Delft University of Technology

An Editor of Photo-Realistic Faces Using
3D Gaussian Splatting and Mesh Blending

MSc Thesis, Computer Graphics & Visualisation
Renzo Russel

Photo-Realistic
Composite Faces

An Editor of Photo-Realistic Faces Using
3D Gaussian Splatting and Mesh Blending

by

Renzo Russel

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday August 28, 2025 at 09:00 AM.

Student number: 4557719

Project duration: ~ October 28, 2024 — August 28, 2025

Thesis committee: Dr. M. Weinmann, TU Delft, supervisor
Dr. X. Zhang, TU Delft

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

Preface

I would like to begin by thanking my parents, Clark and Jessica Russel, who, despite my many side quests and
delays, have always encouraged me. Without their support, I would never have made it through my studies. Their
belief in me has carried me through many challenges.

A very special thank you goes to my girlfriend, Maria Alexe, who has spent the past year patiently listening to my
endless ranting and raving about Gaussians. She stood by me even in the most stressful times, making sure I slept
and ate. Your patience and understanding mean more to me than I can put into words.

I am also deeply grateful to my supervisor, Michael Weinmann, for his guidance, support, and constructive
feedback throughout this work. His encouragement has been invaluable. I'm also thankful to Amir Zaidi for
(unofficially) supervising me. His insightful ideas and suggestions greatly helped shape and improve this thesis.
Without his insistence to "just try it out and see,” half of this thesis might never have existed.

Finally, I would like to thank all of the BESTies who made every step of my journey as a student more exciting and
fun. Although my time as a student would almost definitely have been half as long without you, it would certainly
not have been half as meaningful. Work hard, play harder.

Renzo Russel
Delft, August 2025

P.S. Dani you're next...

contents

Preface i
1 Introduction 1
2 Background 3
2.1 3D Scene Reconstruction e e e 3
22 3DGaussianSplatting L 3
221 Scene Generation v i e e e e e e e 3

222 RenderingGaussians Lo 4

223 Novel-View Synthesis 4

2.3 3D Morphable FaceModels 5
2.4 Mesh-Bound Gaussians e e 5
241 Gaussian Head Avatars 5

3 Related Work 7
3.1 Adding Structureto Gaussians Lo 7
3.2 Editing GaussianSceneso 8

4 Methodology 9
41 NovelFaceSynthesis 10
411 Combining Gaussians From Different Avatars 10

412 Combining Face Shapes From Different Avatars 10

4.2 Artefact Reduction in Composite Avatars 11
42.1 Mitigation of Misleading Transparency Effects 11

422 Post-Processing of Gaussians L L L L. 13

5 Implementation 15
6 Evaluation 17
6.1 Qualitative Analysis 17

6.2 UserStudy e 20
6.2.1 Creationof Test Avatars o i i i i i e 20

6.2.2 Categorisationof Test Avatars 21

6.23 TheTestingInterface 21

6.3 Quantitative Analysis 22
6.3.1 Exclusion of Implausible Avatars 24

6.3.2 Analysis of Regional Authenticity Scores 25

6.4 Real-Time Performance 0 i i e 26
6.41 Results e 26

7 Discussion 27
71 Strengths 27

72 Limitations o e e e 27

7.3 Future Work e 28

8 Conclusion 29
References 30
A NeRSemble Subjects 32
B Survey Avatars 36
C Excluded Avatars 53

11

Introduction

In today’s society, digital technologies play a central role in how people communicate, work, and
interact with the world. Visual media, in particular, have become indispensable across domains such as
entertainment, commerce, education, healthcare, and social interaction. As the demand for realistic
digital representations continues to grow, applications ranging from autonomous navigation and
virtual design to the use of lifelike avatars in rehabilitation and online environments increasingly rely
on high-quality digital content. Among these, the realistic depiction of human faces holds special
significance, since faces are central to human interaction and recognition.

As 3D graphics become more realistic, it becomes harder for 3D face models to keep up. Human faces
must not only render convincingly, but also move naturally in order to avoid breaking the illusion of
realism. This challenge is amplified by the human brain’s extraordinary sensitivity to facial details,
where even subtle inconsistencies can lead to discomfort or distrust, a phenomenon described by the
uncanny valley effect [7].

Addressing these challenges is a complex task for digital artists, since creating and animating high-
fidelity 3D faces manually requires both technical skill and significant time investment. To overcome
these limitations, the industry increasingly relies on captured data from real-world actors in the form
of 3D facial scans and facial motion capture [23, 31, 9]. These data-driven techniques have proven
highly effective at producing realistic results and are widely adopted in film, gaming, and virtual
production. However, they come with several drawbacks: they require expensive hardware setups, are
time-consuming to process, demand substantial rendering resources to achieve the highest levels of
visual quality, and often lack flexibility when adapting captured assets to new contexts.

Recent work has yielded the breakthrough 3D Gaussian Splatting (3DGS) [12], which steps away from
conventional mesh-based rendering, instead using a learning-based volumetric representation based
on 3D Gaussians typically generated from real-world images. This scene representation is adept at
modelling complex geometric and lighting characteristics, while still allowing scene visualisation at
high frame rates. Additionally, thanks to the learning-based approach used in the digitisation process,
the produced scenes are photo-accurate.

An emerging use case for 3D Gaussian Splatting [12] is in capturing 3D photo-realistic human faces
[21, 30, 28, 17]. These methods are very adept at creating photo-realistic 3D heads and, by using an
underlying mesh structure, support animating the heads. Such an animatable head is referred to as a
Gaussian head avatar.

One crucial limitation of these methods is that they restrict which faces artists can work with by
requiring the capture of new footage and going through the expensive and time-consuming process of
generating a new Gaussian head avatar from this footage. To address this, we propose a novel method
to create new animatable Gaussian head avatars by selectively combining semantic features from an
existing database of source Gaussian head avatars. Our method makes it possible to reuse avatars to
easily and quickly create new ones. Thereby, this thesis aims to examine the feasibility of selectively

combining 3D Gaussian head avatars to create a novel and convincing photo-realistic head avatar for
3D animation. To demonstrate our approach, we develop a composite editor for 3D Gaussian head
avatars and conduct a study with human participants tasked to distinguish randomly edited composite
avatars from unedited source avatars. In summary, the key contributions of this thesis are:

* A novel method to create Gaussian head avatars by combining existing Gaussian head avatars.
Our method makes it possible to create new avatars without any of the usual costs associated with
creating a 3DGS scene.

* A modified version of GaussianAvatars’ [21] optimisation method, addressing interference from
Gaussians bound to opposing sides of the underlying mesh by temporarily inserting opaque
Gaussians inside the mesh during the optimisation process. This makes it possible to use
front-view-only footage to generate Gaussian head avatars suitable for our editing method.

¢ Two Gaussian post-processing methods: one to smooth transitions between Gaussians to mask
artefacts between two facial regions, and another to adjust colours for consistent skin tones,
enabling composite avatars from sources with different skin tones.

¢ A performant and interactive editor for photo-realistic head avatars based on mesh-bound
Gaussians, capable of selectively combining Gaussians and face shapes from multiple source
avatars.

* An evaluation of our method according to a study evaluating the perceived authenticity of our
composite avatars with human participants, as well as a real-time performance analysis of our
editor to evaluate our method for use in interactive editing.

Background

In this chapter, we explain relevant background knowledge. This includes developments in the domain
of 3D scene reconstruction, also including the 3D Gaussian Splatting approach [12] that has gained a lot
of attention in recent years. Furthermore, we discuss mesh-bound Gaussian approaches that have been
successfully used for face representation. In particular, GaussianAvatars [21], which this thesis directly
builds on.

2.1. 3D Scene Reconstruction

Traditional 3D scene reconstruction pipelines typically use Structure-from-Motion (SfM) and multi-view
stereo approaches to explicitly model scene geometry in terms of a surface mesh from image data [25, 26,
33]. These methods integrate well with standard computer graphics rendering engines and can achieve
accurate geometric reconstructions. However, due to their mesh-based representations, they struggle
to capture the really fine geometric details and due to typically only storing a single colour value per
surface point, they additionally cannot handle complex view-dependent lighting effects crucial for
photo-realism.

With the advent of Neural Radiance Field [19] (NeRF), learning-based scene reconstruction has steadily
gained popularity. In contrast to the traditional approach, NeRF [19] scenes are represented implicitly
by a neural network acting as a function mapping 3D coordinates and viewing directions to colour and
density values. The continuous radiance field represented by this function is trained using image-based
loss, which allows it to create high-fidelity renders. The biggest downside to NeRF [19] is that rendering
is performed by querying the neural network many times per pixel. This is very costly, making it
ill-suited for real-time use.

2.2. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [12] is a 3D scene reconstruction technique which also represents scenes
as a radiance field. However, instead of a neural network, a 3DGS scene is made up of many ellipsoids
called 3D Gaussians, each representing a discrete part of a continuous radiance field. As a distinct set
of primitives, these Gaussians can be rendered orders of magnitude faster than NeRF [19], achieving
high-fidelity novel-view synthesis at performant frame rates.

Each Gaussian is described by its position p, opacity a, colour ¢, and shape defined by a 3D covariance
matrix X. In practice, the covariance matrix is derived from the rotation and scaling matrices r and s of a
3D ellipsoid according to & = rss’rT. The colour is represented using Spherical Harmonics coefficients
[22] to capture view-dependent lighting effects, e.g. specularity.

2.2.1. Scene Generation
Kerbl et al. [12] create a 3DGS scene by taking real-world captured footage as their ground-truth. The
Gaussians used to represent the scene are initialised based on points obtained from Structure-from-

2.2. 3D Gaussian Splatting 4

Motion [25] or randomly. The parameters of these Gaussians are then modified to better represent the
scene in terms of leading to synthesised views that match the ground-truth photographs given for the
respective camera configurations. This is done iteratively according to a gradient descent optimisation
technique [24]. Additionally, a periodic densification step is involved to better adapt the number of
Gaussians in the scene as needed. This is done by cloning or splitting existing Gaussians (Figure 2.1).

Split
—_—) [X N J
Optimisation
ontinues
[X X]
Optimisation
ontinues

Figure 2.1: Densification of Gaussians based on a figure from [12].

Clone
—

2.2.2. Rendering Gaussians

Gaussian Splatting rendering is equivalent to marching a ray through a scene and adding the colour
and opacity of each Gaussian that intersects that ray (see Figure 2.2) until saturation is reached. The
colour C of a pixel is computed from the ordered set N of points along this ray according to:

C= Z CiafiTl'

ieN

with colour c; and opacity a; of each point i along the ray and transmittance

i-1
T; = I_[(l - aj)
j=1

modelling the exponential loss of light along the ray from all the points preceding i.

— - ’+-

Figure 2.2: Illustration of ray marching used in Gaussian splatting rendering.

2.2.3. Novel-View Synthesis

Because Gaussians are 3D objects in space, it is possible to reposition the camera around the scene
at will. This allows for the rendering of novel views that are not contained in the set of photographs
used for the inference of the 3DGS scene. For camera configurations similar to certain configurations
included during the capture process, the synthesised views are more accurate than for views that more
strongly deviate from respective configurations.

2.3. 3D Morphable Face Models 5

2.3. 3D Morphable Face Models

A 3D Morphable Face Model (3DMFM) [1, 4] is a statistical model that represents the shape and
appearance of human faces in 3D. Such models enable the generation of 3D face meshes by adjusting
a set of linear parameters (e.g. via sliders) to manipulate facial shape. Because these meshes have a
standard mesh topology, they can be used to simulate mesh deformation. Conventional 3DMFMs rely
on principal component analysis (PCA) [10] to define a latent space for 3D face shapes from a set of facial
scans. One prominent example is FLAME [15], which employs a learned linear latent space consisting
of 300 shape, 100 expression, and 6 pose parameters. Given an input image of a face, FLAME [15]
can estimate shape and expression parameters, enabling 3D face reconstruction. Explicitly separating
shape and expression parameters makes independent manipulation of these attributes possible (see
Figure 2.3). This separation also makes it possible to animate a face from driving footage by transferring
extracted expression parameters to a different set of shape parameters.

FLAME 2020 FLAME 2020 FLAME 2020

(a) Neutral FLAME face (b) FLAME mesh with modified shape (c) FLAME mesh with modified shape and
parameters expression parameters

Figure 2.3: Online interactive FLAME viewer accessible at https://flame.is.tue.mpg.de/interactivemodelviewer.html.

2.4. Mesh-Bound Gaussians

Gaussians, by their unstructured nature, don’t lend themselves well to the kind of surface deformation
required for animation. This limitation has been addressed in various works by binding the Gaussians
to an underlying mesh [6, 30, 5]. The exact way this is done differs, but the core idea is the same: by
binding each Gaussian to a parent mesh primitive (usually a triangle), it is possible to transitively update
the attributes of a Gaussian according to its parent’s deformation. This is typically done by expressing
the scale, rotation, and mean of a Gaussian as a function of its parent’s 3D coordinates. The strategy
used to bind Gaussians to a mesh differs, but in general, the mesh should match the underlying shape
of the object the Gaussians are being bound. As a result, the meshes used are typically extracted from
the same images used to optimise the Gaussians. A common approach is constructing a mesh, binding
Gaussians to it, and jointly optimising the Gaussians and the mesh itself to more accurately match the
ground-truth images [5, 6, 21]. Using this approach with video footage of a moving subject requires
the generation of a new mesh whenever the subject moves. This is a problem because mesh extraction
methods typically don’t produce the same mesh topology, which means the Gaussian bindings cannot
be used across meshes. The use of 3DMFMs can solve this problem due to their use of a standard mesh

topology.

2.4.1. Gaussian Head Avatars

A popular use case for mesh-bound Gaussians is to create high-fidelity, animatable, human faces [21,
30, 28, 35]. Due to the dynamic nature and tendency for occlusion (e.g. the opening/closing of eyes
and mouths) of human faces, it’s desirable to optimise the Gaussians on footage of a moving face for a
more accurate result. Unfortunately, a new mesh is required whenever the subject moves, otherwise
the mesh won't accurately match the subject. However, if the topology of the mesh changes, as is the
case in many mesh extraction methods, the Gaussian bindings won’t match the mesh either. A solution
to this problem is to use a 3D Morphable Face Model for its ability to generate a mesh with standard
topology from images. This makes it possible to use footage of a moving subject to generate a mesh and
mesh-bound Gaussians.

https://flame.is.tue.mpg.de/interactivemodelviewer.html

2.4. Mesh-Bound Gaussians 6

GaussianAvatars

GaussianAvatars [21] is a method which uses FLAME [15] to create photo-realistic head avatars.
Their avatars are animatable through modification of the FLAME expression parameters. The mesh
manipulation used by GaussianAvatars only extends to expression transfer. We add to this by introducing
methods for shape transfer and texture transfer by facial region. As we build directly on GaussianAvatars,
their specific method is covered in more detail below.

Qian et al. [21] define each Gaussian in relation to a single parent triangle on a mesh. The centre point y,
rotation 7, and scaling s of a Gaussian are all defined relative to the tangent space defined by its parent
triangle. To render the Gaussians, they must first be converted to world-space according to:

r’ = Rr
w =kRu+T
s’ =ks

Where T denotes the triangle centroid, R represents the rotation matrix describing the orientation of the
triangle, and the scalar k represents the size of the triangle. During the mesh updates, the parameters T,
R, and k for each parent triangle are updated, which then updates their respective Gaussians’ parameters
in world space.

Gaussians are optimised directly onto a mesh. Each triangle of the mesh is initialised with a single
Gaussian bound to it. The tangent-space parameters are then optimised using gradient descent [24]
as normal. Gaussians with very low opacity or scale are periodically removed, with the restriction
that every triangle must have at least one Gaussian bound to it. This is because Gaussians created by
densification inherit their binding from another Gaussian; thus, if a triangle loses all its Gaussians, it
will never get them back.

Gaussians that are far from or much larger than their parent triangle react drastically to small changes
in the triangle. To prevent this, Qian et al. [21] introduce additional loss terms for the relative scale and
distance of a Gaussian to its parent triangle. The result is Gaussians, which approximate a surface by
acting as a kind of "volumetric texture" for a mesh.

Related Work

Gaussians by themselves, as a disorganised point cloud, lack structure. This makes them ill-suited for
conventional mesh-based animation and editing techniques. In this chapter, we provide an overview of
some works addressing the lack of underlying structure in Gaussians, as well as look at some approaches
to editing Gaussian scenes.

3.1. Adding Structure to Gaussians

SuGaR [6] creates an animatable mesh-bound Gaussian model from ground-truth footage. The approach
used by the authors is to add a regularisation term during optimisation, which favours thin flat Gaussians
placed close to the surface. These surface-aligned Gaussians are then used to synthesise a mesh using
Poisson reconstruction [11]. Lastly, they bind the Gaussians to the mesh, then jointly optimise both
the mesh and the Gaussians. However, SuGaR does not produce a standard mesh topology, which is
needed to maintain binding across different meshes both during optimisation and during editing. In
contrast, the approach presented in this thesis will overcome this problem.

GaussianFrosting [5] approaches the problem of surface reconstruction by treating Gaussians not as a
thin flat "2D-like" surface, but instead as a "frosting" layer of variable thickness. This layer is thicker
for volumetrically complex features (e.g. fur) and thinner for well-defined flat surfaces (e.g. a table).
The frosting layer is defined for each triangle by taking its vertex normals and applying a positive and
negative shift to get 6 points defining a triangular prism. A Gaussian is then defined relative to its
parent prism, with its centre expressed in barycentric coordinates to ensure that it stays inside the
prism. This results in mesh-bound Gaussians that perform well for both flat surfaces and volumetric
features. Unlike our method, and similar to SuGaR [6], this method does not produce the necessary
standardised mesh topology, making it unable to optimise Gaussians on footage of a moving subject,
which is necessary for high-quality animated Gaussian head avatars. We will overcome this issue by
using a 3SDMFM [4].

SplattingAvatar [28] expresses a Gaussian’s position as (k, 1, v, d), where (1, v) are barycentric coordi-
nates local to its parent triangle k, and d is the displacement along the normal. During optimisation,
when a Gaussian’s (1, v) coordinate crosses the triangle boundary, it gets bound to its neighbouring
triangle. Allowing the Gaussians to "walk" over the mesh during optimisation ensures that they are
always bound to the triangle directly below them. In contrast, our method restricts Gaussians to change
parents, which allows them to better model often occluded surfaces such as the inside of the mouth.

GaussianHair [17] models hair as strands of thin, elongated Gaussians connected in series. To do this,
the authors first use an off-the-shelf decoder to extract coarse hair strands from their ground-truth.
Then, Gaussians are optimised onto those strands. This approach gives all the benefits of efficient
high fidelity rendering that the Gaussians provide, with the added benefit that the Gaussians can be
animated using conventional hair simulations. In contrast to the above-mentioned strand representation,
which specialises in modelling hair, our method binds Gaussians to a triangle mesh. This more general
approach allows us to model faces and hair.

3.2. Editing Gaussian Scenes 8

Unlike the methods discussed above, our method addresses the inherent issue of using 3D Gaussians
to represent opaque surfaces by obscuring Gaussians which should not be visible if the surface of the
mesh were truly opaque.

3.2. Editing Gaussian Scenes

An artist should be able to modify a 3D scene to match their intended vision. This also holds for scenes
using 3D Gaussians. This section explores prior work in editing 3DGS scenes.

Deepfake for the Good [29] creates edited Gaussian head avatars by modifying the ground-truth
footage prior to the optimisation process using a deepfake face-swap. In this way, they combine the
characteristics of different faces. Edits are applied before the optimisation process, which means that an
avatar needs to go through the expensive optimisation process again before seeing the result of the edit.
In contrast, our method edits avatars after they have been optimised. This allows our method to be
interactive and display the result of the edit in real time.

GaussianEditor [3] uses a text-based editing approach for Gaussian scenes. A 2D diffusion model
is used to guide the updates to the scene according to a text prompt. To ensure accurate editing
of the Gaussians to be updated, a semantic tracing tag is added to each Gaussian, enabling precise
segmentation. Additionally, the editor supports the removal and addition of objects given a text prompt
and a 2D mask from a specific camera viewpoint. Like our method, this editor is interactive, but it does
not support the editing of mesh-bound Gaussians, which are needed for animation, nor does it provide
dedicated tools for editing faces.

SplatShop [27] is an editor for large-scale Gaussian scenes with a Photoshop-like approach to editing.
Scenes are edited by selecting Gaussians and modifying them. Selections can be deleted, cloned,
translated, scaled, and rotated. A paintbrush tool allows users to paint on top of the existing Gaussians,
and an asset library lets them add more models to the scene. Impressively, the editor supports all of
these operations, including the ability to undo/redo certain operations, all while running in VR. Like
GaussianEditor [3], this editor also does not support editing mesh-bound Gaussians, nor does it provide
tools to edit Gaussians at the semantic level.

While the work discussed above focuses on the editing of unbound Gaussians, our method specifically
addresses the need for editing mesh-bound Gaussians by contributing a novel approach based on
semantic mesh segmentation.

Methodology

E S —@Q=» |+

AONE — Q| Fiid| — O | Fz
A

N -0+ [T

Figure 4.1: An illustrated pipeline of our method for editing Gaussian head avatars. Video footage of human faces is used to
generate a database of source avatars. Each avatar is composed of a set of mesh-bound Gaussians and an underlying mesh. A
composite avatar is created by selectively combining source Gaussians and mesh blending. The selection is done according to a
semantic segmentation of the underlying mesh. The composite avatar in the illustration is created from the shape and aesthetic
features of the three source avatars as indicated by the eyes, mouth, face shape, and skin colour.

We address the inability to edit animatable Gaussian head avatars by introducing a method for shape
and texture transfer of Gaussian head avatars. Our method of editing works at the semantic level based
on mesh segmentation, allowing the user to selectively combine features from a database of source
avatars to create a composite avatar.

We also present 3 additional improvements, which are crucial for the quality of a composite avatar.
Specifically, we adapt Qian et al.’s [21] Gaussian optimisation method to better represent an opaque
surface, add a post-processing step to smooth the Gaussians between semantic regions, and add a colour
correction step to better match skin colour between source models.

To demonstrate our method, we built an interactive editor on top of GaussianAvatars [21] for its realistic,
animatable Gaussian head avatars.

41, Novel Face Synthesis 10

4.1. Novel Face Synthesis

We define a source avatar f = (G,7,V) with mesh-bound Gaussians G, mesh topology 7~ C
{1,2,...,n}® and mesh vertex positions V' = {v1,02,...,v,} C R3. The vertices of a triangle
t = (i,j,k) € 7 are defined by (v;,v;,vx). A composite avatar f’ = (G',7,V’) is then created
from a set of source avatars ¥ = {fi, f2,..., fu} with identical mesh topology 7. To edit f’, we
partition 7~ into a set of semantic regions R = {7yose, "mouth, - - - +- When talking about Gaussians, we

use superscript to denote the source avatar and subscript to denote its binding. That is, g{ refers to the
Gaussians of the source avatar f bound to the region r.

4.1.1. Combining Gaussians From Different Avatars

We create G’ by combining subsets of source avatars’ Gaussians G1, Go, - . ., Gm. In practice, we do this
per region by assigning a source avatar to each region of the composite avatar. In this way, a composite
avatar’s Gaussians are a patchwork of the Gaussians of its source avatars.

Note that all the avatars have the same mesh topology, allowing us to transfer Gaussians from one avatar
to another while preserving their original binding and semantic meaning.

4.1.2. Combining Face Shapes From Different Avatars

Next, we describe how to combine face shapes from multiple avatars to create a new composite
mesh. To do that, we create V’ as a per-region convex combination of source avatars’ vertex positions
Vi, Vo, ..., Vi according to a slightly modified version of the technique described by Ma et al. [18].
They assign weights to control points in each region and then compute the weight of each vertex by
interpolating the k nearest control points, resulting in a smoother transition between regions. We have
the benefit that our mesh does not need to be very smooth since the Gaussians mask any boundary
artefacts. This allows us to use the same weight across an entire region. Additionally, our regions are
defined by triangles and not vertices, so we assign a weight to each triangle edge instead of each vertex.

Per region r, we assign to each source avatar f a weight w{ € [0,1] such that) f w{ = 1. We use these
weights to calculate the convex combination of the directed edges ¢, in each region r as follows:

m m
d,:Zw{-e, where Zw{zl
f=1 f=1

We create a 3 - |77| X n oriented incidence matrix M where each row represents a directed edge e = (i, j)
of a triangle in 7~ and each column represents a vertex v.

-1 ifo=i
M,, =131 ifo=j

’

0 otherwise

Then, to calculate V’, we solve the linear system MV’ = d. As shown by Ma et al. [18], we can multiply
both sides of the equation by MT to get MT MV’ = LV’ = MTd where L is the Laplacian matrix, which
is efficiently solved using a pre-computed LU decomposition.

One caveat of this approach is that because there are no edges between disjoint sections of the mesh, the
solved V’does not preserve their relative placement. This is an issue, specifically because face meshes
tend to use disjoint meshes for the eyeballs and the teeth. To overcome this, we add artificial edges
between chosen anchor points on the disjoint meshes. Given anchor points a4 on a disjoint part of the
mesh and a4,, on the main mesh, we add edges (a4, 4,,) and (a,,, az) to M (see Figure 4.2). To assign a
weight to the edge, we consider it in the region of its starting vertex. In practice, we make each disjoint
mesh its own region in R and take the geometric median of a region as its anchor point. Then we
connect each disjoint part to 2 nearby regions.

4.2. Artefact Reduction in Composite Avatars 1

(a) Two disjoint meshes which are part of a singular mesh. (b) Adding directed edges to anchor points on two disjoint meshes.

Figure 4.2: Illustration indicating the addition of two edges to artificially create a single joint mesh for shape blending. The
disjoint meshes are indicated by blue and red. The extra edges are black, and the anchor points are purple.

Lastly, because our matrix does not have full rank, we need to pin some vertex p to some position u
when solving for the vertex positions. This ensures the mesh does not get translated relative to its
previous position. Intuitively, this makes sense if you consider that we have only placed constraints
on the edges of the mesh but not on the vertex positions, meaning a mesh can be translated while still
fulfilling the constraints on the edges. For p we take the geometric median of the mesh, and for u we
take the position of v, in V. To add this constraint to our system, we modify L and M”d such that:

1 ifi=p
Ly d MTd
pi {0 otherwise an (Jp

4.2. Artefact Reduction in Composite Avatars

The approach described so far in the previous section suffers from artefacts stemming from the
combination of Gaussians from multiple avatars. For this reason, we provide several improvements
in the quality of composite avatars. These include a method to reduce interference caused by the
transparency of Gaussians (see Section 4.2.1), and two post-processing methods to improve the
homogeneity of the Gaussian layer (see Section 4.2.2).

4.2.1. Mitigation of Misleading Transparency Effects

When rendering an opaque surface (e.g. a face), occluded surfaces must be excluded from the render.
Unfortunately, as a rendering technique, Gaussian splatting specifically includes all Gaussians in the
render until the saturation of a ray. In mesh-bound Gaussians, this results in interference from Gaussians
representing occluded surfaces. For example, during optimisation, Gaussians on the other side of the
mesh can constructively interfere such that from the point of view of the camera, the scene matches the
training footage, but the Gaussians don't actually form an opaque surface (see Figure 4.3b).

Unfortunately, in a composite avatar, the effect is amplified because Gaussians that were causing
constructive interference might have been swapped out, resulting in misleading results as seen in Figure
4.3c.

This can be mitigated by using training footage with 360° views will mitigate the problem, because then
there is footage from all sides of the head to inform the Gaussians on all sides what they should look
like. Unfortunately, many face capture scenarios, including the popular NeRSemble dataset [13] used
in this thesis, only have front-facing camera angles. To address the issue of interfering Gaussians, we
introduce two simple modifications to the optimisation method of Kerbl et al. [12].

4.2. Artefact Reduction in Composite Avatars 12

BN _»8 i BN

(a) Cross-section of ground-truth. (b) Cross-section of source avatar. (c) Cross-section of composite avatar.

Figure 4.3: Diagrams illustrating the effect of holes on composite head avatars. The dot next to a ray indicates the colour of its
pixel. Note how, despite including the face Gaussians of the source avatar in (b), the rays of the composite avatar in (c) will not
render as the intended red and blue from the ground truth (a).

Obscuring Gaussians

Our goal is to augment the optimisation, such that we obscure Gaussians bound to occluded surfaces,
preventing them from causing interference. We achieve this by artificially adding opaque Gaussians
inside the head as seen in Figure 4.4. Because they are fully opaque, all Gaussians behind them will
get obscured. Ideally, the obscuring Gaussians should fill the convex hull of the mesh. Because our
mesh is different for each frame of footage, we need an efficient solution to determine the placement of
obscuring Gaussians. Fortunately, we can achieve a decent approximation using a very simple heuristic.
We take advantage of the fact that the shape of the human head vaguely approximates an ellipsoid,
allowing us to fill it by simply placing one large Gaussian in its centre. The rotation and scale of our
Gaussian are determined by an oriented bounding box (OBB) of the head. The rotation of the Gaussian
is simply the rotation of the OBB. The scale is OBB’s extents scaled down by a constant factor to ensure
that the Gaussian doesn’t bleed through. The scaling factor is empirically chosen to be 0.09.

)
4

] ! b

X

-
| Il
& |

(a) Obscuring Gaussians placed according to the OBB indicated by the (b) Obscuring Gaussians placed inside a mesh.

dotted line.

Figure 4.4: Visualisation to illustrate the placement of obscuring Gaussians inside the head of an avatar. This will prevent
Gaussians on the other side from being visible to the renderer during optimisation.

We do not bind these Gaussians to any triangle, nor optimise their parameters. To prevent Gaussians
from adapting to the obscuring Gaussians, we change their colour every iteration. In practice, we cycle
through red, green, and blue to simulate random noise. This simple addition encourages the Gaussians
to optimise into a water-tight opaque layer.

4.2. Artefact Reduction in Composite Avatars 13

Back-Face Triangle Culling

The optimisation method of Qian et al. [21] requires that every triangle have at least one Gaussian bound
to it. This forces Gaussians to be bound to triangles even if there is no training data in which that part of
the head would be seen. For example, when using only front-facing footage, the back of the head is not
visible; however, Gaussians will still be bound there.

Instead, we modify the mesh topology prior to optimising Gaussians by culling all triangles which lack
sufficient ground-truth coverage. Given a camera ¢ with view direction ¢, we consider a triangle ¢ with
normal 7i; visible if it is facing towards the camera. In other words:

o(c 1) = 1 ifwn;-¢<0
7710 otherwise

In this way, we sum a triangle’s total view count across every training camera and expression. We divide
the view count by the number of cameras and expressions to get the view ratio. Finally, all triangles
with a view ratio less than a threshold 7 are culled.

n n
Zci1 inl v(c, ty) <
NeNy

Where f, refers to the orientation of triangle ¢ at expression x. The number of cameras and expressions
is given by n. and ny, respectively.

4.2.2. Post-Processing of Gaussians
We introduce 2 post-processing techniques to homogenise G’. The first technique smoothens the borders
between regions, and the second targets differences in skin tone.

Border Smoothing
The borders between two regions with different source Gaussians can appear quite jarring. The transition
between regions is smoothed by simulating alpha blending (see Figure 4.5).

(a) Without border smoothing. (b) With border smoothing.

Figure 4.5: An illustrated example of the border smoothing method. The border between the regions is represented by the dotted
line. Colour indicates the source avatar.

We extend G’ with additional Gaussians on the boundary triangles between these regions. A triangle ¢
borders region r iff t ¢ r and t shares a vertex with any triangle in . The function b(r, p) returns all
triangles in region p which border on region r. The set of extra Gaussians is given by:

U gﬁr,p) where f, # f,
r,peR

4.2. Artefact Reduction in Composite Avatars 14

To avoid adding unnecessary Gaussians, we only include Gaussians for bordering regions with Gaussians
from differing sources. Lastly, we halve the opacity of the extra Gaussians to simulate alpha blending
on the border.

~ 44
A

(a) Avatar with discoloured eye region. (b) Avatar with discoloured nose and mouth regions.

Figure 4.6: Composite avatars with visible discolouration as a result of combining source avatars with different skin tones.

Skin Tone-Based Colour Correction

Combining source avatars with different skin tones typically produces lacklustre avatars, as shown in
Figure 4.6. For this reason, we introduce a colour correction technique which modifies the colour of
Gaussians in one region to better match the colour of a specified base avatar.

For this purpose, we apply the colour correction per region by calculating a weighted mean ¢y, where
f is the source avatar assigned to the region. We use w, = a, - size(s¢) as the weight for Gaussian g,
where size(s) = ILs approximates the largest cross section of a Gaussian. For a Gaussian g in a region,

min(s)
we compute the corrected colour ¢}, according to:

’

8

’ _ Chase . P Z‘o’ CgWg
Cg—Cg'__ with Cf——
f 2g Wy

Implementation

Our implementation is built on top of the existing GaussianAvatars [21] codebase, which is written
primarily in Python 3 using NumPy, and PyTorch [20] with CUDA. Gaussians are rendered using the
original renderer by Kerbl et al. [12]. Meshes are rendered with Nvdiffrast [14]. The user interface (see
Figure 5.1) is built with DearPyGUI [8]. We use SciPy [32] and SuperLU [16] to solve for vertex positions
when blending face shapes. The object-oriented bounding box for the obscuring Gaussians is computed
with Open3D [34].

| Composite Editor B &

148 ¥ play Taoping

Figure 5.1: A screenshot of our editor. The bar on top displays a preview of the source avatars. The top left shows the debug
panel, which can be used to toggle debug options such as changing the scale of the Gaussians or displaying the underlying mesh.
The panel in the bottom left is used to edit the avatar by assigning Gaussians and modifying shape coefficients per region, as well
as toggling the post-processing methods on/off. The bottom right panel displays information about the Gaussians and the mesh.
Lastly, the panel in the top right is used to animate the avatar by selecting a set of expression parameters and iterating through

them. It is also possible to manually adjust the joint parameters and the first 5 expression parameters.

15

16

For our source avatars, we use GaussianAvatars [21], consisting of fine-tuned FLAME parameters and
mesh-bound Gaussians. These are trained using the same optimiser, learning rates, and parameters as
reported by Qian et al. [21].

Our hole-filling methods are specifically implemented to not interact with the optimiser’s computation
graph. Obscuring Gaussians are not bound to any triangle and are passed only to the renderer and not
tracked by the optimiser. Back-face triangle culling is applied before training starts. Because this changes
the mesh topology, we map the Gaussian bindings back to the original topology when exporting.

Similar to the work by Qian et al. [21], we generate the underlying mesh at runtime using a pre-trained
FLAME 2023 model [15]. To animate a composite avatar, we first recompute the meshes of its source
avatars according to the next frame’s expression parameters. Then, using the same mesh blend
coefficients, we recalculate the composite avatar’s vertex positions.

To handle the manipulation of multiple Gaussian datasets, we load all the source Gaussians into one
large unified buffer. This lets us efficiently select which Gaussians to render using an index mask. Every
time the regional assignment changes, we rebuild the mask using pre-computed lookup tables. We also
use lookup tables for the boundary Gaussians and the mean colour to speed up post-processing.

For editing, we use 18 regions grouped into 7 distinct groups (see Figure 5.2). The mesh regions are
based on Qian et al.’s [21] modified version of the FLAME [15] vertex masks. Our changes make sure
every triangle belongs to exactly one region by removing overlapping triangles and adding left_eye_socket,
right_eye_socket, and remainder regions to cover unassigned triangles. The eyeball and feeth regions are
disjoint from the rest of the main mesh. We connect each eyeball to its respective eye_socket and eye_region
and each feeth region to the lips and lips_inside regions.

Group Regions Triangles
teeth_upper lips
Mouth teeth_lower lips_inside 740

left_eye_region right_eye_region
Eyes left_eye_socket right_eye_socket 3495
left_eyeball right_eyeball

Ears left_ear right_ear 2306
Neck neck boundary 566
Hair hair remainder 776
Nose nose 718
Face skin 1543

Figure 5.2: The semantic groups and their respective sub-regions used in our editor.
Edits are applied universally across every region in a group.

Evaluation

To demonstrate the potential of our approach, we provide a qualitative analysis of our method (see
Section 6.1) and a quantitative analysis (see Section 6.3) based on a user study investigating the perceived
authenticity of source and composite avatars (see Section 6.2). Lastly, we examine the real-time
performance of our editor (see Section 6.4) to evaluate the interactivity of our method.

6.1. Qualitative Analysis

In this section, we will visually explore the effect of our hole-filling, border smoothing, and colour
correction methods on composite avatars. We do this by selecting 4 composite avatars, which we think
display the strengths and limitations of our method. We show 4 versions of each composite avatar. A
version without any of our improvements, one with only hole-filling, one with hole-filling and border
smoothing, and one with all three operations applied. The composite avatars and the subjects they are
based on are presented in Table 6.1.

The impact of hole-filling is generally negligible on a still image but becomes more prominent on a
moving avatar. The sequence of images in Table 6.2 better illustrates the issue of transparent regions of
the face, and how it is resolved by our method. One negative consequence of our hole-filling method
is that it increases the opacity of Gaussians, which makes borders between Gaussians from different
sources more distinct. This becomes apparent when looking at the mouth and eyes of avatar C and the
nose and eyes of avatar D (see Table 6.1).

Our border smoothing method addresses this issue by smoothing out the increased harsh borders. This
is visible at the eyes of avatar D, the neck of avatar B, and the nose of avatar D (see Table 6.1). Another
benefit of the border smoothing method is that it covers up holes where the Gaussians do not fully cover
a border, such as the forehead of avatar B (see Table 6.1).

Differences in skin tone between subjects are tackled by our colour correction method. Its effect is visible
at the neck of avatar A, the eyes and mouth of C, and the eyes, nose, and mouth of D (see Table 6.1).
Besides just the skin tone, it can also match the hair colour, as seen in avatars A and B (see Table 6.1).

Our method for colour correction does not distinguish between skin and non-skin Gaussians, such as
hair or clothing. This can be beneficial such as you see in avatar A’s hair, which better matches the hair
colour of the base subject (see Table 6.1). On the other hand, it can be detrimental, such as you see in the
neck of avatar B, which has gained a greenish tint due to trying to match the colour of the base subject’s
shirt, or in the shirt of A, which has darkened to match the colour of the base subject’s shirt (see Table
6.1). A simple workaround can be to simply take the source avatar assigned to the neck as the base
colour, ensuring that colour correction is never applied to the neck region, avoiding discolouration
caused by clothing.

17

6.1. Qualitative Analysis 18

Base Others None Fill F+Smooth All

Table 6.1: Examples of composite avatars showcasing the performance of our hole-filling, border smoothing, and colour
correction methods. The left 2-3 images are of the human subjects used to create the composite avatars. The remaining images
show the avatar without any of our improvements applied, with only the hole-filling operation applied, with both the hole-filling

and border smoothing operations applied, and with all three operations applied.

6.1. Qualitative Analysis 19

No Fill

No Fill + Hair

Fill + Hair

g

Table 6.2: Visual comparison of our hole-filling method. Each row shows an avatar under rotating camera views. The first row
demonstrates how the back-side Gaussians hide the transparency in the face. The second row makes this clear by changing the
hair Gaussians (and thus the back-side Gaussians), while the last row shows how our hole-filling method resolves the issue.

Subject 264 460 460 + CC

264

460

Table 6.3: Visual comparison of the impact of shape blending compared to modifying the Gaussians. The composite avatar is
composed of subjects 264 and 460 (see Appendix A), with the former as the base. Modifications are only applied to the nose
region, and shape coefficients are all-or-nothing, i.e. 100% for one source and 0% for the other. The row indicates which source’s
shape is used. The columns indicate which source’s Gaussians are used. Colour correction is applied in the last column. Note
how even when the Gaussians have not been modified, the result of the shape modification (a smaller nose) is easy to overlook
and even more so when the Gaussians are modified.

6.2. User Study 20

6.2. User Study

To investigate the perceived authenticity of source and composite avatars, we conducted a user study
with 22 participants. The 22 participants were each shown a mix of source and composite face avatars
and surveyed on whether they thought the avatar they were shown was edited or not. For the avatars
identified as edits, we further asked them to select which parts they think were modified.

6.2.1. Creation of Test Avatars

For the study, we created a database of 14 source avatars from pre-processed NeRSemble [13] data
provided by Qian et al. [21]. The subjects and expressions are listed in Table 6.4 with images in Appendix
A. Each source avatar is synthesised from 11 video sequences of a subject performing various facial
expressions. Each sequence is captured from 16 distinct front-facing viewing angles.

Expressions Subjects
EMO 12 3 4 074 104 140 165 175 210
EXP 2345809 218 238 253 264 302 304
FREE 306 460

Table 6.4: The 11 sequences and 14 subjects from the NeRSemble [13] dataset which the source avatars are trained on.

Composite Avatars
Composite avatars are randomly created using 3 source avatars from the database. We designate 1 avatar
as the base and apply random modifications to the coefficients and Gaussian assignments according to
the following rules:

e Edits are applied as a whole to every region in a group. We use the following groups: eyes, nose,
mouth, hair + neck + ears (HNE).

* The Gaussians of at least one group are replaced with those of an additional avatar.

¢ The shape of at least one group is blended with the shapes of the additional source avatars. The
coefficients are randomly decided using a stick-breaking approach.

¢ The shape of the HNE group is not blended and is instead matched to the shape of the source
avatar assigned to it.

Hair often overlaps the ears and the neck, leading to poor results when swapping those Gaussians
separately. Additionally, if Gaussians are attached to a drastically different mesh than the one they were
optimised on, the effect breaks down. This tends to be the case with hair, because the difference in
hair shape between avatars is substantial. These are known issues with our method, so to avoid them
biasing the result, we have grouped HNE together and additionally matched its shape to that of its
source avatar by restricting the blend coefficients for that region.

6.2. User Study 21

6.2.2. Categorisation of Test Avatars

We compare our composite avatars to unedited source avatars to show that the realistic quality of
the avatars is preserved. We evaluate our hole-filling improvement by comparing the performance of
hole-filled source avatars to non-hole-filled source avatars, and the performance of hole-filled composite
avatars to non-hole-filled composite avatars. Lastly, we evaluate our border smoothing improvement by
comparing the performance of hole-filled composite avatars with and without the border smoothing
applied. The subtle impact of shape blending is overshadowed by edits to the Gaussians (see Table 6.3),
and is not directly evaluated in our study to maintain focus. As mentioned earlier, our colour correction
technique is excluded from this study. Table 6.5 contains a summary of the 5 test categories used in the
study.

Category Description
edit_original Composite avatars created using non-hole-filled source avatars.
edit_filling Composite avatars created using our hole-filled source avatars.

edit_filling_smooth ~Composite avatars created using our hole-filled source avatars with our
border smoothing technique applied.

unedited_original ~ Source avatars optimised using GaussianAvatars’ original method

unedited_filling Source avatars optimised using our hole-filling method.

Table 6.5: An overview of the test categories in our study

In the study, we used 45 randomly created composite avatars (15 for each edited category) and 14 source
avatars (7 for each unedited category) for a total of 59 avatars ordered randomly for each participant.
The subjects of both unedited categories were kept distinct to prevent familiarisation bias. The generated
avatars for the survey are listed in Appendix B.

6.2.3. The Testing Interface

The participants performed the task in a custom-built interactive graphical user interface running on a
computer(see Figure 6.1). The window is locked to a resolution of 800x1200. The participants were
able to use a computer mouse to change the camera view used to observe the avatar according to their
preference. However, the camera was locked to orbit the avatar at a radius of 2.5 world-space units with
+45° horizontal and +15° vertical freedom.

Test Viewer - o x

Figure 6.1: The testing interface used in our study.

6.3. Quantitative Analysis 22

The avatars were all animated with the same looping sequence of closed-mouth expression parameters
sourced from subject 306. The animation sequence was capped at 25 FPS, matching the downsampled
frame rate at which the avatars were trained. Because open-mouth expressions usually have a lot of
artefacting in and around the mouth, we exclude them from our study.

The study was conducted on an Alienware Area-51 R5 computer with an Intel Core i7-9800X CPU, 32GB
of RAM, an RTX 4070 with 12GB of VRAM, running the Ubuntu 24.04 LTS operating system.

6.3. Quantitative Analysis

To analyse the authenticity of an avatar, we calculate a score based on the mean response to the question
"Is this face edited?". We define this authenticity score as the ratio of "no" responses to the total number
of responses per avatar. This score represents the consensus of participants regarding the authenticity
of a specific avatar, where a higher number indicates more participants considered this avatar unedited.
An in-depth overview of the results per test case is listed in Appendix B. An overview of the authenticity
scores for each avatar is shown in Figure 6.2.

Category Mean

unedited_original 0.80

g unedited_filling 0.79
Zoe edit_original 0.19
edit_filling 0.15

edit_filling_smooth ~ 0.16

22 25 33 36 40 42 43 51 52 55 59 15 17 39 44 45 54 19 26 27 26 31 38 43 53 37 50 57 58 16 21 41 20 47 24 29 35 23 32 46 30 49 34 06 56 07 12 13 18 08 14 02 03 05 10 09 11 04 01

Figure 6.2: Overview of the authenticity scores from our survey. Shades of blue indicate the two categories of unedited avatars,
and different shades of orange indicate the three categories of edited avatars.

Comparing mean authenticity scores (see Figure 6.2), we see that both categories of unedited avatars
are perceived as similarly authentic. Additionally, on average, the edited avatars are perceived as
significantly less authentic than the unedited avatars. Out of the edited categories, we see that
edit_original, without our improvements, is perceived as the most authentic on average. The categories
using our improvements score equivalently poorly on average.

Despite the negative results implied by the mean authenticity scores, a plot of individual authenticity
scores shows us that edited avatars 56 and 18 outperform the unedited avatar 6, with unedited avatar 18
even tying with three more unedited avatars. This indicates that edited avatars can achieve comparable
authenticity to unedited avatars. The 5 most authentic edited avatars, aside from avatar 18, use our
improvements. However, from the 11 avatars which are considered 100% inauthentic, 9 use our
improvements. This conflicting data shows us an inconclusive result, and in general, we see a very large
spread between the authenticity scores spanning from 0 to 0.74 for edited avatars.

To get a better idea of why the spread is so large and why some edited avatars are perceived as so
much more authentic than others, we compare the 3 most authentic (Table 6.6) and the 3 least authentic
(see Table 6.7) avatars. What stands out is that, unlike the authentic avatars, the inauthentic avatars
are typically composed of conflicting features. For example, facial hair on a female face (1X, 3X, 3Y),
a masculine face with a feminine neck or hairstyle and vice versa (1X, 1Y, 2X), or clashing skin tones
(2X, 2Y, 2Z) (see Table 6.7). On the other hand, the authentic avatars are very homogeneous in their
composition.

6.3. Quantitative Analysis

23

Category

edit_original

edit_filling

edit_filling_smooth | 3

Table 6.6: The 3 most authentic edited avatars in decreasing order of authenticity.

Category

edit_original

edit_filling

edit_filling_smooth | 3

Table 6.7: The 3 least authentic edited avatars in decreasing order of authenticity.

6.3. Quantitative Analysis 24

Another issue we take note of is the apparent lack of Gaussians around the nose of 3Z and the inclusion
of extra Gaussians around the nose of 2X (see Table 6.7). Upon further investigation, we found that the
Gaussians for the hole-filling version of subject 175 are inaccurately bound to the mesh. Consequently,
they do not match the semantic regions defined by the mesh triangles. In particular, the Gaussians
bound to the mouth region of the source avatar for subject 175 extend to the nose (see Table 6.8),
producing prominent artefacts. This explains why 2X, using 175’s mouth, has additional Gaussians
around the nose, and why 3Z, using 175’s face but 264’s mouth, is missing Gaussians around the nose
(see Table 6.7).

Subject Mouth Face Nose + Eyes Hair

175 3 v

302 ‘..

Table 6.8: Gaussians of various semantic regions of the hole-filled source avatar of subject 175 compared to the more accurate
bindings of subject 302. Note the excess Gaussians around the nose, which are bound to the mouth triangles. These should be
bound to either the face or nose triangles, which now show some transparency around the area of the nose. Additionally, the hair
Gaussians bound to the hair triangles contain Gaussians which are placed inside the head and neck of the mesh.

We conclude that the authenticity of a composite avatar is heavily dependent on the compatibility of the
source avatars it is composed of. This has to do with the implausibility of certain combinations of facial
features in real life, such as clashes in racial and gendered facial features. Due to the randomised nature
of the avatars used in our study, many of these implausible combinations are created. This makes it
difficult to see if an avatar performed badly due to our method or due to its composition.

6.3.1. Exclusion of Implausible Avatars
To allow a better comparison between the different methods, we exclude implausible combinations
according to the criteria described below. Note that an avatar may fit multiple criteria for exclusion.

The hole-filled source avatar for subject 175 specifically has very inaccurate Gaussian bindings, making
it unsuited for creating composite avatars (see Table 6.8). We exclude the 5 composite avatars using the
hole-filled source avatar for subject 175.

The mouth region of male source avatars typically includes facial hair. This is a clear giveaway when
combined with a female face. We exclude the 5 composite avatars with a male mouth and a female face.

Male necks tend to be bulkier, while female necks tend to be more slender. Hairstyles between men and
women are typically quite different as well. Because the neck and hair are already grouped under NHE,
we exclude the 17 composite avatars with conflicting genders for the face and NHE.

Lastly, a large difference in skin tone is also an obvious giveaway of an edit. Based on visual assessment,
we categorise subjects 074, 175, and 264 (see Appendix A) as dark skinned and the remaining avatars as
light-skinned. We exclude the 22 composite avatars with Gaussians from both skin tone categories.

In total, we exclude 30 of the 45 total composite avatars matching one or multiple of the criteria described
above. A full overview of the excluded avatars, including the reason(s) for their exclusion, is provided
in Appendix C.

6.3. Quantitative Analysis 25

Category Mean

unedited_original 0.80
unedited_filling 0.79

edit_original 0.26
edit_filling 0.34
edit_filling_smooth ~ 0.43

17 19 24 15 25 27 18 23 21 26 20 28 22 06 29 07 12 13 16 08 14 02 03 05 10 09 11 04 Ol
Avatar

Figure 6.3: Overview of the authenticity scores from our survey after filtering out implausible avatars.

After filtering out implausible avatars, the edit_filling category has a score of 0.34 outperforming
edit_original’s score of 0.26. This shows that our hole-filling method is an improvement when used
for creating composite avatars while preserving the quality of unedited source avatars. We conclude
that our hole-filling method is an improvement with respect to the GaussianAvatars approach [21].
Furthermore, edit_filling_smooth has a mean score of 0.43, outperforming the edit_filling category. We
conclude that our border smoothing method further improves the perceived authenticity of composite
avatars.

Despite the high quality of some of the most authentic avatars, the edited categories do not match the
authenticity mean scores of the unedited categories. A limitation of our study is that the source avatars
used to create the composite avatars are shown in the same survey, making it possible to extrapolate
which avatars are edited by identifying the source models. We conclude that the participants can
accurately distinguish source avatars from composite avatars.

6.3.2. Analysis of Regional Authenticity Scores
Using the same approach, we can determine the authenticity scores for each facial region (see Figure 6.4).
In this way, we investigate if there are specific regions which are more likely to be seen as inauthentic.

1.4 B unedited_original 1.44 B unedited_original
mm unedited_filling mmm unedited_filling
edit_original edit_original
1.2 = edit_filling 1.2 = edit_filling
B edit_filling_smooth mm edit_filling_smooth
1.0 1.0

Authenticity
o
(=]
Authenticity
o
®
|

o
o
o
o
L

o
ES
I
S
L

o
N
o
N

0.0 "‘ "‘ ‘| || ||

T T T
Eyes Mouth Nose NHE Eyes Mouth Nose NHE

o
=)

(a) Regional authenticity score for edited regions. Unedited categories (b) Regional authenticity score for unedited regions.
are shown for comparison, but naturally have no edited regions.

Figure 6.4: The authenticity score for each region used in our study, grouped by category.

The graphs in Figure 6.4 show again that the unedited avatars are generally perceived as authentic. The
mouth region on unedited avatars is perceived as marginally less authentic. This could be related to
the expression transfer used to animate the avatars, as it can cause artefacting, especially around the
mouth. Looking at Figure 6.4b, we see that unedited regions on composite avatars, in general, have
per-region authenticity scores which are a bit below those of the fully unedited source avatars. This
could be explained by other edits to the avatar, lowering the overall perceived authenticity, resulting in
participants falsely identifying unedited regions as edited.

Figure 6.4a indicates that the regions most likely to be perceived as inauthentic when edited are the

6.4. Real-Time Performance 26

eyes and NHE, while the nose is more likely to be seen as authentic. However, these results must be
taken with a grain of salt as the exclusion criteria defined in Section 6.3.1 are not applied, and so the
results might be skewed by those particularly unnatural edits. We choose not to apply the exclusion
criteria here because it reduces the data significantly (e.g. 1-2 avatars per region per category), making a
meaningful analysis impossible.

6.4. Real-Time Performance

To evaluate the real-time performance of our editor, we performed some rudimentary benchmarks. We
examine the frame rate of our editor while animating the avatar, modifying the face shape coefficients,
and modifying the Gaussians assigned to each face region. To compare the effect the number of source
avatars has on the frame rate, we run each benchmark once for 2 to 14 source avatars.

Each benchmark is run for 110 iterations, of which the first 10 are warm-up iterations. For the animation
benchmarks, a sequence of 110 FLAME expression parameters, taken from one of the source avatars, is
used. The shape coefficients and the Gaussian assignments are randomly determined. During each
iteration, we disable the Python garbage collector to get clearer results.

The benchmarks were run on an Alienware Area-51 R5 computer with an Intel Core i7-9800X CPU,
32GB of RAM, an RTX 4070 with 12GB of VRAM, running the Ubuntu 24.04 LTS operating system.

60

o

230 8 Ezoqjl::v] %
‘20[9@?@@@@@11 [g"?[} E %eﬁééﬁﬁ?%%@

2 3 4 5 6 7 8 9 10 11 12 13 14 2 3 4 5 6 7 8 9 10 11 12 13 14 2 3 4 5 6 7 8 9 10 11 12 13 14
avatars avatars avatars

(a) Expression animation. (b) Modifying shape coefficients. (c) Modifying Gaussian assignment.

Figure 6.5: Benchmark results over 100 iterations for 2 - 14 source avatars.

6.4.1. Results

The benchmark results (see Figure 6.5) show that our editor performs each action at > 15 FPS for up
to 7 avatars. Using more than 7 avatars is unrealistic, as there are only 7 semantic groups to edit.
Furthermore, this benchmark measures the unrealistic worst case in which the editor performs a costly
operation every frame. We consider the performance of our editor sufficient for real-time editing.

Comparing the results in Figures 6.5a and 6.5b to those in Figure 6.5¢ shows that the former scales
poorly with the number of source avatars. This is a result of the way mesh deformation is implemented
in the editor. The calculation of the composite mesh vertices is relatively expensive, and it is recomputed
for every change to either the source meshes or the shape coefficients, which scales with the number
of source meshes. Modifying the Gaussian assignments is achieved via index masks, which are
precomputed and stored in lookup tables, making them scale very well.

Discussion

This chapter discusses the strengths and limitations of our method and implementation, as well as
future work which can be done to improve our method.

7.1. Strengths

Despite some restrictions, composite avatars can be created using features from visually distinct subjects,
creating unique but authentic avatars as shown by our results. Our method can generate suitable source
avatars using front-facing-only footage due to our use of obscuring Gaussians. We also support the
combination of source avatars with differences in skin tone thanks to our colour correction method.

Due to the conceptually simple, semantic-based approach to editing used by our method, we are able to
create an editor which is more intuitive and accessible than more complex and technically demanding
3D editors. Additionally, because our method relies on the direct manipulation of Gaussian and triangle
primitives, edits can be applied interactively, as shown by our benchmark results showing the real-time
performance of our editor.

7.2. Limitations

A Gaussian’s parent triangle determines which semantic region it belongs to. This is a decent
approximation, but it allows for Gaussians to be bound to one region while being spatially in another.
This is most prominently seen in Figure 6.8. In general, Gaussians for one region could include Gaussians
for another region, e.g. the nose region containing a cheek Gaussian and vice versa. This becomes
particularly problematic when the regions are assigned different source avatars.

The mesh used in our implementation does not include a surface for the mouth cavity, only teeth. This
means that the mouth cavity lacks proper triangles for Gaussians to bind to. Consequently, Gaussians
depicting the inside of the mouth often end up bound to non-mouth regions. This is also the reason we
excluded open-mouth expressions from our study.

The subjects from the NeRSemble dataset [13] used to synthesise our source avatars have their hair
down, partially obscuring parts of their head. This interferes with the segmentation of the Gaussians,
especially around the ears and neck. Preventing us from treating these as distinct areas in our study.

In general, our approach doesn’t support hair very well. We use a mesh to represent the underlying
structure of an avatar’s hair. However, a mesh surface cannot accurately depict the complex and dynamic
movement of human hair.

Lastly, the randomised nature of the composite avatars used in our study produced inconclusive results,
making it difficult to accurately evaluate the impact of our improvements.

27

7.3. Future Work 28

7.3. Future Work

As mentioned in Section 7.2, the strategy used to segment Gaussians into regions fails when Gaussians
are positioned too far from their parent triangle. A more suitable binding strategy could be to use
barycentric coordinates [28, 5] to guarantee spatial relevancy to the parent triangle. Alternatively,
Gaussian regions could be completely decoupled from mesh regions by defining them independently of
their parent triangles. This way, regions can be defined using a segmentation model (e.g. SAGA [2]), or
simply by an artist manually selecting Gaussians for each region.

A more suitable underlying hair structure, such as strands [17], would allow the head avatars to support
dynamic hair movement. A hybrid approach combining mesh-bound Gaussians for the surface of the
face and Gaussian strands for the hair could work better.

Our simple heuristic approach of inserting obscuring Gaussians significantly improves surface coverage
of the Gaussians. Like any heuristic, however, it is not perfect. In our case, the obscuring Gaussians
only roughly fill the head. A more accurate space-filling method could theoretically perform better,
but will likely significantly impact optimisation time. Additionally, the unexplained inaccuracy of
Gaussian bindings in the hole-filled source avatar for subject 175 (see Figure 6.8) may be caused by the
Gaussians optimising to "cover up" the obscuring Gaussian, indicating a potential flaw in the approach.
A more pragmatic approach might be to remove Gaussians instead of obscuring them. This can be
done by determining which Gaussians should be visible for each iteration of the optimisation, and only
rendering and optimising the Gaussians visible in that iteration. Gaussian visibility could, for example,
be determined based on triangle visibility.

Using a conventional triangular mesh for the underlying structure of the Gaussians works well if the
mesh geometry does not deform too much. Unfortunately, this is not always possible when combining
Gaussians from different sources. One of the reasons for this is that rescaling a 2D triangle cannot
sufficiently inform the 3D scaling factor of a Gaussian. A more accurate approach could be achieved by
binding Gaussians to a polyhedral mesh [5, 35].

The impact of our colour correction method for skin-tone homogenisation was not included in our
study and should be analysed in the future. Additionally, our method makes no distinction between
what is or is not skin and is applied to every Gaussian in a region. A more accurate result could be
achieved with a more restrictive approach by distinguishing skin Gaussians from non-skin Gaussians,
for example, by an artist or a segmentation model (e.g. SAGA [2]).

Conclusion

This thesis introduced an editor for composing animatable Gaussian head avatars by selectively
combining the Gaussians and the intrinsic face shape of source avatars according to semantic facial
regions. We illustrated the intuitive concept behind the editor and addressed some of the difficulties
in composing Gaussian head avatars. Three techniques were proposed to tackle some of these
difficulties, two of which were evaluated through an ablation study. To address the inherent flaws of
using transparent Gaussians as opaque textures, we modified the GaussianAvatars approach [21] for
optimising mesh-bound Gaussians. Our adaptation results in a 131% improvement in the perceived
authenticity of composite avatars. Additionally, we introduce a post-processing technique to homogenise
the Gaussians on the borders between semantic regions of a composite avatar by simulating alpha
blending at the borders between semantic regions. We have shown that composite avatars created
using both methods are perceived as 165% more authentic. Lastly, we showcased the effect of our third
technique, which addresses mismatched skin tone between source avatars by shifting the colour of
Gaussians to better match the skin tone of a base avatar. We concluded that our method creates authentic
composite avatars as long as the avatar does not contain conflicting phenotypic and socio-cultural
features.

As shown, our methods work well, laying the groundwork for future work towards an editor for
composite Gaussian head avatars. Improvements can be made to the mesh binding approach in order
to support larger mesh deformations. Dedicated support for the strand structure of hair would allow
dynamic hair movement. Better support for novel poses of the mouth, specifically, could reduce the
artefacts limiting animation of this area. Overall, this research showcases the impressive photo-realistic
quality achievable by composite Gaussian head avatars, demonstrating the strong potential for this
technique and opening up the door for 3D artists to create even higher fidelity 3D faces in the future.

29

(1]

(2]
(3]

(4]

[5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

References

Volker Blanz and Thomas Vetter. “A morphable model for the synthesis of 3D faces”. In:
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’99. USA: ACM Press/Addison-Wesley Publishing Co., 1999, pp. 187-194. 1sen: 0201485605. por:
10.1145/311535.311556. urL: https://doi.org/10.1145/311535.311556.

Jiazhong Cen et al. “Segment Any 3D Gaussians”. In: arXiv preprint arXiv:2312.00860 (2023).

Yiwen Chen et al. GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting. 2023.
arXiv: 2311.14521 [cs.CV].

Bernhard Egger et al. 3D Morphable Face Models — Past, Present and Future. 2020. arXiv: 1909.01815
[cs.CV]. urL: https://arxiv.org/abs/1909.01815.

Antoine Guédon and Vincent Lepetit. “Gaussian Frosting: Editable Complex Radiance Fields
with Real-Time Rendering”. In: ECCV (2024).

Antoine Guédon and Vincent Lepetit. “SuGaR: Surface-Aligned Gaussian Splatting for Efficient
3D Mesh Reconstruction and High-Quality Mesh Rendering”. In: CVPR (2024).

Chin-Chang Ho and Karl F. MacDorman. “Revisiting the uncanny valley theory: Developing
and validating an alternative to the Godspeed indices”. In: Computers in Human Behavior 26.6
(2010). Online Interactivity: Role of Technology in Behavior Change, pp. 1508-1518. 1ssn: 0747-5632.
por: https://doi.org/10.1016/j.chb.2010.05.015. UrRL: https://www.sciencedirect.com/
science/article/pii/S0747563210001536.

Jonathan Hoffstadt and Preston Cothren. Dear PyGui: GPU-Accelerated GUI Toolkit for Python.
urlhttps://dearpygui.readthedocs.io. Accessed: 2025-08-18. 2025.

Haoda Huang et al. “Leveraging motion capture and 3D scanning for high-fidelity facial per-
formance acquisition”. In: ACM SIGGRAPH 2011 Papers. SIGGRAPH ’11. Vancouver, British
Columbia, Canada: Association for Computing Machinery, 2011. 1sen: 9781450309431. por:
10.1145/1964921.1964969. urL: https://doi.org/10.1145/1964921.1964969.

Ian Jolliffe. “Principal Component Analysis”. In: Wiley StatsRef: Statistics Reference Online. John
Wiley & Sons, Ltd, 2014. 1sN: 9781118445112. por: https://doi.org/10.1002/9781118445112.
stat06472. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.
stat06472. urL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.
stat06472.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Poisson surface reconstruction”. In:
Proceedings of the Fourth Eurographics Symposium on Geometry Processing. SGP '06. Cagliari, Sardinia,
Italy: Eurographics Association, 2006, pp. 61-70. 1seN: 3905673363.

Bernhard Kerbl et al. “3D Gaussian Splatting for Real-Time Radiance Field Rendering”. In: ACM
Transactions on Graphics 42.4 (July 2023). urL: https://repo-sam. inria. fr/fungraph/3d-
gaussian-splatting/.

Tobias Kirschstein et al. “NeRSemble: Multi-View Radiance Field Reconstruction of Human
Heads”. In: ACM Trans. Graph. 42.4 (July 2023). 1ssn: 0730-0301. por: 10 . 1145/3592455. URL:
https://doi.org/10.1145/3592455.

Samuli Laine et al. “Modular Primitives for High-Performance Differentiable Rendering”. In:
ACM Transactions on Graphics 39.6 (2020).

Tianye Li et al. “Learning a model of facial shape and expression from 4D scans”. In: ACM
Transactions on Graphics, (Proc. SIGGRAPH Asia) 36.6 (2017), 194:1-194:17. urL: https://doi.org/
10.1145/3130800.3130813.

Xiaoye Sherry Li et al. “SuperLU”. In: Encyclopedia of Parallel Computing. Springer, 2011, pp. 1955-
1962.

30

https://doi.org/10.1145/311535.311556
https://doi.org/10.1145/311535.311556
https://arxiv.org/abs/2311.14521
https://arxiv.org/abs/1909.01815
https://arxiv.org/abs/1909.01815
https://arxiv.org/abs/1909.01815
https://doi.org/https://doi.org/10.1016/j.chb.2010.05.015
https://www.sciencedirect.com/science/article/pii/S0747563210001536
https://www.sciencedirect.com/science/article/pii/S0747563210001536
https://doi.org/10.1145/1964921.1964969
https://doi.org/10.1145/1964921.1964969
https://doi.org/https://doi.org/10.1002/9781118445112.stat06472
https://doi.org/https://doi.org/10.1002/9781118445112.stat06472
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat06472
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat06472
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat06472
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat06472
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://doi.org/10.1145/3592455
https://doi.org/10.1145/3592455
https://doi.org/10.1145/3130800.3130813
https://doi.org/10.1145/3130800.3130813

References 31

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

Haimin Luo et al. “GaussianHair: Hair Modeling and Rendering with Light-aware Gaussians”. In:
arXiv preprint arXiv:2402.10483 (2024).

Wan-Chun Ma, Marco Barbati, and J. P. Lewis. “A facial composite editor for blendshape characters”.
In: Proceedings of the Digital Production Symposium. DigiPro "12. Glendale, California: Association
for Computing Machinery, 2012, pp. 21-26. 1sen: 9781450316491. por: 10.1145/2370919.2370923.
URL: https://doi.org/10.1145/2370919.2370923.

Ben Mildenhall et al. “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”.
In: ECCV. 2020.

Adam Paszke et al. “PyTorch: an imperative style, high-performance deep learning library”. In:
Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook,
NY, USA: Curran Associates Inc., 2019.

Shenhan Qian et al. “Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, pp. 20299—
20309.

Ravi Ramamoorthi and Pat Hanrahan. “An efficient representation for irradiance environment
maps”. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH '01. New York, NY, USA: Association for Computing Machinery, 2001, pp. 497-500. 1sBN:
158113374X. por: 10.1145/383259.383317. urL: https://doi.org/10.1145/383259.383317.

Shridhar Ravikumar. “Performance Driven Facial Animation with Blendshapes”. PhD thesis.
University of Bath, 2018.

Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017. arXiv: 1609.04747
[cs.LG]. urL: https://arxiv.org/abs/1609.04747.

Johannes Lutz Schénberger and Jan-Michael Frahm. “Structure-from-Motion Revisited”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

Johannes Lutz Schonberger et al. “Pixelwise View Selection for Unstructured Multi-View Stereo”.
In: European Conference on Computer Vision (ECCV). 2016.

Markus Schiitz et al. “Splatshop: Efficiently Editing Large Gaussian Splat Models”. In: Computer
Graphics Forum (2025). 1ssn: 1467-8659. por: 10.1111/cgf.70214.

Zhijing Shao et al. “SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded
Gaussian Splatting”. In: Computer Vision and Pattern Recognition (CVPR). 2024.

Georgii Stanishevskii et al. Deepfake for the Good: Generating Avatars through Face-Swapping with
Implicit Deepfake Generation. 2024. arXiv: 2402.06390 [cs.CV].

David Svitov et al. “HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh
Prior”. In: Proceedings of the Asian Conference on Computer Vision (ACCV). Dec. 2024, pp. 4051-4068.

Diego Thomas and Rin-ichiro Taniguchi. “Augmented Blendshapes for Real-Time Simultaneous
3D Head Modeling and Facial Motion Capture”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2016.

Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing in Python”. In:
Nature methods 17.3 (2020), pp. 261-272.

Michael Weinmann and Reinhard Klein. “Advances in geometry and reflectance acquisition
(course notes)”. In: SIGGRAPH Asia 2015 Courses. SA "15. Kobe, Japan: Association for Computing
Machinery, 2015. 1sBn: 9781450339247. por: 10.1145/2818143.2818165. urL: https://doi.org/
10.1145/2818143.2818165.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for 3D Data
Processing”. In: arXiv:1801.09847 (2018).

Wojciech Zielonka et al. “Drivable 3D Gaussian Avatars”. In: I3DV. Mar. 2025.

https://doi.org/10.1145/2370919.2370923
https://doi.org/10.1145/2370919.2370923
https://doi.org/10.1145/383259.383317
https://doi.org/10.1145/383259.383317
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1111/cgf.70214
https://arxiv.org/abs/2402.06390
https://doi.org/10.1145/2818143.2818165
https://doi.org/10.1145/2818143.2818165
https://doi.org/10.1145/2818143.2818165

A

NeRSemble Subjects

302 210

32

33

304

264

34

074

165

35

104

175

306

253

B.1 unedited_original

Survey Avatars

Avatar 1
Base 306
Authenticity 0.95
Eyes 1.00
Mouth 1.00
Nose 0.95
NHE 1.00
Avatar 2
Base 210
Authenticity 0.91
Eyes 0.95
Mouth 0.95
Nose 1.00
NHE 0.95

36

B.1. unedited_original

37

Avatar 3
Base 074
Authenticity 0.82
Eyes 0.95
Mouth 0.95
Nose 0.91
NHE 1.00
Avatar 4
Base 165
Authenticity 0.82
Eyes 091
Mouth 0.95
Nose 1.00
NHE 0.95
Avatar 5
Base 302
Authenticity 0.82
Eyes 091
Mouth 0.91
Nose 1.00
NHE 0.91
Avatar 6
Base 104
Authenticity 0.73
Eyes 1.00
Mouth 091
Nose 0.95
NHE 0.86

B.1. unedited_original

38

Avatar 7

Base 304

Authenticity 0.55
Eyes 1.00
Mouth 0.55
Nose 1.00
NHE 1.00

B.2. unedited_filling

39

B.2 unedited_filling

Avatar 8
Base 253
Authenticity 0.86
Eyes 0.95
Mouth 0.86
Nose 1.00
NHE 1.00
Avatar 9
Base 460
Authenticity 0.86
Eyes 0.95
Mouth 0.95
Nose 0.95
NHE 1.00
Avatar 10
Base 218
Authenticity 0.82
Eyes 1.00
Mouth 0.95
Nose 0.86
NHE 1.00

B.2. unedited_filling

40

Avatar 11
Base 140
Authenticity 0.77
Eyes 0.95
Mouth 0.95
Nose 1.00
NHE 0.82
Avatar 12
Base 175
Authenticity 0.77
Eyes 1.00
Mouth 0.77
Nose 1.00
NHE 1.00
Avatar 13
Base 238
Authenticity 0.73
Eyes 091
Mouth 0.91
Nose 1.00
NHE 0.82
Avatar 14
Base 264
Authenticity 0.73
Eyes 1.00
Mouth 0.73
Nose 1.00
NHE 0.95

B.3. edit_original

41

B.3 edit_original

Avatar 15
Base 306
Eyes 104
Authenticity 0.73
Eyes 0.82
Mouth 1.00
Nose 0.95
NHE 0.91
Avatar 16
Base 074
NHE 253
Mouth 165
Authenticity 0.41
Eyes 0.82
Mouth 0.82
Nose 0.91
NHE 0.59
Avatar 17
Base 104
Eyes 460
Nose 238
Authenticity 0.32
Eyes 0.59
Mouth 0.82
Nose 0.86
NHE 0.82

B.3. edit_original

42

Avatar 18
Base 140
NHE 238
Mouth 238
Authenticity 0.32
Eyes 0.86
Mouth 0.82
Nose 0.95
NHE 0.41
Avatar 19
Base 306
Mouth 074
Nose 074
NHE 304
Authenticity 0.27
Eyes 0.77
Mouth 0.68
Nose 0.77
NHE 0.50
Avatar 20
Base 218
Eyes 210
Nose 210
NHE 210
Authenticity 0.18
Eyes 0.59
Mouth 0.86
Nose 0.64
NHE 0.64
Avatar 21
Base 306
Mouth 074
Eyes 175
Nose 074
Authenticity 0.18
Eyes 0.18
Mouth 0.73
Nose 0.95
NHE 0.86

B.3. edit_original

43

Avatar 22
Base 460
NHE 264
Authenticity 0.09
Eyes 0.68
Mouth 0.95
Nose 0.95
NHE 0.18
Avatar 23
Base 253
Eyes 140
Authenticity 0.09
Eyes 0.09
Mouth 1.00
Nose 0.95
NHE 0.95
Avatar 24
Base 253
NHE 302
Mouth 140
Eyes 302
Authenticity 0.09
Eyes 0.50
Mouth 0.86
Nose 0.91
NHE 0.36
Avatar 25
Base 074
Nose 210
NHE 264
Authenticity 0.09
Eyes 091
Mouth 0.95
Nose 0.45
NHE 0.32

B.3. edit_original

44

Avatar 26
Base 238
Nose 253
Mouth 104
NHE 253
Authenticity 0.05
Eyes 0.73
Mouth 0.55
Nose 0.77
NHE 0.14
Avatar 27
Base 210
NHE 074
Authenticity 0.05
Eyes 0.86
Mouth 0.86
Nose 091
NHE 0.05
Avatar 28
Base 218
Eyes 210
Authenticity 0.00
Eyes 0.00
Mouth 1.00
Nose 0.91
NHE 0.95
Avatar 29
Base 218
Nose 460
Mouth 074
NHE 460
Authenticity 0.00
Eyes 0.73
Mouth 0.86
Nose 0.45
NHE 0.32

B.4. edit_filling

45

B.4 edit_filling

Avatar 30
Base 140
Nose 304
Authenticity 0.50
Eyes 1.00
Mouth 0.91
Nose 0.73
NHE 0.82
Avatar 31
Base 253
Nose 306
NHE 306
Authenticity 0.45
Eyes 0.86
Mouth 0.82
Nose 1.00
NHE 0.64
Avatar 32
Base 304
Nose 306
Authenticity 0.41
Eyes 0.82
Mouth 0.45
Nose 0.91
NHE 0.95

B.4. edit_filling

46

Avatar 33
Base 238
Mouth 460
Authenticity 0.32
Eyes 0.59
Mouth 0.73
Nose 0.82
NHE 0.77
Avatar 34
Base 302
Eyes 238
Authenticity 0.23
Eyes 0.32
Mouth 0.95
Nose 1.00
NHE 0.95
Avatar 35
Base 218
Mouth 140
Nose 140
Eyes 140
Authenticity 0.14
Eyes 0.77
Mouth 0.73
Nose 0.36
NHE 1.00
Avatar 36
Base 253
Eyes 302
NHE 302
Authenticity 0.09
Eyes 0.73
Mouth 0.77
Nose 0.91
NHE 0.18

B.4. edit_filling

47

Avatar 37
Base 306
NHE 238
Eyes 238
Authenticity 0.09
Eyes 0.32
Mouth 0.86
Nose 0.95
NHE 0.32
Avatar 38
Base 074
Mouth 302
Eyes 302
Authenticity 0.05
Eyes 0.09
Mouth 0.68
Nose 091
NHE 0.86
Avatar 39
Base 175
NHE 253
Eyes 253
Mouth 253
Authenticity 0.05
Eyes 0.50
Mouth 0.64
Nose 0.64
NHE 0.27
Avatar 40
Base 104
Eyes 175
NHE 218
Nose 218
Authenticity 0.00
Eyes 0.14
Mouth 0.64
Nose 0.77
NHE 0.27

B.4. edit_filling

48

Avatar 41
Base 460
Mouth 264
Nose 264
Authenticity 0.00
Eyes 091
Mouth 0.09
Nose 0.05
NHE 0.95
Avatar 42
Base 253
Mouth 175
NHE 238
Authenticity 0.00
Eyes 0.77
Mouth 0.18
Nose 0.50
NHE 0.36
Avatar 43
Base 104
Mouth 264
Nose 264
NHE 175
Authenticity 0.00
Eyes 0.64
Mouth 0.32
Nose 0.36
NHE 0.09
Avatar 44
Base 302
Mouth 264
Authenticity 0.00
Eyes 091
Mouth 0.05
Nose 0.86
NHE 0.77

B.5. edit_filling_smooth

B.5 edit_filling_smooth

Avatar 45
Base 165
NHE 306
Authenticity 0.59
Eyes 0.82
Mouth 0.91
Nose 1.00
NHE 0.82
Avatar 46
Base 140
NHE 253
Nose 253
Authenticity 0.45
Eyes 091
Mouth 1.00
Nose 1.00
NHE 0.50
Avatar 47
Base 460
Nose 302
NHE 302
Authenticity 0.41
Eyes 0.73
Mouth 0.86
Nose 0.95

NHE 0.64

B.5. edit_filling_smooth

50

Avatar 48
Base 210
Eyes 253
NHE 253
Authenticity 0.27
Eyes 0.73
Mouth 091
Nose 0.95
NHE 0.36
Avatar 49
Base 218
Mouth 306
NHE 264
Authenticity 0.14
Eyes 0.82
Mouth 091
Nose 0.86
NHE 0.27
Avatar 50
Base 306
NHE 264
Authenticity 0.14
Eyes 0.77
Mouth 0.77
Nose 0.73
NHE 0.32
Avatar 51
Base 074
Mouth 238
NHE 175
Authenticity 0.14
Eyes 0.82
Mouth 0.68
Nose 0.77
NHE 0.23

B.5. edit_filling_smooth

51

Avatar 52
Base 074
NHE 302
Nose 210
Authenticity 0.09
Eyes 0.95
Mouth 0.95
Nose 0.50
NHE 0.23
Avatar 53
Base 302
NHE 104
Eyes 218
Nose 104
Authenticity 0.09
Eyes 0.64
Mouth 0.86
Nose 0.77
NHE 0.18
Avatar 54
Base 264
Eyes 104
NHE 104
Mouth 175
Authenticity 0.05
Eyes 0.23
Mouth 0.77
Nose 0.86
NHE 0.27
Avatar 55
Base 460
Eyes 264
Nose 104
Mouth 264
Authenticity 0.05
Eyes 0.18
Mouth 0.09
Nose 0.86
NHE 0.91

B.5. edit_filling_smooth

52

Avatar 56
Base 175
Mouth 264
Eyes 238
NHE 264
Authenticity 0.00
Eyes 0.27
Mouth 091
Nose 0.68
NHE 0.73
Avatar 57
Base 238
Mouth 218
Authenticity 0.00
Eyes 0.50
Mouth 0.09
Nose 0.68
NHE 0.82
Avatar 58
Base 460
Nose 165
Mouth 165
Authenticity 0.00
Eyes 091
Mouth 0.09
Nose 0.55
NHE 1.00
Avatar 59
Base 175
Mouth 140
NHE 460
Authenticity 0.00
Eyes 0.68
Mouth 0.41
Nose 0.64
NHE 0.36

Excluded Avatars

Avatar 16 Avatar 18
Reason Reason
Skin tone Gender
Avatar 19 Avatar 21
Reasons Reason
Gender Skin tone
Skin tone
Avatar 22 Avatar 24
Reason Reason
Skin tone Gender
Avatar 25 Avatar 26
Reasons Reason
Gender Gender
Skin tone

53

54

Avatar 27 Avatar 29
Reason Reasons
Skin tone Gender
Skin tone
Avatar 36 Avatar 37
Reason Reason
Gender Gender
Avatar 38 Avatar 39
Reason Reasons
Skin tone Subject 175
Gender
Skin tone
Avatar 40 Avatar 41
Reasons Reason
Subject 175 Skin tone
Skin tone
Avatar 42 Avatar 43
Reasons Reasons
Subject 175 Subject 175
Gender Gender
Skin tone Skin tone
Avatar 44 Avatar 49
Reason Reasons
Skin tone Gender

Skin tone

55

Avatar 50 Avatar 51

Reasons Reasons
Gender Subject 175
Skin tone Gender

Skin tone

Avatar 52 Avatar 53

Reasons Reason
Gender Gender
Skin tone

Avatar 54 Avatar 55

Reasons Reason
Subject 175 Skin tone
Gender
Skin tone

Avatar 56 Avatar 57

Reasons Reason
Subject 175 Gender
Skin tone

Avatar 58 Avatar 59

Reason Reasons
Gender Subject 175

Gender

Skin tone

	Preface
	Introduction
	Background
	3D Scene Reconstruction
	3D Gaussian Splatting
	Scene Generation
	Rendering Gaussians
	Novel-View Synthesis

	3D Morphable Face Models
	Mesh-Bound Gaussians
	Gaussian Head Avatars

	Related Work
	Adding Structure to Gaussians
	Editing Gaussian Scenes

	Methodology
	Novel Face Synthesis
	Combining Gaussians From Different Avatars
	Combining Face Shapes From Different Avatars

	Artefact Reduction in Composite Avatars
	Mitigation of Misleading Transparency Effects
	Post-Processing of Gaussians

	Implementation
	Evaluation
	Qualitative Analysis
	User Study
	Creation of Test Avatars
	Categorisation of Test Avatars
	The Testing Interface

	Quantitative Analysis
	Exclusion of Implausible Avatars
	Analysis of Regional Authenticity Scores

	Real-Time Performance
	Results

	Discussion
	Strengths
	Limitations
	Future Work

	Conclusion
	References
	NeRSemble Subjects
	Survey Avatars
	Excluded Avatars

