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Abstract. Finding optimal adversarial dynamics between defenders and
attackers in large network systems is a complex problem one can ap-
proach from several perspectives. The results obtained are often not sat-
isfactory since they either concentrate on only one party or run very
simplified scenarios that are hard to correlate with realistic settings. To
truly find which are the most robust defensive strategies, the adaptive at-
tacker ecosystem must be given as many degrees of freedom as possible, to
model real attacking scenarios accurately. We propose a coevolutionary-
based simulator called MOVE that can evolve both attack and defense
strategies. To test it, we investigate several different but realistic scenar-
ios, taking into account features such as network topology and possible
applications in the network. The results show that the evolved strategies
far surpass randomly generated strategies. Finally, the evolved strategies
can help us to reach some more general conclusions for both attacker
and defender sides.

Keywords: Coevolutionary algorithms - Network security - Attack/defense strate-
gies

1 Introduction

Cyber attacks are becoming more powerful, dangerous, and prevalent due to
constant improvements in attackers’ strategies. There are powerful attacks like
Advanced Persistent Threats (APTs) that can hide their presence, conduct re-
connaissance, and run exploits [15]. Defender mechanisms, at the same time, try
to detect possible threats as early as possible and run defensive actions to thwart
the attacker’s moves. At the same time, the defender’s actions are constrained
by not being disruptive to the normal operation of the network. In most modern
systems, there is a significant asymmetry between attackers and defenders. That
notion of asymmetry is a well-known phenomenon with many attempts to make
such a relationship more balanced [1612]. Unfortunately, while the defender needs
to protect the whole system at all times, for an attacker, it is enough to find a
single weakness at a certain moment in time.



As an example, consider a defender strategy where one is randomly chang-
ing the network topology to deceive an attacker (for instance, implementing a
Moving Target Defense (MTD) [4]). Such a strategy will thwart many attackers,
but will not be capable of adapting to any specific scenario. Ideally, we want to
develop strategies that are: 1) powerful enough to fulfill their goals (e.g., mount-
ing a successful exploit or defending against it), 2) general enough to encompass
many scenarios, and 3) adaptive, to react to new not previously observed scenar-
ios. Developing such strategies can present multiple benefits, from simply testing
the limits of a system (for example, we develop a system and we want to test
how resilient it is against an adaptable attacker) to finding new strategies not
previously used or even considered.

In this paper, we propose a new simulator (MOVE) based on coevolutionary
algorithms, which can model adversarial network cybersecurity scenarios. To do
so, we abstract networks with graphs and we define several capabilities for each
side.

When considering adaptive scenarios, we start with seminal work by J. Miller,
where he investigated the coevolution of strategies in the repeated prisoner’s
dilemma [10]. To find new strategies, Miller used genetic algorithms and mod-
eled strategies in the form of finite automata (Moore machine) with individuals
encoded as strings of bits. Winterrose et al. evolved attackers’ strategies against
moving target defenses [I7]. There, the attackers’ goal is to find the optimal
scheduling strategy for introducing exploits to a system by using genetic algo-
rithms. At the same time, the defenders switch between several platforms, i.e.,
they use migration-based techniques, to reduce the attackers’ chances of mount-
ing a successful exploit. Due to the limited number of considered resources and
the limitation to only two defender’s strategies, genetic algorithms were able to
find highly successful strategies in all cases. Rush et al. presented CANDLES, a
system designed to coevolve attacker and defender agent strategies and evaluate
potential solutions with an abstract computer network defense simulation [12].
As far as we are aware, this is the first system considering coevolutionary al-
gorithms for security scenarios. Garcia et al. considered modeling real-world
attackers and defenders in a peer-to-peer network [6]. They develop a system
able to generate defense strategies where the defenders can choose one of three
different network routing protocols: shortest path, flooding, and a peer-to-peer
ring overlay to try to maintain their performance.

Duan et al. presented a random route mutation technique, which by ran-
domly changing the route of the multiple flows in a network, simultaneously
defends against attackers while preserving network usability [4]. Zaffarano et al.
investigated the influence of moving target defenses for network environments
and discussed different metrics designed to evaluate the success of MTD [I§].
Achleitner et al. developed a network reconnaissance system based on SDNs to
achieve deception by simulating virtual network topologies [2]. There, the au-
thors discussed several deceptive methods to slow down the scanning attempts
by an attacker who needs to scan the whole network. Prado Sénchez explored
several variants of coevolutionary algorithms to model adversarial behavior in



cybersecurity domains [I3]. Kelly et al. developed a system based on a coevo-
lutionary genetic algorithm, which produces a virtual network topology that
delays the attacker and detects the attacker’s scan as quickly as possible [§].
Hemberg et al. used coevolutionary algorithms to examine a defensive measure
called network segmentation, which divides a network into enclaves serve as
threat isolation units [7].

The main contributions of this work are:

1. Design of a coevolutionary scheme able to model a wide range of realistic
adversarial dynamics in complex networks. The developed simulator MOVE
enables running simulations to find the best strategies for both attackers
and defenders. MOVE is an open-source and publicly available project under
development [IJ.

2. Besides modeling attackers and defenders, we also take into account the
normal network traffic, which puts important constraints on defense strate-
gies. Consequently, a defender’s strategy will not only try to incapacitate
attackers but simultaneously opt not to disrupt normal network operation.

3. We propose a new metric called Network Spatial Topology to measure changes
in the network from the defender’s perspective.

4. To better describe the adversarial dynamics, we add a temporal component
to our strategies. As a consequence, the opponents play against each other
in a series of games, where each game takes place after both players have
performed their actions. The defender can maximize the impact of his actions
by considering the network state at various moments in time.

Our simulator significantly differs from previous works (e.g., CANDLES [12]
and RIVALS [6]), notably in contributions (2), (3), and (4) which, to the best
of our knowledge, were never considered before. Naturally, the actions we define
for the attacker and defender are also different from those considered in previous
works.

2 Problem Definition

2.1 Network Model

Let NM be a network model consisting of a finite number of elements (e.g.,
switches, hosts, firewalls, honeypots, etc.). Accordingly, the network consists of
a number of elements that are used in actual traffic but also some elements that
are used to deceive an attacker. From the operational perspective, we distinguish
between two types of elements: firewalls and everything else. The difference is
that the attacker cannot conduct actions on nodes behind a firewall until he
has the firewall under his control (i.e., he successfully performed an exploit on
that node). Without loss of generality, we continue by calling all nodes hosts.
The host elements are connected to form a network and each host has certain
resources related to it. For instance, one resource can be an operating system
running on a station. Each host must have at least one resource allocated to it.
Finally, each node has a set of ports to serve as endpoints for communication.



We represent our network N M as an n-tuple: < H, R,C, P >. Here, H repre-
sents the set of hosts, R represents the set of resources, C' represents the connec-
tions between hosts (i.e., their adjacencies), and P denotes the set of ports. Next,
we represent every host H as an n-tuple: < RH, PH, Firewall, Honeypot >,
where RH represents the resources allocated on the host, PH represents the
ports available on a specific host, Firewall denotes whether a node is a firewall
(1) or not (0), and finally, Honeypot denotes whether a node is a honeypot (1)
or not (0).

In our model, hosts are connected with edges that can be undirected or
directed (e.g., a firewall that allows traffic in one direction but not in the other).
To model the connections among hosts, we use an adjacency matrix. There is
a finite number of possible resources in a network, and there is a degree of
similarity between some of those resources. The resource similarity is defined
with the resource similarity matrix. As an example, consider resources Ry, R,
and Rj3.The resources R; and Rs have a similarity equal to 0.7, while resources
R; and Rj3 have a similarity equal to 0.5. This means that if there is a successful
attack on resource Ry, then there is a greater probability that the same attack
will work for resource Ry than for resource R3. Since not all resources are equally
likely to be observed in a network, we model this phenomenon through the
resource popularity table that defines the probability of a resource to occur in a
network. Finally, each node has a number of ports where a certain port number
is reserved to identify specific services.

2.2 Attacker Model

We assume that the attacker has already infiltrated the network and is control-
ling one internal host (location is not known, and at the beginning of each run, it
is assigned uniformly at random). The attacker does not know the network topol-
ogy, the resources allocated to each host, or which ports are used. From inside
the network, he can use various scan techniques to discover details about the net-
work topology and to run remote exploits to move laterally within the network.
Note that by combining these actions, we encompass the main functionalities of
the Discovery phase of a cyber attack [I4]. This set of actions enable the attacker
to obtain (partial) information about the network, i.e., n-tuple < H,R,C, P >
and a number of nodes, i.e., n-tuples < RH, PH, Firewall, Honeypot >. Then,
he attempts to exploit specific resources (e.g., operating system, services, proto-
cols) associated with hosts/ports. The attacking approach is to find a strategy
that will maximize the amount of information about hosts gathered, and conse-
quently, the success of the exploits deployed. To allow the attacker to (theoreti-
cally) assume control of any part of a network, we assume that each resource can
be exploited (with a certain probability). The set of actions that are available
to the attacker are:

Scan a node of the network. This is the basic move for the attacker and
the only reliable way to explore the whole network — identifying hosts, used
ports, and resources as well as the information on the connectivity between the
hosts. Results from the literature show that the network scanning is often the



predecessor of an attack, and consequently represents an integral part of our
model [IT]. We start each simulation with the assumption that the attacker does
not know anything about the network, except for the node he is located at. Only
once a node is scanned (e.g., using Nmap [9]), the attacker knows the potential
weaknesses (resources) present there. To scan the network, the attacker can use
either a horizontal scan or a vertical scan. A horizontal scan is a scan performed
against a group of nodes for a single given port. A vertical scan is a scan where a
single node is scanned for multiple ports. Note, we assume that the attacker can
rescan nodes to keep an updated database to perform more successful attacks. It
is not possible to scan the nodes behind a firewall before mounting a successful
exploit on the firewall. There is a cost of scanning a node/port. To model it, we
define those costs as a cost of accessing a node and the cost of scanning a port.
The cost amounts can be set arbitrarily to match the actual network properties.

Attempt of an exploit. A successfully mounted exploit is the end goal of
the attacker. The exploit can be attempted on both previously scanned hosts and
hosts that were not scanned before. In the former case, the attacker attempts
to run the exploit corresponding to the most observed resource in the scanned
network. Naturally, he will attempt the exploit only on the nodes that have that
resource. Additionally, the attacker will also try to mount exploits on resources
that are similar to the most observed resource. In the latter case, we distinguish
two strategies. The first strategy is Mazimize, where the attacker attempts to use
the exploit that is the most “popular”. The motivation for this type of exploit
is that the attacker can use his previous experience or available information on
the network to attempt the exploit he deems most likely to be successful. If
the host does not have that specific resource, the attack is not successful. The
second strategy is called Diversify and it differs from the previous one by using
random exploits. Similarly, the host must have at least one of the corresponding
resources for the exploit to be successful.

We assume there is a cost of running exploits where we assign these costs
uniformly at random for each resource (but this can easily be configured dif-
ferently). Note, the notion of exploit cost can be interpreted as a set of actions
necessary for the attacker to run an exploit (the concept used in [I7]). Regardless
of the interpretation, we can work without loss of generality with a notion of a
budget that the attacker must spend to perform a scan or to launch a successful
exploit.

2.3 Defender Model

The defender’s goal is to minimize the success of an attacker by either preventing
him from mounting exploits or at least slowing him down. To do so, the defender
has at his disposal several actions that will enable him to deceive the attacker
with incorrect information. Since each of the hosts can be infected, we assume
that our defense strategy can deploy different defense mechanisms for each host.
By utilizing these actions, the defender changes the n-tuple corresponding to
the actual network (i.e., “True View Network”) TVy =< H,R,C, P > into n-
tuples belonging to the Virtual View Network VVy =< H', R',C', P’ > and



n-tuple corresponding to host TVy =< RH, PH, Firewall, Honeypot > into
VVy =< RH',PH’, Firewall, Honeypot >. With these actions, the defense
deceives the attacker since he has access only to the virtual views. Consequently,
when the attacker runs the attack, he will obtain knowledge only of a small
part of a true network, which will reduce the chances of his successful exploits.
Actions available to the defender are:

Add/remove a honeypot. A honeypot is isolated and monitored by the
defense system, and users accessing it can be immediately labeled as attackers,
since legitimate users do not enter honeypots. Each honeypot has resources/ports
of the same type as real hosts and there is a limit on the maximal number of
honeypots in the network.

Add/remove a connection. This action corresponds to re-routing traffic
between hosts.

Add/remove a resource. This action corresponds to migration-based tech-
niques.

Move ports. This action corresponds to replacing a resource from the
present port to another randomly chosen unused one.

Note that, by default, all actions affect a randomly selected part of the net-
work. The defender has an additional goal connected with the network usability:
he must maintain the normal operation of the network, which we encode as not
being possible to remove nodes (or their corresponding connections) that par-
ticipate in the normal (true) traffic. The set of nodes that must not be affected
by defender actions is given at the beginning of the simulation.

3 Experimental Setup

Both the defender and the attacker have at their disposal a certain budget for
their actions. With this, we try to avoid that the evolution finds solutions that
are trivial or not particularly insightful (e.g., scanning the whole network at
once or adding thousands of honeypots to a physical network of only ten hosts).
Different actions have different costs which limit their use. The actual values can
be defined in the simulator by the user to reflect the current network model.

We differentiate three scenarios concerning the capabilities of adversaries:
1) static defender, adaptive attacker, 2) adaptive defender, static attacker, and 3)
adaptive defender, adaptive attacker. In all scenarios, both defender and attacker
populations are initialized at random and at the beginning each member of both
populations is evaluated in simulation against every member of the opposing
population. This way, we obtain an initial estimate of the quality of randomly
generated attack and defense strategies.

In the first scenario where the defense is static, we then select only the best
strategy from the defender population and run the evolution on the attacker
population only. In every iteration of the GA, each attacker is evaluated by
simulating its actions against the preselected defender. The attacker population
is then subject to evolution, trying to find the best strategy against the static
defender. In the second scenario, the same principle is applied inversely; the best



attacker from the initial population is used in the evolution of improved defense
strategies.

Finally, in the most general case, both attacker and defender populations
undergo evolution; in every iteration of the GA, we simulate the actions of each
attacker against each defender and vice versa separately, and their fitness value
is accumulated over all simulations. In this case, the aim is to evolve a strategy
that would perform well against a wide range of opponents.

In all the scenarios, a single simulation is performed in one or more games: a
single game includes both the attacker and the defender performing their actions
up to exhausting the allotted budget. After a game is completed, their budgets
are restored to the initial amount and the next game is commenced. In our
experiments, a default number of 5 games is used in all experiments.

In MOVE, we use a simple genetic algorithm (GA) with a 3-tournament
selection [5]. With the 3-tournament selection, three solutions are selected ran-
domly and the worst one is discarded. From the remaining two solutions, one
offspring is created by the crossover operator. We note that this algorithm has
the property of elitism, which means that the best solution will always remain
intact in the next population [5].

The initial population is created uniformly at random. As a stopping crite-
rion, we use the number of generations. Each simulation is run for R runs where
each run is independent and consists of G generations. The size of the attacker
population is P4 and that of the defender population Pp. The simulation is run
in a setting where time advances in discrete steps.

We use parameters defined for the coevolutionary algorithms as given in
Table |1} Note, the mutation rate is per individual, which means there is a p,,
chance an individual will be mutated, but the mutation happens only on a single,
randomly selected gene.

Table 1: Coevolutionary algorithm parameters.

Parameter name Parameter value
Number of runs R 30
Number of generations G 150
Number of games 5
Attacker (defender) population size A (B) 30
Tournament size k 3
Mutation rate per individual p., 0.3

3.1 Encoding of Solutions

To encode strategies efficiently, we use integer representation, where each gene
represents one part of the strategy. Each solution (i.e., an individual) is repre-
sented as an array of integer values — integer-based encoding. The encodings of



solutions for attackers and defenders differ, but we define one that ensures a
minimal number of non-coding genes, as explained in the next section. For both
sides, the values for each gene are in the range [0,100]. Each value represents a
relative probability (as a percentage) of choosing a specific action. The relative
percentages are always scaled during genotype decoding so that the total sum
of probabilities of all considered actions equals 100%. After an action is chosen
based on those probabilities, it is performed either in full (depending on the
action type) or until the budget is exhausted. If there is a remaining budget
after the current action is completed, the next action is chosen and performed
in the same way until the budget is depleted. Note that although it may seem
possible to run an exhaustive search over the set of all possible strategies, besides
the number of strategies, one also needs to take into account the network lay-
out and all possible choices in running the strategies, making exhaustive search
infeasible.

To encode the attacker, we require seven genes. The first gene determines
the amount of the budget spent on the scan action. The scan action can occur
only on accessible nodes (i.e., those that are not behind a firewall). After a scan
action is chosen, it can be performed either via a horizontal or vertical scan,
and the relative probabilities of these variants are encoded in gene two and gene
three, respectively.

The fourth gene decides the probability of mounting exploits on previously
scanned nodes, while the fifth gene determines the choice of exploits attempted
without a prior scan. After an exploit without a prior scan is chosen, gene six
determines the probability of attempting to mount the most popular exploit on
a node accessible by the attacker. Conversely, gene seven determines the relative
probability of mounting a random exploit on the accessible nodes of the attacker.

All actions, i.e., scan and exploit are mounted on randomly selected accessible
nodes. We randomly select a known resource and a known related port to be
attacked on a previously scanned node. In the case when no scan action has
been performed on a node, we take a resource from a list of the most popular
resources and a random ordering of ports for the exploit attempt.

To clarify the encoding, we give a small example next. For easing the interpre-
tation, we normalize the values. Let us see what coding |15||35/|65||75]10]|72||28]
represents: The first gene corresponds to the scan action, which is chosen with
15% probability, 75% on exploits after scanning and 10% on exploits without
scan. From the scan budget, we choose a horizontal scan with 35% and a vertical
scan with 65%. Finally, from the budget allocated to exploit without scan, we
choose to diversify with 72% and maximize with 28%. Note that not all genes
need to contribute to the fitness (e.g., if the exploit without scan is 0, then the
values for gene five and six would not contribute to the strategy).

The defender encoding consists of nine genes.The first gene (at position 0)
decides the probability of add actions. Genes two to four decide the relative
probability for adding paths, hosts, and resources, respectively. Gene five decides
the probability for remove actions. Analogously, genes six to eight decide the
amount of remove budget to be spent on removing paths, hosts, and resources,



respectively. Finally, gene nine decides the probability for moving ports (more
precisely, replacing a resource from the present one to another randomly chosen
port that is not used).

In both attacker and defender encodings, we use well-known genetic opera-
tors; namely, a simple mutation that alters a randomly chosen gene with uniform
probability over the gene values, and one-point crossover between two parents.

3.2 Fitness Functions

The goal of the attacker is to mount as many as possible successful exploits
and at the same time minimize the chances of being discovered by the defense
system. Accordingly, he aims to maximize the following fitness function:

fitness 4 = #Success ful_Exploits. (1)

If the attacker is simulated against multiple defenders (scenario 3), then the
total fitness is simply the sum of all fitness values from separate simulations.
The goal of avoiding being discovered is encoded implicitly in this fitness func-
tion since the attacker will not gain a reward for exploits mounted on honeypots.

The goal of the defender is to thwart the attacker by making the changes in
the network where those changes cannot interfere with the normal operation of
the network. To measure the changes in the network, we propose a metric called
Network Spatial Topology — NST(NM) that encompasses changes on hosts,
paths, and resources. This metric is defined in three separate components:

n number_of _paths
2

NST(NM) =
(VM) <mamnetwork;size ’ n

,RSN) NG)

RSN considers the number of resources on each host and their similarities:

RSN:f: iRHN—F Em: S(R;, Ry) |, (3)

i=1 \j=1 k=j+1

where n is the number of hosts, m is the maximal number of resources per
host, RH;; is the resource j on host i, and S(R;, Ry) is the similarity between
resources [?; and Rj. To capture the effect of changes, we include a time compo-
nent into the metric and compare the values of NST(N M) at discrete moments
t and t + 1 occurring after each game (each move) in the simulation.

All three components of N.ST are normalized into the [0, 1] range to avoid one
component having a much larger influence than the other components. Besides
mazximizing the changes in the network configuration, the defender has as a goal
to minimize the number of successful exploits of an attacker. Note, this could
be a less realistic goal since the defense will in practice rarely know immediately
that a node is compromised. Still, we add this to our fitness function to be able
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to evolve strategies that can fight more actively against attackers. The number
of successful exploits is normalized by dividing with the maximum number of
nodes in the network (maz_network_size). In our fitness function, we maximize
NST and minimize the number of successful exploits (we subtract that value
since the overall goal is fitness maximization):

fitnessp = [INST(NM,t) — NST(NM,t + 1)| — #Success ful_Exploits. (4)

Note that we do not add information about honeypot nodes that the attacker
visited into the defender fitness. This is because such discovery is a consequence
of fitness (i.e., because the fitness is enabling the development of good strategies,
the attacker often visits honeypots) and not a behavior encoded in the fitness
function.

3.3 Simulation Parameters and MOVE Simulator

In Table [2| we give parameters defining specific scenarios we investigate. Max
network size represents the largest network size we allow in a simulation. We
work with three sizes that represent a small, medium, and large network, respec-
tively. Naturally, we are aware that our large network is small when considering
many realistic scenarios (for instance, a university could easily have 20000 or
more hosts). Still, the network sizes we use are either comparable to or larger
than those explored in similar literature [2I3]. Init network size represents the
network size at the beginning of a simulation. Number of real nodes represents
the part of the Init network size that is composed of real nodes, i.e., not hon-
eypots. For instance, if the Max network size is 100, then there are 60 hosts at
the beginning of the simulation, and of those 60, 54 are real hosts, meaning six
hosts are honeypots. Finally, Number of firewalls is set to 10% of real hosts,
which means there are five firewalls in the configuration. We set the costs of
any defender action, as well as when the attacker is conducting the scan action
(accessing a host, scanning a port) to the value of 1. For both the attacker and
defender side, we allocate a budget equal to 10% of the Initnetworksize.

We start each run by randomly generating a network with connections/paths
between those hosts and resources belonging to each host. The exploit cost for
each resource is selected uniformly in the range [1,5]. We report the average
values and standard deviation of the fitness for both attacker and defender pop-
ulations over 30 runs.

4 Results

For each scenario we consider, we give an average and standard deviation values
calculated over several experimental runs. Those values are good indicators of the
more general behavior and are less affected by a certain choice of experimental
parameters. We do not give Min and Max values since they represent the extreme
cases that are less interesting from the perspective of having good strategies.
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Table 2: Network and adversary parameters.

Parameter name Parameter value
Max network size [100, 500, 1 000]
Initial network size 60% of Max network size
Number of real nodes 90% of Initial network size
Number of firewalls 20% of real nodes
Budget for attacker 15% of Initial network size
Budget for defender 15% of Initial network size
Cost of any defender action 1
Cost of accessing a node (attacker) 1
Cost of scanning a port (attacker) 1
Max number of resources [10, 20, 30]
Max number of ports on a node 20
Max number of resources per host [3,5,7]

It is to be expected that there will be some defense strategies behaving ex-
tremely poor for certain attack strategies and good for some other strategies.
Naturally, such behavior is highly dependent on the current network and ad-
versary, so it should not be considered as a good strategy in general. One goal
of evolutionary optimization is to attain a set of possible solutions that behave
well over a large number of problem instances. Consequently, a smaller devia-
tion of the best fitness values over multiple runs would imply the optimization
algorithm is consistently able to perform well.

Note that attacker and defender strategies could have significantly different
fitness values; this is a natural consequence of different fitness functions. In
Table [3] we present results for all three scenarios we experiment with, and in
the next paragraphs, we discuss the obtained results as well as give examples of
evolved strategies.

4.1 S1 — Static Defender, Adaptive Attacker

Since the defense is static, we simply create uniformly at random 30 defense
strategies (since the population size equals 30) and we investigate how those
strategies behave against attackers that can adapt to them. First, we observe
that the fitness value of the attacker increases with the network size, while the
defender fitness does not show a significant increase with the increase in the
network size. At the same time, we see that the standard deviation for the
defense is large (the larger the network size, the larger is the standard deviation),
which indicates that there are many attack strategies for which a static defense
is not that successful. Consequently, for a large number of attack strategies,
static defense cannot provide adequate protection. Finally, we observe how attack
strategies have a steady increase in their average values, which is expected since,
with the increased size of the network, the attacker also has more freedom to
select where and what to attack.
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Differing from that, the defense strategies do not display consistent behavior
with the increase of the network size. More precisely, the best fitness is obtained
for the largest network size, which is not surprising since there the defense has
the most freedom to change the topology of the network significantly. More
surprisingly, the worst average fitness for defense is for the medium sized network.
These results simply suggest that with random changes, it is impossible to predict
the behavior of the defender.

Table 3: Results for all scenarios. NS denotes the network size and SD is the
standard deviation.

S1 - SDAA S2 - ADSA S3 - ADAA

NS |Strategy| vy SD|Ave  SD| Avg  SD

100 attack [3.23 1.17/0.39 6.09{12.70 3.69
defense |0.77 17.51|3.63 0.80|71.30 3.71
500 attack [4.23 1.10]0.79 12.68(38.73 9.98
defense |0.66 24.82(4.00 0.82(80.09 4.38
1000 attack [6.10 1.58]0.94 17.45/53.50 11.40
defense [1.19 26.41(3.87 0.93|82.05 3.91

When considering adaptive attack strategies, we give a typical high perform-
ing example for a large network: |7]|55/[1]|95/|5/||93]|66|. Here, we see that a large
part of the budget is spent on mounting exploits after scanning, where strategy
almost always prefers a horizontal scan rather than a vertical scan. Attempts to
mount exploits without scan actions are deemed not to be very lucrative, fitness-
wise. Still, when running the exploit without scan action, maximize strategy is
preferred over the diversify strategy. Another fact to observe is the budget spent
on scanning: better strategies spend lower budget in scanning, which means that
the attacker scans a small part of the network and then conducts several exploits.

4.2 S2 — Adaptive Defender, Static Attacker

Analogously to the first scenario, now we randomly create a population of attack
strategies and try to evolve defense strategies that are effective against such ran-
dom attacker strategies. Here, we can see that having the ability to adapt reduces
significantly the standard deviation of defense strategies, which means that we
can evolve strategies successful against different attacks. At the same time, large
standard deviation values for the attacker strategies indicate that random at-
tacker strategies are not successful against a variety of defense strategies. Small
average values for the attacker further indicate that the random strategies are
not a good choice to use since such strategies will not give a good performance
even for particular cases. We observe how the increase in the network size brings
improvement to the fitness of the attacker. Still, while the network size increases
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five times, the fitness increases only two times when comparing the small and
medium networks. Similarly, when going from medium to large network (double
the network size), the fitness increases for only around 20%.

Interestingly, we can see that both the average and standard deviation values
for defense strategies remain similar even for significantly different network sizes.
Finally, relatively small changes in the average value for the defender strategies
indicate that the allocated budget is sufficient even for the largest network and
that it could be smaller for the medium and small networks.

From the best evolved defense strategy for a small network
|86]]501|16||32]|49]|10/|94||91]|61|, we observe that add action is more lucrative
than the remove action, and adding paths is the best option. When considering
the remove action, we see there are many removed hosts and resources. This
indicates that the strategy is aiming to produce a much better connected net-
work while reducing the complexity of the elements in the network (by either
removing the elements of a network or a number of resources). The move port
action is also used relatively often, the success of which will depend on the actual
number of port allocated to each host.

4.3 S3 — Adaptive Defender, Adaptive Attacker

Finally, in this setting, we run experiments where both attackers and defenders
evolve and adapt over the course of the evolution process. We observe that the
average values for both attack and defense strategies are higher than in the first
two scenarios. With the network sizes increase, we see that the attacker’s average
results increase as well. When considering the standard deviation values for the
attacker, we see that the values increase with the increase in the network size,
which indicates that there is still a number of cases where the attack strate-
gies show significantly various behavior, regardless good or bad. At the same
time, there is a very stable behavior in the defense average values and standard
deviations. This indicates that defense strategies can cope with attackers (to a
certain extent) but also that it is difficult to increase the fitness of the defense
by simply using a larger network. Still, the stability of the standard deviation
indicates that the evolved defense strategies are indeed able to handle a variety
of attacks.

The best obtained defense strategy for a small network
[50(]99]|21]|17||34|8||66||80]|42| indicates that the adding action is preferred over
remove action. Adding paths seem to be the best option, while from the remov-
ing side, resources represent the preferred choices. Along with moving resources
to different ports, the defender balances between all three types of actions, which
seems to be the most beneficial option. Despite having somewhat smaller values
than in the second scenario, it is interesting to note that again remove host and
remove resource are preferred actions over remove paths.

Finally, one of the best attack strategies for large networks is
[1]184/199]|184/|0]|25||31| and indicates that to maximize fitness the attacker should
invest a large part of the budget into attempting exploits after scanning. We see
that there seems to be no incentive for running exploits without previous scans.
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Similarly (but even more pronounced) to the first scenario, we see that the bud-
get to be spent on scan action is very small. There, some more budget is to be
spent on a vertical scan, but we can consider both scanning techniques to be
similarly represented. This is a reasonable step since now the network size is
large when compared to the number of ports, so using any of those options will
give comparable results in terms of exploration.

4.4 Discussion

We emphasize that although we consider specific scenarios where results depend
on selected parameters, there are some general conclusions we can make. First,
we observe that a random strategy (regardless of whether it is defense or attack
strategy) cannot compete with an evolved one. This is clear from observing
standard deviation for all cases where smaller values mean that the strategy
is adapted for a large number of adversaries. Additionally, larger average values
indicate that the tested strategies were able to make more impact on the network.
As such, we see that random strategies do not provide good adaptation against
a variety of different competing strategies.

When considering the defense, we see as a general trend that add action
is favored over the remove action. Additionally, we see that the best option
seems to be adding paths as much as possible and removing hosts/resources. For
attackers, we observe that the scan action is almost not used since the mounting
of exploits could be regarded as easy. Naturally, this depends on the perspective
one takes since we see that the average values indicate a number of successful
exploits. These numbers are still relatively small considering the size of the tested
networks but represent a serious security breach. Finally, it is better to first scan
(remember, the scan is not favored, so the number of scanned nodes is not large)
and then conduct exploit on scanned nodes. Since the chances of the successful
exploit are then much better than mounting exploit without prior scan, a vast
majority of highly successful attack strategies involve only a smaller budget in
the exploit without prior scan action.

In all scenarios, we used the budget equal to 15% of the network size. The
results we obtained suggest that the defender requires a larger budget to be
able to cope with the attacker. Naturally, these observations only confirm the
intuition that the adversarial dynamic is more difficult for the defender since he
needs to protect the whole network while the attacker only needs to find some
weak hosts to exploit. In Figures and we depict the network topology
after running both attack and defense strategies evolved for 20 generations. The
real nodes are depicted in green color, the firewall in grey color, and honeypots
in blue color. The nodes that are exploited by the end of the process (i.e., in
the final network state) are depicted in red color. The paths that are accessed
by the attacker are given in red color while those not traversed by the attacker
are in black color. As can be seen, the attacker was able to successfully mount
four exploits by the end of the simulation, 3 in real nodes, and 1 in the firewall.
Note that the network is rather small and should serve only as an illustrative
example.
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Fig. 1: Initial and evolved networks for scenario 3.

5 Conclusions and Future Work

In this paper, we present the MOVE simulator as a tool to model adversarial
behavior in networks. With it, we can construct attacker and defender strategies
that offer high competitiveness in networks of various sizes. Our simulator can
be used either as a tool to help decide the network layout, early in the design
phase or as a driving force for on-the-fly network changes in reconfigurable en-
vironments such as software-defined networks. To be able to construct defensive
strategies that are more resilient over different attack strategies, we propose a
new metric called the Network Spatial Topology. Besides considering the attacker
and defender side, our network model also includes normal behavior, which adds
additional but realistic constraints on the defender.

Our scenarios consider only cases where all attacker strategies have the same
agenda. It would be interesting to add several attackers (i.e., to have more than
two populations) in adversarial dynamics where those attackers can be com-
pletely independent, but can also either collaborate or compete.
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