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Preface  
 

During my studies, I completed four clinical research internships at the intensive care unit (ICU), the 
department of transplantation surgery, the department of neurosurgery, and the neonatal intensive care unit. In 
my opinion, the ICU is the most exciting, inspiring, and challenging environment for a Technical Physician (to 
be). This is due to the complex patient population, advanced monitoring and therapeutic techniques, and the 
multidisciplinary team of physicians which makes every day different and educational. Therefore, I was eager to 
return for my master thesis to the ICU.  

During my internships, I gained experience in the field of signal processing, for instance of ICU patients being 
mechanically ventilated. During master thesis, I wanted to take my knowledge on signal processing and data 
analysis one step further. Furthermore, it fascinated me that the tremendous amount of patient data monitored 
and stored at the ICU were not used to support the ICU physicians in difficult decision making and to reduce 
their high workload. Therefore, I aspired to do my master thesis on the use of clinically valuable Artificial 
Intelligence (AI) prediction models built on this tremendous amount of ICU patient data.   

Without prior knowledge of AI, I enthusiastically started my project in March 2020 on the prediction of ICU 
readmission for discharge decision support. There were some challenges and difficulties last year caused by 
the COVID-19 pandemic. For instance, my cancelled internship on the ICU in Nagasaki, Japan, was one of the 
first changes in my plan with many to follow. But despite some setbacks, I had an amazing year and developed 
myself clinically on the ICU, and technically in data science as I learned to develop machine learning models on 
a large ICU database. Hopefully, my performed research the last year contributed to creating clinical value 
using AI-based decision support, and I am extremely thankful for the support and enthusiasm from my three 
main supervisors: Sesmu Arbous, Matthijs van Leeuwen, and Esmee Stoop. 

In my opinion, the Technical Physician could play an important role in making the step from AI model 
development to implementing AI-based tools in clinical practice. I noticed the benefit of speaking the 
physicians’ language and my clinical ICU experiences during all phases of the project. Unfortunately, my thesis 
ends at the start of an exciting time for the ICU of the Leiden University Medical Centre. The coming months, 
one of the first CE-certified AI-based decision support tools will be validated and implemented. During this 
prospective validation, I see an important role for the Technical Physician in training the physicians and 
conducting prospective (randomized) trials. For Technical Physicians working in direct patient care, adoption of 
AI tools will be easier due to their technical knowledge, which could also support the adoption of AI tools by 
their physician colleagues, speeding up the process of implementation.  

I started this project without in-depth knowledge on AI, but I ended it knowing what I want to do the coming 
years: making real impact as a Technical Physician on the use and implementation of AI-based decision 
support tools.  

 

 

Siri van de Meijden                 Delft, 10/3/2021 
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Summary 
 

Intensive Care Unit (ICU) readmission is a serious adverse event associated with high mortality rates and 
costs. Prediction of ICU readmission could support physicians in their decision to discharge patients from the 
ICU to lower care wards. Due to increasing ICU data availability, Artificial Intelligence (AI) models in the form of 
machine learning (ML) algorithms can be used to build high-performing decision support tools. To have impact 
on patient outcomes, these decision support tools should have high discriminative performance and should be 
explainable to the ICU physician. The goal of this thesis was to compare several types of ML models on 
predictive performance and explainability for the prediction of ICU readmission for discharge decision support. 
The scientific paper that aims to answer this question can be found in Part III of this thesis. In a broader 
perspective, we proposed a framework for the development and implementation of clinically valuable AI-based 
decision support.  

First, a systematic review was conducted to examine current literature on ML prediction models for ICU 
readmission (Part I). We concluded that previously developed models reported inappropriate performance 
metrics and were not implemented in clinical practice. Furthermore, previous work did not compare explainable 
outcomes in terms of patient factors contributing to the risk of readmission between models. Secondly, we 
conducted a questionnaire among ICU physicians to investigate current discharge practices and their attitude 
towards the use of AI tools in their work processes (Part II). Although not all physicians agreed that the decision 
to discharge ICU patients is complex, most of them do believe in the clinical value of an AI-based discharge 
decision support tool. Thirdly, we developed several prediction models for ICU readmission and compared 
them on discriminative performance, calibration properties, and explainability (Part III). We concluded that 
advanced ML models did not outperform logistic regression in terms of discriminative performance and 
calibration properties. However, the explanations of XGBoost, a state-of-the-art ML algorithm, were more in line 
with the ICU physician’s clinical reasoning compared to logistic regression and neural networks. Lastly, we 
designed a study protocol to prospectively evaluate the predictive performance of Pacmed Critical, a CE-
certified AI-based discharge decision support tool, and that of the ICU physician (Part IV).  

This thesis contributed to making the step from developing high-performing prediction models to clinical 
adoption of an ICU discharge decision support system. Due to small differences in discriminative power and 
calibration properties between models, the model best explainable to the physician and most in line with clinical 
reasoning should be chosen for decision support. Before final implementation, impact on patient outcomes and 
costs will need to be studied in prospective trials.  
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Introduction  
 

The Intensive Care Unit (ICU) ICU has limited bed availability and expensive resources, resulting in the need to 
discharge patients from the ICU as soon as safely possible. In determining ICU discharge timing, a trade-off 
exists. In case patients are prematurely discharged to lower-care wards, deterioration of their condition may be 
noticed late due to limited monitoring facilities, which may result in ICU readmission. Readmission to the ICU is 
a serious adverse event, correlated with increased mortality rates, length of stay, and costs1,2. On the other 
hand, delaying ICU discharge impacts bed availability, affecting patients in need of intensive care, as well as 
costs. 

The decision to discharge patients to lower care wards is one of many high stake, difficult, and often quick 
decisions ICU physicians need to make3. Currently, this decision is made by the responsible physicians and 
nurses based on their clinical knowledge and local hospital policies. To support the physician in determining 
optimal timing for ICU discharge, a decision support tool accurately predicting a patient’s readmission risk 
could provide value. The ultimate goal of such a tool would be to reduce average length of stay, readmission 
rates, and costs. The prediction of ICU readmission can be reported as a risk score, similar to the Acute 
Physiology And Chronic Health Evaluation Score (APACHE, predicting mortality risk)4, the Simplified Acute 
Physiology Score (SAPS, predicting mortality risk)5, and the Stability and Workload Index for Transfer (SWIFT, 
predicting readmission risk)6. These scores are based on classical statistical models (e.g., logistic regression) 
that allow the physician to obtain insight in the contributing factors to the predicted outcome, making them 
highly explainable and interpretable. However, these risk scores often insufficiently generalize beyond the ICU 
population they were developed on7, indicating the need for more advanced prediction models.  

Due to the complexity and heterogeneity of the ICU patient population, personalized decision support tools 
based on Artificial Intelligence (AI) prediction models might be superior to classical risk scores. AI, in the form 
of Machine Learning (ML) and Deep Learning (DL) algorithms, mimics reasoning or decision-making based on 
real-world (patient) data8 (Figure 1). These models can discover non-linear relations between the numerous 
recorded ICU parameters and relevant patient outcomes. Due to the ability of AI to handle high dimensional 
patient data, individualized predictions can be performed for the usage of accurate decision support tools9. 
Despite their excellent predictive performance, ML and DL algorithms are often referred to as ‘black-box’ 
models. In contrast to classical risk scores, the complex algorithmic structures limit explainability, i.e., the 
insight in patient factors contributing to the made prediction10. In recent years, much effort has been made in 
making AI models explainable, thereby increasing transparency and therefore promoting adoption of AI 
decision support tools in clinical practice11. Therefore, our focus is on the predictive performance and 
explainability of AI-based discharge decision support tools.  
 

  
Figure 1: Artificial Intelligence, machine learning and deep learning. Adapted from [8].  
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1. Framework for the implementation of an AI-based clinical decision support tool 
Despite the rapid increase in publications regarding the use of AI for clinical prediction modeling, only few 
models have been implemented in clinical practice12,13. Furthermore, the research so far on the clinical value of 
AI-based decision support is mainly limited to the field of radiology14. As a means to enhance the adoption of 
clinically meaningful decision support, we propose a framework for the implementation of an AI-based decision 
support tool in clinical practice as visualized in Figure 2. The framework we developed is inspired by the 
implementation of risk scores and other classical decision support tools15,16. It must be noted that it does not 
take the technical data integration side of the project into account, since this was out of our research scope. A 
summary of each phase is provided in this section.  

Phase 1: Orientation  
During the orientation phase, the clinical problem (in our research: ICU readmission) that might benefit from a 
decision support tool is defined. A (systematic) literature review performed at the start is needed to assess the 
availability, strengths and weaknesses of previous developed prediction tools. Next, the medical staff for whom 
the decision support tool is developed should be questioned regarding the clinical problem and their attitude 
towards AI-based decision support. If the expectation is that there is potential in using AI as decision support 
tool for the clinical problem, patient data are collected and explored to be used to build a prediction model.  

 
Figure 2: From clinical problem to implementation of an AI decision support tool. The numbers in the boxes correspond to the 
objectives and parts of this thesis.  (1) = Systematic review, (2) & (4) = thesis feasibility study, (3) = Main thesis. RCT = 
Randomized Controlled Trial. 
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Phase 2: Model development and validation  
Model development and validation is an iterative process, indicated by the dashed arrows in the figure pointing 
to a previous step. First, the collected patient data are cleaned and prepared (i.e., feature engineering and 
selection) to become appropriate as input data for model development. Secondly, one or more ML models are 
trained to predict the clinical outcome on a (retrospective) training dataset and validated on discriminative 
performance and calibration properties on a test dataset. Next, possibilities for making the developed models 
explainable to the medical staff are explored. Evaluation of the model’s predictions and explainability outcomes 
(i.e., impactful patient factors to the predicted outcome) are evaluated with the medical staff to enhance 
understanding and look for potential bias17. In some cases, phase 2 can be skipped if an implementation-ready 
(commercial) decision support tool is available that meets the requirements. However, such a tool should be 
extensively validated and calibrated during this phase on the new patient population. 

Phase 3 and 4: Clinical trial and implementation  
In phase 3, the added clinical value of the decision support tool is evaluated during two prospective studies. 
The first study compares the predictive performance of the model (in ‘silent-mode’ i.e., not visible to the 
physician) to the prediction registered by the physician. For our use case, the physician is asked to predict a 
patient’s chance of readmission at the moment of discharge. If the ML model shows superior performance over 
the physician, the impact of the decision support tool on patient outcomes is evaluated in a Randomized 
Controlled Trial (RCT)13. If a positive impact of the decision support tool is observed, in terms of patient 
outcomes and costs,  the decision support tool can be implemented for clinical use. At this stage, all physicians 
and nurses involved should be trained in using and interpreting the predictions correctly. After final 
implementation, the tool’s software should be managed to monitor changes in data and model performance 
over time.  

2. Approach and research objectives 
Within the described framework for the implementation of an AI discharge decision support tool, the different 
parts of this master thesis correspond to one or more steps in Figure 2. Our use case is the prediction of ICU 
readmission at the Leiden University medical Centre (LUMC). We (partly) accomplished phase 1 and 2 with the 
literature study (systematic review), the thesis feasibility study (questionnaire), and the modeling study (data 
collection until evaluation medical staff). Our developed models were made for research purposes and will most 
likely not be further implemented. However, phase 3 and 4 will be conducted within the LUMC during the 
implementation project of a CE-certified discharge decision support tool, Pacmed Critical. Pacmed Critical is a 
prediction tool developed in collaboration with the Amsterdam UMC, predicting a patient’s risk of readmission 
and/or death within 7 days after ICU discharge19,20. Our work contributed to the first steps of validating Pacmed 
Critical at the ICU of the LUMC, in collaboration with the LUMC Clinical AI Implementation and Research Lab 
(CAIRELab).  
 
Each thesis objective is discussed in the four parts of this thesis, comprising the literature review (TM30003), 
the thesis feasibility study (TM30002), and the master thesis (TM30004). The overarching aim was to contribute 
to the implementation of clinically meaningful AI decision support tools by combining technical skills and 
intensive care medicine knowledge. The four research objectives were as follows:   
 
 

Systematically review current literature on ML models for the prediction of ICU readmission.  
 Part I – Literature review   
 
Gain insight in current discharge practices and the ICU physician’s attitude towards the integration of AI 
decision support tools in daily clinical practice. 
 Part II – Thesis feasibility study 1/2  
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Develop and compare logistic regression and advance ML models for the prediction of ICU readmission 
in terms of discriminative performance, calibration properties, and explainability. 
 Part III – Main thesis  
 
Set up a protocol for the prospective evaluation of Pacmed Critical. 
 Part IV – Thesis feasibility study 2/2 
 

Part III includes the main scientific paper on performance and explainability of ML models for the prediction of 
ICU readmission. A general discussion on the thesis objectives and future perspectives are provided at the end 
of this thesis.  
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Part I – Systematic Review 
  For the first research objective, we performed a systematic review as part of the literature study 

(TM30003). Research on the development of machine learning algorithms for the prediction of 
readmission after ICU discharge were evaluated on discriminative performance, calibration 
properties, and explainability. The findings of our systematic review contributed to the model 
development described in Part III.  
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Machine Learning for the Prediction of ICU 
Readmission: A Systematic Review 

 

Abstract 
 

Introduction  Intensive Care Unit (ICU) readmission is a serious adverse event associated with high mortality 
rates and costs. The prediction of ICU readmission has shifted the last years from classical prediction modeling to 
using Machine Learning (ML) algorithms. The aim of this paper is to systematically review models/algorithms that 
predict adult ICU readmission using ML on quality, modeling strategies, and performance. 

Methods   We searched six databases for studies published from inception until May 17, 2020. Data 
extracted from the studies included source and size of datasets, predicted outcome measures, modeling strategies, 
variable selection methods, data pre-processing strategies, explainability methods, impactful features, and model 
performances. Furthermore, quality, applicability, and risk of bias were assessed using the CHecklist for critical 
Appraisal and data extraction for systematic Reviews of prediction modeling Studies (CHARMS). 

Results  Eight studies were included.  Dataset sizes ranged from 2,018 to 46,252 admissions with 
readmission rates between 1.9 % - 24.0 %. Predicted outcomes included ICU readmission within 24 hours, 48 hours, 
72 hours, 7 days, 30 days, and any time within the same hospital stay. CHARMS quality scores ranged between 65 - 
88 %. Area under the receiving operator characteristic curves (AUC) ranged between 0.64-0.92. Only few papers 
described their method of calibration and the reporting of other performance metrics than AUC was sparse.  

Conclusion   Prediction of ICU readmission is performed using several types of ML algorithms. Quantitative 
comparison between modeling strategies could not be performed due to heterogeneity in predicted outcomes, 
performance metrics, and datasets used. Future studies should focus on the clinical applicability of ML models for the 
prediction of ICU readmission. 

Keywords Intensive care unit, readmission, machine learning, decision support  

1. Introduction  
Due to high costs and limited bed availability, 
Intensive Care Unit (ICU) patients should be 
discharged to lower care hospital wards as soon and 
as safely possible. Although the decision to discharge 
is made with the utmost carefulness, it may result in 
ICU readmission due to limited monitoring and 
therapeutic options at lower care wards. ICU 
readmissions are serious adverse events related with 
mortality rates ranging between 26-58 % [1]. 
Physicians and patients could therefore benefit from 
identifying patients at risk of readmission before 
making the decision to discharge.  
 
Hosein et al. evaluated the use of different risk 
stratification tools for ICU readmission in a systematic 
review [2]. Evaluated tools included the Modified Early 
Warning Score (MEWS) that predicts readmission 
within 72 hours of discharge, the Stability and 
Workload Index for Transfer (SWIFT) score, and Frost 
nomogram that both predict readmission within the 

same hospital stay. They used 5-26 variables to 
determine the patient’s risk of readmission at 
discharge [2]. However, the prediction of readmission 
is challenging due to the heterogeneous patient 
population. Simplified risk scores may not be sufficient 
due to their inability to capture the patient’s complete 
clinical status. The increasing amount of patient data 
stored in the Electronic Health Record (EHR), 
including a lot of (time-series) variables for large 
patient cohorts, may be used to develop more 
complex and potentially more accurate prediction 
algorithms.  
 
A systematic review from Markazi-Moghaddam et al., 
published in 2019 (evaluating studies published until  
January 2017), assessed primary models (not 
externally validated) to predict ICU readmission [3]. 
Five studies were included, of which four used a  
logistic regression model   and one a data-mining 
approach.
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Figure 3: The process of prediction modeling using Electronic Health Record (EHR) patient data. Static variables include for example 
age, reason for admission, and BMI. Time-series variables include vital functions and medication that change over time and have 
different sample frequencies. ICD-9 codes include patient diagnoses and procedures.  

Predicted outcome measures for readmission were 
different for all five studies; readmission within 48 
hours after discharge, between 24-72 hours after 
discharge, any readmission within the same hospital 
stay, readmission related to the initial ICU admission, 
and readmission specific in a group of postoperative 
patients. Area Under the receiving operator 
characteristic Curve (AUC) ranged from 0.66 to 0.81 
and most studies reported limited other performance 
metrics. Studies were evaluated to be generally of 
moderate to low quality according to the CHAMRS 
criteria (the CHecklist for critical Appraisal and data 
extraction for systematic Reviews of prediction 
Modeling Studies). 

Since the systematic review of Markazi et al., applied 
methods to predict ICU readmission have shifted from 
logistic regression to using Artifical Intelligence (AI) in 
the form of Machine Learning (ML) algorithms [4]. 
These algorithms are able to ’learn’ from the 
thousands of different variables present in the EHR. 
Having learned from admission data of previously 
readmitted ICU patients, a ML model could accurately 
predict a patient’s chance of readmission at the  
moment of discharge.  Figure 3 shows the process of 
prediction modeling using EHR data. 

To compare prediction models on their performance, 
several aspects need to be taken into account. The 
model needs to discriminate between patients at high 
and low risk of readmission and it should be calibrated 
on the population of interest to have high agreement 
between predictions and observations [22]. 
Furthermore, the model should generalize well to new 
populations. Prediction models are validated either 
internally (using k-fold cross validation or 
bootstrapping), or externally on a different patient 
dataset [3]. 

Compared to traditional statistical modeling (e.g., 
logistic regression), ML models potentially have higher 
predictive performance but this comes at the cost of 
model interpretability and explainability. Interpretability 
refers to the transparency of the working mechanism 

behind the prediction model, whereas explainability 
gives an explanation of the EHR features contributing 
to the predicted outcome for a specific patient [6].  In 
order to incorporate a ML prediction algorithm in 
clinical practice, knowing the impactful predictors 
(explanations) to the predictions could help physicians 
in the decision to trust on the algorithm or not [8]. The 
hypothesis is that physicians are more likely to adopt 
ML as decision support tools when having insight in 
the predictors contributing most to the reported 
outcome, and therefore enhancing clinical applicability 
[7].  

Due to these concerns, advances have been made the 
last years in making non-interpretable and difficult to 
explain (‘black-box’) ML algorithms explainable. 
Therefore, we not only evaluated study quality and 
performance, but also explainability methods of non-
interpretable ML algorithms. The aim of this study was  
to systematically review studies predicting 
readmission to adult ICU using ML models with respect 
to study characteristics, study quality, modeling 
methods, model explainability, and performance. 
 

2. Methods 
2.1. Study protocol and registration  

The study protocol and study was registered in 
PROSPERO under CRD42021226415.  

2.2. Search strategy 
Six data bases (Pubmed, Embase, Web of Science, 
COCHRANE Library, Emcare, and Academic Search 
Premier) were searched from inception until May 17, 
2020. Keywords used for searching included 
”prediction”, ”decision support”, ”intensive care unit”, 
”Machine learning”, ”artificial intelligence”, 
”readmission”, and ”discharge”. Synonyms were used 
for all keywords. The full search strategy is provided in 
the Supplementary material Part I - Systematic Review 
(Page 65).  
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2.3. Study selection i.e., inclusion criteria 
Inclusion criteria were: description of the development 
of a ML model for the prediction of adult (> 18 years) 
ICU readmission, with as primary outcome chance of 
readmission at any time within the same hospital stay. 
Studies separately predicting both readmission and 
mortality (and not as composite outcome) were 
included as well. Both retrospective and prospective 
studies using EHR data were included when full text 
was available in English. 

 
Exclusion criteria were: prediction of another outcome 
than ICU readmission, validation of an existing (non-
ML) risk score, descriptive studies on general risk 
factors for ICU readmission, review articles, and 
articles focused on a pediatric population. Study titles 
were first screened on relevance for our study 
objective by the author (SvdM). Afterwards, we 
assessed full-text on inclusion and exclusion criteria. 
 

2.4. Data extraction 
We systematically reviewed the included studies on 
five domains, see Supplementary material Part I - 
Systematic Review (Page 61) for the used data 
extraction tables. The first domain comprised the 
study characteristics, including year of publication, 
study type, dataset description, the number of ICU 
admissions (samples), definition of readmission, 
proportion of ICU readmission in the dataset,  and the 
type of ML models used. Secondly, study quality, 
applicability and risk of bias were assessed. The 
modeling methods of each study were further 
elaborated in the third domain, including feature 
selection methods, number of input features, data 
preparation methods, handling of missing data, 
modeling methods, validation strategies (internal and 
external), and method of calibration. In the fourth 
domain, studies were compared on their use of 
methods to enhance explainability of their model and 
(the top 10) features contributing to the predicted 
outcome. Lastly, the highest performing models of 
each included study were compared on relevant 
metrics and calibration properties.  

2.5. Assessment of study quality and 
applicability 

We assessed study quality by evaluating internal 
validity and transparency in modeling methods. 
Prediction modeling studies could report high 
discriminative performance, but at the same time they 
could suffer from bias or lack of generalizability when 

having low study quality. The CHARMS checklist was 
used to assess study quality [7].  This checklist 
comprises a list of criteria divided over 11 domains 
(source of data, participants, outcome(s) to be 
predicted, candidate predictors, sample size, missing 
data, model development, model performance, 
results, interpretation, model evaluation, and 
discussion). When a criterion was fully met, two points 
were awarded. One point was given when a criterion 
was partly met, and zero when a criterion was not met 
at all. Besides general study quality, study applicability 
(study applicable for the intended use, i.e., prediction 
of readmission in the target population) and risk of bias 
(e.g., risk of overfitting due to design flaws) were 
assessed using two additional subsets of the 
CHARMS checklist [7]. Not all items in the CHARMS 
checklist were relevant for ML prediction models [3]. 
Thirty criteria were applicable to ML model 
development resulting in a maximum achievable 
general quality score of 60.  We used 15 of these 30 
criteria to assess study applicability, with a maximum 
of 30 points, and 16 to assess risk of bias, with a 
maximum of 32 points [7]. General quality, 
applicability, and risk of bias scores were given as 
percentages between 0-100%. 
 

3. Results 
3.1. Identification of eligible studies 

After removal of duplicates, a total of 172 articles were 
identified. 139 articles could be excluded due to an 
irrelevant study objective. Main reasons of exclusion 
after reviewing abstracts and full text included the 
prediction of solely mortality after discharge (n = 12) 
and prediction of other outcome measures than ICU 
readmission (n = 6). See Figure 4 for other reasons of 
exclusion. Finally, we included eight studies [10–17]. 

3.2. Study characteristics 
The studies included were published between 2017 
and 2020. See Table A-1 (Supplementary material Part 
I - Systematic Review, page 61) for a summary of study 
characteristics. Study types were either observational 
or cross-sectional. Patient sample sizes differed 
between 2,018 inclusions [14] up to 46,252 [12]. Five 
studies trained and validated their model solely on the 
MIMIC-III database [10–13, 16], where two articles 
used a combination of the MIMIC database and the 
EHR of a local hospital [14, 15]. One study trained and 
validated their model solely on the data of three local 
hospitals [17]. The MIMIC database is a freely  
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Figure 4: Flow chart of study identification and selection 

accessible critical care database, including ten 
thousands of patient EHRs [18]. Furthermore, the 
included studies used several definitions for the 
prediction of readmission, ranging between 24 hours 
after discharge and 30 days after discharge. Two 
studies defined their predicted outcome without time-
limit (i.e., readmission within the same hospital stay). 
The reported ICU readmission rates ranged between 
1.9% (within 24 hours after discharge, [12]) to 24.0% 
(within 30 days after discharge [9]).  See Figure 5 for 
an overview of readmission rates for each predicted 
outcome. 

Different types of ML models were used among 
studies. In two studies, several state-of-the-art ML 
models were internally compared, including support 
vector machine (SVM), random forest (RF), and Multi-
Layer Perceptron (MLP, also known as feed-forward 
neural networks)) [15, 16]. Three other studies focused 
mainly on boosting algorithms [12– 14]. Advanced 
Deep Learning (DL) model development was 
described in three papers, using recurrent neural 
networks (RNN), convolutional neural networks (CNN) 
and conditional random fields (CRF) [9–11]. Most 
studies compared the discriminative performance of 
their developed algorithms to one or more other 

(previous published) algorithms or risk scores, 
including the SWIFT score and MEWS score [8, 13] or 
a score obtained using logistic regression [12, 15]. All 
studies showed superior performance of their ML 
model over risk scores and LR. 

3.3. Quality of studies 
Studies were scored on general quality using the 
CHARMS criteria. Two additional subsets of criteria 
were used to assess applicability of models and risk of 
bias. See Figure 6 for an overview of study quality in 
percentages. Lin et al. scored highest on all aspects, 
with a general quality score of 88%. Venugopalan et 
al. had the lowest general quality score (62%), and 
lowest applicability score due to limited reporting of 
model performance, and interpretation of results. For 
most included studies, general study quality was high  
or sufficient on most aspects such as on description of 
participants, outcome(s) to be predicted, sample sizes, 
model development, reporting of results, and model 
evaluation. However, information on missing data and 
calibration measures was lacking in most studies. See 
Supplementary material Part I - Systematic Review 
(page 67) for the CHARMS scores of all included 
studies.  
 

 

Figure 5: Readmission rates for each included study. The 
defined outcome for readmission in days after discharge is 
plotted on the x-axis against the reported readmission rate on 
the y-axis. Two articles, Rojas et al. and Loreto et al. defined 
readmission within same hospital stay (SHS) without defining 
with no defined limit in days after discharge. These two studies 
are reported separately on the right of the graph. 
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Figure 6: CHARMS scores in percentages for each included study. Two subsets of the CHARMS criteria were used to assess 
applicability and risk of bias. 

3.4. Machine Learning modeling strategies 
Using the EHR as input data source, a distinction can 
be made between static variables (e.g., age, BMI) and 
time-series variables (e.g., vital signs, laboratory 
results, nursing scores). Static variables are constant 
during the whole ICU admission, and therefore one 
single value is used as input to the algorithm. Time-
series variables are numerical or categorical values 
registered with differences in sample frequencies. 
ICD-9 codes (Standardized Diagnosing Codes) are 
used to store patient diagnoses over time. In ICD-9 
codes, important patient information is stored before 
admission (e.g., chronic diseases), but also new 
diagnoses assessed and interventions performed 
during the ICU admission, and therefore belong to the 
category of time-series features. The study by 
Junqueira et al. was the only to solely use static input 
variables for the prediction of readmission, where all 
other included studies used both static features and 
time-series features as input data for their model. Input 
data collection periods used for time-series variables 
differed between studies (e.g., the first hour of 
measurements after admission, the last 24h before 
discharge, or from the whole ICU stay), see Table A-2 
(Supplementary material Part I - Systematic Review, 
page 61).  Loreto et al. used multiple datasets for 
prediction modelling. One dataset solely included data 
available at ICU admission. Predicting readmission is 
a more difficult task when using solely data available 
at time of ICU admission since no information on the 
course of the ICU admission is used.  

Different feature selection methods were used to 
select the features contributing mostly to the predicted 
outcome as input data for the model. Rojas et al. made 
an a priori selection of variables based on clinical 

experience. Other studies excluded redundant 
features, features with more than 50 % missing values 
or used L1-feature selection. L1-feature selection is 
used to reduce overfitting on the training dataset on 
redundant features, by shrinking the coefficient of the 
least informative features to zero. Imputation of 
missing data was performed using several strategies, 
including k-means imputation, mean, most recent 
values, and others. Data aggregation and vector 
embedding strategies were used to structure the 
different types of input data. Data aggregation is a 
method to extract features from time-series data, and 
vector embeddings are used to create equally sized 
input matrices to train the model on. The number of 
input features ranged between 12 [15] to 2,344 [12]. 
Changes in time-series variables (e.g., blood 
pressure) during the admission might be relevant to 
the prediction of readmission, DL models have the 
opportunity to better handle time-series data. The 
three studies focusing on DL used embeddings to deal 
with multiple sample frequencies of time-series data, 
to get a fixed size input data matrix for each patient. 
The other studies used aggregations of (e.g., mean, 
standard deviation) of time-series data, resulting in a 
few summarizing statistics for each variable.   

Most studies developed several ML models and 
compared their performance. Four studies showed the 
highest performance in terms of AUC for tree-based 
ML models including Random Forest (RF), Gradient 
Boosting (GB) or XGBoost.  Junqueira et al. reported 
highest performance for the MLP, with a marginal 
difference from the other models. The three papers 
focusing on DL predicted readmission within 30 days 
of discharge. Best DL models included  
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Figure 7: Highest AUC (Area under the receiving operator 
curve) for each model for different predictions of readmission 
within days after discharge. SHS = Same Hospital Stay. 

Recurrent Neural Networks (RNN) with Bi-directional 
Gated Recurrent Units (GRU) [11], RNN with Long 
Short-Term Memory (LSTM) [10], and a combination 
of conditional random fields (CRF) as temporal model 
and a Feed-Forward Neural Network (FFNN) as static 
model [9]. 
Cross-validation was used to average performance 
over different training and test datasets. Barbieri et al. 
were the only using bootstrapping instead of cross-
validation. Three studies performed some form of 
external validation by evaluating their model on the 
MIMIC-III dataset [13–15]. All studies compared their 
best model to other ML models, LR models, and/or 
classical scores as the  Stability and Workload Index 
for Transfer (SWIFT) score. Desautels et al. and 
Pakbin et al. were the only to report methods of 
calibration, using LR and calibration plots.  

  

3.5. Model explainability and predictive 
features 

The last few years, efforts have been made in making 
non-interpretable ML models more explainable in 
terms of features contributing to the predicted 
outcome. Explainable models are more likely to be 
adapted in clinical practice because a physician is 
more likely to trust a prediction when knowing its 
impactful variables [18]. 

Several explainable methods were used to gain insight 
in contributing features to the reported outcome. The 
methods used and the top-10 most predictive features 
are shown in Table A-3 (Supplementary material Part 
I - Systematic Review, page 61). Glucose levels, heart 
rate (HR), length of stay (LOS), Glasgow Coma Scale 
(GCS), respiratory failure/parameters (e.g., respiratory 
rate, SpO2, mechanical ventilation), and multiple 
laboratory parameters were often named in the 
included studies as important predictors on the 
population level. Only Barbieri et al. mentioned the use 
of their method to be applicable for individual patient 
specific explanations. They concluded that by adding 
attention to their model, explainability was enhanced 
at a marginal cost in performance [11]. 

3.6. Performance 
Reported AUC’s ranged between 0.64 (Junqueira et 
al.) and 0.92 (Loreto et al.). However, it was not 
possible to compare AUC between studies due to 
differences in definitions of readmission.  As Thoral et 
al. mentioned, predicting ICU readmission within 48 h 
is a more difficult prediction task than predicting 
readmission within 30 days after discharge. Due to a 
smaller number of patients being readmitted within 48 
hours, it is more difficult to train an accurate algorithm 
than for patients readmitted within the same hospital 
stay. Furthermore, different databases were used for 
development of the model, making comparison 
challenging. For all studies that trained their model on 
the MIMIC-III database, Lin et al. had the highest AUC 
of 0.79, using a LSTM in combination with a CNN.  
Venugopalan et al. were the only to not report AUC as 
outcome measure, and used the Matthews Correlation 
Coefficient (MCC) with a MCC of 0.65. See Table A-4 
(Supplementary material Part I - Systematic Review, 
page 61) for an overview of reported performance 
metrics. It was remarkable that Loreto et al, reporting 
the highest AUC, had lowest recall (sensitivity,  0.46) 
and precision (positive predictive value, 0.58). This 
could indicate a large proportion of true negatives 
resulting in the high AUC. In Figure 7, the AUC of each 
study is visualized for the different predictions of 
readmission in days after discharge. Pakbin et al. had 
the highest AUC for prediction of readmission within 72 
hours (AUC = 0.76) and Lin et al. had the highest AUC 
for readmission within 30 days (AUC = 0.79). Multiple 
other performance metrics were reported for each 
study, but these differed among studies, see Figure 8. 
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Figure 8: Reported ddiscriminative performance metrics per study (not all performance metrics of interest were given for each 
study). Highest performing model metrics are plotted for studies describing the development of more than one model. AUC = Area 
under the receiving operator curve, MCC = Matthews correlation coefficient, PPV = positive predictive value. 

4. Discussion 
A shift in prediction modeling of ICU readmission is 
observed the last few years from classical regression 
towards the use of machine learning. A large 
heterogeneity in definition of ICU readmission, 
modeling methods, reported performance metrics, 
explainability methods, input variables, and sample 
sizes was observed in the included studies. Direct 
comparison among studies could therefore not be 
performed, and both ‘classical’ ML models (mainly 
tree-based and boosting models) and DL models 
performed well. Consensus should be formed on the 
defined time to readmission after discharge and 
reporting of performance metrics.  Most studies used 
an explainable method to get insight in the 
contributing features to the reported outcome, 
enabling ‘black-box’ ML models to become 
explainable. The next step in creating clinically 
valuable prediction tools would be prospective 
validation and implementation of these discharge 
decision support tools. 
 
In the last review from Markazi et al., mainly 
prediction algorithms based on LR were included 
until January 2017. The highest AUC of the included 
studies was from Magruder et al. (AUC = 0.81). 
However, they only included four features in the final 
model and the sample size was small (452 patients), 
increasing the risk of overfitting on the dataset and 
reduced generalizability to other populations. The 
overall conclusion from this review was that the 
included studies had low methodological quality, 
including small sample sizes, lack of information on 
missing data handling, and remarks on model 
development, model evaluation and results [3]. Since 
2017,  there has been a shift  from LR to more 
advanced ML models. And an improvement has 

been made the past years in terms of sample sizes, 
model evaluation, imputation of missing data, and 
validation methods. A similar limitation as described 
by Markazi et al. is that only two studies report their 
method of calibration. 
 
To our knowledge, this is the first systematic review 
looking into the application of ML models for the 
prediction of adult ICU readmission. We chose to 
only include papers describing the development of at 
least one ML model, and did not compare them to 
papers solely based on LR or previous established 
risk scores. Two included studies internally 
compared state-of-the-art ML models to LR and 
reported superior predictive performance for ML 
compared to  LR [10,11]. However, a systematic 
review showing no benefit of ML over LR for 
prediction modeling reported that this finding is not 
trivial [25]. Although we extensively searched six 
databases, it could be that not all developed models 
were included in this systematic review. The field of 
medical prediction modeling using ML is rapidly 
evolving and some non-peer-reviewed papers were 
found which aimed at making the step to clinical utility 
of ML models [8], but which were not included in this 
review. Another limitation could be the use of the 
CHARMS criteria, using them to assess study quality 
mainly focuses on whether certain aspects are 
reported, and not whether they actually perform well. 
However, transparent reporting is one of the most 
imported things when assessing study quality of 
prediction models.  
 
Due to a relative low number of readmissions (1.9% 
- 24.0%), reported in the datasets, the prediction of 
readmission is a so-called imbalanced prediction 
problem. Using AUC as performance metric may 
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mislead the reader, due to the relatively large 
amounts of true negatives. Therefore, Venugopalan 
et al. used Matthews Correlation Coefficient (MCC) 
instead of AUC as performance metric, which is more 
suitable for imbalanced datasets. Overall, low recall 
(sensitivity) rates were reported where Rojas et al. 
had a recall of 0.28 indicating a large proportion of 
false negatives. They chose a cut-off specificity of 
0.95, implicating a need for a large proportion of true 
negatives. Lin et al. mentioned that high sensitivity 
would be preferred because readmission is a serious 
event and readmitted cases should therefore not be 
missed by the algorithm [10]. This illustrates the 
debate on whether high sensitivity or specificity 
should be preferred in the prediction of readmission. 
High sensitivity at the cost of specificity could result 
in patients being unnecessarily kept long at the ICU, 
while high specificity at the cost of sensitivity could 
result in patients at risk of readmission being 
discharged too early. AUC represents the trade-off 
between sensitivity and specificity and is a widely 
used performance measure for prediction algorithms. 
However, for this unbalanced prediction problem, 
AUC is a suboptimal performance metric since it 
rewards a large proportion of true negatives. 
Therefore, a more appropriate metric would be the 
area under the precision-recall curve (AUCPR), 
which represents the trade-off between the 
sensitivity (recall) and positive predictive value 
(precision) of the model [23]. Unfortunately, none of 
the included studies reported the AUCPR. Because 
AUC was the performance metric most often 
reported among the included studies, some 
comparison could be made based on this metric. 
AUC ranged between 0.64 – 0.92, with the highest 
AUC reported by Rojas et al. However, Rojas et al. 
did not perform external validation and trained their 
model on a relatively small sample size of 9,926 
patients. Therefore, the high discriminative 
performance could be caused by overfitting on the 
training dataset. Junqueira et al., having the lowest 
AUC, used solely static input features as input for 
their model. This finding implies that there is 
predictive information in the time-series data that are 
collected during a patient’s ICU stay.  
 
ICU readmission is associated with high mortality 
rates and hospital costs. Identifying patients at risk 
for readmission could assist physicians in their 
decision to discharge, reduce complications and 
might eventually contribute to lower health care 

costs. The use of evaluation methods looking at the 
clinical value of the model besides the discriminative 
and calibration properties of the model, such as 
decision curve analysis were not performed in the 
included studies. Decision curve analysis is used to 
calculate the net benefit of a model, looking at the 
trade-off between the harms and benefits of a model 
at different threshold levels at which a patient would 
be discharged or not discharged based on the 
prediction [24]. And although a relatively large 
number of ML prediction models have the last years 
been studied on the prediction of readmission, none 
of them have been implemented in clinical practice 
as far as known. Rojas et al. performed a prospective 
study using their ML model and asked physicians the 
likelihood of a patient to be readmitted on a scale of 
1-10. The model outperformed the physician with an 
AUC of 0.78 versus 0.71 [19]. The physician might 
benefit from knowing the patient’s risk of 
readmission. Discharge could be postponed for 
patients high at risk or they could be better monitored 
for a certain amount of time at the ward. Furthermore, 
the decision to discharge an ICU patient could be 
supported and even advanced for patients low at 
risk.  However, the benefit for the patient when these 
algorithms were to be used, need to be established 
in clinical practice. The prediction of ICU readmission 
however is a difficult task, since the decision of 
readmission is made by physicians and differs 
between centers [20]. Therefore, the generalizability 
of ML models between centers is limited. Calibration 
should always be performed and the risk for human 
biases is relevant. 
 
Another challenge in the adoption of decision support 
tools based on ML models in clinical practice is the 
explainability and interpretability of the model. ML 
models have the advantage over classic prediction 
models in that they can handle highly dimensional 
data. DL models can even handle different sample 
frequencies present in time-series data, whereas 
classical ML models mostly use feature aggregates 
of time-series variables. However, the large amount 
of input features used and the algorithms’ complex 
structures result in decreased interpretability and 
explainability. Seven of the included studies made an 
effort by using feature importance methods such as 
partial dependence plots [13], permutation feature 
importance [15], and information gain [16]. The 
features most impactful to the population’s 
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readmission risk were reported and differed between 
studies.  
 
To conclude, with the use of EHR data collected 
before, and during the ICU stay of a patient, accurate 
prediction algorithms can be modelled using state-of-
the-art ML models. Other performance metrics need 
to be evaluated in future studies, including the area 
under the precision recall curve and decision curve 
analysis. The next step in the field of ICU 
readmission prediction would be to perform clinical 
trials on one or multiple ML algorithms, addressing 
the clinical value of the prediction model in clinical 
practice. Furthermore, consensus should be made 
on what outcome(s) should be used for the prediction 
of readmission, to make comparison between 
models feasible. Both state-of-the-art ML and DL 
models can be used for an accurate prediction of 
readmission. Tree-based and boosting ML models 
have the advantage of being more explainable to the 
physician, whereas DL models are better at handling 
time-series data which can result in a higher 
performance.  
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Part II - Questionnaire ICU Physicians

 

 

 

 

 

  

We conducted a questionnaire to gain insight in current discharge practices and the ICU physician’s 
attitude towards the integration of AI-based decision support tools (research objective 2). This part 
provides a summary of the questionnaire results. The full questionnaire report, as part of the thesis 
feasibility study (TM30002) can be found in the Supplementary material Part II – Questionnaire 
(page 70).  
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Current Discharge Practices and Physician 
Perspectives on the Integration of an AI-
Based Discharge Decision Support Tool 

- Summary thesis feasibility report - 

1. Introduction  
Before the start of the first phase of implementing 
Pacmed Critical1 for discharge support at the ICU of 
the LUMC, we conducted a questionnaire amongst 
the ICU physicians of the LUMC. To have an impact 
on the physicians’ decisions, their perspective on AI 
prediction tools is of importance2. Furthermore, the 
knowledge of current discharge practices and 
workflow preferences could contribute to making the 
tool of clinical value. The objectives of the 
questionnaire were to gain insight in: 

1. current clinical practice to discharge ICU 
patients to lower care wards; 

2. the physicians’ attitude towards the use of 
decision support tools based on AI in their 
work processes, specifically for discharge 
decision support; 

3. workflow preferences in terms of the 
appropriate place and moment of showing the 
prediction to the physicians; and  

4. the preferred predicted outcome measure for 
clinical valuable decision support and 
influence of the predicted probability on the 
decision to discharge ICU patients. 

2. Methods 
We conducted a 21 questions survey in December 
2020 amongst the intensivists (staff members), ICU 
fellows, physicians in training, and house doctors of 
the LUMC. The questionnaire included 11 
statements, 6 multiple choice questions and 4 open 
questions. The questionnaire was conducted 
anonymously as we only registered the participant’s 
function, years of ICU experience, and medical 
specialisation. We used a 5-point Likert scale3 to 
answer the statements between strongly disagree 
and strongly agree. Outcomes were analysed in 
mean (+- standard deviation (SD)), or percentages 
where appropriate. See the Supplementary material 

Part II – Questionnaire (page 70) for the survey 
questions.    

3. Results 
A summary of the results is given in this section. See 
the Supplementary material Part II – Questionnaire 
(page 72) for the thesis feasibility report in Dutch 
including additional results and physician comments.  

3.1. Participants 
Questionnaire responses were collected between 
December 21, 2020 and December 29, 2020, 
resulting in 32 respondents. Mean ICU experience of 
the respondents in years was 12.5 ± 4.5 years for the 
intensivists and 1.1 ± 1.0 years for the other 
participants (Figure 9).   Other participants included 
ICU fellows, residents (AIOS), and house doctors 
(ANIOS). The difference in years of ICU experience 
is explained by the short period (up to 2 years) the 
other participants are generally working at the ICU 
department.  The level of education of the participants 
and their medical specialisation is visualized in Figure 
10. The two largest medical specialisations of the 
participants were internal medicine (n = 12) and 
anaesthesiology (n = 9).     

 

Figure 9: Years of ICU experience of participating physicians. 
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Figure 10: Level of education and medical specialisation of the questionnaire participants. 

Figure 11: Statements on current discharge practices. The width of each bar indicates the number of respondents that voted for that 
option. 

3.2. Current discharge practices 
Statements regarding current ICU discharge 
practices of the physicians of the LUMC are 
visualized in Figure 11. The physicians were 
inconclusive on the statement regarding the complex 
nature of the decision to discharge. A patient’s 
readmission risk is an important factor in their 
decision to discharge a patient and so is bed 
availability. This finding implies that a prediction tool 
predicting a patients readmission risk could be of 
clinical value when having limited bed availability.  

One or more patient groups could be indicated by the 
participants for whom the decision and/or timing to 
discharge a patient to a lower care ward is perceived 
as most challenging, see Figure 12. Long admitted 
patients (75%, n = 24) and previously readmitted 

patients (59%, n = 19) were most often mentioned. 
The respondents were asked to indicate what their 
definition of a ‘long ICU admission’ was, resulting in 
an average of 17.6 ± 6.9 days on the ICU. Nine 
participants filled in one or more other patient groups, 
including severe weakness, reduced coughing 
strength, severe heart failure, afternoon or evening 
discharge, hematologic comorbidity, complex 
surgical patients, patients with no-return policy, and 
patients with unknown diagnosis. Furthermore, we 
questioned the average certainty a patient will not be 
readmitted after discharge (Figure 13). On a scale 
between 0 = not confident and 10 = fully confident, 
average confidence was 7.5 ± 0.9. This finding 
implies that the physicians discharge patients with 
some risk of readmission in mind. 
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3.3. Artificial Intelligence for discharge 
decision support 

We asked the physicians to give their opinion on 
seven statements regarding the use of AI for ICU 
decision support, specifically for the prediction of 
readmission (Figure 14). Most ICU physicians of the 
LUMC are familiar with the concept of AI and believe 
that AI could support them in their work. A clear 
finding is that none of the respondents is afraid that  

AI would make their jobs unnecessary. Furthermore, 
62% of the participants were neutral regarding the 
statement that AI understands their work sufficiently 
in order to support them. However, most physicians 
do believe in the positive value of AI-based decision 
support. It is important for them to have insight in the 
contributing factors to the patient’s readmission risk. 
This implies the need for an explainable algorithm.    

Figure 14: Statements regarding the physicians’ opinion on the use of AI decision support, specifically predicting the patient’s 
chance of readmission. 

Figure 12: Patient groups for which the decision to discharge 
is perceived as most challenging. 

Figure 13: Average certainty a patient will not be readmitted 
to the ICU at moment of discharge between 0 (not confident) 
and 10 (fully confident). 
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Figure 15: Preferred moments of implementing the discharge decision support tool. 

3.4. Workflow preferences and outcome of 
interest  

One or more preferred moments for displaying the 
discharge support tool could be indicated by the 
physicians, see Figure 15. The morning clinical 
handover, the bed occupation meeting, and the grand 
rounds were most often chosen. The ICU of the 
LUMC has a step-down ward, the medium care unit 
(MCU). Most physicians (84%, n = 27) would like to 
have the tool also to be deployed for MCU patients.  

Next, the physicians’ preferred predicted outcome 
measure was questioned (Figure 16). Half of the 
respondents were most interested in the patient’s 
readmission risk alone. Pacmed Critical predicts the 
combined outcome of  readmission and/or mortality 
within 7 days after discharge. These results indicate 
the need for Pacmed to have further evaluation with 
the physicians for the appropriate predicted outcome 
measure.  

 

 
The participants were questioned for what predicted 
probability of readmission or higher they would not 
discharge a patient, and at what predicted probability 
or lower they would discharge a patient. The aim of 
this question was to have a first indication on what the 
influence of a certain predicted chance of 
readmission would have on the physician’s decision 
to discharge an ICU patient. The results were highly 
distributed, see Figure 17. On average, a predicted 
probability of 44.5 ± 23.4% or higher would result in 
postponing a patient’s discharge. A predicted 
probability of 23.6 ± 13.8 % would result in discharge 
of the ICU patient. Three physicians smartly indicated 
that they could not fill in this question, because the 
readmission risk will always be taken into account 
with other patient factors. These results imply that the 
physicians need to gain experience on what is high, 
and what is low risk of readmission. 

 

 

Figure 17: Hypothetical influence of predicted chance of 
readmission on the decision to discharge a patient. 

Figure 16: Outcome prediction of interest for discharge 
decision support. 
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4. Discussion  
The questionnaire results gave valuable insights in 
the ICU physicians’ discharge practices and their 
attitude towards the use of AI discharge decision 
support in their work processes. Although not all 
physicians consider the decision to discharge an ICU 
patient to a lower care ward to be complex,  they do 
believe in the clinical value of a tool predicting a 
patient’s chance on readmission. Pacmed Critical 
should be deployed on long admitted patients and 
previously readmitted patients to be of value for the 
physicians, since the decision to discharge is 
considered to be most complex for these groups. 
Furthermore, it is of importance to have insight in the 
patient factors underlying the prediction, highlighting 
the need for explainable decision support software. 
Further evaluation should be performed regarding the 
optimal outcome measure, moment, and time to 
implement Pacmed Critical in the daily ICU workflow.  

Compared to previous research on ICU physicians’ AI 
readiness, the physicians of the LUMC were more 
familiar with AI and less afraid that AI would make 
their jobs unnecessary4. Many useful suggestions on 
other areas that the physicians would like to have an 
AI prediction tool for were mentioned, indicating their 
awareness of the potential benefit of these tools. 

However, some physicians questioned the need for a 
discharge decision support tool and doubted whether 
it would be more accurate than their gut feeling. A 
prospective trial comparing the predictive 
performance of the physician to that of the algorithm 
should answer this question (see Part IV of this 
thesis).  
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Part III – Model Development & 
Validation 
 

  

For the third and main thesis objective, we compared several machine learning on predictive 
performance and explainability for the prediction of ICU readmission within the LUMC. This 
scientific paper is the main end-product of this master thesis (TM30004). Additional modeling 
methods can be found in the Supplementary material Part III – Model development (page 78).  
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Predicting Intensive Care Unit 
readmission: Performance and 

explainability of machine learning 
algorithms 

 

Abstract 

 
Background  Prediction of intensive care unit (ICU) readmission could support physicians in determining 
optimal timing for ICU discharge. Besides having high discriminative performance, prediction models need to be 
explainable to create trustworthy decision support. ‘Black-box’ machine learning (ML) models have previously 
outperformed logistic regression (LR), but this typically comes at the cost of explainability. To our knowledge, this is the 
first work comparing discriminative performance, calibration properties, and explainability between LR and state-of-the-
art ML models.   

Methods   Boosting (XGB), neural network (NN), and LR models were trained on adult ICU patient data. 
Performance and calibration of ICU readmission predictions within 7 days after discharge were evaluated on a separate 
test dataset. The top 20 impactful features were compared between final models for explainability assessment using 
SHapley Additive exPlanations (SHAP) values for ML and LR coefficients. Lastly, clinical validity of models was 
evaluated by a panel of two ICU physicians.   

Results  12,189 admissions could be included for analysis. The readmission rate within 7 days after ICU 
discharge was 6.7%. Final model area under the precision recall curve was 0.18 for LR and 0.17 for NN and XGB. Area 
under the receiver operating characteristic curve was 0.74 for all final models. Calibration properties improved after 
scaling the predicted probabilities, with final brier scores of 0.06. SHAP values for XGB and LR coefficients both 
enabled distinctive model explanations.  Respiratory rate, urea levels, and C-reactive protein levels were impactful 
variables amongst all model types. XGB explanations were most in line with clinical reasoning according to expert 
opinion. 
  
Conclusion  Given the small differences in discriminative performance of XGB, NN, and LR models, 
explainability is of major importance in determining what model to implement for trustworthy decision support. SHAP 
enabled ‘black-box’ ML to achieve comparable explainability to LR, with impactful features more clinically relevant for 
XGB than LR. Future work should add additional data during model development to achieve better predictive 
performance, and focus on performing prospective trials to enhance meaningful decision support.   

Keywords  Intensive care unit, readmission, machine learning, explainability, interpretability, decision support

1. Introduction  
Intensive Care Units (ICU) are dealing with limited 
bed availability and expensive resources, resulting in 
the need to discharge patients to the general hospital 
ward as soon and as safely possible. General wards, 
however, have limited monitoring and therapeutic 
options compared to the ICU. Due to this ‘treatment 
gap’, deterioration of a patient at the ward might be 
noticed late, resulting in clinical deterioration and in 
unplanned ICU readmission, or even death1. 
Readmission to the ICU is associated with increased 

mortality rates (26-58%), longer hospital stays, and 
higher costs, and should therefore be prevented2. A 
decision support tool that identifies patients in the ICU 
at high risk of readmission, could be beneficial to help 
the physician determine the optimal timing of 
discharge. In combination with clinical judgment, 
discharge could be postponed for patients with high 
readmission risk and be continued or advanced for 
patients with low readmission risk. Ultimately, this 
would result in the prevention of ICU readmissions 
and unnecessarily long ICU admissions.  
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Widespread implementation of electronic health 
records resulted in an increased availability of patient 
data, that can be used to build advanced prediction 
models3. For the prediction of ICU readmission and 
other healthcare-related outcomes, a shift in 
modeling methods was observed over the last five 
years from logistic regression4 (LR) to more 
advanced machine learning (ML) models5. Compared 
to LR, ML can discover non-linear relations between 
variables, potentially resulting in higher predictive 
performance for the heterogeneous ICU population. 
Two state-of-the-art model types that have shown 
superior predictive performance over LR for the 
prediction of readmission include boosting algorithms 
and neural networks6.   

The potentially superior predictive power of neural 
networks and boosting algorithms comes at the cost 
of reduced explainability for the end-user due to their 
‘black-box’ nature. Explainability of a prediction 
algorithm is of major importance for several reasons: 
1) it provides interpretation and bias detection during 
model development, 2) it can discover relations 
between clinical variables and patient outcomes, and 
3) it enhances trustworthy clinical decision support by 
explaining the prediction to the physician7. The need 
for explainable models resulted in the development of 
post-hoc algorithms that open up the ‘black-box’ by 
means of visualizing the variables’ relations to the 
predicted outcome8,9. A visualization of explainable 
decision support for ICU discharge is provided in 
Figure 18. 

A comparison between several types of state-of-the-
art ML models and LR for the prediction of ICU 

readmission has been performed in previous 
studies10–14. However, in a systematic review we 
concluded that these studies use different, and 
sometimes inappropriate performance metrics to 
assess discriminative power and calibration 
measures15. Furthermore, the comparison between 
two specific types of high performing ML (boosting 
algorithms and neural networks) and LR has not been 
performed on the same patient dataset.   

Apart from the limitations in performance evaluation 
of different model types, model explainability has not 
been compared for the prediction of ICU readmission. 
Assessment of explainability is more challenging and 
less objective than for discriminative performance, 
since the preference of the end-user (the ICU 
physician) needs to be taken into account16. To 
achieve fair comparison between models, we 
evaluated the most impactful variables among 
models, complemented with expert (ICU physician) 
opinion. This enabled us to discover risk factors 
associated with high readmission risk. Due to 
previously observed small differences in 
discriminative performance between models15, we 
hypothesize that the most trustworthy model should 
be the one with high performance and explainability 
most in line with clinical reasoning. We aimed to 
predict readmission after ICU discharge using LR and 
state-of-the-art ML models. Secondly, we aimed to 
compare model performance using suitable metrics 
and to compare explainability outcomes (in terms of 
impactful patient factors to the predicted outcome) to 
assess clinical applicability and to identify factors 
associated with increased readmission risk.   

Figure 18: Schematic representation of explainable decision support by means of predicting an ICU patient’s readmission risk. After 
ICU discharge, a patient can either recover, or deteriorate at the ward leading to ICU readmission. Patient characteristics, time-series 
variables (e.g., blood pressure), and readmission outcomes (1 = readmission, 0 = no readmission) collected over time are used to 
train prediction models. These collected variables first need to be transformed to meaningful features during pre-processing and 
feature engineering. For each new admission, this step is performed in order to enable the instantaneous prediction of readmission 
based on retrospectively trained models. The prediction should be explained to the physician by showing the contributing patient 
factors to the predicted outcome in order to have clinically valuable decision support.  
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2. Methods 
We predicted ICU readmission using retrospective 
data from the Leiden University Medical Centre 
(LUMC), a 900-bed tertiary teaching hospital in the 
Netherlands. Modeling methods were reported 
according to the TRIPOD guidelines (transparent 
reporting of a multivariable prediction model for 
individual prognosis or diagnosis)17. A more detailed 
description of modeling methods is provided in the 
Supplementary material Part III – Model 
development, page 78.  

2.1. Source of data and sample size  
All admissions between January 2011 and January 
2020 to the ICU of the LUMC were evaluated for 
inclusion. We extracted and pseudo anonymized 
patient data from the Patient Data Management 
System (PDMS, MetaVision version 5 and 6, IMDsoft, 
Tel Aviv, Israel) and the Electronic Health Record 
(EHR, HiX, Chipsoft, Amsterdam, The Netherlands).  

2.2. Participants 
We evaluated all adult (> 18 years) ICU admissions 
to train and validate ML models for the prediction of 
ICU readmission after discharge. ICU admissions 
shorter than 12 hours and admissions with a direct 
transfer from the ICU to another hospital were 
excluded from analysis. We included admissions with 
successful discharge to the general ward or home. 
This resulted in the exclusion of patients that 
deceased at the ICU. Data regarding do-not-
resuscitate and do-not-intubate orders were 
unavailable.  Consequently, these admissions could 
not be excluded from analysis, which has potentially 
resulted in bias as these patients will not be 
readmitted to the ICU. We did not take into account 
admissions starting in 2020, due to changing 
circumstances (e.g., bed availability, data storage, 
use of other monitors) influenced by COVID-19.  

2.3. Outcome 
The predicted outcome was defined as readmission 
to the ICU or Medium Care Unit (MCU) within seven 
days after discharge from the ICU to a general 
hospital ward or home, corresponding to Thoral et al. 
Using seven days as readmission target, and not the 
ICU quality indicator of readmissions within 48 hours, 
enabled us to have sufficient readmission cases to 
train or ML models on. Furthermore, some 
complications resulting in readmission, e.g., sepsis or 
respiratory failure, typically occur later than within two 
days after discharge. All included admissions were 

labelled for the outcome of readmission (0 = no 
readmission (recovery), 1 = readmission), that were 
used to train the prediction models on.  

2.4. Included predictors and feature 
engineering  

Due to data storage and access difficulties, not all 
variables were available at time of model 
development. An overview of patient variables is 
provided in Table 1. Variables can be divided in static 
variables (patient characteristics) and time-series 
variables (laboratory results, vital signs, and 
medication data). Time-series variables are 
measured multiple times during an admission and 
have different sample frequencies. Feature 
engineering as described by Thoral et al.12 was 
performed to capture descriptive aspects of time 
series variables. For this purpose, three time 
windows were used: the first 24 hours of the 
admission, the last 24 hours of the admission before 
discharge, and the complete admission period. For 
each time window, multiple aggregates were 
calculated. Aggregates are summary statistics that 
transform time-series variables into uniform features 
for each patient. A graphical representation of the 
performed feature engineering is shown in Figure 19. 
An overview of feature statistics, missing data, and 
feature engineering details is provided in the 
Supplementary material Part III – Model development 
(page 78 - 84).  

2.5. Missing data and pre-processing  
The occurrence of missing data is unavoidable when 
working with PDMS and other sources of EHR data. 
Three types of missing data exist: missing completely 
at random, missing at random, and missing not at 
random18. All types are likely to be present in EHR 
data. To model any information present in the 
missingness itself, we chose to add a feature to 
indicate for each time window whether the feature 
was missing19. Due to the transition between two 
PDMS systems and data storage difficulties, a large 
amount of data was missing for some variables. 
Therefore, we excluded variables with more than 
50% missing data, that could not be explained by 
domain knowledge of parameters missing not at 
random (e.g., we did include medication that is given 
to only 5% of the ICU patients based on clinical 
judgement). Imputation of remaining missing missing 
values was performed using mean imputation for 
numerical variables and mode imputation for 
categorical features20. Other methods of imputation,  
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Table 1:  Included variables for the prediction of ICU readmission per category. Variables were included in the final model when an 
acceptable level of missing data was present. PEEP = Positive End-Expiratory Pressure, NIBP = Non-invasive Blood Pressure, ABP 
= Arterial Blood Pressure (invasive), FiO2 = supplied oxygen content, CVP = Central venous pressure, PO2 = oxygen pressure, 
PCO2 = carbon dioxide pressure, PT = prothrombin time, MCV = mean corpuscular volume, LDH = lactate dehydrogenase, Gamma 
GT = Gamma-glutamyl transferase, CRP = C-reactive Protein, CK = Creatinine Kinase, BSE = erythrocyte sedimentation rate, BE = 
base Excess, ASAT = Aspartate aminotransferase, ALAT = Alanine aminotransferase, APTT = Activated partial thromboplastin time.  

Category Variable Included 
in final 
model 

Category Variable Included 
in final 
model  

Patient 
characteristics 

Age    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Laboratory 
results 

Total protein 
 

Gender   PT   
Emergency admission   O2 saturation 

 

Hospitalization admission source   Neutrophil granulocytes 
 

Treating specialty   Potassium   
Length of stay (ICU)   Sodium 

 

Length of stay prior ICU    Magnesium 
 

Medication Dobutamine   MCV   
Noradrenaline   Leukocytes   
Milrinon/Enoximon   Lactate   
Adrenaline   LDH 

 

Vital functions Oxygen flow   Creatinine   
Tidal volume 

 
Ionized calcium 

 

Temperature 
 

Haemoglobin   
SpO2 

 
Glucose 

 

Peak pressure 
 

Gamma GT 
 

PEEP 
 

Chloride 
 

NIBP 
 

CRP   
ABP   CK 

 

Heartrate 
 

Bilirubin   
FiO2 

 
Bicarbonate 

 

CVP 
 

BSE 
 

Respiratory rate   BE   
Laboratory 
results 

PO2 
 

Amylase 
 

PCO2 
 

Alkaline phosphatase 
 

pH 
 

Albumin 
 

Inorganic phosphate 
 

ASAT   
Urea   ALAT   
Troponin T 

 
APTT   

Thrombocytes   
  

Including nearest neighbour and median imputation, 
did not result in improved predictive performance. 
Categorical features (e.g., hospitalization admission 
source) were transformed to numerical data using 
one-hot encoding.   

Continuous numerical features (e.g., age, respiratory 
rate) were standard-scaled with zero mean and unit 
variance. A detailed description of the applied pre-
processing methodology is provided in the 
Supplementary material Part III – Model development 

(page 84). Feature engineering of the included 
variables resulted in a total of 550 features per 
patient. We used logistic regression L1-feature 
selection as described by Thoral et al.12 to select the 
most informative features. L1-feature selection is 
used to reduce overfitting on redundant features in 
the training dataset, by shrinking the coefficient of the 
least informative features to zero. Feature selection 
resulted in 416 features per patient used for model 
development. 
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2.6. Model development  
For prediction model development we used three 
model types: logistic regression (LR), boosting 
algorithms (Gradient Boosting machines21 (GB) and 
XGBoost22 (XGB)), and feed-forward neural networks 
(NN). LR is a statistical method which is known to be 
highly explainable compared to boosting and NN 
algorithms9,23. However, previous research on the 
prediction of readmission showed that this often 
comes at the cost of predictive performance10,11,14. 
Model development was performed in Python, using 
SKlearn24, Tensorflow25, and Keras packages26.  

The included patients and their corresponding 
recorded variables in the dataset were split in 80% 
training and 20% test datasets. The test dataset was 
not used until final evaluation of the models, to 
prevent data-leakage and overfitting27. The training 
dataset was further split into random, stratified five-
fold cross-validation (CV) sets to perform 
hyperparameter tuning. Stratification was performed 
to balance the proportion of readmitted patients in all 
datasets. A Bayesian optimization strategy28 was 
applied to find the optimal hyperparameters for each 
model. Hyperparameters are the internal settings of 
the machine learning or deep learning algorithm, for 
instance the number of layers in a NN. We used the 
area under the precision recall curve (AUCPR) as 
hyperparameter tuning objective metric. To account 
for imbalance in the predicted outcome, we applied 
weighted learning for all models, except for GB in 
which this could not be implemented29. See the 
Supplementary material Part III – Model development 
(page 84-86) for an overview of our performed 
hyperparameter tuning. The models with optimized 
hyperparameters will be referred to as ‘final models’.  

2.7. Performance evaluation  
A small proportion of patients was readmitted to the 
ICU, which makes the prediction of readmission an 
imbalanced classification problem30. Therefore,  
multiple metrics were used to evaluate predictive  
performance, since accuracy and area under the 
receiving operator curve (AUC) are not suitable 
metrics alone31.  E.g., a model could predict with a 
95% accuracy by predicting all patients to be not 
readmitted (true and false negatives) when the 
proportion of readmissions in the dataset is 5%. The 
AUCPR, recall (sensitivity), precision (positive 
predictive value), specificity, F1-score, brier score, 
and Matthews correlation coefficient (MCC) were 
compared between all final models. Mean (± standard 
deviation (SD)) performance was evaluated for all 
final models evaluated on the CV set, and final 
performance was evaluated on the test dataset.  

2.8. Calibration 
Calibration is the degree of agreement between the 
prediction and actual observation. For instance, for a 
perfect calibrated model, out of 100 patients with a 
predicted 10% chance of readmission, the actual 
outcome should be that 10 out of these 100 patients 
are actually readmitted. Predicted probabilities for the 
risk of readmission are known to be not correctly 
calibrated for ML algorithms32. To increase clinical 
utility, it is important to display the correctly calibrated 
probability for the outcome of a specific patient. 
Calibrating of the predicted outcomes was therefore 
performed by Platt scaling33 the predicted 
probabilities on the test dataset, based on the 
predictions made on the training dataset.       

 
 

Figure 19: Feature engineering 
for time-series variables. Time-
series variables are measured 
multiple times during an ICU 
admission with different sample 
frequencies. In order to get 
functional input features for 
prediction modeling, time-series 
features are summarized in 
aggregates. Three time-
windows are used for the 
aggregates, the first 24h of the 
admission, the last 24h of the 
admission, and the complete 
ICU admission. 
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Calibration properties were evaluated in calibration 
plots. Brier scores were used to assess the accuracy 
of the probabilistic predictions i.e., the mean squared 
error between the observed readmission rate and the 
predicted chance of readmission34. 

2.9. Sensitivity analysis  
We performed a sensitivity analysis on patient 
subgroups by means of comparing final model 
performances on AUC and AUCPR. This enabled the 
identification of patient groups for which the 
prediction of readmission was less accurate. Several 
subgroups were analysed. A division was made 
between medical and surgical patients (including 
thoracic surgical (CTC), general surgical, and 
neurosurgical patients). A large proportion of the 
admissions in our dataset were CTC patients (66% in 
the test dataset) which were admitted to the ICU for 
observation and treatment after surgery. Therefore, 
we also compared CTC to all other patients (including 
general surgical patients). 

2.10. Model explainability   
In order to evaluate model explainability, we 
compared clinical feature importance for the 
prediction of ICU readmission. LR is known as an 
explainable algorithm, since the scaled values of the 
coefficients can be used to assess which features are 
most important. Because all input features were 
scaled with zero mean and unit variance, absolute 
values could be used for evaluation of LR 
coefficients. We used SHAP8 (Shapley Additive 
exPlanations) values to identify the most important 
features for boosting (SHAP Tree Explainer) and NN  
(deepSHAP) algorithms35. SHAP is a model-agnostic 
method for ‘black-box’ model explanations, which 
breaks down the prediction to evaluate the impact of 
each feature. Model-agnostic means that SHAP can 
be used to explain any algorithm by only evaluating 
the effect of changes in input features on the 
predicted outcome. The influence on the predicted 
outcome is determined by introducing each feature 
individually and by averaging the contribution over all 
patients. The total impact of a variable (e.g., all blood 
pressure features together) cannot be directly 
assessed by looking at the SHAP values, because we 
used feature aggregates to capture time related 
trends. However, SHAP values may be summed to 
globally evaluate total variable contributions. We 
used SHAP because compared to other model-
agnostic methods (e.g., LIME36) for model 

explanations, it is known to have stronger agreement 
with human reasoning8.  

The 20 most important features according to the 
model’s absolute coefficients (LR) and absolute 
SHAP values (highest performing boosting model, 
NN) were compared for the test dataset. 
Furthermore, one individual patient prediction was 
displayed in a SHAP force-plot to look for similarities 
and differences. Expert opinion (two critical care 
physicians) was reported to gain insight in which 
model was most in line with clinical reasoning. The 
experts were asked to indicate for each feature 
whether it was contradicting, irrelevant, or relevant for 
a patient’s readmission risk (Supplementary material 
Part III – Model development, page 87).  

3. Results 
3.1. Participants and inclusion of ICU 

admissions 
15,749 ICU admissions were identified in the dataset, 
of which 12,189 could be included for training and 
validating the model. Main reasons for exclusion were 
length of stay (LOS) < 12 hours (n = 1,223), patients 
that did not survive their ICU admission (n = 1,600), 
and direct transfer from the ICU to another hospital (n 
= 651). A flow chart of patient exclusion is presented 
in Figure 20. The readmission rate within 7 days after 
discharge was 6.7% (n = 820). Patients readmitted to 
the ICU were compared to non-readmitted patients 
more often emergency patients (49.51% vs. 36.80%, 
p < 0.0001), had longer ICU LOS (2.22 vs. 1.03 days, 
p < 0.0001), and had longer hospital LOS prior ICU 
admission (1.33 vs. 1.15 days, p < 0.0001). A 
summary of patient characteristics is given in Table 
2. There were no significant differences in gender, 
age, and vasoactive drug use. The included 
readmitted patients were compared to the included 
non-readmitted patients: more often surgical patients  
(21.17% vs. 11.45%, p < 0.0001), more often internal 
medicine patients (8.64% vs. 6.53%, p < 0.024), and 
less often thoracic surgical patients (31.14% vs. 
56.27%, p < 0.0001). All included ICU admissions 
were randomly allocated to the training dataset (n = 
9,751, 80%) or the test dataset (n = 2,438, 20%). 
Descriptive statistics and missing data information 
per included variable can be found in the 
Supplementary material Part III – Model development 
(page 78-82).   
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Figure 20: Flowchart of included and excluded ICU admissions. 

 
3.2. Model specifications and performance 

Hyperparameter tuning yielded the final model 
configurations of LR, XGB, GB, and NN models. 
Despite the fact that not all variables of interest were 
available at time of model development, acceptable 
performance was obtained for most models. Highest 
cross-validation (CV) AUCPR  (0.17 ± 0.02), and 
MCC (0.19 ± 0.02) was obtained for both the LR and 
XGB model with a marginal higher performance for 
the LR model on the test dataset. Performance 
metrics are summarized in Table 3. Although GB had 
highest accuracy, specificity, and precision, this 
model was not useful due to its low recall (CV 0.03 ± 
0.02, test 0.05). This indicates the model’s inability to 

deal with class imbalance and the classification of 
most admissions as ‘no readmission’.  

Precision of all final models was low, which indicates 
a large proportion of false positives. Recall was 
highest for the NN (CV 0.70 ± 0.11, test 0.66). NN, 
LR, and XGB had a comparable AUC of 0.74 ± 0.02, 
indicating fair predictive performance. See Figure 21 
for receiver operating characteristic and precision 
recall curves. The small differences in performance 
between the NN, LR, and XGB models indicate the 
need for explainability to assess clinical usefulness of 
each model. Due to the low recall of the GB model, 
further evaluation (calibration and explanation) was 
not performed for this model.  

 

Table 2: Basic patient characteristics in percentages or median (Inter Quartile Range (IQR)). P-values were calculated using Wilcoxon 
Rank test and chi-squared test where appropriate. Variables marked in orange were statistically different between groups (p < 0.05).  

Variable Readmission No readmission p-value 
Patients (%) 6.71 93.29 - 
Women (%) 36.98 34.53 0.164 
30-day mortality (%) 19.83 4.41 < 0.0001 
Vasoactive drugs use (%) 68.73 67.82 0.616 
Emergency admission (%) 49.51 36.8 < 0.0001 
General surgical patients (%) 21.17 11.45 < 0.0001 
Thoracic surgical patients (%) 31.14 56.27 < 0.0001 
Internal medicine patients (%) 8.64 6.53 0.024 
Neurosurgical patients (%) 9.85 8.06 0.081 
Age in years (median (IQR)) 65.12 (54.70 – 72.42) 64.88 (54.65 – 72.34) 0.711 
LOS ICU in days (median (IQR)) 2.22 (0.97 – 6.01) 1.03 (0.85 – 2.75) <0.0001 
LOS prior ICU in days (median (IQR)) 1.33 (0.39 – 6.88) 1.15 (0.71 – 2.23) <0.0001 
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Table 3: Final model performance in mean (standard deviation (SD)) after cross-validation (CV) on the training dataset. Final model 
performance is given on the test dataset. Best results on the test dataset are marked in orange. AUCPR = area under the curve 
precision recall, AUC = area under the receiver operating characteristic curve, MCC = Matthews correlation coefficient.  

 
Neural Network Logistic Regression Gradient Boosting  XGBoost 

 

 
CV  
(mean (SD)) 

 
Test  

CV  
(mean (SD)) 

 
Test  

CV  
(mean (SD)) 

 
Test  

CV  
(mean (SD)) 

 
Test   

Train time (s) 9.94 (3.14) - 0.21 (0.01) - 119.3 (8.77) - 12.14 (0.72) - 
Score time (s) 0.13 (0.11) 0.11 0.03 (0.00) 0.02 0.25 (0.05) 0.19 0.10 (0.01) 0.04 
Accuracy 0.66 (0.04) 0.68 0.72 (0.01) 0.70 0.93 (0.00) 0.93 0.77 (0.02) 0.76 
Precision 0.13 (0.00) 0.13 0.14 (0.01) 0.13 0.27 (0.17) 0.27 0.15 (0.01) 0.14 
Recall 0.70 (0.11) 0.66 0.62 (0.04) 0.63 0.03 (0.02) 0.05 0.53 (0.02) 0.52 
Specificity 0.65 (0.05) 0.68 0.72 (0.01) 0.71 0.99 (0.00) 0.99 0.78 (0.02) 0.78 
AUCPR 0.16 (0.03) 0.17 0.17 (0.02) 0.18 0.15 (0.03) 0.16 0.17 (0.03) 0.17 
F1-score 0.21 (0.01) 0.22 0.23 (0.01) 0.22 0.05 (0.03) 0.08 0.23 (0.01) 0.22 
AUC 0.74 (0.02) 0.74 0.74 (0.01) 0.74 0.69 (0.02) 0.71 0.74 (0.01) 0.74 
Brier 0.34 (0.04) 0.32 0.28 (0.01) 0.30 0.07 (0.00) 0.07 0.23 (0.02) 0.24 
MCC 0.18 (0.03) 0.18 0.19 (0.02) 0.18 0.06 (0.06) 0.09 0.19 (0.02) 0.17 

 

 

Figure 21: Receiver operating characteristics and precision recall curves. AUC = Area under the receiver operating characteristic 
curve, AUCPR = area under the precision recall curve, LR = Logistic Regression, GB = Gradient Boosting machines, XGB = XGBoost, 
NN = Neural Network.  

3.3. Calibration 
Uncalibrated predictions showed poor agreement 
between the predicted probabilities and the ratio of 
true positives (Figure 22, left). Similar observations 
were seen for the brier scores (Table 3). This finding 
can be explained by the low precision of the models. 
E.g., for the XGB model, for each 10 patients 
receiving a predicted chance of readmission of ~ 
70%, approximately 3 patients will be actually 
readmitted to the ICU. Classification algorithms push 

a probability in the direction of 0 (no readmission) or 
1 (readmission). However, the predicted probabilities 
will be used in clinical practice, indicating the need for 
correct calibration37. After Platt scaling the 
probabilities (based on the predictions in the training 
dataset), predicted probabilities showed better 
agreement (Figure 22, right). Brier scores after 
calibration were 0.06 for all models. The histogram in 
Figure 22 shows that calibration result in a larger 
proportion of low predicted probabilities, ranging 
between 0-40% instead of 10-90% pre-calibration.   
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Figure 22: Calibration plots and histograms of predicted probabilities. Left: calibration plots of uncalibrated probabilities. Right: 
calibration plots after Platt scaling the predicted probabilities.  

  3.4.  Sensitivity analysis  
We evaluated test performances of LR, XGB and NN 
for the subgroups specified in Section 2.9, see Table 
4. AUC and AUCPR were higher for the CTC group 
compared to the non-CTC group (including general 
surgical patients) for the NN and LR model. Another 
sensitivity analysis was performed for surgical and 
medical patients. Superior performance for all models 
was observed for readmission prediction for surgical 
patients. Differences in performance between the two 
groups was highest for LR and smallest for XGB.   

  3.4. Model explainability 
3.4.1. Feature importance  

Features contributing most to the prediction of 
readmission were evaluated for the LR, XGB, and NN 
models. For the LR model, the 20 largest positive and 
negative coefficients are displayed in Figure 23. The 

last measured respiratory rate before discharge had 
the strongest correlation with the chance of 
readmission. SHAP summary plots were used to 
evaluate the most predictive features for the XGB and 
NN models (Figure 24). For the XGB model, the 
SHAP values give clear explanations on which 
variables contribute to a higher and lower risk for 
readmission. For the NN, SHAP values are more 
centred around zero. It is important to note that SHAP 
values represent correlations and do not imply 
causality between features and predictions. Although 
differences can be observed between the most 
informative features across the three models, some 
similarities are apparent. Respiratory rate, urea (a 
kidney function marker), C-reactive protein (CRP, an 
inflammation marker), leukocytes, and Alanine 
aminotransferase (ALAT, a liver function marker) are 
in the top 20 of all three models (represented by one 
or more feature aggregates). 

Table 4: Sensitivity analysis results. Test performance on patient subgroups. Highest performance is marked in orange. The patients 
in the test dataset were divided in CTC (thoracic surgical) versus non-CTC and surgical versus medical. AUCPR = Area under the 
curve precision recall, AUC = Area under the receiver operating curve.  

 Neural Network Logistic Regression XGBoost 
Patient group: CTC Other  CTC Other CTC Other 

AUCPR 0.20 0.15 0.28 0.16 0.17 0.18 
AUC 0.80 0.60 0.81 0.61 0.80 0.62 

Patient group: Surgical Medical Surgical Medical Surgical Medical 
AUCPR 0.19 0.13 0.25 0.14 0.18 0.16 

AUC 0.74 0.60 0.75 0.64 0.77 0.66 
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Figure 23: Top 20 logistic regression coefficients for features scaled with zero mean and unit variance. Features in red are 
correlated with increased risk of readmission and features in blue with decreased risk of readmission. Expert opinion is represented 
for each feature in the grey column: + = clinically relevant, O = clinically irrelevant, -- = contradictive with clinical practice.  ALAT = 
Alanine aminotransferase, CTC = cardiothoracic surgery, CRP = C-reactive protein, LOS = Length of stay, ASAT = Aspartate 
aminotransferase, ABP = arterial blood pressure 

 

  
 
Figure 24: SHAP summary plots for the XGBoost (left) and neural network (right) model. The 20 most informative features are displayed. 
Each dot in the plot represents a patient with high (red) or low (blue) value for a specified variable. Dots on the right side of the y-axis 
indicate a correlation with high risk of readmission and vice versa. The thickness of the line is determined by the number of patients.  
Expert opinion is represented for each feature in the grey column: + = clinically relevant, O = clinically irrelevant, -- = contradictive with 
clinical practice. CTC = cardio-thoracic surgical, LOS = length of stay, ASAT = Aspartate aminotransferase, ALAT = Alanine 
aminotransferase, CRP = C-reactive protein, PT = prothrombin time, APTT = Activated partial thromboplastin time , ABP = arterial blood 
pressure.  
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3.4.2. Variable importance XGBoost and neural 
networks  

As we used a total of 416 features for predictive 
modeling, it was infeasible to evaluate all these 
features for a given model. Therefore, average SHAP 
values of variables’ aggregations were summed to 
gain insight in the variables most impactful to a 
certain model (Figure 25). Summed SHAP values are 
shown in absolute values (scaled between 0 and 1) 
and therefore only indicate the impact on the 
prediction and not the direction (higher or lower 
probability). Arterial blood pressure (ABP), urea, and 
respiratory rate are important features for both 
models. For the XGB model, patient characteristics 
(length of stay (LOS), specialism) are of greater 
importance than for the NN. Age, gender, adrenaline 
use, and emergency admission information have little 
general impact for both models. From the descriptive 
statistics (Table 2) it was noted that there were no 
significant differences for most of these variables 
between the two groups.  

3.4.3. Patient example  
One example of a patient SHAP explanation for both 
XGB and the NN is visualized in Figure 26. This 
patient was readmitted within 7 days after discharge. 
XGB predicted a 17.0% readmission and the NN 
18.7%. The figure shows the top 10 features which 
pushed the prediction in positive and negative 
direction. For both models, the contributing features 
show little similarities. Although only a small 
proportion of features is visualized in this figure, it 
demonstrates the ability of SHAP to make ‘black-box’ 
ML models explainable to the physician.  

3.4.4. Expert opinion  
We asked two ICU physicians of the LUMC to assess 
what model’s explanations were most clinically 
relevant and in line with clinical intuition (Figures 23 
and 24). XGB was most in line with clinical practice, 
with 19 relevant features and 1 contradicting 
(minimum thrombocytes level). The LR model had the 
highest number of seemingly irrelevant features (n = 
8), and the NN the highest number of contradictive 
features (n = 7). The physicians found the XGB model 
to be most in line with clinical reasoning and therefore 
best applicable in clinical practice. They had some 
difficulties with correctly interpreting the SHAP 
summary plots, and preferred the visualization of the 
LR coefficients. Both physicians mentioned that it is 
contra intuitive that for both LR and NN the number of 

laboratory measurements (count) are impactful 
features. This would only be relevant for haemoglobin 
and blood gas analysis, since the performed 
frequency of these measurements is correlated with 
a bad outcome. The experts emphasized the 
importance of informative and clinically relevant 
explanations in order to trust, and therefore use, the 
prediction in clinical practice. Patient examples as 
provided in Figure 26 were found to be clear and 
informative.    

4. Discussion  
We compared LR, boosting algorithms (GB and 
XGB), and NNs on their ability to provide accurate, 
correctly calibrated, and explainable predictions for 
ICU readmission. After feature engineering, boosting 
algorithms and NNs did not outperform LR. Using 
SHAP, we were able to compare state-of the-art ML 
model explanations (NN and XGB) to LR coefficients. 
We found that respiratory rate, urea levels and C-
reactive protein levels were impactful predictors for all 
model types. According to the expert opinion of two 
ICU physicians, explanations of the XGB model were 
most clinically relevant. Due to small differences in 
discriminative power of state-of-the-art models, the 
model of which the explanations are most in line with 
clinical reasoning should be chosen for meaningful 
and safe decision support. XGB was found to be most 
suitable for our discharge decision support tool, as it 
was found to be superior in terms of predictive 
performance, calibration properties, and clinically 
relevant explanations.  

4.1. Comparison with relevant literature  
Previous research on the prediction of ICU 
readmission mainly focused on predictive 
performance, although some studies used SHAP12 or 
other feature importance techniques to enhance 
model explainability10,14,19,38–40. To our knowledge, a 
comparison between model explanations has not 
been done before for the prediction of ICU 
readmission. Although a limited number of variables 
was available at time of model development 
compared to previously conducted studies, we 
achieved acceptable discriminative performance. 
AUCPR was 0.18 for LR and 0.17 for NN and XGB. 
AUC was 0.74 for LR, NN and XGB. Previously 
published papers reported AUCs ranging between 
0.6440 and 0.9239. AUCPR, which is a more 
appropriate metric to evaluate discriminative 
performance in imbalanced dataset31,  
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Figure 25: Summed variable importance of XGBoost (left) and neural network (right) models. Mean absolute SHAP values are 
summed for each variable over the feature aggregates to get insight in which variables have high correlation with the predicted 
outcome. Values are scaled between 0 and 1.  

 

  

Figure 26: SHAP XGBoost (upper figure) and neural network (lower figure) force plot for the same ICU patient. The features 
contributing to a higher risk of readmission are visualized in red. The features contributing to a lower risk of readmission are visualized 
in blue. Arrows pointing upwards and downwards indicate higher or lower than average in the training dataset.  
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was only reported by Thoral et al., making fair 
comparison to other studies not feasible. 

Our feature engineering and modeling methods for 
gradient boosting and LR were based on the methods 
described by Thoral et al. Their higher performance 
with an AUCPR of 0.20 for gradient boosting and LR 
models could be explained by the availability of more 
data at time of model development. However, Thoral 
et al. did not perform a final evaluation on a separate 
test dataset, which limits generalizability of results. 
Currently, the datascientists and physicians involved 
in the model developed by Thoral et al. are the first 
aiming to bring an ICU decision support tool for 
discharge support in clinical practice (Pacmed 
Critical41).  

Our explainability results gave insight in the 
contributing factors to a patient predicted readmission 
risk. Multiple risk factors for readmission are 
described in the literature. For example severity of 
illness, high age, comorbidities, ICU admission from 
other hospital wards, male sex, length of ICU stay, 
and intensity of organ supporting therapies (the use 
of vasopressors, (non-invasive) mechanical 
ventilation, and renal replacement therapy)42. 
Although we did not use all these variables during 
model development, we found in contrast to literature 
limited impact of age and sex on our final model’s 
predictions. More impactful variables for our 
predictions included respiratory rate, urea levels, C-
reactive protein levels, and arterial blood pressure 
levels, which were also amongst the most informative 
features as described by Thoral et al. In these 
parameters, a patient’s respiratory state, kidney 
function, inflammatory state, and cardiac function are 
in more or lesser extent represented. This indicates 
the correlation between the state of multiple 
physiological systems and the risk of readmission.   
 

4.2. Limitations  
Several limitations of this study have been identified. 
First, not all relevant variables were available at the 
time of model development (e.g., a representation of 
the neurological state and respiratory state of a 
patient could not be included due to data 
unavailability). Second, patients with a no-return-
policy and palliative care patients could not be 
excluded from analysis. This could potentially have 
resulted in bias, since these patients (often with bad 
condition) were not eligible to be readmitted to the 

ICU department. Third, we observed inferior 
predictive performance for medical and non-thoracic 
surgical patients (including general surgical), 
compared to surgical and thoracic surgical patients. 
Thoracic surgical patients are less often readmitted to 
the ICU, and the need for discharge decision support 
might be lower for this group of patients. The inferior 
discriminative performance for medical and non-
thoracic surgical patients could be explained by the 
heterogeneous types of patients present in this 
group. We observed in a sub-analysis of the SHAP 
explanations that the algorithms had less distinctive 
features for the low performing patient groups. 
Furthermore, we could not incorporate a variable 
representing oxygen saturation, which is ought to 
have a strong relation for medical patients with their 
readmission risk. Fourth, SHAP values and LR 
coefficients were only evaluated for the 20 most 
informative features for each model. A total of 416 
features were used in the final models and visualizing 
the impact of all features would be too complex for 
human understanding. Therefore, the ten most 
predictive features for each patient could be 
visualized (Figure 26) to enhance patient specific 
explainability. It is important to note that the other 406 
features contribute to the prediction to varying 
degrees. We observed that SHAP values for the NN 
model were more centered around zero and therefore 
less informative than those of the XGB model. A 
possible reason for this finding could be that the 
combination of features is more important for  the 
NN’s prediction. Fifth, we did not perform objective 
examination of explainability. More extensive 
evaluation of clinician preference should be 
performed by means of a vignette study16. Lastly, we 
only evaluated our model on retrospectively available 
data of patients being successfully discharged to the 
ward. Further prospective evaluation needs to be 
performed to assess the models’ performance on live 
data. Despite these limitations, we managed to 
achieve acceptable predictive performance, and 
gained valuable insights in different model 
explanations.  

4.3. Interpretation of findings  
Our finding that LR performed slightly superior over 
state-of-the-art ML methods has been previously 
described in a systematic review by Christodoulou et 
al.43. Due to extensive feature engineering and 
feature selection, we captured time-related trends 
and used only informative features for model 
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development. The use of solely informative features 
potentially enabled LR to discover patterns in the data 
with comparable or even superior performance to 
XGB and NN. The performance of state-of-the-art ML 
models might outperform LR models having 
availability of a more complete set of variables, or by 
applying more advanced DL models capable of 
handling time-series variables. These hypotheses 
should be further evaluated in future studies. 
Although LR had highest discriminative performance, 
expert evaluation showed that the impactful features 
of XGB were more in line with clinical practice, 
making it more suitable for clinical applications. 
Generalizability of our finding that XGB’s 
explanations were most clinically valid should be 
further evaluated for other datasets and use-cases. 
We recommend to compare explanations of several 
high performing ML models for each new use-case to 
determine what model to implement in clinical 
practice.  

Before Platt-scaling our final predictions, we 
observed poor calibration properties for all models 
(Figure 22). This is a known issue for imbalanced 
classification problems44. Poor calibration properties 
could be explained by the use of weighted learning to 
account for class imbalance, resulting in high recall 
but low positive predictive value. After scaling, 
predicted probabilities ranged between 0-40% 
chance of readmission. Due to a baseline 
readmission rate of 6.8% in the dataset, it must be 
noted that a predicted probability higher than 6.8% 
indicates an increased risk of readmission. The effect 
of these predicted probabilities on clinical decision 
making should be further investigated.  

4.4. Clinical implications  
With recent advances in explainability of ML, the risk 
of adverse events using ‘black-box’ models for high-
stake decisions is decreasing. However, Rudin stated 
that we should stop trying to explain complex models, 
and focus on creating sparse and interpretable 
models instead45. Even for our LR model, explanation 
of feature importance is complex due to the large 
number of features used for predictions. SHAP does 
allow us to visualize impactful features of ML models 
but is still an approximation and does not provide full 
transparency16. However, the use of simplified risk 
scores previously developed for the prediction of 
readmission showed inferior performance12,38 and 
reduced generalizability46 compared to more 

advanced models. This indicates the difficulty to 
create accurate sparse and simple models for the 
prediction of readmission.  

Due to the complex nature of ICU readmissions, there 
might be a limit on maximum achievable 
discriminative performance7. Therefore, explainability 
of a decision support algorithm is of major 
importance, as it influences a clinician’s trust in an 
algorithm47. A decision support tool may do more 
harm than good when the physician selects the wrong 
intervention based on misinterpreted ‘black-box’ 
predictions7. Besides explainability, the model should 
indicate out-of-domain predictions (i.e., patients with 
little similarities to the patients the model is trained 
on) to reduce the risk of harmful decisions based on 
uncertain predictions48. Taking these considerations 
into account, it is time to evolve from retrospective 
trials to prospective bed-side evaluation of discharge 
decision support. First, we need to compare the 
model’s predictions to that of ICU physicians. 
Second, the influence of predicting ICU readmission 
on physician’s decisions, and ultimately patient 
outcomes, should be evaluated during randomized 
controlled trials.  

4.5. Conclusion  
ICU readmission is a serious adverse event of which 
the occurrence might be reduced by assisting the 
physician in determining the optimal timing of ICU 
discharge. A decision support tool for the prediction 
of readmission could identify patients high or low at 
risk of readmission. To create useful bedside decision 
support, discriminative performance and calibration 
properties alone are insufficient for model 
assessment. We state that for creating clinical value 
using prediction modeling, explainability and 
agreement with clinical reasoning is at least as 
important. In contrast to previous studies, we found 
no superior performance of state-of-the-art ML 
models over LR. However, the use of more relevant 
variables for prediction modeling might result in 
higher performance for ML models. Using SHAP 
values, we concluded that state-of-the-art ML models 
are at least as explainable as LR by giving patient 
specific explanations. XGB explanations were more 
relevant for clinical practice, making it favorable over 
LR for clinical implementation. More extensive 
clinician evaluation should be performed to determine 
what modeling method should be implemented. The 
next steps in creating clinically valuable discharge 
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decision support are prospective evaluation and 
implementation of explainable models in practice. 
This will enable us to investigate the influence of 
predictions on discharge decisions, and ultimately on 
patient outcomes.  
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Part IV – Prospective Evaluation  
 

 

 

  

As part of the thesis feasibility study (TM30002), a study protocol was developed for the 
prospective validation of Pacmed Critical. This trial is planned to be performed starting around 
May 2021, but needs to be approved by the medical ethical committee (METC) of the LUMC.  



 

 48 

METC protocol prospective evaluation of 
Pacmed Critical 

Summary 
 
Rationale: We hypothesize that a machine learning algorithm (Pacmed Critical) can more accurately predict ICU 
readmission than an ICU physician.   

Objective: To compare the prediction of ICU readmission within 7 days after discharge of ICU physicians to the 
Pacmed Critical model. 

Study design: Prospective observational; by means of survey questions integrated in the patient data 
management system (PDMS, Metavision). The prediction of readmission by the Pacmed model is performed 
using anonymized patient data present in the PDMS at the same moment as the physician prediction. Patient 
readmission and mortality data is collected up to 7 days after discharge.   

Study population: ICU patients (> 18 years) in the LUMC 

Main study parameters/endpoints: Discrimination, calibration and net benefit of physicians’ prediction 
compared against the ones by Pacmed Critical.   

 
1. Introduction and rationale  

At the moment, the Intensive Care Unit (ICU) at LUMC (and other medical centres) is experiencing capacity 
issues (sadly illustrated by the COVID-19 outbreak). Consequently, the medical staff is pressured to discharge 
patients as soon as possible (when permissible) to lower care wards to free up beds. This may have detrimental 
effects on quality of care, patient satisfaction and physician burden and may result in ICU readmission due to 
limited monitoring and therapeutic options at lower care wards [1, 2].  

Readmission to the ICU during the same hospital stay is correlated with increased mortality rates, longer hospital 
stays, and higher costs [3]. Therefore, there is a need to prevent premature ICU discharge of patients at risk of 
readmission. On the other hand, delayed discharge of ICU patients can result in reduced capacity affecting new 
patients in need of intensive care [4, 5]. Furthermore, unnecessary prolonged ICU stay may cause iatrogenic 
harm to the patient and may cause mental problems during rehabilitation [6]. ICU physicians might have benefit 
from knowing a patient’s risk of readmission and/or mortality in their decision to discharge to lower care hospital 
wards.  

The CE-certified Pacmed Critical software consists of an algorithm that could assist intensivists in determining 
the optimal moment for discharging their patient from the ICU [7]. The intended advantage would be optimization 
of discharge and thus prevention of readmission and through this better patient outcomes. The model was 
developed at the Amsterdam UMC and is now being validated and implemented in several other Dutch hospitals. 
Pacmed Critical is a so-called ‘Machine Learning’ model, which makes individual patient predictions based on 
data available of previously readmitted ICU patients.  

In the first half of 2021, Pacmed Critical will be calibrated and validated on the LUMC population. First, the 
performance of predicting ICU readmission will be evaluated on retrospective patient data. The ultimate goal is to 
perform a randomized controlled trial investigating the influence of using the Pacmed Critical Software on 
discharge behaviour and patient outcomes.  

Before implementation of the model in clinical practice and evaluating its impact, we want to compare the 
predictive performance of Pacmed Critical with the predictive ability of the ICU physicians of the LUMC. To 
enhance clinical decision making, a decision support tool should have superior performance to that of clinical 
judgement alone [15]. Although the performance of Machine Learning models versus physicians has been 



 

 49 

studied for diagnosing in medical imaging [8], there has been little research prospectively comparing physician's 
predictive performance when it comes to patient outcomes [9, 10]. However, preliminary results of Rojas et al. 
showed superior performance of a machine learning model over physician’s prediction of ICU readmission at 
moment of discharge [9].  

The aim of our study is therefore to compare the predictive performance between the Pacmed Critical algorithm 
and the ICU physicians of the LUMC. Secondly, we want to gain insight in patient factors contributing to the 
physician's prediction and compare these to the patient factors given as important predictors by Pacmed Critical. 
Lastly, we want to investigate the level of confidence of the physician’s prediction.  

2. Objectives 
Primary objective: 
To evaluate the performance of Pacmed Critical compared to the physician’s prediction of ICU readmission 
and/or mortality within 7 days after discharge. 

Secondary objectives:  

i. To compare patient factors contributing to the prediction of readmission and/or mortality of both Pacmed 
Critical and the physicians.   

ii. To gain knowledge on the physician's level of confidence (low-medium-high) about their prediction  
iii. To compare performance for multiple patient groups:  

a. Surgical and medical patients  
b. COVID-19 patients  

iv. To evaluate Pacmed’s predictions of readmission and/or mortality over the duration of ICU admission  

3. Study Design  
This study will be an observational, longitudinal study, by means of electronic survey questions implemented in 
the Patient Data Management System (PDMS, Metavision) of the LUMC..  

The decision to discharge a patient to a lower care ward, is made  by the ICU team (intensivist, fellow, resident, 
nurse) during daily rounds at 8.45 a.m. independently of the estimated readmission risk by Pacmed Critical, i.e. 
the team is blinded for the Pacmed Critical prediction. After the patient is assessed eligible for discharge, the ICU 
team discusses the following questions at bedside, which are filled in by one of the physicians in the discharge 
form in PDMS: 

• What is the chance of readmission for this patient? This will be an estimate between 0 – 30%  
• What are the main factors contributing to the discharge decision? 
• How confident are you about the decision made?  

  

The prediction of Pacmed Critical is based on the validated  and is a percentage (0-100%) chance of 
readmission/mortality within 7 days. See Figure 27. The Pacmed prediction is stored at the same time as the 
prediction is filled in the PDMS. Seven days after actual discharge to lower care wards, for each patient the 
outcome (mortality/readmission to the ICU) is assessed. Because the Pacmed Critical prediction is blinded to the 
physician, this observational study has no influence on standard care. 
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Figure 27: Patient flow and study design. Patient data is recorded and stored in the Patient Data Management System (PDMS, 
Metavision), including static (e.g. Age, reason for admission) and dynamic (e.g. heart rate, medication) data. During the daily 
rounds at 8:45 AM, the decision to (not) discharge a patient to a lower care ward is made. When assessed fit for discharge, the 
chance of readmission (on a scale of ....) is discussed with the intensivist and answered in the survey questions incorporated in the 
PDMS by the resident/fellow. If the vital functions are stable without support, and the patient is discharged to lower care wards, the 
physician fills in the prediction of the event, the factors contributing to the prediction, and the confidence in the prediction. The 
Pacmed Critical software calculates their prediction based on the recorded patient variables and is blinded for the physician. After 7 
days of discharge, the outcome (readmission) is collected for each patient.  

4. Study Population  
4.1      Population (base)  
All patients admitted to the ICU of the LUMC.  

4.2      Inclusion criteria 
In order to be eligible to participate in this study, a subject must meet all of the following criteria: 

• Admission to the IC or Medium Care (MC) of the LUMC 
• > 18 years old 
• ICU admission longer than 4 hours   

4.3      Exclusion criteria 
A potential subject who meets any of the following criteria will be excluded from analysis in this study: 

• Patients transferred to other hospitals after discharge 
• Patients with a no-return to the ICU policy  
• Patients receiving palliative care  
• Patients that died during their ICU stay  
• Patients not discharged to lower care wards due to shortage of beds 

4.4      Sample size calculation 
A minimum of 100 events (readmissions) and 100 non-events is suggested for validation of prognostic models 
[11]. Validation of the model is already performed on a large retrospective cohort of ICU patients at the LUMC, 
and therefore lower sample sizes for this study will be handled. A similar study comparing the prediction of AKI 
between physicians and a Machine Learning model, included 252 patients of which 12% (n = 30) developed AKI 
[10]. Other studies reported justification of a sample size of 10 events for comparison between physician 
prediction and a prediction model for mortality [14].  
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Combined readmission/mortality rate at the development site of Pacmed Critical (VUmc) within seven days after 
discharge was 5.3% [12]. We aim to include patients in a period of 2-4 months (300-600 patients) to have 
enough events for statistical analysis.  

5. Treatments of subjects 
Not applicable.  

6. Investigational product 
6.1     Name and description of investigational product(s) 
The CE-certified Pacmed Critical software consists of an algorithm that could assist intensivists in determining 
the optimal moment for discharging their patient from the ICU. The intended advantage would be the prevention 
of readmission and through this better care outcomes. The model was developed at the VUmc and is now being 
validated and implemented in several other Dutch hospitals. Pacmed Critical is one of the E-health projects 
which is supported by the ‘Citrienfonds’ (a NFU organisation) which should be implemented in all Dutch 
academic hospitals. The focus of implementation of Pacmed Critical in the LUMC is to investigate the value of AI 
in clinical practice.  

6.2     Summary of findings from non-clinical studies 
Not applicable.   

6.3     Summary of findings from clinical studies 
Not applicable.  

6.4     Summary of known and potential risks and benefits 
Not applicable.  

7. Non-investigational product 
Not applicable.  

8. Methods 
8.1     Study parameters/endpoints 

8.1.1 Main study parameter/endpoint 
 
Discrimination, calibration and net benefit of physicians’ prediction compared against the ones by 
Pacmed Critical.   

8.1.2 Secondary study parameters/endpoints (if applicable) 
 

1. Patient factors contributing to the physicians’ prediction 
2. Physicians’ confidence in their prediction  
3. Prediction performance for multiple patient groups  

a. Surgical and medical patients  
b. COVID-19 patients  

4. Pacmed’s predictions of readmission and/or mortality over the duration of ICU admission  

8.1.3 Other study parameters (if applicable) 
 

Patient demographics and characteristics (age, gender, source of admission, admission information, 
length of stay, APACHE score). 

8.2     Randomisation, blinding and treatment allocation 
Not applicable.  
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8.3     Study procedures 

Survey questions are implemented in the PDMS (Metavision) of the ICU in cooperation with the ICT department.  

Every morning during daily rounds at 8.45 AM, the ICU team (intensivist, fellow, residents, nurses) discusses 
which patients are ready for discharge to lower care wards. 

The prediction if ICU readmission and/or mortality is only relevant for patients no longer in need of vital function 
support. At moment of discharge, the physician (usually the fellow or resident) creates a discharge letter in the 
PDMS. The chance of readmission/mortality, the factors contributing to this prediction, and the confidence of the 
prediction is filled in. The questions are discussed by the whole ICU team at bedside, and filled into the 
discharge form by one of the physicians:  

 The chance of readmission/mortality within 7 days is [  ]% 
 The chance of readmission/mortality within 7 days is [low – average – high] 
 The factors contributing to this prediction are: [drop down menu, see the Supplementary material 

Part IV – study protocol (page 93)]  
 I feel [low-medium-highly] confident about this prediction. 

See Appendix A for all survey questions. Predictions are not made for patients meeting the exclusion criteria, for 
which the reason for exclusion is filled in the PDMS.  

8.4     Withdrawal of individual subjects 
Subjects can leave the study at any time for any reason if they wish to do so without any consequences. The 
investigator can decide to withdraw a subject from the study for urgent medical reasons. 

8.4.1 Specific criteria for withdrawal (if applicable) 
Not applicable.  

8.5     Replacement of individual subjects after withdrawal 
Not applicable.  

8.6     Follow-up of subjects withdrawn from treatment 
Not applicable.  

8.7 Premature termination of the study 
Not applicable.  

9. Safety reporting 
Not applicable.  

10. Statistical analysis  
Results will be analyzed anonymously for both participating physicians and patients. Data are presented as 
means and standard deviations (SD), medians and interquartile ranges (IQR), and numbers and proportions 
where appropriate. Statistical significance was set at P < 0.05. All analyses are performed using Python and 
SPSS.  

10.1     Primary study parameters  
Risk prediction of the Pacmed model will be compared to the risk prediction of the ICU physicians at moment of 
discharge and will be evaluated to real patient outcomes (readmission to the IC/MC). Performance outcomes 
include: Area under the receiving operator curve (AUC), Area under the precision recall curve (AUCPR), 
sensitivity, specificity, f1-score, positive predictive value.  
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The DeLong test is used to compare AUC for the physician’s predictions and the Pacmed predictions [16]. 
Calibration is assessed using calibration curves. Decision curve analysis is performed to evaluate the net benefit 
of the model [17].  

The potential added value of both the physician’s prediction together with the Pacmed prediction is evaluated 
using multivariable logistic regression [10].  

The occurrence of missing data can occur when predictions are not filled in by the physicians. We try to prevent 
this by implementing the predictions in the PDMS. However, if predictions are not filled in, we will exclude these 
cases from analysis.  

10.2    Secondary study parameters 
1. A sensitivity analysis will be performed on based on the following characteristics: 

 
a. Surgical and medical patients  
b. COVID-19 patients  

 
Performance measures as described under 8.1. will be evaluated for these groups.  
 

2. Patient factors contributing to the physician’s prediction: 
Descriptive statistics for factors contributing to the physicians’ prediction, compared to predictors of the 
Pacmed algorithm.  
 

3. Physician’s confidence in their prediction performance for multiple patient groups:  
Confidence-accuracy calibration [18].  
 

4. Pacmed predictions over time during the ICU stay for multiple time points (at time of admission, one day 
before discharge, two days before discharge) in descriptive statistics.  

10.3     Other study parameters 
Descriptive statistics will be performed on participant demographics, and on patient factors on which physicians 
made their prediction.  

10.4     Interim analysis  
Not applicable.  

11. Ethical considerations  
11.1      Regulation statement 
The study will be conducted according to the principles of the Declaration of Helsinki and in accordance with the 
Medical Research Involving Human Subjects Act (WMO) and other guidelines, regulations and acts.  

11.2      Recruitment and consent 
This observational study has no influence on patient care, and data is handled anonymized. Therefore, no 
informed consent is required. Every patient and his/her family or representative receive a patient folder including 
the following text:  

 “wij werken er voortdurend aan om de kwaliteit van zorg te verbeteren en de tevredenheid van onze patiënten, familie en 
naasten te verbeteren. Hiervoor neemt de IC deel aan interne en externe kwaliteitsonderzoeken, verbeterprojecten en 
registratiesystemen. Hierbij worden in sommige gevallen ook patiëntengegevens uitgewisseld en opgeslagen. Dit gebeurt 
zorgvuldig en volgens de geldende privacyregels. Wij nemen bijvoorbeeld deel aan de continue Nationale Intensive Care 
Evaluatie (NICE) en aan periodiek onderzoek naar patiënten tevredenheid. Uw deelname is niet verplicht, laat het ons 
weten indien u hier bezwaar tegen heeft.” 

11.3      Objection by minors or incapacitated subjects (if applicable) 
Not applicable. 
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11.4      Benefits and risks assessment, group relatedness 
Not applicable. 

11.5      Compensation for injury 
Not applicable.  

11.6      Incentives (if applicable) 
Not applicable. 
 

12. Administrative aspects, monitoring and publication  
12.1 Handling and storage of data and documents 
Patient data is collected from the LUMC data platform, ICT. Patient data is directly anonymized at the data 
platform using a pseudocode instead of the patient code. Patient data, including the variables needed for 
predicting with the Pacmed Critical software, physician predictions and patient outcomes (readmission, 
mortality). Patient is stored pseudo-anonymized at a secured Datasafe, only accessible for the investigators 
involved in this project within the LUMC.  

12.2      Monitoring and Quality Assurance 
Not applicable.  

12.3 Amendments 
Amendments are changes made to the research after a favourable opinion by the accredited METC has been 
given. All amendments will be notified to the METC that gave a favourable opinion.  

12.4 Annual progress report  
Not applicable.  

12.5 Temporary halt and (prematurely) end of study report  
The investigator/sponsor will notify the accredited METC of the end of the study within a period of 8 weeks. The 
end of the study is defined as the last patient’s last visit.  
Within one year after the end of the study, the investigator/sponsor will submit a final study report with the results 
of the study, including any publications/abstracts of the study, to the accredited METC.  

12.6 Public disclosure and publication policy  
Not applicable.  

13. Structured risk analysis 
Not applicable.  
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Final discussion and future perspectives 
1. Discussion  

The goal of this thesis was to compare several types of AI models with respect to performance and explainability 
of the prediction of ICU readmission. In a broader perspective, we proposed a framework for the clinical 
development and implementation of clinically valuable AI-based decision support. This section provides a 
discussion of the model development and explainability, a reflection on the physician adoption of decision 
support tools, and clinical relevance of the performed research. 

1.1. Model development and explainability  
After systematically reviewing current literature describing model development for ICU readmission prediction 
(Part I), we concluded that most relevant research on the prediction of readmission was based on retrospective 
data. No prospective -and often no external -validation was performed, resulting in risk of overfitting and a 
reduced generalizability results. Furthermore, previously conducted studies lacked in reported performance 
metrics, calibration properties, and explainability comparison of the developed models. None of the included 
studies reported implementation of the developed prediction models. The research performed in this thesis 
contributed to creating clinical value for discharge decision support, using appropriate performance metrics and 
by comparing different models on explainability and calibration properties.  

It would be interesting to compare our developed models (logistic regression, neural network, and boosting 
algorithms, see Part III) to Pacmed Critical. This was not possible within our project time frame due to 
implementation delays of Pacmed Critical (partly due to the COVID-19 pandemic). To our knowledge, our study 
is the first to perform extensive performance and explainability evaluation for the prediction of readmission for 
these state-of-the-art model types. As the discriminative performance and calibration properties between models 
were very similar, explainability becomes an important factor in deciding which model to implement. Due to the 
introduction of SHAP1 values and other techniques, ‘Black-box’ AI models are history. To enhance adoption by 
physicians, it is important that the model explanations are valid and in line with clinical reasoning2. Furthermore, 
the physicians should be able to decide to not trust the prediction when explanations imply bias or erroneous 
assumptions3. Our developed XGBoost (a tree-based boosting algorithm) model showed highest agreement with 
clinical reasoning of ICU physicians from the LUMC. However, a limitation is that the developed ML algorithms 
are based on numerous features and complex calculations, making it impossible to fully interpret the working 
mechanism and impactful factors for each patient. Making ML models as simple as possible could enable 
explainability, and even increase performance when discarding clinically non-relevant parameters4.  

1.2. Adoption of decision support tools 
Pacmed developed their algorithms in close collaboration with physicians from the Amsterdam UMC to create a 
clinically meaningful decision support tool5. For their model to be adopted within the LUMC, the physicians of the 
ICU department need to be closely involved in the implementation and evaluation process of Pacmed Critical. 
Some LUMC physicians mentioned in the questionnaire that they see limited benefit from such a tool, or that 
they strongly doubt the superior performance of such a tool over their clinical gut feeling (Part II). Therefore, the 
prospective study (Part IV), comparing the physicians’ predictive performance to Pacmed’s, will be of importance 
to study potential superior predictive performance. Although the physicians had some critical comments, most of 
them believe in the positive value of AI prediction tools. In order for the tool to have benefit, it needs to work 
synergistically with the physician in charge of the decision, and add to the physician’s clinical perspective, 
knowledge, and gut feeling.  

1.3. Clinical relevance 
ICU readmission is a complex clinical problem that is influenced by both patient and organisational factors6. As 
one of the physicians within the LUMC stated, a patient is sometimes discharged accepting some level of 
readmission risk, and that it is questionable whether the patient’s progression would be different by keeping them 
longer at the ICU. Furthermore, not all ICU readmissions can be prevented and therefore it is debatable whether 
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readmission prediction at discharge could always prevent readmission7. Because ICU readmission affects a 
small proportion (< 10% of the discharged patients), it might be challenging to demonstrate clinical benefit using 
the prediction tool. However, ICU readmission is correlated with increased hospital length of stay, and costs, and 
decreasing readmission rates would certainly benefit both patient and hospital. Furthermore, patients with low 
risk of readmission might be safely discharged sooner to the ward resulting in increasing ICU bed capacity. 
Moreover, one could think of other use-cases of decision support in the form of readmission predictions. These 
predictions could for instance be used to monitor patients more closely at the ward after discharge, resulting in 
adequate care and potentially prevented readmissions.  

During the practical clinical part of this thesis, several readmissions were witnessed. Corresponding to what was 
observed in the dataset, these patients were often general surgical patients, medical patients, or patients with 
longer length of ICU stay.  In the sensitivity analysis in Part III of this thesis, we observed inferior discriminative 
performance for general surgical patients compared to thoracic surgical patients. For a readmission prediction 
model to be of clinical value, it should be accurate for the patient groups in which readmission is most often 
observed. The lack of respiratory parameters (e.g., oxygen saturation) in the dataset used in Part III could 
explain the inferior performance in certain patient groups for which these parameters are thought to be of higher 
importance. In general, a limitation of our work was the high amount of missing data. Not all parameters of 
interest could be included for prediction modeling and predictive performance could increase for all groups when 
using more relevant parameters.  

2. Future perspectives 
The COVID-19 pandemic painfully demonstrated the limits of ICU resources, resulting in an extremely high 
workload for the ICU nurses and physicians8.  AI-based decision support tools such as Pacmed Critical could be 
of value when having to make the decision to discharge patients to free beds for other patients in such critical 
circumstances. However, the circumstances during the pandemic are different than the data used to train the 
prediction model on. Therefore, Pacmed Critical should be validated on data from 2020 to assess generalizability 
to these exceptional circumstances. In the Netherlands, the pandemic has led to the first ICU wide database, 
icudata.nl9. The COVID-19 crisis demonstrated the need to collaborate in order to effectively analyse multicentre 
data to discover risk factors and treatment strategies.  Patient data should be recorded and stored more 
uniformly to make decision support more easily transferable between centres10. During model development, we 
encountered the difficulty of data access, missingness, and uniformity. Having one nationwide, and in the future 
worldwide, used standard to record and store patient data will help in the process of model development and 
collaboration. 

Our final models could be externally validated on other populations using an uniform multi-centre ICU database 
such as icudata.nl to evaluate predictive performance, calibration properties, and explainability. This would 
enable us to investigate how well our findings that XGBoost has both high predictive performance and its 
explanations are in line with clinical practice generalize to a larger population. A major part of ML model 
development is the data preparation and feature engineering needed to create appropriate (tabular) input data 
for all model types11. Having to execute this process for each hospital separately limits scalability of ML models 
as is currently observed during the implementation of Pacmed Critical at the LUMC. Another option would be to 
use DL models capable of handling raw patient data, but using state-of-the-art DL models often comes at the 
cost of explainability and need high computational power. Data uniformity, e.g., using the Fast Healthcare 
Interoperability Recourses (FHIR) format12, would still be necessary to allow easy scalability of these models13.  

Besides these data quality and availability challenges, it is important to take privacy, ethical, and regulatory 
considerations into account. Training and validating high performing ML decision support requires large datasets 
ranging from 10,000 – 100,000 patient records, making it infeasible to ask each patient in retrospect for informed 
consent14. Therefore, removal of all identifiable information should take place, but a risk of re-identification 
remains15. Pacmed states that they comply to the General Data Protection Regulation (GDPR) for privacy 
issues, and only certified employees are allowed to access hospital data that are securely stored16. Furthermore, 
the new Medical Device Regulation (MDR) will become effective on May 26, 2021. The MDR states that decision 
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support software is classified as class IIa, and should therefore be CE-certified by a notified body17. A remark on 
the new MDR is that hospitals are permitted to develop and use their own algorithms, provided that the algorithm 
performs better than commercially available alternatives. What performance metrics to use to address this 
question and how the new regulations affect transfer learning between hospitals is unfortunately not stated in the 
MDR18.  

Taken these considerations into account, the time has come to investigate the impact in practice of AI-based 
decision support within the ICU. I believe that besides ethical and regulatory considerations, the largest hurdle 
for making impact will be whether the physicians will adopt and use the tool in their workflow. The most accurate 
prediction tool will not be of any value when not trusted or used by the physician it is developed for19. The 
questionnaire showed that most physicians believe in the positive value of AI-based decision support and that 
they had numerous ideas for what they would like to be supported on. The potential of AI enhancing the era of 
precision medicine should be studied in both randomized controlled trials to investigate patient impact, and by 
studying the complex relationship between physicians and decision support tools2.   

3. Conclusion  
Due to increasing patient data availability, the ICU is one of the most promising areas in the field of medical AI 
decision support. Our work contributed to making the step from developing high performing prediction models to 
clinical adoption of an ICU discharge decision support system. We executed the first steps of going from clinical 
problem to final implementation by means of: I - a systematic review on current literature describing the use of AI 
predicting ICU readmission, II - a questionnaire amongst ICU physicians regarding current discharge practices 
and AI readiness, III - a model development study comparing several type of (machine learning) models on 
performance and explainability, and IV - by designing a prospective validation study design for Pacmed Critical. 
Marginal differences in discriminative performance and calibration properties were observed for logistic 
regression, boosting algorithms, and neural networks. Therefore, we state that explainability of a model is at 
least as important to build trustworthy decision support and to enhance clinical adoption. Physicians should be 
closely involved during model development to evaluate explainability outcomes in terms of impactful features to 
the prediction and clinical relevance. An exciting year is coming for the ICU department of the LUMC, being one 
of the first to implement an AI decision support system in clinical practice. The step to clinical implementation 
and providing meaningful support to the physicians needs strong collaboration between (technical) physicians 
and data scientists, and will be studied during prospective clinical trials.  
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Appendices 
 

A. Supplementary material Part I - Systematic Review  
 

Data extraction tables  
 

Table A-1: Characteristics of included studies. MIMIC = Medical Information Mart for Intensive Care database, - = Not Reported, GB 
= Gradient Boosting, RF = Random Forest, NB = Naïve Bayes, SMO = sequential minimal optimization, LB = Logistic Boost, IC = 
Iterative Classifier, RNN = Recurrent Neural Network, LSTM = Long Short Term Memory, CNN = Convolutional Neural Network, LR 
= Logistic Regression, FFNN = Feed Forward Neural Network, CRF = Conditional Random Field, MLP = Multi layer perceptron  

Author Year Study type Dataset Number of 
included 
patients 

Propotion of ICU 
readmissions (%)  

Predicted readmission 
outcome from moment 
of discharge 

Model 
architecture  

Rojas et al.  2018 Observational Single-center US 
hospital + MIMIC 
III  

24885 11% (same hospital 
stay) 

ICU readmission within 
same hospital stay, <72h, 
>72h 

GB 

Desautels et 
al.  

2017 Cross-
sectional 

Single-center UK  
hospital + 
MIMIC-III 

2018 4.36% ICU readmission within 
48h  

AdaBoost 

Loreto et al.  2020 Observational Multi-center 
Brazilian 
hospitals 

9926 6.6% ICU readmission within 
same hospital stay  

RF, NB, J48, SMO, 
AdaBoost, LB, IC 

Pakbin et al.  2018 Observational  MIMIC-III 46252 1.87% (24h), 4.14% 
(72h), 6.56% (7d), 
11,69% (30d) 

ICU readmision within 
24h, 72h, 7d, 30d 

XGBoost 

Junqueira et 
al.  

2019 Observational MIMIC-III 31749 10.9%  ICU readmission within 30 
days  

MLP, RF, SVM 

Barbieri et al.  2020 Observational MIMIC-III 33150 12.10% ICU readmission within 30 
days 

RNN 

Lin et al.  2019 Observational MIMIC-III 35334 13.9% ICU readmission within 30 
days 

LSTM, CNN 

Venugopalan 
et al.  

2017 Observational MIMIC-III 32331 24.0% ICU readmission within 30 
days  

LR + FFNN, CRF 
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Table A-2: Summary of Machine Learning modeling strategies used.- = Not reported. GB = Gradient Boosting, RF = Random 
Forest, GCS = Glasgow Coma Score, PCA = Principal Component Analysis, KNN = K-nearest neighbour, RNN = Recurrent Neural 
Network, GRU = Gated Recurrent Unit, LSTM = Long Short Term Memory, CNN = Convolutional Neural Network, FFNN = Feed-
forward Neural Network, CRF = Conditional Random Field, mRMR = Minimum-redundancy maximum-relevancy, LOS = Length of 
Stay, CV = cross validation, RUS = Random Majority Undersampling. 

Author Best 
model 

Feature 
selection 

Number 
of Input 
features 

Dataprep
eration   

Imputati
on of 
missing 
values 

Period of 
time-
series 
data 
collection 

Modeling 
strategy 

Method 
of 
internal 
validatio
n 

Metho
d of 
calibrat
ion 

Performa
nce 
compare
d with 

Method of 
external 
validation   

Rojas 
et al.  

GB A priori based 
on clinical 
experience 

100+  - - Last 24h 
trend of 
vital signs 
+ last 
measured 
vital signs 
before 
discharge 

GBM with all 
predictors for 
internal 
validation, 
and simpler 
GBM 
including age, 
vital signs, lab 
for MIMIC.  

10-fold 
CV  

- SWIFT 
and 
MEWS  

MIMIC-III 
database  

Desaut
els et 
al.  

AdaBoo
st 

- 15  Binned at 
each hour 

Most 
recent 
value  

Last 5h 
before 
discharge  

Transferlearni
ng of 
AdaBoost 
model on 
local and 
MIMIC 
dataset 

10-fold 
CV  

Logistic 
Regress
ion on 
training
data 

SWIFT  MIMIC-III 
database 

Loreto 
et al.  

Multipl
e 

Different sets 
(arrival, 
complete, 
PCA, 
wrapper).Excl
uding 
redundant 
features and  
> 80% missing 
values.  

134 - Different 
for each 
algorithm 

First hour 
after 
admission 

Eight 
classification 
methods over 
different sets 
of attributes 

10-fold 
CV 

- Multiple 
ML 
algorithm
s, SOFA, 
SAPS 

No, but 
uses data 
from three 
hospitals to 
train and 
test model 
on 

Pakbin 
et al.  

XGBoos
t 

Features with 
> 50% missing 
values 
dropped 

2344 1-hot 
encoding 
for 
categorial 
data, 
aggregati
on of 
units 

Mean for 
numerical 
values, 
zero for 
booleans, 
categorial 
imputed 
by 
distributi
on in the 
data set.  

Last 24h 
before 
discharge  

LR, RF, GDB 
and XGBoost 
on same 
feature sets 

5-fold CV  Calibrat
ion plot  

Logistic 
Regressio
n  

No, trained 
and tested 
solely on 
the MIMIC-
III database 

Junquei
ra et al.  

MLP Only static 
included. 
Features > 
30% missing 
values, and 
required high 
medical 
knowledge or 
very 
sophisticated 
extraction 
technique 
were 
excluded.  

12 
(without 
feature 
selection)
, 4 (with 
removal 
of 
features 
with 
<0.75% 
correlatio
n)  

Aggregati
on of 
numerical 
values in 
categorie
s.   

- No time-
series 
used.  

RF, SVM and 
MLP for two 
different 
datasets (data 
collected 
between 
2001-2008 
(first period) 
and 2008-
2012 (second 
period)). Uses 
RUS to deal 
with class 
imbalance.  

10-fold 
CV over 
first and 
second 
period.  

- RF, SVM. 
With and 
without 
feature 
selection. 
For first 
and 
second 
period.   

No, trained 
and tested 
solely on 
the MIMIC-
III database  
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Barbier
i et al.  

RNN 
(GRU) 

All variables 
used  

392 
medicatio
n and 
vital signs 
and 23 
static 
variables 

Variables 
mapped 
to time 
incorpera
ted 
embeddi
ngs 

- Whole 
stay  

Multiple RNN 
architecture, 
with and 
without 
attention  

Bootstrap
ping 

- LR No, trained 
and tested 
solely on 
the MIMIC-
III database 

Lin et 
al.  

RNN 
(LSTM) 
+ CNN 

- 59 
charted 
events, 
17 binary 
indicator 
features, 
300 ICD 9 
embeddi
ng, 14 
demogra
phic  

1-hot 
encoding 
for 
categorial 
data, 
binned at 
each 
hour, ICD-
9 
embeddi
ngs, time 
series 
features 

Last-
Observati
on-
Carried-
Forward, 
indicator 
of 
missingne
ss 

Last 48h 
before 
discharge 

Multiple RNN 
and CNN 
architectures, 
using 
different 
input sets 

5-fold CV  - LR, NB, 
RF, SVM, 
CNN  

No, trained 
and tested 
solely on 
the MIMIC-
III database 

Venugo
palan 
et al.  

LR and 
FFNN + 
CRF 

A priori 
selection of 
87 features 
based on 
clinician input  

87 Outliers 
removed, 
data 
binned in 
6h 
intervals  

K-means 
imputatio
n 

Whole 
stay  

Combination 
of static 
models 
(FFNN, LR) 
with temporal 
models (CRF) 

10-fold 
CV  

- Individual 
models  

No, trained 
and tested 
solely on 
the MIMIC-
III database 

 

Table A-3: Model explainability using feature importance methods to assess the most contributing factors to the predicted outcome. 
Patient specific explainability is performed when a feature importance method is used to assess individual patient predictors. BUN = 
blood urea nitrogen, Hb = hemoglobin, GCS = Glasgow Coma Scale, HR = heart rate, RR = respiratory rate, SAPS3 = simplified 
acute physiology score 3, CVC = central venous catheter, MAP = mean arterial pressure, RBC = red blood cell, HF = heart failure, 
WBC = white blood cell.  

Author Explainable method used  Patient specific 
explainability 

Top 10 predictive features  

Rojas et al.  Variable importance measure 
using change in the Gini index, 
partial dependence plots.  

- BUN, braden scale, SpO2/FiO2, albumin, Hb, platelet, alk. Phosphatase, shock 
index, ICU length of stay, age. 

Desautels et 
al.  

- - - 

Loreto et al.  Information Gain  - Length of hospital stay prior to unit admission, admission source, admission 
type, SAPS3, chronic health status, respiratory failure (first hour), steroids use, 
respiratory failure, immunosupression, transplant solid organ, LOS 

Pakbin et al.  Mean rank by XGBoost  - For 72 hours: LOS, HR (last), Enteral infusion, Mech vent., arterial cath, insertion 
of naso. Airway, cont. mech. Vent., RR (last), bypass for heart, injection of larynx.  

Junqueira et 
al.  

Feature correlation Value 
Analysis using Symmetrical 
Uncertainty algorithm 

- LOS, number of services, service med, service SURG, service TRAUM, insurance, 
ethnicity, admission type, admission location, first care unit.  

Barbieri et al.  Attention Yes, using 
attention 

Number of recent admissions, male, Ethnicity (african american), infection, 
infection due to CVC, desentiziation to allergens, hepatorenal syndrome, 
gatrostomy, plasmapheresis diabetes 
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Lin et al.  Feature ablation test - Chart events: Glucose, HR, T, GCS (eye), GCS (total), SpO2, RR, GCS(verbal), MAP 

Venugopalan 
et al.  

- - Static model: Hospital LOS, presence/absence of blood loss anemia, renal failure, 
RBC count, congestive HF. Temporal model: age, calcium, liver disease, creat, 
WBC count, payer group, PaCO2, SaO2, renal failure, PaO2, blood loss anemia 

 

Table A-4: Performance metrics for best models. GB = Gradient boosting, RF = Random forest, MLP = Multi-layer perceptron, , 
RNN = Recurrent Neural Network, GRU = Gated Recurrent Unit, LSTM = Long Short Term Memory, CNN = Convolutional Neural 
Network, FFNN = Feed-forward Neural Network, CRF = Conditional Random Field, LR = logistic regression, spec. = specificity, 
prec. = precision.  

Author Dataset Best model Predicted readmission 
outcome 

Highest AUC Calibration  Other metrics for 
best model  

Rojas et al.  Single-center 
US hospital + 
MIMIC  

GB < 72h, > 72h, Same 
hospital stay 

0.73 (<72 h) 
0.77 (>72h) 
0.76 (same 
hospital stay) 

- Spec. 0.95, Recall 
0.28.  

Desautels et 
al.  

Single-center 
UK  hospital + 
MIMIC-III 

AdaBoost < 48h 0.71  Brier 0.04 Spec. 0.66, Recall 
0.59, 
F1 0.13,  
DOR 2.86 

Loreto et al.  Multi-center 
Brazilian 
hospitals 

RF (with 
complete set) 

Same hospital stay 0.92 - Kappa 0.48, Prec. 
0.58, Recall 0.46, 
F1 0.51 

Pakbin et al.   MIMIC-III XGBoost <24h, <72h, <7d, <30d 0.84 Brier 0.04 F1 0.43 

Junqueira et 
al.  

MIMIC-III MLP < 30 days  0.64 - Accuracy: 0.83 
Prec. 0.82 
Rec. 0.83 
 

Barbieri et al.  MIMIC-III ODE + RNN < 30 days 0.75 - Spec. 0.70, Recall 
0.67, Prec. 0.33, 
F1 0.37 

Lin et al.  MIMIC-III LSTM + CNN < 30 days 0.79 - Spec. 0.85, Recall 
0.74 

Venugopalan 
et al.  

MIMIC-III LR + FFNN, CRF < 30 days - - Accuracy: 0.87, 
MCC 0.65 
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Systematic review search strategy  
 
Regular references - total d.d. 17-5-2020: 172 references from: 

• PubMed: 81 
• Embase: 70 - 18 unique 
• Web of Science: 70 - 22 unique 
• COCHRANE Library: 25 - 21 unique 
• Emcare: 42 - 4 unique 
• Academic Search Premier: 50 - 26 unique 

 

Embase 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=main&MODE=ovid&D=oemezd 

 ((exp *"prediction and forecasting"/ OR Prediction.ti,ab OR Predicting.ti,ab OR Predict.ti,ab OR "Decision 
support".ti,ab OR predict*.ti,ab OR exp "Decision Support System"/ OR "decision rul*".ti,ab) AND (ICU.ti,ab 
OR "Intensive Care Unit".ti,ab OR "Intensive Care".ti,ab OR exp *"Intensive Care Unit"/ OR exp *"Intensive 
Care"/ OR "ICUs".ti,ab) AND ("Machine Learning".ti,ab OR "Deep Learning".ti,ab OR "Artificial Intelligence".ti,ab 
OR "Data analysis".ti,ab OR "Machine Learning".ti,ab OR exp *"Machine Learning"/ OR *"Artificial 
Intelligence"/ OR *"Data Analysis"/ OR algorithm*.ti OR exp *"Algorithm"/) AND ("Readmission".ti,ab OR 
"Discharge".ti,ab OR *"Hospital Readmission"/ OR readmiss*.ti,ab OR readmitt*.ti,ab OR "re-admiss*".ti,ab 
OR "re-admitt*".ti,ab OR *"Hospital Discharge"/ OR discharg*.ti,ab)) NOT (conference review or conference 
abstract).pt 

Web of Science  

http://isiknowledge.com/wos 

70 references d.d. 14-5-2020 

(TS=(Prediction OR Predicting OR Predict OR "Decision support" OR predict* OR exp "Decision Support 
System" OR "decision rul*") AND  TS=(ICU OR "Intensive Care Unit" OR "Intensive Care" OR "Intensive Care 
Unit" OR "Intensive Care" OR "ICUs") AND (ts=("Machine Learning" OR "Deep Learning" OR "Artificial 
Intelligence" OR "Data analysis" OR "Machine Learning" OR "Machine Learning" OR *"Artificial Intelligence" 
OR *"Data Analysis") OR TI=algorithm*) AND TS=("Readmission" OR "Discharge" OR "Hospital 
Readmission" OR readmiss* OR readmitt* OR "re-admiss*" OR "re-admitt*" OR "Hospital Discharge" OR 
discharg*)) NOT dt=(meeting abstract) 

Cochrane 

https://www.cochranelibrary.com/advanced-search/search-manager 

25 references d.d. 14-5-2020 

((Prediction OR Predicting OR Predict OR "Decision support" OR predict* OR exp "Decision Support System" 
OR "decision rul*") AND (ICU OR "Intensive Care Unit" OR "Intensive Care" OR "Intensive Care Unit" OR 
"Intensive Care" OR "ICUs") AND ("Machine Learning" OR "Deep Learning" OR "Artificial Intelligence" OR "Data 
analysis" OR "Machine Learning" OR "Machine Learning" OR "Artificial Intelligence" OR "Data Analysis" OR 
algorithm*) AND ("Readmission" OR "Discharge" OR "Hospital Readmission" OR readmiss* OR readmitt* OR 
"re-admiss*" OR "re-admitt*" OR "Hospital Discharge" OR discharg*)):ti,ab,kw NOT (conference abstract):pt 

 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=main&MODE=ovid&D=oemezd
http://isiknowledge.com/wos
https://www.cochranelibrary.com/advanced-search/search-manager
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Emcare  

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=main&D=emcr 

 ((exp *"prediction and forecasting"/ OR Prediction.ti,ab OR Predicting.ti,ab OR Predict.ti,ab OR "Decision 
support".ti,ab OR predict*.ti,ab OR exp "Decision Support System"/ OR "decision rul*".ti,ab) AND (ICU.ti,ab 
OR "Intensive Care Unit".ti,ab OR "Intensive Care".ti,ab OR exp *"Intensive Care Unit"/ OR exp *"Intensive 
Care"/ OR "ICUs".ti,ab) AND ("Machine Learning".ti,ab OR "Deep Learning".ti,ab OR "Artificial Intelligence".ti,ab 
OR "Data analysis".ti,ab OR "Machine Learning".ti,ab OR exp *"Machine Learning"/ OR *"Artificial 
Intelligence"/ OR *"Data Analysis"/ OR algorithm*.ti OR exp *"Algorithm"/) AND ("Readmission".ti,ab OR 
"Discharge".ti,ab OR *"Hospital Readmission"/ OR readmiss*.ti,ab OR readmitt*.ti,ab OR "re-admiss*".ti,ab 
OR "re-admitt*".ti,ab OR *"Hospital Discharge"/ OR discharg*.ti,ab)) 

Academic Search Premier  

http://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=lumc&defaultdb=aph 

50 references d.d. 14-5-2020 

TI((Prediction OR Predicting OR Predict OR "Decision support" OR predict* OR exp "Decision Support System" 
OR "decision rul*") AND (ICU OR "Intensive Care Unit" OR "Intensive Care" OR "Intensive Care Unit" OR 
"Intensive Care" OR "ICUs") AND ("Machine Learning" OR "Deep Learning" OR "Artificial Intelligence" OR "Data 
analysis" OR "Machine Learning" OR "Machine Learning" OR "Artificial Intelligence" OR "Data Analysis" OR 
algorithm*) AND ("Readmission" OR "Discharge" OR "Hospital Readmission" OR readmiss* OR readmitt* OR 
"re-admiss*" OR "re-admitt*" OR "Hospital Discharge" OR discharg*)) OR SU((Prediction OR Predicting OR 
Predict OR "Decision support" OR predict* OR exp "Decision Support System" OR "decision rul*") AND (ICU 
OR "Intensive Care Unit" OR "Intensive Care" OR "Intensive Care Unit" OR "Intensive Care" OR "ICUs") AND 
("Machine Learning" OR "Deep Learning" OR "Artificial Intelligence" OR "Data analysis" OR "Machine Learning" 
OR "Machine Learning" OR "Artificial Intelligence" OR "Data Analysis" OR algorithm*) AND ("Readmission" 
OR "Discharge" OR "Hospital Readmission" OR readmiss* OR readmitt* OR "re-admiss*" OR "re-admitt*" 
OR "Hospital Discharge" OR discharg*)) OR KW((Prediction OR Predicting OR Predict OR "Decision support" 
OR predict* OR exp "Decision Support System" OR "decision rul*") AND (ICU OR "Intensive Care Unit" OR 
"Intensive Care" OR "Intensive Care Unit" OR "Intensive Care" OR "ICUs") AND ("Machine Learning" OR 
"Deep Learning" OR "Artificial Intelligence" OR "Data analysis" OR "Machine Learning" OR "Machine Learning" 
OR "Artificial Intelligence" OR "Data Analysis" OR algorithm*) AND ("Readmission" OR "Discharge" OR 
"Hospital Readmission" OR readmiss* OR readmitt* OR "re-admiss*" OR "re-admitt*" OR "Hospital 
Discharge" OR discharg*)) OR AB((Prediction OR Predicting OR Predict OR "Decision support" OR predict* OR 
exp "Decision Support System" OR "decision rul*") AND (ICU OR "Intensive Care Unit" OR "Intensive Care" 
OR "Intensive Care Unit" OR "Intensive Care" OR "ICUs") AND ("Machine Learning" OR "Deep Learning" OR 
"Artificial Intelligence" OR "Data analysis" OR "Machine Learning" OR "Machine Learning" OR "Artificial 
Intelligence" OR "Data Analysis" OR algorithm*) AND ("Readmission" OR "Discharge" OR "Hospital 
Readmission" OR readmiss* OR readmitt* OR "re-admiss*" OR "re-admitt*" OR "Hospital Discharge" OR 
discharg*)) 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=main&D=emcr
http://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=lumc&defaultdb=aph


 

 67 

CHARMS scores for study quality  
 

Table A-5: CHARMS scores for study quality. Not all CHARMS criteria were relevant for assessment of ML model development, indicated with NA (Not applicable).  

Domain Key items Rojas 
et al.  

Desautels 
et al. 

Loreto 
et al.  

Pakbin et 
al. 

Junqueira 
et al.  

Barbieri et 
al.  

Lin et 
al. 

Venugopalan 
et al.  

Source of 
data 

Source of data (e.g., cohort, case-control, randomized trial 
participants, or registry data) 2 2 2 2 2 2 2 2 

Participants 

Participant eligibility and recruitment method (e.g., consecutive 
participants, location, number of centers, setting, inclusion and 
exclusion criteria) 

2 2 1 2 2 2 2 1 

Participant description 2 2 1 1 2 2 2 1 
Details of treatments received, if relevant NA NA NA NA NA NA NA NA 
Study dates 2 2 2 2 2 2 2 2 

Outcome(s) 
to be 
predicted 

Definition and method for measurement of outcome 2 2 2 2 2 2 2 2 
Was the same outcome definition (and method for 
measurement) used in all patients? 2 2 2 2 2 2 2 2 

Type of outcome (e.g., single or combined endpoints) 2 2 2 2 2 2 2 2 

Was the outcome assessed without knowledge of the 
candidate predictors (i.e., blinded)? NA NA NA NA NA NA NA NA 

Were candidate predictors part of the outcome (e.g., in panel or 
consensus diagnosis)? NA NA NA NA NA NA NA NA 

Time of outcome occurrence or summary of duration of follow-
up 2 2 2 2 2 2 2 1 

Candidate 
predictors  

Number and type of predictors (e.g., demographics, patient 
history, physical examination, additional testing, disease  
characteristics) 

2 2 2 1 1 2 2 1 

(or index 
tests) Definition and method for measurement of candidate predictors 1 2 2 2 2 1 2 1 

  Timing of predictor measurement (e.g., at patient presentation, 
at diagnosis, at treatment initiation) 2 2 2 2 1 2 2 2 

  Were predictors assessed blinded for outcome, and for each 
other (if relevant)? NA NA NA NA NA NA NA NA 

  Handling of predictors in the modeling (e.g., continuous, linear, 
non-linear transformations or categorised) 2 1 1 2 2 2 2 1 
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Sample size 

Number of participants and number of outcomes/events 2 1 2 2 2 2 2 2 

Number of outcomes/events in relation to the number of 
candidate predictors (Events Per Variable) 1 1 1 1 1 1 2 2 

Missing data 

Number of participants with any missing value (include 
predictors and outcomes) 0 1 1 0 1 0 0 0 

Number of participants with missing data for each predictor 0 1 0 0 1 0 0 0 
Handling of missing data (e.g., complete-case analysis, 
imputation, or other methods) 0 2 2 1 0 0 2 2 

Model 
development  

Modeling method (e.g., logistic, survival, neural network, or 
machine learning techniques)  2 2 2 2 1 2 2 2 

Modeling assumptions satisfied 2 2 2 1 1 2 2 2 

Method for selection of predictors for inclusion in multivariable 
modeling (e.g., all candidate predictors, pre-selection based on 
unadjusted association with the outcome) 

2 2 2 1 1 1 2 2 

Method for selection of predictors during multivariable modeling 
(e.g., full model approach, backward or forward selection) and 
criteria used (e.g., p-value, Akaike Information Criterion) 

2 1 2 0 1 1 2 1 

Shrinkage of predictor weights or regression coefficients (e.g., 
no shrinkage, uniform shrinkage, penalized estimation) 2 2 0 0 0 2 2 1 

Model 
performance 

Calibration (calibration plot, calibration slope, Hosmer-
Lemeshow test) and Discrimination (C-statistic, D-statistic, log-
rank) measures with confidence intervals 

0 1 0 1 0 0 0 0 

Classification measures (e.g., sensitivity, specificity, predictive 
values, net reclassification improvement) and whether a-priori 
cut points were used 

0 2 2 1 1 2 2 0 

Model 

Method used for testing model performance: development 
dataset only (random split of data, resampling methods e.g. 
bootstrap or cross-validation, none) or separate external 
validation (e.g. temporal, geographical, different setting, 
different investigators) 

2 2 2 2 2 2 2 2 

Evaluation  
In case of poor validation, whether model was adjusted or 
updated (e.g., intercept recalibrated, predictor effects adjusted, 
or new predictors added) 

NA NA NA NA NA NA NA NA 

Results 
Final and other  multivariable models (e.g., basic, extended, 
simplified) presented, including predictor weights or regression 
coefficients, intercept, baseline survival, model performance 
measures (with standard errors or confidence intervals) 

2 1 1 2 1 2 1 1 
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Any alternative presentation of the final prediction models, e.g., 
sum score, nomogram, score chart, predictions for specific risk 
subgroups with performance 

1 2 1 0 1 0 2 0 

Comparison of the distribution of predictors (including missing 
data) for development and validation datasets NA NA NA NA NA NA NA NA 

Interpretation 
and 
discussion  

Interpretation of presented models (confirmatory, i.e., model 
useful for practice versus exploratory, i.e., more research 
needed) 

2 0 2 1 1 2 2 1 

Comparison with other studies, discussion of generalizability, 
strengths and limitations. 2 2 2 1 2 1 2 0 

Total score of quality  45 48 45 38 39 43 51 36 

  Percentage (%)  75 80 75 63.3333333 65 71.6666667 85 60 

NA: Not applicable   
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B. Supplementary material Part II – Questionnaire 
Survey questions 
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Thesis feasibility report in Dutch 
 

 

Siri van der Meijden  
Master thesis Technical Medicine 
5 januari 2021 
 
1. Introductie 
1.1. Pacmed Critical  
Het Leidsch Universitair Medisch Centrum (LUMC) is in november 2020 een traject gestart waarin op de Intensive 
Care (IC) beslissingsondersteunende software wordt geëvalueerd en mogelijk geïmplementeerd: Pacmed Critical  [1]. 
Pacmed Critical voorspelt wat de kans dat een ontslagen patiënt weer moet worden heropgenomen op de IC of op de 
afdeling overlijdt. Momenteel wordt onderzocht of de software die door ontwikkelaar Pacmed op andere IC’s is 
ontwikkeld, geschikt is om op de IC van het LUMC in te zetten. Er zal een grondige evaluatie van de 
beslissingsondersteunende software  plaatsvinden met een kleine groep intensivisten (de klankbordgroep), waarmee 
in samenwerking met Pacmed onder andere het gebruik van de software in de dagelijkse workflow en het dashboard 
worden geëvalueerd.  
 
Om bij aanvang van het project inzicht te verkrijgen in hoe artsen, werkzaam op de IC, tegenover het gebruik van 
Artificial Intelligence als ondersteuning bij het werk staan, is in december 2020 een korte vragenlijst van 20 vragen 
uitgevoerd onder de stafleden, fellows en A(N)IOS op de IC van het LUMC.  
 
1.2. Doelen  
Het doel van de enquête onder de IC artsen van het LUMC was het verkrijgen van inzicht in:  
 

1. Huidige overwegingen in het maken van de beslissing tot ontslag van een IC patiënt naar de afdeling. 
2. Hoe artsen tegenover het gebruik van beslissingsondersteunende software op basis van Artificial 

Intelligence (AI) staan in hun werkproces, in het bijzonder bij het ontslag proces van IC patiënten naar de 
afdeling  

3. De gewenste plaats van het Pacmed dashboard in de workflow en het gewenste moment van voorspelling  
4. De gewenste voorspelde uitkomstmaat Pacmed (heropname, mortaliteit, gecombineerd)  

1.3. Begeleidende tekst vragenlijst ter introductie  
Het predictiealgoritme van Pacmed Critical voorspelt de kans dat een patiënt moet worden heropgenomen na een 
ontslag van de IC. Hiervoor wordt gebruik gemaakt van Artificial Intelligence (AI), waarbij het predictiealgoritme een 
voorspelling doet op basis van de gegevens in het PDMS. De komende maanden wordt geëvalueerd wat de waarde 
van dit instrument is, en of het zinvol is om dit instrument op onze IC te implementeren. Daarnaast wordt onderzocht 
hoe we het predictiealgoritme zouden kunnen gebruiken in onze workflow. Deze vragenlijst is bedoeld om inzicht te 
krijgen in de huidige ontslagstrategie van IC-patiënten naar de afdeling, en om inzicht te krijgen hoe jullie artsen staan 
tegenover het gebruik van AI ter ondersteuning van jullie werk.  
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2. Resultaten enquête 
2.1. Deelnemers 
In de periode 21 december 2020 tot en met 29 december 2020 is de enquête anoniem uitgevoerd op de intensive care 
afdeling van het LUMC. Dit resulteerde in 32 respondenten, waarvan 53.1% (n = 17) vrouw. De enquête werd 
uitgevoerd onder stafleden (intensivisten), fellows (intensivisten in opleiding), AIOS (artsen in opleiding tot specialist) 
en ANIOS (artsen niet in opleiding tot specialist). Zie Figuur 1 voor de verdeling per functie en moederspecialisme. 
AIOS en ANIOS werken over het algemeen voor een kortere periode van 3 maanden tot twee jaar op de IC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figuur B-1: A: Verdeling functie deelnemers in absolute aantallen, stafleden zijn de intensivisten van de Intensive Care. B: 
Verdeling moederspecialisme deelnemers in absolute aantallen.  
 

Het gemiddelde aantal in jaren werkervaring op de IC was 6.1 ± 6.4 jaar onder alle deelnemers. Onder de 14 stafleden 
was dit gemiddelde 12.5 ± 4.5 jaar en onder de overige respondenten 1.1 ± 1.0 jaar (Figuur 2).  

 
Figuur B-2: Boxplot met aantal jaren IC werkervaring voor alle deelnemers, de stafleden (intensivisten) en overige deelnemers 

(A(N)IOS, fellows). 

2.2.  Huidige ontslagstrategie 
De deelnemende artsen reageerden uiteenlopend op de vraag of het ontslag van een IC patiënt naar de afdeling een 
complex besluit is. Op de 5-punts Likert schaal (1 = sterk mee oneens, 2 = oneens, 3 = neutraal, 4 = eens en 5 = sterk 
mee eens, [2]) is de gemiddelde respons 2.9 ± 0.9. Heropname wordt gezien als een belangrijke factor in de 
overweging tot ontslag (gemiddelde score 4.1 ± 0.6). Daarnaast speelt beddendruk mee in de beslissing tot ontslag 
(gemiddelde score 3.8 ± 0.6, Figuur 3). In de appendix zijn de gemiddelde scores uitgesplitst tussen stafleden en 
A(N)IOS/Fellows. Op de vraag hoe zeker de arts over het algemeen is dat de patiënt niet heropgenomen hoeft te 
worden op een schaal van 1-10 (1 = helemaal niet zeker, 10 = geheel zeker), was de gemiddelde score 7.5 ± 0.9 
(Figuur 4A).  
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 74 

 
 
 
 
 
 
 
 
 
 

Figuur B-3: Stellingen met betrekking tot de huidige ontslagstrategie van IC patiënten. Antwoorden konden gegeven worden 
middels de 5-punts Likert schaal.   
 
In de vragenlijst konden meerdere patiëntgroepen aangevinkt worden waarbij de beslissing tot ontslag als meest 
uitdagend wordt ervaren. Vijfenzeventig procent (n=24) van de respondenten benoemde dat de lang opgenomen 
patiënten een groep was waarbij de beslissing tot ontslag uitdagend was, waarbij zelf een definitie voor ‘lang 
opgenomen’ kon worden ingevuld (gemiddeld langer dan 17.6 ± 7.9 dagen opgenomen op de IC). Voor 59% (n = 19) 
was de groep eerder heropgenomen patiënten uitdagend. Oudere patiënten (9,4%, n = 3) met een zelf aangegeven 
leeftijdsgrens van gemiddeld 70 jaar, en COVID patiënten (13%, n = 4) werden minder vaak als optie gekozen. Negen 
deelnemers vulden zelf één of meerdere overige patiëntcategorieën in, waarbij ernstige spierzwakte, al dan niet in 
combinatie met verminderde hoeskracht, het vaakst werd genoemd (16%, n = 5). Andere groepen die werden 
genoemd waren patiënten < 3 maanden oud (op de kinder IC), patiënten met ernstig hartfalen, ontslag in de late 
namiddag/avond, forse sputumproductie, hematologische morbiditeit, ‘lastige’ chirurgische patiënten, patiënten met 
no-return/non-IC beleid, en patiënten met onbekende primaire diagnose (Figuur 4B).   
 

 
Figuur B-4: A: Gemiddelde zekerheid dat een patiënt niet heropgenomen hoeft te worden bij besluit tot ontslag (patiënten met een 
no-return beleid uitgesloten). B: Patiëntgroepen waarbij de beslissing tot ontslag als meest uitdagend worden ervaren, meerder 
antwoorden mogelijk. Een gemiddelde van 17.6 ± dagen werd aangeduid als een lange IC opname. 

 
2.3.  Artificial intelligence op de IC  
Een zestal stellingen zijn met de 5-point Likert Scale aan de deelnemende artsen voorgelegd om te onderzoeken hoe 
artsen tegenover het gebruik van AI staan in hun werkprocessen op de IC (Figuur 5). De meeste artsen zijn bekend 
met het begrip AI, en geloven dat AI hen in het werk zou kunnen ondersteunen. Duidelijk is dat ze niet bang zijn dat AI 
hun werk overbodig maakt. Tweeënzestig procent van de artsen antwoorde ‘neutraal’ op de stelling waarin werd 
bevraagd of AI goed genoeg het werk van een arts begrijpt om te kunnen ondersteunen. Zie de appendix voor de 
scores uitgesplitst tussen stafleden en A(N)IOS/Fellows. Het merendeel (78%)  ziet de meerwaarde van AI voor het 
voorspellen van heropname voor IC patiënten op het moment van ontslag, waarbij het overduidelijk is dat het 
belangrijk is, voor 94%,  om inzicht te hebben in de factoren waarop deze voorspelling is gemaakt.  
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Figuur B-5: Stellingen (5 punts Likert schaal) met betrekking tot het gebruik van Artificial Intelligence op de IC, met in bijzonder voor 
het voorspellen van heropname. 
 
 
Interessant waren de responses op de vraag waarvoor AI nog meer ingezet zou kunnen worden bij IC zorg. Twintig 
(63%) van de respondenten gaf hierbij één of meerdere suggesties. De thema’s die hierbij het vaakst terugkwamen 
waren het voorspellen van hemodynamische verslechteringen en/of hypotensie (n = 6), en het voorspellen van 
respiratoire achteruitgang, beademing en/of extubatie failure (n = 6). Daarnaast werden genoemd:  
 

 Capaciteitsvoorspelling & voorspellen ‘futility’ van zorg 
 Prognosebepaling hematologische patiënten 
 Voorspelling dat een 80+er binnen drie dagen van de IC is (korte opnames ter overbrugging) 
 Diagnoses: nierinsufficiëntie, longembolieën, Crticial Illness neuropathie/myopathie 
 IC opname triage 
 Medicatie review 
 Diagnostische ondersteuning bij echografie 
 Mortaliteitskans 
 Voorspelling behoefte aan nierfunctie vervangende therapie  
 Sedatieregulatie 
 Medicatie met TDM 
 Kans op overleven op de IC 
 Protocolvorming bij aanpak circulatoire shock  
 ECMO trends en inzet van ECMO 
 Trends in P/F ratio of andere parameters 
 Scores van beeldvorming en lab voor prognose 
 Sondevoeding en metabolisme 
 Beslissingsondersteuning bij wel of geen IC opname ouderen (70+ jaar).  

 
2.4.  Workflow  
De voorkeur voor de plek in het PDMS (Patient Data Management Systeem, Metavision 6) waar de voorspelling 
weergeven moet worden verschilde tussen de deelnemende artsen, zie Figuur 6A. De opties ‘Tablad ‘overzicht’ in het 
PDMS’, ‘Apart dashboard’, en ‘Tablad ‘status’ in het PDMS’ werden ongeveer even vaak genoemd. De voorspelling 
zou op meerdere momenten in de workflow kunnen worden ingezet. Eén of meerder opties konden hiervoor gekozen 
worden, waarbij de ochtend overdracht (41%, n = 13), het beddenoverleg (44%, n = 14) en de grote visite (47%, n = 
15 uur) het vaakst werden gekozen (Figuur 6B). Drie artsen gaven een andere optie, namelijk in Hix, geen voorkeur, 
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en een andere lay-out van PDMS waarin in één oogopslag opname diagnose, actuele problematiek, beleid en beloop 
weergeven worden. Deze laatste optie is vergelijkbaar met het dashboard dat Pacmed Critical levert.  
 

 
Figuur B-6: A: Voorkeur plaats van weergave voorspelde kans op heropname in het PDMS. Verdeling in absolute aantallen. B: 
Voorkeur moment(en) van weergave voorspelde kans op heropname IC patiënten.  
 
2.5.  Uitkomstmaat voorspelde kans op heropname 
Vierentachtig procent (n = 27) van de deelnemende artsen wilt voor zowel medium care (MC) als IC patiënten de kans 
op heropname kunnen inzien. Pacmed Critical gebruikt de samengestelde voorspelde kans op heropname/mortaliteit 
binnen 7 dagen na ontslag. De respondenten werden daarom gevraagd welke voorspelde uitkomstmaat zij het meest 
relevant vinden bij de beslissing tot ontslag. Zestien respondenten (50%) kozen hierbij voor de kans op heropname 
binnen 7 dagen na ontslag, en 11 respondenten (34%) voor de gecombineerde uitkomstmaat kans op 
heropname/overlijden. Drie keer werd aangegeven dat alle uitkomstmaten apart weergeven moeten worden (Figuur 
7A). Overige voorgestelde opties waren de kans op heropname binnen 48 uur, en de kans op heropname/overlijden 
binnen 30 dagen, 6 maanden en 1 jaar na ontslag.  
 
Daarnaast werd gevraagd een schatting te geven bij welk voorspeld percentage kans op heropname dit van invloed 
zou zijn op het wel/niet ontslaan van een IC patiënt (Figuur 7B). De percentages die hierbij werden ingevuld waren 
sterk verdeeld, met een gemiddelde van 44.5 ± 23.4% of groter waarbij een patiënt niet ontslagen zou worden, en een 
gemiddelde van 23.6 ± 13.8 % of kleiner waarbij een patiënt wel ontslaan zou worden. Drie artsen gaven aan hier 
geen antwoord op te kunnen geven, gezien dit uiteraard per casus verschilt. Hierop aanvullend werd middels de 
stelling “Ik weet het niet zeker, maar ik denk dat bijna geen enkele voorspelde kans mijn gedrag zou beïnvloeden” 
onderzocht of de deelnemende artsen openstaan voor het gebruik van Pacmed Critical. Hierop reageerde de meeste 
respondenten met “Oneens” (n = 14) of “Neutraal” (n = 13).  

 

 

Figuur B-7: A: Meest relevante voorspelde uitkomstmaat binnen 7 dagen na IC ontslag, verdeling in absolute aantallen. B: Verdeling 
voorspelde kans waarbij invloed op beslissing tot ontslag plaatsvindt.  
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2.7.  Opmerkingen en suggesties 
Een aantal nuttige suggesties en opmerkingen werden ingevuld aan het einde van de vragenlijst: 

 “Zorg voor een goed vangnet op de afdeling bij een hoog voorspelde kans op heropname (bijv. regelmatige 
controles door de IC).”  

 “IC patiënten worden bij ontslag geaccepteerd door de geschikte afdeling indien er voldoende plek is. CAVE: 
wellicht accepteert de afdeling een patiënt niet meer indien de voorspelde kans op heropname hoog is.” 

 “Externe specialisten kunnen het als absolute maat zien en daardoor kan ontslaan lastig worden. Soms ontsla 
je toch met een kans op heropname, zodat je andere IC-behoeften kunt voorzien. Heropname is niet altijd 
vermijdbaar, het is de vraag of blijvend op de IC het beloop van de patiënt anders zou zijn. Je ontslaat soms 
mensen waarvan je weet dat ze terug zullen komen!” 

 “Laat de kans zien bij vaste afspraken.” 
 “Belangrijk om in te zien waar de score op gebaseerd is!” 
 “SVP ook de kinder-IC betrekken en onderzoeken!” 
 “Veel kanten aan deze materie, of dit beter wordt dan onze ervaring/gut-feeling zal ik kritisch beschouwen.”  
 “Het percentage moet samen genomen worden met klinische blik. Geen absolute waarde.“ 

 
 

3. Discussie en conclusie 
De intensive care artsen van het LUMC staan over het algemeen positief tegenover het gebruik van 
beslissingsondersteunende software op basis van Artificial Intelligence in hun werkproces. In vergelijking met een 
studie van Oh et al. naar het vertrouwen van artsen in AI, waren de artsen van de IC van het LUMC vaker bekend met 
AI, en waren ze minder bang dat AI het werk overbodig zou maken [3]. De beddendruk op de IC is van invloed op 
beslissing tot ontslag, wat tijdens de uitbraak van het SARS-CoV-2 virus extra relevant is [4]. Een tool waarbij de arts 
ondersteund kan worden in de beslissing tot ontslag, zou daarom juist nu extra van waarde kunnen zijn.  
 
Vrijwel alle respondenten gaven aan het belangrijk te vinden om inzicht te hebben in de patiëntfactoren die leiden tot 
de voorspelling. De behoefte aan een uitlegbaar model is dus groot. De meningen zijn verdeeld over de complexheid 
van het besluit tot ontslag, maar duidelijk is dat kans op heropname en beddendruk een belangrijke factor zijn in de 
beslissing. Over het algemeen gaven artsen een score van 7.5 ± 0.9  op een schaal van 1-10 hoe zeker ze zijn dat 
een patiënt niet heropgenomen hoeft te worden na ontslag.  De keuze en/of timing tot ontslag blijkt het lastigste bij 
lang liggende patiënten (langer dan gemiddeld 17.6 dagen), eerder heropgenomen patiënten en spierzwakke 
patiënten. Er was heterogeniteit in de responses voor de gewenste plek van implementatie van Pacmed Critical voor 
ontslag ondersteuning in de workflow, verdere evaluatie is hiervoor daarom gewenst in samenwerking met de 
klankboordgroep. Dit geld ook voor de meest relevante voorspelde uitkomstmaat (heropname, overlijden, of de 
combinatie van beide), waarbij duidelijk werd dat 84% van de artsen de voorspelling zowel bij IC als MC patiënten 
relevant vindt. De hoogte van de voorspelde kans op heropname waarbij een arts wel (gemiddeld 23.6 ± 13.8 % of 
kleiner) of niet (gemiddeld 44.5 ± 23.4% of groter) een patiënt zou ontslaan naar de afdeling verschilden sterk. Het 
wordt waardevol om de uiteindelijke verschillen in voorspelde kans van het Pacmed algoritme versus de arts bij 
ontslag te onderzoeken, wat gedaan zal worden middels een prospectief onderzoek. Tot slot werden veel nuttige 
suggesties gegeven voor de inzet van AI in de IC zorg, en werden een aantal kritische kanttekeningen geplaatst bij het 
voorspellen van heropname van IC patiënten.   
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C. Supplementary material Part III – Model development 
 

A detailed description of available variables (Part 1), pre-processing of data and feature engineering (Part 2), 
and modeling and evaluation methods (Part 3) of the paper ‘Predicting Intensive Care Unit readmission: 
performance and explainability of machine learning algorithms’ are provided in this Supplementary material. The 
applied model development steps are simplified in Figure 28. 

 
Figure 28: Steps in prediction modeling of ICU readmission. First, ICU patient data was collected and explored. Both static data 
(patient characteristics) and time-series data (laboratory results, vital functions, medication data) was used for prediction modeling. 
Second, feature engineering, feature selection, and data pre-processing was performed to get meaningful data to train the 
prediction models on. Third, Machine Learning algorithms (logistic regression, boosting algorithms, and neural networks) were 
optimized and trained. Fourth, final models used to predict ICU readmission within 7 days after discharge on an internal test 
dataset. Fifth, the discriminative performance and calibration properties of the final models were evaluated. Lastly, explanations 
were evaluated using logistic regression coefficients and SHAP values.  

Part 1: Variable description and exploratory data analysis  
1. Variable types 

Prediction of Intensive Care Unit (ICU) readmission was performed using patient variables from the Patient Data 
Management System (PDMS, MetaVision version 5 and 6, IMDsoft, Tel Aviv, Israel) and the Electronic Health 
Record (EHR, HiX, Chipsoft, Amsterdam, The Netherlands). A division can be made between static variables 
and time-series variables. Static variables include patient characteristics and admission information, and do not 
change over the course of the ICU stay. Time-series variables include laboratory results, vital signs and device 
data, clinical observation and scores, diagnostics, and therapeutics1. Another division in variable types can be 
made between categorical and numerical features. Categorical features include for instance sex (male/female) 
and treating specialty (e.g., thoracic surgical, internal medicine). Numerical features include for instance length of 
stay in days and heartrate levels.   

Not all variables of interest were available at time of prediction modeling, 63 out of 83 variables from all 
categories, except clinical observation and scores, could be used for the prediction of readmission. Due to a 
large amount of missing data, a subset of 29 variables was used for model development. See Table 1 in the 
main paper (page 34) for an overview of the included variables.  

2. Descriptive statistics and statistical differences between groups 
For all available variables, we explored descriptive statistics and looked for statistical differences between the 
group of readmitted patients and not readmitted patients. For categorical variables, percentages per subgroup 
were determined and Chi-Squared testing was performed for statistical testing. For numerical variables, median 
and interquartile ranges are provided and statistical testing was performed using Wilcoxon Rank test. It is 
important to note that for this part, we only tested median aggregates between the two groups. Other aggregates 
(e.g., minimum, maximum, standard deviation, slope) were only used during model training.  

2.1. Patient characteristics 
6.71% of the 12,189 included patients were readmitted to the ICU within 7 days after discharge. No significant 
differences in gender and vasoactive drug use between the two groups was found. Readmitted patients had 
significant higher 30-day mortality rates, were more often emergency admissions, and more often general 
surgical patients. See Figure 29 for the difference in treating specialties among readmitted and not readmitted 
patients. The combined outcome for readmission/mortality within 7 days after discharge was 8.6%. In Figure 
30, cumulative readmissions and deaths over time after discharge are visualized. It can be seen that the curve of 
readmissions flattens after 7 days after discharge, indicating that this time point covers most readmissions.  
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Figure 29: Differences in proportions of readmitted patients to 
the ICU for the main 10 treating specialties at the ICU 
department of the LUMC.

 

Figure 30: Cumulative readmitted and deceased patients 
after ICU discharge at day 0.

 
2.2. Laboratory results 

Descriptive statistics of all available laboratory results are summarized in Table 6. Laboratory results are time-
series variables and therefore measured multiple times during the ICU admission. Therefore, we looked at 
differences in median over the whole ICU admission. Similar results were found for last measured values before 
discharge. For most laboratory results, significant differences were found in median values over the whole 
admission although sometimes differences were small. Higher ALAT, ASAT, and alkaline phosphatase levels 
were found for the readmission group. This finding indicates that liver function and/or gallbladder problems are 
correlated with readmission risk. Also infection status is correlated with readmission risk, with higher C-reactive 
protein and leukocytes levels for the readmission group. Troponin levels, a marker for heart failure, were lower 
for the readmission group. This can be explained by the lower rate of thoracic surgical patients in the 
readmission group. Thoracic surgical patients often have high Troponin levels after open heart surgery.  

Table 5: Laboratory measurements in median (Inter Quartile Range (IQR)) over the entire ICU admission. P-values calculated using 
Wilcoxon Rank test. P-values marked in orange were statistically different (p < 0.05). 

name Readmission median (IQR) No readmission median (IQR) p-value 
ALAT average admission 30.75 (19.0 - 63.5) 24.0 (16.0 - 42.0) < 0.001 
APTT average admission 36.02 (31.6 - 42.41) 32.82 (29.88 - 37.31) < 0.001 
ASAT average admission 49.0 (31.04 - 93.65) 44.33 (31.0 - 72.0) 0.001 
Albumin average admission 28.63 (24.52 - 33.0) 30.0 (27.0 - 34.0) < 0.001 
Alkalic Phosphatase average admission 100.67 (68.38 - 164.25) 78.0 (57.0 - 126.38) < 0.001 
Amylase average admission 66.0 (39.1 - 143.0) 66.0 (41.0 - 126.0) 0.78 
BE average admission -1.29 (-4.03 - 1.6) -2.64 (-4.44 - -0.33) < 0.001 
BSE average admission 82.33 (30.0 - 115.5) 26.5 (9.0 - 67.0) < 0.001 
Bicarbonate average admission 23.04 (20.56 - 25.85) 22.29 (20.6 - 24.25) < 0.001 
Bilirubin Total average admission 12.0 (8.0 - 22.0) 10.0 (7.0 - 15.0) < 0.001 
CK average admission 388.0 (137.5 - 814.37) 478.42 (285.25 - 761.69) < 0.001 
CRP average admission 89.75 (48.69 - 162.57) 73.0 (41.1 - 121.43) < 0.001 
Chloride average admission 104.83 (100.1 - 108.08) 104.95 (102.29 - 107.67) 0.066 
Gamma GT average admission 82.5 (38.5 - 186.0) 55.0 (25.0 - 129.25) < 0.001 
Glucose average admission 8.07 (7.28 - 9.12) 7.9 (7.01 - 8.91) 0.018 
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Hb average admission 6.0 (5.4 - 7.07) 6.53 (5.8 - 7.35) < 0.001 
Ionized calcium average admission 1.14 (1.1 - 1.18) 1.16 (1.12 - 1.2) < 0.001 
Potassium average admission 4.07 (3.87 - 4.35) 4.2 (3.95 - 4.49) < 0.001 
Creatinine average admission 95.17 (65.76 - 142.0) 82.0 (65.5 - 106.0) < 0.001 
LDH average admission 331.0 (233.0 - 469.23) 315.5 (236.0 - 421.0) 0.016 
Lactate average admission 1.57 (1.2 - 2.02) 1.4 (1.1 - 1.82) < 0.001 
Leukocytes average admission 13.22 (10.14 - 16.94) 12.5 (9.94 - 15.47) < 0.001 
MCV average admission 90.59 (87.25 - 94.45) 90.31 (87.33 - 93.5) 0.033 
Magnesium average admission 0.87 (0.74 - 1.0) 0.89 (0.76 - 1.0) 0.015 
Sodium average admission 138.35 (136.0 - 141.36) 138.16 (136.2 - 140.11) 0.008 
Neutrophil Granulocytes average admission 17.27 (11.42 - 80.56) 14.0 (8.32 - 72.9) 0.051 
O2 Saturation average admission 94.1 (91.15 - 95.92) 92.5 (88.6 - 95.76) < 0.001 
PT average admission 17.03 (15.53 - 19.52) 16.38 (15.35 - 17.94) < 0.001 
Total protein average admission 42.0 (20.8 - 52.0) 44.0 (25.82 - 52.5) 0.104 
Thrombocytes average admission 188.0 (129.86 - 263.42) 178.55 (138.82 - 231.0) 0.042 
Troponin T average admission 171.05 (16.0 - 777.62) 433.0 (163.67 - 879.5) < 0.001 
Urea average admission 9.45 (6.3 - 16.29) 6.65 (5.1 - 9.5) < 0.001 
Anorganic phosphate average admission 1.22 (0.98 - 1.47) 1.11 (0.92 - 1.33) < 0.001 
pCO2 average admission 5.12 (4.64 - 5.58) 5.13 (4.76 - 5.51) 0.497 
pH average admission 7.4 (7.36 - 7.45) 7.38 (7.35 - 7.42) < 0.001 
pO2 average admission 11.8 (10.55 - 13.47) 12.32 (10.93 - 14.43) < 0.001 

 
2.3. Medication  

Medication included for analysis were vasopressor (epinephrine, noradrenaline) and inotropic drugs 
(dobutamine, enoximone/milrinone), see Table 7. These medication types create vasoconstriction and/or 
increase cardiac contractility which is needed to treat critically ill patients in shock2. Noradrenaline, dobutamine, 
and Milrinone total dosages were significantly higher for the readmission group. This finding indicates that 
patients readmitted to the ICU were in need of more drugs to maintain adequate blood pressure. Enoximone and 
Milrinone are similar agents, but surprisingly for enoximone no significant differences were found. A few years 
ago, the ICU department of the LUMC switched from using Enoximone to Milrinone.  

Table 6: Medication total dosages in median (IQR). Enoximone and Milrinone are similar medication types but are displayed 
separately due to dosage differences.  P-values calculated using Wilcoxon Rank test. P-values marked in orange were statistically 
different (p < 0.05). 

name Readmission median (IQR) No readmission median (IQR) p-value 
Epinephrine sum dosage 3.77 (0.86 - 6.84) 1.73 (0.48 - 5.8) 0.184 
Dobutamine sum dosage 657.45 (154.58 - 1652.8) 370.33 (142.01 - 1000.0) 0.005 
Enoximone sum dosage 197.09 (93.56 - 399.93) 148.38 (74.22 - 290.22) 0.319 
Milrinone sum dosage 47.87 (17.46 - 103.41) 23.31 (10.27 - 57.98) <0.001 
Noradrenaline sum dosage 12.61 (2.53 - 59.41) 2.68 (0.65 - 13.12) <0.001 

 

2.4. Vital functions  
Vital functions representing the physiological state of a patient are closely monitored at the ICU. We found a 
small, but significant, difference in median arterial blood pressure (ABP) for patients readmitted to the ICU, see 
Table 8. Median respiratory rate and median heartrate were higher for readmitted patients, which are known to 
be increased for critically ill patients. Overall, difference in median vital function between the two groups were 
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small. It is likely that other variable statistics (minimum, maximum, slope) show larger differences between the 
two groups.  

Table 7: Vital functions in median (IQR).  P-values calculated using Wilcoxon Rank test. P-values marked in orange were 
statistically different (p < 0.05). 

name Readmission median (IQR) No readmission median (IQR) p-value 

ABP mean average admission 79.96 (73.0 - 87.75) 78.5 (73.0 - 86.0) 0.004 

Respiratory rate average admission 18.5 (16.0 - 21.83) 16.75 (14.5 - 19.11) <0.001 

CVP average admission 8.0 (6.0 - 11.17) 7.58 (5.5 - 10.27) 0.306 

FiO2 (inst) average admission 37.5 (32.5 - 41.67) 38.04 (30.0 - 40.0) 0.216 

Heartrate average admission 84.25 (75.52 - 94.22) 79.8 (70.5 - 88.5) 0.002 

NIBP mean average admission 81.12 (69.62 - 94.62) 80.27 (70.38 - 93.0) 0.441 

PEEP (contr) average admission 5.14 (5.0 - 6.5) 5.0 (5.0 - 6.0) <0.001 

Ppeak (contr) average admission 17.12 (15.0 - 20.31) 17.0 (15.0 - 19.5) 0.255 

SpO2 average admission 97.0 (95.84 - 98.56) 97.53 (96.42 - 99.0) 0.015 

Temperature 1 average admission 37.09 (36.71 - 37.4) 37.05 (36.7 - 37.4) 0.686 

Tidal Volume exp (contr) average admission 542.38 (472.04 - 620.54) 549.0 (475.5 - 629.5) 0.145 

Oxygen l/min (inst) average admission 3.0 (2.0 - 4.5) 2.67 (1.75 - 4.0) <0.001 

 

3. Missing data 
Missing data is an important factor when using patient data for prediction modeling, because proportions of 
missing data in EHRs can be high. Variables are known to be recorded under multiple names, and in different 
databases. For instance, we dealt with the transition between two PDMS systems in our database, making it 
difficult to get all data for each variable. See Figure 31 for an overview of proportions of data missing for all 
included patients. There was no missing data for the included static variables. For some variables, missing data 

can be not at random, meaning there is a 
reason for missingness. E.g., adrenaline 
is only administered to patients with 
extreme low blood pressure, and tidal 
volume is only measured in patients 
receiving mechanical ventilation. These 
types of missing data could have a 
relation with the predicted outcome and 
can therefore not be neglected. Other 
high levels of missing data can be missing 
completely at random, due to for instance 
the transition in the PDMS. Data missing 
not at random can occur for instance in 
laboratory values, Troponin T is most 
often only measured in cardiology 
patients3. Variables included for final 
model development are indicated with an 
orange star in Figure 31. 

Figure 31: Overview of proportions of missing 
variables for all included patients.  
* = included for model development. 
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Part 2: Feature engineering and pre-processing  
4. Data cleaning  

PDMS data is prone to artefacts. Ideally, extensive data cleaning is performed to erase outliers in the dataset. 
For laboratory results, we could use physiological ranges as provided by Pacmed to erase outliers before feature 
aggregation. Outlier removal of vital functions was not possible before feature aggregation, because feature 
aggregates were directly created from the database. Therefore, we used median values instead of mean to 
correct for possible outliers. The presence of remaining outliers in our dataset could limit the performance, and 
for future studies, more elaborate data cleaning should be performed.   

5. Feature engineering  
Some algorithms (e.g., recurrent neural networks) are capable of using raw time-series data as input to train 
prediction models on. The use of these more advanced models was out of the scope of this research. Therefore, 
feature engineering was performed to capture summary statistics and time-related trends of time-series 
variables. Feature engineering was performed similar as described by Thoral et al.  

Feature aggregates for medication included total dosage, total duration of administration, total duration of 
administration as fraction of LOS, and time since last use before discharge. Furthermore, a binary indicator of for 
use at moment of discharge was added. For laboratory results and vital signs, feature aggregates were 
calculated for three time windows. The first 24 hour of admission, the last 24 hour of admission, and the average 
of the whole admission. See Table 9 for an overview of feature aggregates used for prediction modeling on 
laboratory results and vital functions.  

Table 8: Feature aggregates (summary statistics) of time-series variables. Three time-windows were used for calculating feature 
aggregates, the first 24h, the last 24h and the whole ICU admission. Adjust from Thoral et al.1  

Feature type Time-
window 

Function  

 
 
 
 
 
 
 
 
Time-series: 
Vital signs and 
laboratory 
results 

Last 24h Mean or median 
Minimum 
Maximum 
Standard deviation 
First 
Last 
Count (number of measurements) 
Missing (yes/no) 
Slope 

First 24h  Mean or median 
Minimum 
Maximum  
Count (number of measurements) 
Standard deviation 
Missing (yes/no) 

Average 
whole 
admission  

Mean/median 
Minimum 
Maximum  
Count (number of measurements) 
Standard deviation 
Missing (yes/no) 
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6. Pre-processing and feature selection  
Besides feature engineering, other pre-processing steps of the data were used to get suitable input data for all 
prediction model types. To avoid data leakage during model development, all pre-processing steps were fitted on 
the training dataset before they were applied to the testing dataset4. Feature engineering was performed before 
further pre-processing. All data tables (characteristics, medication, laboratory results, vital signs) were merged 
into one dataset, and split in an 80% training and 20% test dataset. A pre-processing pipeline was manually built 
in Python through which the data was processed in the following order: 

1. The column names of the dataset were categorized in categorical columns (e.g., specialization type) and 
numerical columns (e.g., age). Furthermore, an extra column was added for all variables with on or more 
missing values. For feature aggregates, a column for missingness was added for each time window.  

2. A binary indicator (1 or 0) was given to indicate whether a variable was missing for each patient in the 
corresponding missingness column.  

3. Missing data was imputed using mean imputation for numerical variables (mean value in the training 
dataset). Other types of imputation tested included K-nearest neighbor and median imputation, but this 
yielded inferior performance. More advanced types of imputation (e.g., population averages) were not 
evaluated.  

4. Missing data was imputed using mode imputation for categorical variables.  
5. All numerical variables were scaled with zero mean and unit variance (standard-scaling). This step was 

performed to correct for scale differences between variables.  
6. Categorical features were transformed to numerical features using one-hot encoding, also known as 

dummy encoding. This method creates a new column for each category, with a 1 in the column for the 
corresponding category of a patient. One-hot encoding is often preferred over ordinal encoding (e.g., 
CTC = 1, CHI = 2 …) because the model can misinterpret a certain order in the categories4.  

Feature selection of all pre-processed features (1380 features all variables included 550 features for subset with 
variables with too much missing data dropped) was performed using L1-feature selection as described by Thoral 
et al. The C-parameter for regularization was set on 1.5. This resulted in respectively 703 and 416 features to 
train the prediction models on.  

7. Labelling  
Each patient in the dataset was given a label for the predicted outcome (readmission within 7 days after 
discharge). The labels were used to train and test the prediction algorithms on. Labelling of the dataset was not 
trivial because one ICU admission was often divided in multiple sub-admissions in the dataset. Therefore, all sub 
admissions (sub-encounters) first needed to be merged to get a start and end time of each ICU admission. We 
merged all sub-encounters where end and start time were less than 2 hours apart. For each patient, the label 
‘readmission’ was given if a new start time of ICU admission was within 7 days of the last ICU discharge.  
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Part 3: Modeling and evaluation  
A detailed explanation of modeling methods and model evaluation is provided in this section.  

8. Experimental set-up  
An experimental set-up is needed for model development, see Figure 32. After data exploration and feature 
engineering, the dataset (including all patients with corresponding features and labelled for the outcome 
readmission) was split into two subsections. Splitting of the dataset split was performed in a stratified manner; 
this means that the proportions of patients readmitted (positive class) and not readmitted (negative class) were 
equal in all sets. The training dataset was used to train pre-processing steps on (e.g., imputation values) and for 
model development during hyperparameter tuning. 20% of all patients in the dataset were used for finale model 
evaluation. By doing so, the generalizability of the models on unseen data could be evaluated.  Ideally, the 
model performs equal on the training and test dataset, indicating that the optimum in the “Bias-variance tradeoff” 
is reached. An overfitted model will result in a high training/validation dataset performance, and low test 
performance (high variance). An underfitted model will have a large bias, because it is not possible to determine 
the relation between the predictors and the outcome (and a low general performance)4. 

Stratified 5-fold Cross-Validation (CV) was performed during hyperparameter tuning and final model training on 
the training dataset. CV is a method in which the dataset is split multiple times to get average performance on 
different parts of the training dataset. Each fold included a 80% training and 20% validation part of the training 
dataset. CV enabled us to assess generalizability of models before final model evaluation.  

 

Figure 32: Experimental set-up for model development. 

9. Hyperparameter tuning strategy 
Hyperparameters are the internal settings of a Machine Learning model that can be adjusted to get optimal 
discriminative performance. For each model type, many hyperparameters can be adjusted. The process of 
optimizing the hyperparameters for a classification task is called hyperparameter tuning. Different types of tuning 
strategies can be applied. E.g., grid search tests all possible combination of hyperparameters. We used a 
Bayesian optimization strategy. Bayesian optimization converges to a set of hyperparameters based on previous 
performance, and therefore limits training time5. An objective metric needs to be specified to evaluate the 
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performance of a set of hyperparameters (e.g., 2 hidden layers in a neural network, with 16 and 32 nodes etc.). 
We chose area under the precision recall curve (AUCPR) as objective metric since this could be applied for all 
model types and is suitable for imbalanced datasets6. Each combination of hyperparameters was trained and 
tested during 5-fold CV. The combination of hyperparameters with the highest AUCPR was chosen as ‘final 
model’ configuration.  

Hyperparameter tuning was performed in Keras Tuner7, a Python library. In Keras Tuner, we manually specified 
for each hyperparameter a range of options, called the hyperparameter space. Furthermore, we tested multiple 
types of pre-processing and feature subsets. Best results were obtained using standard scaling and L1 feature 
selection with the subset of features with acceptable missing data.  

10. Logistic Regression hyperparameter tuning  
For logistic regression (LR), only one hyperparameter needed tuning: the C-parameter for L2-regularization to 
prevent overfitting. A range of 0.001-100 was evaluated for the C-parameter, according to Thoral et al. A small C 
has high regularization strength, and therefore reduces the chance of overfitting. L1-regularization, as used 
during feature selection, shrinks the coefficient of the least important features to zero. L2-regularization does not 
perform feature selection but reduces the impact of each feature by forcing the coefficients to decrease8. The 
final LR model had a C parameter of 0.002.  

11.  Neural network hyperparameter tuning 
A feed-forward neural network (FFNN) was optimized using the hyperparameters as specified in Table 10. 
Settings that were unchanged during hyperparameter tuning were batch size (520), the loss function (binary 
cross-entropy), and the activation function (ReLU)9. Each configuration was trained for 100 epochs, where early 
stopping was performed when validation loss did not improve for more than 10 epochs.  
 
The finale FFNN was composed out of an input layer, 4 fully connected deep layers (480, 320, 320, and 160 
nodes), and a sigmoid output layer for readmission prediction between 0 and 1. Weighted training was 
performed to account for class imbalance. To reduce overfitting and increase generalizability, drop-out and L2-
regularization was implemented4. L2-regularization works similar for FFNNs as for LR, by decreasing the 
magnitude of the weights to avoid overfitting. The drop-out hyperparameter between 0 and 1 determines the 
proportion of nodes that is used for training in each layer. This means that during training, a random proportion of 
nodes is not used, preventing the network to give high weights to certain features and therefore prevent 
overfitting10.  

Table 9: Hyperparameters optimized for feed forward neural networks 

Hyperparameters Neural Network Range Intervals  Final configuration 
Input layer drop-out 0.05-0.2 Log sampled 0.06 
Number of deep layers 2-5 1 4 
Deep layer drop-out 0.4 – 0.6 Log sampled 0.44 
Number of units in each dense layer 32-512 32 480, 320, 320, 160 
Batch normalization  True/false   False 
L2-regularization  1e-1 - 1e-6 1e-1 0.01 
Drop-out hidden layers 0.4-0.6 Log sampled 0.44 
Learning rate 1e-2 – e-5 1e-1 0.01 

 

12. Boosting hyperparameter tuning 
Two types of boosting (tree-based ensemble) algorithms were used for prediction modeling. Gradient Boosting 
machines (GB) as described by Thoral et al., and eXtreme Gradient Boosting (XGBoost)11.  The difference 
between boosting methods and other ensemble methods, e.g., random forests, is that gradient boosting builds 
an ensemble of trees while iteratively improving on the previous tree. Each new decision tree in the sequence 
focusses on improving model performance by fixing the largest prediction errors of the previous tree. XGBoost is 
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known for its improved regularization performance compared to GB and is one of the current state-of-the-art ML 
used for a wide range of applications12.  

Hyperparameters tuned for GB and XGBoost are summarized in Table 11 and Table 12. The max depth is the 
maximum tree depth of each decision tree, the learning rate determines how fast the algorithm learns, the 
number of estimators are the number of decision trees in the ensemble, the minimum samples per leaf and 
maximum number of features per leaf parameters control the complexity of each tree, the subsample size is the 
proportion of the training data used for training, and minimum child weight to limit tree depth13. Lastly, for 
XGBoost weighted learning was applied by scaling the positive class (readmissions) to account for class 
imbalance. This could not be performed for GB.  

Table 10: Gradient Boosting Machines hyperparameters1 

Hyperparameters  Range Intervals  Final 
configuration 

Max depth 3 – 9  1 0.6 
Learning rate 0.01 - 0.1 Log sampled 0.1 
Number of estimators 100 – 1000 50 750 
Minimum samples per leaf 50 – 500 50 250 
Max number of features  0.1 – 0.3 0.1 0.2 
Subsample size 0.5 – 0.9 0.1 0.7 

 

Table 11: XGBoost hyperparameters14 

Hyperparameters  Range Intervals  Final 
configuration 

Number of estimators  20 – 300 10 230 
Learning rate 0.01 – 0.1 Log sampled 0.01 
Max depth 1 – 10 1 3 
Min child weight  1-5 1 3 
Scaling positive class 1 – 100 10  11 

 

13.  Performance of predicting combined outcome readmission/mortality  
The primary outcome of Pacmed Critical is the combined prediction of readmission and death within 7 days after 
discharge. This composite outcome measure was chosen because both adverse events are competing risks and 
were expected to have influence on decision making for discharge. We primary trained our prediction models for 
the readmission outcome. A secondary analysis was performed for the combined outcome, using the same 
models as for the prediction of readmission. In Table 13, the performances of the final models for the prediction 
of the composite outcome are summarized. Overall, higher performance was obtained for the composite 
prediction, what can be explained by the higher number of events in the dataset for model training (822 
readmissions vs. 1041 readmissions/deaths). Another reason could be that palliative care patients and patients 
with no-return/do-not-resuscitate orders could not be excluded from the data. Predicting the composite outcome 
takes into account any deaths in this patient group.  

14. SHAP  
SHAP (SHapley Additive exPlanations) values were used to visualize impactful predictors of ‘black-box’ machine 
learning and deep learning models.  SHAP is inspired by cooperative game theory and computes the impact of 
each feature on the predicted outcome15. The Shapley value indicates how much the feature, in the context of 
interactions with other features, contributes to the prediction of that patient compared to the mean prediction of 
the population. For the prediction of readmission, the baseline prediction in our population is 6.7%. The predicted 
outcome for a patient is therefore the summation of the mean prediction (6.8%) with all the Shapley values 
combined. Each Shapley value in this case corresponds to a feature, ‘pushing’ the prediction lower or higher. It 
differs from classical explainable prediction models since it is not an isolated effect but a combined effect of the 
feature in combination with other features15. 
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Table 12: Final model performance for the combined outcome (readmission/mortality) prediction. Results are given in 
mean (standard deviation (SD)) for cross-validation (CV) on the training dataset. Final model performance is given on the 
test dataset. Best results on the test dataset are marked in orange. AUCPR = area under the receiver operating characteristic 
curve, MCC = Matthews correlation coefficient. 

 Neural Network Logistic Regression Gradient Boosting XGBoost 
 

CV (mean (SD)) Test CV (mean (SD)) Test CV (mean (SD)) Test CV (mean (SD)) Test 

Train time (s) 13.36 (3.41) - 0.28 (0.01) - 114.6 (7.27) - 17.14 (3.53) - 

Score time (s) 0.11 (0.05) 0.11 0.04 (0.00) 0.01 0.22 (0.05) 0.37 0.14 (0.05) 0.1 

Accuracy 0.66 (0.03) 0.69 0.65 (0.01) 0.65 0.91 (0.00) 0.91 0.68 (0.01) 0.67 

Precision 0.15 (0.02) 0.18 0.16 (0.01) 0.17 0.30 (0.07) 0.38 0.17 (0.01) 0.18 

Recall 0.66 (0.05) 0.75 0.75 (0.03) 0.79 0.06 (0.01) 0.06 0.71 (0.01) 0.78 

Specificity 0.66 (0.04) 0.68 0.64 (0.01) 0.64 0.99 (0.00) 0.99 0.68 (0.01) 0.66 

AUCPR 0.21 (0.02) 0.22 0.24 (0.02) 0.25 0.21 (0.02) 0.25 0.23 (0.02) 0.23 

F1-score 0.25 (0.02) 0.29 0.27 (0.01) 0.28 0.10 (0.02) 0.11 0.28 (0.01) 0.29 

AUC 0.73 (0.02) 0.77 0.76 (0.02)  0.78 0.73 (0.02) 0.77 0.76 (0.02) 0.77 

Brier 0.34 (0.03) 0.31 0.35 (0.01) 0.35 0.09 (0.00) 0.09 0.32 (0.01) 0.33 

MCC 0.19 (0.03) 0.25 0.22 (0.02) 0.25 0.10 (0.03) 0.13 0.23 (0.01) 0.25 

 

SHAP Tree Explainer was used for XGBoost explanations and DeepSHAP was used for neural network 
explanations16. 500 patient samples from the training dataset were used as background data for the explainers. 
SHAP values as presented in the summary plots were then computed over the entire test dataset. For the 
summary plots, the top 20 features contributing most tot the predicted outcome were visualized. For patient 
specific visualization in so-called SHAP “force-plots”, we manually extracted the top 10 features contributing 
most to the predicted outcome (5 most negative and 5 most positive). Because standardized values were used 
as input for prediction modeling, absolute feature values were not indicated in the force-plots. Therefore, we 
indicated with an arrow upwards or downwards whether te feature for that specific patient was higher or lower 
than average.  

15. Expert opinion  
Expert opinion was incorporated to evaluate the explanations of the different model for clinical applicability. Two 
ICU physicians were asked to indicate for each feature whether it was contradictive, irrelevant, or relevant for 
their decision to discharge a patient. Furthermore, three patient examples were incorporated showing patient 
specific SHAP plots for Neural Networks and XGBoost.  
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The following form was used for expert opinion collection:  

 

**********************************************************Expert opinion***************************************************** 

Explainability of machine learning algorithms for the prediction of ICU readmission 
- Expert opinion - 

1. Background 
Prediction of intensive care unit (ICU) readmission could support physicians in determining optimal timing for ICU 
discharge. We found a significant higher 30-day mortality rate for patients readmitted to the ICU within 7 days 
after discharge (19.8% vs. 4.4%, p < 0.001). The hypothesis is that a decision support tool predicting a patient’s 
risk of readmission could identify which patients are fit for discharge and which are not. First, we developed three 
different algorithms using a subset of patient variables available at time of model development (Table 1).  
Differences in discriminative model performance was small. Therefore, we focus on the explainability of the 
different algorithms to evaluate what model type is most in line with clinical reasoning. Expert opinion of two ICU 
physicians is collected by means of this form to assess what model’s explanations are most clinically relevant.   

Table 1: Variables included for prediction modeling. 

Category Variable included for model development Category Variable included for model development 
   Patient 
characteristics 

Age  
 
 
 
 
 
 
 
 
 
Laboratory 
results 

Urea 
Gender Thrombocytes 
Emergency admission PT 
Hospitalization admission source Potassium 
Treating specialty MCV 
Length of stay (ICU) Leukocytes 
Length of stay prior ICU  Lactate 

Medication Dobutamine Creatinine 
Noradrenaline Haemoglobin 
Milrinon/Enoximon CRP 
Adrenaline Bilirubin 

Vital functions Oxygen flow BE 
ABP Amylase 
Respiratory rate Alkaline phosphate 
 Albumin 
 ASAT 
 ALAT 
 APTT 

 

2. Global predictor importance  
From these variables, a total of 416 measurements were used for model development. For the three different 
models, we are interested in your opinion on the top 20 most important variables. Because we used multiple 
types of measurements (e.g., standard deviation of CRP during first 24 hour of ICU admission), one variable can 
be represented by multiple measurements.  

Question 1: Indicate in Figure 1 for each measurement whether it is contradicting, irrelevant, or relevant for 
a patient’s readmission risk. (E.g., a high last measured respiratory rate before discharge is often observed for 
patients with increased readmission risk = relevant). Check the box ‘neutral’ for no opinion.  

For machine learning models, other visualization of important variables can be used to gain insight in their ‘black-
box’ predictions. See Figure 2. Each dot in the plot represents a patient with high (red) or low (blue) value for a 



 

 89 

specified measurement. Dots on the right side of the y-axis indicate a correlation with high risk of readmission 
and vice versa. The thickness of the line is determined by the number of patients. 

Question 2: Please indicate clinical relevancy  for each measurement in Figure 2. 

Question 3: What type of visualization do you prefer? [Figure 1/Figure 2.] 

Question 4: What model is overall most in line with clinical reasoning and therefore best applicable in clinical 
practice? [Model A/Model B/Model C] 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure C-1: Logistic Regression top 20 coefficients. Several type of measurements are used for each variable to capture time 
trends. A positive coefficient indicates correlation with high readmission risk, a negative coefficient indicates correlation with 
low readmission risk. LOS = Length of stay. Std = standard deviation, count = number of measurements, missing = not measured.  
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3. Patient examples 
For model B and C, patient specific explanations can be given for each prediction of ICU readmission. In Figure 
3, the predicted probabilities of model B and C are given in percentages for three patients. The variables in blue 
correspond to the variables ‘pushing’ the prediction lower. The variables in red correspond to the variables 
‘pushing’ the prediction higher. A baseline readmission rate of 6.7% was observed, indicating predictions > 6.7% 
are high risk patients.  

Question 5: Encircle for each patient whether model B or C is more clinically explainable and/or relevant.  

Patient 1: 

 

Patient 2:  

 

 

 

 

 

 

Figure C-3a: Patient specific explanations displaying the top 10 most important predictors for the readmission prediction. The 
variables contributing to a higher risk of readmission are visualized in red. The variables contributing to a lower risk of 
readmission are visualized in blue. Arrows pointing upwards and downwards indicate higher or lower than average.  

Figure C-3b: Patient specific explanations displaying the top 10 most important predictors for the readmission prediction. The 
variables contributing to a higher risk of readmission are visualized in red. The variables contributing to a lower risk of 
readmission are visualized in blue. Arrows pointing upwards and downwards indicate higher or lower than average.  
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Patient 3: 
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Figure C-3c: Patient specific explanations displaying the top 10 most important predictors for the readmission prediction. 
The variables contributing to a higher risk of readmission are visualized in red. The variables contributing to a lower risk 
of readmission are visualized in blue. Arrows pointing upwards and downwards indicate higher or lower than average.  



 

 93 

 

D. Supplementary material Part IV – study protocol  
Discharge survey questions 

 
In the PDMS, under ‘discharge data’ (ontslag gegevens), the following questions will be asked to the 
fellow/intensivist at the moment of discharge: 

 

1. Wat uw geschatte kans op heropname/mortaliteit van deze patiënt naar de IC of MC binnen 7 dagen? 
(Drop-down menu)  
 
 De patiënt heeft een no-return of abstinerend beleid en zal niet heropgenomen worden  
 De patiënt wordt overgeplaatst naar een ander ziekenhuis  

------------------------------------------------------------------------------------ 
 Geef aan op een schaal van 1-10, waarbij 1 zeer onwaarschijnlijk en 10 zeer waarschijnlijk1.  

 

2. Wat is het geschatte risico op heropname/mortaliteit van deze patient?  
 Hoog risico                      
 Gemiddeld risico           
 Laag risico                                     

 
  

3. Welke vijf factoren dragen bij deze patiënt het meeste bij tot uw antwoord op vraag 1? (optioneel) 
  
 (Vink aan) 

Categorie Variabele2  
Respiratoir  Ademhalings frequentie  

 PaO2 
 PaCO2 
 Beademingsduur 
 FiO2 
 L/min 
 Tijd sinds extubatie  
 Hoestkracht 

Circulatoir  Hartslag  
 Bloeddruk  
 Vasopressie/inotropica  
 Vochtbalans  

Neurologisch  EMV score  
 Delier 

Renaal  Creatinine  
 Diurese  
 Nierfalen  

 



 

 94 

Labwaarden  pH  
 hematocriet  
 Natrium 
 Kalium  

Overig  Algemene indruk 
 Duur van verblijf op de IC 
 Opname indicatie patiënt  
 Voorgeschiedenis 
 Comorbiditeiten  
 Fast-track thorax patiënt 
 Anders namelijk….. 

  
Optioneel 

4. Bij eventuele heropname, verwacht ik dat dit op basis van het volgende falen zal zijn2: 
 Circulatoire instabiliteit 
 Nieuwe of verslechtering bestaande infectie 
 Respiratoir falen  
 Bloeding 
 Encefalopathie  
 DKA/HHS  
 Zuur-base stoornis, elektrolyten stoornis, of andere lab afwijkingen 
 Verpleegkundige last  
 Anders namelijk…  
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