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European hub airports face persistent demand-capacity imbalances
generating 22.4 million minutes of delays in 2024, costing =C2.8 billion. Tradi-
tional reactive approaches prove inefficient for long-haul transatlantic flights.
Moreover, long-haul flights have historically been granted exemptions from
ground delay programs, meaning short-haul flights disproportionately absorb
delays during capacity constraints. This research develops an uncertainty-
aware cruise speed control strategy for managing transatlantic arrivals to
Amsterdam Schiphol Airport. The methodology decomposes arrival time
uncertainty using Johnson distributions conditioned on flight status and tem-
poral horizon, continuously monitoring probability that demand at Initial
Approach Fixes exceeds capacity. One-time strategic speed adjustments trigger
only when exceedance probability surpasses a predetermined threshold of
70 %. Fast-time simulation of 30 days using BlueSky and EUROCONTROL
trajectory data validates the approach. Across 79 interventions, the strategy
achieved 35 % capacity exceedance certainty reductions on average. These
required only 8.72 minutes average delay through conservative Mach reduc-
tions of 0.01-0.05. The approach offers a practical, environmentally beneficial
pathway for long-range air traffic flow management at capacity-constrained
hubs.

Keywords: Air traffic flow management; Uncertainty quantification; Arrival management;
Speed control; Probabilistic forecasting; Extended AMAN; XMAN; Long-range ATFM;
LR-ATFM; Demand-capacity balancing; Johnson distributions; Transatlantic flights

I. Introduction
Major hub airports frequently experience demand peaks

that exceed their available capacity. In 2024, European
air traffic suffered its worst delays in decades: en-route
Air Traffic Flow Management (ATFM) delays reached 22.4
million minutes and the average delay per flight climbed
to 2.13 minutes. Insufficient air-traffic-control capacity
generated nearly 39% of all en-route ATFM delays, closely
followed by adverse weather. The ongoing shortage of
controllers, which is driven by slow hiring and delayed
capacity projects, cost airspace users about =C2.8 billion
that year.[1]

These shortcomings have motivated demand-smoothing
initiatives that shift delay from terminal stacks to cruise.
Extending the horizon of an Arrival Manager (AMAN)
beyond the terminal area, also known as Extended AMAN
(XMAN), which allows delays to be absorbed en route,
reducing holding, noise, and fuel burn [2]. At London
Heathrow, cross-border XMAN trials showed that slowing
aircraft up to 350 NM from destination can cut low-altitude

holding and save thousands of tonnes of fuel and tens of
thousands of tonnes of 𝐶𝑂2 annually [3]. Such results un-
derline the environmental gains achievable by strategically
managing arrival flows on a larger horizon.

Traditionally, air navigation service providers (ANSPs)
manage demand-capacity imbalances through ground delay
programs (GDPs) and near-terminal sequencing, but long-
haul flights have unique challenges. Long-haul flights
cross several Flight Information Regions, each with its
own rules requiring coordination across different ANSPs
and ATFM units. Ground delays are applied reactively,
and standard Estimated Time-of-Arrival (ETA) models
increase the problem by ignoring key variables such as
wind patterns and airport congestion [4].

Newer long-range ATFM (LR-ATFM) concepts inter-
vene much earlier in flights, e.g. ICAO’s Global Trajectory-
Based Operations promotes cross-border data sharing and
collaborative decisions to lengthen planning horizons [5].
While promising, these approaches can be complex to
implement, requiring high predictability and extensive co-
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ordination. In practice, the uncertainties in long-horizon
planning remain a significant obstacle. Over intercon-
tinental distances, wind and weather forecast errors can
significantly shift a flight’s arrival time, undermining the
accuracy of demand predictions. If not addressed, these
uncertainties can reduce the effectiveness of any LR-ATFM
tool, and if too conservative capacity might be wasted and
missed interventions lead to residual congestion. Simi-
larly, the departure timing of short-haul flights can vary
enough that a hub airport’s mix of long- and short-haul
traffic becomes hard to schedule reliably multiple hours in
advance. Moreover, transatlantic flights show significantly
lower pop-up flight occurrence rates because of their oper-
ational characteristics [6]. This enhances predictability for
ATFM systems. Most existing ATFM models still ignore
stochastic demand–capacity effects, highlighting the need
for uncertainty-aware strategies.

In light of these challenges, this paper proposes a
unique approach to proactively redistribute ETAs for transat-
lantic flights bound for Amsterdam international airport
(Schiphol), using uncertainty-aware speed control during
the cruise phase. The core idea is to continuously predict
the arrival demand in comparison to the available capacity
at key waypoints and to issue a cruise speed adjustment only
once for each flight if the forecasted demand is projected
to exceed the capacity by a significant probabilistic margin.
Unlike more elaborate multi-fix metering schemes [5], a
single well-timed speed adjustment during cruise is far
more practical than multiple changes that force the aircraft
to alternately accelerate and decelerate. Furthermore, when
applied early enough, it can absorb several minutes of delay.
Additionally, by defining a demand-capacity threshold tak-
ing into account the uncertainties, it is ensured that speed
advisories are triggered only when necessary i.e., when
there is high confidence of capacity overload.

The novelty of this approach lies in combining proba-
bilistic traffic forecasting with a threshold-based control law
to initiate minimal interventions. As far as we are aware,
prior LR-ATFM concepts have not employed an explicit
demand-capacity probability threshold as the trigger for
speed adjustments; this provides a new way to cope with
forecast uncertainty to slow down flights. Furthermore, a
proactive speed control strategy has clear environmental in-
centives alongside its operational goals [3]. To evaluate the
proposed speed control strategy, we simulate transatlantic
arrivals into Schiphol using the BlueSky open-source air
traffic simulator [7].

This paper is outlined as follows: Section II reviews
the theoretical background on which the proposed method
is built with respect to recent literature; Section III details
the concept; Section IV introduces the data set, scenario,
and validation; Section V presents the numerical results;
and Sections VII and VIII conclude with recommendations
for further research.

II. Background
The ICAO Global Trajectory-Based Operations frame-

work advocates cross-border information sharing and col-
laborative decision-making to extend ATFM planning hori-
zons [5]. While Europe’s centralized Network Manager
issues Calculated Take-Off Times (CTOTs) to meter traf-
fic, other regions rely on distributed or bilateral ATFM
agreements, and globally there is no homogeneous ATFM
system [8]. This can result in cross-border flow issues
where upstream flights are not managed optimally for
downstream congestion. Moreover, long-haul flights have
historically been granted exemptions from ground delay
programs, meaning short-haul flights disproportionately
absorb delays during capacity constraints. [5] Such poli-
cies, intended to avoid penalizing flights already airborne,
result in inequitable outcomes where arriving banks of
long-hauls still overwhelm the runway capacity. Another
limitation is the reactive nature of many ATFM measures
for arrivals, interventions often occur only close to the
destination (e.g. airborne holding or vectoring near initial
approach fixes (IAFs)) rather than earlier in cruise. For
instance, Schiphol’s inbound flows are funneled via a few
key IAFs, such as SUGOL and RIVER, where aircraft may
be placed in holding patterns during peak periods. [9]
Managing delay at these late stages is fuel-inefficient and
contributes to congestion in the terminal airspace.

A. Long-Range Air Traffic Flow Management
LR-ATFM concepts under development aim to address

these gaps by acting far upstream in the flight. Recent
research has proposed, for example, setting target times
over common waypoints hours before the arrival, effectively
metering inbound flows well in advance [2]. Schultz et al.
[8] introduced a concept of operations in the Asia-Pacific
region in which speed adjustments as far as approximately
7 hours from landing were used to smooth arrival streams
into Singapore. Enea and Bronsvoort [5] have explored
using multiple sequential metering points along an aircraft’s
route, enabled by advanced Flight Management System
capabilities (e.g. Required Times of Arrival at intermediate
fixes) to gradually absorb delay. While promising, these
approaches can be complex to implement, requiring high
predictability and extensive coordination. In practice, the
inherent uncertainties in long-horizon planning remain a
significant hurdle.

B. Extended Arrival Manager
Traditional AMAN systems sequence inbound flights

so that demand matches runway capacity, often through
tactical vectoring or holding near the airport. Extending
the AMAN horizon further upstream enables minor cruise-
speed adjustments to absorb delay en route [10]. Trials
at London, Rome, and Amsterdam reported up to 8%
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fuel savings per flight and a 90% reduction in airborne
holding when arrivals were pre-sequenced earlier [11].
Furthermore, Jones et al. [12] demonstrated that assigning
CTAs ~150 NM from the airport (for flights up to 500 NM
out) could shift about 20% of downstream delays into the
en-route phase. However, their model assumed perfect
information and did not account for uncertainties like
weather or downstream congestion, highlighting the need
to incorporate uncertainty in demand-capacity forecasts.

C. Uncertainties in Arrival Times and Demand and
Capacity Balancing
Central to the success of any XMAN or LR-ATFM

is the ability to anticipate traffic demand and available
capacity with reasonable accuracy. This necessitates an
explicit quantification of uncertainty. Recent advances in
uncertainty quantification demonstrate potential for proba-
bilistic trajectory management, yet existing methods focus
primarily on continental airspace.[13]

Uncertainty quantification is critical when balancing
demand and capacity in arrival management. Because
predicted arrival times can deviate significantly from actual
times especially when look-ahead horizons are extended,
scheduling decisions made too early can be wrong leading
to inefficient or even unsafe outcomes. Prior studies have
documented that the earlier an arrival time is predicted, the
larger the potential error, due to unknowns in winds, down-
stream ATC path stretching, and even departure airport
delays propagating forward [10]. For instance, extending
an AMAN horizon beyond ~100–180 NM means predic-
tions might need to account for taxi-out delays or en route
reroutes that are not yet realized [14]. If such uncertainties
are ignored, an arrival sequence plan could be disrupted
when flights do not arrive in the expected order, forcing
last-minute interventions that negate the benefits of early
planning [11].

Tielrooij et al. [15] established a method for predict-
ing Estimated Time Over waypoint (ETO) uncertainty at
an extended horizon by fitting Johnson curves to derive
errors and confidence intervals. The literature consis-
tently advocates for using uncertainty as information for
decision-making rather than trying to eliminate it.

Oosterhof et al. [16] demonstrated a probabilistic de-
bunching study, which introduced the idea of only interven-
ing when there is a significant probability of bunching at
an IAF. In Oosterhof’s work, probability density functions
were fitted to ETA prediction errors from historical data,
allowing computation of a “bunching probability” that two
or more aircraft will violate a separation threshold at the fix.
A genetic algorithm then chose speed/delay interventions
to reduce that probability. Notably, the results showed that
acting too early, when uncertainty was still high, could
impose unnecessary delay – before about 40 minutes from

the IAF, the interventions didn’t consistently reduce arrival
holding because the predictions weren’t reliable enough as
the error was on the same order as the intended separation.

D. Cruise Speed Control
Using cruise speed adjustments to manage arrival flows

is an approach well-grounded in prior research and trials.
In constrained airspace, traditional flow management often
resorts to ground delays or airborne holding stacks to
prevent overloads. Cruise speed control offers a fuel-
efficient alternative: by reducing speed early, an aircraft
can absorb delay while still en route, avoiding excessive
vectoring or holding near the airport. Delgado and Prats
[17] found that flying about 5–12% slower than nominal
cruise speed stays in the regime of equal or lower fuel
burn, essentially exploiting the flat part of the drag curve
to save fuel while delaying arrival. Matsuno and Andreeva-
Mori [18] similarly quantified that a modest 3% speed
reduction could absorb roughly 2–3 minutes of flight time
per half hour of cruise, with a 2–3% fuel savings as a side
benefit. Schultz et al. [8] found that a shift of ±1 minute
per remaining flight hour results in a reduction of 14% of
the overshoot of continuous capacity due to long distance
overhaul, shifting flights by ±2 and ±6 minutes reduces this
by 20% and 80% in comparison to the original scenario,
respectively.

In Europe’s SESAR trials, controllers upstream of
Schiphol and other hubs have been provided with speed ad-
visories (via AMAN or network management tools) to delay
certain flights by a minute or two, allowing them to seam-
lessly slot into the arrival sequence without downstream
holding. This kind of cooperative speed management re-
quires coordination across FIR boundaries and has been
formalized in concepts like XMAN . [11]

A speed control strategy carries clear environmental
incentives alongside its operational goals. First, absorbing
delay by flying slightly slower at high altitude is far more
fuel-efficient than absorbing it in low-altitude holding pat-
terns or stop-and-go vectors near the airport. Jets cruising
at their optimal or a reduced speed burn less fuel per minute
than when in stacks; thus, delay absorption translates into
fuel savings. Studies of XMAN have documented substan-
tial fuel and emissions reductions when delay is transferred
from holding stacks to the en-route phase. In the SESAR
XMAN trials, for example, participating flights averaged
a 48-second delay absorption in cruise with no increase
in total flight time, yielding an estimated annual savings
of ~4,700 tonnes of fuel and ~15,000 tonnes of 𝐶𝑂2 at a
single airport. [3]

Finally, these findings underpin the idea that “strategic
deceleration” is often more cost-effective than path stretch-
ing or holding. The extended metering concept tested by
NASA and others showed many flights can absorb assigned
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delays entirely through cruise speed control if given early
notice – in one study, over 70% of arrival flights were able
to meet their delay absorption targets by slowing down,
eliminating the need for vectoring in those cases. [19]

III. Concept
Building on sections I and II, this section presents the

proposed uncertainty-aware cruise speed control concept
for transatlantic arrivals into Schiphol. The concept com-
bines long-range ATFM and Extended AMAN principles
by shifting part of the delay-absorption task to the cruise
phase, while taking into account the uncertainty in long-
horizon arrival-time predictions. In line with the problem
formulation in the Introduction, the core idea is to use prob-
abilistic forecasts of arrival demand relative to available
capacity and to issue at most one small speed reduction per
flight, only when the forecast indicates a sufficiently high
probability of demand exceeding capacity.

Based on this concept, the hypothesis of this study is
that an en-route delay absorption under uncertainty-aware
cruise speed control which issues at most one Mach reduc-
tion per transatlantic flight, applied several hours before
arrival, reduces the probability of capacity exceedance at
least below the speed control threshold while inducing only
limited delay.

To implement this concept, the study uses a historical
dataset of flights inbound to Schiphol from Eurocontrol
Network Manager B2B messages. The data provides
4D trajectories consisting of waypoint sequences with
associated estimated times over (ETOs) and flight metadata,
which includes identifiers, aircraft types, and operational
status. As done in previous research [15], the final B2B
trajectory message for each flight, which is the last update of
a flight, serves as the actual flight plan used for simulation.

Concept overview
The study proceeds through seven consecutive steps,

each elaborated in the subsections that follow.
1) Data Processing

Import and clean 4-D trajectory data and B2B mes-
sages, then remove any pre-assigned ATFM ground
delays for flights within the ECAC area (Equations
1–2).

2) Deterministic demand–capacity analysis
Compute raw inbound demand in 20-minute bins
for each IAF (Equation 4) and compare it with fixed
capacity.

3) Uncertainty quantification
Fit Johnson distributions to prediction errors, condi-
tional on time-to-arrival horizon, flight-status class,
and time of day.

4) Probabilistic demand computation
Convert individual Cumulative Distribution Func-

tions to per-bin arrival probabilities and derive the
exceedance probability 𝑃(demand > capacity).

5) Speed-control logic
Apply a threshold strategy: if the exceedance prob-
ability exceeds 𝑇 , strategic cruise-speed reductions
are computed for selected flights.

6) Trajectory recalculation and simulation
Recompute ETOs with the adjusted Mach numbers
and run fast-time simulations to verify the impact
on flow metrics and delays.

7) Performance evaluation
The performance evaluation assessed how effec-
tively the speed control interventions reduced ca-
pacity exceedance probability.

A. Data Processing and ATFM Delay Calculation
ATFM delay is a fundamental component of the method-

ology and is computed as the difference between the Calcu-
lated Take-Off Time (CTOT) and the Estimated Take-Off
Time (ETOT) extracted from B2B messages, where the
CTOT denotes the ATFM slot assigned to a flight to balance
demand and capacity, and the ETOT represents the current
best prediction of the flight’s actual take-off time. EU-
ROCONTROL’s ATFM system employs this standardized
approach to quantify ground delays imposed on flights due
to capacity constraints or flow management measures. The
methodology employs ATFM delay calculations based on
Calculated Take-Off Times (CTOT) and Estimated Take-
Off Times (ETOT) from B2B messages. ATFM delay is
computed as shown in Equation 1 [20].

ATFM Delay = CTOT − ETOT (1)

For trajectory analysis, the baseline ETO used for
demand forecasting is adjusted to remove existing ATFM
delays [20]:

ETObaseline = ETOoriginal − ATFM Delay (2)

This approach ensures that the speed control methodol-
ogy operates on flight trajectories free from pre-existing
ground delay assignments, providing a clean baseline for
evaluating strategic cruise speed adjustments.

B. Demand and Capacity Analysis
Schiphol’s transatlantic arrivals are channeled through

specific IAFs in Dutch airspace: SUGOL and RIVER
[9]. Each IAF operates under defined arrival capacity
constraints, expressed as maximum aircraft within specified
time windows. This study employs fixed capacity values
per 20-minute interval at each fix, based on operational
norms.
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For each IAF 𝑖 and time interval starting at 𝑡, we first
define the contribution of a single flight 𝑓 as

𝛿 𝑓 ,𝑖 (𝑡) =
{

1, if 𝑡 ≤ ETO 𝑓 ,𝑖 < 𝑡 + Δ𝑡,

0, otherwise,
(3)

where ETO 𝑓 ,𝑖 is the estimated time over IAF 𝑖 for flight
𝑓 , and Δ𝑡 = 20 minutes is the interval duration. The
deterministic demand at IAF 𝑖 in the interval [𝑡, 𝑡 + Δ𝑡] is
then

𝐷𝑖 (𝑡) =
∑︁
𝑓

𝛿 𝑓 ,𝑖 (𝑡). (4)

This process creates discrete timelines divided into
20-minute slots, yielding time-series demand profiles for
each fix that can be evaluated against capacity constraints.

C. Uncertainty Quantification
The uncertainty quantification methodology builds

upon Tielrooij et al.’s foundational work [15], which estab-
lished that empirical arrival-time prediction errors exhibit
heavy-tailed and skewed distributions unsuitable for nor-
mal approximation. However, rather than implementing
the full Hill-Hill-Holder parameter estimation routine, this
study adopts a computationally efficient approach using
simplified Johnson distribution fitting to balance accuracy
with operational feasibility, which is similar to what has
been done by Tielrooij [21].

1. Data Processing and Prediction Errors
Flight trajectory messages are processed to extract

prediction errors and operational characteristics. Each
flight generates multiple trajectory updates throughout its
progression, containing flight status indicators mapped to
four discrete categories: Filed (FI), Slot Issued (SI), As-
sumed Departed (TA), and Confirmed Airborne (AA) [22].
These categories represent increasing levels of operational
certainty and information availability.

Prediction errors are calculated as temporal differences
between message-contained ETAs and actual arrival times
derived from final trajectory messages:

𝜖 𝑓 ,𝑚 = ETA 𝑓 ,𝑚 − ETA 𝑓 ,actual (5)
where 𝜖 𝑓 ,𝑚 is the prediction error for flight 𝑓 at message

𝑚, and ETA 𝑓 ,actual is the actual flight trajectory derived
from the final message. The prediction horizon—defined
as the time span between message generation and pre-
dicted arrival—provides the primary temporal context for
uncertainty analysis.

2. Distribution Modeling and Probability Calculations
Error distributions are characterized using a three-

dimensional parameter grid that captures the primary fac-
tors influencing prediction uncertainty:

Table 1 Parameter grid specification for uncertainty
quantification

Feature Bin Size Range
Prediction hori-
zon

10 minutes 0–1440 minutes

Flight status categorical FI, SI, TA, AA
Time of day 3 hours 24-hour coverage

The 10-minute horizon binning aligns with typical air
traffic control decision intervals, while 3-hour time-of-day
segments capture diurnal traffic pattern variations. Only
grid cells containing at least 100 samples undergo dis-
tribution fitting to ensure statistical reliability. Sparsely
populated cells employ nearest-neighbor parameter borrow-
ing using weighted distance metrics that prioritize flight
status matching over temporal proximity.

For each populated grid cell, Johnson distribution pa-
rameters (𝛾, 𝛿, 𝜉, 𝜆) are fitted to the empirical error dis-
tribution using simplified moment-based approximations
rather than rigorous moment matching. Distribution type
selection between unbounded (𝑆𝑈) and bounded (𝑆𝐵) forms
follows the criterion 𝜅 ≥ 𝛾2 + 1, where 𝜅 and 𝛾 represent
excess kurtosis and skewness respectively.

The arrival time for flight 𝑓 at IAF 𝑖 is then modeled
as:

𝑇 𝑓 ,𝑖 ∼ Johnson(𝛾, 𝛿, 𝜉, 𝜆) + ETO 𝑓 ,𝑖 (6)

The probability that flight 𝑓 arrives within interval
[𝑡, 𝑡 + Δ𝑡] is calculated using the cumulative distribution
function:

𝑃 𝑓 ,𝑖,𝑡 = 𝐹Johnson (𝑡 + Δ𝑡 − ETO 𝑓 ,𝑖) − 𝐹Johnson (𝑡 − ETO 𝑓 ,𝑖)
(7)

where 𝐹Johnson is the cumulative distribution function
of the fitted Johnson distribution.

3. Probabilistic Demand Calculation
For each flight 𝑓 with estimated time of arrival (ETA)

𝑒𝑡𝑎 𝑓 , the arrival uncertainty is modeled using flight status-
dependent parameters. The predicted arrival time is:

𝑡 𝑓 = 𝑒𝑡𝑎 𝑓 + 𝜇 𝑓 (8)

where 𝜇 𝑓 is the mean prediction error based on flight
status and time to arrival.

The probability that flight 𝑓 arrives during time interval
[𝑡, 𝑡 + Δ𝑡] is calculated using the normal distribution:

𝑃 𝑓 ,𝑡 = Φ

( (𝑡 + Δ𝑡) − 𝑡 𝑓

𝜎 𝑓

)
−Φ

(
𝑡 − 𝑡 𝑓

𝜎 𝑓

)
(9)
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where 𝜎 𝑓 is the standard deviation of arrival time
uncertainty for flight 𝑓 , and Φ is the standard normal
cumulative distribution function.

The expected number of arrivals during interval 𝑡 is:

𝜆𝑡 =
∑︁
𝑓

𝑃 𝑓 ,𝑡 (10)

For capacity exceedance analysis, the number of ar-
rivals is modeled using a Poisson distribution. This is done
because arrivals in a fixed time interval can be approx-
imated as a count process of independent events with a
stationary mean rate, for which the Poisson distribution is
the standard model and is consistent with recent airport
demand modeling approaches [23]:

𝑁𝑡 ∼ Poisson(𝜆𝑡 ) (11)

The probability of exceeding capacity𝐶 during interval
𝑡 is:

𝑃(exceedance) = 𝑃(𝑁𝑡 ≥ 𝐶) = 1 −
𝐶−1∑︁
𝑘=0

𝜆𝑘
𝑡 𝑒

−𝜆𝑡

𝑘!
(12)

This can be efficiently computed using the Poisson
cumulative distribution function:

𝑃(exceedance) = 1 − 𝐹Poisson (𝐶 − 1;𝜆𝑡 ) (13)

4. Uncertainty Parameters
The flight-specific uncertainty parameters are deter-

mined by flight status and time to arrival:

𝜇 𝑓 = 𝜇base ·
√︂

𝑇 𝑓

60
(14)

𝜎 𝑓 = 𝜎base ·
√︂

𝑇 𝑓

60
(15)

where 𝑇 𝑓 is the time to arrival in minutes, and
(𝜇base, 𝜎base) are status-dependent base parameters.

D. Speed Control Logic
Before the speed control algorithm, the cruise speeds

for each flight need to be derived from the historical B2B
trajectory data. For every flight, the waypoint sequence
in the final B2B trajectory is extracted, the great-circle
distance between consecutive waypoints is computed us-
ing the Haversine formula. The total cruise distance is
obtained by summing all cruise segment distances, while
the corresponding cruise duration is taken as the difference
between the earliest and latest times at the cruise waypoints.
The ground speed is obtained as the ratio of total distance

to flight time, ensuring that the speed metric reflects the
actual route geometry. This ground speed is converted into
the Mach number by correcting for the along-track wind
component obtained from ERA5 reanalysis winds [24] at
the corresponding location, time, and flight level to obtain
a mean true airspeed, and dividing this by the local speed
of sound under standard-atmosphere assumptions. The
resulting Mach is the baseline for the incremental speed
reductions applied by the control algorithm.

Building on recent research advocating probabilistic
ATFM solutions [5, 16], the methodology implements a
threshold-based control logic that triggers speed adjust-
ments only when capacity exceedance probability exceeds
a predetermined limit. This approach guards against over-
correction by avoiding unnecessary interventions when
congestion forecasts remain highly uncertain or may re-
solve naturally.

The speed control algorithm triggers interventions when
the probability of capacity exceedance exceeds a predeter-
mined threshold 𝑇 . For each flight 𝑓 scheduled to arrive at
IAF 𝑖 during interval 𝑡, the system evaluates the probability
that its scheduled arrival window will result in demand ex-
ceeding capacity. When this probability exceeds threshold
𝑇 , proactive speed control algorithm is triggered for the
contributing flight by iteratively checking a reduction of
0.01 Mach till 0.05 Mach. If this reduction would satisfy
the constraints, the speed control is triggered.

The incremental cruise Mach number reductions is
consistent with operational guidelines for strategic speed
management [17]. Individual flight evaluation ensures that
only aircraft having a high overload probability are subject
to speed reductions, while others continue at planned
speeds.

E. Performance Evaluation Framework
The effectiveness of the speed control strategy is evalu-

ated through fast-time simulation. The primary effective-
ness metric quantifies the reduction in probability that ar-
rival demand exceeds available capacity. For each interven-
tion, pre- and post-intervention probabilities is calculated
by computing the individual aircraft arrival probabilities
using normal approximations to Johnson-derived uncer-
tainty distributions, and aggregating demand using Poisson
distributions with rate parameter 𝜆𝑡 =

∑
𝑓 𝑃 𝑓 ,𝑡 , and (3)

calculating exceedance probability as 𝑃(𝑁𝑡 > 𝐶) where
𝐶 represents acceptance capacity. The net reduction aver-
aged across all temporal bins constitutes the intervention’s
effectiveness measure.

F. Simulation Framework
Evaluation of the speed control system employs fast-

time simulation using an open-source air traffic control
simulator. The simulation provides a realistic environment
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for modeling aircraft kinematics and air traffic scenarios
while supporting custom implementations of operational
concepts.

The simulation configuration incorporates all transat-
lantic inbound flights to Schiphol for the analyzed scenarios,
using processed trajectories with baseline ETOs (Eq. (2))
as input data. A custom speed control implementation
monitors projected demand at SUGOL and RIVER based
on current aircraft trajectories. Detection of capacity
exceedance probability above threshold 𝑇 for upcoming
intervals triggers speed reduction commands for affected
aircraft during the cruise phase, well before reaching Dutch
airspace.

Simulation output recording captures complete tra-
jectories and arrival times at IAFs, enabling a thorough
evaluation of the speed control’s effectiveness in managing
arrival flow while maintaining demand within capacity
limits.

IV. Experiment Setup
This section summarises the simulation-based setup

used to evaluate an uncertainty-aware, one-time cruise
speed control strategy for smoothing inbound arrival peaks
to Amsterdam Schiphol (AMS). To avoid duplication, we
reference the modelling details and equations introduced
in section III.

A. Environment & Scope
• Simulator: BlueSky fast-time simulator [7] with a

custom controller that (i) monitors bin-level demand
and exceedance risk, (ii) issues at most one cruise
Mach reduction Δ𝑀 <= 0.05 per flight when the
threshold rule is met, and (iii) recomputes times over
fixes with wind-adjusted groundspeed; lateral paths
remain unchanged.

• Study window: 30 consecutive days, 20 July–18
August 2024.

• Airspace focus: Inbound flows to AMS via IAFs
SUGOL (primary) and RIVER.

• Time grid & capacity: Fixed 20-minute bins with
nominal per-IAF capacity constants (as operational
norms).

B. Input Data
• Trajectories: EUROCONTROL Network Manager

B2B messages (4D waypoints with ETO/ETA updates,
identifiers, aircraft type, operational status).

• Wind: Meteorological reanalysis ERA5 winds sam-
pled along route (lat/lon/alt/time) and projected to
the along-track component to correct groundspeeds
after any Δ𝑀 [24].

• IAF definitions: AMS IAFs and routing constraints

as per AIP [9].

C. Data Filtering
1) Scope filters: Keep inbound transatlantic flights to

AMS that route via SUGOL or RIVER and have
valid IAF ETOs inside the study window.

2) Message sanity: Use the last trajectory message as
the flown flight path for simulation.

3) Neutral baseline: Remove pre-assigned ground
delay per Equations 1–2.

D. Demand Probabilities
• Deterministic demand: Build IAF timelines in

20-minute bins using Equation 4.
• Uncertainty model (after Tielrooij et al.): Con-

dition ETA-error fits by look-ahead horizon, flight
status (FI/SI/TA/AA), and time-of-day; use Johnson
SU for heavy-tailed, unbounded long-horizon errors
and SB close-in where support is effectively bounded,
then convert ETAs to per-bin arrival probabilities as
in Equation 7 [15, 21].

• Exceedance risk: Aggregate per-flight probabilities
to expected arrivals 𝜆𝑡 and compute 𝑃(𝑋𝑡 ≥ 𝐶𝑡 )
using the Poisson-binomial (exact) or the Poisson tail
approximation (Equation 12).

• Threshold rule: If an upcoming bin’s 𝑃(demand >

capacity) exceeds a threshold of 70 %, select a min-
imal set of contributing flights and issue one small
cruise Δ𝑀 < 0 each to shift mass into a later bin,
then recompute ETOs with winds.

E. Evaluation Metrics
• Intervention footprint: Count of advisories; per-

flight absorbed delay (avg/median/percentiles, min/
max); number of unique aircraft.

• Uncertainty reduction: For each flight, define
𝑈𝑡 = 𝑃(𝑋𝑡 ≥ 𝐶𝑡 ) before control and 𝑈′

𝑡 after recom-
putation; report the mean percentage drop 𝑈𝑡 −𝑈′

𝑡 .
• Where/when: Distribution by IAF (SUGOL/RIVER)

and by day.

V. Results
This section presents the outcomes of applying the

uncertainty-aware cruise speed control methodology to
30 consecutive days (20 July–18 August 2024) of transat-
lantic inbound traffic to Amsterdam Schiphol. The analysis
focuses on intervention characteristics, time patterns, ca-
pacity exceedance probability reduction effectiveness, and
operational efficiency metrics. All interventions were ap-
plied at least one hour before predicted arrival to ensure
strategic rather than tactical implementation.
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A. Overview and Intervention Frequency
Over the 30-day study period, the speed control system

identified and executed 79 interventions across unique
flights approaching AMS via the designated IAFs. Table 2
presents the aggregate intervention characteristics. All
aircraft were subject to at most one cruise speed adjust-
ment, consistent with the one-time intervention constraint
described in Sec. IV.

Table 2 Summary statistics of speed control interven-
tions

Metric Value
Total no. of Transatlantic Flights 1,953
Total Interventions 79
Study Period (days) 30
Mean Time to Arrival (hours) 5.16 ± 1.14
Mean Mach Reduction 0.018 ± 0.012
Mean Delay per Intervention (minutes) 8.72 ± 6.44
Mean Probability Reduction (%) 34.96 ± 19.64

The geographical distribution of interventions was
highly concentrated: 76 interventions (96.2%) targeted
flights approaching via SUGOL, while only 3 interven-
tions (3.8%) involved the RIVER. This distribution reflects
both the traffic volume patterns for transatlantic arrivals and
the capacity constraints at each fix. The time distribution
across the study period exhibited variability consistent with
day-to-day fluctuations in transatlantic traffic demand.

B. Intervention Timing Characteristics
Figure 1 shows the distribution of interventions relative

to the predicted arrival time at the target IAFs over time.
Speed adjustments were typically issued about 5.16 ±
1.14 hours before the originally scheduled IAF crossing
(median: 5.25 hours), with observed values ranging from
1.33 to 7.82 hours. Most interventions are concentrated in
a narrow window between roughly 4.5 and 5.8 hours before
arrival, indicating that the system generally intervenes at a
consistent mid-range look-ahead time.

This timing distribution reflects the strategic nature of
the approach, with interventions predominantly occurring
while aircraft were still in cruise phase over the Atlantic,
well before reaching European airspace with the majority
having 4–6 hours before arrival, which had 54 interven-
tions (68.4%). This indicates that the threshold-based
trigger logic (Equation 12) predominantly identified capac-
ity exceedance risks at this time horizon, where uncertainty
distributions remain sufficiently constrained to enable ef-
fective targeting while providing adequate lead time for
meaningful speed adjustments.

C. Speed Reduction Parameters and Induced Delays
The speed control system employed conservative Mach

number reductions to minimize operational impact while
achieving probability reduction objectives. Figure 2 presents
a comprehensive analysis of the speed adjustment param-
eters and their relationship to the caused delays. Aircraft
were subject to cruise Mach reductions ranging from 0.01
to 0.05, with a mean reduction of 0.018± 0.012 and median
of 0.01. The distribution of applied reductions demon-
strates a strongly conservative approach, with Δ𝑀 = 0.01
accounting for 47 interventions (59.5%) and Δ𝑀 = 0.02

Fig. 1 Distribution of intervention timing relative to arrival. Panel (a) shows the frequency distribution with
mean and median markers. Panel (b) shows a box plot overlaid with a violin plot, showing the interquartile range,
median, and potential outliers.
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Fig. 2 Mach number reduction analysis. Panel (a) shows the distribution of applied reductions. Panel (b)
illustrates the relationship between mach reduction magnitude and average induced delay with standard deviation
bars.

for 14 interventions (17.7%). Panel (b) links these settings
to their operational effect, showing that larger Mach reduc-
tions are associated with higher average induced delays,
increasing from roughly 5 minutes at Δ𝑀 = 0.01 to over 20
minutes for Δ𝑀 ≥ 0.04. The bubble sizes correspond to
the frequencies in Panel (a), highlighting that the observed
trend is primarily driven by the numerous small Mach
reductions.

For the interventions, original cruise Mach numbers
averaged 0.836 ± 0.025, reduced to 0.818 ± 0.027 post-
intervention. This modest adjustment strategy aligns with
operational guidelines for strategic speed management [17]
and minimizes fuel penalties while maintaining schedule
predictability.

1. Time Delays
The induced time delays, computed via wind-corrected

trajectory recalculation (Sec. III), exhibited the following
characteristics:

• Mean delay: 8.72 ± 6.44 minutes
• Median delay: 6.29 minutes
• Range: 1.00 to 27.11 minutes
• Total accumulated delay: 688.8 minutes (11.5 hours

across all interventions)
The delay distribution reveals operational impact con-

centration: 38.0% of interventions resulted in delays under
5 minutes, 29.1% induced 5–10 minute delays, and 32.9%
exceeded 10 minutes. The strong positive correlation
between Mach reduction magnitude and induced delay
(𝑟 = 0.920, Figure 2b) confirms the expected linear rela-
tionship between speed adjustment and time absorption,
validating the trajectory recalculation methodology.

Notably, achieving an average delay of 8.72 minutes
through cruise speed adjustment demonstrates the efficiency

of strategic intervention. This result supports the viability
of cruise speed management as a primary tool for arrival
flow smoothing in transatlantic operations.

D. Uncertainty Decomposition and Probability Reduc-
tion
A big contribution of this methodology is the quantifi-

cation of capacity exceedance probability and its reduc-
tion through strategic speed control. Figure 3 presents a
comprehensive exceedance probability analysis. Prior to
intervention, as can be seen from panel (b), the baseline
capacity exceedance probability averaged approximately
80%. The net capacity exceedance probability reduction,
which is defined as the improvement in capacity exceedance
probability from pre-intervention to post-intervention per
flight, averaged approximately 35% (median: 32.75%).
Positive values indicate successful reduction in the ca-
pacity exceedance probability. The distribution exhibited
that 96.2% of interventions (76 of 79) achieved measur-
able capacity exceedance probability reduction and 78.5%
achieved reductions exceeding 20%, and, as can be seen
from panel (a), the majority fall between 20% and 60%.

E. Intervention Efficiency Analysis
To quantify the operational cost-effectiveness of speed

control, Figure 4 presents a comprehensive efficiency anal-
ysis and time evolution of interventions. Panel (a) reveals
a moderate positive correlation between induced delay
and net probability reduction (𝑟 = 0.389), confirming that
larger delays generally produce greater probability reduc-
tions. However, the substantial scatter indicates that delay
magnitude alone does not determine effectiveness as tim-
ing, traffic context, and aircraft positioning play critical
roles. Furthermore, panel (b) shows that there much more
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Fig. 3 Capacity exceedance probability analysis. Panel (a) shows the distribution of net capacity exceedance
probability reduction achieved across all interventions (positive values indicate successful reduction). Panel (b)
compares baseline uncertainty to post-intervention uncertainty, with box plots to see the distribution of before
and after intervention.

Fig. 4 Intervention effectiveness metrics. Panel (a) shows the relationship between induced delay and net
probability reduction, colored by time to arrival, with regression line and reference thresholds. Panel (b) displays
the daily frequency of interventions throughout the study period with 3-day moving average.

interventions in the first 3 days of the simulation which
shows higher congestion levels in the B2B data for them.

F. Arrival Horizon Effects
To assess how intervention timing relative to arrival

influenced effectiveness, the dataset was analyzed by time-
to-arrival categories. Table 3 and Figure 5 summarize
the results, and the following patterns emerge from this
stratification:

• Near-term interventions (0–2h): Achieved delays
(4.46 min) but achieved correspondingly modest
probability reductions (approximately 13%), and in

addition, higher mach reductions were required.
• Optimal window (2–4h): Achieved substantial prob-

ability reductions (approximately 30%) with mod-
erate delays (4.45 min). This window appears to
balance predictability improvements with sufficient
lead time for speed adjustments.

• Standard window (4–6h): Contained the majority
of interventions (68.4%) and achieved strong prob-
ability reductions (36.31%) with reasonable delays
(8.72 min). The concentration suggests this horizon
represents the primary operational sweet spot where
capacity exceedance risks become sufficiently clear
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to trigger intervention, and it does not require a very
large mach reduction.

• Extended horizon (6–8h): Achieved larger delays
(12.66 min) with a slightly higher mach reduction
and achieved similar probability reductions (36.36%)
as the 4–6h window. The diminishing returns likely
reflect greater trajectory uncertainty at extended hori-
zons and reduced precision in targeting specific ar-
rival bins.

Table 3 Intervention outcomes by time-to-arrival cat-
egory

Time to Arrival Count Avg Delay (min) Mach Red.
0–2 hours 2 4.46 ± 4.89 0.020 ± 0.014
2–4 hours 10 4.45 ± 3.57 0.014 ± 0.013
4–6 hours 54 8.72 ± 5.96 0.018 ± 0.011
6–8 hours 13 12.66 ± 8.11 0.022 ± 0.013

G. Waypoint-Specific Performance
The two IAFs exhibited distinct intervention character-

istics, summarized in Table 4 and visualized in Figure 6.

Table 4 Intervention performance by IAF

IAF Count Avg Delay (min) Certainty Red. (%) Avg TTA (h)
SUGOL 76 8.49 ± 6.31 34.07 ± 19.46 5.10 ± 1.11
RIVER 3 14.45 ± 9.63 57.67 ± 26.83 6.61 ± 1.44

As can be seen from panel (a), SUGOL is the primary
transatlantic arrival fix for Schiphol, which accounted for
96.2% of interventions (76 of 79). The large sample size
provides statistical confidence in the observed performance
metrics. Furthermore, it can be seen from panel (b) that
average delays of 8.5 minutes yielded probability reductions
of 34.07%.

Furthermore, RIVER, with only 3 interventions from
panel (a), exhibited notably different characteristics, which
can be seen from panel (b): larger average delays (14.45
min), substantially greater probability reductions (57.67%).
While the small sample size is inconclusive, the results may
suggest that RIVER-bound traffic may face higher baseline
uncertainty, necessitating more aggressive interventions.
Furthermore, from Table 4, the longer average time-to-
arrival at intervention for RIVER in comparison to SUGOL
(6.61 vs 5.10 hours) indicates these adjustments were
applied earlier in cruise.

VI. Discussion
The 79 speed control interventions over 30 days demon-

strates the operational viability of uncertainty-aware arrival
management. Overall, the results indicate that a simple,

one-time cruise speed control scheme can reduce the prob-
ability of capacity exceedance at Schiphol’s relevant IAF
while inducing only modest additional delay per affected
flight.

A first key observation is that in 96.2% of cases, the
Mach reduction produced a measurable reduction in capac-
ity exceedance probability, with an average improvement
of 34.96 %. This suggests that, when combined with an
uncertainty-aware thresholding scheme, relatively small
speed changes are sufficient to meaningfully reshape the
arrival flow distribution. Rather than fine tuning each
trajectory, the system benefits from a robust intervention
logic.

From an operational perspective, the induced delays
appear manageable. The mean delay of 8.72 minutes,
absorbed entirely in the cruise phase represents a modest
burden, particularly given that 38.0% of interventions only
incurred less than 5 minutes delay. These delays are even
smaller than, typical airborne holding or vectoring costs
near the TMA, but are applied much earlier and in a more
predictable fashion, especially given that most interventions
involved conservative Mach reductions of only 0.01–0.02.

Because predicted demand-capacity imbalances at the
Schiphol’s IAF are targeted, these cruise-phase minutes can
be interpreted as an upstream buffer that would otherwise
have to be absorbed tactically closer to the TMA. While the
present study does not explicitly model TMA sequencing
or quantify the one-to-one substitution of holding minutes,
the observed reduction in capacity exceedance indicates
that a non-trivial part of the induced cruise delay is likely
shifting, rather than adding, terminal-area delay.

The time to arrival pattern shows the strategic nature of
the approach. The concentration of interventions 4-6 hours
before arrival (68.4% of cases) shows that early-phase ad-
justments are both practical and effective. At the same time,
the absence of a significant performance difference between
earlier and later interventions within the 2-8 hour window
indicates that controllers retain flexibility in choosing the
exact intervention time, which is important for integration
with workload and other operational constraints.

Importantly, the benefits are not limited to single flights.
Post-intervention capacity exceedance probability for a
flight decreased from 70.63% to 44.60% on average, and
this reduction means that potentially some other flights no
longer need ATFM delay, indicating a genuine system-wide
benefit. This suggests that strategic cruise speed control can
enhance overall arrival flow predictability and reduce the
likelihood of overload at the IAF, thereby complementing
existing ATFM and AMAN tools.

At the same time, several limitations should be ac-
knowledged. The analysis is restricted to a single airport
and a 30-day period of transatlantic traffic, which may
limit effect in other traffic mixes, seasonal patterns, or
conditions. The 30 days period is for the most busy period
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Fig. 5 Time-to-arrival impact analysis. Panel (a) shows the relationship between time to arrival and induced
delay, colored by Mach reduction magnitude. Panel (b) presents time to arrival versus net probability reduction,
colored by delay. Panel (c) displays intervention frequency by time-to-arrival category. Panel (d) shows a dual-axis
comparison of average delay and net probability reduction across categories.

of the year at Schiphol, but it is also required to see how it
would function in other periods. Furthermore, the study
focuses on a one-time Mach reduction per flight and does
not consider a more complex multi-constraint optimization,
nor does it explicitly quantify fuel or emissions impacts.

A direct way to assess the hypothesis is to examine
whether flights become below the selected speed-control
threshold after intervention. 86.1% of flights end be-
low the 70% threshold, indicating that the proposed
uncertainty-aware cruise speed control achieves threshold-
compliance for the majority of cases. This supports the
claim that a one-time, early cruise-phase Mach reduction
can reduce capacity exceedance risk below the threshold.
The remaining flights that do not fall below the threshold
likely correspond to situations with higher demand peaks.

Taken together, these results indicate that uncertainty-
aware, one-time cruise speed control has strong potential
as a practical tool for managing transatlantic arrival flows,
achieving reductions in capacity exceedance risk with
limited additional delay per affected flight, and thereby

supporting the hypothesis of this study. It is also important
to emphasize that this work evaluates the feasibility of
the concept rather than an optimized operational system.
Several components of the methodology, such as the uncer-
tainty modeling, capacity representation, and intervention
threshold selection, could be refined in future work to make
it a practical and effective system.

VII. Recommendations
Building on these findings, several directions emerge

for research and implementation. First, the methodology
should be extended beyond transatlantic arrivals to other
long-haul flights and to mixed traffic streams that include
short- and medium-haul continental flights. Since conti-
nental traffic constitutes the majority of arrivals at many
European hubs and exhibit different uncertainty character-
istics and shorter cruise phases, adapting the uncertainty
models and intervention timing to these flights is essential
for getting system-wide benefits.
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Fig. 6 Waypoint-specific performance analysis. Panel (a) shows intervention frequency by IAF. Panel (b)
presents a comparison of average delay and probability reduction for each IAF.

Second, the fixed exceedance probability threshold
used in this study could be replaced or complemented by
adaptive, data-driven thresholds. Machine learning meth-
ods that take into account observed traffic patterns, weather
forecasts, seasonal effects, and real-time performance could
dynamically change interventions, reducing unnecessary
actions during low-uncertainty periods while becoming
more conservative when conditions are worse.

Third, incorporating variable and forecast-based ca-
pacity constraints would enhance the demand–capacity
balancing framework. Arrival capacity at IAFs depends
on weather, runway configuration, controller workload,
and airspace complexity. Integrating dynamic capacity
predictions, for example derived from weather models and
historical capacity–weather relationships, would allow the
system to tighten or relax intervention criteria in response
to predicted capacity changes.

Fourth, the uncertainty quantification component itself
can be further refined. Future work should consider addi-
tional explanatory factors such as wind forecast uncertainty,
airline- and aircraft-specific performance characteristics,
and temporal correlation in prediction errors, as well as
explore advanced data-driven approaches and potentially
hybrid models that blend physics-based prediction with
machine-learning uncertainty corrections. Also, integrat-
ing speed measurements via satellite datalink may enhance
real-time monitoring and support more precise speed advi-
sories.

Finally, a comprehensive assessment of economic,
human-factor, and environmental impacts is recommended.
Detailed cost-benefit analysis, including fuel consumption,

emissions under evolving carbon pricing, and passenger
delay costs, would support context-dependent threshold
design. Simulator studies and operational trials with air
traffic controllers and flight crews are needed to evaluate
usability, workload, and acceptance of probabilistic deci-
sion support. In parallel, a more detailed quantification of
climate benefits would strengthen the sustainability case for
long-range, uncertainty-aware cruise speed management.

VIII. Conclusion
This paper addressed a key operational challenge at

major hub airports: managing arrival demand peaks that
exceed available capacity under substantial uncertainty
in long-range air traffic flow management focusing on
transatlantic arrivals to Amsterdam Schiphol Airport. Un-
like traditional reactive measures such as ground delay
programs and terminal holding, the proposed strategy in-
tervenes earlier in the trajectory by adjusting cruise speed,
thereby exploiting long-haul cruise segments to absorb
delay more efficiently.

The central contribution is an uncertainty-aware, one-
time cruise speed control strategy that explicitly integrates
probabilistic demand–capacity forecasting into the inter-
vention decision. Rather than assuming perfect information
or attempting to eliminate uncertainty, the framework treats
uncertainty as part of the decision process. It continuously
evaluates the probability that arrival demand at an IAF
will exceed available capacity and triggers speed interven-
tions only when this exceedance probability surpasses a
predefined threshold. This threshold-based logic provides
a safeguard against intervention when forecasts remain
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highly uncertain and distinguishes the concept from prior
long-range ATFM approaches.

Furthermore, by fitting Johnson distributions to his-
torical prediction errors conditioned on flight status and
time horizon, the approach quantifies how much of the
uncertainty is attributable to individual flights and is there-
fore potentially controllable via speed adjustments. This
enables targeted interventions on those aircraft that can
most effectively reduce demand–capacity imbalance.

Using 30 days of simulated transatlantic operations
demonstrates that the proposed strategy is operationally
realistic. Across 79 interventions, the system achieved
an average reduction of 34.96 %. This was done by a
mean delay of 8.28 minutes per intervention, implemented
through conservative cruise Mach reductions typically
between 0.01 and 0.02.

Also, 64% of interventions occurred in the 4–6 hour
look-ahead window suggest that the threshold logic suc-
cessfully identifies risk at horizons where forecasts are
sufficiently reliable while leaving enough time to absorb
delay through speed adjustment alone.

From an implementation perspective, the approach
is intentionally conservative and compatible with current
operations. Relying on a single speed intervention per flight
and small Mach reductions, it aligns with existing cockpit
procedures and controller practice, avoiding the complexity
of multiple, tightly coordinated adjustments. The ability to
shift 8–10 minutes of delay from low-altitude holding and
vectoring to high-altitude cruise supports both operational
efficiency and environmental performance, in line with
benefits reported in Extended AMAN implementations at
other European hubs. Moreover, the concept is designed
to work with currently available B2B trajectory data and
standard speed control instructions.

Overall, the results show that uncertainty-aware cruise
speed control is a viable, practical, and effective strategy for
managing long-haul arrival flows into capacity-constrained
hub airports. This framework provides a building block
for future long-range ATFM that balances operational
efficiency, environmental sustainability, and economic via-
bility, while embracing the fundamental uncertainties in
long-horizon planning.
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