temperature coefficient α is plotted and on the x-axis the central date of the window used to
calculate the effective temperature is plotted. The green dotted line indicates the effective temperature
coefficient expected theoretically. For both detrended and non-detrended data sets, the coefficients
seem to move around the theoretical value over time with slight deviations; expect some outliers. The
points in both plots are very similar, but especially for the larger windows some differences are visible.
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Figure 7.43: Effective temperature coefficient calculated over different time windows. This is done by normalising the ORCA-6
data without detrending in a specific window and the fitting the model of Equation 6.11 only through the data points in this

window. On the y-axis the effective temperature coefficient α is plotted and on the x-axis the central date of the window used to
calculate the effective temperature is plotted.

Figure 7.44: Effective temperature coefficient calculated over different time windows. This is done by normalising the ORCA-6
data with detrending in a specific window and the fitting the model of Equation 6.11 only through the data points in this window.

On the y-axis the effective temperature coefficient α is plotted and on the x-axis the central date of the window used to
calculate the effective temperature is plotted.

A window of five days fits of course many more times in the total range of time than a window of one
hundred days. Therefore, to compare the effective temperature coefficient of each window size with
each other, the average of window with the same size will be determined. It should be noted that the
windows are strongly correlated with each other, a window of six days shares most of its data with
a window of five days. In Figure 7.45 the average effective temperature coefficient over a specific
window or period is plotted for the data without detrending. In Figure 7.46 this is done for the data with
detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted
line shows what the coefficient theoretically should be.
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Figure 7.45: The average effective temperature coefficient over a specific window or period is plotted for the data without
detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.

Figure 7.46: The average effective temperature coefficient over a specific window or period is plotted for the data with
detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.

For the average effective temperature coefficient for the data without detrending, a gradual increase
with some oscillations can be seen, but in general the larger the window or period, the larger the coef-
ficient. For the average effective temperature coefficient for the data with detrending, this increasing
trend is somewhat removed. Now, mainly an oscillation around the theoretical value is seen.
These average effective temperature coefficients can be plotted as histograms. This is done in Fig-
ure 7.47 for the data without detrending and in Figure 7.48 for the data with detrending. The colour of
the bin indicates the mean window size of that bin. For each histogram, two Gaussian distributions are
fitted to the data to get a better view of the data. For data without detrending, the Gaussians have a
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mean of 0.84 and 1.24. For data with detrending the Gaussians have a mean of 0.82 and 1.00.

Figure 7.47: Histogram of the average effective temperate coefficients of the data without detrending. The colour of the bin
indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure 7.48: Histogram of the average effective temperate coefficients of the data without detrending. The colour of the bin
indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

In Table 7.8 the resulting effective temperature coefficient of all detector configurations is shown for
data with and without detrending.
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Table 7.8: Resulting effective temperature coefficient α for all detector configurations while doing the full run analysis. The
theoretical α is shown to compare it with the α for data with and without detrending.

Detector Theoretical α α α with detrending
ORCA-6 0.8865 1.25± 0.04 1.00± 0.03
ORCA-10 0.8870 0.40± 0.08 0.71± 0.07
ORCA-11 0.8870 0.45± 0.23 0.34± 0.22
ORCA-11.1 0.8871 0.83± 0.21 0.86± 0.22
ORCA-15 0.8872 0.90± 0.10 0.81± 0.12
ORCA-15.1 0.8871 0.91± 0.33 0.91± 0.32
ORCA-18 0.8870 1.06± 0.19 0.87± 0.18
ARCA-21 0.9238 0.93± 0.17 1.28± 0.18

60-Minute Window Around Temperature Measurement
In Figure 7.49 the normalised effective temperature and ratio without detrending are plotted in a scatter
plot with the errors. The ratios are calculated in 60-minute windows around temperature measurements.
Through these data points, the model of Equation 6.11 is fitted, giving an effective temperature coeffi-
cient of α = 1.19± 0.06 and a goodness of fit χ2/dof = 0.23. In Figure 7.50 the same is done but now
with the detrended ratio, giving an effective temperature coefficient of α = 0.99± 0.05 and a goodness
of fit χ2/dof = 0.20.

Figure 7.49: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-6 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure 7.50: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-6 showing the relative variation
in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit of the

model in Equation 6.11. The errors are taken into account in the fit.

The plots of other detector configurations can be found in the appendix. In Table 7.9 the resulting effec-
tive temperature coefficient of all detector configurations is shown for data with and without detrending.

Table 7.9: Resulting effective temperature coefficient α for all detector configurations while doing the 60-minute window
analysis. The theoretical α is shown to compare it with the α for data with and without detrending.

Detector Theoretical α α α with detrending
ORCA-6 0.8865 1.19± 0.06 0.99± 0.05
ORCA-10 0.8870 0.32± 0.10 0.61± 0.10
ORCA-11 0.8870 −0.02± 0.40 −0.04± 0.41
ORCA-11.1 0.8871 1.48± 0.28 0.84± 0.28
ORCA-15 0.8872 0.95± 0.13 0.81± 0.15
ORCA-15.1 0.8871 0.87± 0.48 0.87± 0.47
ORCA-18 0.8870 0.99± 0.22 0.79± 0.21
ARCA-21 0.9238 0.85± 0.22 1.15± 0.22

7.6.2. ERA5
For the calculation of the ERA5 rate and ratio, the rate was again calculated in two ways. First, the rate
and ratio were calculated in 60-minute windows around the temperature measurements. Secondly, the
rate and ratio per bin were calculated in 60-minute windows around the temperature measurements.

60-Minute Window Around Temperature Measurement
In Figure 7.51 the normalised effective temperature and ratio without detrending are plotted in a scatter
plot with the errors. The ratios are calculated in 60-minute windows around temperature measurements.
Through these data points, the model of Equation 6.11 is fitted, giving an effective temperature coeffi-
cient of α = 1.40± 0.02 and a goodness of fit χ2/dof = 0.81. In Figure 7.52 the same is done but now
with the detrended ratio, giving an effective temperature coefficient of α = 1.11± 0.02 and a goodness
of fit χ2/dof = 0.66.
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Figure 7.51: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-6 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure 7.52: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-6 showing the relative variation
in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit of the

model in Equation 6.11. The errors are taken into account in the fit.
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The plots of the other detector configurations can be found in the appendix. In Table 7.10 the result-
ing effective temperature coefficient of all detector configurations is shown for data with and without
detrending.

Table 7.10: Resulting effective temperature coefficient α for all detector configurations while doing the 60-minute window
analysis. The theoretical α is shown to compare it with the α for data with and without detrending.

Detector Theoretical α α α with detrending
ORCA-6 0.8865 1.40± 0.02 1.11± 0.02
ORCA-10 0.8870 0.41± 0.03 0.75± 0.03
ORCA-11 0.8870 1.07± 0.13 1.05± 0.13
ORCA-11.1 0.8871 0.94± 0.07 0.84± 0.07
ORCA-15 0.8872 1.13± 0.04 1.01± 0.04
ORCA-15.1 0.8871 1.17± 0.15 1.25± 0.15
ORCA-18 0.8870 1.13± 0.07 0.96± 0.07
ARCA-21 0.9238 1.23± 0.07 1.61± 0.07

Binned analysis
For the binned analysis, all bins can be added together to calculate one effective temperature coeffi-
cient. This is done in Figures 7.53 and 7.54 for ORCA-6 data without detrending and with detrending,
respectively. Each data point in these figures is still plotted with respect to the binned effective temper-
ature and ratio. So, the ratio and temperature of each bin get normalised separately, and the plotted.
Then the fit is made through all the data points together.

Figure 7.53: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-6 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.



7.6. Fitting the temperature coefficient 83

Figure 7.54: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-6 showing the relative variation
in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data points

combined. The errors are taken into account in the fit.

However, an effective temperate coefficient can also be calculated for each separate bin of ORCA-6
data. The fits of each bin can be seen in Figures 7.55 and 7.56 for the data without detrending and
with detrending, respectively.

Figure 7.55: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-6 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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Figure 7.56: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-6 showing the relative variation
in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data of each

bin separate. The errors are taken into account in the fit.

Without detrending, bins with a larger zenith angle have a larger effective temperature coefficient. This
is expected because the larger the zenith angle, the longer the path of the muon through the sea,
which causes a higher average threshold energy for these bins. However, after detrending this is
no longer the case, the larger zenith angle bins have a lower effective temperature coefficient. In
Figure 7.57 the effective temperature coefficient of the bins is plotted with respect to the theoretical
effective temperature coefficient for ORCA-6. On the left side for the data without detrending and on
the right side with detrending.

Figure 7.57: The theoretically expected total, pion, and kaon effective temperature coefficient (α) is plotted over a range of
average threshold energy. The theoretical expected α for ORCA-6 is highlighted by the red triangle. The experimentally

determined α for ORCA-6 for each bin without detrending is plotted in the left figure and with detrending in the right figure.
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Table 7.11: Resulting effective temperature coefficient α for all detector configurations while doing the binned analysis. The
theoretical α is shown to compare it with the α for data with and without detrending.

Detector Theoretical α α α with detrending
ORCA-6 0.8865 1.32± 0.01 1.07± 0.01
ORCA-10 0.8870 0.42± 0.02 0.79± 0.02
ORCA-11 0.8870 1.12± 0.10 0.99± 0.10
ORCA-11.1 0.8871 0.93± 0.06 0.84± 0.06
ORCA-15 0.8872 1.11± 0.02 0.98± 0.02
ORCA-15.1 0.8871 1.14± 0.12 1.22± 0.12
ORCA-18 0.8870 1.31± 0.05 1.32± 0.05
ARCA-21 0.9238 1.03± 0.05 1.25± 0.05



8
Discussion and Conclusion

In this study, the seasonal variation of the atmospheric muon rate detected by the KM3NeT ORCA
and ARCA detectors was studied, focussing on the impact of atmospheric temperature on the detected
muon rate. Using atmospheric temperature profile data from the AIRS satellite and the ERA5 reanalysis,
the effective temperature coefficient (α) was derived in several ways. Since both ORCA and ARCA are
still in construction, only limited data lifetimes are available. Only ORCA-6 has enough data to see
seasonal variation over a time period of one year. This limits the accuracy of the analysis that can
be done on the other detector configurations, as it becomes harder to distinguish between seasonal
temperature changes and other effects. To correct for possible other effects on the detected rate, the
ratio between the detected rate and a simulated rate is used. The simulated rate should account for all
effects on the rate except for the atmospheric temperature influence. By studying the ratio, the effect
of the atmospheric temperature should thus become isolated.

8.1. Discussion
Full Run Analysis with AIRS Data
The first analysis done on the data is done with AIRS temperature data, the muon rate during a run
is calculated if there happens to be a temperature measurement of AIRS in that run. The resulting
effective temperature coefficients show a number of interesting points. The α of ORCA-6 is found to be
1.25±0.04, which is significantly higher than the theoretically expected value of 0.8865. A reason of this
could be that the Monte Carlo simulations, used to correct for detector and other effects besides the im-
pact of atmospheric temperature, do not accurately simulate all factors of influence, such as efficiency
losses, on the detected muon rate. This means that the ratio between the data and the simulation
could give an inaccurate view of the true muon rate. To test this, a harmonic fit with a period of one
year (due to the seasonal nature) and a linear trend were fitted to the ratio data. In the ORCA-6 data,
a harmonic with an amplitude of 0.0187 and a linear trend of −5.9520× 10−5 [day−1] and offset 1.0423
was fitted. The linear trend could point to the fact that the Monte Carlo simulation does not accurately
account for all efficiency losses in the detector. Similar fits have been performed for the other detector
configurations. However, fitting becomes more difficult because of the limited duration of stable data
taking of the other detectors. Therefore, the amplitude found for the ORCA-6 data was used for the
other detector configuration except ARCA-21. The amplitude in ratio of each detector configuration
could differ in reality, but since no whole data period is available, it is hard to find this amplitude using
this method. For all detectors, a downward linear trend can be found, but due to the limited lifetimes of
some fit, this could be inaccurate. The fit could find a downward linear trend but on small timescales
the harmonic variation can also be fitted with a linear trend. However, this linear trend can still be
removed from the data and the effective temperature coefficient of ORCA-6 becomes 1.00± 0.03. This
is already closer to the theoretically expected value. A similar change can be seen for ORCA-10 and
ORCA-18. For ORCA-10 without detrending α was found to be significantly smaller than expected,
after detrending it becomes closer to what is expected. For ORCA-18 without detrending α was found
to be significantly larger than expected, after detrending it becomes closer to what is expected. This
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improvement could be due to accurate fits to the data from these three detectors because they span
the longest time of the detector configurations studied. For ORCA-11 and ARCA-21, the opposite is
found, and α after the detrending deviates more from the expected value than before. For ORCA-11
this could be due to the limited data available, causing an inaccurate fit. For ARCA-21 it could be that
the Monte Carlo simulations better account for the efficiency losses in the detector, causing a fit of a
downward linear trend where there is actually no linear trend.
A goodness of fit was determined for all α calculations; in all cases this was found to be less than 1.
This means that the uncertainties of the data might be overestimated.
Next, α was calculated in different windows over time. If no other factors would influence the ratio, α
should be constant in every window over time. However, this is not the case; fluctuations over time
can be seen in α. This could hint at other factors not being accurately simulated in the Monte Carlo
simulation. For ORCA-6, a gradual increase in α can be seen when the window becomes larger. This
could again be a hint that the efficiency is not accurately simulated, and thus being in line with the
downward trend seen before. After detrending this gradual increase is gone but some oscillations in α
over window size remain. This could be due to the fact that some other factors that are not (accurately)
simulated influence the rate periodical that aligns with these window. For detectors with a shorter time
span α remains more constant over time, this could be because on these shorter time scales the effi-
ciency losses have less impact. ORCA-6, ORCA-10, and ORCA-18 are again good examples in which
detrending makes α more stable over time.

Detector efficiency
The atmospheric muons studied in this paper are mostly detected by the PMTs in the upper part of the
DOMs. These PMTs are more affected by sedimentation, which reduces the efficiency compared to
PMTs in the lower part of the DOMs. The detector efficiencies are estimated using the correlation rates
of neighbouring PMTs. Since efficiency is direction-dependent, this method averages efficiency over
the directions of neighbouring PMTs. However, there are no PMTs orientated directly upward, which
could potentially cause a systematic overestimation of the efficiency of the upper PMTs. This effect
increases with higher levels of sedimentation. This overestimation of the efficiency of the detector in
the upward direction could be the cause of the downward trend that is found in the ratio data. If the
efficiency is overestimated, the muon rate for the simulation will be higher that in reality causing the
ratio to decrease. This could become especially noticeable in the data of the detector configurations
with a longer life time because more sedimentation will form during a longer period.
It would be interesting to see what would happen if in the future there was a detector configuration with
a lifetime longer than that of ORCA-6. In Figure 7.46 an oscillating pattern of the average effective
temperature coefficient can be seen over time with a frequency of approximately half a year. It could
be that this oscillating pattern continues for larger windows. This could point to a new influence on the
rate of the detected muons.

60-Minute Window Around Temperature Measurements with AIRS Data
The second analysis is performed again using the AIRS temperature data. However, now instead of
calculating the rate over a whole run, the rate is calculated in a 60 minute time window around a tem-
perature measurement. This is done to reduce some potential scattering caused by the fact that the
rate in a data run is not constant. However, the Monte Carlo simulation of a run uses a distribution
of rates that is the same as the distribution of the rates in the real run. Because the simulations are
performed for a whole run, the changing of the rate over time in a run gets lost, and the rate for a Monte
Carlo simulation run will become constant. This forces the use of the constant rate of the simulation for
the calculation of the ratio for the 60-minute time window. This could cause some error. Therefore, in
order to improve this, a Monte Carlo simulation could be performed for smaller time intervals instead of
a whole run. This would create more computer load for the stimulations, so a Monte Carlo simulation
run could, for example, be scaled into blocks to somewhat limit the computational load.
Looking at the fitting of the harmonic model with a linear trend to the ratio data, the results are similar
to the fit made before to the whole run ratio. Now comparing the resulting effective temperature coef-
ficients α with the α found before for the whole run ratio. It can be seen that α of ORCA-6, ORCA-10,
ORCA-15, ORCA-15.1, ORCA-18, and ARCA-21 remain very similar before and after detrending. α
of ORCA-11 becomes almost 0 indicating no correlation. α of ORCA-11.1 increases significantly be-
fore detrending but after detrending it becomes very similar to the α found before. It is difficult to say
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whether the shorter time window improves the result and possible removes some additional factors that
correlate over longer time scales. For future research, it is recommended to test more time windows
around a temperature measurement to better understand the impact of the window on the effective
temperature correlation. Additionally, it would be recommended to have a Monte Carlo simulation that
is performed on smaller time intervals so that the ratio would more accurately reflect the true muon rate
that is only affected by the atmospheric temperature.

60-Minute Window Around Temperature Measurements with ERA5 Data
The third analysis performed uses the ERA5 temperature data. ERA5 has hourly temperature measure-
ments, so the rates were again calculated in 60-minute windows around a temperature measurement.
Because there are less events in the 60 minute windows, some statistics get lost and the errors on
the rate increase. Many more ratio points are available now with a wider spread, making the fitting
process to the ratio and the determination of the effective temperature coefficient less accurate. The
resulting effective temperature coefficients are higher for every detector configuration before and after
detrending. After detrending, the values seem to improve a bit, but they still deviate significantly from
the expected value. In order to test whether this change comes from the use of the ERA5 temperature
data or that it has some other cause, it is recommended to do the analysis for a varying window duration
in future research.

Binned analysis with ERA5 Data
The fourth and final analysis performed uses again the ERA5 temperature data. Now, the rates are
calculated in the 60-minute window around a temperature measurement and in bins based on the
direction. The rates form the bins with a larger zenith angle, which is closer to the horizontal plane,
have a higher rate than the bins with a smaller zenith angle. No clear difference between the azimuth
bins can be seen. When looking at the ratio of the data and the Monte Carlo simulation in these bins, it
can be seen that the ratio of the bins with a smaller zenith angle is larger than the ratio of the bins with
a bigger zenith angle. This is an interesting result, because all the ratios are expected to be centred
around 1 regardless of the zenith angle. The simulations underestimate the rates for bins with a smaller
zenith angle and overestimate the bins with a larger zenith angle. The effective temperate coefficient
has now been calculated in two ways. First, with all the data combined, this gives as expected a result
very similar to the third analysis. Secondly, the effective temperate coefficient was calculated for the
separate bins. Before detrending, it is found that, in general, the coefficient is larger for larger zenith
angles. This is expected because the muons reaching the detector with a larger zenith angle need
higher energies to travel the longer path through the water. Higher energy muons are expected to have
a stronger temperature correlation. However, after detrending this is no longer that clear; the larger
zenith angles are more similar to the smaller zenith angles and sometimes even smaller. In general,
the effective temperature coefficients of the bins do not differ more than one or two standard deviations
from each other, indicating that the detector does not have a directional bias for atmospheric muons.

Relationship analysis's
The AIRS and ERA5 analysis’s have been done to see if different temperature data has a effect on
the resulting effective temperature coefficients. In order to directly compare the different temperature
datasets, the analysis was done in 60-minute windows around a temperature measurement. In gen-
eral, the analysis performed with the ERA5 temperature data results in higher effective temperature
coefficients; this could be due to the fact that ERA5 has hourly temperature measurements. For the
AIRS 60-minute window analysis, only two temperature measurements per day are made, and only the
events that fall within a 60-minute window around this temperature measurement are selected. The
binned analysis is performed to see if the effective temperature coefficient is directional dependent,
which turn out not to be the case.

General discussion
The rate and ratio have only been determined in windows that equal the duration of a run and in win-
dows of 60 minutes around a temperature measurement. For future research, it would be interesting
to see how the effective temperature coefficient would behave for different window sizes, such as the
analysis done by Abbasi et al. [41], on IceCube atmospheric neutrino data. In addition to this, a dif-
ferent approach to the Monte Carlo simulations would make it possible to have a varying rate in the
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simulation runs and thus would make it possible to calculate a more accurate ratio. The limited life-
time of the different detector configurations also makes the analysis more difficult, because the fitting
procedure could find a linear trend on a short time scale that is actually part of the harmonic seasonal
variation. The only detector configuration that spans at least one seasonal variation period of one year
is ORCA-6. However, this is still limited. To make a reliable fit and minimise the bias to any time of
the year, a multi-year stable dataset needs to be available. A stable data set means that not only is
the period of data collection constant but also the detector configuration stable and the efficiency of the
detector is well understood. For now, this is difficult as the detector is constantly growing because of
the construction. As the detector grows, it could be that the detector has some systematic differences
in how it collects data as a result of changing geometries and the varying number of DUs. In addition,
the detector efficiency constantly varies over time. The Monte Carlo simulations try to compensate for
this, but the suspicion is that the efficiencies of the detector in the upward direction are overestimated.
This raises the question whether the Monte Carlo simulations factor in all influences on the detected
muon rate except for the seasonal variation. In the calculations of the effective temperature coefficient
over time, some fluctuations could be seen, hinting that not all factors are accounted for. Factors in
the sea that could have an indirect influence on the detected rate, such as the inflow of water from
rivers, changing the composition of the seawater, or other atmospheric processes, could not be fully
accounted for in the Monte Carlo simulation.
In addition to this, the reconstruction algorithm assumes that only one muon is responsible for an
observed event. However, this is not always the case; multiple-muon events are also created in air
showers and can also be detected by detectors such as KM3NeT’s. Due to the design of the KM3NeT
detectors, it is currently very complicated to distinguish between a single or multiple muon event. Al-
though machine learning applications are in development [42]. The strange thing now is that multiple
studies have found a winter peak in the multiple-muon rate compared to the summer peak of the single-
muon rate [7, 9, 43, 44]. The anticorrelation of multiple-muon event rates is not yet fully understood. It
would be interesting to see what the effects would be on the effective temperature coefficient if, in the
future, it is possible to distinguish between single-muon and multiple-muon events.
Finally, a linear fit is used to determine the effective temperature coefficient. However, other papers,
such as one about IceCube, find indications for a nonlinear relationship. They also found that the co-
efficient depends on the data range chosen for the fit [45]. This would cause a non-constant effective
coefficient over time. In order to do this analysis, data from a multi-year stable dataset is needed and
a better understanding of possible biases the Monte Carlo simulation has.

Comparison to other experiments
In Figure 8.1 the effective temperature coefficients of other experiments are reported together with the
results of the full run analysis done in this study. In dashed black, dotted black, and red, the pion, kaon,
and total contributions are plotted, respectively. The green line is a fit where the kaon-to-pion ratio
(rK/π) is fitted through the data points. The figure was acquired from Ambrosio et al. [46] and modified
to include KM3NeT results. As can be seen, mainly ORCA-6 and ORCA-10 deviate from the theory;
after they are detrended, they already come closer to the theoretical value. For ARCA-21 the opposite
seems to happen.
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Figure 8.1: The effective temperature coefficients of other experiments together with the results of the full run analysis done in
this study. In dashed black, dotted black, and red, the pion, kaon, and total contributions are plotted, respectively. The green

line is a fit where the kaon-to-pion ratio (rK/π) is fitted through the data points. acquired from Ambrosio et al. [46] and modified
to include KM3NeT results.

The kaon-to-pion ratio is a measure of how many kaons are produced in an air-shower compared to
pions. The kaon-to-pion ratio is important because it affects the properties of the muons that reach a
detector, such as the energy of a muon and how much they are affected by atmospheric temperature
variations. If the kaon-to-pion ratio decreases, the effective temperature coefficient increases. This is
because pions have a lower critical energy and thus experience a greater correlation with temperature
variations in the atmosphere. The kaon-to-pion ratio is measured indirectly by measuring the effective
temperature coefficient and can be determined as [24]:

rK/π =
αth
π /αexp − 1

1− αth
K /αexp

(8.1)

where αth
K,π are the theoretical kaon and pion contributions determined according to Equation 3.22.

αexp are the experimental determinate effective temperature coefficients.
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8.2. Conclusion
During this study, the seasonal variation of atmospheric muons detected by the KM3NeT ORCA and
ARCA detectors was investigated. The main focus was on the impact of atmospheric temperatures on
the detected muon rate. The muon rates were correlated with the effective atmospheric temperature
above the KM3NeT detectors to calculate an effective temperature coefficient (α). The effective tem-
perature is a weighted average over all pressure levels in the raw temperature data sets. In this study,
the AIRS and ERA5 temperature datasets are used to calculate two effective temperatures over time.
An effective temperature analysis is needed to account for the fact that most muons are produced in
the upper parts of the atmosphere. The KM3NeT detectors experience a high degree of background
rate. Therefore, not the muon rate gets correlated with the effective temperature but the ratio of the
muon rate with the muon rate out of run-by-run Monte Carlo simulation. This simulation should account
for all the factors that impact the true muon rate, except for the temperature variation. The effective
temperature coefficient was calculated in four ways. First, the ratio was calculated for entire data runs
and correlated to a AIRS temperature measurement that coincided with this run. Second, the ratio was
calculated in 60-minute windows around an AIRS temperature measurement and then correlated with
it. Third, the ratio was calculated in 60-minute windows around an ERA5 temperature measurement
and then correlated with it. Fourth, the muons were binned according to their directions, and the ratio
was calculated in 60-minute windows around an ERA5 temperature measurement and then correlated
with it. The effective temperature coefficients found for these analyses are presented in Table 8.1. A
positive correlation between muon rate and atmospheric temperature has been found, but for most
detector configurations studied, the correlation is stronger than expected.

Table 8.1: Comparison of α values across different detectors and analyses.

Analysis ORCA-6 ORCA-10 ORCA-11 ORCA-11.1 ORCA-15 ORCA-15.1 ORCA-18 ARCA-21
Theoretical α 0.8865 0.8870 0.8870 0.8871 0.8872 0.8871 0.8870 0.9238
Full Run α 1.25± 0.04 0.40± 0.08 0.45± 0.23 0.83± 0.21 0.90± 0.10 0.91± 0.33 1.06± 0.19 0.93± 0.17
Full Run α (Detrended) 1.00± 0.03 0.71± 0.07 0.34± 0.22 0.86± 0.22 0.81± 0.12 0.91± 0.32 0.87± 0.18 1.28± 0.18
60-min AIRS Window α 1.19± 0.06 0.32± 0.10 −0.02± 0.40 1.48± 0.28 0.95± 0.13 0.87± 0.48 0.99± 0.22 0.85± 0.22
60-min AIRS Window α (Detrended) 0.99± 0.05 0.61± 0.10 −0.04± 0.41 0.84± 0.28 0.81± 0.15 0.87± 0.47 0.79± 0.21 1.15± 0.22
60-min ERA5 Window α 1.40± 0.02 0.41± 0.03 1.07± 0.13 0.94± 0.07 1.13± 0.04 1.17± 0.15 1.13± 0.07 1.23± 0.07
60-min ERA5 Window α (Detrended) 1.11± 0.02 0.75± 0.03 1.05± 0.13 0.84± 0.07 1.01± 0.04 1.25± 0.15 0.96± 0.07 1.61± 0.07
Binned Analysis α 1.32± 0.01 0.42± 0.02 1.12± 0.10 0.93± 0.06 1.11± 0.02 1.14± 0.12 1.31± 0.05 1.03± 0.05
Binned Analysis α (Detrended) 1.07± 0.01 0.79± 0.02 0.99± 0.10 0.84± 0.06 0.98± 0.02 1.22± 0.12 1.32± 0.05 1.25± 0.05

The analysis remains difficult because of the lack of a multi-year stable dataset. Not only does the
data taking period need to be done over a longer period with a constant detector setup, but all factor
influencing the detected rate need to be well understood, such as the detector efficiency. The only
data set that spans at least one year is the ORCA-6 data set, and in this data set a decrease in the
mean ratio can be seen, pointing to some problems with the Monte Carlo simulations. The Monte Carlo
simulations probably do not accurately account for all influences on the detected rate such as efficiency
losses of the detector and other periodic variations in the rata. In all data sets used in this study, a linear
downward trend was found in the ratio data. This trend can be removed, and the effective temperature
coefficient can then be recalculated. The results of this are shown in Table 8.1. After detrending, the
correlation between the muon rate and atmospheric temperature moves closer to the expected value
for most detector configurations, but it still deviates significantly. The linear downward trend can be
caused by a time-dependent overestimation of detector efficiency in the upward direction by Monte
Carlo simulations. In addition to this, in the binned analysis it is found that the Monte Carlo simulation
underestimates the rates for smaller zenith angles and overestimates the rates for larger zenith angles.
This could be caused by flaws in the muon simulation.
In order to improve the analysis for future studies, the Monte Carlo simulation could be done differently.
Currently, the rate in a simulation run is constant, but this is not the case for the real rate in a run. By
varying the rate in the simulations more accurate ratios of smaller time windows could be calculated
giving new insights. Future research should focus on using multi-year stable datasets, improving the
overall accuracy of the Monte Carlo simulations, exploring different time window analyses, and further
studying the impact of multiple-muon events.
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A
Appendix

A.1. AIRS
A.1.1. Full Run Analysis

Figure A.1: Rate and ratio of data and the Monte Carlo simulation for ORCA-10 after cuts are applied. In the top part the count
rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown with

error.
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Figure A.2: Rate and ratio of data and the Monte Carlo simulation for ORCA-11 after cuts are applied. In the top part the count
rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown with

error.
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Figure A.3: Rate and ratio of data and the Monte Carlo simulation for ORCA-11.1 after cuts are applied. In the top part the
count rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown

with error.
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Figure A.4: Rate and ratio of data and the Monte Carlo simulation for ORCA-15 after cuts are applied. In the top part the count
rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown with

error.
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Figure A.5: Rate and ratio of data and the Monte Carlo simulation for ORCA-15.1 after cuts are applied. In the top part the
count rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown

with error.
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Figure A.6: Rate and ratio of data and the Monte Carlo simulation for ORCA-18 after cuts are applied. In the top part the count
rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown with

error.
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Figure A.7: Rate and ratio of data and the Monte Carlo simulation for ARCA-21 after cuts are applied. In the top part the count
rates without error of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is shown with

error.
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Figure A.8: ORCA-10 ratio data plotted on top of the effective temperature data.

Figure A.9: ORCA-11 ratio data plotted on top of the effective temperature data.
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Figure A.10: ORCA-11.1 ratio data plotted on top of the effective temperature data.

Figure A.11: ORCA-15 ratio data plotted on top of the effective temperature data.
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Figure A.12: ORCA-15.1 ratio data plotted on top of the effective temperature data.

Figure A.13: ORCA-18 ratio data plotted on top of the effective temperature data.
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Figure A.14: ARCA-21 ratio data plotted on top of the effective temperature data.

Figure A.15: Fit of the model in Equation 6.11 to the ratio data of ORCA-10. The parameters fit are an amplitude of
A = 0.0187, an offset of 1.288, and a linear trend coefficient of B = −2.458× 10−4 [day−1].
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Figure A.16: Fit of the model in Equation 6.11 to the ratio data of ORCA-11. The parameters fit are an amplitude of
A = 0.0187, an offset of 1.095, and a linear trend coefficient of B = −6.855× 10−5 [day−1].

Figure A.17: Fit of the model in Equation 6.11 to the ratio data of ORCA-11.1. The parameters fit are an amplitude of
A = 0.0187, an offset of 1.017, and a linear trend coefficient of B = −3.790× 10−6 [day−1].
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Figure A.18: Fit of the model in Equation 6.11 to the ratio data of ORCA-15. The parameters fit are an amplitude of
A = 0.0187, an offset of 1.489, and a linear trend coefficient of B = −3.197× 10−5 [day−1].

Figure A.19: Fit of the model in Equation 6.11 to the ratio data of ORCA-15.1. The parameters fit are an amplitude of
A = 0.0187, an offset of 1.002, and a linear trend coefficient of B = −2.839× 10−6 [day−1].
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Figure A.20: Fit of the model in Equation 6.11 to the ratio data of ORCA-18. The parameters fit are an amplitude of
A = 0.0187, an offset of 1.238, and a linear trend coefficient of B = −1.119× 10−4 [day−1].

Figure A.21: Fit of the model in Equation 6.11 to the ratio data of ARCA-21. The parameters fit are an amplitude of
A = 0.0191, an offset of 1.188, and a linear trend coefficient of B = −1.004× 10−4 [day−1].
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Figure A.22: Normalised effective temperature and ratio without detrending over time for ORCA-10

Figure A.23: Normalised effective temperature and ratio with detrending over time for ORCA-10
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Figure A.24: Normalised effective temperature and ratio without detrending over time for ORCA-11

Figure A.25: Normalised effective temperature and ratio with detrending over time for ORCA-11
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Figure A.26: Normalised effective temperature and ratio without detrending over time for ORCA-11.1

Figure A.27: Normalised effective temperature and ratio with detrending over time for ORCA-11.1
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Figure A.28: Normalised effective temperature and ratio without detrending over time for ORCA-15

Figure A.29: Normalised effective temperature and ratio with detrending over time for ORCA-15
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Figure A.30: Normalised effective temperature and ratio without detrending over time for ORCA-15.1

Figure A.31: Normalised effective temperature and ratio with detrending over time for ORCA-15.1
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Figure A.32: Normalised effective temperature and ratio without detrending over time for ORCA-18

Figure A.33: Normalised effective temperature and ratio with detrending over time for ORCA-18
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Figure A.34: Normalised effective temperature and ratio without detrending over time for ARCA-21

Figure A.35: Normalised effective temperature and ratio with detrending over time for ARCA-21
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Figure A.36: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-10 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.37: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-10 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.38: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.39: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.40: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11.1 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.41: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11.1 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.42: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.43: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.44: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15.1 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.45: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15.1 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.46: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-18 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.47: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-18 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.48: Normalised effective temperature Teff and ratio without detrending Rdata of ARCA-21 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.49: Normalised effective temperature Teff and ratio with detrending Rdata of ARCA-21 showing the relative
variation in percentage. The red line is a fit of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.50: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-10 data
without detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what

the coefficient theoretically should be.

Figure A.51: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-10 data
with detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.
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Figure A.52: Histogram of the average effective temperate coefficients of the ORCA-10 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure A.53: Histogram of the average effective temperate coefficients of the ORCA-10 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.
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Figure A.54: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-11 data
without detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what

the coefficient theoretically should be.

Figure A.55: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-11 data
with detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.
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Figure A.56: Histogram of the average effective temperate coefficients of the ORCA-11 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure A.57: Histogram of the average effective temperate coefficients of the ORCA-11 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.
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Figure A.58: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-11.1 data
without detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what

the coefficient theoretically should be.

Figure A.59: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-11.1 data
with detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.
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Figure A.60: Histogram of the average effective temperate coefficients of the ORCA-11.1 data without detrending. The colour
of the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure A.61: Histogram of the average effective temperate coefficients of the ORCA-11.1 data without detrending. The colour
of the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.
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Figure A.62: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-15 data
without detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what

the coefficient theoretically should be.

Figure A.63: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-15 data
with detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.
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Figure A.64: Histogram of the average effective temperate coefficients of the ORCA-15 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure A.65: Histogram of the average effective temperate coefficients of the ORCA-15 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.
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Figure A.66: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-15.1 data
without detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what

the coefficient theoretically should be.

Figure A.67: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-15.1 data
with detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.



A.1. AIRS 133

Figure A.68: Histogram of the average effective temperate coefficients of the ORCA-15.1 data without detrending. The colour
of the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure A.69: Histogram of the average effective temperate coefficients of the ORCA-15.1 data without detrending. The colour
of the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.
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Figure A.70: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-18 data
without detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what

the coefficient theoretically should be.

Figure A.71: The average effective temperature coefficient over a specific window or period is plotted for the ORCA-18 data
with detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.
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Figure A.72: Histogram of the average effective temperate coefficients of the ORCA-18 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure A.73: Histogram of the average effective temperate coefficients of the ORCA-18 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.
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Figure A.74: The average effective temperature coefficient over a specific window or period is plotted for the ARCA-21 data
without detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what

the coefficient theoretically should be.

Figure A.75: The average effective temperature coefficient over a specific window or period is plotted for the ARCA-21 data
with detrending. The red points show for which periods the coefficient is larger than 1 and the green dotted line shows what the

coefficient theoretically should be.
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Figure A.76: Histogram of the average effective temperate coefficients of the ARCA-21 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.

Figure A.77: Histogram of the average effective temperate coefficients of the ARCA-21 data without detrending. The colour of
the bin indicates the mean window size of that bin. Two Gaussian distributions are fitted to the data.
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A.1.2. 60-Minute Window Around Temperature Measurement

Figure A.78: Rate and ratio per 60-minute window around temperature measurements for ORCA-10 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.79: Rate and ratio per 60-minute window around temperature measurements for ORCA-11 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.80: Rate and ratio per 60-minute window around temperature measurements for ORCA-11.1 after cuts are applied.
In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.81: Rate and ratio per 60-minute window around temperature measurements for ORCA-15 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.82: Rate and ratio per 60-minute window around temperature measurements for ORCA-15.1 after cuts are applied.
In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.83: Rate and ratio per 60-minute window around temperature measurements for ORCA-18 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.



A.1. AIRS 144

Figure A.84: Rate and ratio per 60-minute window around temperature measurements for ARCA-21 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.85: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-10 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.86: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-10 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.87: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.88: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.89: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.90: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.91: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.92: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.93: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.94: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.95: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-18 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.96: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-18 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.97: Normalised effective temperature Teff and ratio without detrending Rdata of ARCA-21 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.98: Normalised effective temperature Teff and ratio with detrending Rdata of ARCA-21 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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A.2. ERA5
A.2.1. 60-Minute Window Around Temperature Measurement

Figure A.99: Rate and ratio per 60-minute window around temperature measurements for ORCA-10 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.100: Rate and ratio per 60-minute window around temperature measurements for ORCA-11 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.101: Rate and ratio per 60-minute window around temperature measurements for ORCA-11.1 after cuts are applied.
In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.102: Rate and ratio per 60-minute window around temperature measurements for ORCA-15 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.103: Rate and ratio per 60-minute window around temperature measurements for ORCA-15.1 after cuts are applied.
In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.104: Rate and ratio per 60-minute window around temperature measurements for ORCA-18 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.105: Rate and ratio per 60-minute window around temperature measurements for ARCA-21 after cuts are applied. In
the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the two is

shown.
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Figure A.106: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-10 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.107: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-10 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.108: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.109: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.110: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.111: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.112: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.113: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.114: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.115: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15.1 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.116: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-18 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.117: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-18 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.
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Figure A.118: Normalised effective temperature Teff and ratio without detrending Rdata of ARCA-21 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements. The red line is a

fit of the model in Equation 6.11. The errors are taken into account in the fit.

Figure A.119: Normalised effective temperature Teff and ratio with detrending Rdata of ARCA-21 showing the relative
variation in percentage. The ratios are calculated in 60-minute windows around temperature measurements.The red line is a fit

of the model in Equation 6.11. The errors are taken into account in the fit.



A.2. ERA5 166

A.2.2. Binned analysis

Figure A.120: Rate and ratio per bin per 60-minute window around temperature measurements for ORCA-10 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.
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Figure A.121: Rate and ratio per bin per 60-minute window around temperature measurements for ORCA-11 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.
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Figure A.122: Rate and ratio per bin per 60-minute window around temperature measurements for ORCA-11.1 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.
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Figure A.123: Rate and ratio per bin per 60-minute window around temperature measurements for ORCA-15 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.
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Figure A.124: Rate and ratio per bin per 60-minute window around temperature measurements for ORCA-15.1 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.
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Figure A.125: Rate and ratio per bin per 60-minute window around temperature measurements for ORCA-18 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.
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Figure A.126: Rate and ratio per bin per 60-minute window around temperature measurements for ARCA-21 after cuts are
applied. In the top part the count rates of the data and the Monte Carlo simulation are shown. In the bottom part the ratio of the

two is shown.
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Figure A.127: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-10 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.

Figure A.128: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-10 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.
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Figure A.129: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-10 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.

Figure A.130: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-10 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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Figure A.131: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.

Figure A.132: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.
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Figure A.133: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.

Figure A.134: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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Figure A.135: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11.1 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.

Figure A.136: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11.1 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.
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Figure A.137: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-11.1 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.

Figure A.138: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-11.1 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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Figure A.139: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.

Figure A.140: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.
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Figure A.141: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.

Figure A.142: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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Figure A.143: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15.1 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.

Figure A.144: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15.1 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.
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Figure A.145: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-15.1 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.

Figure A.146: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-15.1 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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Figure A.147: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-18 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.

Figure A.148: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-18 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.
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Figure A.149: Normalised effective temperature Teff and ratio without detrending Rdata of ORCA-18 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.

Figure A.150: Normalised effective temperature Teff and ratio with detrending Rdata of ORCA-18 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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Figure A.151: Normalised effective temperature Teff and ratio without detrending Rdata of ARCA-21 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.

Figure A.152: Normalised effective temperature Teff and ratio with detrending Rdata of ARCA-21 showing the relative
variation in percentage for each bin plotted together. The black line is a fit of the model in Equation 6.11 though all the data

points combined. The errors are taken into account in the fit.
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Figure A.153: Normalised effective temperature Teff and ratio without detrending Rdata of ARCA-21 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.

Figure A.154: Normalised effective temperature Teff and ratio with detrending Rdata of ARCA-21 showing the relative
variation in percentage for each separate bin. The black line in each plot is a fit of the model in Equation 6.11 though the data

of each bin separate. The errors are taken into account in the fit.
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